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Abstract
In tokamaks, heat and particle fluxes reaching the wall are often bursty and

intermittent and understanding this behaviour is vital for the design of future reactors.
Plasma edge turbulence plays an important role, its quantitative characterisation and
modelling under different operating regimes is therefore an important area of research.

Ion saturation current (Isat) measurements made in the edge region of the Large
Helical Device (LHD) and Mega-Amp Spherical Tokamak (MAST) are analysed. Ab-
solute moment analysis is used to quantify properties on different temporal scales of
the measured signals, which are bursty and intermittent. In all data sets, two regions
of power-law scaling are found, with the temporal scale τ ≈ 40µs separating the two
regimes. A monotonic relationship between connection length and skewness of the
probability density function is found for LHD.

A new numerical code, ‘HAWK,’ which solves the Hasegawa-Wakatani (HW)
equations is presented. The HAWK code is successfully tested and used to study the
HW model and modifications. The curvature-Hasegawa-Wakatani (CHW) equations in-
clude a magnetic field strength inhomogeneity, C = −∂ lnB/∂x. The zonal-Hasegawa-
Wakatani (ZHW) equations allow the self-generation of zonal flows. The statistical
properties of the turbulent fluctuations produced by the HW model and variations
thereof are studied. In particular, the probability density function of E × B density
flux Γn = −n∂φ/∂y, structure functions, the bispectrum and transfer functions are
investigated.

Test particle transport is studied. For the CHW model, the conservation of
potential vorticity Π = ∇2φ− n + (κ−C)x accounts for much of the phenomenology.
Simple analytical arguments yield a Fickian relation Γn = (κ − C)Dx between the
radial density flux Γn and the radial tracer diffusivity Dx. For the ZHW model, a
subtle interplay between trapping in small scale vortices and entrainment in larger scale
zonal flows determines the rate, character and Larmor radius dependence of the test
particle transport. When zonal flows are allowed non-Gaussian statistics are observed.
Radial transport (across the zones) is subdiffusive and decreases with the Larmor radius.
Poloidal transport (along the zones), however, is superdiffusive and increases with small
values of the Larmor radius.
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Chapter 1

Introduction

1.1 Thermonuclear fusion

The world’s energy requirements are rapidly increasing as the global population rises

and nations become more industrialised. With growing concerns over the finite size of

the world’s fossil fuel supplies and their contribution to climate change, the need for a

clean, safe, carbon-neutral and politically-neutral form of electricity generation is clear.

Controlled thermonuclear fusion has long been recognised as an ideal solution.

Fusion is the process that powers the Sun. During the reaction, nuclei fuse

together and the mass of the reaction products is less than the mass of the reactants.

Due to this small mass loss, and Einstein’s famous mass-energy equivalence E = mc2,

energy is released. The fusion of nuclei relies on the nuclear force, which is attractive on

very small spatial scales; nuclei, however, are positively charged and experience mutual

electrostatic repulsion. Thus for the fusion reaction to proceed, an electrostatic potential

barrier must be overcome.

The size of the potential barrier depends on the reactants. It is conventional to

work in terms of a reaction cross-section, which measures the likelihood of a reaction.

Some cross-sections for candidate reactions are shown in figure 1.1. The most promis-

ing reaction with the highest cross-section is deuterium-tritium (D-T) at an energy of
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Figure 1.1: Cross sections for various fusion reactions [Wesson, 2004].

100keV. The reaction is as follows,

D + T→ α(3.5MeV) + n(14MeV) ; (1.1)

D and T nuclei fuse together creating an alpha particle and a neutron, and releasing 17.5

MeV of energy. Deuterium and tritium are relatively abundant–deuterium is found in

sea water while tritium can be bred from lithium–and will therefore be the fuel of choice

for the first generation of fusion reactors. It is important to note that, unlike in nuclear

fission, the fusion reaction cannot lead to a catastrophic runaway event and produces

little radioactive waste. In fact, small quantities of short-lived radioactive waste would

be produced indirectly due to the activation of the device by neutron bombardment.

Thermonuclear fusion occurs when the fuel is heated sufficiently so that the ther-

mal velocities of the particles are large enough to produce the required fusion reactions.

The optimum temperature for D-T thermonuclear fusion is around 30keV, less than the

100keV peak in figure 1.1 since a significant fraction of the fusion reactions can occur

in the high energy tail of the Maxwellian [Wesson, 2004]. At such high temperatures,

the fuel will be a fully ionised plasma.

To produce significant amounts of energy, sufficient amounts of the plasma fuel

must be confined for a sufficiently long time. In other words, the product of the density

of fusing nuclei n and the time-scale of confinement τe must be large. This energy

confinement time is defined as τe = W/P , where W is the energy content of the
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plasma and P is the rate of energy loss. The plasma is said to reach ignition when all

energy losses are balanced by alpha particle heating and no external energy inputs are

needed to maintain the fusion reaction. The relevant criterion was derived by Lawson

and expressed in terms of nτe. At a temperature of 30keV, the Lawson criterion for

ignition is

nτe > 1.5 × 1020sm−3 . (1.2)

There are generally two approaches to satisfying this inequality: inertial confinement

and magnetic confinement. Inertial confinement involves the rapid compression of small

fuel pellets using high powered lasers, aiming for extremely high values of n and short

τe. Magnetic confinement, which this thesis is concerned with, takes advantage of the

charge of plasma particles and attempts to design a magnetic field to confine plasma at

relatively low n and for long τe.

1.2 Plasma

A plasma is an ionised gas or, more accurately, “a quasi-neutral collection of ions and

electrons which exhibits collective behaviour” [Chen, 1984]. In a plasma, electrons are

much more mobile than ions due to their lower mass. Thus any charge imbalance is

quickly screened out by the rapid movement of electrons, so that the bulk of the plasma

can be considered neutral; this is quasi-neutrality. The length scale over which charge

imbalance is screened out is called the Debye length,

λD =

(

ǫ0Te

ne2

)
1

2

, (1.3)

where n is number density, Te is electron temperature and all other quantities are

constants. In plasma physics, temperature is conventionally measured in energy units

so that the Boltzmann constant kB is suppressed in the preceding and all following

formulae. The time scale over which electrons move to screen out charge imbalance is
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1/ωpe, where

ωpe =

(

ne2

meǫo

)

1

2

=

(

Te

me

)
1

2 1

λD
, (1.4)

is the plasma frequency. For quasi-neutrality λD must be small compared to the system

size and 1/ωpe must be small compared to the collision time. Also, the plasma must

be dense enough so that charge imbalance is screened effectively, this condition can be

written,

nλ3
D ≫ 1 . (1.5)

This also ensures collective behaviour because it implies that plasma particles interact

with a large number of others.

1.3 Charged particle motion in electromagnetic fields

On a small scale, a plasma can be understood as a soup of charged particles which react

to, and generate electromagnetic fields. A particle of charge q and mass m, moving

with velocity v in an electric field E and magnetic field B experiences a Lorentz force,

FL = q(E + v×B) . (1.6)

In the absence of an electric field and with a uniform magnetic field, the motion of the

particle consists of a uniform velocity parallel to B and gyration perpendicular to B with

cyclotron (or gyro) frequency

ωc =
qB

m
, (1.7)

and Larmor radius

ρ =
mv⊥
qB

, (1.8)

where v⊥ is the component of velocity perpendicular to B. Thus the particle moves

along a helical path. This type of motion can be thought of as rapid gyration around a

guiding centre which moves at constant velocity parallel to B. Such a circulating charge

constitutes a current loop with magnetic moment,

µ =
mv2

⊥

2B
. (1.9)
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If in addition to the magnetic field, the particle feels an electric field E, the

guiding centre of the particle will drift with the so-called ‘E ×B velocity’,

vE =
E×B

B2
, (1.10)

which is perpendicular to both E and B. The E ×B velocity is the most fundamental

of the plasma particle guiding centre drifts and plays a central role in the physics of

magnetic confinement. Guiding centre drifts are created whenever plasma particles are

subject to a force F in the presence of a strong magnetic field B,

vF =
1

q

F×B

B2
. (1.11)

In the above E×B example, the particle experiences a force F = qE due to the electric

field and equation 1.11 reduces to equation 1.10. Guiding centre drifts are also produced

by non-uniform and time varying electromagnetic fields, for example the polarisation drift

vp is produced by a time varying electric field,

vp = ± 1

ωcB

dE

dt
. (1.12)

One important plasma drift is the diamagnetic drift,

vd = −∇p×B

qnB2
. (1.13)

This drift is not a particle drift: individual particles do not actually drift with vd. The

diamagnetic drift is a fluid drift which arises due to the fluid-like nature of a plasma. The

left hand side of figure 1.2 shows the orbits of plasma particles gyrating in a magnetic

field. The plasma is inhomogeneous, with a density gradient pointing from right to left.

As illustrated in the right hand side of figure 1.2, through any fixed volume of plasma

there are more particles gyrating downwards than upwards. Thus there is a net drift of

particles perpendicular to the magnetic field and density gradient.

The motion of charged particles is affected by imposed magnetic fields and

guiding centre drifts. But moving charged particles generate their own magnetic fields

which affect the motion of other particles. It is clear that magnetically confining a

plasma is a self-consistent problem.
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Figure 1.2: Origin of the diamagnetic drift [Wesson, 2004].

1.4 Kinetic description of plasma

In most physically relevant situations it is not feasible to follow the individual motions

of each plasma particle, and a statistical approach must be taken. The Vlasov equation

treats plasma as a phase space continuum and describes the time evolution of the

distribution function f(r,v, t) of a single plasma species in the presence of averaged

electric and magnetic fields and in the absence of collisions. The Vlasov equation can

be derived from first principles by considering individual particle motions in electric and

magnetic fields [Clemmow and Dougherty, 1969]. When collisions are included, the

equation becomes the Boltzmann equation,

df

dt
=

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∂f

∂v
=

(

∂f

∂t

)

coll

= C(f, f) , (1.14)

where C(f, f) is the collision operator and contains terms due to collisions with both

like-species and other species. This equation is six-dimensional (three space and three

velocity) and is therefore difficult to handle numerically and analytically. When the

evolution of f is small on spatial scales compared to the Larmor radius and slow on

time scales compared to the gyroperiod, the Boltzmann equation can be reduced to

the five-dimensional drift-kinetic equation [Wesson, 2004]. Alternatively, averaging over

the rapid gyration of particles around magnetic field lines gives the five-dimensional

gyrokinetic equation. The gyrokinetic equation is generally used in the most advanced

models relevant to magnetically confined fusion plasmas.
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1.5 Fluid description of plasma

It is often sufficient to describe a plasma by average quantities such as the number of

particles of a given species per unit volume n, the mean velocity of these particles u

and the mean temperature T . Such fluid equations were derived by Braginskii by taking

moments of the Boltzmann equation [Braginskii, 1965]. In the two fluid model, ions

and electrons are treated as two separate but interpenetrating fluids which interact with

each other via electromagnetic fields. Each species has an equation for continuity

∂n

∂t
+∇ · (nu) = 0 , (1.15)

momentum

mn

(

∂

∂t
+ u · ∇

)

u = nq(E + u×B)−∇p−∇ ·Π + R , (1.16)

and energy

3

2
n

(

∂

∂t
+ u · ∇

)

T = −p∇ · u−∇ · q−Π : ∇u + Q . (1.17)

Here, p = nT is the scalar pressure, Π is the traceless component of the pressure tensor,

R is the transfer of momentum from other species, q is the heat flux, Q is the heat

exchange between species and the colon notation denotes the vector inner product. The

plasma variables are coupled to electromagnetic fields which satisfy

∇ · E = 0 , (1.18)

∇ ·B = 0 , (1.19)

∇×E = −∂B

∂t
, (1.20)

∇×B = µ0J , (1.21)

where J is current density, charge density is zero because of quasi-neutrality and the

displacement current can be neglected on the slow time scales of interest, i.e. we are

not concerned with high frequency electromagnetic radiation. Taking moments of the

gyrokinetic equation, instead of the Boltzmann equation, gives gyrofluid equations.
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Often, it is too computationally expensive to numerically solve the full two fluid

Braginskii equations and many reduced models have been developed. In this thesis one

such model, namely the Hasegawa-Wakatani model [Hasegawa and Wakatani, 1983], is

extensively studied; see Chapter 3.

1.6 Magnetohydrodynamic equilibrium

One of the most successful ways of dealing with a plasma is treating it as a single

electrically neutral conducting fluid; this is magnetohydrodynamics (MHD). The MHD

equations can be derived by summing the Braginskii two fluid equations and thus rep-

resent a further simplification to the description of a plasma. Ideal MHD assumes zero

resistivity and the equations can be written,

∂ρ

∂t
+∇ · (ρu) = 0 , (1.22)

ρ
du

dt
= J×B−∇p , (1.23)

E + u×B = 0 , (1.24)

where ρ is mass density [Dendy, 1990]. The equations are closed with an equation of

state, Ampère’s law (equation 1.21) and Faraday’s law (equation 1.20).

MHD describes the large scale, bulk dynamics of a magnetised plasma and is thus

used in the study of plasma equilibrium and stability. Using the force balance equation

(equation 1.23), the conducting fluid will be at equilibrium when pressure gradients are

balanced by the Lorentz force,

∇p = J×B . (1.25)

Slowly varying (time scales comparable to τe) confined plasma configurations are usually

well approximated by solutions to this equation [Biskamp, 1993]. It implies that p must

be constant along lines of J and B, so a spherical reactor with isobars on nested spheres

would not satisfy Ampère’s Law (equation 1.21). In fact, the simplest geometry which

satisfies equation 1.25 and Ampère’s Law is toroidal. A torus is a doughnut shape (see
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figure 1.3) and is characterised by the major radius R and minor radius a; the ratio

R/a is called the aspect ratio. There are two directions around a torus: the long,

toroidal way around φ and the short, poloidal way around θ. Thinking naively, a plasma

Figure 1.3: The torus.

might be confined by driving a current through the hole of a torus, along the axis of

symmetry thus producing a purely toroidal magnetic field. However, in such a situation

the particles, following magnetic field lines, move in circles and therefore experience a

centrifugal force. Such a force generates a guiding centre drift according to equation

1.11; a guiding centre drift is also produced by the non-uniform magnetic field strength

(falling off with the major radius as 1/R). These two drifts happen to be in the same

direction and can be written together as

vd =
m

q

(

v2
‖ +

1

2
v2
⊥

)

Rc ×B

R2
cB

2
, (1.26)

where Rc is the radius of curvature and v‖ is the component of velocity parallel to

the magnetic field. Since vd is charge dependent, its direction is opposite for ions and

electrons: depending on the direction of the magnetic field, one species drifts up while

the other drifts down. This generates an electric field and associated E×B drift velocity

in the direction perpendicular to B (equation 1.10) and the plasma particles are lost.

The solution is to generate a poloidal magnetic field as well as toroidal so that

the total magnetic field has a helical shape. Then the up-down charge asymmetry can
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be short-circuited by rapid motion along field lines. There are two leading approaches

to generating such a helical magnetic field: the tokamak and the stellarator; see figure

1.4.

Figure 1.4: Principle of the tokamak [Pecseli, 2009] (left) and stellarator [ENS, 2009]
(right).

1.6.1 Stellarator

Figure 1.5: The Large Helical Device (LHD) stellarator [NIFS, 2009].

The stellarator was originally proposed by Spitzer in the early 1950s, twisted field

coils are used to produce the desired magnetic field. Steady state operation is easily

achieved, however their complexity makes stellarators challenging for theoreticians and

engineers alike. Currently, the largest stellarator experiment is the Large Helical Device
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(LHD), located at the National Institute for Fusion Studies (NIFS) in Japan. LHD

is a heliotron type stellarator with major radius R = 3.9m, minor radius a = 0.65m

and superconducting field coils generating a magnetic field strength of typically 2.5T.

Pictures of LHD are shown in figure 1.5; in the diagram on the right the helical shape

of plasma can be seen in pink. The statistical analysis of experimental data taken from

LHD forms part of Chapter 2 of this thesis.

1.6.2 Tokamak

Figure 1.6: External (left) and internal (right) photographs of the Mega-Amp Spherical
Tokamak (MAST) [CCFE, 2009].

The tokamak was originally developed in Russia in the late 1950s. The word

‘tokamak’ is a transliteration of a Russian acronym, meaning “toroidal chamber with

magnetic coils.” In tokamaks, a poloidal field is generated by driving a current toroidally

through the plasma using transformer action. This has the additional benefit of Ohmi-

cally heating the plasma, however the process is inherently pulsed and can lead to current

driven instabilities. Conventionally, tokamaks have an aspect ratio much greater than

one, i.e. their major radius is much larger than their minor radius. Tokamaks with an

aspect ratio close to one are referred to as spherical tokamaks (ST). The Mega-Amp

Spherical Tokamak (MAST), located at Culham in Oxfordshire, is a leading ST exper-
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iment with major radius R = 0.7m, minor radius a = 0.5 and a typical magnetic field

strength of 0.5T; photographs are shown in figure 1.6. The shape of a typical MAST

plasma can be seen in the right hand image: due to its low aspect ratio the plasma

resembles a cored apple, rather than the doughnut shape associated with conventional

tokamaks. The statistical analysis of experimental data from MAST and comparison

with LHD forms Chapter 2 of this thesis.

The helicity of the magnetic field in a tokamak is quantified by the safety factor,

q =
a

R

B
φ

Bθ
. (1.27)

It is the number of times the magnetic field goes around toroidally per poloidal rotation.

Stellarator physics typically uses 1/q, the rotational transform. In tokamaks, the safety

factor must be larger than one everywhere for stability. A safety factor less than one in

the central region is associated with an MHD instability called the sawtooth oscillation.

The ratio of plasma pressure to magnetic field pressure is an important quantity β,

β =
p

B2/2µ0
. (1.28)

Commercial fusion reactors require β > 1% in order to be economically viable since

the the fusion energy output scales with some power of p while the cost of the device

depends mainly on the size of the magnetic field coils and scales with some power of B

[Chen, 1984].

Currently, the conventional tokamak is the most highly developed design, and

on 21st November 2006 officials agreed to fund the creation of the ITER tokamak with

the aim of demonstrating ignition for the first time in a magnetically confined plasma.

1.6.3 Edge plasma

The hot plasma required for magnetic fusion must be kept away from the vessel wall

in order to prevent melting of the wall and disruption of the plasma. A common way

to limit tokamak plasmas is to use a divertor. In this configuration, extra field coils

are used in order to create a region of closed magnetic field lines surrounded by open
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LHD MAST

Major radius, R 3.9m 0.7m
Minor radius, a 0.65m 0.5m
Plasma volume 30m3 8m3

Magnetic field strength 2.5T 0.5T
Maximum discharge length 1 hour 1s

Table 1.1: Typical parameters for LHD and MAST.

field lines which are connected to a divertor plate designed to handle large heat and

particle fluxes, see figure 1.7. The closed field lines lie on ‘flux surfaces’ which, in a

tokamak, form concentric tori. The last flux surface, radially, on which field lines are

closed is called the ‘last closed flux surface’ (LCFS) and is commonly used to define

the plasma edge. The region where field lines are open is referred to as the ‘scrape-off

layer’ (SOL). The magnetic field geometry of stellarators is much more complex, the

core region where field lines are closed is surrounded by an ‘ergodic layer’ where field

lines wrap around the device to fill a volume. The edge region of a magnetically confined

plasma is thus extremely complicated, containing large pressure gradients and complex

magnetic geometry. Considerable numerical and theoretical effort is focused on trying

to understand this region.

The edge region plays an important role in the confinement of the whole plasma.

For example, in many diverted tokamak plasmas two main confinement regimes, the L-

mode and H-mode, have been found (H stands for high confinement, L stands for low).

Under certain operating conditions, confinement suddenly improves from L-mode to H-

mode and large temperature and density gradients build up near the plasma edge; this

can be thought of as the creation of a transport barrier. The H-mode is usually accom-

panied by the periodic crashing of the edge gradients. This relaxation process, known

as the edge-localised mode (ELM), can cause damage to the device due to intense heat

loads [Biskamp, 1993] [Wesson, 2004]. The ITER tokamak has been designed to achieve

ignition in H-mode and many ELM mitigation techniques have been proposed. An ig-

nited device operating in L-mode would be much larger and therefore more expensive.
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Figure 1.7: Simplified magnetic field structure of a diverted tokamak (left) and heliotron
type stellarator (right).

The transition from L-mode to H-mode is not fully understood though it is thought to

be related to the suppression of edge turbulence by shear flow. It has been observed

that the L-H transition is accompanied by a reduction in turbulent density fluctuations

in the region of the transport barrier; this gives evidence that the reduction of turbulence

causes the reduction in transport. The mechanism for the reduction of turbulence could

be as follows. As edge gradients build up close to the plasma edge, more ions are lost

than electrons because of their larger Larmor radius and a negative radial electric field

is created. Equation 1.10 tells us that a radial electric field will generate a poloidal

drift velocity. Experimentally, an increase in the radial field is observed in the narrow

transport barrier region. This means that the total radial electric field is strongly inho-

mogeneous and the generated poloidal velocity will be sheared. A poloidal shear flow

can suppress turbulence by tearing turbulent eddies apart or by consuming some of the

turbulent energy [Biskamp, 1993] [Wesson, 2004] [Diamond et al., 2005].
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1.7 Classical transport

1.7.1 Classical transport

So far in this introduction to magnetic confinement, collisions between plasma particles

have been ignored. In the presence of collisions, particles experience stochastic forces

and therefore perform random walks. Collisions cause a resistance to the flow of current

and their effect can be understood in the context of MHD by introducing a resistivity η

in equation 1.24,

E + u×B = ηJ . (1.29)

Taking the cross product with B and using equation 1.25 we obtain,

u⊥ =
E×B

B2
− η⊥

B2
∇p . (1.30)

The first part of this velocity is the E×B drift that was seen earlier (equation 1.10). The

second part is in the −∇p direction which is perpendicular to the confining magnetic

field. Thus collisions cause a cross-field transport of plasma particles down the pressure

gradient, i.e. collisions cause a reduction in the level of confinement. The flux associated

with the velocity is

Γ⊥ = nu⊥ = −nη⊥
B2
∇p = −nη⊥T

B2
∇n . (1.31)

This is like Fick’s law with diffusion coefficient

D⊥ =
nη⊥T

B2
. (1.32)

This type of diffusion, caused by particle collisions, is referred to as classical diffusion or

classical transport. In general a diffusion coefficient is of the form

D ∼ (△x)2

△t
, (1.33)

where △x is a mean spatial step size and △t is a mean step time. In this case, the step

size is the Larmor radius ρ and the step time is the electron collision time.
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1.7.2 Neoclassical transport

Geometric effects can cause an increase to the level of classical transport and this is

referred to as neoclassical transport. For example, the magnetic mirror effect leads to

neoclassical banana diffusion. Consider a charged particle in a magnetic field B. It can

be shown that the magnetic moment µ is constant for B varying slowly in space or time,

in other words µ is adiabatically invariant. This leads to the magnetic mirror effect in

the following way. By the definition of µ (equation 1.9), if the particle moves into a

region of higher B, v⊥ must increase in order to keep µ constant. Since the total energy

of the particle is constant and can be written as

E =
mv2

‖

2
+

mv2
⊥

2
, (1.34)

an increase in v⊥ must be accompanied by a decrease in v‖. If B is large enough, there

will come a point when v‖ goes to zero and the particle is reflected. In tokamaks, the

magnetic field strength falls off with the major radius as 1/R so that it is higher on

the inboard side (near the axis of symmetry) than the outboard side. Thus particles

moving in helical orbits experience an increase in magnetic field strength as they move

from the outboard side to the inboard side. Particles with insufficient energy will be

reflected and trapped in ‘banana orbits.’ Particles with sufficient energy to complete a

full circuit around the tokamak are called passing particles. For the fraction of particles

that are trapped in non-circulating ‘banana orbits,’ the step time △t and step size

△x of equation 1.33 become the banana orbit period and width respectively and thus

diffusion is increased to neoclassical levels. Other neoclassical effects lead to plateau

and Pfirsch-Schluter diffusion [Wesson, 2004].

1.8 Turbulent transport

Neoclassical theory is highly developed, however, experimentally measured transport

rates are almost always orders of magnitudes higher than those predicted by it. This
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extra transport is referred to as anomalous transport and is generally attributed to the

presence turbulence generated by small scale instabilities.

1.8.1 Turbulence

Turbulence is a state of fluid motion characterised by unpredictability over a wide range

of temporal and spacial scales. It is often referred to as the last great unsolved prob-

lem of classical physics since the governing equations are deterministic and have been

studied since the 19th century. Here, we introduce the phenomenology of hydrodynamic

turbulence though this is not necessarily a good model for plasma turbulence.

In fluids dynamics a control parameter, called the Reynolds number, can be

derived from a simple balance of nonlinear and dissipative terms in the momentum

equation,

Re =
vL

ν
, (1.35)

where v is a typical fluid velocity, L is a typical length scale and ν is viscosity in the

system. Transition from laminar to turbulent flow occurs for large values of Re in

hydrodynamics. Similar parameters are often used for magnetised plasmas where one

can define the Reynolds number Re and its magnetic counterpart Rm [Biskamp, 1993].

It is important, however, to recognise that these constructs are not identical due to

non-diffusive dissipation processes such as Landau damping which act on scales much

smaller than the actual collisional dissipation.

The Richardson-Kolmogorov view of three-dimensional hydrodynamic turbulence

is a fluid breaking up into large eddies due to instability in the mean flow. These eddies

are themselves subject to instability and break up into smaller eddies which also break

up and so on. Thus there is an energy cascade from large to small scale. At some very

small scale, when Re ∼ 1, viscosity becomes important and energy is dissipated. The

scales at which the cascade occurs k are referred to as the ‘inertial range,’ ki ≪ k ≪ kd,

where ki is the energy injection scale and kd is the dissipation scale. In order for the

turbulence to be stationary, the rate of energy injected must be equal to the rate of
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energy dissipated.

Applying critical balance–a scale-by-scale balance between the linear propaga-

tion and nonlinear interaction time scales–to isotropic, homogeneous and incompressible

turbulence, Kolmogorov famously found that the integrated energy spectrum E(k) in

the inertial range should depend on wave number k as E(k) ∼ k−5/3 [Frisch, 1995]. In

the limit of large Re and for time stationary turbulence, the cascade process is unaware

of the driving and dissipation mechanisms. Thus its physics is universal and can be

characterised, in the simplest case, by a constant energy transfer rate, ǫ. In such a case,

fluctuations in the velocity field are self similar, that is they obey a simple scaling rela-

tion du(lx) = lHdu(x), where H is the scaling exponent. In other words, fluctuations

are statistically self-similar under dilation of the spatial scale l. In reality, the energy

transfer rate ǫ can vary in space and time leading to intermittency, which is normally

understood as departure of the scaling from the simplest Kolmogorov self-similar pre-

diction. Attempts to include intermittency in Kolmogorov’s theory have been made, see

[Frisch et al., 1978] for example. Some attempts to obtain the energy spectrum in the

plasma context are [Chen, 1965] and famously the Iroshnikov-Kraichnan spectrum for

MHD turbulence which predicts E(k) ∼ k−3/2 [Biskamp, 1993].

Figure 1.8: Cartoon of the energy spectrum E(k) expected in 3-dimensional (left) and
2-dimensional (right) hydrodynamic turbulence.

In two-dimensional turbulence, which is expected to apply in magnetised plasmas,
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the magnitude squared of the vorticity, ‘enstrophy’ |ω|2 is conserved. Vorticity is a

quantity widely studied in fluid dynamics and is defined as the curl of velocity field

ω = ∇×u. Kraichnan showed that this results in enstrophy cascading from large scales

to small, in a ‘direct cascade’. Energy, however, cascades in the opposite direction–from

small scales to large–in a so-called ‘inverse cascade’ [Kraichnan, 1967]. This combination

of inverse energy and direct enstrophy cascade is referred to as a dual cascade. The

inverse cascade may lead to the formation of large scale structures, for example vortices

and zonal flows. The sign of the third order moment indicates the direction of the

turbulent cascade, but in practice this is difficult to measure [Atta and Antonia, 1980].

1.8.2 Wave-wave interaction

Turbulence can also be considered as a superposition of waves. Waves are driven by

an underlying linear instability and the linear mode structure of the waves reflects the

nature of the instability. When the linear instability has driven waves to sufficiently

large amplitudes, waves may interact with each other through nonlinearity in the system.

This wave-wave interaction acts to distribute energy in wave vector space, much like the

cascade process described in the previous section. In the case of ‘weak turbulence,’ the

nonlinear coupling between waves is weak and energy may be distributed in a relatively

narrow range of wavevectors, leading to a broadening of the linear mode structure. In

the case of ‘strong turbulence,’ waves interact strongly and the energy can be distributed

to a broadband range of wavevectors, and the linear mode structure may be lost.

If the nonlinearity in the system is quadratic, energy can be distributed through

three-wave interactions. In terms of a Fourier decomposition, modes with wavevectors

k, k1, k2 and frequencies ω, ω1, ω2 may interact if they satisfy the resonance condition

k = k1 + k2 and ω = ω1 + ω2. The presence of such wave-wave interactions within a

nonlinear system can be revealed through the study of higher order spectra. In Chapter

4, the bispectrum is used to reveal three wave interaction in the Hasegawa-Wakatani

system.
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1.8.3 Plasma instabilities

In magnetic confinement, pressure gradients are balanced by a strong magnetic field (see

equation 1.25). These pressure gradients provide a source of free energy which can drive

instabilities and cause turbulence. The turbulent motions can modify the original gradi-

ents due to nonlinear interactions:- we have returned to the notion of self-consistency.

Instabilities on a macroscale, such as MHD instabilities, can cause a disruption to the

plasma, i.e. the plasma confinement may be completely lost. Smaller scale microinsta-

bilities (on the scale of the ion Larmor radius ρi) tend to degrade confinement by driving

microscale turbulence. Two instabilities relevant to turbulent transport in the edge re-

gion of magnetically confined plasmas are the drift wave instability and the interchange

instability. In the core region of the plasma, Ion Temperature Gradient (ITG) modes

and Trapped Electron Modes (TEM) are the most important microinstabilities.

Interchange modes

In hydrodynamics, a Rayleigh-Taylor instability occurs if a fluid of density ρ1 is supported

by a fluid of density ρ2 in the presence of gravity and ρ1 > ρ2. If ρ1 ≤ ρ2, however,

the system is stable. An analogous instability occurs in toroidal magnetised plasmas:

the magnetic field acts as a fluid supporting a plasma fluid and ‘gravity’ is supplied by

centrifugal force or by the curvature or non-uniformity of the magnetic field. Interchange

modes are unstable in regions where the radius of curvature vector is anti-parallel to

the pressure gradient vector: so-called regions of ‘bad curvature.’ In regions of ‘good

curvature,’ the two vectors are parallel and interchange modes are stable. In tokamaks

the curvature vector points outwards along the major radius, while the direction of

the pressure gradient changes depending on location: on the inboard side ∇p points

outwards and on the outboard side ∇p points inwards. Therefore, interchange modes

are unstable on the outboard side of tokamaks and stable on the inboard. The fact that

inboard and outboard sides of a tokamak are connected by helical field lines complicates

the situation and leads to so-called ‘ballooning modes.’
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Drift waves

Drift wave instabilities act on the microscale and are thought to be responsible for the

majority of anomalous transport in tokamaks. Drift waves are low frequency (compared

to the ion cyclotron frequency ωci) waves which are driven by gradients in density or

temperature. They are generally electrostatic in nature, E = −∇φ, and involve two fluid

physics; the physics of drift waves is not present in MHD theory. The dynamics of the

electron fluid parallel to magnetic field lines plays a crucial role in the phenomenology.

To illustrate, we start with the Braginskii momentum equation (1.16) for electrons and

simplify by neglecting electron inertia, viscosity, collisions and considering an isothermal

and quasi-neutral (ne = ni = n) plasma. Then the electron fluid parallel equation of

motion gives
δn

n
=

eδφ

T
. (1.36)

This equation tells us that perturbations in density n are tied to perturbations in elec-

trostatic potential φ due to the rapid streaming of electrons parallel to magnetic field

lines; in this situation electrons are said to be ‘adiabatic’.

Figure 1.9: The physics of the drift wave. Adapted from [Chen, 1984].
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Figure 1.9 shows a plasma in the plane perpendicular to a magnetic field B0,

with a large scale density gradient ∇n0 pointing in the negative x-direction. A small

perturbation in density n is illustrated by a solid line which, due to equation 1.36, also

corresponds to a perturbation in potential φ. Such a perturbation leads to an electric

field, labelled E1, pointing from positive to negative potential and a corresponding

E × B drift velocity, labelled v1. The direction of this E × B velocity varies along

the perturbation such that the entire density perturbation is shifted in the positive y-

direction. Thus a drift wave can propagate along k, perpendicular to the magnetic field

and density gradient.

When the electron parallel response is adiabatic (equation 1.36), the drift wave

density and potential fluctuations are in phase and there is no net transport of density. If

the electron response is not adiabatic, due to resistivity for example, potential and density

fluctuations can become out of phase and drift waves become unstable. This is the drift

wave instability which leads, through nonlinear coupling, to drift wave turbulence. When

density and potential fluctuations are out of phase, there is an accompanying net flux of

density which tends to transport plasma down the density gradient. In tokamaks, this

turbulent transport of plasma is strongest in the edge region where gradients are large

and is directed radially outwards, thus leading to a reduction of confinement.

1.9 Outline

In Chapter 2, a statistical analysis of density fluctuation data taken from LHD and

MAST is presented. The measurements are made by Langmuir probes at the edge of

the plasma where turbulence plays a dominant role and the time series are often highly

nonlinear and intermittent. Statistical techniques suited to such time series, such as

absolute moment analysis, probability density function and conditional averaging are

employed. Significant differences are found in the statistics of data taken from three

probes, separated by just 6mm, embedded in the divertor plate of LHD and comparison

is made to MAST data. Analysis of the LHD data was originally published in [Dewhurst
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et al., 2008].

In Chapter 3, a new numerical code developed from scratch by the author as

part of this thesis is described. The code, called HAWK, is written in C and solves the

Hasegawa-Wakatani equations in two dimensions. The Hasegawa-Wakatani equations

form a simple model of drift-wave turbulence, which is thought to be dominant in the

edge region of magnetically confined plasmas. Derivation of and modifications to the

equations are discussed. The HAWK code is tested using appropriate tests and results

of typical simulations are presented.

Chapter 4 presents a statistical analysis of data taken from the HAWK code. We

focus on the probability density function of the turbulent flux and investigate the effects

of changing the parameters in the Hasegawa-Wakatani model. Structure functions and

higher order spectra are also used in order to gain insight into the physics of the model.

In Chapter 5, the results of test particle studies using the HAWK code are

presented. The effect of non-uniform magnetic field strength on the transport of passive

test particles is studied. An analytic expression linking test particle transport to turbulent

flux, in the form of Fick’s law, is also derived. A regime of non-diffusive transport is

found and is shown to be associated with correlations in the turbulent flow. The effects

of zonal flows and finite Larmor radius are also studied. It is found that a subtle

interplay between trapping in small scale vortices and entrainment in larger scale zonal

flows determines the rate, character and Larmor radius dependence of the test particle

transport. When zonal flows are damped, the transport is classically diffusive, with

Gaussian statistics, and the rate of transport decreases with increasing Larmor radius.

Once the Larmor radius is larger than the typical radius of the turbulent vortices, the

rate of transport remains roughly constant. When zonal flows are allowed non-Gaussian

statistics are observed. Radial transport (across the zones) is subdiffusive and decreases

with the Larmor radius at a slower rate. Poloidal transport (along the zones), however,

is superdiffusive and increases with small values of the Larmor radius. This work was

originally published in [Dewhurst et al., 2009] and [Dewhurst et al., 2010].
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Chapter 2

Statistical description of LHD and

MAST edge turbulence

This chapter concerns the statistical characterisation of experimental data measured by

probes in the edge region of the Large Helical Device (LHD) stellarator and the Mega-

Amp Spherical Tokamak (MAST). Parts of the chapter were published in Statistical

properties of edge plasma turbulence in the Large Helical Device, J M Dewhurst, B

Hnat, N Ohno, R O Dendy, S Masuzaki, T Morisaki and A Komori, Plasma Physics and

Controlled Fusion 50, 095013 (2008).

2.1 Introduction

Improved understanding of plasma transport in the edge and scrape-off layer (SOL)

regions of magnetic confinement experiments is important for their design and operation.

The ability to model and control plasma transport across the magnetic field in the SOL

is critical for the optimal design of divertors and for predicting the lifespan of plasma

facing components [LaBombard et al., 2001]. On a more fundamental level, edge and

SOL physics influence core plasma transport, for example, through the level of impurities

generated by plasma-wall interaction [Dux and Peeters, 2000].
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Experimental data from transport studies indicate that the SOL cross-field trans-

port is bursty and intermittent and that the probability distributions of fluctuations in

plasma parameters are non-Gaussian, see for example [Zweben et al., 2007; Graves et al.,

2005; Xu et al., 2005]. These features make any mean-value based model of SOL trans-

port inaccurate and it is now recognised that a more complete picture must be built by

examining higher order statistics. Interestingly, recent experimental evidence suggests

that the edge and SOL transport has generic and scale invariant statistical properties

which emerge in the functional forms of the probability density functions (PDFs) and

the scaling of their higher moments [van Milligen et al., 2005; Antar et al., 2003; Dendy,

1990].

It is widely accepted that drift wave turbulence plays an important part in edge

and SOL physics in all confinement systems [Horton, 1999]. Indeed, the bursty charac-

ter of cross-field transport, dominated by density blobs has been identified in tokamaks

and stellarators. While drift wave phenomenology is electrostatic in nature and thus

not sensitive to magnetic fluctuations, the edge magnetic field structure could play an

important role in some aspects of transport. Numerical simulations show that the in-

clusion of Alfvénic fluctuations in the drift wave model alters the mode compositions

of turbulence and provides additional channels for energy dissipation via magnetic fluc-

tuations [Kendl et al., 2000]. Careful comparison of the statistical features from edge

and SOL measurements in tokamaks and stellarators may shed more light on the role

of magnetic topology in cross-field transport. In this context, particularly interesting

is the identification of generic features that may be shared by edge plasma turbulence

in conventional and spherical tokamaks and in stellarators. This requires quantitative

comparison of the the measured turbulence properties under different operating regimes

for the full range of confinement systems, using modern techniques for the statistical

analysis of nonlinear time series.

In this chapter, we analyse ion saturation current (Isat) data taken from the

edge region of LHD and MAST. In particular, we apply a novel statistical analysis
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method, called absolute moment analysis, in order to quantify the scaling properties

of the data. We also study the power spectral density, the probability density function

and the conditional average. The rest of this chapter is organised as follows: in the

next section the background statistical methods and concepts are introduced; in Section

2.3 the absolute moment analysis is introduced and tested using synthetic time series;

analysis of the data is presented in Sections 2.4-2.7; and discussion and conclusions are

given in Sections 2.8 and 2.9.

2.2 Statistical analysis background

2.2.1 Probability density function

The probability density function (PDF) of a random variable X, P (x), is defined such

that the probability that X lies within δx of x is P (x)δx. The nth order moment of

P (x) is defined as

mn = 〈xn〉 =

∫ ∞

−∞
xnP (x) dx . (2.1)

The n = 1th moment is the mean and moments about the mean are defined as

µn = 〈(x− 〈x〉)n〉 =

∫ ∞

−∞
(x− 〈x〉)nP (x) dx . (2.2)

The n = 2th moment about the mean is the variance, which measures the spread of

P (x) around the mean. The square root of variance is the standard deviation σ and

standardised moments are normalised by the standard deviation,

Mn =
µn

σn
. (2.3)

The third and fourth order standardised moments are known as skewness, S, and kur-

tosis, K, respectively. Skewness is a measure of the asymmetry of a PDF; it is zero for

symmetric PDFs, negative for negatively skewed PDFs and positive for positively skewed

PDFs. Kurtosis is a measure of the ‘peakedness’ of a PDF or the influence of extreme

outliers on the variance of a PDF. Skewness and kurtosis are often used to quantify the
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departure of a PDF from Gaussian; the Gaussian PDF has skewness S = 0 and kurtosis

K = 3.

2.2.2 Correlation

A joint PDF of two random variables X and Y , P (x, y), can also be defined such that

the probability that X lies within δx of x and Y lies within δy of y is P (x, y)δxδy.

Covariance is defined as

cov(X,Y ) = 〈(x− 〈x〉)(y − 〈y〉)〉 = 〈xy〉 − 〈x〉〈y〉 , (2.4)

and the correlation coefficient,

corr(X,Y ) =
〈(x− 〈x〉)(y − 〈y〉)〉

σxσy
=

cov(X,Y )
√

cov(X,X)cov(Y, Y )
, (2.5)

is a normalised measure of the degree of dependence of X and Y on each other. If

X and Y are independent corr(X,Y ) = 0, if X and Y are are perfectly correlated

corr(X,Y ) = 1 and if X and Y and perfectly anti-correlated corr(X,Y ) = −1.

Cross-correlation is a measure of the correlation between two functions offset

with respect to each other by a certain lag τ . The cross-correlation of two discrete time

series, f(t) and g(t), of length N samples is

R(τ) =

∑N−τ
t=1 [f(t)− 〈f(t)〉][g(t + τ)− 〈g(t)〉]

√

∑N−τ
t=1 [f(t)− 〈f(t)〉]2

√

∑N−τ
t=1 [g(t)− 〈g(t)〉]2

. (2.6)

Autocorrelation is the cross-correlation of a function with itself and is defined as

Ac(τ) =

∑N−τ
t=1 [f(t)− 〈f(t)〉][f(t + τ)− 〈f(t)〉]

∑N−τ
t=1 [f(t)− 〈f(t)〉]2

. (2.7)

2.2.3 Power spectral density

The square of the magnitude of Fourier modes is known as the energy spectral density.

An alternative and often more useful measure is the power spectral density (PSD).

The Wiener-Khinchin theorem states that the PSD is the Fourier transform of the
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autocorrelation function. Several methods exist to estimate the PSD from finite time

series; in this thesis, we employ the Thomson multitaper method [Thomson, 1982].

The PSD gives the proportion of a signal’s power at a certain frequency; peaks in

the PSD correspond to coherent modes in the time series. The PSD can be used to

distinguish between different types of noise; correlated self-similar noise has a power

law dependence PSD(f) ∼ f−β, uncorrelated random noise appears as constant power

over all frequencies i.e. β = 0 [Dudson et al., 2005].

2.3 Absolute moment analysis

2.3.1 Turbulence and fractals

In the previous chapter, the concept of self-similarity was mentioned in the context of

turbulence. In the idealised turbulent cascade, the system appears statistically identical

on all inertial range scales, i.e. there is a fractal structure. Indeed, a fractal is an object

that is invariant under some scale transformation. Self-similar fractals are invariant

under isotropic scale transformations and can be described by a power law,

N(l) ∝ l−dF , (2.8)

where

dF = lim
l→0

ln N(l)

ln(1/l)
, (2.9)

is a characteristic number called the fractal dimension.

Self-affine fractals are invariant under anisotropic scale transformations. E.g. for

fractals described by a single-valued function, h(x), the vertical rescaling is different to

the horizontal rescaling: x→ bx, h→ bαx and

h(x) ∼ b−αh(bx) , (2.10)

where α is the self-affine exponent and is a measure of the roughness of h(x). In many

cases the terms ‘self-similar’ and ‘self-affine’ are used interchangeably although strictly

self-similarity is a special case of self-affinity.
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Whereas self-affine fractals can be described by a single exponent, α, multi-affine

fractals require an infinite set of exponents, αm, to describe the scaling. If a surface is

multi-affine, measurement of the mth order correlation function,

Cm ≡<| h(x +△x)− h(x) |m>x , (2.11)

will give the scaling relation,

Cm ∝ △xmαm , (2.12)

where αm varies with m. If αm is independent of m, the object is self-affine. [Barabasi

and Stanley, 1995].

For some fractals self-similarity holds exactly, i.e. when part of the fractal under-

goes scale transformation it exactly overlaps the original; these are called deterministic

fractals. Self-similarity may also hold in a statistical sense only; such objects are called

random or statistical fractals [Barabasi and Stanley, 1995]. For example, a time series

x(t) is said to be self-similar if it obeys the equation,

〈x(t +△t)− x(t)〉 = b−α〈x(t + b△t)− x(t)〉 . (2.13)

This equation implies the scaling relation,

〈[x(t +△t)− x(t)]m〉 ∝ △tmα . (2.14)

If α is independent of m the time series is self-similar, if α varies with m it is multi-affine

[Dudson et al., 2005].

2.3.2 Langmuir probes

Quantitative characterisation of plasma edge turbulence can be achieved with Langmuir

probes. A Langmuir probe, in its simplest form, works by inserting an electrode into a

plasma and applying a voltage with respect to the surrounding vessel. Measurement of

the resulting current allows the determination of electron temperature Te and density

ne. Langmuir probes are restricted to the edge of fusion plasmas due to the high
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temperatures of the central regions. The current I to a probe biased at voltage V is

given by,

I = Ji(1− ee(V −Vf )/kBTe)A , (2.15)

where Ji is the ion current density, A is the surface area of the probe and Vf is the

floating potential (the applied potential at which current drops to zero) [Wesson, 2004].

If the probe is sufficiently negatively biased all electrons within a narrow sheath

will be repelled and only an ion current is left. This so-called ion saturation current is

independent of voltage [Wesson, 2004],

Isat = ene

√

Te/mi . (2.16)

Isat is often assumed to be a proxy for density because temperature fluctuations are

generally thought to be much smaller than density fluctuations. Fluctuation data from

Langmuir probes generally has much higher time resolution than data from other more

complicated plasma diagnostics, making it ideal for statistical analysis.

2.3.3 Scaling of absolute moments

We treat Isat fluctuations, measured in the edge region of MAST and LHD, as steps of a

random walk s(t) on a temporal scale τmin, the time between consecutive measurements;

τmin = 4µs for the LHD datasets and τmin = 2µs for the MAST datasets that we examine

here. Fluctuations on longer time scales are obtained by summing over a window of

length τ [Dudson et al., 2005; Yu et al., 2003],

δIsat(t, τ) =

t+τ−τmin
∑

t′=t

(Isat(t
′)− < Isat >t)/σ , (2.17)

where < Isat >t and σ are the mean and standard deviation of the Isat signal calculated

over all times. The scaling properties of the absolute moments of these fluctuations,

Sm(τ) ≡ 〈|δIsat(t, τ)|m〉 , (2.18)

are analysed. If scaling is present, Sm ∝ τ ζ(m), and a plot of Sm versus τ on a log-

log scale will yield a straight line for each m with gradient ζ(m). In general, owing

30



to intermittency, ζ(m) can be a nonlinear function of order m and the time series is

multi-affine. If, however, ζ(m) = αm where α is a constant, the time series is said to

be self-affine or self-similar with a single scaling exponent α.

The scaling exponent α is also known as the Hurst exponent H. The Hurst

exponent is a measure of long-time correlations and takes values between 0 ≤ α ≤ 1

[Carreras et al., 1998]. A value of α = 0.5 implies that a signal has no correlations, i.e.

each step in the random walk is independent of all others. A value of 0.5 < α < 1 implies

‘persistency’ while 0 < α < 0.5 implies ‘anti-persistency,’ i.e. if a random walk step is

positive, the next step is more likely to be positive than negative when 0.5 < α < 1

and is more likely to be negative than positive when 0 < α < 0.5. A value of α = 0

corresponds to a signal that does not change with time, while α = 1 corresponds to a

signal that changes deterministically with time.

2.3.4 Synthetic time series

The presence of a deterministic process such as a coherent mode or sine wave, embedded

in an otherwise turbulent time series, is likely to distort the estimate of α. We now test

this using synthetic time series because, as we shall see, our LHD datasets sometimes

combine turbulent fluctuations with a few strong coherent modes.

Our first test signal is a pure sine wave 100 000 points long and with period

T = 100 points. The first to fourth order absolute moments Sm are plotted on a log-log

scale in figure 2.1(a). Scaling is observed for the region τ less than T ; T is indicated

on the graph by a vertical dashed line. A linear regression is applied for all Sm and the

resulting ζ(m) is plotted versus m in figure 2.1(b); errors represent the errors of the

regression. Figure 2.1(b) shows a linear fit ζ(m) = αm with α = 0.99 ± 0.01, close to

1 as expected for a sine wave. For values of τ greater than T the absolute moments

do not change with τ , in an averaged sense. Thus the scaling exponent α ≈ 0. This

occurs because in (2.17) for τ > T , the summation window is longer than the period

so that the sinusoidal nature is effectively ignored and the signal appears not to change
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with time. In between these two regions, around τ = T , absolute moments dip. This

is because the sum over all points over a sine wave’s period is equal to zero. Absolute

moments do not go exactly to zero because of the finite signal length.
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Figure 2.1: (a) Absolute moments of order 1 ≤ m ≤ 4 and (b) derived scaling exponents
ζ(m) for a sine wave 100 000 points long. The dashed line in (a) indicates the period
of the sine wave, T = 100 points.
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A = 5,   α = 0.97 ± 0.01
A = 1,   α = 0.78 ± 0.05
A = 0.5, α = 0.65 ± 0.03
A = 0,   α = 0.50 ± 0.01

Figure 2.2: (a) Absolute moments of order m = 2 and m = 4 and (b) derived scaling
exponents ζ(m) for random Gaussian noise added to a sine wave 100 000 points long.
Moments m = 1 and m = 3 are omitted from (a) for clarity. The dashed line in (a)
indicates the period of the sine wave, T = 100 points. The amplitude of the sine wave
relative to to the standard deviation of the Gaussian noise, A = a/σ, is varied.

Next we consider the highly relevant case where a randomly fluctuating signal of

interest is ‘contaminated’ by a sine wave, representing a coherent mode; for simplicity,

we use Gaussian noise as the signal of interest. The total signal is of the form si =
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a sin (2πti/T ) + γi, where a is a constant and γi is a random number taken from a

Gaussian distribution with mean 0 and standard deviation σ. We vary the amplitude of

the sine wave relative to the standard deviation of the Gaussian noise, A = a/σ. Figure

2.2(a) shows the absolute moments for signals of this form, 100 000 points long and

with period T = 100. For clarity, only moments m = 2 and m = 4 are plotted. Linear

regressions are applied and figure 2.2(b) shows the resulting estimates of α. For A = 0,

i.e. pure Gaussian noise, the absolute moments scale as expected with α = 0.50. As the

amplitude of the sine wave is increased, the scaling behaviour tends to that of a pure

sine wave with scaling exponent α close to 1 for τ less than T and a dip around τ = T .

We conclude that the presence of a coherent mode with period T is characterised by

scaling in absolute moments for τ < T and a dip around τ = T .

2.4 LHD scaling

2.4.1 LHD data

We now focus on Isat data taken from LHD. Time series are obtained from three tips in

a Langmuir probe array embedded in the divertor plate [Masuzaki et al., 2002] of LHD.

The locations of the divertor plate and the Langmuir probe array in LHD are indicated

in figure 2.3. The tips, labelled 16, 17 and 18, are separated by 6mm and sample

data at 250kHz. The connection length Lc of the magnetic field lines connected to the

tips is a few metres for tip 16, a few kilometres for tip 17 and a few tens of metres

for tip 18 [Ohno et al., 2006b]. A long connection length means that the magnetic

field line rotates around the ergodic layer near to the core plasma [Ohno et al., 2006b].

Connection lengths are calculated by modelling magnetic fields in a vacuum and may

be different in the presence of a plasma. Datasets from LHD discharge numbers 44190

and 44191 are found to be statistically almost identical and therefore only 44190 is

shown in this chapter. In both discharges the magnetic field strength is B = 2.5T and

the central value of electron temperature is Te = 2.5keV. The line averaged density
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is n̄e = 1.5 × 1019m−3 in 44190 and n̄e = 1.4 × 1019m−3 in 44191. The data was

previously studied from a complementary perspective in [Ohno et al., 2006b] and [Ohno

et al., 2006a]. A snapshot of the visible light from discharge 44190 is shown in figure

2.4. The visible light is predominantly Dα line emission due to the interaction of hot

plasma with neutral gas in the edge region.

Figure 2.3: (a) Location of the Langmuir probe array within LHD [Ohno et al., 2006b].
(b) Location of probes within probe array [Ohno et al., 2006b].

Figure 2.4: Visible light image of LHD discharge 44190.

We prepare the data by removing linear trends, subtracting the mean and dividing

by the standard deviation. Linear trends distort the absolute moment analysis as they

are deterministic in nature. Figure 2.5 shows the resulting time series for the three tips in

LHD plasma 44190. We see that the three Isat time series are bursty and intermittent
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Figure 2.5: Isat signals for LHD plasma 44190: (a) tip 16; (b) tip 17; (c) tip 18.

to varying degrees; significant differences between the tips, separated by 6mm, can

be seen. Fluctuations measured by tip 16 are dominated by positive intermittent bursts

with large amplitudes; tip 17 is characterised by negative intermittent bursts with smaller

amplitudes; and the time series for tip 18 is almost symmetric. Similar behaviour can

be observed with a different set of three probes by altering the position of the plasma

in LHD [Ohno et al., 2006b].

2.4.2 Scaling properties

We now examine the statistical properties of the LHD Isat signals. We use the power

spectral density (PSD) estimated via the Thomson multitaper method [Thomson, 1982]

which is then averaged over logarithmically spaced windows. Figure 2.6 shows the

absolute moments and PSDs for all three tips in LHD plasma 44190. Scaling is clearly

evident in Sm for all tips; linear fits are plotted. Tips 16 and 17 show two distinct
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Figure 2.6: Absolute moments of order 1 ≤ m ≤ 4 (left) and power spectral density
(right) for LHD plasma 44190: (a) and (b) tip 16; (c) and (d) tip 17; (e) and (f) tip
18. The dashed line on each plot of absolute moments corresponds to the reciprocal of
the frequency of the coherent mode marked on the power spectral density.
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regions of scaling separated at about τ = 40µs for tip 16 and τ = 30µs for tip 17.

Tip 18, however, shows only one region of scaling with scaling exponent α close to 1.

In contrast with absolute moments, the PSDs do not exhibit a clear region of scaling,

except for tip 17 which shows power-law scaling of the form ∼ f−β with β = 1.7 in

the region 10-100kHz, corresponding to 10-100µs. A low frequency coherent mode at

fcm ≃ 390Hz, together with higher harmonics, appears in all PSDs, and is marked by

a dashed line in each PSD in figure 2.6. Its amplitude is smallest for tip 16 and largest

for tip 18. The reciprocal of the frequency of this coherent mode, 1/fcm, is also marked

on each absolute moment plot by a dashed line.

The scaling behaviour of tip 18 is very close to that of the second test case, figure

2.2(a): absolute moments scale with scaling exponent α close to 1 for τ less than 1/fcm

and a dip around τ = 1/fcm. It is clear the that signal from tip 18 is strongly affected

by the presence of the coherent mode. Absolute moments for tip 17 are also affected

but to a lesser degree; there is small flattening around τ = 1/fcm. There appears to

be little or no effect on the absolute moments for tip 16; this might be expected as the

amplitude of the coherent mode in the PSD is relatively low.

It is clear that the presence of a coherent mode in the signal affects its scaling

properties. We have therefore filtered out the coherent modes and harmonics in each

time series by applying Chebyshev type I bandstop filters to peaks in the PSD which rise

above 2.5× 10−4 of our arbitrary units. This corresponds to filtering out a single mode

at frequency fcm ≃ 390Hz for tip 16, 2 modes at fcm and 2fcm for tip 17 and 4 modes

at fcm, 2fcm, 3fcm and 4fcm for tip 18.

An alternative way of illustrating the effect of filtering on the datasets considered

here is to compute the autocorrelation function (ACF), which is defined by equation

2.7. Note that the Fourier transform of the ACF is the PSD so oscillations in the ACF

correspond to peaks in the PSD. Statistical properties of a signal strongly depend on

the level of correlations and the ACF allows one to estimate the temporal scale, τA,

beyond which correlation effects have no significant impact on the observed statistics.
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Figure 2.7: Autocorrelation function for LHD plasma 44190 before (left) and after (right)
bandstop filtering to remove coherent modes: (a) and (b) tip 16, (c) and (d) tip 17, (e)
and (f) tip 18. The horizontal dashed line at 0.05 is used to define τA.
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LHD 16 LHD 17 LHD 18 MAST

Decorrelation time, τA 40µs 30µs 130µs 60µs

Sm break, τm 40µs 30µs 45µs 30µs

Half-width of conditional average peak, τC 13µs 12µs 15µs 13µs

Skewness time scale, τS 220µs 110µs 10µs 500µs

Table 2.1: Measured time scales.

Practically, this is achieved by finding a first crossing of an arbitrary, but small, threshold

which in our case we set to 0.05. Figure 2.7 shows the behaviour of the ACF before and

after the filtering has been applied. The ACF for tip 18 is particularly affected; before

filtering large oscillations appear, after filtering the ACF closely resembles that of the

other two tips. Tip 17 is also affected; oscillations in the ACF are reduced for large

values of τ . The decorrelation times τA obtained from the filtered data are presented in

table 2.1. We see that τA is about 4 times larger for tip 18 than for tips 16 and 17 due

to the slow fall-off of the ACF to zero.

The results of absolute moments analysis of the filtered data are shown in figure

2.8. We note that, in principle, the complete characterisation of a dataset with N

samples requires N moments. However, in practice one should only examine as many

moments as can be safely computed from the finite size datasets that are studied. We

find that the slow convergence of the higher moments prohibits us from computing

moments higher than order four. Figures 2.8 (a), (c) and (e) show the first to fourth

order absolute moments for fluctuations measured by tips 16, 17 and 18 respectively.

All three tips now show two distinct regions of scaling, separated at about 40µs for tip

16, 30µs for tip 17 and 45µs for tip 18. We label this break in absolute moments τm

and include it in table 2.1.

In figures 2.8 (b), (d) and (f), ζ(m) versus m is plotted for all pins and in

both scaling regions. In all cases, we apply a linear fit ζ(m) = αm with ζ(0) = 0,

to extract a single scaling exponent α. This dual scaling regime has previously been
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Figure 2.8: Absolute moments of order 1 ≤ m ≤ 4 (left) and derived scaling exponents
ζ(m) (right) for Isat signal of LHD plasma 44190 with bandstop filters applied to remove
coherent modes: (a) and (b) tip 16; (c) and (d) tip 17; (e) and (f) tip 18.
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reported in MAST with the scaling break at 40-60µs [Hnat et al., 2008; Dudson et al.,

2005]. It is believed that scaling exponents uniquely characterise time series and, in

cases such as Kolmogorov turbulence or critical systems, may offer the connection to

phenomenological description. It is therefore of interest to compare the values of the

scaling exponent α that are obtained in these two regimes for different confinement

systems. The average value for the short time scale scaling parameter αI obtained from

three similar MAST plasmas in [Hnat et al., 2008] is 0.94± 0.07, whereas the values of

αI in LHD for tips 16 and 17 fall below this. However, tip 18 has αI = 0.91±0.03; this

value overlaps with that of the Hurst exponent for MAST L-mode plasma 6861, obtained

for fluctuating time scales less than 30µs using three different algorithms in [Dudson

et al., 2005]. In the longer time scale scaling region there are some notable similarities:

MAST plasma 14218 has αII = 0.59± 0.04, overlapping with αII = 0.55± 0.01 for tip

17 of LHD plasma 44190; MAST plasmas 14219 and 14220 have αII = 0.64±0.02 and

αII = 0.65±0.02, overlapping with αII = 0.67±0.01 for tip 18 of LHD plasma 44190.

These quantitative matches suggest a degree of universality in the properties of edge

turbulence on times scales & 40µs for the different plasmas examined. These results, as

well as a larger comparative study of Carreras et al. [Carreras et al., 1998], suggest that

exponents characterising long temporal correlations, αII , cluster in the region 0.5−0.7.

2.5 MAST scaling
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Figure 2.9: Isat signal from MAST plasma 14222.
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Here, we apply the absolute moment analysis to data taken from MAST L-mode

plasma 14222 as a comparison to the LHD results. The data is taken from a reciprocating

Langmuir probe located at the outboard midplane on MAST, and samples at a frequency

of 500kHz. We prepare the data by removing linear trends, subtracting the mean and

dividing by the standard deviation. Figure 2.9 shows the resulting data which is used

in the analysis. The MAST data, like the LHD data, is bursty and intermittent and

contains structures on many different time scales.

0 1 2 3
0

2

4

6

8

10

log
10

[τ (µs)]

lo
g 10

[S
m

]

Region I Region II
(a)

0 1 2 3 4
0

1

2

3

Moment m

ζ(
m

)

α
I
 = 0.89 ± 0.05

α
II
 = 0.55 ± 0.05

(b)

Figure 2.10: (a) 1st to 4th order absolute moments for MAST 14222. Two scaling
regions are evident with a break at 30µs. (b) Estimation of α for the two scaling
regions.
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Figure 2.11: (a) Autocorrelation function and (b) PSD for MAST plasma 14222.

Figure 2.10(a) shows the absolute moments of order 1 to 4, calculated using the

data in figure 2.9. In common with the LHD results in this chapter and the results in
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[Hnat et al., 2008] and [Dudson et al., 2005], two distinct scaling regions can be seen.

The break between the scaling regions is at about 30µs. Linear fits are applied and

figure 2.10(b) shows the plot of ζ(m) versus m and the resulting estimate of α for the

two scaling regions; the error bars represent the errors of the linear regression. We find

for this MAST dataset, αI = 0.89 ± 0.05 and αII = 0.55 ± 0.05. For completeness,

in figure 2.11 we also show the autocorrelation function and PSD for this dataset. The

decorrelation time τA and the scaling break time τm are included in table 2.1.

2.6 Probability density function

2.6.1 LHD

The probability density function (PDF) is less affected by the finite data constraints

encountered when calculating moments as moments are powers of the fluctuations.

The PDF provides additional information on the behaviour of higher order moments.

The PDF of a given dataset can be expressed as an infinite expansion in moments

of all orders [Sornette, 2000]. It follows, that two distinct signals may share scaling

properties of a single moment, for example the Hurst exponent or a power spectrum.

It has been recognised that scaling in a dataset can emerge as a result of temporal

correlations or heavy tails of the PDF [Mandelbrot, 2002]. A particular approach is to

quantify the departure of the observed distributions from the Gaussian PDF for which

all characteristics are known. We use the skewness S and kurtosis K; the Gaussian PDF

has S = 0 and K = 3. Information on the dynamics of the PDFs can be obtained by

the use of scaling in S and K on different temporal scales [Dudson et al., 2005; Hnat

et al., 2003]. Let us consider the PDF of δIsat(t, τ) for two values of τ lying in different

scaling regions determined from figure 2.8. Figure 2.12 shows the PDFs P (δIsat, τ) for

τ = 4µs and τ = 64µs for all three tips. The PDF for τ = 4µs is equivalent to the

PDF of the original time series (since τmin = 4µs) and is in scaling region I; τ = 64µs

is in scaling region II. We normalise each PDF to the standard deviation of δIsat(t, τ).
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Filtered data is used in all cases. Gaussian PDFs with the same mean and standard

deviation as the data are plotted for comparison (dashed lines).

On the short time scale, significant differences between the tips, separated by

6mm, can be seen. The PDF for tip 16 shows a large departure from Gaussian, with

a large positive skewness S = 1.0 and kurtosis K = 5.8, indicating that the signal

is dominated by large positive events. Tip 17’s PDF is negatively skewed with S =

−0.4 and K = 3.6, indicating that there are more negative events than the Gaussian

prediction. The PDF for tip 18 is close to Gaussian with a small positive skew S = 0.1

and K = 3.4. On the longer time scale (τ = 64µs), the shape of the PDF changes,

particularly for tips 16 and 17: for tip 16 S = 0.4 and K = 3.5; for tip 17 S = −0.1 and

K = 3.0; and for tip 18 S = 0.1 and K = 3.3. More generally, we find that the values

of S and K vary with τ as shown in figure 2.13. For large τ , S and K do not go to 0

and 3, indicating that the PDFs deviate from Gaussian. This behaviour is in common

with results from MAST [Hnat et al., 2008], where the PDFs on long time scales were

close to the Gumbel distribution. We define a temporal scale, τS , as the time scale at

which skewness S falls to within 0.1 of its Gaussian limit, i.e. S = ±0.1. The threshold

is plotted on figures 2.13 (a), (c) and (e) as dotted lines. τS is a measure of the time

scale on which the PDF changes. The results of this analysis are shown in table 2.1 and

discussed in Section 2.8.

For Isat time series which are far from Gaussian, approximating the discrete

PDFs generated from data with a continuous functional form becomes an important but

difficult problem. Successful fitting yields information on the underlying physics of the

turbulence. Following a recent paper analysing the statistics of turbulent fluctuations in

the MAST edge plasma [Hnat et al., 2008], we consider the applicability of Fréchet and

Gumbel distributions which are derived from extreme value statistics [Sornette, 2000].

We find that this fitting is only appropriate for tip 16 in the short time scale region; see

figure 2.12(a), showing Fréchet in red and Gumbel in green. The Fréchet distribution is
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Figure 2.12: Probability density functions P (δIsat, τ) of the filtered data for τ = 4µs
(left) and τ = 64µs (right) normalised to, σ, the standard deviation of δIsat(t, τ): (a)
and (b) tip 16; (c) and (d) tip 17; (e) and (f) tip 18. Gaussian PDFs (dashed line) are
plotted for comparison. In (a) we show Fréchet (red) and Gumbel (green) fits.
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Figure 2.13: Measured skewness and kurtosis as a function of τ for all three tips in
LHD plasma 44190, using filtered data for: (a) and (b) tip 16; (c) and (d) tip 17; (e)
and (f) tip 18. Horizontal dashed lines mark Gaussian values for skewness (S = 0) and
kurtosis (K = 3) respectively. Horizontal dotted lines mark the threshold |S| = 0.1 for
the skewness time scale τS .
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given by

PF (x, k) = CF exp(−x−k)/(x1+k) , (2.19)

while the Gumbel distribution is defined as

PG(x, a) = CG exp[−a(x + e−x)] , (2.20)

where k and a are fitting parameters. We find the best fits to be k = 1.025 and a = 1.3

for tip 16. However neither distribution captures the full discrete PDF: the positive

tail is better represented by Fréchet while negative values are closer to the Gumbel

distribution.

2.6.2 MAST
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Figure 2.14: Probability density functions P (δIsat, τ) of the MAST data for (a) τ = 2µs
and (b) τ = 64µs normalised to, σ, the standard deviation of δIsat(t, τ). Gaussian PDFs
(dashed line) are plotted for comparison. In (a) we show Fréchet fit (red) and in (b)
Gumbel fit (green).

The normalised PDFs P (δIsat, τ) for MAST with τ = 2µs and τ = 64µs are

shown in figure 2.14. The PDF for τ = 2µs is in scaling region I, while τ = 64µs is

in scaling region II. Gaussian PDFs with the same mean and standard deviation as the

data are plotted for comparison (dashed lines). In common with the data from LHD

tip 16, both PDFs are skewed towards positive values of Isat and far from Gaussian. In

the short time scale region (τ = 2µs) we measure S = 2.1 and K = 10.0, while in the
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longer time scale region (τ = 64µs) S = 0.9 and K = 3.6. The variation of S and

K with τ is shown in figure 2.15. We also consider Fréchet and Gumbel fits to the

PDFs. We find that in the short time scale region, a Fréchet distribution with k = 1.2

is a satisfactory fit, while in the longer time scale region, a Gumbel distribution with

a = 1.5 fits well. These results compare favourably with a more detailed study of many

MAST datasets in [Hnat et al., 2008] which found that the δIsat distribution on short

time scales is well fitted by a Fréchet with index k = 1.25, while the Gumbel distribution

with a = 1.4 gives a satisfactory description of the PDF on long time scales. The fitting

of positively skewed Fréchet and Gumbel distributions indicates the increased likelihood

of positive events as compared to Gaussian. In a large tokamak such as ITER, this may

mean large bursts of plasma will reach the vessel wall and potentially cause damage.
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Figure 2.15: Measured skewness and kurtosis as a function of τ for MAST plasma
14222. Horizontal dashed lines mark Gaussian values for skewness (S = 0) and kurtosis
(K = 3) respectively.

2.7 Average temporal shape of large bursts

We now apply conditional averaging techniques [Pecseli and Trulsen, 1989] to char-

acterise the average temporal shape of the largest intermittent bursts. Conditional

averaging involves identifying certain bursts in the time series and averaging over their

temporal shapes. Here, we identify bursts as parts of the signal which cross a certain
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threshold from below, remain above that threshold for a finite time, and finally cross the

threshold from above. In the present case, we choose the threshold to be three standard

deviations. We take 25 equally spaced data points on either side of the maximum of

each burst and use these to define the burst’s temporal shape. The conditional average

is the mean temporal shape of all selected bursts. The thresholding is performed on

the absolute value of the signal so that the selection is not biased towards positive or

negative bursts. Only bursts with maxima separated by at least one decorrelation time

τA are chosen, so as not to include the same coherent structure more than once.
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Figure 2.16: Average burst shapes calculated by conditional averaging for LHD plasma
44190 before and after filtering: (a) tip 16; (b) tip 17; (c) tip 18; (d) comparison.

The results of this process for both the filtered and unfiltered data are shown in

figure 2.16 (a), (b) and (c). We show in 2.16(d) a comparison of all three average burst

shapes using filtered data by reflecting the shape for tip 17 about the x-axis. We see

that the effect of filtering on tips 16 and 17 is small, while the filtering of tip 18 uncovers
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Figure 2.17: Average burst shape calculated by conditional averaging for MAST plasma
14222.

the burst shape. Tips 16 and 18 are dominated by positive bursts, or blobs, whereas

tip 17 is dominated by negative bursts, or holes. This agrees with the analysis of time

series and PDFs. The shape of the positive blobs, which rise quickly and fall slowly,

in this stellarator plasma, is similar to that observed in other magnetic confinement

devices; see for example figure 5 in [Antar et al., 2003] which shows the conditional

average of Isat signals taken from two different tokamaks, a spherical tokamak and a

linear device. Negative holes have been observed in tokamaks [Boedo et al., 2003; Saha

and Chowdhury, 2006] and linear devices [Carter, 2006]. The width of the conditional

average peak at half its amplitude, τC , is 13µs for tip 16, 12µs for tip 17 and 15µs for

tip 18.

The same conditional averaging analysis is performed on the MAST data and

the results are shown in figure 2.17. We find a positive structure which rises quickly and

falls off slowly with a half-width of 13µs. These results are presented for comparison in

table 2.1.

2.8 Discussion

Edge and SOL transport is a complex phenomenon and only limited conclusions can be

drawn from this pilot study. First, let us discuss qualitatively the observed statistical
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properties in the context of other studies of edge and SOL transport in tokamaks and

stellarators. The aim is to understand possible mechanisms that could lead to the

very pronounced differences in the statistical properties of signals collected in LHD at

spatial locations separated by only 6mm. The connection length, Lc, of the magnetic

field lines connected to individual probe tips is a possible parameter responsible for the

observed differences. Indeed, there is a monotonic dependence of the observed statistics

on Lc: the skewness is positive for tip 16 (small Lc), tends to zero for tip 18 (medium

Lc) and reverses to a negative value for tip 17 (long Lc). Similar statistical changes

have previously been reported in tokamak and stellarator studies, where moving probes

were used to measure the ion saturation current inside and outside of the last closed

flux surface (LCFS) and in the vicinity of a velocity shear region [Boedo et al., 2003;

Sanchez et al., 2000; Zoletnik et al., 1999]. It has been shown that the skewness of

Isat is positive in the SOL region and negative inside the LCFS. A value of skewness

close to zero is often associated with the presence of velocity shear in the region where

the signal originated from. Such shear destroys large coherent structures generated by

the inverse energy cascade of 2D edge turbulence, hence one would expect the observed

signal to be nearly Gaussian, as it is indeed in the case of tip 18 here. Thus one could

explain the observed statistical differences in the analysed datasets by assuming that the

short magnetic field line connected to tip 16 explores only an edge region of plasma, the

magnetic field line of tip 18 penetrates a region of plasma where velocity shear is large

and the field line of tip 17 explores a region of plasma closer to the core. We stress,

however, that the rapid dissipation of structures should also lead to decorrelation in the

signal. This is contradicted by our analysis of the autocorrelation function which gives

largest decorrelation times for tip 18.

The above interpretation is not unique and other parameters may play an equally

important role in the observed statistics. For example, the influence of the complex edge

magnetic field topology and the presence of low order rational surfaces on edge and SOL

transport is another possibility in explaining the observed features. We note that, unlike
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the tokamak where the LCFS is well defined, a clear separatrix between closed and

opened magnetic field lines does not exist in stellarators. Rather, the edge magnetic

field is dominated by magnetic islands and the field lines may ergodically fill a finite

volume. It has been observed that the direction of particle flux changes from outwards

to inwards near rational surfaces in the TJ-II stellarator [Pedrosa et al., 2001]. This is

manifested in the reversal of skewness in time series of probe measured flux, similar to

the change in the sign of Isat skewness recorded by tips 16 and 17. Similarly, numerical

simulations of tokamak plasmas in the presence of ergodic magnetic field perturbations

show the reversal of the local radial E×B flux close to resonances and the suppression

of blob amplitudes [Reiser, 2007].

Turning to a quantitative discussion, we now examine the time scales measured

for LHD. Table 1 gives a comparison of the decorrelation time, τA, the break in absolute

moments τm, the half-width of the conditional average peak, τC and the skewness time

scale τS . The first three measurements, τA, τm and τC , are largest for tip 18, smallest

for tip 17 and in between for tip 16. This suggests that they are in some way related

to each other. The width of the conditional average peak, τC , gives a characteristic

time scale of blobs in the time series. It is reasonable to say that the decorrelation time

and break in absolute moments are also due to blobs and that the relatively high value

of the scaling exponent αI in the first region is due to the coherent nature of these

blob structures. The value of the decorrelation time, τA, for tip 18 is around four times

larger than those for tips 16 and 17. We note that τA is highly sensitive to any periodic

signal which may remain in the filtered time series and may also be strongly affected

by quasi-periodic features resulting from plasma rotation [Carreras et al., 1998]. In

the case of stellarators, where the edge magnetic field is ergodised, the spatio-temporal

correlation of the local magnetic field may limit the observed decorrelation times, in that

the ergodic magnetic field will not allow the field-aligned blobs to be fully developed.

While the presence of plasma blobs is consistent with the statistical features

on small temporal scales, it is also important to examine larger temporal scales. This
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could provide more information on the evolution and interaction of plasma blobs as well

as the background fluctuations that they are embedded in. The scaling exponents αII

indicate that, in terms of long temporal correlations, tip 18 is the most interesting, being

significantly different from the Gaussian case. We can further study these long temporal

scales by examining the asymmetry of these signals, as given by skewness. Skewness

estimates nonlinear interactions in the time series and, in the context of turbulent studies,

is related to the rate of cascade for the quantity of interest. In that respect, τS can be

thought of as a maximum scale at which nonlinear interactions are still significant. Thus

τS is related to the distribution of the observed fluctuations, while both τA and τm are

more sensitive to linear temporal correlations within the time series. We find that the

nonlinear interactions of fluctuations for tip 16 are strong for nearly all of the temporal

scales examined, they are less relevant for tip 17 and are very weak for tip 18.

2.9 Conclusions

We have analysed measurements of ion saturation current, Isat, made by three tips in

a Langmuir probe array in the edge plasma of the LHD heliotron. Statistical methods

such as absolute and signed moment analysis, PDF dynamics and conditional averaging

have been used to quantify differences in the properties of the turbulence measured at

each tip. The same analysis has been applied to a dataset taken from the Mega-Amp

Spherical Tokamak for comparison purposes.

A monotonic change in the skewness of the analysed LHD signals with the

connection length of the magnetic field lines attached to each tip is observed. We have

discussed this statistical feature with reference to similar results from other experiments.

Absolute moment analysis is shown to be strongly affected by the presence of

coherent modes in some of the datasets. Following filtering, however, absolute moment

analysis reveals dual scaling regimes for all tips with the transition between different

scaling at 30 − 45µs. This transition could be due to the dominance of coherent blob

structures in the short time scale region. More detailed studies are required in order to
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understand the blob generation mechanisms and energetics.

Scaling exponents obtained for small and large temporal scales suggest clustering

around similar values. For small temporal scales, we find strong correlations and scaling

exponents in the range 0.8− 0.9. On long temporal scales, scaling exponents fall within

the superdiffusive range 0.55 − 0.7. These values are in good agreement with studies

of other devices where long range correlations were found to be characterised by scaling

exponents between 0.52− 0.72 [Carreras et al., 1998; Dudson et al., 2005; Hnat et al.,

2008]. This suggests a degree of universality in the properties of edge turbulence across

different confinement systems.
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Chapter 3

The Hasegawa-Wakatani

equations and the HAWK code

3.1 Introduction

Due to the extreme conditions encountered in fusion plasmas, their diagnosis is extremely

challenging and experimental data on the temporal and spatial scales of interest is

not always available. This problem can be avoided with the use of analytical and

numerical modelling, and these tools also allow the development of further physical

insight. Generally speaking, there are two approaches to modelling: ‘top down’ and

‘bottom up’. In the top down approach, the physics is modelled in as much detail as

is numerically possible in order to produce the most accurate results possible. As well

as being computationally expensive, in this approach it may not always be clear which

physical effects are responsible for the observed results. In the bottom up approach, a

starting point is chosen where most of the physics is fairly well understood and extra

complications are added one at a time. In this approach, physical effects can be studied

in isolation. In this thesis, we follow the bottom up approach and choose the Hasegawa-

Wakatani model [Hasegawa and Wakatani, 1983] as our starting point. The Hasegawa-

Wakatani (HW) model is a paradigmatic description of drift wave turbulence in the edge
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region of a tokamak plasma that has a non-uniform background density and uniform

equilibrium magnetic field. A new numerical code, HAWK (HAsegawa-WaKatani), has

been developed by the author as part of this thesis in order to solve the HW equations

numerically.

In the next section the HW equations are derived from the Braginskii two fluid

equations, which were introduced in Chapter 1. The numerical methods employed in the

HAWK code to solve the HW equations are discussed in Section 3.3. The HAWK code

is tested in Section 3.4 and a typical run of the code is demonstrated in Section 3.5.

Modifications to the HW equations to include zonal flows and non-uniform magnetic

field strength are discussed in Sections 3.6 and 3.7.

3.2 Derivation of Hasegawa Wakatani equations

The Hasegawa Wakatani equations can be derived from the Braginskii fluid equations

[Braginskii, 1965] for a plasma with one electron species and one ion species. The

physical setting is the edge region of a plasma magnetically confined by a uniform

magnetic field B in the presence of a background density gradient ∇n0, see figure 3.1.

The equations provide a simple model of the drift wave instability and include nonlinear

terms which lead to saturation and turbulence.

Figure 3.1: Physical setting of the Hasegawa-Wakatani equations. The shaded square
represents the computational domain.

In order to dramatically simplify the equations, the ions are assumed to be
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cold Ti = 0 and the plasma is assumed to be isothermal Te = const = T . This first

assumption is highly questionable in the edge region of tokamaks. However, retaining ion

temperature leads to much more complicated equations (see [Scott, 2000], for example,

for the gyrofluid equations) and it is thus neglected in many reduced fluid models.

Experimental evidence suggests that fluctuations in the edge region of many magnetically

confined plasmas are close to electrostatic and thus it is assumed, for the HW model,

that electric fields can be expressed in terms of an electrostatic potential φ, E =

−∇φ. Since the electron mass is much smaller than the ion mass, electron inertia

is neglected. Furthermore, all anisotropic pressure tensor terms (viscosity) are ignored

and quasineutrality is assumed ne = ni = n.

Perpendicular ion momentum

Applying the above assumptions and resolving in the direction perpendicular to the

magnetic field, the ion equation of motion becomes

mn

(

∂

∂t
+ v · ∇⊥

)

v = ne(−∇⊥φ + v ×B) . (3.1)

The lowest order ion perpendicular velocity is found by setting the left hand side to zero

and taking the cross product with B, giving the E ×B drift velocity

vE =
b×∇⊥φ

B
, (3.2)

where b is a unit vector pointing in the direction of B. The next order correction is found

by substituting vE back into the momentum equation and taking the cross product with

B, giving the polarisation drift velocity

vp =
mi

e

b×
(

∂
∂t + vE · ∇⊥

)

vE

B
. (3.3)

The ion perpendicular equation of motion is thus reduced to a velocity, vi⊥ = vE +vp.

Perpendicular electron momentum

In a similar way, the electron equation of motion perpendicular to the magnetic field

is replaced with a velocity. With the assumptions above, we have for the electron
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perpendicular equation of motion

0 = −ne(−∇⊥φ + v×B)− T∇⊥n . (3.4)

Taking the cross product with B gives the electron perpendicular velocity

ve⊥ =
b×∇⊥φ

B
− b× T∇⊥n

neB
= vE + vde , (3.5)

where vE is the same E × B velocity that was seen for ions and vde is the electron

diamagnetic drift velocity. We note that the polarization drift is neglected for electrons

because of their small mass and the diamagnetic drift is neglected for ions because of

the assumption that Ti = 0.

Parallel momentum

We now turn to the equations of motion parallel to the magnetic field. Due to the elec-

tron/ion mass ratio, electrons are much more mobile than ions in the parallel direction

and accordingly ions are assumed to be immobile, vi‖ = 0. Thus the parallel dynamics

are governed by the electrons alone. The parallel electron equation of motion is written

as

0 = ne∇‖φ− T∇‖n− ηe2n2ve‖ , (3.6)

where the last term models collisions between the electrons and the immobile ions,

and η is a resistivity. Note that if we assumed zero resistivity, the equation would

lead to the so-called adiabatic electron response that was discussed in Section 1.8.3,

equation 1.36, and there would therefore be no drift wave instability in the model.

This assumption leads to the Hasegawa-Mima equation [Hasegawa and Mima, 1978].

Retaining the collisions term allows deviations from adiabaticity which produce the drift

wave instability. Equation 3.6 can be re-written as a parallel current density,

J‖ =
T

eη

[∇‖n

n
−

e∇‖φ

T

]

. (3.7)
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Electron continuity

The Hasegawa-Wakatani equations are built by plugging the above results into the

Braginskii continuity equations. First we write the electron continuity equation as

∂n

∂t
+ ve⊥ · ∇⊥n + n∇⊥ · ve⊥ −

1

e
∇‖ · J‖ = 0 , (3.8)

and then substitute in the electron velocity from above ve⊥ = vE + vde. Some terms

vanish, ∇⊥ · vE = 0, ∇⊥ · vde = 0, and vde · ∇⊥n = 0, leaving

(

∂

∂t
+ vE · ∇⊥

)

n− 1

e
∇‖ · J‖ = 0 . (3.9)

Ion continuity

Similarly, we write the ion continuity equation as

∂n

∂t
+ vi⊥ · ∇⊥n + n∇⊥ · vi⊥ = 0 , (3.10)

and substitute in vi⊥ = vE +vp. Again, there are terms which vanish and the nonlinear

term vp · ∇⊥n is neglected leaving

(

∂

∂t
+ vE · ∇⊥

)

n + n∇⊥ · vp = 0 . (3.11)

Invoking quasineutrality, the electron and ion continuity equations (3.9 and 3.11) are

equated to give

n∇⊥ · vp = −1

e
∇‖ · J‖ . (3.12)

Next, the term on the left hand side is written as

∇⊥ · vp = −mi

e

1

B2

(

∂

∂t
+ vE · ∇⊥

)

∇2φ , (3.13)

thus we have
(

∂

∂t
+ vE · ∇⊥

)

∇2φ =
B2

nmi
∇‖ · J‖ . (3.14)

The quantity ∇2φ ≡ ω is known as vorticity since it is equal to the curl of the E × B

velocity.
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Reduction

Equations 3.7, 3.9 and 3.14 form the three-dimensional Hasegawa Wakatani equations

for density n and electrostatic potential φ. In this section, these equations are reduced

further in order to make them easier to solve numerically. Firstly, the variables are split

into background and fluctuating components n = n0 + ñ, where time and spatial scale

separation ensures n0 ≫ ñ and ∂n0/∂t = 0 and ∇‖n0 = 0. The background potential

is assumed to be zero, thus φ = φ̃. Now the equation for parallel current density (3.7)

becomes

J‖ =
T

eη

[

∇‖ñ

n0
−

e∇‖φ̃

T

]

. (3.15)

Secondly, the model is made two-dimensional by assuming a single parallel wavenumber

k so that ∇2
‖ → −k2 and the divergence of J‖ becomes

∇‖ · J‖ =
Tk2

eη

[

eφ̃

T
− ñ

n0

]

. (3.16)

Thirdly, slab geometry is used with the magnetic field pointing in the z-direction b = ẑ

and a background density gradient pointing in the negative x-direction of the form

∇n0 = −x̂n0/Ln, where Ln is the lengthscale of the gradient. Thus the x and y

directions may be identified with the radial and poloidal directions respectively in a

tokamak. In this geometry, nonlinear terms can be written using the Poisson bracket

notation vE · ∇⊥ → 1
B

[

φ̃,
]

, where

[A,B] =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
. (3.17)

Normalisation

The final step in order to make the equations easier to solve numerically is to normalise

them. We use the following mappings

eφ̃

T
→ φ ,

ñ

n0
→ n , ωcit→ t ,

x

ρs
→ x , (3.18)
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where ωci is the ion gyrofrequency and ρs =
√

miT/eB is the hybrid Larmor radius.

The Hasegawa-Wakatani equations can now be written as

∂n

∂t
= −κ

∂φ

∂y
+ α(φ− n) + [n, φ] , (3.19)

∂

∂t
(∇2φ) = α(φ − n) +

[

∇2φ, φ
]

, (3.20)

where the two parameters of the model are

α =
Tk2

n0e2ηωci
and κ = −∂ ln n0

∂x
. (3.21)

The parameter α contains the parallel wavenumber k and resistivity η. It controls the

adiabaticity of the electrons and the strength of the resistive coupling between n and φ

through the parallel current. In the limit α≫ 1 the coupling is adiabatic (n = φ in our

normalised units) and the HW equations reduce to the HM equation. The parameter κ

characterises the background density gradient which drives the system.

In the HW model, the potential vorticity

Π = (∇2φ− n + κx) , (3.22)

is a Lagrangian conserved quantity, dΠ/dt = 0 where d/dt = ∂/∂t + [φ, ] is the

convective derivative associated with E ×B drift.

3.3 Numerical methods

In this section, the numerical methods used in the HAWK code to solve the HW equations

are described.

3.3.1 Dissipation

When numerically solving nonlinear fluid equations such as the Hasegawa-Wakatani

equations, dissipation terms must be added to the equations by hand in order to en-

sure numerical stability. Dissipation terms act to remove energy from the small spatial
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scales of the system which are beyond the limit of the numerical resolution and mimic

viscocity. We add dissipation operators to each equation ∂/∂t→ ∂/∂t−D. The form

of the operator is either Newtonian viscocity D = D∇2 or hyperviscocity D = −D∇4.

Hyperviscocity tends to preserve more of the turbulent inertial range than Newtonian,

but requires an additional calculation in every time step.

3.3.2 Spatial discretisation

For simplicity, we perform calculations on a square and periodic grid which is discretised

using the well-known finite difference method. The nonlinear Poisson bracket terms are

discretised according to the method derived by Arakawa [Arakawa, 1966],

[φ, f ] =
1

3
(J++ + J+× + J×+) , (3.23)

where

J++ =
1

4∆2
[(φ+0 − φ−0)(f0+ − f0−)− (φ0+ − φ0−)(f+0 − f−0)] , (3.24)

J+× =
1

4∆2
[φ+0(f++ − f+−)− φ−0(f−+ − f−−)− φ0+(f++ − f−+) + φ0−(f+− − f−−)] ,

(3.25)

J×+ =
1

4∆2
[φ++(f0+ − f+0)− φ−−(f−0 − f0−)− φ−+(f0+ − f−0) + φ+−(f+0 − f0−)] .

(3.26)

Here, ∆ is the grid spacing, the first and second subscripts refer to the x and y directions

respectively and the ‘−’ subscript denotes the previous grid node, the ‘0’ subscript

denotes the current grid node and the ‘+’ subscript denotes the next grid node. This

method is known to be well suited to solving the HW equations and conserves energy

and enstrophy [Naulin and Nielsen, 2003].

3.3.3 Temporal discretisation

In order to evolve the equations in time, the equations are integrated using the Karni-

adakis 3rd order multi-step method [Karniadakis et al., 1991]. In this method ∂x/∂t =
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f(x, t) is expressed as a linear combination of previous steps,

11

6
xn − 3xn−1 +

3

2
xn−2 −

1

3
xn−3 = 3fn−1 − 3fn−2 + fn−3 , (3.27)

where the n subscript refers to the current time step, the n − 1 subscript refers to

the previous time step and so on. This method requires only one calculation per time

step; however, since three previous time steps must be remembered, the memory require-

ments are relatively large. This Arakawa-Karniadakis combination of numerical methods

was introduced in [Naulin, 2003], thoroughly tested in [Naulin and Nielsen, 2003] and

described in detail in [Scott, 2008].

3.3.4 Poisson’s equation

In the Hasegawa-Wakatani equations, the density n and vorticity ω = ∇2φ are evolved,

and not the potential φ. Therefore, at every time step the potential must be calculated

from the vorticity, i.e. a solution to Poisson’s equation must be found. When the

boundary conditions are periodic in both dimensions, a 2D Fourier transform can be

employed to compute φ from ω. This involves calculating the Fourier transform of the

vorticity, ωk, by using a fast-Fouier transform (FFT) algorithm; in the HAWK code the

FFTW3 library is used [FFTW, 2009]. The potential can then be solved for in Fourier

space using [Press et al., 1993]

φk =
∆2ωk

2 cos
(

2πm
M

)

+ 2cos
(

2πn
N

)

− 4
, (3.28)

where m and n are the Fourier mode numbers and M and N give the size of the grid.

The solution φ is obtained by applying an inverse fast-Fourier transform (IFFT) to φk.

When the boundary conditions are periodic in only one dimension, it is possible to apply

1D FFT in that direction. The solution φ can then be found by inverting the resulting

tri-diagonal matrix and applying a 1D IFFT [Press et al., 1993].
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3.4 Testing the HAWK code

A new numerical code called HAWK has been written in C by the author. HAWK

employs the above numerical techniques to solve the HW equations. In order to test

the accuracy of the code, two tests have been employed. Firstly, the linear dispersion

relation has been derived analytically and compared to the simulation results. Secondly,

conservation laws for energy and enstrophy like quantities have been derived and used

to check conservation by the code. The first test is a good test of the linear properties

of the code while the second is a good test of the nonlinear properties.

3.4.1 Linear dispersion relation

We calculate the linear dispersion relation for plane waves of the form

n, φ ∼ exp(ikxx + ikyy − iωt) , (3.29)

by neglecting nonlinear terms and applying a Fourier transform. Using a Newtonian

dissipation operator, the equations become

−iωnk = −κikyφk + α(φk − nk)−Dk2nk (3.30)

and

iωk2φk = α(φk − nk) + Dk4φk , (3.31)

where k2 = k2
x + k2

y . Rearranging and combining these two equations in such a way as

to eliminate φk/nk, we obtain the dispersion relation

ω2 + iω
[

α(1 + 1/k2) + 2Dk2)
]

− αD(1 + k2)−D2k4 − i
ακky

k2
= 0 . (3.32)

In the limit of no dissipation D = 0, this becomes

ω2k2 + iωα(k2 + 1)− iακky = 0 , (3.33)

and in the limit α→∞, the normal drift wave dispersion relation,

ω =
κky

k2 + 1
, (3.34)
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is obtained. Taking the long wavelength limit (k2 → 0) gives ω = κky, which implies

that the drift waves propagate in the poloidal y direction with phase velocity U = κ

(normalised units). The quadratic dispersion relation, equation 3.33, can be solved to

give a real and imaginary part,

ω = ωR + iγ , (3.35)

where the real part is

ωR =
1

2
√

2

√
a

√

√

a2 + b2 − a , (3.36)

and the imaginary part, or growth rate, is

γ = −1

2
a +

1

2
√

2

√
a

√

√

a2 + b2 + a , (3.37)

with

a = α(1 + 1/k2) , (3.38)

and

b =
4κky

1 + k2
. (3.39)

In the following example, the analytical solution to the dispersion relation is

compared to simulation results. The parameters of the HW model are set to α = 0.5

and κ = 1, figure 3.2 shows the resulting real and imaginary parts of the solution to

the analytical dispersion relation (equations 3.36 and 3.37). As can be seen, the largest

amplitude wave and largest growth rate are located close to kx = 0 and ky = 1.

The same parameters are used in a run of the HAWK code. The time step is set

to ∆t = 0.01 and the grid is doubly periodic with 512×512 points spaced by ∆ = 0.125.

The initial condition is a sum of low amplitude Fourier modes with amplitudes such that

|φk| ∼ k−3. Since we are interested in the linear dispersion relation, nonlinear terms

in the code are switched off and viscocity is not applied (D = 0). The growth rate is

calculated using the ratio of the amplitudes of the Fourier modes φk at time t2 and t1,

γ(kx, ky) =
1

t2 − t1
log

( |φk(kx, ky; t2)|
|φk(kx, ky; t1)|

)

. (3.40)

Figure 3.3 shows the calculated linear growth rate. The agreement with the analytical

results (figure 3.2(b)) is excellent, indicating that the HAWK code is working well.
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Figure 3.2: (a) Real and (b) imaginary parts of the solution to the HW analytical
dispersion relation (equation 3.33) with α = 0.5 and κ = 1.0.

k
x

k y

 

 

1 2 3 4 5 6

1

2

3

4

5

6
0

0.02

0.04

0.06

0.08

0.1

0.12

γ

Figure 3.3: Linear growth rate measured in the HAWK code using parameters α = 0.5
and κ = 1.0.
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3.4.2 Energy and enstrophy conservation

Evolution equations for the energy E,

E =
1

2

∫

(

n2 + (∇φ)2
)

dV , (3.41)

and generalised enstrophy W ,

W =
1

2

∫

(n−∇2φ)2 dV , (3.42)

can be obtained by manipulation and integration of the Hasegawa-Wakatani equations,

d

dt
E = κΓn0 −Dα + DE , (3.43)

d

dt
W = κΓn0 + DW . (3.44)

Here,

Γn0 = −
∫

n
∂φ

∂y
dV , (3.45)

is the total radial E ×B density flux, which acts as the system’s source, while

Dα = α

∫

(φ− n)2 dV , (3.46)

is a sink term due to the parallel current. DE and DW are sink terms due to the

numerical dissipation and their form depends on the type of dissipation used,

DE =

∫

[

nD(n)− φD(∇2φ)
]

dV , (3.47)

DW =

∫

(n−∇2φ)D(n −∇2φ) dV . (3.48)

The energy E can be split into components which we refer to as potential energy

EP = 1/2
∫

n2 dV and kinetic energy EK = 1/2
∫

(∇φ)2 dV .

In the following example, the parameters of the HW model are set to α = 0.5

and κ = 1 and the viscocity is Newtonian with coefficient D = 0.01. The time step is

∆t = 0.01 and the grid is doubly periodic with 512× 512 points spaced by ∆ = 0.125.

The simulation is initialised with low amplitude (∼ 10−3) random noise in density and
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Figure 3.4: (a) Energy and (b) enstrophy conservation in the HAWK code: equations
3.43 and 3.44.

potential and is run for 300 normalised units of time (i.e. 30000 time steps). At each

time step, the quantities in equations 3.43 and 3.44 are recorded. In figure 3.4(a)

κΓn0 − Dα + DE and dE/dt are plotted as functions of time and in figure 3.4(b)

κΓn0+DW and dW/dt are plotted. In both cases the time series overlap, indicating that

the relations 3.43 and 3.44 are holding, and the code is conserving energy and enstrophy

well. Error time series are estimated by calculating the differences and dividing by the

standard deviation. In this case and in the rest of this thesis, the error is typically below

1%. For the narrow range of parameters used in this thesis, the code has been checked

for convergence by doubling and halving the grid resolution and size and comparing the

power spectra.

3.5 HAWK simulation

The aim of this section is to demonstrate the typical output of the HAWK code. Figure

3.5 shows snapshots of the density n and potential φ along with the time series of

energy E taken from the run of the HAWK code described in the previous section. The

energy time series begins to rise exponentially after a short transient which is due to the

initial conditions. The rise in E is due to the excitation of drift waves by the drift wave

linear instability. At time t = 10, density and potential have begun to form coherent

structures from the random initial conditions. At time t = 30 drift waves, extended in
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the x direction and propagating in the y direction are observed. The amplitude of these

drift waves continues to increase exponentially until around t = 100 when nonlinear

effects become important and E saturates. The nonlinear terms act to distribute energy

in k space by wave-wave interactions and by time t = 300 quasi-stationary turbulence

dominated by turbulent vortices is observed.

t = 10

n

t = 30 t = 100 t = 300

φ

0 50 100 150 200 250 300
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10
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t
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y

x

Figure 3.5: Snapshots of density n and potential φ and time series of energy E taken
from the HAWK code. The dashed lines in the E time series correspond to the times
at which snapshots are taken.

The HW equations can be modified to include extra physics and the effect of

the modification can be determined by comparison. In the next sections, we consider

the effects of non-uniform magnetic field strength and zonal flows.
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3.6 Zonal flows

The nonlinear nature of drift wave turbulence dynamics distributes energy extracted from

the background density gradient into modes with different wave numbers. It has been

observed that some of the energy is deposited into small wave number modes, generating

large flows which in tokamaks manifest as poloidally extended and radially localised

coherent structures. These modes, with finite radial wave numbers but vanishing poloidal

and toroidal numbers (m = n = 0), have been termed zonal flows. Importantly, zonal

flows emerge as a generic feature of many models independent of plasma conditions or

the geometry, and are a good example of self-organisation that can occur in complex

systems with nonlinear interactions on many spatio-temporal scales [Diamond et al.,

2005].

It has been noted that in tokamaks, the zonal components of the potential and

density do not contribute to the parallel current [Dorland and Hammett, 1993] and in the

standard formulation of the equations (3.19 and 3.20), zonal flows are damped. Modified

equations, which allow the self-generation of zonal flows, are obtained by removing the

zonal components from the parallel coupling terms [Numata et al., 2007]:

∂n

∂t
= −κ

∂φ

∂y
+ [n, φ] + α(φ̃ − ñ) , (3.49)

∂ω

∂t
= [ω, φ] + α(φ̃− ñ) , (3.50)

where φ̃ = φ−〈φ〉 and ñ = n−〈n〉 are the non-zonal components and angular brackets

denote the zonal components. In 2D the zonal component is simply the average over

the poloidal y direction,

〈f〉 = 1

Ly

∫

fdy . (3.51)

We refer to equations 3.49 and 3.50 as the zonal-Hasegawa-Wakatani (ZHW) equations.

The ZHW equations were used to study the generation and stability of zonal flows in

Numata et al. [2007] and the interaction between drift wave turbulence and zonal flows

in Scott [2005].
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Figure 3.6: Snapshots of density n and potential φ and time series of energy E, zonal
energy 〈E〉 and non-zonal energy Ẽ taken from a HAWK simulation of the ZHW model
(equations 3.49 and 3.50). The dashed lines in the E time series correspond to the
times at which snapshots are taken.

Figure 3.6 shows snapshots of the density and potential taken from a HAWK

simulation of the ZHW equations with the same parameters as the previous section. In

the energy time series, the total energy E defined by equation 3.41 is plotted as well as

the zonal energy

〈E〉 =
1

2

∫

[

〈n〉2 +

(

∂〈φ〉
∂x

)2
]

dV , (3.52)

and the non-zonal energy

Ẽ = E − 〈E〉 =
1

2

∫

[

ñ2 + (∇φ̃)2
]

dV . (3.53)

The simulation begins in the same way as for the standard HW equations: linear drift

waves grow exponentially until nonlinear effects become important. At around t =
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100 the total energy saturates and turbulent vortices are observed. As the simulation

develops, zonal flows are generated by some secondary instability. At around t = 150

the zonal energy 〈E〉 grows larger than the non-zonal energy Ẽ, by t = 300 zonal flows

are dominant and are clearly observed in the snapshot of potential.

3.6.1 Zonal flow damping

In these 2D simulations of the ZHW model, the majority of the energy finds its way into

zonal flows and zonal flows are dominant. This follows from the efficiency of the zonal

flow generation in 2D turbulence [Scott, 2005]. In 3D, however, energy tends to find an

equilibrium between zonal flows and turbulence [Peeters, 2009]. In order to mimic this

in a 2D simulation, we artificially set the kinetic energy of the zonal flows equal to the

kinetic energy of the non-zonal drift wave turbulence at each time step in the saturated

turbulent state of the ZHW model,

〈E〉K ≡
1

2

∫
(

∂〈φ〉
∂x

)2

dV =
1

2

∫

(∇φ̃)2 dV ≡ ẼK . (3.54)

Numerically, this is achieved by multiplying the zonal component of potential 〈φ〉 by a

factor of A at every time step, once the zonal energy has grown equal to the non-zonal

energy where

A =

√

EK

〈E〉K
− 1 . (3.55)

Figure 3.7 shows snapshots of the potential and density taken from a HAWK

simulation of this damped-zonal-Hasegawa-Wakatani (DZHW) model, using the same

parameters as before. The total zonal energy 〈E〉 remains lower than the non-zonal

energy Ẽ throughout the simulation. By time t = 300, zonal flows and turbulent

vortices coexist in a quasi-stationary state.

3.6.2 Zonal flows as transport barriers

Zonal flows are thought to act as transport barriers in that they improve the confine-

ment of plasma. Here, we illustrate this effect using a simple modification to the HW
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Figure 3.7: Snapshots of density n and potential φ and time series of energy E, zonal
energy 〈E〉 and non-zonal energy Ẽ taken from a simulation of the DZHW model
(equations 3.49 and 3.50 with the constraint of equation 3.54). The dashed lines in the
E time series correspond to the times at which snapshots are taken.

equations. The equations we consider are

∂n

∂t
= α(φ− ñ) + [n, φ] , (3.56)

and
∂

∂t
(∇2φ) = α(φ − ñ) +

[

∇2φ, φ
]

, (3.57)

where n now includes background and fluctuating parts, n = n0 + ñ and

n0 =
1

Ly

∫

ndy . (3.58)

We also consider the equations

∂n

∂t
= α(φ̃− ñ) + [n, φ] , (3.59)
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Figure 3.8: Density profile n0 relaxation with (bottom) and without (top) zonal flows.

and
∂

∂t
(∇2φ) = α(φ̃ − ñ) +

[

∇2φ, φ
]

, (3.60)

which allow the generation of zonal flows. Here φ̃ represents the non-zonal components

of φ, φ̃ = φ − 〈φ〉. The simulation is initialised with a background density profile of

the form n0 ∼ arctan (ax + b), where a and b are constants. The poloidal boundary

conditions are periodic, while the vorticity ∇2φ is set to zero and the density n has

no-flux (∂n/∂x = 0) at the radial boundaries. This allows the density profile n0 to

evolve freely by itself. A square grid of side L = 40 with 256× 256 grid points is used,

the parameter α is set to 0.5 and the viscosity is Newtonian with constant D = 0.01.

Two simulations are run, one with zonal flows allowed to self-generate and one

with zonal flows damped. In figure 3.8 the evolution of the density profile n0 is plotted

along with the zonal component of potential 〈φ〉 for both cases. In both cases, the

density profile relaxes in time as density is transported down the gradient. At the end

of the simulation t = 300, the density profile n0 is steeper for the case with zonal flows

present. This is due to the zonal flow acting as a barrier to the transport of density. In

the presence of zonal flows, the radial flux of density is reduced.
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A shear flow such as a zonal flow can stabilise the original instability. The drift

wave instability is suppressed in the HW model when there is poloidal flow U that

satisfies
∂2U

∂x2
≥ κk2 , (3.61)

where k is the wavenumber of the turbulent fluctuations.

3.7 Non-uniform magnetic field strength

When deriving the HW equations, the magnetic field is assumed to be uniform. In

tokamaks, however, the toroidal magnetic field strength declines with radial distance

from the axis of symmetry. Thus we repeat the derivation of the HW equations with the

assumption that the magnetic field strength varies in the radial x-direction, B = B(x)ẑ.

With this assumption, the divergence of the E ×B and diamagnetic velocities, ∇ · vE

and ∇ · vde, no longer vanish, leading to extra terms in the equations. We obtain

∂n

∂t
= −κ

∂φ

∂y
+ α(φ− n) + [n, φ] + C

∂

∂y
(φ− n) , (3.62)

and
∂

∂t
(∇2φ) = α(φ− n) +

[

∇2φ, φ
]

− C
∂n

∂y
, (3.63)

where C = −∂ ln B/∂x is assumed to be constant and characterises the gradient of

B(x). We refer to equations 3.62 and 3.63 as the curvature-Hasegawa-Wakatani (CHW)

equations, since in tokamaks the non-uniform magnetic field strength is associated with

toroidal curvature. The standard HW equations are recovered from the CHW equations

when C = 0. The extra terms at finite C represent interchange forcing due to the

non-uniform magnetic field and compressibility of the E×B and diamagnetic velocities.

Linearising and Fourier decomposing the CHW equations, we obtain for plane

waves ∼ exp [i(kxx + kyy − ωt)],

ωnk = (κ− C)kyφk + Ckynk + iα(φk − nk) , (3.64)

75



and

ωk2φk = −Ckynk − iα(φk − nk) . (3.65)

Eliminating nk/φk we obtain the dispersion relation,

ω2k2 + ω
[

iα(1 + k2)− Ckyk
2
]

+ ky(κ−C) [Cky − iα] = 0 , (3.66)

which, in the limit α≫ 1, becomes

ω =
(κ− C)ky

1 + k2
, (3.67)

which is the usual drift-wave dispersion relation, modified by a factor of (κ−C)/κ. In

the long wavelength limit (k2 → 0), the linear drift waves propagate in the poloidal y

direction with phase velocity

U = κ− C . (3.68)

Restoring the units, U = ude−u∇B , where ude = −(Te/eBn0)(∂n0/∂x) is the electron

diamagnetic drift velocity and u∇B = −(Te/eB
2)(∂B/∂x) is the modification due to

∇B effects. Since the ratio of two complex numbers can be expressed as an amplitude

and a phase shift, an expression for the linear phase shifts between n and φ can be found

by eliminating ω in equations 3.64 and 3.65 instead of nk/φk. In the long wavelength

limit, we obtain

θ = arctan

(

Cky

α

)

. (3.69)

Thus, in the linear regime, the parameter C alters the poloidal velocity of the drift waves

and the phase shift between density n and potential φ. In the nonlinear regime, these

features are retained.

The evolution equation for the generalised enstrophy W (equation 3.44) is also

modified for the CHW model,

d

dt
W = (κ− C)Γn0 + DW . (3.70)

This equation requires κ > C, so that Γn0 is a source of W . The Lagrangian conserved

quantity, potential vorticity, becomes

Π = (∇2φ− n + (κ− C)x) . (3.71)
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The approximate conservation of this quantity plays an important role in the dynamics

of turbulent structures, as described in the next section.
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Figure 3.9: Contours of potential φ in the quasi-stationary saturated turbulent state of
the CHW system for different values of C = −∂ lnB/∂x.

Figure 3.9 shows typical snapshots of the potential φ in the quasi-stationary

saturated turbulent state for C = [−0.3, 0, 0.3] with α = 0.5 and κ = 1. Unlike the

zonal flow case, snapshots of potential and density do not illustrate well the effect of

the parameter C. In fact, the main effects of C are to change the dynamics of the

turbulent vortices and to change statistical properties of the turbulence. The statistical

changes are explored in the next chapter. In the next section, we consider the dynamics

of a single nonlinear structure in the CHW model in order to illustrate the effect of C.

3.7.1 Propagation of nonlinear structures

We are interested in the effect of changing the magnetic field inhomogeneity (i.e. chang-

ing the value of the parameter C in equations 3.62 and 3.63), and choose the set

C = [−0.3, 0, 0.3] as representative of different locations with respect to an equilibrium

magnetic field. When the parameters κ and C are opposite in sign, the gradients of

magnetic field strength and of background density point in opposite directions; as is the

case on the inboard side of a tokamak. When κ and C share the same sign, the gradients

of magnetic field strength and of background density point in the same direction; as is

the case on the outboard side of a tokamak. In the latter case, perturbations in density
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lead to radial E ×B motion due to the ∇B plasma polarization and the plasma is said

to be interchange unstable. In the former case, the plasma is interchange stable. In

reality, the inboard and outboard sides of a tokamak are connected by helically wound

magnetic field lines. This three dimensional effect results in ballooning type modes and

is beyond the scope of this model. Other parameters in the CHW model are set to

α = 0.5 and κ = 1, viscocity is Newtonian with D = 0.01 and the grid has 256 × 256

points space by ∆ = 40/256.
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Figure 3.10: Radial evolution of density n of nonlinear structures for different values of
C = −∂ ln B/∂x. The directions of the gradients of background magnetic field and
density are opposed for negative C and coincident for positive C.
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Figure 3.11: Radial ux and poloidal uy velocity components of positive amplitude non-
linear structures shown in Fig. 3.10 for different values of C.

The simulation is initialised with a Gaussian pulse monopole structure, shown

as a dark blue solid line in figure 3.10, with n = φ in the centre of the computational
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box, whose positive amplitude is large enough to cause nonlinear effects. We follow

this structure and in figure 3.10 show the radial evolution of its density n for C =

[−0.3, 0.0, 0.3]. For the standard HW case (C = 0) the structure propagates slowly in

the negative x direction and exponentially decays slowly with time, in agreement with

a similar study in [Naulin, 2002]. For CHW with C = −0.3 the structure propagates in

the negative x direction but decays at a much faster rate. For C = 0.3 the structure

propagates in the positive x direction – down the background density gradient – and

grows in time. When C = 0.3, negative amplitude nonlinear structures propagate in the

negative x direction and grow in time; when C = −0.3 they propagate in the positive x

direction and decay with time. Thus when C = 0.3, nonlinear perturbations of density

and radial velocity are correlated, and when C = −0.3 they are anticorrelated.

Figure 3.11 shows how the radial ux and poloidal uy velocities of the positive

amplitude structure, shown in figure 3.10, change for a wider range of C. We find that

the radial velocity increases with C while the poloidal velocity decreases with C. We

note that in the radial x direction, positive and negative amplitude structures propagate

in opposite directions, so that the radial velocity of a negative amplitude structure is

approximately −ux. In the poloidal y direction, however, positive and negative amplitude

structures propagate in the same direction with the same velocity uy. Thus the change

in uy with C may be understood in terms of the linear approximation embodied in

equation 3.68: increasing C decreases the poloidal flow velocity. In the fully developed

turbulence we also find that increasing C decreases the poloidal flow velocity. Further

understanding of the radial propagation of structures can be obtained by considering the

potential vorticity Π defined in equation 3.71 [Naulin, 2002; Basu et al., 2003a]. Taking

the time derivative of equation 3.71 gives

d

dt
x ≡ ux = −∂φ

∂y
= − 1

κ− C

d

dt
ζ , (3.72)

where ζ = ∇2φ − n is the fluid part of the potential vorticity and ux is the radial

component of the E × B velocity of the structure. We note that (κ − C) must be

positive by equation 3.44, and negative vorticity ∇2φ is associated with positive density

79



structures and vice-versa [Naulin, 2002]. In the inviscid limit, a fluid structure will

propagate consistent with equation 3.72, in order to keep Π constant.

3.7.2 Computations in polar coordinates

It is also possible to perform HAWK simulations in an annulus using polar coordinates

(r, θ). The CHW equations in this geometry are

∂n

∂t
= −κ

1

r

∂φ

∂θ
+ α(φ− n) +

1

r
[n, φ] + C

[

1

r

∂

∂θ
(φ− n) cos θ +

∂

∂r
(φ− n) sin θ

]

,

(3.73)

and

∂

∂t
(∇2φ) = α(φ− n) +

1

r

[

∇2φ, φ
]

− C

[

1

r

∂n

∂θ
cos θ +

∂n

∂r
sin θ

]

. (3.74)

Note that the curvature terms are now functions of both coordinates, r and θ. This

leads to turbulent structures localised on the ‘outboard side’ of the annulus, as shown

in figure 3.12.
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Figure 3.12: Snapshot of density fluctuations from HAWK simulation of the CHW
equations in polar coordinates.
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Chapter 4

Statistical properties of drift wave

turbulence

4.1 Introduction

In this chapter, the statistical properties of the turbulent fluctuations produced by HAWK

simulations are characterised. Turbulent fluctuations are difficult to describe in the

dynamical sense, but statistical features are often robust and reproducible. Modelling

turbulence with mean value quantities may not be suitable due to the presence of

long lived coherent structures and more appropriate methods must be used. Here, we

study the probability density function, structure functions, the bispectrum and transfer

functions. The drawback of statistical analyses is the difficulty in connecting the observe

statistics with the physical processes involved.

4.2 Turbulent flux PDF

In experiment, properties of turbulence are often determined by probe measurements of

the turbulent E ×B radial density flux,

Γn = nvx = −n
∂φ

∂y
. (4.1)
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We therefore record this quantity along with density n, potential φ and radial velocity

vx = −∂φ/∂y at one grid-node (i.e. point-wise) for the entire duration of the quasi-

stationary turbulent state of the HW system. From the Γn time series we compute its

probability density function (PDF) P (Γn), and quantify departures of the distribution

from Gaussian with skewness S and kurtosis K.

We are interested in the effect of the parameters of the HW model, κ and α,

as well as the parameter C of the CHW model, on the PDF P (Γn). In the following

sections we consider a base case with parameters κ = 1, α = 0.5 and C = 0, using a

doubly periodic grid with 256 × 256 grid points spaced by ∆ = 40/256, a time step of

∆t = 0.01 and Newtonian viscosity with D = 0.01. The effects of altering the various

parameters are then determined by varying one parameter and comparing with this base

case.
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Figure 4.1: (a) PDF of point-wise radial density flux Γn = nvx for the base case, as
described in the text. The dashed lines are the PDFs calculated using equations 4.2
and 4.3 and probe data from the simulation. (b) PDF of point-wise density n, radial
velocity vx and potential φ for the base case. The dashed lines are Gaussian fits to the
data.

The PDF of turbulent flux P (Γn) for the base case is shown in figure 4.1(a)

along with the PDFs of density P (n), radial velocity P (vx) and potential P (φ) in figure

4.1(b). In figure 4.1(b) Gaussian PDFs fitted to the data are overlaid with dashed lines

demonstrating that n, vx and φ are close to Gaussian. It is clear, however, that Γn is

non-Gaussian. For the case where the amplitudes of the fluctuations in radial velocity

vx and density n are exactly Gaussian, the PDF of radial turbulent flux Γn = nvx can
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be shown to be [Carreras et al., 1996]

P (Γn) =
1

π

√

1− γ2

σvσn
K0

( |Γn|
σvσn

)

exp

(

−γ
Γn

σvσn

)

, (4.2)

where σv and σn are the standard deviations of velocity and density fluctuations, K0 is

the modified Bessel function of the second kind and γ is a parameter that measures the

correlation between vx and n,

γ = − 〈vxn〉
〈v2

x〉1/2〈n2〉1/2
≡ − cos Φ , (4.3)

where Φ is the average relative phase between vx and n. The skewness of the PDF can

be calculated [Carreras et al., 1996] as

S = −2γ
3 + γ2

(1 + γ2)3/2
, (4.4)

which depends on the parameter γ only. The shape of this PDF therefore depends on

the standard deviation of the density and velocity fluctuations as well as the degree of

their correlation. In figure 4.1(a) we overlay with dashed lines the PDFs calculated using

equations 4.2 and 4.3 and probe data from the simulation. Good agreement is found,

indicating that the quantities vx and n are indeed close to Gaussian.

4.2.1 Varying κ

We are interested in the effect on the PDF P (Γn) of changing the parameter κ and

therefore, all other parameters are set to base case values. In figure 4.2(a) we plot P (Γn)

for three different values of κ. All three PDFs are clearly non-Gaussian and are skewed

towards positive radial flux. We note that non-Gaussian PDFs of the turbulent flux

and/or density are regularly measured in the edge region of experiments. We also show

in figure 4.2(b), the relative phase between n and vx, Φ, in figure 4.2(c) the average

total flux Γn0 and in figure 4.2(d) the rms values of n and vx. We see that while the

average flux Γn0 and rms values 〈v2
x〉1/2 and 〈v2〉1/2 clearly increase with κ, the phase

Φ does not change much with κ. This may be expected as the parameter κ controls

the strength of the driving of the turbulence and should have no effect on the phase.
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Figure 4.2: (a) PDF of point-wise radial density flux Γn = nvx for different values of κ.
The dashed lines are the PDFs calculated using equations 4.2 and 4.3 and probe data
from the simulation. (b) Relative phase between n and vx, for different values of κ. (c)
Average total flux Γn0 for different κ. (d) rms values of n and vx fluctuations.

4.2.2 Varying α

In figure 4.3(a) we plot P (Γn) for three different values of α. We also show in figure

4.3(b), the relative phase between n and vx, Φ, in figure 4.3(c) the average total flux Γn0

and in figure 4.3(d) rms values of vx and n. Interestingly, the average flux Γn0 decreases

with α, while the phase Φ does not change much. One might expect that the phase

Φ would change with α since a large value of α effectively ties together fluctuations in

density n and potential φ. The results here suggest that the main effect of increasing α

is to decrease the average flux Γn0. However, the parameter α has not been varied very

much because of restrictions due to numerical stability. A study using a wider range of

α would be of benefit here.
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Figure 4.3: (a) PDF of point-wise radial density flux Γn = nvx for different values of α.
The dashed lines are the PDFs calculated using equations 4.2 and 4.3 and probe data
from the simulation. (b) Relative phase between n and vx, for different values of α. (c)
Average total flux Γn0 for different α. (d) rms values of n and vx fluctuations.

4.2.3 Varying C

We now focus on how the distribution of turbulent radial density flux Γn changes with

the parameter controlling the magnetic field inhomogeneity C = −∂ ln B/∂x. Figure

4.4(a) shows the PDFs P (Γn) for three different values of C = [−0.3, 0.0, 0.3]. All

three PDFs are clearly non-Gaussian and are skewed towards positive radial flux. In

figure 4.4(b), we plot the skewness S of the PDFs for a wider range of C. Increasing

the parameter C, which corresponds to steepening the decline in magnetic field strength

with radial distance, monotonically increases the positive radial skewness of Γn.

In figure 4.4(c) we plot the skewness and kurtosis of the distributions of point-

wise measurements of density n, potential φ and radial velocity vx for different values
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Figure 4.4: (a) PDFs and (b) skewness of PDFs of the point-wise radial density flux
Γn = nvx for different values of C. The dashed lines over the PDFs are the PDFs
calculated using equations 4.2 and 4.3 and probe data from the simulation. (c) Skewness
and kurtosis of PDFs of point-wise density n, radial velocity vx and potential φ. (d)
Relative phase between n and vx, and between n and φ, for different values of C. (e)
Average total flux Γn0 for different C. (f) rms values of n and vx fluctuations.
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of C in the CHW system. These quantities are very close to Gaussian for the full range

of C, with radial velocity vx showing the largest departure from Gaussian in its kurtosis.

In figure 4.4(d) we plot the relative phase Φ between vx and n, and also between φ

and n, showing that Φ changes roughly linearly with C. We conclude that changing C

alters the relative phase between fluctuations in density n and potential φ, which leads

to the observed change in the skewness of the flux PDF. We note from equation 3.45

that an increase in the phase difference between n and φ should lead to an increase

in the rate of radial E × B transport. A plot of the average flux Γn0 as a function of

C is displayed in figure 4.4(e). In figure 4.4(a) we overlay with dashed lines the PDFs

calculated using equations 4.2 and 4.3 and probe data from the simulation. Moderately

good agreement is found, with the biggest departures occurring for large positive values

of Γn when C = 0.3 and large negative values of Γn when C = 0. This indicates that

the quantities vx and n are indeed close to Gaussian; however, large fluctuations may

follow a different distribution.

In Section 3.7.1 it was concluded, from the propagation of nonlinear structures,

that when C = 0.3, nonlinear perturbations of density and radial velocity are correlated,

and when C = −0.3 they are anticorrelated. Insofar as the fully developed turbulence

approximates to Gaussian statistics, it follows from equations 4.3 and 4.4 that the

positive correlation of density and radial velocity will lead to a positive event in the time

series of radial flux Γn and an increase in the skewness of the PDF P (Γn). Similarly,

negative correlation leads to negative flux events and lower skewness.

4.3 Structure function analysis

The analysis of the flux PDF in the previous section revealed that changing the parameter

C in the CHW model fundamentally changes the properties of the turbulence. In this

section, we apply structure function analysis to the same datasets. The mth order
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structure function is defined as

Sm(d) =<| f(x + dx̂)− f(x) |m> . (4.5)

When scaling is present Sm ∝ τ ζ(m), and a plot of Sm versus d on a log-log scale

will yield a straight line for each m with gradient ζ(m). Here, we perform the analysis

using multiple snapshots of density or potential taken from the same HAWK simulation

used in the previous section. The structure functions are therefore calculated using an

average over space and time.
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Figure 4.5: Structure function analysis of density data taken from the HAWK code. (a)
Structure functions Sm of order m = 1 to m = 8 as a function of d for C = −0.3.
(b) Extended self-similarity (ESS) analysis: structure functions Sm as a function of S3

for C = −0.3. (c) Scaling exponents ζ(m) calculated using ESS structure functions for
different values of C.

In figure 4.5(a) we plot structure functions Sm of order m = 1 to m = 8 as a

function of d on a log-log scale for C = −0.3 using density n data. Scaling is present

88



for small values of d and is followed by saturation at large values of d. In order to

extract scaling exponents ζ(m), we employ the extended self-similarity (ESS) technique

[Benzi et al., 1993]. ESS was used in a structure function analysis of HW turbulence in

[Futatani et al., 2008]. Here, we apply the technique to the CHW model. ESS involves

plotting structure functions Sm as a function of S3 instead of d and can significantly

extend the region of scaling. In figure 4.5(b) we plot Sm as a function of the third order

structure function S3 and find that an extended region of scaling is revealed. Scaling

exponents are obtained by linear regression of the ESS structure functions. The ESS

analysis is performed for C = [−0.3, 0.0, 0.3] and the scaling exponents ζ(m) are plotted

in figure 4.5(c). We find that the functional form of ζ(m) is nonlinear and changes with

C.
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Figure 4.6: Structure function analysis of velocity data taken from the HAWK code:
scaling exponents ζ(m) calculated using ESS structure functions for different values of
C.

An identical analysis is performed using velocity v(x, y) = (−∂φ/∂y, ∂φ/∂x)

data taken from the same set of HAWK simulations. Figure 4.6 shows the scaling

exponents ζ(m) for different values of C. In contrast to the density results, ζ(m) is

close to a linear function in m and does not change with C. The same results are

found for structure functions of velocity components vx = −∂φ/∂y and vy = ∂φ/∂x

and potential φ. We conclude that, while velocity fluctuations remain self-similar for

different values of C in the CHW model, the statistics of density fluctuations vary. This
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may point towards the importance of density fluctuations in this system.

4.4 Higher order spectra

Higher order spectra can be used to look for the presence of wave-wave interactions,

which are a signature of turbulence. The bispectrum measures the coherence of three

wave interactions. Systems of the form

∂u(x, t)

∂x
= f(u(x, t)) , (4.6)

are considered, where u is the quantity of interest and f is a nonlinear function. Per-

forming a Fourier transform, it is assumed that the system can be represented in terms

of a Volterra series,

∂up

∂x
= Γpup +

∑

a,b

Γabuaubδa+b,p +
∑

a,b,c

Γabcuaubucδa+b+c,p + · · · , (4.7)

where δ is the Dirac delta function. In this representation, it is clear that the action

of the system’s nonlinearity is to couple each Fourier mode to every other through

three-wave interactions, four-wave interactions and so on. For waves to interact, a

resonance condition must be satisfied. For example, three-wave interactions between

waves of frequency ω, ω1, ω2 and wavenumber k, k1, k2 must satisfy the selection

criteria ω = ω1 + ω2 and k = k1 + k2.

Multiplying equation 4.7 by the complex conjugate u∗
p and taking an expectation

value gives [de Wit, 2003]

〈∂up

∂x
u∗

p〉 = Γp〈upu
∗
p〉+

∑

a+b=p

Γab〈uaubu
∗
a+b〉+

∑

a+b+c=p

Γabc〈uaubucu
∗
a+b+c〉+ · · · .

(4.8)

In this equation, the power spectrum is,

P (kp) = 〈upu
∗
p〉 , (4.9)

the bispectrum is

B(ka, kb) = 〈uaubu
∗
a+b〉 , (4.10)
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and the trispectrum is

T (ka, kb, kc) = 〈uaubucu
∗
a+b+c〉 . (4.11)

Higher order spectra determine the degree of phase coherence between waves which

satisfy the selection criteria. Normalised quantities are the bicoherence,

b2(ka, kb) =
|B(ka, kb)|2

〈|uaub|2〉〈|ua+b|2〉
, (4.12)

and tricoherence

t2(ka, kb, kc) =
|T (ka, kb, kc)|2

〈|uaubuc|2〉〈|ua+b+c|2〉
, (4.13)

which can take values between 0 and 1.

4.4.1 Bispectral analysis of HAWK data
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Figure 4.7: Bicoherence calculated using multiple snapshots of potential from a HAWK
simulation of the HW equations.

We now calculate the bicoherence using data from a HAWK simulation. The data

is taken from the base case HW run that was used in previous sections. The parameters

of the HW model are set to α = 0.5 and κ = 1, using a square box of side length

L = 40 with 256 × 256 grid points and dissipation is Newtonian with D = 0.01. The
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bicoherence is calculated using snapshots of potential in the quasi-stationary turbulent

regime, with the average being taken in time.

With this two-dimensional data, the bispectrum is a four dimensional quantity:

each of the k has components kx and ky, B(kx, ky, k1x, k1y). It is difficult, therefore, to

plot the data in two-dimensional space. In figure 4.7 we plot the bicoherence b2(k, k1)

where k = k1 + k2 and the data has been averaged over components kx, ky and k1x,

k1y. Figure 4.7 confirms the presence of nonlinear wave-wave interactions in the HW

model, with the strongest interactions occurring at low k.

4.4.2 Nonlinear transfer function

Having established that nonlinear wave-wave interactions are indeed present in the HW

model, we now attempt to learn more about the nature of these interactions. We employ

the method proposed by Camargo et al. [1995] which quantifies the spectral transfer

of fluctuation energy between different k. This method has been used, for example, to

give evidence of the dual-cascade in the HW model in [Manz et al., 2009a]. Here, we

apply the technique to the CHW and ZHW models.

The evolution of the potential energy EP , kinetic energy EK and enstrophy W–

which were introduced in Section 3.4.2–are separated into linear and nonlinear terms.

In Fourier space,

∂EK(k)

∂t
=

∑

k1

TK(k← k1) + linear terms, (4.14)

∂EP (k)

∂t
=

∑

k1

TP (k← k1) + linear terms, (4.15)

and
∂W (k)

∂t
=

∑

k1

TW (k← k1) + linear terms. (4.16)

Here, the terms
∑

k1
T (k ← k1) are the nonlinear transfer functions which describe

the nonlinear transfer of fluctuation energy to or from mode k due to interaction with
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modes k1 and k2, where k = k1 + k2. The functional forms, as given in [Camargo

et al., 1995] are

TK(k← k1) = 2Re [(kxk1y − k1xky)φ
∗
kωk2

φk1
] , (4.17)

TP (k← k1) = 2Re [(kxk1y − k1xky)n
∗
kφk2

nk1
] , (4.18)

and

TW (k← k1) = 2Re [(kxk1y − k1xky)ω
∗
kφk2

ωk1
] , (4.19)

where ω is the vorticity. These quantities are four-dimensional T (kx, ky, k1x, k1y) and

therefore averaging must be performed in order to plot the data.
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Figure 4.8: Nonlinear transfer functions for different values of C.

In figure 4.8 we plot TK , TP and TW for three different values of C, using the

same CHW datasets as in the previous section. The data is averaged over components

kx, ky and k1x, k1y. Negative values (blue) indicate that energy is transferred from
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mode k to mode k1, while positive (red) values indicate that energy is transferred from

mode k1 to mode k. In the case of TK we find that the dominant transfer of kinetic

energy is from larger to smaller values of k, in an inverse cascade. In the case of TP

and TW we find that the dominant transfer of potential energy and enstrophy is from

smaller values of k to larger values of k, in a direct cascade process. Thus there is a dual

cascade process operating in the CHW model. The same result was found for the HW

model in [Manz et al., 2009a]. As C is increased, the range of coupled wavenumbers

becomes wider.
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Figure 4.9: Nonlinear transfer functions for the HW and ZHW models.

We perform the same analysis on ZHW model data, using the same numerical

parameters. Figure 4.9 shows a comparison of the transfer functions TK , TP and TW

calculated for the HW model (which is equivalent to CHW with C = 0) and ZHW

model. Interestingly, the form of each transfer function is changed by the presence of

the zonal flow. The range of coupled wavenumbers is much narrower in the ZHW than
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the HW case.

Although the previous analysis provides interesting results, the role of the zonal

flow is not clear since every wavenumber is treated equally. Theoretically, the energy of

the zonal flow (ky = 0) should come from the drift-wave turbulent fluctuations (ky 6= 0)

[Diamond et al., 2005] and we would like to illustrate this process using the transfer

functions. Following the representation used in [Manz et al., 2009b] we plot TK , TP and

TW as functions of k1y and k2y in figure 4.10 for the HW and ZHW models. The transfer

functions are thus averaged over k1x and k2x 6= 0. The contribution corresponding to

the zonal flow is ky = 0 which appears on the figure at k1y = −k2y and is indicated by

dashed lines. We find that, in the ZHW case, a large proportion of the drift-wave energy

(k1y 6= 0) is transferred into zonal flows. In the HW case, the zonal flow contribution is

small and is not apparent in the figure. This is in agreement with theory and experiment

[Diamond et al., 2005; Manz et al., 2009b].
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lines indicate the zonal flow contribution (ky = 0).
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Chapter 5

Test particle transport

This chapter is concerned with the study of passive test particles in order to understand

the transport properties of plasma turbulence. Parts of the chapter were originally

published as The effects of nonuniform magnetic field strength on density flux and test

particle transport in drift wave turbulence, J.M. Dewhurst, B. Hnat and R.O. Dendy,

Phys. Plasmas 16, 072306 (2009) and Finite Larmor radius effects on test particle

transport in drift wave-zonal flow turbulence, J.M. Dewhurst, B. Hnat and R.O. Dendy,

Plasma Phys. Control. Fusion 52, 025004 (2010).

5.1 Introduction

Understanding the transport of particles and energy in turbulent plasma is fundamen-

tally important to the goal of magnetically confined nuclear fusion. This is particu-

larly true in the edge region of a tokamak, where turbulent transport responds to, and

also determines, the radial density and temperature profiles. Edge turbulence, together

with magnetohydrodynamic instabilities, also determines the flux of particles and energy

across the last closed magnetic flux surface, and hence to the divertor or the first wall.

The majority of cross-field particle and energy transport can be attributed to

low frequency turbulent fluctuations. The drift instability provides a mechanism for
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the generation of such fluctuations in the presence of a background density gradient

perpendicular to the magnetic field. The edge region of magnetically confined plasmas,

with increased collisionality and large density gradients, offers ideal conditions for the

drift instability to occur.

Perspective on the turbulence can be obtained through the study of passive tracer

particles, see [Manfredi and Dendy, 1996, 1997; Annibaldi et al., 2000, 2002; Gustafson

et al., 2008; Pedersen et al., 1996; Naulin et al., 1999; Basu et al., 2003a,b; Futatani

et al., 2008; Naulin et al., 2008, 2006; Angioni and Peeters, 2008] for example. In this

chapter, we study the transport of passive tracer particles in the Hasegawa-Wakatani

(HW) model using output of the HAWK code. We are interested in the effects on

the transport of modifying the HW equations to include extra physical effects. Using

the Hasegawa-Mima (HM) equation as the turbulence model, the transport of passive

test particles was studied in [Manfredi and Dendy, 1996, 1997; Annibaldi et al., 2000,

2002; Gustafson et al., 2008]. Test particle transport in the HW model was studied in

[Pedersen et al., 1996; Naulin et al., 1999; Basu et al., 2003a,b; Futatani et al., 2008],

and a recent overview can be found in [Naulin et al., 2008].

5.2 Test particle evolution

As discussed in the derivation of the Hasegawa-Wakatani equations in Section 3.2, the

equation of motion for ions is v⊥ = vE + vp, where vE is the E × B velocity, vp

is the polarization velocity and the subscript ⊥ indicates motion perpendicular to the

confining magnetic field B. This equation results from the assumption that the ions are

cold, Ti = 0. If in addition, the mass of the test particle ions is negligible, the equation

of motion reduces to
∂r

∂t
= vE , (5.1)

and in the normalised units of the HW model vE can be written

vE =

(

−∂φ

∂y
,
∂φ

∂x

)

. (5.2)
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This simplified equation of motion, involving only the electrostatic potential φ, is used

for the evolution of test particles in this chapter. In using this equation, we are also

making the assumption that the test particles are passive, in that they react to but do

not generate electrostatic fields.

Time integration of equation 5.2 is performed using the third order Karniadakis

scheme [Karniadakis et al., 1991]. The potential φ is taken from output of the HAWK

code. An interpolation scheme must be employed to calculate φ since test particles will

not always be exactly on grid points. Here, we employ bilinear interpolation.

We solve the HW equations (or variations there of) on a square of length L = 40

using 256 × 256 grid nodes with periodic boundary conditions. We consider a base

case with parameters κ = 1, α = 0.5 and C = 0, a time step of ∆t = 0.01 and

Newtonian viscosity with D = 0.01. The effects of altering the various parameters are

then determined by varying one parameter and comparing with this base case.

Runs of the HAWK code are initialised with low-amplitude random noise. Linear

drift waves are excited and grow exponentially until nonlinear effects become important.

Eventually, a quasi-stationary turbulent state is reached. Ten thousand particles are

initialised at random positions throughout the computational domain once a quasi-

stationary turbulent state has been reached by HAWK, i.e. once the energy E and

enstrophy W saturate. The positions of these test particles then change according to

the equation of motion above, as the turbulence evolves.

We note from equation 5.2 that contours of equipotential φ are stream lines of

vE. Therefore, on time scales shorter than their life time, coherent turbulent structures

are impervious to test particles. Conversely, test particles can be trapped by structures

and the dynamics of the structures will affect the dispersion of the test particles.

In order to quantify the diffusion of the test particles, we record the trajectory

of each particle and calculate a running diffusion coefficient in the radial x and poloidal

y directions separately,

Dx(t) =
X(t)2

2t
, Dy(t) =

Y (t)2

2t
. (5.3)
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Here X(t)2 = 〈[x(t) − 〈x(t)〉]2〉, Y (t)2 = 〈[y(t) − 〈y(t)〉]2〉 and (x(t), y(t)) is the

position of the particle with respect to its initial position; angular brackets denote an

ensemble average over the 10, 000 test particles. For an ordinary diffusive process the

running diffusion coefficient will reach a value independent of time since X(t)2 ∼ t.

More generally the transport may be ‘anomalous’ and X(t)2 ∼ tσ, where 0 < σ < 1

implies subdiffusion, 1 < σ < 2 implies superdiffusion and σ = 2 is ballistic.

In [Naulin et al., 1999] it was shown that passive test particle transport in the HW

model is essentially a normal diffusive process due to trapping and detrapping of the test

particles by the turbulent structures. It was also shown that poloidal diffusion is stronger

than radial, Dy > Dx. In [Basu et al., 2003a] increasing the coupling parameter α was

shown to decrease the rate of radial test particle transport. The effect of finite ion inertia

and the polarization drift vp was studied in [Basu et al., 2003b], and the intermittent

nature of test particle transport in the HW model was studied in [Futatani et al., 2008].

Here, we focus on the effects of the magnetic field inhomogeneity incorporated in the

CHW model and the zonal flows incorporated in the ZHW model.

5.3 Non-uniform magnetic field strength

5.3.1 Introduction

Drift wave phenomenology is purely electrostatic, and generally the magnetic field is

assumed to be uniform. In tokamaks, however, the toroidal magnetic field strength is

non-uniform and declines with radial distance from the axis of symmetry. The inclusion of

this magnetic field gradient leads to a non-vanishing divergence of diamagnetic velocity,

associated with compressible effects, and the appearance of the interchange instability.

In toroidal geometry, interchange modes have destabilising effects in the region where

the vectors ∇B and the radius of curvature are parallel to the pressure gradient (low

field side) and have stabilising effects on the high field side. This alters the properties of

the turbulence, allowing the excitation of interchange-type ballooning modes. Plasma
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particles, following helical magnetic field lines, experience both interchange-stable and

interchange-unstable regions and their behaviour is averaged over these different regimes

of turbulence.

In this section we investigate the effects of non-uniform background magnetic

field strength on the turbulence and the transport of passive test particles, using direct

numerical simulation of a 2D turbulent system. Our model of drift wave turbulence is

an extended form of the HW equations [Hasegawa and Wakatani, 1983] that includes

magnetic field inhomogeneity in the radial direction and the resulting interchange driven

modes [Chen et al., 1980]. The model, which we refer to this as the curvature-Hasegawa-

Wakatani (CHW) model, was introduced in Section 3.7. The model was studied in 3D

by Sugama, Wakatani and Hasegawa [Sugama et al., 1988] and in 2D in [Scott, 2005]

and [Vergote et al., 2006] for example; see also [Horton, 1999].

We are interested in the effect of changing the magnetic field inhomogeneity (i.e.

changing the value of the parameter C in equations 3.19 and 3.20) on the transport of

test particles. We therefore set α = 0.5, κ = 1 and D = 0.01 with Newtonian viscosity

throughout and vary the parameter C = −∂ ln B/∂x which characterises the gradient of

B(x). Typical snapshots of the potential φ in the quasi-stationary saturated turbulent

state for C = [−0.3, 0, 0.3] are shown in figure 3.9 in Section 3.7. In each case, the

turbulence is dominated by vortex structures. Contours represent E×B velocity stream

lines which test particles follow exactly.

5.3.2 Running diffusion coefficients

A set of simulations of the CHW model are run with the parameter C being varied. In

figure 5.1 we plot the calculated running diffusion coefficients Dx and Dy as functions of

time for C = [−0.3, 0.0, 0.3]. In all cases, after a short initial ballistic phase, the running

diffusion coefficient asymptotically tends to a value independent of time, indicating

diffusive processes. Increasing the parameter C tends to increase the radial diffusion

coefficient Dx and decrease the poloidal one Dy. For C = 0 and C = −0.3 we find that
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the poloidal diffusion is stronger than the radial, in agreement with [Naulin et al., 1999];

however, for C = 0.3 this anisotropy is reversed and the radial diffusion dominates.

In figure 5.2 we plot X2/t0.45 and Y 2/t1.7 versus time for C = −0.5. We

find that, after an initial phase, these quantities become time independent, indicating

that the radial test particle transport is subdiffusive with exponent σ ≈ 0.45 and the

poloidal transport is superdiffusive with σ ≈ 1.7. Interestingly, poloidal superdiffusion

with σ = 1.7 was found for test particle transport in quasistationary HM turbulence; see

figure 2(b) of [Annibaldi et al., 2000].
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Figure 5.1: Plots of running diffusion coefficient (a) Dx, and (b) Dy versus time for
different values of C.

5.3.3 Fick’s law

Figure 5.3(a) displays the time-independent values of Dx and Dy for a wider range

of C (for cases where the transport is diffusive). We find that Dx increases and Dy
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Figure 5.2: Plots of X2/t0.45 and Y 2/t1.7 versus time for C = −0.5 showing subdiffusion
in x and superdiffusion in y.

decreases with C. We also plot the total radial density flux Γn0 (defined in equation

3.45) averaged over the computational box in figure 5.3(b).

Extending the arguments in [Basu et al., 2003a], Γn0 and Dx can be linked

through conservation of potential vorticity Π = (∇2φ− n + (κ−C)x). It follows from

equation 3.72 that 〈(dx/dζ)2〉 = (κ − C)−2, from equation 5.3 that d〈x2〉 = 2Dxdt,

and from equation 3.42 and 3.70 and the definition of ζ = ∇2φ − n that d〈ζ2〉 =

2(κ− C)Γn0dt. Combining these three expressions, we infer

Γn0 = (κ− C)Dx , (5.4)

which is in the form of Fick’s law. Since the steady-state value of Dx is found to scale

approximately linearly with with C, for the values considered in figure 5.3(a) we infer

empirically that equation 5.4 is approximately quadratic in C, leading to the maximum in

Γn0 seen in figure 5.3(b). In figure 5.3(b) we also plot (κ−C)Dx which closely matches

Γn0. Thus we may use equation 5.4 to link the radial diffusive transport of test particles

to the underlying turbulence. This relation is valid only in the inviscid limit (D = 0)

since the conservation of potential vorticity Π only applies in this limit. Therefore, some

departure for larger values of dissipation D is expected. We have verified this with our

code and, for the case of C = 0, we obtain results similar to those presented in [Basu

et al., 2003a]. For C = ±0.3 the agreement is similar or better for same range of
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examined dissipation coefficients.

Interestingly, the expression includes the factor κ − C, which we have shown

in Section 3.7 is related to poloidal flow velocity. Thus the radial diffusion of test

particles Dx is linked to the radial turbulent flux Γn0 and poloidal flow. The effect of a

homogeneous poloidal flow on test particle transport was discussed in [Hauff and Jenko,

2007].
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Figure 5.3: (a) Time independent diffusion coefficients Dx and Dy for different values
of C. (b) Average radial density flux Γn0 and (κ− C)Dx for different values of C.

If correlations between ζ and its initial value ζ0 do not vanish, it follows that

d〈ζ2〉 and hence the diffusion coefficient can be functions of time, leading to non-diffusive

transport. In figure 5.4 we show how the normalized correlation 〈ζ0ζ〉/
√

〈ζ2
0 〉〈ζ2〉 evolves

with time in the saturated turbulent state for C = [−0.5,−0.3, 0]. In all cases, there

is an initial phase where correlations decay, corresponding to the initial ballistic phase

of the test particle transport. After this phase, for the C = −0.3 and C = 0 cases,
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the correlation fluctuates around zero and the test particle transport is diffusive. For

the C = −0.5 case, however, correlations persist for long times and the test particle

transport is non-diffusive.

5.3.4 Summary

We have studied an extended form of the Hasegawa-Wakatani model that includes

the effects of a magnetic field inhomogeneity in the radial direction B(x). With the

parameter controlling the background density gradient set to κ = 1 throughout, we

have established that the parameter C, controlling the radial gradient of the magnetic

field B(x), alters the dispersion of test particles. Measurements of diffusion coefficients

show that the rate of radial transport of test particles increases and the rate of poloidal

transport decreases monotonically with C. For large negative values of C, correlations

in the flow persist for long times and the radial transport becomes subdiffusive while

the poloidal transport becomes superdiffusive. The rate of radial diffusive test particle

transport and the average E × B density flux can be linked by a simple expression, in

the form of Fick’s law.
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5.4 Zonal flow and finite Larmor radius

5.4.1 Introduction

In this section we study particle transport in magnetically confined fusion plasma using a

modified HW model which produces drift wave turbulence that self-organises into zonal

flows. We study the transport of passive test particles which are advected by the E×B

velocity. Our flexible model allows us to compare the case where zonal flows are absent

to the case where zonal flows are self-generated and also to an intermediate state where

the kinetic energy is shared equally between the zonal flows and drift wave turbulence.

We also consider the effects of finite Larmor radius.

The presence of zonal flows can modify drift wave turbulence transport via two

mechanisms. First, simple energy balance suggests that the level of turbulence must

decrease since the energy of the zonal flows is acquired directly from the turbulence

through nonlinear interactions. Second, zonal flows naturally evolve into long-lived co-

herent structures that support stationary shear layers [Smolyakov et al., 2000]. Spatially

intermittent regions of high velocity shear exhibit decreased levels of transport since the

shear distorts and destroys turbulent eddies. We recall here that, in a simple random

walk approximation for the particle diffusion coefficient across the magnetic field, the

eddy size represents the smallest step of the transport process. Thus zonal flows may

be one of the important ingredients in the development of transport barriers which are

observed during the transition from low to high confinement mode plasma states.

The response of particles to turbulent fields can greatly differ depending on the

Larmor radius. High frequency gyromotion effectively smooths out small fluctuations

leading, intuitively, to a lower rate of transport. A reduction in radial transport with

increasing Larmor radius was shown in [Manfredi and Dendy, 1996, 1997; Annibaldi

et al., 2000, 2002] using the Hasegawa-Mima (HM) equation [Hasegawa and Mima,

1978] as the turbulence model. More recently it was found that, in the limit of large

Kubo number, K > 1, this reduction in transport is less dramatic and in some cases, the
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rate of transport may actually increase with the Larmor radius [Vlad and Spineanu, 2005;

Vlad et al., 2005; Hauff and Jenko, 2006, 2007]. The Kubo number, K = 〈v2〉1/2τc/λ, is

a measure of the average distance covered by a test particle 〈v2〉1/2τc, in one correlation

time τc, relative to the typical spatial scale of the turbulent fluctuations λ. In [Hauff

and Jenko, 2007] it was reported that the zonal flow may have a strong influence on the

rate of transport and on the Larmor radius dependence.

We compare the diffusion of test particles using three related turbulence models:

the standard Hasegawa-Wakatani (HW) model (3.19 and 3.20), the zonal-Hasegawa-

Wakatani (ZHW) model (3.49 and 3.50) and the damped-zonal-Hasegawa-Wakatani

(DZHW) model which were introduced in Chapter 3. The parameters are set to κ = 1,

α = 0.5 and the viscosity is Newtonian with D = 0.01 for every case considered.

5.4.2 Properties of the turbulence
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Figure 5.5: Snapshot of potential φ in the saturated quasi-stationary turbulent state
for three related models: (left) HW defined by equations 3.19 and 3.20 where zonal
flows are damped; (centre) ZHW defined by equations 3.49 and 3.20 allowing the self-
generation of zonal flows; (right) intermediate state DZHW where total kinetic energy
of zonal flows is set equal to that of non-zonal drift wave turbulence at each time step.

In figure 5.5 we show typical snapshots of the potential φ in the quasi-stationary

saturated turbulent state for the three cases considered. For the HW model, turbulent

vortices dominate. For the ZHW model, zonal flows dominate; while the zonal flows
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visible in figure 5.5 persist throughout the simulation time, inspection of the power

spectrum reveals the presence of higher frequency broadband turbulence, because the

drift wave turbulence has been suppressed but not eliminated. The intermediate DZHW

state is generated by artificially setting the kinetic energy of the zonal flows equal to the

kinetic energy of the non-zonal drift wave turbulence at each time step in the saturated

turbulent state of the ZHW model. We find that zonal flows and turbulent vortices then

coexist in a quasi-stationary state; the zonal flows in figure 5.5 persist throughout the

simulation time.
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Figure 5.6: Weiss field, Q, calculated from data in figure 5.5: (left) HW; (centre) ZHW;
(right) intermediate DZHW state. Only negative values of Q are shown.

Before the effects of finite Larmor radius on particle transport are considered in

the next section, it is useful to provide a quantitative measure of the interaction between

test particles and the coherent structures of the turbulent flow. For this purpose we

employ the Weiss field, Q, [Weiss, 1991] which is a local measure of stress s compared

to vorticity ω. In the 2D velocity field provided by our model, Q is defined as:

Q =
1

4
(s2 − ω2) , (5.5)

where the stress s is given by

s2 =

(

∂vx

∂x
− ∂vy

∂y

)2

+

(

∂vy

∂x
+

∂vx

∂y

)2

, (5.6)

and the vorticity is ω = ∇2φ. The E ×B velocity field is given by equation 5.2. Thus
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Q may be expressed as

Q =

(

∂2φ

∂x∂y

)2

− ∂2φ

∂x2

∂2φ

∂y2
, (5.7)

which is equivalent to the second derivative test discriminant in calculus. Weiss showed

[Weiss, 1991] that if the strain rate varies slowly with respect to the vorticity gradient,

the sign of Q determines whether two initially close fluid elements will separate (Q > 0)

or not (Q < 0), following the frozen streamlines. From the calculus point of view, Q > 0

implies a local saddlepoint in φ while Q < 0 implies a maximum or minimum. Evaluating

Q at the position of a test particle has been used to determine whether or not the particle

is trapped in a nonlinear structure (Q < 0) or not (Q > 0) [Annibaldi et al., 2002; Naulin

et al., 1999]. In figure 5.6 we show the negative Weiss field, Q < 0, calculated from the

data in figure 5.5. Vortical structures are clearly distinguished by large negative values

of Q. The probability density function (PDF) of Q, P (Q), was shown in [Bos et al.,
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Figure 5.7: PDF of Weiss field, P (Q), for the three turbulence regimes of figure 5.5.

2008] to distinguish between different regimes of turbulence. Here, we calculate Q at

all grid points using multiple snapshots of the potential in time; P (Q) is then calculated

by binning the resulting data. Figure 5.7 shows P (Q) on a semi-logarithmic scale for

the three cases considered in figure 5.5, which P (Q) clearly distinguishes. The negative

tail, Q < 0, of the PDF falls off slowest for the HW case, fastest for the ZHW case and

is intermediate in the intermediate DZHW case. Therefore, we may expect trapping

effects to be strongest in the HW case which has no zonal flows, weakest in the ZHW

case which has strong zonal flows, and intermediate in the intermediate DZHW case.
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5.4.3 Test particle transport

We now turn to test particle transport and finite Larmor radius (FLR) effects. The form

of the E×B velocity field, equation 5.2, gives an indication of the FLR effects one would

expect from our model. From equation 5.2 we conclude that contours of equipotential

φ are stream lines of vE . Therefore, on time scales shorter than their life time, the

turbulent structures – implying closed contours of φ – are impervious to test particles

with zero Larmor radius. Conversely, test particles can be trapped by the structures,

and the dynamics of the structures will affect the dispersion of the test particles. When

the Larmor radius is finite, test particles are able to permeate turbulent structures, so

that the effect of the structures on the transport is lessened.

For each value of Larmor radius ρ, a population of 10 000 test particles is ini-

tialised at random positions throughout the domain once the quasi-stationary turbulent

state has been reached. The Larmor radius ρ is measured in the dimensionless units

of the model, i.e. normalised to ρs. Provided that the frequency of the gyro-motion is

much faster than the frequency of the turbulence, FLR effects can be included [Man-

fredi and Dendy, 1996] simply by spreading the particle over a ring of (Larmor) radius ρ

centred on the particle’s guiding centre. This is implemented numerically by averaging

over Ngyro (= 16 in this case) points. Each test particle has the equation of motion

∂r/∂t = v̂E , where v̂E is the gyro-averaged E ×B velocity given by equation 5.2.

5.4.4 Test particle displacements

In figure 5.8 we plot the PDFs of the displacements ∆x and ∆y of test particles in the x

and y directions for the three turbulence regimes represented by the three cases specified

in figure 5.5. The PDFs P (∆x) and P (∆y) are plotted normalised to the standard

deviation σ and are calculated using the jumps made by the particles over one normalised

time unit for the case where ρ = 0 for all test particles. We quantify departures of the

distributions from Gaussian with skewness S = 〈∆3〉/〈∆2〉3/2, measuring asymmetry,

and kurtosis K = 〈∆4〉/〈∆2〉2, measuring peakedness; a Gaussian PDF has S = 0 and

110



−5 0 5
10

−4

10
−3

10
−2

10
−1

10
0

∆x/σ

σ 
P

(∆
x)

 

 

HW
MHW
intermediate

−4 −2 0 2 4
10

−4

10
−3

10
−2

10
−1

10
0

∆y/σ

σ 
P

(∆
y)

 

 

HW
MHW
intermediate

Figure 5.8: PDFs of jumps ∆x (left) and ∆y (right) made by particles for ρ = 0 in the
HW, ZHW and intermediate DZHW cases.

K = 3. In the HW case we find S = −0.01 and K = 3.00 in the x direction, and

S = −0.06 and K = 2.98 in the y direction; i.e. the PDFs are close to Gaussian. For

the ZHW case the PDFs are radically different and very far from Gaussian with S = 0.00

and K = 8.06 in the x direction, and S = 0.01 and K = 1.87 in the y direction. The

PDFs for the intermediate DZHW state are indeed intermediate between the HW and

ZHW cases with S = 0.00 and K = 4.01 in the x direction, and S = −0.03 and

K = 2.47 in the y direction. Similar PDFs are found when ρ 6= 0.

5.4.5 Test particle diffusion

The Gaussian distribution of particle steps identified for the HW turbulence allows the

assumption of diffusive transport in this regime. The significant departure of the PDFs

from the normal distribution for the ZHW and DZHW cases raises intriguing questions

about the nature of transport for these regimes. In this section, the nature of the test

particle transport is established by examining running diffusion coefficients in the radial

Dx and poloidal Dy directions. Our goal is to establish whether a diffusive transport

model can be used for the test particles in the ZHW and intermediate regimes, and also

to determine if the nature of the transport is modified by FLR effects.

In figure 5.9 (a) and (b) we plot the running diffusion coefficients X2/2t and

Y 2/2t versus time for the HW case for ρ = [0, 1, 2]. We find that these quantities
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Figure 5.9: Test particle diffusion: (a) and (b) X2/2t and Y 2/2t versus time for HW case
showing normal diffusion; (c) and (d) X2/(2t)0.8 and Y 2/(2t)1.55 versus time for ZHW
case demonstrating subdiffusion in x and superdiffusion in y; (e) and (f) X2/2t and
Y 2/2t versus time for intermediate DZHW turbulence case showing normal diffusion.
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converge on time independent values, indicating normal diffusive processes in both the

x and y directions and for all values of ρ. We note that the rate of transport is larger

in the poloidal y direction than the radial x direction by a factor of about two. These

results agree with [Naulin et al., 1999], where it was shown that passive test particle

transport in the HW model is essentially a normal diffusive process arising from trapping

and detrapping of the test particles by the turbulent vortices.

Figures 5.9 (c) and (d) show X2/(2t)0.8 and Y 2/(2t)1.55 versus time for the

ZHW case. We find that these quantities become time independent, indicating that for

all values of ρ, radial diffusion (across the zones) is subdiffusive with exponent σ ≈ 0.8

while poloidal diffusion (along the zones) is superdiffusive with exponent σ ≈ 1.55.

Unlike the other two cases presented here, the measured exponents for the ZHW case

change slightly with different seeding of the turbulence code. We obtain exponents

in the range σ ≈ 0.8 − 0.9 in the radial direction and σ ≈ 1.5 − 1.8 in the poloidal

direction. We note that zonal flows drastically reduce radial transport and increase

poloidal transport compared to the HW case. In the presence of zonal flows, poloidal

superdiffusion was found in [Annibaldi et al., 2002] and [Gustafson et al., 2008] using the

HM model and radial subdiffusion was found in gyrokinetic ITG turbulence in [Sanchez

et al., 2009].

Figures 5.9 (e) and (f) show X2/2t and Y 2/2t versus time for the DZHW

turbulence case. In contrast to the ZHW case, we find that the running diffusion

coefficients converge on time independent values, indicating normal diffusive processes

for all ρ. We note that the rate of transport is larger in the poloidal y direction than

the radial x direction by about an order of magnitude. Compared to the HW case, the

poloidal diffusion is about five times larger, while the radial diffusion is about five times

smaller.

113



5.4.6 Larmor radius dependence

In the previous section, we determined the nature of the test particle diffusion and

established that this does not change with the Larmor radius, i.e. the exponent σ is

independent of ρ. In this section, we determine how the magnitude of the diffusion

changes with the Larmor radius ρ. In figure 5.10 we plot the values of the diffusion

coefficients Dx and Dy at the end of the simulation (t = 2500 normalised time units)

as a function of ρ for all the cases considered in order to show the trends. The results

taken from the previous section, where all the test particles share the same Larmor

radius ρ, are indicated by crosses. Circles indicate the results when the Larmor radii ρ′

are distributed around a most probable value ρ according to a discrete approximation to

the Boltzmann distribution,

f(ρ′) = (4π−1/2ρ−3)ρ′2 exp (−ρ′2/ρ2) . (5.8)

We note that the results for the ZHW case do not represent true diffusion coefficients

since Dx and Dy change with time and the figures are plotted for comparison purposes.

Figures 5.10 (a) and (b) show the results for the HW case. For all cases, the

diffusion coefficients decrease as ρ increases. A transition between regions of faster and

slower decline occurs around ρ = 3 which equates to the typical radius of the turbulent

vortices seen in snapshots of the potential (figure 5.5).

Figures 5.10 (c) and (d) show the results for the ZHW case. The Larmor radius

dependence of the poloidal diffusion coefficient Dy is radically different from the HW

case. For small values of ρ, Dy is constant and even increases slightly with ρ. For larger

ρ, the rate at which Dx and Dy decline with increasing ρ is smaller than in the HW case.

For large values of ρ, the Larmor radius dependence of Dy significantly differs between

the case where all test particles share the same ρ and the case where the Larmor radii

follow a Boltzmann distribution. In the former case, Dy falls off almost to zero at ρ = 8

which corresponds to the radial half-wavelength of the zonal flow, so that the effects

of the zonal flow are maximally averaged out. Although the exponents σ change when
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Figure 5.10: Value of diffusion coefficients Dx and Dy at the end of the simulation
(t = 2500 normalised time units) as a function of ρ: (a) and (b) HW case; (c) and (d)
ZHW case; (e) and (f) intermediate DZHW turbulence case. Crosses indicate results
when all the test particle share the same Larmor radius ρ; circles indicate results when
the Larmor radii are distributed around a most probable value ρ.
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the seeding of the turbulence code is changed–as discussed in the previous section–the

features of the Larmor radius dependence described here do not change.

Figures 5.10 (e) and (f) show the results for the DZHW case. We find that

the Larmor radius dependence has similarities to the ZHW case. The radial diffusion

coefficient Dx decreases with ρ. For small ρ, the poloidal diffusion coefficient Dy

increases with ρ, and this effect is larger than in the ZHW case. For larger ρ, when

all the test particles share the same Larmor radius, Dy decreases to a minimum around

ρ = 5 and this corresponds to the radial half-wavelength of the zonal flow. The value of

Dy at this minimum is very close to the corresponding value for the HW case. After the

minimum, Dy increases with ρ. When the test particles have a Boltzmann distribution

of Larmor radii, there is no such minimum, and Dy falls off slowly with large ρ.

5.4.7 Discussion

Several interesting effects for test particle transport in the presence of zonal flows have

been identified. The introduction of strong zonal flows modifies the distribution of

particle steps significantly. This is accompanied by a radical change in the nature of

transport, which is no longer diffusive. While we are able to identify subdiffusive radial

transport and superdiffusive poloidal transport, the convergence to these regimes is slow

and the exact values of the scaling exponents σ appear not to be universal since their

values depend on the initial conditions.

In the intermediate regime the PDFs also depart from Gaussian, but the transport

process can still be described as diffusion. This may be due to the deviation from

Gaussian being small, but may also reflect the fact that the strong spatial correlations

due to the zonal flow do not dominate as in the ZHW case. While the diffusive behaviour

is qualitatively similar to the HW case, the values of the diffusion coefficients are radically

different with Dx decreasing and Dy increasing by an order of magnitude.

With zonal flows present, when all test particles share the same Larmor radius,

Dy falls off with ρ to a minimum which corresponds to the half-wavelength of the zonal
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flow. This minimum might be expected since test particles with ρ equal to the half-

wavelength of the zonal flow will sample one full period of the zonal potential, leading

to a low rate of poloidal transport since the sum over one period should be close to

zero. As ρ becomes larger than the zonal flow half-wavelength, Dy begins to increase

because the zonal potential is no longer averaged out. Minima in Dy should therefore

be expected to occur periodically in ρ. No such minimum occurs when the test particles

have a Boltzmann distribution, because a significant fraction of the test particles then

have Larmor radii not equal to the zonal flow half-wavelength.

Intuitively, increasing the Larmor radius ρ should lead to a decrease in diffusion

since increasingly large fluctuations are averaged out, as seen in HM simulations [Anni-

baldi et al., 2002]. In the HW case defined by equations 3.19 and 3.20, we observe this

decrease. However, when zonal flows and turbulent vortices coexist (as in the ZHW and

intermediate DZHW cases defined by equations 3.49 and 3.50) we find that the poloidal

diffusion Dy increases with ρ for small ρ. This may be explained by the fact that in-

creasing ρ also decreases the amount of trapping due to turbulent vortices. When ρ is

small, test particles can be trapped in vortices and effectively shielded from the zonal

flow. As ρ is increased the amount of trapping is reduced, so that the test particles

are more exposed to the zonal flow potential, leading to an increase in Dy. This effect

is stronger in the DZHW case than in the ZHW case, due to the presence of larger

turbulent vortices. No increase in Dx is observed, because zonal flows do not produce

radial diffusion.

The transport of test particles here may correspond with the transport of impuri-

ties in experiment. One would not expect a population of impurities to be monoenergetic

and therefore the results using test particles with a Boltzmann distribution of Larmor

radii may be closer to experiment. In a tokamak, impurities can affect confinement by

radiating energy and causing collisions. Poloidal transport can lead to the dispersal of

impurities throughout the plasma, whereas radial transport can lead to impurities leaving

the plasma or reaching the core. The results here suggest that the radial transport of
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impurities may be reduced by the presence of zonal flows and this may help to prevent

impurities produced at the vessel wall reaching the core. On the other hand, impurities

within the plasma may accumulate and degrade confinement. A zonal flow may quickly

(superdiffusively) disperse impurities throughout the plasma. In ignited plasmas, alpha

particles produced by fusion are an important impurity species. The results here suggest

that such high energy particles will experience a low rate of turbulent diffusion, helping

to heat the plasma.

5.4.8 Summary

We have investigated the effect of finite Larmor radius on the transport of passive test

particles moving in turbulent electrostatic fields modelled by different variants of the

Hasegawa-Wakatani equations. A wide variety of transport phenomena were observed

due to an interplay between trapping in small scale vortices and entrainment in larger

scale zonal flows. This flexible model allows the comparison of the case where zonal

flows are damped, the case where zonal flows are self-generated and an intermediate

state where the kinetic energy is shared equally between the zonal flows and drift wave

turbulence.

We have established that, with zonal flows damped, the test particle transport

is classically diffusive, with Gaussian statistics, and the rate of transport decreases with

increasing Larmor radius. Once the Larmor radius is larger than the typical radius of the

turbulent vortices, the rate of transport remains roughly constant.

When self-generating, poloidally extended zonal flows are allowed, non-Gaussian

PDFs of test particle displacements are produced, the rate of radial transport is reduced,

the rate of poloidal transport is increased and the Larmor radius dependence is altered.

The rate of poloidal transport increases with small values of the Larmor radius and this

may be attributed to a reduction in trapping effects due to the turbulent vortices, which

shield particles from the zonal flows. When zonal flows are allowed to dominate, poloidal

transport becomes superdiffusive and radial transport becomes subdiffusive.
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Chapter 6

Summary and future work

The edge region of magnetically confined plasmas involves complicated physics acting

over a wide range of spatial and temporal scales. This makes understanding this region

very difficult and therefore it is beneficial to approach the problem from many different

angles. In this thesis, edge plasma experimental data has been analysed and edge plasma

modelling has been explored.

In Chapter 2 of this thesis, ion saturation current (Isat) data taken from the

Large Helical Device (LHD) and Mega-Amp Spherical Tokamak (MAST) was analysed.

The absolute moment analysis revealed two regions of scaling, separated at a time

scale of about τm = 40µs, for all datasets studied. A monotonic relationship between

connection length and skewness of the probability density function was found for LHD.

Conditional averaging was used to characterise the average temporal shape of the largest

intermittent bursts.

In Chapter 3, a new numerical code called HAWK was introduced. HAWK solves

the Hasegawa-Wakatani (HW) equations which form a simple model of turbulence in the

edge region of magnetic confinement devices. Modifications to the HW model, to in-

clude the effects of non-uniform magnetic field strength (curvature-Hasegawa-Wakatani

[CHW] model) and zonal flows (zonal-Hasegawa-Wakatani [ZHW] model) were intro-

duced and demonstrated.
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In Chapter 4, output from the HAWK code was analysed. The probability density

function of turbulent flux was computed and its variation with the parameters of the HW

model was studied. Structure functions and higher order spectra were also investigated.

Transfer functions demonstrated the presence of a turbulent dual cascade in the CHW

model and the transfer of energy from drift-wave turbulence to zonal flows in the ZHW

model.

In Chapter 5, the transport of passive test particles in the HW model and mod-

ifications was studied. For the CHW model, the conservation of potential vorticity

Π = ∇2φ− n + (κ− C)x accounts for much of the phenomenology. Simple analytical

arguments yielded a Fickian relation Γn = (κ − C)Dx between the radial density flux

Γn and the radial tracer diffusivity Dx, which was shown to explain key trends in the

simulations. For the ZHW model, a subtle interplay between trapping in small scale

vortices and entrainment in larger scale zonal flows determines the rate, character and

Larmor radius dependence of the test particle transport. When zonal flows are damped,

the transport is classically diffusive, with Gaussian statistics, and the rate of transport

decreases with increasing Larmor radius. Once the Larmor radius is larger than the

typical radius of the turbulent vortices, the rate of transport remains roughly constant.

When zonal flows are allowed non-Gaussian statistics are observed. Radial transport

(across the zones) is subdiffusive and decreases with the Larmor radius at a slower rate.

Poloidal transport (along the zones), however, is superdiffusive and increases with small

values of the Larmor radius.

6.1 Further work

In this thesis, many different avenues have been explored, some in more detail than

others, and there are clearly many ways to take the work further.
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6.1.1 Analysis of experimental data

The analysis presented in Chapter 2 would benefit from a systematic study using many

additional datasets with different experimental conditions. This would allow more con-

crete statements on the question of universality.

Extra magnetic field coils, called resonant magnetic perturbation (RMP) coils

have recently been installed in MAST. These coils, which are primarily used for ELM

mitigation, modify the magnetic field structure near the edge of the plasma. Vacuum

modelling shows that RMP coils effectively ergodize the edge field. This means that the

magnetic field structure of MAST with RMP coils turned on may more closely resemble

the field structure in stellarators. Comparison of fluctuation data may shed more light on

the question of universality and the role of magnetic field structure in edge turbulence.

In the following, ergodization of vacuum magnetic fields by RMP fields is illus-

trated. We consider an equilibrium magnetic field in cylindrical coordinates (r, θ, z),

where 0 ≤ r ≤ a is along the minor radius, 0 ≤ θ < 2π is the poloidal angle and

0 ≤ z < 2π is the toroidal angle:

B = B0

[

φ̂ +
1

q
ẑ

]

, (6.1)

where q is the safety factor. We assume that the RMP field can be written in terms of

a magnetic potential A = Aẑ such that the total field becomes

B = B0

[

ẑ +
1

q
θ̂

]

+∇×Aẑ = B0

[

ẑ +
1

q
θ̂

]

+
1

r

∂A

∂θ
r̂− ∂A

∂r
θ̂ . (6.2)

We assume the form of A to be [Reiser, 2007]

A = −
∑

m

(−1)mA0 exp [m(r − a)/a] cos [mθ − nz] . (6.3)

Field lines can be traced by solving the following equations,

∂θ

∂z
=

1

qR
− 1

rB0

∂A

∂r
and

∂r

∂z
=

1

rB0

∂A

∂θ
, (6.4)

where z is used as a pseudo-time for numerical integration using the Karniadakis third

order scheme [Karniadakis et al., 1991]. 150 field lines are traced around the torus 1000
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Figure 6.1: Poincare plot of the magnetic field produced by equation 6.3 and 6.2.

times each and figure 6.1 shows the resulting Poincare plot for different values of the

ratio A0/B0. With A0/B0 = 0, there is no RMP field and the field lines form straight

flux surfaces. As A0/B0 is increased, magnetic islands form on resonant q = m/n

surfaces, m = [5, 6, 7] n = 2. For large values of A0/B0 = 0, these magnetic islands

overlap and the field becomes ergodic.
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6.1.2 Modifications to the Hasegawa-Wakatani equations

In this thesis, modifications to the Hasegawa-Wakatani equations to include the effects

of non-uniform magnetic field strength and zonal flows have been studied. Other simple

modifications include considering magnetic fluctuations, temperature fluctuations and

magnetic shear. The HW equations can also be solved in three dimensions. Figure 6.2

shows a snapshot of potential taken from a simulation of the three-dimensional HW

equations, using a modified form of the HAWK code. The effect of these modifications

Figure 6.2: Snapshot of potential for the three dimensional Hasegawa-Wakatani model.

on the statistics and the transport of test particles may provide interesting results.

Modifying the test particle equation of motion to include more physics is also possible.

In the longer term, the HAWK code may be modified in order to solve more complicated

equations, such as the gyrofluid equations, and in a more realistic geometry, e.g. toroidal

geometry using a field aligned coordinate system.
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