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Summary 

Iicotine as an Odorant 

The results suggest that nicotine vapour stimulates an in vitro 
olfactory preparation in three strains of rat and two strains of mouse, in 
a manner similar to known odorants. Preliminary experiments also suggest 
that nicotine is an odorant for human subjects. 

In the rat, the electro-olfactogram (EOG) produced by nicotine is 
attenuated by superfusion of the olfactory mucosa with the lectin 
concanavalin A. This reduction is prevented by a-methyl-D-mannoside, 
suggesting. that there is a glyco-moiety associated with at least one 
olfactory receptor responding to nicotine. 

A concanavalin A induced change in EOG response with varying odorant 
concentration for several odorants, including nicotine, can be explained by 
a single concanavalin A sensitive olfactory receptor with a dissociation 
constant for odorant binding in the order of 100 nM. The results also show 
that hydrophilic odorants are poor stimulants for the olfactory epithelium, 
supporting the hypothesis that the interaction of an odorant with the 
olfactory receptors involves hydrophobic effects. 

Spatial variation in response to four odorants, including nicotine, by 
the rat olfactory epithelium can be explained by a mosaic of olfactory 
receptors of various types in the olfactory epithelium. This observation is 
consistent with current hypotheses of odour quality determination by the 
olfactory mucosa. 

Nicotine binding sites in olfactory and respiratory 

epithelia. 

Binding studies show that there are sites for 3H (- )nicotine in both 
olfactory and respiratory preparations, though these sites may not be the 
same in each tissue. The binding parameters for olfactory epithelium are 
Ko=695 nM and & ...... =8.24 pmollmg protein (mean of two experiments at 
optimal binding conditions>. The olfactory epitheUum binding sites differ 
from binding sites for nicotine described. elsewhere for brain (e.g. Ko 
values from 0.2-60 nM, B." .... values from 1-100 fmollmg protein) and for 
liver (Ko=0.2 nM, B ....... =5 fmol/mg protein). 

Some of the ~H (- )nicotine binding may be to an olfactory receptor. 
though more conclusive evidence is required to substantiate this. 
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General Introduction. 

Identification and isolation of an olfactory receptor 

The identification and isolation of an olfactory receptor, i.e. a 

receptor which links odorant interaction at a specific binding site with 

transduction pathways, is the prize still awaiting researchers in the field 

of olfaction. Central to this research effort has been the use of 

biochemical techniques to identify and characterise parts of the 

transduction process together wi th electrophysiological studies to 

investigate these aspects in the intact tissue or cells. The complexity of 

the system has made this research challenging. Not only are there 

olfactory receptors for the "typical" low molecular weight odorants 

(alcohols, thiols,and fatty acids for example) but also for pheromones (e.g. 

androstenone in the sow) and for other behaviourally important compounds. 

A recent report has shown that antigens of the major histocompatibl1 ty 

complex, when degraded in the urine, may be important olfactory cues in 

the rat (Singh et al., 1987>' In addition, olfactory receptor heterogeneity 

and interaction of an odorant with more than one receptor type are known 

characteristics of the olfactory process (Polak, 1973; Lancet, 1986; 

Getchell, 1986). Bon-olfactory receptors of the nasal cav1 ty such as the 

vomeronasal organ and the trigeminal nerve are also important in the 

overall function of the nasal chemosensory systems (Keverne et a1., 1986). 
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General Introduction 

Figure 1. Schematic Diagram of the Cells of Vertebrate Olfactory Epithelium 

ODORANT MOLECULES 
MV •• /./ 

----~- -~I----------.. " / ---._" 
• • e ••• • 

B 
~~~~-,,~ -

R~(~PTORS 

PASSIVE 
MEMBRANE 
PROPERTIES 

} 

ACTIVE 
MEMBRANE 
PROPERTIES 

TO OLFACTORY BULB 

ME - licroelectrode (for recording EOGs); NV - licrovilli; TS - terlinal swelling; 

ON - olfactory neuron; S - supporting cell; 8 - basal cell; NF - nerve fibres; A - axon; 

D - dendrite; 86 - Bowlan's gland; sa - secretory granules; 

The arrows on the right hand diagram show the direction of ion currentflow associated with 

sensory transduction, The olfactory epitheliul is typically 100-200~1 thick, each 

olfactory neuron cell body is S-SPI across and their dendrites are about 2~1 wide, The 

cilia which radiate frol the terlinal swelling are about O,2Spi wide at the proxilal end, 

narrowing to only O,06plt at the distal end, Estiutes of the nUlber of cilia radiating 

frol each neuron varies frol 40 up to 100 depending on the species, Olfactory cilia vary 

fro. 30-200pI in length, also dependent on the species, The olfactory neuron's axon is 

about 0.2pI wide, 

[redrawn frol various sources including Dodd & Squirr.ll, 1980; Getchell, 1986.) 
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General Introduction 

It 1s generally accepted that the receptor sites are found on the non­

motile cilia which radiate from the olfactory neurons and into the mucus 

layer covering the epithelium (for a recent electrophysiological study on 

loss of response to odorants following cilia removal see Adamek et al .• 

1984). The structure and function of olfactory neurons and other cells of 

the mucosa have been adequately reviewed elsewhere <Dodd & Squirrell. 1980 i 

Getchell, 1986; Lancet, 1986). A schematic diagram of the cells of the 

olfactory epithelium is shown in figure 1. Other workers have recently 

described the preparation of olfactory Cilia or cilia membrane 

preparations for use in biochemical studies, a development which 1s 

essent1al to any effort to isolate an olfactory receptor (Rhein & Cagan. 

1980; Chen et a1.,· 1986a; Shirley et a1.. 1986>' 

There have been several attempts to identify and isolate an olfactory 

receptor, predominantly by binding radiolabelled. odorants to preparat10ns 

of olfactory mucosa (Gennings et 131.. 1977; Dodd & Persaud, 1981; Price. 

1978; Fesenko et 131., 1979; Rhein & Cagan, 1980; Pelosi et a1.. 1982; .Wood & 

Dodd, 1984; Pevsner et al., 1985). These studies have identified odorant 

binding sites but it is unclear 1n many cases whether the observed binding 

1s to an olfactory receptor and/or to another component of the olfactory 

mucosa (e.g. see Pevsner et 131.. 1986). For example, odorants may bind to 

detoxification enzymes which are present in rat olfactory epithelium 

(Hadley & Dahl, 1982; Bond, 1983; Reed et 131 •• 1986; Jenner & Dodd. 1988L 

Another approach has been to identify a component of olfactory cilia '111 th 
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General Introduction 

characteristics expected for an olfactory receptor 1.e. Ciliary enrichllent, 

transmembrane orientation and relevant concentration in the olfactory 

membrane. The glycoprotein <gp95) identified by Chen et LJ1. n 986 b) may be 

an important component of the sensory process. 

These approaches are by no means exhaustive. Research into specific 

anosmias (the inability to detect a specific odorant) may provide useful 

information on the nature of olfactory receptors (Amoore, 1967). It has 

been suggested that there may be up to 30 classes of anosmia though it is 

difficult to estimate the number of different types of olfactory receptor 

which might be involved. Identification of anosmic strains of mice should 

facilitate study into the molecular basis of anosmia <Price, 1977; Wysocki 

et LJ1., 1977). Evidence also suggests that specific anosmias are determined 

genetically (Wysocki & Beauchamp, 1984), raising the possibility that 

anosmia is a result of a defective gene or gene product (most likely to be 

one type of olfactory receptor). 

Chemical modification of olfactory receptors in vivo and in 

electrophysiolog1cal studies has also been used to study the nature of 

olfactory receptors. The strategy in these experiments is to treat the 

olfactory mucosa with a reagent in order to selectively alter the response 

to odorants. Treatment of the olfactory mucosa with the reagent, I-ethyl­

maleimide <Getchell & Gesteland, 1972), with mersalyl (Menl!vse et LJ1., 1978), 

and by enzymatic lodlnlttion (Shirley et LJ1., 1983b) has shown 
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General Introduction 

selective effects on the response to odorants. Protection from the effects 

of these reagents by odorants suggests that the reagents are acting at or 

close to the olfactory receptors. Affinity labelling of the olfactory 

mucosa with odorants such as ethyl bromoacetate in vitro (Persaud et al., 

1981) and ethyl-n-butyrate in vivD (Xason & Xorton, 1984; Kason et a1.. 

1984) and photoaffinity labelling of the olfactory epithelium with light­

activated odorants (Xenevse et al., 1977) has shown selective effects on the 

response tp odorants. The most in depth investigation of olfactory 

receptors using the chemical modification approach has been done in this 

laboratory. The lectin concanavalin A has been shown to modify the 

response of the olfactory mUCOqa to odorants in the rat (Shirley et al., 

1983a) and in the frog (Wood et al., 1983). Over 100 odorants have been 

investigated in the rat, showing that the concanavalin A effect is 

strongest for 4 carbon to 6 carbon alkyl compounds, in particular for short 

chain fatty acids of which i-pentanoic acid is the best example studied 

(Shirley et al., 1987 b). The concentration-response profile for the 

concanavalin A sensitive olfactory receptor has also been studied (Shirley 

et alt, 1987 a and Chapter 2), The relationship between the results from 

chemical modification experiments and events at the molecular level has 

been discussed in detail elsewhere <Shirley et al., 1987 b). 

To facilitate the isolation of an olfactory receptor, researchers have 

investigated the second messenger pathways of olfactory transduction, the 

strategy being that any prospective olfactory receptor which may be 

isolated can be tested in reconstitution experiments with components of the 

- 24 -



General Introduction 

transduction process. In this way the criteria for an olfactory receptor 

(e.g. as described by Lancet, 1986) should be fulfilled. To this end. work 

in this laboratory on the rat olfactory adenylate cyclase (see below) is 

progressing well (Shirley et a1., 1986; Shirley et a1., 1987 L,d). 

Recent Advances in Olfactory Biochemistry 

In recent years the research effort into understanding olfactory 

mechanisms has become increasingly multi-disciplinary and has led to many 

interesting advances. For exam~le, messenger RNA for the olfactory marker 

protein has been isolated (Rogers et a1., 1985) and the amino acid sequence 

of the protein itself has now been determined (Sydor et al., 1986). The 

function of this cytosolic, olfactory neuron-specific protein is still 

unknown. Perhaps most encouraging has been the advances in identifying 

olfactory transduction mechanisms. 

An odorant-modulated adenylate cyclase enzyme cascade involving G­

proteins is known to be present in olfactory cilia of both rat and frog 

(Kurihara & Koyama, 1972; Menevse et al., 1977; Pace et 111., 1985; Sklar et 

al., 1986; Shirley et al., 1986; Pace & Lancet, 1986; Anhalt et ,,1. 1987). 

This, together with evidence from patch clamp studies on isolated olfactory 

neurons identifying ion channels (Nakamura & Gold, 1987; Labarca et 111 .• 

1987), evidence for phosphorylation of specific membrane proteins following 

stimulation of the olfactory adenylate cyclase <Heldman & Lancet, 1986> and 
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General Introduction 

the presence of a family of olfactory phosphodiesterases {K. Dickinson, S.G. 

Shirley & G.H. Dodd, unpublished results, this laboratory>, suggests that a 

probable transduction pathway has been identified. The similarities of this 

transduction process with that identified in vision have 

(Lancet, 1986i Nakamura & Gold, 1987). 

been noted 

However, it is also known that some odorants are poor agonists for 

the olfac~ory adenylate cyclase (Sklar et al., 1986) suggesting that 

additional olfactory transduction mechanisms have still to be identified. 

One candidate for this is the phosphoinosltol second messenger system <e.g. 

Hokin, 1985; Irvine, 1987) which involves both cyclic nucleotides and G­

proteins OUchell & Kirk, 1986). Phosphoinositide metabolism has been 

measured in fish 'olfactory cilia (Huque & Bruch. 1986) although other recent 

evidence shows that phospholipase C is found in both sensory (olfactory> 

and non-sensory (respiratory) cilia preparations of the frog <Anhol t et lJl. t 

1987). Thus, it is unclear whether phosphoinositlde metabolism is linked 

to a specific olfactory transduction mechanism. Work in this laboratory 

(Y. Russell, K. Wood, R. Aujla & G.H. Dodd, unpublished results. this 

laboratory) may help clarify the role of phospholipids in olfactory 

transduction. 

Advances in our knowledge of olfaction are not limited to the 

transduction mechanisms. Studies have shown that there 1s homology 

between olfactory proteins and proteins from other sources. The odorant 

binding protein, OBP, first identified by its abil1 ty to bind 
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General Introduction 

2-isobutyl-3-methoxypyrazine (Pelosi et al., 1982; Wood & Dodd, 1984; 

Pevsner et al.,1985; Pevsner et a1., 1986) is a soluble protein lcx;alised to 

olfactory mucus and is secreted froD the Bowman's glands of the olfactory 

epithelium. The OBP has been suggested to play an iDportant role in 

odorant tran~port. Structural homology between the pyrazine binding 

protein itself and a family of urinary proteins of unknown function has 

been demonstrated (Cavaggioni et 8.1., 1987). It was suggested that these 

proteins play a role in odorant transport in urine which may have 

important behavioural effects (see Singh et al., 1987 in opening paragraph 

also). Using molecular cloning techniques on a complementary DNA library 

from olfactory tissue of the frog, it has been shown that an olfactory 

specific messenger RNA which is localised to the cells of the Bowman's 

glands, codes for a protein with amino acid sequence homology to serum 

transport proteins and a retinol binding protein (Lee et ai., 1987). 

A summary of the events leading to odorant detection and signal 

transduction by the olfactory neurons is shown in table 1. 
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Ge:.er~l IntrcxiL:ct:on 

Table 1. Olfactory Stimulus Reception and Transduction. 

ODORANT 

(vapour phase) 

/ 

I Vomeronasal Organ I 
/ 

/ 
/ I Trigeminal Receptors I 

Respiratory Sensory 

Mucosa Kucosa 
I 

~ , ~r 

V I odorants layer I Behavioural dissolve 1n mucus Irritancy? 
I 

effects? I , n 

odorant transport; non-specific membrane effects; dispersal to vapour phase; 

accumulation in cells; metabolism (metabolites as odorants?); 

clearance in bloodstream; effect on mucus secretion? 

,. 
interaction of odorant with olfactory receptors 

(on cilia of primary neurons) 

" I activation of second messenger pathways J 

=~r.t:nued .... 

'f 
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aden y la te cyclase I another? I phosphoinosit!~e7 

(involves G proteins) metabolism 

u 

increase 1n cyclic AX? increase in 

(inhibition by calcium) inositol triphosphate diacylglycerol 

" ,r 
protein kinase activation cellular calcium protein kinase C 

(regulation by phosphodiesterases) level raised activity raised 

,. 
phosphorylation of 10n channels modulation of phosphorylation ot 

channel opening (Na+, K+) enzyme activity membrane proteins 

I 

generation of an action potential in neuron cell body 

processing of information 1n olfactory bulb 

(site of first synapse) 
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The Pharuacology and Biochemistry of Nicotine 

Figure 2. 11cotlne Structure and pKa 

BLOOD pH 
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0 
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pH 

[redrawn from ~angan ~ Golding, 1984] 

Nicotine <figure 2). an alkaloid found in tobacco plants and hence in 

tobacco products. was first isolated in the early 1800's. The chemistry of 

nicotine has been widely studied (e.g.Jackson. 1941; Seeman, 1984). 

principally because of it's potent pharmacological effects as an agonist for 

the acetylcholine receptor <e.g. Taylor, 1980), Xuch is known about the 

nicotinic acetylcholine receptor (Wan & Lindstrom, 1984) includIng details 

on neurotoxin binding sites <Wonnacott et al., 1982) subunit structure 

<Criado et al., 1985) and functional arrangement wi thin the membrane 
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(Hamilton et a1., 1985; Kaelicke, 1987>' licotine is also well studied 

since it is probably the most important component of tobacco smoke, causing 

addiction to the smoking babi t (Henningfield et /21., 1985). The effects of 

nicotine on smokers are too numerous and complex to cover adequately here 

but have been reviewed excellently elsewhere (e.g. Dawson & VesUiI, 1982; 

Hall, 1982; Balfour, 1982; Kangan & Golding, 1984; Benowitz, 1986). The 

action of nicotine on the cardiovascular system (e.g. Fenton & Dobson, 

1985; Beno~itz, 1986), in particular on that of smokers with hidden or 

inherited heart defects, is thought to be the most harmful of nicotine's 

effects on the body. 

The biochemistry of nicotine is equally complex and fascinating. 

Radiolabelled nicotine has been used in receptor binding studies to identify 

binding sites in several tissues. Possibly of most imporUince is the 

binding of nicotine to brain membrane preparations of the rat (Abood et 

a1.,1985bj Romano & Goldstein, 1980j Sloan et /21., 1984; Lippiello & 

Fernandes, 1986) mouse (Xarks & Collins, 1982; Sershen et /21., 1981> and 

man (Shimohama et al., 1985). This binding site for nicotine is 

stereoselective in favour of the (-)isomer (for deUills see Uible 2) which 

is also the case in pharmacological tests of the potency of the two isomers 

of nicotine (for early work see Barlow & Hamilton, 1965). Evidence 

suggests that the neuronal nicotine binding site is not the same as the 

neuromuscular nor ganglionic nicotinic acetylcholine receptor (e.g. Marks et 

a1., 1986; Wonnacott, 1986; Kemp & Korley, 1986; Collins et a1., 1986) and it 

is still a point of debate whether the brain binding site 1s cholinergic 
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(e.g. Abood et ai., 1985 c.f. Marks & Collins, 1982) and how many nicotine 

binding sites in brain there are (e.g. Sloan et 131., 1984). Other workers 

have shown that nicotine influences the metabolism of proteins in rat brain 

(Sershen & Lajtha, 1979; Sershen et a1., 1982) and high concentrations of 

nicotine () 1 mJO have been shown to stimulate protein synthesis in mouse 

tissue-culture cells (Hunt & Kelley, 1984). The correlation of all these 

results with those from behavioural studies (Marks et a1., 1985a,b; 

Henningfiel.d et al., 1985) will assist in understanding the complex effects 

of nicotine on the brain. 

Nicotine also binds to ?on-cholinergic sites (selective for the 

(+)isomer) on human leucocyte membranes <Davies et 131., 1982; Hoss et a1., 

1986), the significance of which is still unclear, although nicotine is 

known to be chemotactic for neutrophils (Totti et a1., 1984) and may reduce 

the anti-microbial effectiveness of human polymorphonuclear leucocytes 

(Sasagawa et ai., 1985>' There is a non-cholinergic binding site for 

nicotine on rat hepatocytes and hepatocyte membranes (Abood et a1., 1985a) 

which may be linked to a transport mechanism and/or metabolism .of the 

alkaloid by liver enzymes. Metabolism of nicotine in the liver to cotinlne, 

(see appendix A) for excretion in urine, is the major pathway by which 

nicotine is eliminated from the body (Kangan & Golding, 1984). Weak 

binding of nicotine to human plasma lipoproteins (Maliwal & Guthrie, 1981a) 

and human serum albumin (Mal1wal & Guthrie, 1981 b) has also been 

demonstrated. Another effect of interest is the increase in mucoclliary 
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activity of the rabbit maxillary sinus following introduction of nicotine 

into the blood supply (Lindberg et 1)1., 1985>' 

The characteristics of nicotine binding to various tissues are 

summarised in table 2 from a selection of references. 

Table 2. Nicotine Binding Study Results. 

author (assay) 1smaer Ko (nJ() B. aM (fmol/mg) stereoselecti V 1 t Y 

Rat Brain 

Romano & Goldstein (±) 28 3.2 (-) by 60 fold 

1980 (F) 460 10.4 

Vincek et 1)1. pH 8.4 (-) 63 (-) by 3 fold 

1981 (C) pH 8.4 (+) 220 

Abood et 1)1. (- ) 0.2 5 (-) by 3 fold 

1983 (C) 2 29 

Costa & Murphy (±) 23.7 76 (-) by 60 fold 

1983 (F) 590 646 

Sloan et 1)1. (±) 14 1 (-) by 80 fold 

1984 (F) 1146 23 

Clarke et 111. (±) 3.5 7 (-) by 17 fold 

1984 (A) 
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Abood et al. 

1985b (C) 

(as above) pH 8.4 

Benwell & Balfour 

1985 (F) 

Wonnacott 

1986 (F) 

Lippiello .& Fernandes 

1986 (F) 

Sershen et lJl. 

1981 (F) 

](arks & Collins 

1982 (F) 

Shimohama et al. 

1985 (F) 

Davies et l11. 

1982 (C) 

Hoss et l11. 

1986 (C) 

(- ) 

(+) 

(±) 

(±) 

(-) 

(±) 

(±) 

(- ) 

(±) 

(±) 

(- ) 
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(-) by 10 fold 

(-) 20-90 fold 

(-) by 88 fold 

(-) by 60 fold 

(-) if any 

(-) 30-40 fold 

(-) by 40 fold 

(+) by 30 fold 

{+)by 100 fold 



Abood et al. pH 8.5 

1985a (C) pH 8.5 

(as above) pH 8.5 

Rat Hepatocytes 

(- ) 

(+) 

0.2 

3 

(+) (-) 4 

5 

4 

50 

General Introduction 

none 

values were determined at pH 7.4-7.7 unless stated otherwise. 

C = centrifugation assay; F = filtration assay; A = autoradiography 

Nicotine and Olfaction 

My interest in nicotine arose initially from a study by Hedlund & 

Shepherd (1983) which showed that a (muscarinic) cholinergic binding site 

could be detected in the olfactory mucosa of the salamander. At this time, 

I was considering tobacco smoke in relation to olfaction and I was 

interested to discover whether nicotine had any documented effects on the 

olfactory mucosa. Substituted pyridines are known to be important flavour 

compounds in many food products such as tea and coffee (Vernin, 1982) and 

nicotine is thought to be a flavour compound in tobacco (Enzell, 1981; 

Vernin, 1982). Nicotine was described in the literature as a volatile, 

colourless liquid (Jackson, 1941; Mangan & Golding, 1984) which was said to 

"turn brown and aquire the odour typical of tobacco· on exposure to the air 

(Mangan & Golding, 1984). It was also suggested that nicotine may have 

important effects on many sensory processes which would be secondary 

reinforcement factors for the smoking habit (Mangan & Golding. 1964). 
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other than these references, I could find no de1:4iled evidence to suggest 

that nicotine was a stimulant for the olfactory receptors of the nasal 

epithelium. It has recently been shown that nicotine stimulates the 

trigeminal receptors of the nasal cavity (Silver & Walker, 1987). 

This was a timely opportunity to investigate the effect on olfactory 

mucosa of a potent pharmacological compound with well documented 

physiologi~l and biochemical properties. My strategy was to determine 

whether nicotine vapour stimulated the rat olfactory preparation to 

produce an electro-olfactogram (EOG) , and if so, to characterise this EOG 

using established procedures. F?llowing this I intended to investigate the 

binding of radiolabelled nicotine to a membrane preparation from rat 

olfactory epithelium, which was known to contain the odorant-modulated 

adenylate cyclase (Shirley et al., 1986). I hoped that any binding measured 

might be related to an olfactory receptor. Ideally, this work would also 

show any effects nicotine may have on rat olfactory epithelium which may 

be related to human olfaction. Most of us are exposed to nicotine and 

possible harmful effects (Hoffmann et al., 1985) through active and/or 

passi ve smoking in many social situations (Williams et al., 1985). 
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Chapt.er 1. 

Evidence for an Olfact.ory Recept.or which 

responds t.o Nicot.ine -Nicot.ine as an odorant.. 

Introduction 

The biochemical properties of nicotine and in particular its effects 

as an agonist for the nicotinic acetylcholine receptor, have been 

extensively reviewed in the literature (see General Introduction and table 

2) . IHcotine is known to be the primary satisfaction factor for tobacco 

and to influence the flavour of the smoke considerably (Enzell, 1981). It 

occurs at high levels in tobacco products, typically 1.8 mg of nicotine per 

cigarette (){angan & Golding, 1984). Considering the latter and the amount 

of work carried aut with nicotine, it is surprising that there are no 

detailed studies reported on nicotine as a stimulant for the olfactory 

epithelium. Recent evidence has shawn that nicotine stimulates the 

trigeminal receptors of nasal mucosa (Silver & Walker, 1987). 

The saturated vapour phase concentration above pure nicotine 1s 

calculated to be 4 micromolar at 20°C, which is likely to produce 

perceivable concentrations in the olfactory mucosa (see appendix A). It 
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has been noted that nicotine evaporates appreciably when exposed to room 

air (Jackson, 1941). 

The aim of this work is to describe the action of nicotine on 

olfactory epithelium using the electro-olfactogram to measure stimulation. 

The results are compared with the stimulatory properties of some known 

odorants. I have also used established chemical modification methods for 

olfactory epithelium (Shirley et al., 1983aj Shirley et al., 1987 b) to modify 

the respon?e of the olfactory receptor(s) for nicotine. 

Materials and Xethods 

Chemicals 

i-Pentyl acetate <i-amyl acetate), 97%, (Aldrich Chemical Co., U.K.>, i-

pentanoic acid, 98%, (Fluka AG., W. Ger.) and cineole, 99%, (BDH Chemicals 

Ltd., U.K.), were used in the experiments without further purification. 

(S) (- )-nicotine, concanavalin A type IV and a-methyl-D-mannoside grade III 

were from Sigma Chemical Co" U.K. Male Wistar, Sprague Dawley and Lister 

Hooded rats (200-250g) and male Balb/c and XFI/Ola mice (7 weeks old> were 

from Harlan Olac Ltd., U.K. 

grade. 

All other reagents used were of analytical 

The nicotine was redistilled under reduced pressure to 99.9% puri ty 

(major impurity < 0.1%) and stored under nitrogen at -200( and in the dark. 

After 15 months storage under these conditions, the nicotine had 

discoloured but was still 99.7% pure. The purity was determined by 

capillary gas liquid chromatography. For further details see appendix A. 
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Redistilled nicotine was diluted to 20% (v/v) in paraffin (Fisons 

water white liquid paraffin, specific gravity 0.83-0.86) and stored in the 

dark under nitrogen at room temperature before use. A fresh dilution was 

made every five days, or earlier if the solution had discoloured. Dilutions 

in paraffin of i-pentyl acetate, i-pentanoic acid and of cineole were also 

used in the experiments. Passage of clean dry air across the surface of 

2 ml of this odorant solution produced vapour which was diluted with 

fil tered, humidified air and allowed to equilibrate in the apparatus before 

use. The air used in all EOG studies was filtered under pressure through a 

column of charcoal, molecular sieve and silica gel prior to use. The 2 ml 

aliquots of diluted odorant were kept at constant temperature <15°C) and 

were used for 24 hours, after which the solutions were changed. In the 

case of nicotine, 'the odorant container and stock solutions were replaced at 

the first sign of discolouration. Preliminary experiments indicated that 

the 2 ml aliquot· was sufficient for a 24 hour period. Regular checks were 

made to determine whether or not any vapour from the paraffin alone 

elicited a response on the rat half head preparation. On the few occasions 

that a response was detected, the paraffin and all stock solutions were 

replaced. 

The odorant application system was essentially as used previously 

(Shirley et al., 1983j Shirley et al., 1987 b) and as described in detail 

elsewhere (Shirley, 1987), 
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Cmiposition of Locke's <.a •• alian heart) Ringer solutIon 

Solution A <stored. at room temperature), per 1000 ml: 

90g NaCl / 4.2g KCI / 3.2g CaCl2 .2H2 0 

Solution B <refrigerated) I per 100 ml: 

19 iaHC03 / 109 glucose / 18mg ascorbic acid 

Ringer solution: 100 ml A + 20 ml B made up to 1000ml in H2 0 

gassed with 5% CO2 / 95% 02 prior to use 

Recording electro-olfllctogra.S CBOGs) 

Chapter 1 

The procedures for recording HOGs from the olfactory ept thelium and 

for concanavalin A modification were essentially as described elsewhere 

(Shirley et al., 1983a; Shirley et a1., 1987 b). 

The animal was stunned and killed by cervical dislocation. Following 

decapitation, the head was cut in saggital section and the exposed septum 

was immediately removed, taking care not to touch the underlying olfactory 

turbinates. The half head was mounted on the cooled head stage (the head 

temperature was kept below 17°C) for a 15 minute superfusion with 

oxygenated Locke's Ringer solution, (flow rate 2mllminute) after which the 

Ringer solution was removed by aspiration. EOGs were recorded after a 15 

minute rest period and after a steady baseline had been attained. 

For the dose-response relationship and concanavalin A experiments, the 

odorants were presented. to the epithelium as a 1 second vapour pulse, 

followed by a 1 minute recovery period. Duplicate presentations of each 

test odorant were made to the epithelium during anyone recording period. 
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Recordings were taken from the third turbinate, from a region denoted by 

the circle on T3 of figure 3. 

Figure 3. Schematic Diagram of a Rat Head Following Saggital Sectioning 

and Remoyal of the Septum 

08 - olfactory bulb; C - cribriforl plate; N - naris; Tl, T2, T3, T4 - exposed 

surfaces of the olfactory turbinates, The regions frol which recordings were taken 

are denoted by circles on olfactory turbinates and by a square on respiratory epilheliul, 

The anterior to posterior leasurement for the olfactory turbinatet was typically 1 CI 

in an adult lale rat. 

A standard cxiorant, i-pentyl acetate, at a fixed concentration, was 

presented to the epithelium at regular intervals (every third or fourth 
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application) . i-Pentyl acetate has been widely used as a standard or 

reference odorant by workers in olfaction (Shirley et lJl., 1983lJ,b; Shirley 

et a1., 1987 a,b; Wood et al., 1983). 

The response measured in these experiments was the amplitude of the 

initial EOG peak. The normalised BOG response was obtained on dividing the 

test odour BOG at time x by the standard odour BOG, also at time x 

<calculated by interpolating from neighbouring presentations of the 

standard o<;iorant). The mean of this value for each presentation of the 

same odorant is the value (A). Use of the (A) value enabled us to take 

account of variation in EOG amplitude between rats. 

Concanavalin A treatment 

The lectin concanavalin A (McKenzie et al., 1972; Gunther et a1., 1973) 

has been widely used. to investigate molecular properties of membranes and 

proteins <for a review on lectin-membrane interactions see Grant & Peters, 

1984). One example is the nicotinic acetylcholine receptor whose function 

can be inhibited by thp lectin (Kessing et al., 1984>' Lectins are useful 

since they bind specifically to the sugar residues of glycollplds and 

glycoproteins, and the effect can be prevented by including free sugar 

residues in the treatment. Concanavalin A and cx-methyl-D-mannoslde have 

been used to study the electrophysiological response of olfactory receptors 

(Shirley et lJl., 1987 b) . 

After the initial odorant sequence had been applied to the epithelium, 

the electrode was lifted from the tissue. This was followed by a 5 minute 

rinse of the epithelium with concanavalin A (O.5mg/ml, 2mllmin) in 
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oxygenated Ringer solution. A 10 minute Ringer-only rinse, washed 

unreacted concanavalin A from the tissue, after which excess liquid was 

aspirated from the tissue as before. The electrode was then lowered on to 

the tissue at the same position and a rest period of at least 15 minutes 

was allowed before an identical sequence of the test odorants was applied. 

In control experiments concanavalin A was absent from the procedure. 

A measure of the EOG survival, (L>, was determined by dividing the 

mean EGG (in mV) for the standard odorant after treatment, by the mean 

standard odorant EOG before treatment. Thus, 100% survival of the EOG for 

the standard odorant during the experiment gave an <L> value of 1. Results 

were not used from 2 rats which showed unusually low (L> values of < 0.5, 

which indicated either a poor preparation or an excessive dose of 

concanavalin A. 

The parameter <R>, necessary for describing modification of the 

response by a reagent, is defined as the normalised response after 

treatment divided by the normalised response from the same odorant before 

treatment. Thus, an EOG which was unaffected by the treatment had <R) =1, 

an odorant whose response was diminished by 50% had (R>=0.5,. under 

conditions such that the response to the standard odorant was unaffected. 

- 43-

z'tk 



Chapter 1 

SUWlwary of panuteter8 used to analyse BOGs: 

mean EOG for standard odorant AFTER treatment 

<L) = 

mean EOG for standard odorant BEFORE treatment 

BOG TEST odorant 

<A) = mean 

BOG STANDARD odorant 

<A) AFTER treatment 

<R) = (for the same odour) 

<A) BEFORE treatment 

Bffect of a-.ethyl-D-."DDoside (JI8DDoside) 

In these experiments, the lectin was dissolved in Ringer solution with 

mannoside at a final concentration of 20 mH. 

epithelium as described above. 
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CAlculations 

The vapour concentration of odorant presented to the epithelium was 

calculated from the vapour pressure for the odorant at 15OC, interpolated 

from standard tables (Weast, 1984; see appendix A also). 

The concentration of odorant which reached the olfactory receptors 

could not be determined. Further information on the composition, production 

and volume of the mucus and on odorant removal from the mucus are required 

before such calculations would be possible. Some properties of the mucus 

have been discussed elsewhere (Getchell et al., 1984). For sparingly 

soluble odorants it was possible to estimate the concentration of odorant 

in the mucus from the water to air partition coefficient. An odorant with 

an air/water partition coefficient of )50,000 would not equilibrate between 

air and mucus, when presented. to the epithelium as a vapour pulse of one 

second. The estimated mucus concentration in this case was taken as the 

vapour concentration of odorant presented to the epithelium multiplied by 

50,000, since the volume of odorized air passing over the mucus was 

approximately 50,000 times the volume of the mucus (Shirley, 198'7). The 

vapour concentrations of the odorants used in the experiments described in 

chapter 1 and estimates of the corresponding mucus concentrations of the 

odorants are shown in table 3 (see appendix A for calculation of the 

air/water partition coefficient for nicotine). 

- 45-



Chapter 1 

Table 3. Concentration of Odorants. 

Bxperiaents to which these concentrations apply; • 10 second pulse of 

odorant, •• response versus concentration of nicotine and ••• concanavalin 

A treatment. The water/air partition coefficient, 'iIA, is expressed for all 

fOrDS of the. odorant at pH 7.0 and 15o C. VC - vapour concentration and 

EXC - estimated. mucus concentration of odorant. (A) after a 1 second and 

(B) after a 10 second continuous presentation of vapour. 

Odorant VIA -log VC -log HJ(C 

i-pentyl acetate 81 7.12 5.22 ••• 
7.11 5.20 •• 
6.96 5.06 • 

cineole 250 6.81 4.41 ••• 
i-pentanoic acid 4.0x106 6.87 2.17 ••• 
nicotine 2.2x10e. 8.74 4.05 •• 

8.09 3.39 •• 
7.78 3.09 •• 
7.48 2.78 ••• 
7.34 2.64A • 
7.34 1.64- • 
7.31 2.61 •• 
7.01 2.31 •• 
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Results 

Iicotine st1llulates the olfactory epitheliUD 

If nicotine is to be accepted as an odorant it must stimulate the 

olfactory epithelium and produce an EOG comparable to the EDGs from known 

odorants. 

Figur~ 4(a) shows the EOG recorded from the third turbinate following 

a 10 second pulse of nicotine vapour presented to the Wistar rat olfactory 

epithelium. The trace shows an initial rapid change in potential of the 

epithelium on stimulation followed by a reduction in amplitude to a plateau 

on continued stimulation. When the nicotine vapour was removed, the 

potential fell immediately towards the baseline value. 

The EOG response to a 10 second presentation of nicotine vapour shown 

in figure 4 (a) is comparable to the response of the same preparation to a 

10 second i-pentyl acetate pulse shown in figure 4 (b). The removal 01 

odorant from the olfactory epithelium and thus the decay of the EGG 

response will depend on the solubility of the odorant in the mucus layer 

and on the pKa of the odorant and hence its charge at physiological pH 

(data for nicotine is given in figure 2). i-Pentyl acetate was removed 

from the site of the olfactory response faster than nicotine, as 1s 

apparent from the rate of return of the respective HOG traces to baseline 

value. 
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B 

4 

3 

I-PENTYL ACETATE 
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o 

TIME (5) 

Eoa reiponie to a ten second prelentation of vapour frol (a) and (c) nicotine ind (b) 

and (d) i-pentyl acetate, recorded frol the sale rat. Traces (a) ind (b) were taken frol 

olfactory epitheliul and traces Cc) and Cd) frOI nual respiratory epithellulI, The 

concentration of odorants are shown 1n table 3. The tile of vapour application, VA, ind 

of vapour reMoval, VR, is larked on the x-axil. 
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The nasal epithelium of the same preparation was then superfused with 

Ringer solution for three minutes and the electrode moved to a position 

anterior to the olfactory turbinates as shown by the square in figure 3. 

Similar 10 second presentations of nicotine and i-pentyl acetate vapour 

were made to the preparation, the results of which are shown in figure 4(c) 

and 4(d) respectively. Neither odorant produced an EGG-like response at 

this position. The preparation was then superfused with Ringer solution I 

after whic~ the electrode was placed. back onto the third turbinate. EOG 

responses comparable to those recorded earlier were obtained, indicating 

that the preparation was still responding to odorants. The preparation was 

then removed from the head stag~ and examined under a binocular microscope 

with incident illumination. The surface of the epithelium in the region 

denoted by the square in figure 3 had a perceptible motion, suggesting the 

presence of active respiratory cilia. No movement could be observed on the 

surface of the epithelium on the third turbinate, from which EOGs to 

nicotine vapour and i-pentyl acetate vapour were recorded. These 

observations were made over 100 minutes after the initial disection to 

expose the nasal epithelium of the preparation. 

I also recorded this EOG response to nicotine vapour from Lister 

Hooded and Sprague Dawley rats and from Balb/c and KF1/Ola mice (data not 

shown) . 

I icotine BOG dose-response relationship 

Figure 5 (a) shows the EOGs to nicotine at various concentrations, 

recorded from the olfactory epithelium of a Wistar rat in the region 
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denoted by the circle drawn on T3 of figure 3. Saturation of the response 

to nicotine, as determined by the (A> value, was not seen over the range of 

vapour concentrations tested. Higher concentrations were not tested for 

safety reasons (see appendix A). The results from a group of such 

experiments are shown in figure 5(b), measured from the third turbinate in 

the region denoted by the circle drawn on T3 of figure 3. 

In some preparations, near saturation of the response to nicotine was 

seen. An ~xample of this is shown in figure 5 (c). Recordings were taken 

in this case from the region denoted by the circle drawn on I1 of figure 

3. Results from two out of the eight cases used in figure 5(b) also showed 

this pattern of response. It was difficult to determine whether this was 

best explained by biochemical or experimental factors. 

A study on Lister Hooded rats (n=5) showed a dose-response 

relationship to nicotine vapour similar to that seen in the Wistar rat, over 

the same concentration range (data not shown). Since a large number of 

variables (such as the unknown concentration of the odorant in the mucus) 

were involved in this experiment, we did not attempt to calculate a binding 

constant from the dose-response relationship data. The binding constants 

of some odorants to olfactory receptors are investigated in chapter 2. 
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Figure 5. Concentration-Response Relationship for the Nicotine EOG 
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The recordings, taken frol (a) the third turbinate (T3 of figure 3) and (c) the first 

turbinate <Tl), were the resul t of lone second presentation of odorant and are shown in 

order of increasing vapour concentration, S shows presentations of the standard odorant, 

i-pentyl acetate, The concentration of odoranh used are shown in table 3, (b) shows a 

plot of lean (A) value versus log fractional satuation of nicotin@, for a sliple of 

studies frol the thi rd turbinate only, The error bars show the C351 cont idence interval, 

N ii 8, except at the highest nicotine conc@ntration (n it 6), Fractional saturatlon is a 

~easure of odorant saturation in air at the epitheliul lurface, Vapour frol neat odorant, 

diluted by a factor of t@n before presentation, has a fractional laturation of 0,1. 
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Concanavalin A inhibition of the nicotine BOG 

A concanavalin A modification study was carried out on the rat 

olfactory response to vapour from nicotine (33nJO, cineole <l55nJO, 

i-pentanoic acid (134n10 and i-pentyl acetate (75nJ(). 

Figure 6. Effect of Concanavalin A on the !1cot1ne BOG 

(a) 
CINEOLE 

1-2 

1-0 

0-8 
R 

0-6 

(}4 

0-2 

0 
1 2 3 4 

( b) 

i -PENTYL ACETATE 

1 2 3 4 5 

TREATMENT 

5 

1-Z 

'-0 

0-8 

0-6 
L 

0-4 

O-Z 

0 

NICOTINE i-P£NTOOIC ACID 

1 2 3 4 5 

Effect of Concanavalin A on the E06s to vapour frol (a) 

cineole, nicotine, i-pentanoic acid and (b) i-pentyl 

acetate. The y-axis shows for (a) lean (R) value and 

for (b) lean <L) value (lean EOG survival,see lain text) 

together with the upper half of the 951 confidence 

interval. For the concentrations of odorants see table 

3 The treatlents shown are at follows; [11 control, . 
Wiltar rat (n-S, except for cineole, n=A), [21 

concanavalin A, Wistar rat (n=8), [31 concanavalin A and 

lannoslde, Wittar rat (n-S), [Al control, Lister Hooded 

rlt (n-A), [5] concanavllin A, Lister Hooded rat (n-S) 
le'.!:?l Of SllJnlflcance vs control R or L dL.:.s (CO;'.J,n 

')r 4 dependent on strcilnl, * P~O()S, * * f:<O.Ol 

- 52-



Chapter 1 

The results of a concanavalin A study on the Yistar and Lister Hooded 

rat are shown in figure 6. The BOGs from cineole, nicotine and i-pentanoic 

acid were reduced by concanavalin A in both strains of rat. The (R) value 

for cineole was reduced by 31~ and 23~, the nicotine (R) value was reduced 

by 47% and 3~~ and the i-pentanoic acid (R) value by 81' and 48' after 

concanavalin A treatment, in the Wistar and Lister Hooded rats respectively. 

Figure 6 also shows the results from the Wistar rat when mannoside 

was added~o the concanavalin A superfusion medium. The results show that 

the sugar prevented concanavalin A inhibition of the olfactory response to 

all three test odorants. 

The (L) values shown in ~igure 6 (b) represent the "survival" of the 

EOG response to the standard odorant after each treatment. An analysis of 

variance revealed that there was no significant difference in (L) between 

concanavalin A, control, mannoside plus concanavalin A, and strain of rat 

(p>O.05)' (L) reflects effects which the reagent has on all EOGs and any 

specific effects which it may have on the receptors stimulated by the 

reference odour. Thus, any non-specific effects on the EGGs were not 

significantly different between treatments. 

Effect of cholinergic ~nts 

In preliminary experiments using a similar protocol as described for 

the concanavalin A experiments, the effect of cholinergic agoniets and 

antagonists on the nicotine BOG was tested. Acetylcholine, deca.ethoniu., 

atropine, tetramethylammonium and d-tubocurarine at up to 500 ~K in the 

Ringer superfusion (n = 1 in each case) had no effect on the HOG to 
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nicotine or four other odorants tested.. Nicotine at 5 mK caused a general 

effect on the EOGs to all odorants tested «L> values of 0 .34 and 0 .27. n = 

2) whereas at 500 jJX nicotine did not have such a severe effect and may 

have caused some selective reduction in the nicotine EOG (as measured by 

<R». This was not investigated further. 

Discussion 

Iicotine stimulation of the olfactory epithelium 

The EOG, a summated receptor potential, is a useful measure of the 

ini tial events of odorant interaction with the olfactory ep1 thelium 

(Ottoson, 1970). One of the properties of an odorant 1s the ab111 ty to 

stimulate the olfactory epithelium to produce an EOG. 

The results shown in figure 4 suggest that nicotine vapour can 

stimulate the in vitro olfactory preparation to produce an EOG, and as with 

the known odorant i-pentyl acetate, is unable to stimulate an EOG-like 

response from nasal respiratory epithelium. These findings suggest the 

presence of at least one olfactory receptor which responds to nicotine, in 

the olfactory epithelium of three strains of rat and two strains of mice 

tested so far. 

Nicotine is an unusual odorant in that it has ionizable groups <pKa = 

7.9) and will become predominantly charged at physiological pH (90-80"' 

nicotinium ion at pH 7.0-7.4 estimated from Kangan & Gold ing, 1984 i see 

figure 2 of General 'Introduction>' I assume that the nicotine vapour which 
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reaches the olfactory epithelium will partition into the mucus layer and 

from its water/air partition coefficient, I estimate that the nicotine will 

be concentrated in the mucus by a factor of two millionfold at equilibrium. 

However, during the course of a typical nicotine vapour pulse in my 

experiments, .equilibrium in the mucus will not be reached. The greater time 

taken for a soluble odorant (nicotine) to disperse from the olfactory mucus 

as opposed to a sparingly soluble odorant <1-pentyl acetate), may account 

for the delay in the potential returning to baseline in figure 4 (a) when 

compared with figure 4(b). 

The uncharged nicotine molecule will pass through the membranes of 

the epithelial cells and as qas been suggested for other odorants. may 

accumulate in the cytoplasm (Getchell et a1.. 1984). Nicotine is more 

likely to remain inside the cells than other odorants due to its charge. It 

is possible that this may produce toxic and other effects which have not 

been measured in these experiments. In addition, there are several enzyme 

systems present in the nasal mucosa which could metabolise nicotine <Bond. 

1983). For example. nasal cytochrome P-450-dependent monooxygenases have 

been shown to metabolise nicotine to produce formaldehyde (Dahl & Hadley. 

1983) . It is possible that metabolites of nicotine may also affect the 

olfactory system in some way. This is supported by experimental evidence 

showing accumulation of nicotine or metabolites in the olfactory mucosa 

<Brittebo & Tjalve, 1983>' The metabolism of nicotine by enzymes of the 

olfactory mucosa is considered in more detail in chapter 4. 
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Concanavalin A inhibition of nicotine HOGs 

Chemical modification of the olfactory epithelium leads to altered EOG 

responses and is a possible method for identifying classes of olfactory 

receptors. Concanavalin A inhibition of the EOG from cineole and especially 

from i-pentan~ic acid has been observed previously in the Wistar rat 

(Shirley et a1., 1983a; Shirley et a1., 1987 b) and the results here show a 

similar effect on nicotine EGGs (figure 6). 

Concanlivalin A affected the EGGs from the three odorants tested in 

Wistar and Lister Hooded rats, to different extents. Two-way analysis of 

variance of the (R) values from concanavalin A treated rats confirmed that 

there was a difference between the two strains. The results of this 

analysis can be summarised as follows. First, there was a difference 

between Wistar and Lister Hooded rats with respect to overall concanavalin 

A effect (p < 0.0005) . Secondly, there was a difference between the 

concanavalin A effect on cineole, nicotine and i-pentanoic acid (p < 0.001) 

and finally, the differences in the <R) values for the three odorants in 

the Wistar rat were not significantly different from the differences in the 

(R> values for the three odorants in the Lister Hooded rat (p > 0.05). 

The (R) values for all three odorants were reduced to a lesser extent 

following concanavalin A treatment in the Lister Hooded rat than the Wistar 

rat. This may be explained by differences between the olfactory mucosa of 

the two strains with respect to 

receptor density and receptor type. 

mucus composition, mucus thickness I 

These differences may influence the 

ability of the odorants to stimulate the epithelium (there is no evidence to 

support this) and the effectiveness of the concanavalin A superfusion. 
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Consistent with this notion is the observation that ten ti.es as much 

concanavalin A is required to selectively reduce EOGs in the frog (Wood et 

a1., 1983). This may be explained by the presence of a thicker layer of 

mucus overlying the frog olfactory epi thelium than is seen in the rat 

(Xenco, 1980). 

cx-Jlethyl-D-JlaJlnoside protection of HOGs 

The r~sults of the mannoside protection experiment seen in figure 6 

show that concanavalin A modification of the olfactory response to all 

three odorants could be prevented by competing for the sugar residue 

binding site on the concanavalin A molecule with mannoside. This effect 1s 

also described el~ewhere (Shirley et al., 1987 b). 

One-way analysis of variance showed for each odour that there was a 

difference in the (R) values for the three treatments on the Wistar rat 

{cineole and i-pentanoic acid p ( 0~001, nicotine 0.01 ) P ) 0.001). To 

identify which of the treatments contributed most to this difference, the 

control (R) values were compared with (R) values for concanavalin A and 

(R) values for concanavalin A and mannoside, using the Dunnett test for 

multiple comparisons to a control group (Roscoe, 1975). The results of 

this test showed that for each odour, only the concanavalin A treatment (R) 

values were significantly different from the control (R) values {cineole, 

nicotine and i-pentanoic acid, p ( 0.01>-

Treatment of the epithelium with Jlannoside after a concanavalin A 

superfusion does not reverse the concanavalin effect (Shirley et al .• 

1987 b), but the BOGs which were protected in the concanavalin A 
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and mannoside treatment in this study could be reduced by subsequent 

treatment wi th concanavalin A alone (reductions in response of 121., 271. 

and 3% for cineole, 38%, 26% and 40% for nicotine and 28t., 421. and 38t. for 

i-pentanoic acid, from three separate preparations). These observations 

suggest that a-methyl-D-mannoside is binding to the concanavalin A 

molecule's sugar residue binding-site, preventing modification of the EOGs. 

This is evidence that the olfactory receptors which respond to 

cineole, ni~otine and i-pentanoic acid are glycosylated and/or are close to 

a portion of sensory membrane which is glycosylated. Other workers have 

shown that there are glycoproteins unique to sensory cilia and have 

suggested that these proteins ~lay a role in olfactory reception <Chen & 

Lancet, 1984). 

Nicotine, a key chemical found in the smoke from Cigarettes and other 

tobacco products, has been shown here to act as an odorant in addition to 

its well-known role as a pharmacological agent. The contribution that 

nicotine makes to the overall flavour of tobacco smoke and the actual odour 

quality of pure nicotine has not been investigated. In preliminary 

experiments on human volunteers, subjects could smell the pure nicotine used 

in this work (see appendix A). 

On the basis of these results, it is reasonable to suggest that 

other pharmacologically active odorants exist. It is also reasonable to 

suggest that volatile pharmacological compounds may have interesting 

effects on the olfactory epithelium and odorant detection which may 

ultimately be of commercial use. 

- 58-



Chap~er 2a. 

Spa~ial varia~ion in response ~o odorants on 

~he ra~ olfac~ory epi~helium. 

Introduction 

The olfactory epithelium in the rat is located on bony turbinate 

structures and on the septum which separates the two halves of the nasal 

caVity. This sensory epithelium is the site of a complex series of events 

following odorant stimulation, culminating in the generation of an action 

potential in the primary olfactory neurons. These primary neurons synapse 

in the olfactory bulb where subsequent processing of the information from 

the epithelium occurs (Getchell, 1986; Lancet, 1986). 

The mechanisms by which the olfactory system can distinguish between 

the very large number of "smells" found in the environment using a finite 

number of receptors 1s still not fully understood. One level at w~ich 

determination of odour quality can occur is at the initial interaction of 

odorant with the olfactory epithelium. The layer of mucus which covers the 

olfactory epithelium will affect odorants which dissolve in it in different 

ways (Kozel1 & Jagodowicz, 1973; Getchell et a1., 1984) and will therefore 

affect the rate and concentration at which odorants reach the olfactory 

receptors. This mode of discrimination between odorants i6 an example of 

"imposed" patterning of the stimulus-olfactory epitheUum interaction. A 
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second type of discrimination is more specific, in that the stimulus 

can be identified through differences in the stimulated receptor 

populations, in the transduction pathways activated and in the arrangement 

of neuronal connections to the olfactory bUlb. 

This specific "patterning" of the response to odorants has been 

demonstrated in several ways at different levels in the transduction 

process. Electrophysiological studies have shown that ~n odorant 

stimulates more than one receptor type (Shirley et ai., 1987 a,b) and that 

the olfactory neurons differ in the range of odorants to which they respond 

<Revial et al., 1982a,b). In vitro experiments using the olfactory odorant­

modulated adenylate cyclase also suggest that odorants stimulate a 

heterogeneous population of receptors and that some odorants are poor 

stimulants for this particular transduction mechanism (Shirley et a1., 1986; 

Sklar et al., 1986). The electro-olfactogram (EOG), a summated receptor 

potential from many olfactory neurons, has been used to demonstrate 

regional differences in response to odorants in the frog (Mustaparta. 1971) 

and the salamander (Mackay-Sim & Kubie, 1981'), and histological studies 

have shown that the membranous particles of vertebrate olfactory- cilia, 

supposedly the olfactory receptor sites, are unevenly distributed within the 

epi thelium (Menco, 1983). A recent study has demonstrated that specific 

regions of the olfactory bulb are connected with specific regions within 

the olfactory epithelium (Pederson et ai., 1986). These resu 1 ts support 

the hypothesis that the olfactory neurons are arranged in a mosaic within 

the epithelium and that different odorants may stimulate receptors at 

different regions of the olfactory epithelium. The role of the olfactory 
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bulb in odorant discrimination should not be overlooked. There is good 

evidence that coding of the information from the epithelium occurs here 

also <Kauer 8& Koulton, 1974j Duchamp, 1982j Duchamp & Sicard, 1984). 

The spatial patterning of the response to odorants by the rat 

olfactory epi~helium is suggested from EOG recordings taken from the 

olfactory neurons on the dorsal side of the cribriform plate <Thommesen 8& 

Doving, 1977). Here I have used the EOG as a measure of the response from 

twelve pos,itions on the epithelium itself to four odorants with markedly 

different structures and odours, i-pentyl acetate, i-pentanoic acid, cineole 

and nicotine. 

Katerials and Xethods 

Recording BOGs from 12 positions on the olfactory turbinates 

The in vitro preparation, odorants and methods used in this study are 

as described in chapter 1. The exposed epithelium of each of the four 

olfactory turbinates was allocated three positions from which it would be 

possible to record EOGs. These positions were essentially the same in each 

rat studied, though some variation in topography of the turbinates of 

different preparations was observed during the study. Thus, there were 

twelve positions from which EOGs could be recorded <figure 7), The right 

side of the head was routinely used in this study. 
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Figure 7. Schematic Diagram of the Olfactory Turbinates Showing 12 

Recording Positions 

(RIBRIFOR~ PLATE 

----------------------------------------
The twelve positions fro; which EOGs were recorded are larked 1 to 12 three on each , 

of the four turbinate structures, Tl-U. The arrows show the direction froll which the 

odorants were presented to the epithelium. 

Initially. EOG recordings were taken from position 8 on every rat 

studied, after which the electrode was raised and repositioned by movement 

of the head stage holding the preparation. An identical sequence of the 

odorants <each presented in duplicate as a one second pulse 01 vapour 

followed by a one minute recovery period) was then presented to the new 

posi tioD. By moving the preparation in this manner, the distance between 

the electrode tip and cxiorant deli very nozzle was fixed throughout each 

experiment. The same vapour concentration of each odorant was appUt.,j to 
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383 nX and i-pentyl acetate 981 n1n. 

Chapter 2a 

i-pentanoic acid 

Recordings were made froll position 8 in each rat to provide a common 

reference position for the experiment. since time did not permit me to 

record EOGs from all twelve positions on each rat stUdied. The same 

electrode was used to record from anyone preparation but was replaced as 

required during the study; this will not significantly affect the EOGs 

recorded. The order of positions from which recordings were taken was as 

random as possible after the following criteria were obeyed. leither 

adjacent positions were used on the same turbinate nor opposite areas on 

neighbouring turbinates, where tpe first presentation of odorants may have 

reduced the sensitivity of the second or subsequent areas to be studied. 

In a single preparation it was possible to record from four or five 

pOSitions before there was a risk of the tissue drying out. The olfactory 

epi thelium was not superfused with Ringer solution between recordings from 

each pos i tion. 

Discriminant analysis on the results from the study was performed on 

an IBX 4381 mainframe computer utilising the Statistical Package for the 

Social Sciences (SPSSx) programmes. 

Results 

Variation in BOG with recording position 

An example of a typical experiment is shown in figure 8. The HOG 

traces were recorded' consecutively from five positions (positions 8, 12, 4. 
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6 and 1 shown in figure 7) on the same rat olfactory preparation and show 

that there are differences in response of the rat olfactory epithelium to 

the four odorants at the five positions. In all, nineteen rats were studied. 

Figure 8. Spatial Variation in EOG Response 

10 
o POSITION 4 

POSITION 8 

15 
S 

10 
POSITION 12 

10 
POSITION 1 

1S 15 

o 100 200 TI ME (S) o 100 200 

The results shown are frOI a single Wislar rat half-head preparation, The 

ord"'r (and the vapour phase concentration) of the odorants 15 froll left to presentation .. 

, t' (65 n~) and i-pentano1C aCid right, i-pentyl acetate (981 n~), cineole (309 n~), nICo 1ne 

(383 nM), The order of recordings is posit10n 8 first, then 12, A, 6, and 1, 
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Figure 9. Mean EOG Versus Recording Position 
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Values show mean EOG amplitude with the upper half of the 951 confidence interval. 

The lI'IinirAul'ft number of presentations to anyone position is 10 (nicotine, cineole and 

i-pentanoic ac id to posi tions 5 and 11) and the lIaxillull is 69 ( i-pentyl acetate to 

pos i t ion 8). 

The mean EOG amplitude to the odorants at each position 1s shown in 

figure 9. The data was collected from all presentations of odorant made to 

the olfactory epithelium during the study, typically three presentations of 

i-pentyl acetate and two each of nicotine, cineole and i-pentaneic acid at 

each position, remembering that it was not possible to record EOGs from all 

twelve positions on the same preparation and that posi tien 8 was stud led 
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studied. on every preparation. The results shown in figure 9 suggest that 

there are spatial differences in the amplitude of response to the odorants 

tested. However, accurate interpretation of these data is difficult when it 

is realised that in addition to experimental effects (see discussion) the 

data do not account for variation in response between animals. 

In previous studies the <A) value has been used to account for this 

variation (see chapter 1; Shirley et al., 1987 b) and I have applied this 

analysis here also. The value <A) was calculated for each odorant by 

normalising the EOG peak amplitude recorded from nicotine, cineole or i-

pentanoic acid to the EOG peak amplitude recorded from i-pentyl acetate at 

the same position. Thus, we are describing the EOG for nicotine, cineole 

and i-pentanoie acid by a value that is independent of EOG amplitude and is 

consistent for each odorant between animals. 

Variation in <A) value with recording position 

The mean (A) value for each odorant at each position is shown in 

figure 10 and gives an estimate of changes in <A) value versus recording 

position. The <A) value can change due to a relative increase or decrease 

in EOG amplitude measured from one or both of the 'test' odorant (cineole, 

nicotine or i-pentanoic acid) or 'reference' odorant (i-pentyl acetate). As 

can be seen from figure 10, the change in <A) value for the 'test' odorants 

is not identical across the twelve positions, again suggesting that there 

diff i to the t est and lor reference odorant on are spatial erences n response 

the rat olfactory epithelium. 
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Figure 10. lIean (A) Value Versus Recording Pcs::i::r. 
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The points shown lean (A) value for 0 cineole, • nicotine and 111-pentanoic 

acid, The 95~ confidence intervals for each odorant (frol positions to 12) a re as 

follows; cineole i 0,24, 0,37, 0,54, 0,29, 0,29, 0,20, 0,46, 0,10, 0,18, 0,37, 0,53, 0,23, 

nicotine i 0,28, 0,23, 0,18, 0,20, 0,14, 0,04, 0,49, 0,03, 0,05, 0,41, 0,13, 0,08, 

i-pentanoic acid i 0,42, 0,15, 0,25, 0,10, 0,26, 0,14, 0,41, 0,05, 0,18, 0,19, 0,27 , 0,17 

Variation in response described by discru.ill4nt 111l41ysis 

The variation in (A) value across the twelve positions for each test 

odorant may not be identical for each animal tested, thus evidence for 

spatial patterning Jllly be obscured by simply calculating the m~n (A) 
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value. We therefore analysed the (A) value data from each preparation 

using discriminant analysis, in which each position studied. on each animal 

was described mathematically by canonical values relating the normalised 

response «A) value) of the olfactory epithelium to the three test odorants. 

The equations used to determine these values calculated the maximum 

discrimination possible between the (A) values. A plot of the two most 

discriminating functions on x-y axes represents the movement of the value 

from the ~rigin during the analysis. The canonical values for each 

position are then averaged, giving a mean value, the centroid, for each 

position studied (figure 11). Using this analysis we represent the 

original EOG data from four odorants in a two-dimensional plot. 

Figure 11 shows that the centroid values for the positions do not 

fall into the same quadrant of the plot, again suggesting that there are 

regional differences in response to the odorants tested which can be 

identified by the normalised responses to cineole, nicotine and i-pentanoic 

acid. The data pOints used in the discriminant analysis were related to 

the actual recording position by a number from 1 to 12 (as in figure 1). 

The analysis classified the data from 33 out of 92 recordings as coming 

from the expected recording position. The probability that this result has 

been generated by chance is a function of the poisson distribution and 

gives p « 0.001. This indicates that there is a similar pattern of 

response from the nineteen animals used. 
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Figure 11. Centroid Value Plot Followiug Discriminant Analysis 
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Plot of the centroid values for each recording position (lean value for canonical the 

functions) determined using discriminant analYSis of the (A) values for cIneole, nicotine 

and i-pentanoic acid, The shaded symbols represent a negative value for function 3. All 

points start at the origin before analysis. NUlbers 1 to 12 represent the centroid value 

f or the recording pas i t ion on 0 T1, 0 T2, fj, T3 and <> T4 of figure 1. 

Discussion 

Spatial variation in response to odorants 

The data obtained in this study shows that there is spatial patterning 

of response to the four odorants tested in both EOG ampl1 tude (f igure 9) 
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and variation in the normalised response (figure 10), These results .ust 

be interpreted with caution in order to distinguish 1lIposed patterning 

(including experimental effects) from the patterning which should be 

observed if the 

epithelium. 

odorants stimUlate different regions of the olfactory 

The BOGs measured at the twelve positions will be affected by 

differences in mucus thickness and composition between each recording 

position, ~he proportion of non-responsive respiratory epithelium in the 

regions tested and the position of the recording electrode relative to the 

earth electrode. Smaller EOGs are likely to be recorded near to the edges 

of the turbinates due to current leakage being greater in these regions. 

This should affect the EOG to all four odorants equally. The same is true 

of the amount of respiratory epithelium at each position <likely to be 

greatest at posi tions 3, 6, 9 and 12) . The mucus layer covering the 

epithelium may impose patterning on our preparation in the following way. 

The response to odorants that have a large water/air partition coefficient 

(nicotine and i-pentanoic acid) will be affected to a larger extent by 

Changes in mucus thickness than the less soluble odorants (i-pentyl acetate 

and cineole). As the mucus thickness increases, the decrease in HOGs to 

nicotine and to i-pentanoic acid will be greater than any change in the 

BOG to cineole and to i-pentyl acetate. Evidence suggests that in the rat 

the mucus layer is of uniform thickness (about 5 microns; Kenco , 1980). 

Thus imposed patterning via mucus effects is unlikely to explain large 

differences in the response measured from the twelve positions. particularly 

between nicotine and'i-pentanoic acid. 
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The design of the electrode and stimulus source (Shirley, 1987>, 

although reducing imposed variation in the response, may influence the EOGs 

in a different manner. Diffusion of the odorants (or even transport; 

Pevsner et al., 1986) through the mucus may allow adaptation to occur in an 

adjacent posi~ion on the same turbinate. The experimental protocol I used 

avoided recording from two such positions without leaving time for the 

odorants to disperse (by recording the EOGs from a position on a different 

turbinate) . 
. ' If such adaptation had occurred, then the response of an 

odorant would be reduced at the subsequent recording position. 

Observations made during the experiment suggested that this was not the 

case. 

Use of discriminant analysis to show positional differences in response 

The differences between recording position determined by discriminant 

analysis (figure 11) have no experimental parameter, but are a usefu 1 

pOinter to positions which show large differences in response to others. 

With reference to the EOG data shown in figure 9, it is possible to 

discover why these differences have been identified by the discriminant 

analysis. For example, position 3 is distinguishable from all· others 

because of a relatively larger response to cineole than is expected for ~ 

uniform distribution of receptors for all four odorants. Another example is 

the response to nicotine vapour at position 10 which is larger than 

expected, whereas the response to i-pentanoic ~cid vapour at the same 

position is not, suggesting that imposed patterning in this case 1s 

unlikely. In the previous chapter I have shown that the lectin 

concanavalin A reduces the BOG to nicotine, cineole and i-pentano1c acid to 
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different extents, suggesting that the three odorants stimulate different 

combinations of olfactory receptor. Thus, the unrelated variation in 

response aver the twelve positions to each of the three odorants seen here 

is nat unexpected. 

The relative arrangement of the centroid values for each turbinate 1s 

also interesting. The first turbinate (positions 1,2 and 3) is easily 

distinguished from the others on the basis of the response to the odorants 

tested. Th~ other three turbinates are nat so easily separated by canonical 

functions 1 and 2, though all have differences in response between the 

anterior and posterior of each turbinate. Such positional differences have 

been observed previously in the salamander (Kackay-Sim & Kubie, 1981). 

Values for canonical function 3 for each centroid do appear to separate the 

responses of turbinates 1 and 3 from those of turbinates 2 and 4. Such 

patterns may be expected from a mosaic of receptors wi thin the olfactory 

epithelium. 

These observations suggest that specific patterning of response to the 

odorants is seen on rat olfactory epithelium. This patterning is most 

likely explained by differences in receptor populations between the 

positions studied and is consistent with other studies suggesting this type 

of arrangement of olfactory receptors in the rat and other species (Mackay­

Slm & Kubie, 1981; Pedersen et al., 1986; Thommesen & Doving, 1977), 

In addition, the result for nicotine supports the conclusion in 

chapter 1 that nicotine stimulates olfactory receptors of rat olfactory 

epithelium in a manner similar to ather odorants. 
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Chapt.er 2b. 

The effect. of concanavalin A on t.he rat. 

elect.ro-olfact.ogram at. varying odorant. 

concent.rat.ions. 

,-
Introduction 

Any study of a receptor system is incomplete without an estimate of 

-
the receptor's affinity for a given ligand. This parameter is difficult to 

determine for olf~ctory receptors for several reasons. First. there are 

many possible ligands which stimulate an unknown number of receptors with 

different affinities for each ligand, and secondly. the concentration of the 

ligand at the receptor is difficult to determine accurately. These points 

have already been discussed in the General Introduction and in this section 

of the thesis. 

The EOG is a summated receptor potential, i.e. the amplitude of the 

response measured is related to the interaction of an odorant with several 

receptor types on many sensory neurons (see Ottoson, 1970; Shirley et al., 

1987 b). Each receptor type stimulated by a given odorant may respond to 

that odorant over a particular range of odora.nt concentrations. This idea 

1s illustrated in figure 12. 
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Figure 12. EXAmples of lultiple Receptor Response 
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Two example are shown, in each case the lower curve shows the total responle of the 

stilulated receptors. The broken curve shows the total response when one of the receptor 

types is affected by a reagent and it's contribution to the total response is lost. The 

difference between the total response before treataent and after treatlent with the 

reagent represents the response profile of the affected receptor type. 

Clearly 1t is difficult to assign any portion of a concentratlon-

response relationship curve to a single receptor type, except at high 

odorant concentrations where a single receptor type is thought to be 

invol ved (Senf et lJl.. 1980). These authors investigated the shape of the 

BOO amplitude versus odorant concentration curve for a series of alcohols, 

and found that at' high odorant concentrations a single dissociation 
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constant <ranging from 1 to 10-6
) best explained the concentration-response 

relationship. Their results also suggested that odorant interaction with 

an olfactory receptor was mainly through hydrophobic effects. 

The lectin concanavalin A has been shown to reduce the EOG to lIany 

odorants to different extents <Shirley et al., 1987 b) . These results may be 

explained by the concanavalin A interacting with one or more receptor type 

which resp~nds to a given odorant. It is possible that treatment of the 

olfactory mucosa with the lectin may change the shape of the EGG amplitude 

versus concentration curve in a manner related to the loss of the lectin 

sensitive receptors. This possibility was investigated on the rat half head 

olfactory preparation described earlier, using nicotine, n-butyl cyanide, 

i-pentanoic acid,' methyl disulphide, i-butyl mercaptan, i-butyraldehyde, 

hexan-1-ol and i-pentyl acetate as the odorants. The results for methyl 

disulphide, i-butyl mercaptan and i-butyraldehyde were obtained by Dr. S.G. 

Shirley and the result for hexan-l-ol by Xr. X.A. Wood. 

Xaterials and Methods 

CheD.icals 

The nicotine used was as described in chapter 1. n-Butyl cyanide 

(98~) and i-pentanoic acid (981) were from Fluka, methyl disulphide (99~), 

i-butyl mercaptan (971), i-butyraldehyde (99~), hexan-l-ol (98~) and 

i-pentyl acetate (97~) were all obtained froll Aldrich. 
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Precautions when using low concentrations of odorant 

The protocol used was as described earlier except for the following 

modifications and precautions. Since low concentrations of odorants were 

being used, the olfactometer was dis-assembled, the components washed in 

chloroform and baked ilJ vacuo at 120c ,C to ensure as little contamination by 

residual odorants as possible. The response of the half head preparation 

itself was used to determine the cleanliness of the apparatus before 

proceeding with the next odorant. The apparatus was accepted as clean when 

the "clean" air used in the experiments (see chapter 1 for details on the 

cleaning procedure) gave an EOG response less than the EOG response to the 

lowest concentration of odorant used. The odorant was presented to the 

epithelium as a one second pulse of vapour followed by a one minute 

recovery period, and was applied in order of increasing concentration with 

the standard odorant, i-pentyl acetate, presented. at regular intervals 

within this sequence. After the initial sequence of odorants had been 

applied, the tissue was treated with concanavalin A or Ringer solution only 

as described earlier. 

The (A) value for each duplicate presentation of odorant was 

calculated both before and after concanavalin A treatment. The difference 

between these values was termed delta (A) and represented the effect of the 

concanavalin A on the portion of the EOG determined by the lectin sensitive 

receptor (s). Estimation of the mucus concentration of the odorants is 

described earlier (see page 45). 
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Results 

Change in (1) value with increasing odorant concentration 

The normalised response «A) value) versus concentration relationship 

for each odorant is shown in figure 13 and is consistent with the resul t_ 

expected for a multiple receptor response over a wide concentration range. 

These data can be fitted to the equation log (A) = m x log [ odorant ] + 

constant, and used to estimate the vapour concentration of odorant required 

to give an EOG equal in amplitude with the EOG from the standard odorant 

U-pentyl acetate), SV, and the corresponding mucus concentration, SM. 

<calculated by Dr. S.G. Shirley)., This data is shown in table 4. 

Table 4. Concentration of odorant required to give an EOG equal in size 

with the EOG from the standard odorant. 

r = correlation coefficient and m = slope 

Odorant r • -log SV -log SJ( 

methyl disulphide 0.988 0.32 7.1 6.0 

i-pentyl aldehyde 0.969 0.47 6.4 5.4 

i-butyl mercaptan 0.980 0.42 7.0 6.6 

1-pentyl acetate 0.989 0.38 7.1 5.2 

hexan-l-ol 0.968 0.49 8.5 5.2 

i-pentanoic acid 0.956 0.46 5.1 0.3 

n-butyl cyanide 0.997 0.37 6.8 4.3 

nicotine 0.984 0.29 5.1 0.4 

- 77-



Figure 

Chapter 2b 

13. ~A~ IAlue lersus Odc~Ant IA~CU[ CCn~eDt[At1cD 
2 2 i-PENTYl ACETATE (81) i-PENTYl AlOEHYOE(9) • 

0 • / 
/ y-I<0 l 

A Ao~ 
1 H • • 1 ./ ,I / /. /. 
~. / . 

0 • 0 .... , , i i I 
-10 -9 -8 -7 

i , i i 

-6 -5 
i , 

-10 -9 -8 -7 
i 

-6 -5 
1 HEXAN-1-0l (2000) 1 n-BUTYl CYANIOE (370) 

, iii • i , , , , , , 
-10 -9 -8 -7 -6 -5 -10 -9 -8 -7 -6 -5 

• 

2 
OIMETHYlOISUlPHIOE(13) • 

~ 
-5-5- / 

2 
i-BUTYL MERCAPTAN(2-5) • 

/ 
• y-5H 

1 
./ 

/ A 1 / 

o 

1 

A 

o 

• . / . / .-.-......... 
, , iii 

-10 -9 -8 -7 -6 

NICOTINE (2x106) 

~ .-..-.. 
0 

i 

-5 
1 

o 

• I· ./ 
'" .--, , , , i 

-10 -9 -8 -7 -6 

i-PENTANOIC ACIO (4x106) 

.-... . .....-. .......... 

I 

-5 

, , , i i ' 'i iii. 

-10 -9 -8 -7 -6 -5 -10 -9 -8 -7 -6 -5 
lOG VAPOUR CONCENTRATION 

Each point represents the lean (A) value frol at least five anilals. The figure in 

parentheses is the water I air partition coefficient. 951 Confidence intervals are not 

shown for clarity, Typical values (for low to high concentrations of dilethyl disulphldl) 

are t 0.0., 0,0., 0.05,'0.08, 0.15, 0.19, 0.21, 0.2., 0.25, 

- 78-



Chapter 2b 

Concanavalin A induced change in (A) value <delta (A» 

The EOG response of n- butyl cyanide was unaffected by the 

concanavalin A treatment, but for the other odorants the lectin caused a 

reduction in EOG amplitude, particularly at the higher odorant 

concentrations tested. The mean concanavalin A induced change in response 

(delta (A» versus estimated mucus concentration of odorant is shown in 

figure 14. 

Figure 14. Delta (A> Versus Mucus Concentration of Odorant 
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Mucus concentrations were determined by multiplying the vapour concentrition by the 

vater / air partition coefficient, except for nicotine and i-pentanoic acid where a factor 

of 50,000 was used (see Materials and Methods of Chapter 1 for an expllnatlon). 

show lean delta (A) value calculated in part fro. the data in figure 13. 

Po 1 nts 

OMOS - dimethyl disulphide; 8C - n-butyl cyanide; 8M - i-butyl lercaptln; HI - hexan-l-ol; 

PO - i-pentyl aldehyde; AA - i-pentyl acetate; PA - l-pentanoic icid; NIC - nlcotlne 
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The maximum concanavalin A induced change in EOG occurred at 

approximately 1 JiJII for i-butyl mercaptan, methyl disulphide and i-pentyl 

aldehyde and probably for hexan-1-01 although the data points for this 

odorant were not continued to a high enough concentration to confirm this. 

The res~lts in figure 14 show that the EOG to the standard or 

reference odorant i-pentyl acetate over a range of concentrations is 

affected by the lectin. This reduction in EOG to the standard odorant was 

small and .. so will not obscure large effects the lectin has on the response 

to the other odorants. The (L> value (see Chapter 1 for a definition) for 

the experiments of 0.80 ± 0.20 (mean ± standard deviation, n=45) also 

suggested some non-specific an~ receptor specific effects of the lectin on 

the response to the standard odorant. The control washes with Ringer 

solution only had no significant effect on the EGGs to any of the odorants 

at any concentration of odorant. 

Concanavalin A induced changes in the EGGs to nicotine and i­

pentanoic acid occurred at higher estimates of the mucus concentration of 

the odorants than for the other affected odorants. These hydrophilic 

odorants also required a higher vapour concentration to elicit a response 

from the in vitro preparation. 
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Discussion 

It must be remembered that these experiments were performed. at the 

limits of the technique and consequently, the results are subject to some 

errors. How~ver, the experiments used a novel approach in investigating 

odorant-binding affinities of olfactory receptors and the results are worth 

consideration. 

Use of delta <A) to estimate olfactory receptor affinities 

The results of this study clearly show that a portion of the EOG 

response to the odorants at varying concentrations can be attributed to one 

or more olfactory receptor whic.h is sensitive to concanavalin A treatment. 

For the odorants whose concentrations in the mucus covering the epithelium 

can be estimated (the odorants with a mucus/air partition coefficient much 

less than 50,000), the delta (A) values versus concentration curve can be 

taken to represent the binding affinity of the receptor(s) for those 

odorants. For the odorants whose mucus concentrations are more difficult 

to estimate, the delta <A) versus concentration curve will give a higher 

estimate of the receptor's affinity for the odorants than is actually the 

case. 

The data points for some of the odorants were not measured. at high 

enough concentrations to analyse the receptor affinity (nicotine and 

hexan-l-oU. For methyl disulphide, i-butyl mercaptan, i-pentanoic acid and 

i-pentyl aldehyde the delta (A) values can be fitted. to a curve whkh is 

best described by the response of a single concanavalin A sensitive 
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receptor. 
These curves (calculated by Dr. S. Shirley using non-linear 

regression analysis), fitted to the equation for an ideal receptor; 

delta (A) = m x (c/c+ 16) 

where m is a constant and c is the odorant concentration, (curves not 

illustrated) show that the dissociation constants for the concanavalin A 

sensitive receptors for i-butyl mercaptan, methyl disulphide and i-pentyl 

aldehyde are in the order of 100 nM. 

The qissociation constant for the i-pentanoic acid concanavalin A 

sensitive receptors appears to be greater, but may be overestimated (see 

above). This will also be the case for nicotine. It is possible that these 

more soluble odorants are poo~ stimulants for the olfactory receptors 

because hydrophobic effects are involved in the interaction of an odorant 

with the binding site. 

The results of this stUdy can be explained 1n two ways, either that 

there are several types of concanavalin A sensitive receptor with simUar 

affinities for different odorants or that there is a single class of 

concanavalin A sensi ti ve receptor which responds to many odorants,. The 

latter possibility is more likely, though it is difficult to substantiate 

this claim on the basis of these results. A single receptor type would not 

neccessarily be stimulated to the same extent by different odorants at the 

salle concentration (see the differences in the ampl1 tude of delta (A) at 

saturation for the insoluble odorants shown in figure 14 and also the data 

shown in table 4). 
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Bffect of chAnse in pH on the nicotine BOO 

To investigate the possibility that a change in pH may affect the EOG 

to nicotine (in particular that at higher pHs the EOG may be larger than 

at lower pHs), a further experiment was done. The olfactory mucosa was 

rinsed with Ringer solution buffered to extremes of pH <pH 6.4 using 

citrate or to pH 9.2 using serine), the liquid removed by aspiration and the 

vapour of nicotine, i-pentyl acetate, i-pentanoic acid or cineole (vapour 

concentrati,?ns as shown in Chapter 1) was then presented to the 

olfactory mucosa. The supposed changes in mucus pH did not cause 

selective, pH-dependent changes in <A) value for nicotine or any of the 

other odorants (four experiments). The actual pH of the mucus following 

superfusion was not measured. Thus, the effect on the EOG of varying the 

amount of nicotine free base in the mucus remains unclear. 
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Sect.ion 2 • 

Chapt.er 3. 

Ligand binding and t.he st.udy of recept.ors. 

Use of t.he filt.rat.ion binding assay t.o st.udy 

t.he binding of 3H(-)nicot.ine t.o olfact.ory 

membranes. 

Introduction 

L~and binding studies 

Ligand binding studies are a powerful experimental technique which can 

be used to study properties of receptors (for a theoretical approach to 

receptor studies see Boeynaems & Dumont, 1980). Receptors are ·specific 

cellular components that interact with specific ligands· (Levitzki. 1984) 

and are found both associated with membranes and free within the 

cytoplasm. 

glycosylated. 

Most receptors are thought to be proteins and are often 

Kembrane-associated receptors are influenced by the lipids 

of the membrane, particularly when the response following stimulation 
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involves interaction of several membrane components. Receptors are a vital 

component in the biochemical communication within and between cells, 

being the link between a specific stimulating ligand (agonist) and an 

effector pathway causing a specific biochemical response. There are 

similarities between receptor binding sites and allosteric sites on enzymes, 

where the binding of a ligand modulates the activity of the enzyme 

(Levitzki, 1984). 

Typical ligands include neurotransmitters (e.g. acetylcholine, dopamine, 

noradrenaline), hormones (e.g. insulin, prostaglandin) and growth factors 

(e.g. nerve growth factor). By. labelling the natural ligand with isotopes 

(e.g. lA-C, ~lH, :::l~:p, 1::'::61) the amount, location and characteristics of a 

receptor can be studied. In many cases however, the natural ligand 1s 

not easily labelled, is unstable or cannot be isolated in sufficient 

quantity for use in the test-tube. In this case the biochemist has looked 

for natural or synthetic compounds which also bind to the same receptor 

but which can be used more easily in the laboratory. The identification of 

ligands which bind to the receptor but do not stimulate the effector 

mechanisms (competitive antagonists in particular) has made it easier to 

measure the appropriate receptor for two reasons, (1) the antagonist binds 

to the receptor at lower concentrations than the agonist and (2) the 

antagonist binding to the receptor involves tighter binding than binding of 

the agonist. In many cases 

distinguish between different 

agonists and antagonists can be used to 

classes of a receptor (e.g. muscarinic 
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acetylcholine receptors, Birdsall et al., 1983; opiate receptors, Barnard & 

DeMouliou-Mason, 1983). 

There are many different types of ligand binding study which may be 

used in these experiments, including "filtration", "centrifugation", 

"equilibrium ,dialysis" and "molecular filtration" (Levitzki, 1984; Cattabenl 

& Nicosia, 1984). The most commonly used techniques from these choices are 

the filtration binding assay and the centrifugation binding assay. Both 

technique~ separate ligand bound to the receptor (RL) from ligand free in 

solution (L), thereby giving a measure of the amount of ligand associated 

with receptor in a given tissue preparation. This information can then be 

used to calculate various par~meters which describe the binding of the 

particular ligand <e.g. the dissociation constant, Ko, the amount of receptor 

in a preparation, Br" ... , . ., the association and dissociation rate constants, k, ... 

and k.::. ff , and the half-life of the RL complex, t~. See figure 15>' The 

filtration assay is most convenient, with the ease and speed of separation 

enabling the experimenter to do many replicates in anyone period of time. 

The centrifugation assay on the other hand is not as convenient since few 

replicates can be done in the same period. of time and the level of 

background (non-specific) binding of the ligand to other binding sites in 

the tissue or apparatus is sometimes high. Non-specific binding is usually 

measured by including an excess of unlabelled agonist or antagonist in the 

assay. Both the filtration and centrifugation assays can be used to 

measure ligand binding to soluble and membrane-associated receptors by 

minor adjustments in the experimental procedure <e.g. see Bruns et LJl., 1983; 

Levi tzki, 1984). 
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Figure 15, Calculation of Binding Parameters from Experimental Data 
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Another technique which can be used to study ligand-receptor 

interaction is autoradiography on slices of tissue incubated with the 

labelled ligand, Although this technique is more complex and requires more 

expensive equipment and computer software than is needed for the equivalent 
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assay in the test tube. it gives excellent results ranging fro. binding 

plots to localisation of the receptor sites to specific regions in a tissue. 

For example, this technique has been used to study the binding of 

3H(-)nicotine (Clarke et a1., 1984) and of 3H-thyrotropin-releasing hormone 

(Sharif & Burt. 1985) to ultra thin slices of rat brain. 

Other workers have studied the binding of ligands to olfactory tissue 

preparations using ligand binding techniques such as molecular filtration 

on Sephadex gel columns <e.g. Persaud et a1., 1981; Pelosi et a1., 1982; Wood 

& Dodd, 1984). centrifugation <Fesenko et a1.. 1985) and filtration through 

glass fibre filters <e.g. Hedlund & Shepherd, 1983; Anholt et 121., 1984; 

Pevsner et a1., 1(85). 

Principles of the filtration binding assay 

In the filtration binding assay the solution containing the receptor 

preparation and labelled ligand is filtered rapidly through a filter under 

vacuum (figure 16). This separates the bulk of unbound <free) ligand from 

ligand bound to the receptor <which is retained on the filter), though it is 

usual to then wash the fil ter wi th a large volume of buffer to ensure 

maximum separation. To reduce dissociation of the ligand from the receptor 

trapped on the filter the wash buffer is usually used ice cold. Untreated 

filters (typically glass fibre) can be used to study membrane-associated 

receptors, but must be pre-treated with polyethyleneimine or polylysine to 

enable soluble receptors to stick to the filter (Bruns et 121., 1983: 

Levi tzkl, 1984). 
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Figure 16. Filtration Assay Apparatus and it1s Use 
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Chapter 3 

I f the ligand is bound too loose I y to the receptor, it may d issoc ia te 

from the receptor during the separation and wash procedure. A crucial 

factor in deciding whether the filtration assay can be used to study a 

particular ligand-reCeptor interaction is the dissociation rate constant for 

- 89-



Chapter 3 

the binding, koH' frOll which the half-life (tl/2)of the ligand receptor 

complex can be determined (figure 15). A lower li8it for tl/2 of 15 

seconds has been proposed, given that the association rate constant is the 

diffusion controlled value of 1-5 )(108 sec- 1 )(-1 (Levitzki, 1984>' The ICc 

of the binding in this situation would be in the order of nanomolar. If 

the association rate constant is smaller than this, then the lifetime of the 

receptor-ligand complex will be greater and the filtration assay may be a 

suitable method for separating the "bound" ligand from the "free" ligand. 

In this chapter, determination of the best experimental conditions to 

study 3H(-)nicotine binding to olfactory membrane preparations is described 

in detail. Initially, the bindi~g of the muscarinic acetylcholine receptor 

antagonist quinuclidinyl benzilate (QIB) to brain and heart membranes was 

studied to compare my results using the filtration assay with published 

resul ts. The binding of this muscarinic receptor antagonist to olfactory 

membranes described by Hedlund & Shepherd (1983) was also investigated. 

Xuscarinic Acetylcholine Receptor 

llater1als & Xetbods 

[3- 3 H] (±)Quinuclidinyl-[phenyl-4-3 Hl-benzilate, specific activity 

32 Ci/mmol, was obtained from Amersham International, U.K. and atropine 

sulphate and oxotremorine were from Sigma, U.K. 

were of analytical grade. 

All other chemicals used 

Kale Wistar rats, 200-250g. were from Harlan-Dlac, U.K. The species of 

chick used was not known but was a standard laboratory strain. 
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The binding assay conditions and preparation of membranes was as 

described elsewhere for rat brain (Yamamura & Snyder, 1974) and chick 

heart (Galper et al., 1977). 

1lesul ts & Discussion 

Binding plots from single experiments to investigate the binding of 

3H-QIB to chick heart membranes, rat brain (minus cerebellum> and rat 

cerebellum are shown in figure 17. These preliminary results were 

comparable with the results obtained by other workers and showed that the 

fil tration binding assay apparatus in this laboratory could be used to 

study ligand binding to receptor~. 

Figure 17. Binding of 3H(±)QIB to Chick Heart and to Rat Brain 
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The muscarinic acetylcholine receptors that have been identified in 

the olfactory mucosa of the salamander are found at low levels (60 fJlol/Jlg 

homogenate protein, Hedlund & Shepherd, 1963) and are thought to play a 
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role in mucus secretion (Getchell, 1986>' The small amount of receptor and 

of olfactory material prepared from the rat made binding studies with 38-

QIB impractical and consequently these experiments were not continued. 

The preliminary results (not shown) were inconclusive but suggested that a 

binding site ,for 3H-QBB may be present at low levels in the olfactory 

mucosa of the rat. 

3H(-)B'icptine Binding to 

experimental considerations 

3H(-)licotine 

{-)-[B-methyl-3H1Nicotine 

Olfactory J(eD.branes some 

specific activity 78.4 Ci/mmol, was 

obtained from Amersham International in 250 }JCi amounts. On receipt, the 

3H {- ) nicotine was aliquoted into 10 or 20 }JCi amounts in a polypropylene 

tube (Sarstedt), sealed under nitrogen and stored at -20OC. On the day of 

use the sol vent {ethanol> was removed under a gentle stream of ni trogen 

(caution: nicotine evaporates, see chapter 1) and the 3H(-)nicotine 

dissol ved in the buffer for the assay. Only freshly made soluti-ons of 

3H(-)nicotine were used for all major experiments. The radiochemical purity 

of the 3H{-)nicotine on supply from Amersham was 95.4' and 93.5' in 

successive purchases of the same batch. 

(- ) Iicotine 

S{-)Iicotine was purchased from Sigma as a brown liqUid (quoted as 

>98' pure) and redistilled before use to a clear liquid 099' pure as 
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determined by capillary gas-chromatography; for full details see appendix 

A), This (-)nicotine was stored in 1-2 ml amounts in clean glass Vials, 

sealed under nitrogen, protected from the light by aluminum foil and kept 

Discoloured samples of nicotine were not used in the 

experiments. 

Preparation of buffers 

All c~emicals used were of the highest quality available. Glassware 

and other re-usable apparatus were washed overnight in 5% Decon-90, rinsed 

three times in distilled water and once in de-ionised distilled water 

(single distilled water passed through a charcoal column, two ion-exchange 

columns, an organiC "scavenger" column and finally through a millipore 

fil ter; final conducti vi ty 18 M .Ohms .cm- 1 >. This "pure" water was also 

used to make all buffer solutions and only freshly made buffer was used 

in the experiments. 

Protein assay 

Protein was assayed by the method described by Hartree (1972). using 

bovine serum albumin as standard. The chemistry of the Folin reaction has 

been discussed elsewhere (Legler et a1., 1985). A standard line determined 

for 10 to 70 ~g of bovine serum albumin was measured each time the protein 

assay was performed (20~1 of the olfactory 1000 xg supernatant typically 

contained protein within this range). The buffer of the preparation had no 

effect on the assay. 
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Olfactory .eJlbnme preparation 

The procedure to prepare olfactory membranes was based around minimal 

sonication of the dissected and rinsed olfactory turbinates, the underlying 

principle being to disrupt the surface layer of cells of the olfactory 

epi thelium and to remove the olfactory cilia (see figure 1>. The effect 

of sonication on the olfactory cilia has not been fully characterised in 

this laboratory, though this procedure has been used to prepare membranes 

which cont!lin an odorant-modulated adenylate cyclase activity (Shirley et 

lJl., 1986; Shirley et al., 1987c,d>. 

The final procedure is de~iled in chapter 4, but is essentially as 

follows. The ethmoturbinates were removed from a freshly killed Yistar rat 

and placed in 10 volumes of ice cold phoshate-saline buffer containing 1 mM 

EGTA, the pH of which is discussed later. The EGTA was included to reduce 

blood clotting and since it was thought to reduce the amount of mucus 

covering the olfactory epithelium <observations in this laboratory>. After 

gentle washing in two Changes of this buffer and one in buffer minus the 

EGTA, the turbinates were sonicated. An MSE 100Y diSintegrator was used 

with an exponentially tapered probe (3mm tip diameter), giving a meter 

reading of 12 microns peak-to-peak when used on the medium power setting. 

This whole procedure was done in the same polypropylene tube. Following 

sonication the liquid was decanted and the turbinates rinsed with buffer 

minus BGTA. The pooled liqUid was then centrifuged at 1000xg for 15 

Jlinutes at 40(; and the supernatant used in the studies without further 

treatment. This preparation was kept on ice until used in the experiments. 
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Similar results for the binding of 3H(-)nicotine were observed for 

supernatant which was tested immediately following the centrifugation step 

and from the same supernatant tested after storage on ice for up to two 

hours. 

3H(-)Iicotine binding assay 

The conditions for the preliminary assays were as follows. Early 

experiment~ had shown that very little 3H(-)nicotine binding to the 

olfactory 1000xg preparation could be measured at low (0.1-10 nM) 

concentrations of ligand and at pH 7.5 (total cpm measured per incubation 

with a limited amount of protein). Therefore, the full specific activity 

3H(-)nicotine was "diluted" with unlabelled (-)nicotine to enable binding at 

higher concentrations of nicotine to be studied. In the preliminary assays, 

nicotine at a final concentration of 97nM at 10 Ci/mmol was used, with 

non-specific binding determined in the presence of 1 mM unlabelled nicotine 

(similar data was obtained using 0.1 mM nicotine). The asays were 

conducted in tubes containing buffer, membranes and nicotine to a final 

volume of 250~l and at pH 7.5. After incubation at room temperature.for 30 

minutes, the solution was filtered under vacuum through Whatman glass fibre 

fil ters presoaked for > 1 hour in 0.3% polyethyleneimine in buffer. The 

filters were then rapidly washed with 3)(2ml of ice cold buffer and placed 

in 10 ml of scintillant (LKB. Optiphase Safe) before radioactivl ty was 

determined using a Packard Trl-Carb scintillation counter with pre-set 

windows for tritium. The counting efficiency was 35%. 
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The next section details some of the preliminary experiments to 

determine the best methods for preparing membranes, for separating bound 

ligand from free ligand and to determine the best conditions for the 

binding assay. 

The Binding Assay 

Choice of tubes for the binding assays 

Plastic tubes were chosen for use in assays and for storage of 

materials since they are cheap, disposable and reasonably clean as supplied. 

The main choice to make was between polypropylene and polystyrene tubes 

wi th respect to the adsorption of 3H (- >nicotine to the plastic during 

experiments. To test this, a known amount of 3H (- )nicotine (220,000 dpm> 

in phosphate buffer pH 7.5 was added to two 3 ml polystyrene tubes 

(Sarstedt> and two 1.5 ml conical bottom polypropylene tubes (Sarstedt) and 

al1quots taken at time intervals after addition of the radioactive solution 

(1, 15, 30, 45 and 60 minutes>. The amount of radioactivity in each aliquot 

was then measured and compared with the expected amount determined from 

the stock ::'H (- >nicotine. Radioactivity associated with the plastic was 

extracted for 1 hour in 50 mM HCI (to cover the maximum level in the tubes 

reached by the radioactive solution). 

The results were expressed as a percentage of the amount of 

radioactivity added ·to the tube at time zero. At 1 minute after addItion, 
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102% and 98% of the radioactivity added to the polypropylene tubes was 

recovered: for the polystyrene tubes the values were 90% and 92%. Similar 

values were measured for the other time periods tested in each case. The 

acid extractable radioactivity for all four tubes was approximately 0.05% of 

the radioactivity originally added to the tubes. Since there appeared to be 

Ii ttle adsorption of the 3H (- ) nicotine to the polypropylene, this type of 

plastic tube was used in subsequent binding assays (incubation time 

typically less than 60 minutes) and for storage of the stock 3H(-)nicotine. 

Choice of filter for use in the separation of bound from free l~and. 

The choice of filter to use in the filtration assay was essentially 

between several types of Whatman glass fibre (GF) filter. The differences 

are in particle exclusion size of the pores and in the thickness of the 

fUter, as detailed in table 5. Preliminary tests showed that there was 

little difference in measurements of specific binding using GF!B. GF!C or 

GF/F filters (this can be different, for example see Dawson, 1984). thus the 

important criteria in these experiments was the time taken for the 

filtration and wash procedure. the faster the better (to reduce dissociation 

of bound ligand). This was tested using a variety of wash volumes <from a 

dispenser) and with an independent assessment of the time taken. It was 

clear from these tests that the GF/C filter was the best to use in future 

experiments. 
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Table 5. Characteristics of Whatman glass fibre filters. 

Filter 

GF/A 

GF/B 

GF/C 

GF/F 

thickness 

<1m) 

0.31 

0.75 

0.31 

0.45 

exclusion 

liJIit (Jm) 

1.6 

1.0 

1.2 

0.7 

filtration tiae (sec) 

far 3x3.1 <n=1) 

1.7 

2.8 

1.7 

3.5 

the thickness was determined on dry filters using a micrometer 

Pretreatment of filters with pol yethyleneiJaine <PH I) • 

The electrostatic charge on a wet glass fibre filter may affect the 

separation of bound from free ligand by influencing the amount and nature 

of receptor which is retained on the f11 ter and by influencing the amount 

of ligand which binds to the filter alone. Glass fibre filters are likely 

to have a net negative charge to which the nicotinium ion (and acidic 

proteins) in these experiments would be attracted, thus overestimating the 

amount of nicotine bound to receptor. Other studies on the receptors for 

3H(-)nicotine in brain have used polylysine or PEl treatment of the filters 

(e.g. Marks & Collins, 1982). 

A preliminary study showed that the amount of 3H (- )nicotine binding 

to PBI treated filters was half that found binding to filters treated with 

buffer only (tested at pH 6, 7.5 and 8). PEl treatment of the filters was 

used in all other experiments in order to reduce any overestimate of the 

nicotine bound to the receptor (the nature of the nicotine binding sites in 
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olfactory preparations was not known, thus PEl treatment would also 

facilitate retention of all possible binding components on the filter). In 

later experiments at optimal conditions for binding it became clear that 

the amount of 3H(-)nicotine binding to the filter was insignificant 

compared with the amount of ligand associated with the olfactory binding 

sites . 

• umber of washes of the ftlter 
" 

It is important to determine the volume and number of washes of the 

filter following the initial separation, in order to determine accurately the 

amount of ligand bound to the receptors. Too much washing may result in 

dissociation of bound ligand from the receptor whereas too 11 ttle washing 

may not separate 'ligand free in solution and ligand bound non-specifically 

to the filter and other sites in the preparation from that bound to the 

receptor. Results from several experiments suggested that a 2ml wash 

would pass rapidly through the filter and using increaSing numbers of 

washes, gave good separation of bound and free ligand. The incubation 

volume of the binding assay was typically 250~1 in preliminary experiments 

and 200~1 in the final series of experiments. A damp GF/C filter under 

filtration assay conditions holds 59.6 ± 6.8 ~l of liqUid (mean ± s.d .. 

estimated by increase in weight of five dry samples), thus a 2ml wash is in 

30 fold excess of this and should be a sufficient volume for effective 

washing. 
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Figure 18. Effect of Increasing Filter ~ashing on Bound 3H(-)H1cot1ne 
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The data points for olfactory tissue show the lean ± standard deviation (included 

\fithin a point if not illustrated) for triplicate deterlinations, The values for fllter 

binding alone are means of duplicate deter~inations, Data is fro. a single experllent. 

To estimate the number of 2ml washes required for separation of bound 

and free ligand, triplicate determinations of the total and the non-specific 

radioactivity bound to an olfactory preparation and to the filters alone 

was made for 1, 2, 3, 4, and 5 )(2ml washes of the filter. The results 
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(figure 18) show that good separation of bound and free is achieved even 

after a 1 )(2.1 wash, but that better replicates are measured with more 

washes. The amount of specifically bound 3H(-)nicotine is affected slightly 

by a larger number of washes but does not decrease dramatically. suggesting 

that dissocia~ion of bound ligand does not occur to any great extent during 

the filtration and wash procedure. In subsequent experiments a 3)(2ml wash 

was used. This will give good separation of bound and free 3H(-)nicotine 

in a rapid. wash procedure (filtration and wash of a single incubation were 

typically complete within 5 seconds). 

Ieasurement of the radioactivity.on the filters 

In order to measure the amount of 3H(-)nicotine binding to the 

olfactory preparation the radioactivity on the filters must be extracted 

into scintillant and measured in a liqUid scintillation counter. Other 

workers have suggested that the filters from binding assays should be 

dried before scintillant is added (e.g. Galper et a1., 1977) but this poses 

an important question. Has all the radioactivity been extracted from the 

filters by the scintillant or does some remain on or within the filter? 

If so, the amount of radioactivity will be underestiJlated since the energy 

transfer process from the tritium label to the sensitive chemicals in the 

scintillant will be reduced. This has been demonstrated to be the case 

when using 3H-QIB in receptor binding studies (Dawson, 1984>' In addition 

it is possible that radiolabelled odorants may evaporate from the filter 

during the drying procedure. 
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Extraction of Radioactivity Associated with the Filter into 

Scintillant 
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All values are the means of duplicate deterMinations (vnthln 101) froll s1n9io:-

experiments (main figure and inset) and ~ere measured under refrigerated condItIons. The 

break in the data on the main figure represents an 8 hour perIod at roo~ te~per3ture. T~e 

volume of scinl1llant (S) was 10 ml. Filters (F) were presoaked In 0.3':. PEl before 'J~f. 

Operations were carried out In the described sequence at tile zero (T - TrItIum labei); 

.. 5 + T, add daMp F; tt 5, add damp F + T; () 5, add damp F + T + protein 

Ll 5, add air dried F + T; "F + T + lml water, add S; \7 F + T + 1.1 O.2~ NaOH, add 5 

legend continues 
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In an experiment using dalp F + T in vials kept at rool telperature or refrlgeratec 

before scintillation counting, aeasurelents at tile = 0, 16, 24, and 48 hours gave the 

following results (expressed as a percentage of added CPI>, Rool temperature - 62,92, 

98, 99% : refrigerated - 58, 79, 86, 901, In subsequent experilents sa.ples were left at 

room temperature. for 24 hours before scintillation counting. 

The r~sults in figure 19 show that drying the filters before adding 

the scintillant is not to be recommended. The apparent lack of 

radioacti vi ty on the dried filters suggests that the 3H (- )nicotine may in 

fact evaporate during the dryiD;g procedure. After 60 hours, >90~ of the 

radioacti vi ty had been extracted from the damp filters and there was no 

apparent effect of protein on this extraction. Liquid scintillation 

counting was performed in a refrigerated chamber which is likely to reduce 

the time taken for the radioactivity to be extracted from the filter, other 

results (see legend to figure 19) suggest that the maximum radioactivity is 

measured when the vials (plastiC) are first left for 24 hours at room 

temperature. The addition of NaOH to the damp filters does not improve the 

extraction rate and water alone appears to prevent the release of the 

maximum amount of radioactivity. The conclusion from these experiments 

must be that the scintillant 1s best added to the damp filters and as soon 

as possible after the filtration and wash procedure 1s complete. 
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Centrifugation binding assay 

Preliminary experiments showed that specific binding of 3H (- )nicotine 

to olfactory membranes could be measured by this technique (using an KSE 

bench centrifuge at the high speed setting and a Sorvall RC-2B centrifuge 

at 18 ,000xg). However, the values measured were smaller than those 

observed using the filtration assay, showed poor repl1cabili ty and were 

subject to very high levels of non-specific binding. The effectiveness of 

the centrif~gation in precipitating all of the binding component must also 

be questioned since the size of the membrane vesicles prepared from 

olfactory tissue by sonication is not known. This assay was not 

investigated further. 

Preparation of Olfactory Membranes 

Sonication of the olfactory turbinates 

Since the effect of sonication on the cells of the olfactory epithelium 

is not fully understood, the minimum sonication time neccessary to obtain a 

preparation to which 3H(-)nicotine binds was selected. The olfactory 

turbinates from three rats were removed and treated as described in 

materials and methods. The turbinates from one rat were sonicated for 5 

seconds, the second for 20 seconds and the third for 40 seconds, after 

which the 1000xg supernatant from each was prepared. Dupl1< ~te 

measurements of total binding and non-specific binding of 3H(-)nicotine to 
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the preparation from each sonication time were then taken. The results of 

this experiment are shown below in table 6. 

Table 6. Duration of sonication time on olfactory turbinates and the 

effect on the.binding of 3H(-)nicotine to olfactory membranes. 

sonication 

time ,.(sec) 

5 

20 

40 

protein in 1000xg 

supernatant (Jlg/ml> 

1.55 

2.00 

3.70 

mean cp. specifically bound 

per lIg protein 

4526 

3343 

3167 

(mean values are from duplicate determinations within 20%). 

The preparation with the most activity resulted from the 5 second 

sonication of the olfactory turbinates. Since sonication for 10 seconds 

seemed to be too long, I decided that a sonication time of 8 seconds would 

be the best to use in future experiments. This sonication would be long 

enough to remove the binding component from the turbinates yet· short 

enough to minimise any damage to the membranes. Other work in this 

laboratory has shown that a sonication time of 5 seconds causes the release 

of most of the odorant-modulated adenylate cyclase activity (Dr. S.G. 

Shirley. unpublished result). 
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Hffect of buffer coaposition and of ians on the binding 

The effect of buffer strength and composition was investigated in one 

experiment using four different buffers for the preparation of membranes 

(sonication time of the olfactory turbinates was the same for each). Two 

buffers were. investigated, phosphate-saline and HEPES-saline and at two 

concentrations, 5mK and 50mK <saline in all cases at 0.9~ HaCl w/v). It 

was desirable to keep the buffer as simple as possible since the effect of 

organic b~Jfers on the olfactory receptors is not known. Sucrose was not 

used in the preparations since it is known to stimulate olfactory adenylate 

cyclase activity <Shirley et a1., 1986>' The effect of adding sodium, 

calcium, magnesium and EGTA to ~he binding assay was also studied. Results 

from duplicate determinations are shown in table 7. 

These results suggested that preparation of the olfactory membranes 

and binding of 3IH (- )nicotine was better in phosphate buffer than HEPES 

buffer and that high concentrations of phosphate reduced the amount of 

specific binding measured. This effect of phosphate concentration on the 

binding was also seen in other experiments (not shown). Although the final 

concentration of the ions added to the binding assay was not determined, 

the concentrations added were such that large effects on the binding should 

be seen. JJeither calcium, magnesium nor EGTA had large effects on the 

binding in this experiment. An increase in ionic strength of the binding 

buffer reduced the amount of specific binding measured. 
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Table 7. Effect of buffer strength and of ions on the binding of 

3H(-)nicotine to olfactory membranes (IaCl at 0.9%). 

Chapter 3 

preparation and 

binding buffer 

.ean cp. specifically mean cpm non-specifically 

bound / mg protein 

5mK phosphate/laCl 3191 

50mK .. phosphate/NaCl 2516 

5mK HEPES/laCl 1306 

50mK HEPES/laCl 2351 

ions added. to 5mX 

phosphate/.ael b~nding buffer 

50JlK Ca2+ 

1mK Kg2+ 

300mK Na+ 

10mK EGTA 

2733 

3338 

1742 

2724 

bound I mg protein 

335 

261 

441 

249 

266 

255 

202 

242 

(mean values are from duplicate determinations within 10%). 

In another experiment the effect of Phosphate, HEPES or TRIS buffer on 

the preparation and binding of 3H (- )nicotine to olfactory membranes was 

tested. The results of this experiment (table 8) showed that a 5mM 

phosphate/0.9% BaCl buffer at pH 7.5 gave results as good as for any other 

buffer tested. The replicability of results within an experiment (using the 

filtration binding assay) is also shown in table 8. The effect on the 

binding of borate (adjusted to pH 7.5 before addition to the assay> was 
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also investigated. Addition of 1mK and 5mK (final concentration) H3B03 to 

the 5mK phosphate/0.9% laCl binding buffer caused a 20% increase in the 

amount of specifically bound nicotine measured, without increasing non-

specifically bound nicotine. The increase in specific binding of 

3H (- )nicotine by borate may be explained by a pH effect on the ligand (see 

later) and was not investigated further. 

Table 8. Effect of phosphate, TRIS, HEPES and of Borate on the binding of 
.' 

3H(-)nicotine to olfactory membranes. 

cp. bound per mg protein 

buffer/O.9~ .aCl <pH'1.5) total non-specific specific 

50 mK HEPES 1898 ± 127 214 ± 15 1684 

50 mK TRIS 3545 ± 218 361 ± 63 3184 

5 mK phosphate 3493 ± 105 432 ± 117 3061 

borate in phosphate 

binding buffer 

1 mK 4126 ± 170 401 ± 92 3725 

5 mK 4389 ± 540 427 ± 93 3962 

results are mean ± standard deviation of triplicate determinations 

pICa of the buffers at 250(; (Dawson et 121., 1986) 

BEPES 7.5; . TRIS 8.1; Phosphoric acid 6.8 (2nd protonatlon) 
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Effect of pH on the preparation of ae.branes. 

Preliminary experiments showed that preparation of membranes and 

binding in 50 m){ phosphate/O .9% BaCl buffer at pH 7.8 gave less 

specifically bound cpm per mg protein than for the comparable experiment 

using 5m){ ph£?Sphate/0.9% NaCl at pH '1.5. Preparation of membranes in 5mM 

phosphate/O .9% BaCl at pH '1.5 and subsequent binding in 28 mM 

phosphate/O .9% HaCl at pH '1.8 gave more binding than in 28 mM 

phosphate/~)'9% NaCl at pH '1.5, using the same preparation. The reduced 

binding in the preparation made at pH '1.8 may be explained by the 

aggregation and precipi tation of the binding component during the 

centrifugation step. Membranes were prepared in 5 mM phosphate/0.9% HaCl 

pH 7.6 in all subsequent experiments. 
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Chapt.er 4. 

Charact.erisat.ion of Nicot.ine Binding Sites in 

Rat. Olfact.ory and Respirat.ory Epithelia. 

Introduction 

Interest in nicotine centres around its pharmacological effects as an 

agonist for the nicotinic acetylcholine receptor and the accompanying 

physiological effects of tobacco smoke, of which nicotine is an act i V to: 

ingredient (Hall,. 1970; Kangan & Golding, 1984; Benowitz, p~\Q(.). 

been shown that nicotine binds specifically to membrane preparations from 

rat brain <Abood et al., 1985bj Romano & Goldstein, 1980i Sloan et cd., 1984; 

Lippiello & Fernandes, 1986), mouse brain (Marks & Collins, 1982; St?r5h~n pt 

,d., 1981) and human brain (Shimohama et Bl., 1985>' There is good evident:.:, 

that this brain receptor is not equivalent to the ganglionic or 

neuromuscular nicotinic acetylcholine receptor (e.g Marks et Bl., 1986; 

Wonnacott, 1986i Kemp & Korley, 1986i Collins et Bl., 1986>' Nicotine also 

binds to non-cholinergic sites in human leucocyte membranes <Hoss et .31., 

1986) and in hepatocyte membranes (Abood et al., 1985a). 
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Pyridine derivatives are thought to be important flavour components of 

many products such as tea, coffee and tobacco (Vernin, 1982). Nicotine is 

believed to be one such component in tobacco smoke {Enzell, 1981>. 

Electrop~ysiological recordings (chapters 1 and 2) show that nicotine 

vapour stimulates an in vitro olfactory preparation in a manner sirnilaI- to 

other odorants, suggesting that there are olfactory receptors which respond 

to nicoti~!3 and that nicotine is an odorant for the rat. These results 

prompted me to study the interaction of radiolabelled nicotine with 

membranes prepared from rat olfactory epithelium. The preparation used was 

similar to the one described .by Shirley et a1. (1986) which contained 

odorant modulated adenylate cyclase activity. An odorant modulated 

olfactory adenylate cyclase in both the frog and the rot has also been 

demonstrated by other workers (Pace et al., 1985; Sklar et al., 1986). 

There have been several attempts to identify and isolate an olfactory 

receptor by using the binding of a radiolabelled odorant. as a maJker. 

These include binding of camphor (Fesenko et a1., 1979), 2-.i-bu-3-

methoxypyrazine (Wood & Dodd, 1984; Pelosi et 131., 1982; Pevsner et al., 

1985), androstenone (Dodd & Persaud, 1981; Gennings et 01.,1977) and 

anisole (Price, 1978) in mammalian nasal mucosa and amino acids in fish 

(Rhein & Gagan, 1980). Binding of a benzodiazepine to olfactory neurons 

has also been demonstrated (Anholt et a1., 1984) as has the binding of the 

muscarinic antagonist quinucl1dlnyl benzilate to a site in the olfactory 

mucosa of the salamander (Hedlund & Shepherd, 1983). 
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The metabolism of nicotine by hepatic enzymes and cytochrome P-450 in 

particular has been studied in detail elsewhere (e.g. KcCoy et a1., 1986; 

llakayama et 131., 1985j Abood et 131., 1985a). Since there are high levels of 

these metabolic enzymes in olfactory epithelium (Hadley & Dahl, 1982 i Bond I 

1983; Reed et. a1., 1986; Jenner & Dodd, 1988), the possibility that nicotine 

interacts with these enzymes is also considered. 

Materials and Methods 

Chemicals 

The suppliers of 3H(-)nicotine and S(-)Nicotine and the details on 

the storage, purification and purity are given in chapter 3 and appendix A. 

Metyrapone (2-methyl-1,2-di-3-pyridyl-1-propanonej see figure 20) was 

purchased from Aldrich and a-Bungarotoxin from Sigma. All other chemicals 

used were of the highest quality and were used without further purification. 

(+)Nicotine bitartrate was a gift from Dr. R.B. Barlow, Department of 

Pharmacology, University of Bristol, U.K. and dihydro-J,3-erythroidine was a 

glft from Mr. R.G. Benfield, J(erck, Sharp and Dohme Development 

Laboratories, Herts., U.K. 

Protein assay 

Protein was assayed by the method described by Hartree (1972) using 

bovine serum albumin as standard (see chapter 3). 
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Olfactory .e.brane preparation 

The method used was essentially as described. in chapter 3. The 

ethmoturbinates were carefully removed. from a freshly killed. male Wistar 

rat (275-300 g) and placed in 10 volumes of ice cold phosphate (5 mK)/laCl 

{0.9%)/EGTA (1 mM) buffer. pH 7.6. After careful washing in two changes of 

this buffer and one of buffer minus EGTA. the ethmoturbinates (typically 

100 mg wet weight per animal) were placed in 0.7 ml of buffer without EGTA 

and sonicated for 8 seconds. 
.' 

The liquid was then decanted. and the 

turbinates rinsed in a further 0.3 ml of buffer. after which the fractions 

were pooled and centrifuged at 1000xg for 15 minutes at 4°C. The 

supernatant was used without further treatment. For comparison in these 

studies. tissue anterior to the olfactory turbinates was taken from the 

nasal cavity and treated as above. This tissue. defined here as 

respiratory. was taken from the same region from which it was not possible 

to record an EOGto nicotine vapour (see chapter 1). 

3B(-)licotine binding assay 

Binding assays were performed in polypropylene tubes containing 

:3H {- )nicotine. sonicated material (0.1-0.2 mg protein) and phosphate-saline 

buffer (final concentration 17 mM phosphate/O.91, NaCl) to a final volume of 

0.2 rol at pH 8.4. Non-specifiC binding was determined by including 1 roM 

nicotine in the assay. Incubations were started by the addition of protein 

at the appropriate temperature for the experiment. The tubes were 

incubated for 15 minutes at 20°C then the assay mix was filtered. under 

vacuum through Whatman GF/C filters (presoaked. for 1 hour in O.3~ 
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polyethyleneimine) and rapidly washed with 3 x 2 ml of ice cold buffer. 

The filtration apparatus was precooled on ice before use, as were the 

filters which were also rinsed with 2 ml of ice cold buffer immediately 

before the solution was filtered. The filters were then placed 1n 10 rnl of 

scintillant and left for 24 hours before liquid scintillation counting at 

35% efficiency. 

Saturation Studies 

To attain high concentrations, 3H(-)nicotine was diluted with 

unlabelled (- ) nicotine to 4 Ci/mmol and increasing amounts added to the 

assay tubes (0.2-2.5 pM. final c~ncentration). The radioactt vi ty retained on 

the filter was taken to represent the ligand bound to receptor and was 

analysed accordingly (the value for "total" ligand in each assay was taken 

as the concentration thought to be added to the tube, experimental 

measurement of "total" ligand was impractical and did not give markedly 

different values from the theoretical value). Ko and Br .. "",. values were 

determined from least squares linear regression analysis of Scatchard plots 

from the data (see figure 15). 

Other Studies 

In these studies 3H(-)nicotine (full specific activity) at 19 nM final 

concentration was used. lCGO values (concentration of inhibitor neccessary 

for 50% inhibition of binding) were determined by Hill plot analysts and by 

a method described by Bylund (1986). Lines were fitted to the daf:a Ly 

least squares linear'regression. 
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Identification of bound coapound 

Bound compound wo.s extracted from the filters and analysed by thin 

layer chromatography by an adaptlon of the procedure used by Marks & 

Collins (1982). Ten filters from a typical experiment to measure total 

bound ligand were cut into small pieces and placed into 2 ml of 0.2 K NaOH. 

Other fi 1 ters were measured for radioacti vi ty as normal and showed the 

specifically bound ligand to be 83% of the total (therefore, non-

specifically. bound 3H(-)nicotine was not extracted separately). 100 n 

moles of (-)nicotine were added as carrier and the filters homogenised by 

hand. The liquid was decanted into 4 ml of ethyl acetate (analytical 

grade) and the filters re-homog~nised in a further 1 ml of 0.2 M NaOH 

which was then added to a second tube containing 4 ml of ethyl acetate. 

The ;"H (- )compound was extracted into the organic layer by repeated 

inversion of the tubes, which were then left (sealed) for 1 hour at room 

temperature. Parallel tubes containing 3H(-)nicotine were extracted in the 

same way during the experiment. The tubes were then centrifuged at 1000 

rpm for ten minutes and the organic layers decanted. The ethyl acetate 

extracts from the filters were pooled and evaporated to dryness under a 

gentle stream of nitrogen gas. The extent of evaporation of the ligand was 

not known. The extracted ligand was then dissolved in 200 pI of methanol 

for use in t.l.c. experiments. 
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7-Bthoxycouaarin de-ethy1ase activity 

Figure 20. Fluorescence Assay for Cytochrome P 450 and Inhibition of the 

Eta 

Enzyme by Metyrapone 

a Ha 
MICROSOMAL 1/ > 
~YTOCHROME /I 

P- 450 

7- ETHOXYCOUMARIN 

inhibition by 

METYRAPONE 

a 

7 - HYDROXYCOUMARIN 

The de-ethylat10n of 7-ethoxycoumarin <figure 20>, a substrate for 

nasal cytochrome' P-450-dependent enzymes <Reed et a!., 1986; Jenner & Dodd. 

1988> , was assayed as follows <adapted from a procedure used by Dr. J. 

Jenner, this laboratory>. This is a fixed-point assay at one concentration 

of substrate and at pH 7.6. 

The incubation consisted of 0.1 ml of 1M Tris-Hel at pH 7.6, 0.1 ml 

of a freshly made NADPH generating system <5mM NADP. 60 mM glucose-6-

phosphate and' 10 units per ml of glucose-6-phosphate dehydrogenase, made 

up in 25mM XgCl~) and 0.7 ml containing the sample. any inhibitor and 

distilled water, all done in duplicate. The tubes <thoroughly cleaned glass 

tubes with screw tops. suitable for use in a centrifuge at 1000 rpm> were 
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then pre-incubated at 370 C for 10 minutes, after which the reaction was 

started by the addition of 0.1 ml of substrate (7-ethoxycoumarin, final 

concentration 10 ~K). After 20 minutes the reaction was terminated by the 

addition of 0.5 ml of 0.5M glycine-trichloroacetic acid buffer pH 2.2 (pH 

adjusted with 50% TCA)' 

The substrate, 7-ethoxycoumarin, is particularly difficult to dissolve 

in water~nd should be prepared several hours before the experiment by 

alternate heating at 50°C and vigorous stirring. Interestingly. 

7-ethoxycoumarin in solution has a distinctive almost aniseed-like odour 

(my description). A standard fine was also determined in the experiment 

using 7-hydroxycoumarin. the fluorescent product of the de-ethylation of 

7-ethoxycoumarin by cytochrome P-450 <figure 20). A freshly made 100 mM 

stock solution in ethanol should be diluted in water to 100 JlK. Standards 

for the experiment were made from this 100 JlK stock. and additions of 0.1 

ml made to the tubes in the place of substrate. A standard line was 

determined for 0.5, 1, 2, 3 and 4 JlK final concentration of 

7-hydroxycoumarin. Blanks were determined by heating the sample at 60°C 

for 30 minutes before assaying (when using a microsomal preparation. the 

blanks consist of all components minus the NADPH generator). The amount 

of protein added to the tubes was typically between 0.05 and 0.08 mg for 

the 1000xg olfactory supernatant. 

7-Hydroxycoumarin was extracted (repeated inversion of the tubes> 

from the reaction 'mixture with 6 ml of 60-80 hexane for 10 minutes 
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followed by centrifugation for 20 minutes at 1000 rpm. The aqueous layer 

was then frozen in a dry ice-methanol freezing bath and the organic layer 

discarded. The thawed aqueous layer was then extracted for 10 minutes with 

4 ml of diethyl ether (washed before use twice with twice the volume of 

0.2 M glycine~NaOH pH 10.6; pH adjusted with 10M HaOH) , centrifuged and 2.5 

ml of the organic layer pipetted into fresh tubes. This 2.5 ml aliquot was 

then extracted with 5 ml of 0.2 M glyclne-NaOH pH 10.6 for 10 minutes, 

centrifuge4 and the aqueous layer separated from the organic layer by 

freezing in the dry ice-methanol. The aqueous layer could then be left 

overnight in the cold room before the next step. The tubes were heated to 

50 c'C for 2-3 hours to drive off included ether after which the liquid was 

transferred to plastic cuvettes. Fluorescence was determined in a Perkin­

Elmer MPF-3 spectrofluorimeter at excitatory wavelength 370 nm and 

emission wavelength 450 nm. Data for the standard line and samples were 

calculated by linear regression analysis. 

Results 

Bffect of pH on 3H(-)nicotine Binding 

The binding of 3H (-) nicotine was strongly affected by the pH of the 

assay buffer (figure 21). Both specific and non-specifically bound 

3H(-)nicotine were linear with pH as measured at two concentrations of 

nicotine and in two different buffer solutions. 
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Figure 21. Effect gf Change in pH on 3H( )Iicotine Binding to Olfactory 

lembranes 
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That nicotine binds to a greater degree at high pH's suggested that 

the unprotonated form of nicotine <pIa=? .9, see figure 2) was invoved in 

the interaction with the binding site, though the continued increase in 

binding at the higher pH's could not be explained in this way. lon-

specific binding of 3H(-)nicotine did not increase significantly with 

increasing pH. This observation helped a great deal in setting up the 
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next phase of experiments since more bound radioactivity could be measured 

and errors would be minimised. It was felt neccessary to continue using 

the phosphate buffer at as low a concentration as possible, consequently 

binding assays were conducted at pH 8.4 (final pH after addition of 

preparation in 5 m){ phosphate/O .9~ f1aCl at pH 7.6 to binding assay buffer 

of 25 mK phosphate/O.9% laCl at pH 8.7.>. Use of a 25 mJ( Tris/0.9", laCl 

buffer at pH 8.4 in later experiments gave results as good as, if not 

better than those measured using the phosphate buffer, suggesting that the 

assay may be further improved. 

Binding parameters for 3B(-)ni~1ne 

Figure 22. Binding of Nicotine to Olfactory Xembranes 
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3H(-)Wicotine bound specifically to the crude olfactory membrane 

preparation (figure 22) over the range of concentrations of nicotine tested. 

Scatchard analysis of this data <figure 22) suggested a single binding 

site with Ko=784 nM and Brn ... ,.=9.16 pmol bound per mg protein. A duplicate 

experiment gave Ko=606 nM and Bmax=7.33 pmol bound per mg protein. These 

two experiments were conducted at pH 8.4 in a 17 mK phosphate/O .9~ NaCl 

buffer. 

One ~xperiment in 5 mM phosphate/O .9% NaCI pH 7.5 and using nicotine 

over a final concentration range from 20 to 260 nM gave binding parameters 

of Ko=580 nM and Bma><=4.3 pmol bound per mg protein. Measurements, in 

duplicate, did not differ by more than 15%. 

Specific binding, determined by subtracting non-specific binding 

(measured in the presence of 1 mM unlabelled nicotine; similar results were 

obtained at 0,1 mM unlabelled nicotine) from total binding. was routinely 

80% of the total. Non-specific binding was linear with increasing nicotine 

concentration in all experiments. 

-121-



Chapter 4 

3H(-)licotine binding to the olfactory preparation was also linear 

with protein when tested at pH 7.4, 7.7 and 8.5, in either 25 mK Trls I 

0.9% laCl or 5 mX phosphate buffer (not shown). 

Association rate constant and it's change with te.perature 

The association rate of 3H(-)nicotine with the olfactory preparation 

was extrem~ly rapid at 200C (figure 23) and even when measured on ice (not 

shown). It was not possible to determine an association rate constant from 

the data. Similar results were obtained at pH 7.6. Although equilibrium 

was attained within tens of se90nds, all incubations were for 15 minutes, 

after which the reaction was stopped by filtration. Over a longer period 

of time (15-90 minutes) some loss of specifically bound 3H (- ) nicotine was 

observed. Non-specifically bound 3H(-)nicotine was saturated in seconds at 

both temperatures. 

Figure 23. 3H(-)licotine Binding at 20°C Versus Incubation Time 
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Dissociation rate constant and it's cblmge with teJiperature 

Figure 24. Dissociation of 3H(-)licatine from Olfactory Membranes at 200C 
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The dissociation of specifically bound 38 (- )nicotine from the binding 

site was also rapid and was also sensitive to a change in te.perature 

(figures 24 and 25 ), At 200(; the dissociation of 3H (- ) nicotine appears 

bi-phasic with a very fast phase (t~6 seconds) and a much slower phase 

(t~=101 seconds). On ice the fast dissociation step was less apparent Ilnd 

the slower phase was reduced by a factor of 2 (t~=206 seconds), 

Figure 25. Log Plot of Specifically Bound 3H(-)Nicotine with Time 

Following Addition of Excess Unlabelled Nicotine 
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It was also observed that at the lower temperature (O°C) the maximum 

amount of specifically bound 3H(-)nicotine is typically half of the maximum 

amount measured at the higher temperature (20°C), all other conditions 

being equal. An increase in the amount of 3H (- )nicotine bound non­

specifically at O°C accounted for only a small fraction of this difference. 

Incubation· of the reaction mix for 5 minutes at 20c>C then 10 minutes at 

O°C also gave the smaller amount of 3H(-)nicotine binding. 

Similar results were observed at pH 7 .6, although the smaller amount 

of 3H(-)nicotine binding made analysis of the results obtained at this pH 

difficult. 

The experiments to determine the dissociation rate constant also 

showed that the filtration assay was an appropriate technique by which to 

measure the binding of 3H (-) nicotine to an olfactory membrane preparation. 

A typical fil tration and wash of one incubation would take 5 seconds at 

most. Other results (figure 18) also demonstrated that the filter wash 

procedure was optimal for the experiment, and that up to 5x2ml washes did 

not result in loss of specifically bound 3H(-)nicotine from the preparation. 

The amount of 3H(-)nicotine which bound "specifically" to the .fllters 

themselves was negligible and was ignored in the calculations. 

Identification of bound compound 

The slight loss of bound 3H(-)nicotine versus time <figure 23) 

suggested either that the ligand was being degraded. that the binding 

sites were becoming inactive or that another change was taking place. This 

loss of binding with time has been seen previously in experiments on 
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3H(-)nicotine binding to brain ()(arks & Collins, 1982; Xartin & Aceto, 

1981>' Bound 3H(-)nicotine was extracted from the filters as described in 

materials and methods and analysed by thin layer chromatography on silica 

plates using three solvent systems (methanol:ammonium hydroxide. 99:1 I 

chloroform:ethanol:ammonium hydroxide, 82:25:0.25 I ethanol:acetone:ammonium 

hydroxide, 60 :60 :1.5). 

Figure 26. Identification of Bound Compound hy t.l.e. 
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Unlabelled nicotine was visualised under U,V. light, after which the plates were cut 

into 1 CI strips and placed into 10 .1 of scintillant for deter.ination of radioactivity, 

In control strips, this procedure recovered )901 of the radioactivity estilated to have 

been applied to the t,l,c, plate prior to developlent in the solvent, 

The extracted bound 3H-coJlpound gave a single peak of radioactivity 

which co-migrated with authentic nicotine (figure 26>' leasure.en t of 
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radioacti vi ty on other filters in the same experiment showed that 83 ~ of 

the binding was specific. The non-specific component was not investigated 

in these experiments. The extraction procedure recovered 95% of the 

radioactivity that was estimated to be bound to the preparation and 

retained on the filters, but only 75% of this was recovered in the organic 

fraction. The radioactivity remaining in the aqueous fraction is most 

likely to be associated with the included organic solvent (the aqueous 

fraction had the odour of ethyl acetate) but it is possible that a fraction 

of the radioactivity could be the N'-oxide derivative of nicotine (see 

appendiX A) which is more water soluble than nicotine. This possibility 

was not considered further although there are methods to chemically 

derivatise and measure this metabolite (Jacob et al., 1986>' 

The results' of this experiment suggested that it was nicotine which 

was bound to the olfactory membranes and that there was no significant 

degradation of the ligand during a typical incubation. The reason for 

the loss of bound ligand with time (e.g. figure 23>1s unclear and may be 

trivial, in other experiments (not shown) this effect was less noticeable. 

Displacement studies on 3B(-)nicotine binding 

Displacement curves for 3H (- )nicotine binding to olfactory membranes 

and to a similar preparation of respiratory membranes are shown in figure 

27 for a selection of inhibitors added to the assay tube prior to 

incubation. Neither the odorant i-pentyl acetate nor the 'parent' compound 

and odorant pyridine, at up to mM concentrations (not illustrated) 

affected the binding of 3H (- )nicotine to olfactory membranes. N lcotlne and 
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metyrapone displaced 3B(-)nicotine froD it's binding site in both olfactory 

and respiratory membrane preparations but in a different Danner froJi 

each tissue type. The Hill coefficients (not shown) of the displacement of 

the 3H(-)nicotine by metyrapone from both olfactory and respiratory 

membranes and by nicotine from olfactory membranes suggested that there 

may be binding site heterogeneity. 

Figure 27. Displacement Curves 
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An analytical method to show this property from displacement study 

data has recently been described by Bylund <1986>' This analysis was 

applied to these results and for cOJIparison, to results which did not 

exhibit this apparent heterogeneity. Three typical eX8lIples of this 

analysis are shown in figure 28 

Figure 28. Bylund Plots 
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Data was calculated frol the values shown in figure 27 according to the following 

equation; B = - (BII)(1/IC50) + Bo, where B :I: bound, I • Inhibitor, 80 = bound in the 

absence of Inhibitor (can be cross checked with experilental values). A plot of B VI Bl1 

gives a line (for a single site) of slope - l/1C5o, 
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Displacement of 3H(-)nicotine from respiratory membranes by nicotine 

appeared to be from a single site (giving a straight line in this analysts), 

whereas displacement of the labelled nicotine from olfactory membranes by 

metyrapone appeared to be from two sites. The result for nicotine on 

olfactory membranes is intermediate but suggests that more than one 

binding site may be involved. 

Graphical estimates of the lCso values following Bylund plot analysis 

were made, for comparison to those obtained by Hill plot analysis of the 

data. A summary of the lCso values for a variety of inhibitors (many of 

which will be odorants in addition to being pharmacologically active) is 

given in table 9. Both Hill plot, and Bylund plot estimates are shown. 

Table 9. ICI:..~o values from displacement studies on 3H (- )nicotine binding 

to nasal epithelium 

Determinations were made at 20°C unless stated otherwise using 

3H (- )nicotine at 19 nM final concentration, as described in the Methods 

section. Membranes were pre-incubated for 1 hour with a-bungarotoxin 

before addition of the 3H (-) nicotine in order to determine the ICF10 value 

for the toxin. Results are shown as; mean and standard deviation for 3 

independent determinations, mean for 2 independent determinations, and are 

marked * for single experiment results. A=Hill plot, B=Bylund plot, 

O=Olfactory, R=Respiratory, -T = bitartrate salt 

Abbreviations and common names of inhibitors/odorants: DMPP <1,1-

dimethyl-4-phenylpiperazinium iodide); l-pentyl acetate U-amyl acetate); 

I-pentanoic acid U-'valeric acid); IBMP,(2-isobutyl-3-methoxypyraz1ne) 
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Inhibitor 

(- )nicotine 

(- )nicotine 

(- )nicotine O°C 

(- )nicotine-T 

(+ )nicotin.e-T 

metyrapone 

metyrapone 

metyrapone O°C 

IBKP 

IBKP 

aniline 

Tissue 

0 

R 

0 

0 

0 

o 

R 

o • 

o 

R • 

o 

ICso <1 0-7X) A 

7.1 ± 0.6 

15.1 ± 1.6 

44.1 

12.5 

6.4 

1.0 ± 0.6 

35.4 

1.3 

40.7 

25.7 

1590.0 

Chapter 4 

ICso (lO-7J() B 

(1) 7.8 ± 2.0 (2) 75.9 ± 29.4 

17.9 ± 1.8 

43.9 

13.2 

8.8 

(1) 0.7 ± 0.1 (2) 171.0 ± 62.0 

(1) 7.6 

7.8 

59.4 

41.4 

(2) 342.0 

ICso values (Hill plot analysis only) of compounds with little effect 

on the binding of 3H(-)nicotine to olfactory membranes; 

a-bungarotoxin > 10-~M; i-pentyl acetate, pyridine, 2-pyrrolldlnone, 

pempidine, dihydro-~-erythroldine, > 10-~M; DMPP, decamethonium, 

mecamylamine, atropine, i-pentanoic acid, »lO-3M 
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The ICso is related to the dissociation constant for the inhibitor . 

KI, by the equation shown below (Cheng & Prussof, 1973). 

ICso 

KI = 

1 + L I Ko 

where L is the concentration of radiolabelled ligand used in the 

displacement study and Ko is the experimentally determined dissociation 

constant f~r the labelled ligand. 

In the displacement studies L = 19 nM and Ko = 695 nM (mean value 

from the two experiments at pH 8.4), giving a relationship of Kl = ICso I 

1.027. 

The results in table 9 show that temperature affects the displacement 

of 3H (- )nicotine from olfactory membranes. For both nicotine and 

metyrapone, incubation on ice caused the apparent loss of one of the sites 

to which 3H (- )nicotine was bound. This temperature effect on the binding 

sites is also suggested from the dissociation rate constant result~ shown 

in figure 25. If this is so, then there is an accompanying shift in IC .. e, 

for nicotine and metyrapone displacement of 3H(-)nicotine binding. 
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7-Bthoxycouaarin de-ethy1ase activity 

The sonication procedure caused the release of 7-ethoxycoumarin de­

ethylase acti vi ty from the olfactory epithelium, even after the shortest 

sonication time tested (3 seconds). 7-Ethoxycoumarin de-ethylase 

activities of 0.43, 0.14 and 0.59 nmol/min/mg protein were measured in rat 

olfactory 1000xg supernatant (three separate experiments). These values 

represent 18%, 14% and 26% of the maximum enzyme activity recovered from 

the tissu~ following additional sonication steps (each in a change of 

buffer) and finally, homogenisation. This data is summarised in table 11. 

Also shown is the amount of 3H(-)nicotine bound to the same fractions. 

Table 10. Sonication and the release of 3H(-)nicotine binding activity and 

7-ethoxycoumarin de-ethylase activity from olfactory turbinates. 

sonication 

tiDe (sec) 

7-ethoxycoumarin de-ethylase 

nmol I min I fraction 

experiment 1 2 3 

3 0.845 0.177 1.109 

+5 1.078 0.298 0.946 

+12 1.831 0.048 0.530 

+homogenisation 1.132 0.706 1.748 

bound 3H(-)nicotine 

f.ol I fraction 

1 

318 

314 

360 

137 

2 

105 

193 

43 

403 

3 

671 

674 

428 

1658 

(mean values of duplicate determinations for enzyme acti vi ty were with in 

15~ of each other. Mean values of triplicate determinations for bInding 

were within 10~ of each other). 
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Rat hepatic and olfactory 7-ethoxycoumarin de-ethylase activities have 

been measured by other workers. These are; liver 0.76 ± 0.16 

(n=3)nmol/min/mg, olfactory 3.40 ± 1.66 (3)nmol/min/mg (Reed et al., 1986) 

and liver 0.66 ± 0.19 (6) nmol/min/mg, olfactory 3.77 ± 0.62 (6)nmol/mln/mg 

(Jenner & Dodd, 1988). These values are from microsomal preparations. 

Reed et al. (1986) also measured the levels of cytochrome P-450 in their 

preparations. These values were 0.53 ± 0.06 (3)nmol/mg for hepatic 

microsome~ and 0.19 ± 0.06 (3) nmol/mg for olfactory microsomes. Hadley & 

Dahl (1982) give a value for cytochrome P-450 of 0.11 ± 0.01 (3) nmol/mg in 

their olfactory microsome preparation. In all cases microsomes were 

prepared following homogenisati~n of rat olfactory turbinates. 

Binding of 3B(-)nicotine to liver microsomes 

The binding of 3H (- )nicotine to hepatic microsomes (prepared by Dr. 

J. Jenner; one experiment) was studied for comparison with the results 

described by Abood et al. (1985) for intact hepatocytes [ Ko=0.2 nM, Bn •• ,..=5 

fmol/mg protein] and with the results for olfactory tissue obtained here 

(figure 22>' The direct plot of the data <figure 29) shows that specific 

binding to liver microsomes was measured. Scatchard analysis of the data 

showed a single binding site of Ko=25 nM and Bm ." = 1.28 pmol/mg protein. 

These results suggest that the binding site for nicotine in olfactory 

membranes may be different from the binding site in liver microsomes. 
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Figure 29. 3H(-)licotine Binding to Rat Liyer !icrosomes 
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Activation of olfactory adenylate cyclase by nicotine and metyrapone 

The results of single experiments <performed by Dr. S.G. Shirley & Dr. 

C. J. Robinson) to test whether nicotine or metyrapone increased olfactory 

adenylate cyclase activity in vitro are shown in table 11. 
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Table 11. Activation of adenylate cyclase activity by nicotine and 

metyrapone. 

compound 

nicotine 1 mK 

nicotine 10mK 

acetopheno~e 1mK 

acetophenone 1mK 

metyrapone 0.5mK 

~ activation above 

basal (no added odour) 

27 

37 

128 

112 

13 

activation as a 1. of 

1 mK acetophenone 

21 

29 

100 

100 

12 

An increase' in olfactory adenylate cyclase acti vi ty was measured in 

the presence of nicotine and metyrapone. suggesting that both compounds 

have odorant properties in this assay (other compounds also vary in their 

ability to stimulate olfactory adenylate cyclase activity; Shirley et al., 

1986) . 
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Discussion 

3B(-)Ilcotineas a probe for an olfactory receptor 

There is good experimental evidence (Shirley et al.. 1986; Pace et al., 

1985; Sklar et a1., 1986) in support of the hypothesis <Dodd & Persaud, 

1981) tha~ olfactory transduction involves odorants binding to receptor 

proteins in olfactory cilia with subsequent modulation of enzymes and ion 

channels. 

Previous work suggests th~t nicotine stimulates an olfactory receptor 

of the rat olfactory epithelium <Chapter 1 & 2). It may be possible 

therefore to identify an olfactory receptor using the binding of 

3H(-)nicotine to olfactory membrane preparation. 

interact in complex ways with the nasal mucosa. 

Possible binding sites for nicotine in nasal mucosa 

However I nicotine may 

Recent evidence suggests that nicotine is a stimulant for the 

trigeminal receptors in the nasal cavity (Silver & Walker. 1981). though the 

precise location of these nerve endings is not known. IHcotine 1s also 

known to pass through membranes of the ornl mucosa <Squier .1986) and 

therefore may pass from the vapour or aerosol phase <aerosols containing 

odorants may also stimulate the olfactory receptors. Mather & Dodd. 1988). 

through the mucus covering the olfactory epithelium and accumulate 1n the 
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underlying cells (as may many odorants, Getchell et al. .1984). It is also 

possible that nicotine could reach the nasal epithelium via the bloodstream 

(Xaruniak et al., 1983). High concentrations of enzymes capable of 

metabo1ising nicotine have been found in the olfactory mucosa (Bond, 1983; 

Dahl & Hadley! 1983 i Reed et al., 1986; Jenner & Dodd, 1988), thus it is no 

suprise that nicotine and/or metabolites do accumulate in nasal mucosa 

(Brittebo & Tja1ve,1983; Waddell & Marlowe,1976; Rowell et al.,1983). In 

addition, nJcotine may also interact with the odorant binding protein of the 

olfactory mucus (Pevsner et al., 1986). 

Binding of nicotine to an acetylcholine receptor of olfactory 

epithelium must also be considered. Although the presence of a muscarinic 

cholinergic receptor in nasal mucosa has been demonstrated (Hedlund & 

Shepherd, 1983), there is no known cholinergic input to the epithelium. 

That the 3H(-)nicotine binding to olfactory membranes is not affected by a 

variety of cholinergic agonists and antagonists (table 9) suggests that 

~H(-)nicotine is not binding to a cholinergic site in the olfactory 

epithelium (see the results in chapter 1 also). The difference in the 

binding parameters between the binding described here and the binding of 

3H(-)nicotine to brain membranes (e.g in Ko and Bm .. ' . see table 2 of the 

General Introduction and e.g. in association and dissociation rate 

constants, see Llppiello et al., 1987) also supports this conclusion. The 

parameters of non-cholinergic binding of nicotine to sites found on 

leucocyte membranes' (Hoss et ai .. 1986) or to hepatocyte membranes <Abood 
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et al.,1985a) are similar in some ways (eg. optimum binding 1s measured at 

a high pH) but different in others (eg. binding parameters and specificity), 

suggesting that the 3H (- )nicotine binding described here may be unique to 

nasal tissue. 

Olfactory and respiratory 3H{-)nicotine binding sites 

The ~inding of 3H(-)nicotine to olfactory and respiratory membranes 

shows suprising differences between the two tissues which may be useful in 

interpreting the results. Statistical analysis (t-test) on the ICs,:. data 

from the displacement studies using nicotine as the inhibitor showed that 

the high affinity site of olfactory membranes was different (two fold 

tighter binding)' from the binding site observed in respiratory tissue 

(0.001 < P < 0.002). The lower affinity site of olfactory membranes (as 

identified in tlie Bylund plots, see fig. 28) and the binding site of 

respiratory membranes have similar ICst:) values, though this does not mean 

they are the same binding site. In the displacement studies. respiratory 

membranes bound more 3H(-)nicotine than olfactory membranes under similar 

non-saturating concentrations of 3H(-)nicotine. 452 ± 48 fmol per mg 

protein (mean and standard deviation of 3 experiments) against 338 ± 86 

fmol per mg protein (8 experiments). 
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l1cotine and nasal cytochrome P-450 

7-Ethoxycoumarin de-ethylase activity has been associated with high 

levels of cytochrome P-450 in rat nasal preparations (Reed et lJl., 1986). 

Xetyrapone, an inhibitor of rat olfactory 7-ethoxycoumarin de-ethylase 

activity (Jenner & Dodd, 1988; and in this preparation: IC6o=7.8 }JK, mean of 

two experiments), is also known to inhibit accumulation of nicotine in the 

bronchial epithelium of the mouse (Waddell & Marlowe, 1978). Metyrapone 

also displ.aced 3H {- )nicotine from its binding site in olfactory membranes 

(table 10). These results suggest that nicotine may interact with nasal 

cytochrome P-450. Since the levels of cytochrome P-450 were not measured 

in the 1000xg preparations, it is difficult to comment further on this 

possibility. However, both nicotine and metyrapone stimulated the adenylate 

cyclase preparation described by Shirley et al. (1986) suggesting that 

metyrapone has odorant properties. Metyrapone (figure 20) is a non­

volatile compound which is able to stimulate olfactory adenylate cyclase 

activi ty when in solution. This property of non-volatile compounds has 

been observed previously (Shirley et al., 1986). Thus, metyrapone may 

displace nicotine from an olfactory receptor and from another bindI-ng sIte 

in olfactory epithelium. 

licotine and the odorant-binding protein 

It is possible that some of the nicotine 15 binding to the odorant­

binding-protein, for example, 2-isobutyl-3-methoxypyrazine displaces 

3H{-)nicotine from 'its binding site in both olfactory and respiratory 
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membrane preparations. However. there are many differences between the 

binding characteristics of 2- isobutyl-3-methoxypyrazine (Pevsner et lJl .• 

1985j Pevsner et al., 1986) and of nicotine to the olfactory mucosa. For 

example, the pyrazine binding protein is a soluble protein whereas evidence 

suggests that the nicotine binding site(s) is membrane associated (table 

13). and i-pentyl acetate is known to displace the pyrazine from its 

binding site (Pevsner et al.. 1986) It would be improper though to 

exclude th~ binding of 3H (- )nicotine to the odorant-binding-protein in 

these experiments without more conclusive evidence. 

Is nicotine binding to an olfactory receptor? 

Is there any evidence that 3H (- )nicotine is binding to an olfactory 

receptor? Although this work does not show conclusively that one of the 

binding sites is an olfactory receptor. there are some properties of the 

binding which can be compared with those predicted for an olfactory 

receptor from current knowledge. 

For instance. it has been shown in electrophysiological studies 

(Shirley et al..1987 a; chapter 2) that the binding constants of the 

olfactory receptors for some odorants are in the order of hundreds of nM. 

This compares favourably with the result for nicotine described here 

(Ko=695 nK. mean of two determinations at optimum conditions for binding). 

It has also been suggested that the hydrophobicity of an odorant 1s 

important in determining the extent of interaction with an olfactory 
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receptor (Shirley et al., 198'18.i Senf et a1., 1980), This also appears to be 

important in the binding of 3H (- )nicotine to olfactory membranes observed 

in this study. The rapid association and dissociation of 3H(-)nicotine 

from its binding site in olfactory membranes is also consistent with the 

result expect~ for an olfactory receptor. In addition, the number of 

binding sites for nicotine (Bm &..:=8.24 pmol per mg of protein, determ ined 

from Scatchard analysis of the binding data assuming only one binding 

site) sugg~sts that the binding site is a significant component of the 

total protein in olfactory epithelium but 1s not as abundant as the 

odorant-binding-protein (Pevsner et 8,1., 1985) for example, which is 

secreted in the mucus. The ?isplacement study showed that the bound 

:3H (- )nicotine was completely displaced from its binding site (s) by 

nicotine, metyrapone and 2-isobutyl-3-methoxypyrazine (not shown). This 

general specificity is also consistent with the response expected from an 

olfactory receptor. Finally, although the binding of 3H(-)nlcotine to nasal 

preparations is not localIsed to olfactory membranes alone, there is 

evidence from displacement studies on olfactory and nasal respiratory 

membrane preparations to suggest that there is a binding sIte unique to 

olfactory epithelium. 

In some respects therefore, the binding site for nicotine in rat 

olfactory epithelium satisfies the criteria for an olfactory receptor. 

These have been summarised by Lancet (1986) and are shown below; 
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Proposed Criteria for Identification of an Olfactory Receptor 

(1) Tissue Specificity 

(2) Enrichment in the cilia (vs. epithelium) 

(3) Glycosylation 

(4) Transmembrane disposition (integral membrane protein) 

(5) Correct bilayer concentration (major component) 

(6) Diversity (sequence heterogeneity) 

Chapter 4 

(7) S?ecific recognition by function-modulating reagents (antibodies, 

lectins) 

(8) Interaction with transductory proteins 

(9) Reconstitution of odorant modulation of enzymatic activities 

Whether the· 3 H(-)nicotine binding measured here includes binding to an 

"olfactory receptor" or is solely to another bind ing site in olfactory 

epithelium (a component of an odorant transport/clearance mechanism for 

instance) is difficult to determine on the basis of these results. The 

results of a binding study alone do not provide conclusive evidence for 

identification of an olfactory receptor. For example, isolation of an 

odorant-binding component and examination of its ability to respond to 

odorants in reconstitution experiments with components of the transduct ion 

mechanism would provide much more conclusive evidence <criterion 9). 

Clearly there·is much more work to be done in order to fully understand the 

interaction of nicotine with the nasal epithelium and to finally isolate an 

odorant binding site which satisfies all the criteria for an olfactory 

receptor. 
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Further expert..ents and comments 

The whole-tissue experiments (EOGs) would be supple:nented by 

adaptation studies using odorants which may interact with the same 

olfactory .receptors for nicotine. Results from such studies would be 

useful in determining the structure-activity relationship of an olfactory 

receptor's odorant-binding site and would supplement displacement studies 

on 3H{-)nfcotine binding. Further modification studies with other I-eagents 

may also be useful. Ideally I a reagent which binds covalently to the 

epithelium and selectively inhibits the nicotine EOG would be found. 

There is still much work to be done in order to fully characterise the 

binding of nicotine to olfactory membranes. Some possible experiments are 

as followsj 

(1) To investigate the effect of proteases and phospholipases on the 

binding. 

(2) To further investigate the effect of temperature on the binding. 

(3) An extensive stUdy to separate the binding components In~o 

d lfferent fractions <and to measure 7-ethoxycoumar in de-ethy lase act: 1 vi ty 

and cytochrome P-450 levels in these fractions). 
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(4) A binding study with 3H (- )nicotine to purified odorant-binding 

protein (Pevsner et ai., 1985). 

(5) To test a more extensive list of compounds <including odorants) 

in displacement studies (e.g. as done by Sloan et al., 1985 for nicotine 

binding to brain). 

(6) To further investigate the binding parameters of nicotine to 

respiratory tissue. 

(7) To test other species for olfactory nicotine binding sites. 

(8) To further study the effect of nicotine on the olfactory adenylate 

cyclase and to identify any other second messenger pathways stimulated by 

nicotine. 

(9) To isolate and purify a nicotine-binding component (which could 

be tested for odorant activation in reconstitution experiments with 

components of the olfactory adenylate cyclase system). 

(10) To further study the metabolism of nicotine by nasal enzymes. 

-145-



Such experiments may help to identify effects and to suggest possIble 

effects which nicotine may have on the olfactory epithelium and its 

function. These results may then prove to be of some clinical use with 

respect to chronic nicotine exposure during active smoking. 

The effect of pharmacologically active odorants on the olfactory 

epithelium and on other nasal tissue should also be investigated. Such 

compounds may be of scientific and commercial value. 
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Appendix A • 

Further Information 

and Purity. 

on Nicotine 

Industry standards for exposure to nicotine 

Thres~old Limit Value = 0.5 mg / cubic metre 

for an 8 hour day and a 40 hour week. 

Acute Threshold Limit = 1.5 mg / cubic metre 

for 15 minutes then no more for one week. 

(data from Dr. R. KcKeivor. Gallaher Ltd.) 

Chemical properties of nicotine 

, Calculations 

The chemical properties of nicotine have been well documented. ranging 

from Jackson's review of 1941 to an excellent study of 1984 by See.an 

which includes data on the orientation and solution conformation of the 

nicotine molecule. Alkylation of the pyridine ring causes loss or increase 

in pharmacological potency depending on the ring position of the group and 

it's effect on the rotation of the pyridine moiety around the chiral carbon 

of the pyrrolldine portion of nicotine (e.g. see See.an et al .• 1985). 

Ietabolis. of nicotine 

The major metabolites of nicotine are thought to be cotinlne <via a 

5 '-hydroxy derivative). nicotine-Nt-oxide and nornicotine <figure 30). 
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Cotinine is the major excretory product f i 
rom n cotine and 15 used as a 

marker for exposure to nicotine in clinical tests. 
Cotin1ne 15 thought to 

be pharmacologically inactive (e.g. see Bowman et al., 1964; PUott! a 

Bnzell, 1976; Benowitz et al., 1983>' Ii 
cotine is metabolised to cotlnine in 

the Ii ver , IUDS' and kidneys but not i 
n the brain (Kangan & Golding, 1984 I 

p.l10) . 

Figure 30. 

MAJOR PATHWAYS OF NICOTINE METABOLISM 

e5~A~ 
OH ~ 

NI COTINE 
"­
" 

5 -HYDROXY NICOTINE NICOTINE IMINIUt110N 

CYTOSOLI 1 Al 
FLAVOPROTEIN 
AMINE OXIDASE " " ~ 

URINARY 
EXCRETION 

lOEHYOE 
OXIDASE 

o 

NICOTINE-N -OXIDE (cis and trans) COTININE 

redrawn frol Benowitz et al" 1983 and "cCoy et al" 1986 

The 5 '-hydroxylation of nicotine 15 mediated by cytochrome P-450 but 

the conversion of this derivative to cotinlne occurs via a cytosollc 

oxidase. In addition, the conversion of nicotine to nicotlne-I'-oxlde 

occurs via a microsomal flavoprotein (Benowitz et al" 1983; KcCoy et al., 

1986>' This I'-oxidase derivative is found in aqueous extracts but can be 

der1 vat1sed to an oxazine which can be extracted fro. aqueous sa.ples and 
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analysed chromatographically (Jacob et al •• 1986). There is some doubt 

whether nicotine is demethylated to nornicotine in vivo or if traces of 

this compound are from contaminants in the nicotine used by other workers 

(KcCoy et al •• 1986), 

Calculation of vapour concentration for nicotine 

The saturated vapour phase concentration at 150 C (the operating 

temperature' of the odorant delivery system> for nicotine was calculated by 

interpolation from a plot of log (saturated vapour pressure) versus the 

inverse of the temperature in degrees Kelvin. These values were obtained 

from Weast. 1984 (section D-210)'and are shown in table 12. 

Table 12. Vapour pressure values for nicotine at various temperatures 

Temperature (OC) lIT (10-3 °K) Vapour Pressure (mm Ug) 

61.8 2.99 1 

107.2 2.63 10 

142.1 2.41 40 

169.5 2.26 100 

219.8 2.03 400 

247.3 1.92 760 

This gives a value of the saturated vapour pressure for nicotine at , . 
15°C of 0.05 mm Hg. This can be converted to a vapour concentration since 
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at standard temperature (273°K) and pressure (760 mm Hg) the concentration 

will be 1/22.4 (K). therefore: 

vapour concentration at 150 C = _________ = 2.8 pK 

760 mm Hg x 2880 K x 22.4 

This value of 2.8 ttM is the saturated vapour concentration above 100% 

nicotine. To determine the vapour concentrations of nicotine which reach 

the olfactory mucosa in the electrophysiological experiments. the value was 

adjusted to account for the concentration of the nicotine in paraffin and 

the dilution factor in clean humidified air (see Chapter 1. Materials & 

Xethods) • 

Calculation of the water/air partition coefficient. 

At 15°C nicotine is fully soluble in water. therefore a plot of vapour 

pressure versus concentration of nicotine (from 0 to 100%) in water should 

be linear according to Raoult·s Law. The vapour pressure at 100% nicotine 

converts to the vapour concentration above the liquid as calculated above. 

thus the partition coefficient can be calculated if the concentration of 

100% nicotine is known. This is calculated from the denSity for nicotine 

(d = 1.01 g/m!> to be 6.23 M. The water/air partition coeffiCient. PC. is; 

Molar concentration in water 6.23 K 

PC = __________ _ = = 2200000 

Kolar concentration in air 2.8 ilK 

This means that nicotine vap~ur will be concentrated by over 2 million 

fold in the mucus lay~r (assumed to behave as liquid) at equilibrium. 
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Distillation of the nicotine 

Distillation of the nicotine was performed under reduced pressure'and 

using extreme caution. Nicotine is very toxic and is absorbed rapidly 

through the skin (and all mucus membranes). The distillation was done over 

a one day period in each case with help from Mr. M.A. Wood. Three separate 

distillations were done during the project with the nicotine being collected 

at one of the following temperatures (1) 112°C at 9 mm Hg, (2) 116°C at 

13 mm Hg and (3) 120°C at 14 mm Hg. 

Purity of the nicotine 

The distillation procedure 'will remove most impurities, for example 

the residue following distillation will contain most of the cotinine (see 

Frankenburg & Vaitekunas, 1956) and nornicotine. Some properties of these 

compounds are shown below. 

Table 13. Physical properties of nicotine, cotinine and nornicotine 

compound formula molecular weight boiling point (oc) 

nicotine 162.2 247 

cotinine 176.2 210 

nornicotine 148.2 270 

The redistilled fraction was analysed by capillary gas-liquid 
. 

chromatography using a Carlo-Erba Fractovap 2450 machine, with an QV-1 
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column (methyl silicone, internal diameter 0.3 mm, column length 13 metres) 

and Helium as the carrier gas at 1-2 mllmin. The injector temperature and 

oven temperature were adjusted to give good resolution of the nicotine peak 

from the solvent (diethyl ether), leaving sufficient separation to measure 

any signif~caBt impurity peaks. Some examples of the traces obtained are 

shown in figures 31 and 32. By this analysis the nicotine was deterined to 

be 99.9% pure with the largest impurity at less than 0.1%. No impurity 

more volatile than nicotine was detected (figure 31>. Samples of nicotine 

were stored in clean glass vials, under nitrogen, protected from the light 

and at -20"'C. Discolouration of the clear liquid was seen with time 

(several months to a year) to a'clear yellow mixture which was found to be 

over 99% nicotine" by capillary GC analysis (see figure 32). 

UV Analysis 

The redistilled nicotine was also analysed by UV spectrometry and 

gave an absorbtion pattern <figure 33) expected for the nicotine 

chromophore (Willits et al., 1950). 

Optical rotation 

The nicotine was found to have an optical rotation of [al = -180 for 

a 0.15 M solution in dichloromethane at 23°C. Literature values of [al vary 

from -161 to -170 at 250 C (Weast, 1984; Seeman et al., 1983). 

-188-



Figure 31. CapillarY' G.C. AnalY'sis of Nicotine at 142°C 
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Figure 32. CapillarY' G,C, Analysis Of Nicotine at ZQQoC 
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Figure 33. uy Absorbance fpr JUcpt1ne 
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HUBan threshold for nicotine 

Appendix A 

An estimate of the detection threshold for nicotine by. human 

volunteers (5 subjects, non-smokers> was made using the redistilled 

nicotine diluted in ethanol and soaked onto smelling strips. Subjects were 

asked to identify the smelling strip with nicotine versus a control strip, 

for a series ·of binary dilutions from 20~ down to 0.15~. In general. the 

subjects could detect the nicotine at around 2 .5~ on the smelling strip 

which corresponds approximately to 70 nK in the vapour phase (this does 
, . 

not allow for evaporation or dilution in air during inhalation>, 
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