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Abstract

This thesis presents an approach to predicting a 3-dimensional, 3-component

velocity field of a fluid flow that possesses a homogeneous dimension. At the

core of this approach is the technique of stochastic estimation, which is com-

monly used to combine a small number of instantaneous measurements with

previously acquired statistical data, to produce a prediction of the flow over

a large number of locations. In the proposed technique, particle image ve-

locimetry (PIV) is used to provide measurements for the stochastic estimation

procedure, and the statistical stationarity along the homogeneous dimension

of the flow is exploited to extend the use of stochastic estimation to provide a

full volumetric prediction.

The first section concerns the prediction performance of stochastic es-

timation. It is shown how the traditional approach to stochastic estimation is

equivalent to ordinary least squares (OLS) regression. The properties of OLS,

previously unconsidered in stochastic estimation literature, are presented, and

shown to have a number of practical uses in the design and implementation

of stochastic estimation procedures. Several alternative approaches to flow

prediction are selected for further study, and their performance is compared

in a series of trials, based on data from a numerically simulated channel flow.

The newly-introduced biased techniques are shown to outperform or equal the

viii



accuracy of the stochastic estimation techniques across the entire range of

parameters under investigation.

The second section introduces the proposed volumetric prediction tech-

nique. A proof of concept is obtained using volumetric data from the simu-

lated channel flow, and the resulting predictions show excellent quantitative

and qualitative agreement with the original data. The predicted vortex ring

data compares favourably with previous theoretical and experimental stud-

ies, and visualisation of the volumetric data appears to show the existence of

secondary vortical structures around the outside of the ring core, which have

previously only been observed in numerical simulations.
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The experimental investigation of flow phenomena is an invaluable tool

throughout many fields of inquiry. Its uses range from engineering applications,

where experiments are employed to assess design decisions, through to research

into the fundamental physics of fluids, where they provide support, and even

inspiration, for new theories, models and concepts.

Although the history of fluids experimentation is as old as the field of

fluid mechanics itself, the years surrounding the turn of the twentieth cen-

tury were of particular significance. This era saw a number of groundbreaking

flow visualisation experiments, most notably in the work conducted variously

by Reynolds, Prandtl and Mach (reviewed in (Yang, 2001)). These experi-

ments heralded a sustained period of development and adoption of a new class

of experimental techniques, capable of determining the spatial and temporal

dynamics of fluid phenomena.

In these early examples, the methods employed were purely qualita-

tive in nature. However, in the years since, experimental techniques have

progressed at an astonishing rate, embracing the development of photogra-

phy and digital imaging, electronics, lasers, and computing along the way.

Today, the ability to make accurate quantitative flow measurements is now

well-established, and experimentalists have access to a number of techniques

that can provide, for example, high temporal-resolution velocity point mea-

surements (e.g. hot wire probes, laser Doppler anemometry), or high-spatial

resolution planar measurements (e.g. particle image velocimetry). Much cur-

rent research is now focused on the development of tools to provide full volu-

metric flow measurements.

It is perhaps ironic that advances in understanding of fluid dynamics,

due in large part to the role played by experimentation, have fuelled the need

for ever more detailed and complex measurements. Arguably, even with the
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sophisticated tools currently available, it is often the case that the gap between

what is required, and what can be measured, is as large as ever. Most flow

phenomena of interest, particularly those of a turbulent nature, exhibit com-

plex three-dimensional behaviour which manifests itself over a wide range of

scales, both spatially and temporally. Hence, a complete description of a flow’s

behaviour requires the ability to make accurate, non-intrusive measurements,

over a sufficiently large volume to capture the full region under investigation,

yet with sufficient resolution in time and space to resolve the full range of

scales present. Furthermore, such measurements are not limited solely to ve-

locity, but also to all other relevant quantities, such as temperature, pressure

and density. Until such techniques exist, certain measurements will continue

to remain beyond the capabilities of fluid dynamicists.

In light of this problem, the technique of stochastic estimation provides

a powerful means of bringing otherwise unobtainable experiments within reach.

Underlying the approach is the idea that even when a property of a flow is

not directly measured, some degree of its behaviour may still be apparent

in the behaviour of other observed properties. If the relationship between

the measured and unmeasured properties is known, then an estimate of the

latter can be made. Using a purely statistical approach, stochastic estimation

aims to determine the relationship between a potentially unlimited number of

flow variables (e.g. point velocities), which can then be exploited to provide

predictions of a scope beyond what could be obtained by measurement alone.

For example, before planar velocity measurements were commonplace,

stochastic estimation provided a powerful means of estimating the instanta-

neous flow velocity at a large number of locations, using data from only a small

number of hot-wire probes. Similarly, the disruption caused by the presence

of physical probes can be avoided by predicting the flow field using probes

3



outside the region of interest. In recent years, stochastic estimation has al-

lowed the benefits of planar and point measurements to be combined; first, the

relationship between the planar and point measurements is obtained, which

enables subsequent point measurements to be used to predict the planar flow

field, yielding predictions with both high spatial and temporal resolution.

Since its introduction by Adrian (1977), stochastic estimation has ac-

quired many different uses, both to address the changing needs of fluid dynam-

icists, and to incorporating further developments in measurement technology.

The work presented in this thesis contributes a further application, which pro-

vides instantaneous volumetric predictions of a flow that possesses one or more

homogeneous dimensions, i.e. a flow that, when expressed in an appropriate

coordinate system, is statistically invariant along at least one axis. The pro-

posed technique, from herein referred to as multiple plane volumetric stochas-

tic estimation (MP-VSE) , uses the established technique of stereo particle

image velocimetry (stereo PIV) to measure multiple parallel planes within the

flow, and stochastic estimation is employed to predict the remaining volume.

The proposed technique is flexible, modest in terms of its computational cost

and experimental complexity, and can be used to predict volumes of a size and

resolution currently well beyond the capability of conventional 3D-3C measure-

ments techniques. Although the necessity of a homogeneous dimension limits

the applicability of MP-VSE in many situations, there are still a significant

number of commonly studied flow phenomena that fulfil this requirement. For

example, flows over plates, wings, etc. often possess a strongly homogeneous

dimension in a standard Cartesian coordinate system, and similarly for pipe

flows, jets and vortex rings, when expressed in cylindrical coordinates.

The second contribution of this work relates to the theory of stochastic

estimation itself. Although the technique is relatively modern, its mathemat-
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ical underpinnings have been in existence for many years. As such, a wealth

of relevant information exists in other areas, most notably from the field of

linear regression analysis. A number of existing concepts are presented, along

with some novel contributions, which form a detailed study of the practical

performance of stochastic estimation. As well as bringing new understanding

to the technique as it is conventionally applied, a number of alternative im-

plementations are provided, which are shown to offer improved performance

in many situations, including those likely to be encountered in applications of

MP-VSE.

1.1 Thesis Outline

The thesis begins with a review of the relevant literature and mathematical

concepts. An overview of full-field flow measurement techniques is given in

chapter 2, which provides the opportunity to introduce the techniques that

form the basis of the MP-VSE approach, and review the development and

current status of approaches to volumetric flow measurement. Chapter 3 pro-

vides a description of the traditional mathematical treatment of stochastic es-

timation, and introduces the technique of principal component analysis, used

extensively in later chapters.

The investigation into the practical performance of stochastic estima-

tion begins in chapter 4, which introduces concepts from linear regression

analysis. It is shown how and when stochastic estimation is equivalent to the

technique ordinary least squares (OLS) regression. The properties of OLS are

then presented, and their relevance to the task of flow prediction is discussed.

Chapter 4 also introduces a selection of biased regression techniques, which

are shown, theoretically at least, to outperform stochastic estimation in cer-

5



tain circumstances. This leads on to the work of chapter 5, which describes a

series of simulated flow prediction experiments, used to quantitatively assess

the performance of the biased techniques over a wide range of parameters.

The working principle of MP-VSE is introduced in chapter 6. The

chapter closes with the description of a simulated MP-VSE experiment, which

serves to establish the feasibility of the approach, and demonstrates that biased

regression techniques are particularly suited to MP-VSE applications. Chapter

7 describes the design and implementation of an MP-VSE experiment, which

has been used for the prediction of unstable vortex rings. The results of the

experiment are compared with relevant experimental, numerical and theoretic

work from literature.

Conclusions and avenues of future work are given in chapter 8.2.

6



Chapter 2

Full-Field Velocity

Measurement Techniques
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This chapter presents a review of several relevant full-field velocity mea-

surement techniques, which are defined as those capable of the simultaneous

measurement of velocity at multiple positions within a two or three dimensional

region of a flow. In the following discussion, particular attention is given to

the techniques of particle image velocimetry (PIV) and multiple plane PIV,

which form the basis of the proposed MP-VSE approach, and which are subse-

quently employed in the experimental work in chapter 7. Although PIV forms

the backbone of much of the work in this thesis, it is not the emphasis, and so

a detailed discussion will not be undertaken here. A more detailed treatment

of the concept can be found in the comprehensive book by Raffel et al. (2007),

for example. The opportunity is also taken in this chapter to discuss the var-

ious approaches to volumetric flow measurement. The current strengths and

limitations of these techniques are considered, which will highlight some of the

advantages of the MP-VSE approach.

2.1 Particle Image Velocimetry

Particle image velocimetry (PIV) is one of a category of flow visualisation

techniques which involve the observation of tracer particles in the flow. Such

approaches have existed for over a century; first as a qualitative tool, as used

by Prandtl as early as 1904 (described in (Yang, 2001)), and then later as the

basis for several different quantitative techniques, e.g. particle tracking ve-

locimetry and laser Doppler anemometry. PIV is a relatively recent addition

to the field, having been established as a distinct technique in 1984, indepen-

dently by both Adrian (1984) and Pickering and Halliwell (1984). Since then,

PIV has arguably become the de facto technique for full-field planar velocity

measurement.
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The basic concept of PIV is appreciably simple. The flow in question

is seeded with neutrally buoyant, flow-following tracer particles, and a planar

region of the flow is illuminated using a light sheet of finite thickness. A mea-

surement is obtained using one or more cameras, each making two recordings

of the particle positions, separated in time by a short delay ∆t. The velocity

field within the viewing area is then determined from the spatial displacement

of the particles.

Calculation of the particle displacement involves dividing the PIV im-

ages into small sub-regions, or windows, and finding the average movement

of the particles within each interrogation area. This is typically achieved via

cross-correlation, which in its basic form, involves spatially “shifting” a window

from one image over the corresponding window from the other, and calculating

the correlation between the two windows at each shifted position. This creates

a two-dimensional correlation map, which provides the degree of correlation

between the windows as a function of the spatial displacement between them.

The displacement that yields the best correlation is indicated by a peak in

the map, which is detected and subsequently used to calculate the average

direction and magnitude of the velocity within the sub-region. In practice,

the state-of-the-art cross-correlation routines are significantly more advanced

than the simple procedure outlined here, and are capable of providing a much

improved accuracy, reliability and spatial resolution (Scarano, 2002; Stanislas

et al., 2008).

The cross-correlation process results in a grid of spatially-arranged vec-

tors, each describing the two in-plane velocity components of the velocity at

that point. However, if all three velocity component are sought, then an ex-

tension to the PIV procedure, known as stereoscopic PIV (stereo PIV) can

be employed. As the name suggests, stereo PIV employs two cameras which
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view the same region of the light sheet from separate directions. Essentially,

the standard cross-correlation approach is applied to the images from both

cameras, producing two separate vector maps of the flow at the same instant.

However, due to the different viewing locations, the perceived movement of the

particles is different if the flow contains any out-of-plane movement. Using the

disparity between the two velocity maps, it is possible to determine the out-

of-plane velocity component. The process of recovering the third component

places strict requirements on the calibration of the experimental setup. An

accurate mapping from a position in the images to the corresponding position

on the light sheet plane is required, so that the disparity between the two

vectors is solely due to the out-of-plane velocity at that point. Any error in

the mapping function means that the disparity may be calculated from the

velocity at two separate points in the flow, which can result in an erroneous

out-of-plane component. The task of minimising this calibration error has

received much attention and sophisticated self calibration procedures exist to

automatically detect and account for such problems, e.g. (Scarano et al., 2005;

Wieneke, 2005).

2.2 Volumetric Velocity Measurement

2.2.1 Multiple Plane PIV

Multiple plane PIV refers to the acquisition of instantaneous, or almost in-

stantaneous, PIV measurements at two or more planes in the flow. A common

use of this approach is volumetric flow measurement, where the volume is con-

structed from multiple closely spaced planar measurements. In this section,

an overview of the many approaches to multiple plane PIV is presented. Tech-
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nically, some of the following references do not relate specifically to volumetric

measurements, but have been included here as potential candidates for use

with the proposed MP-VSE technique.

The main challenge of multiple plane PIV is distinguishing between the

separate light sheets, which can be achieved in several ways. A well estab-

lished method of dual-plane measurements is through the use of orthogonally-

polarised light sheets. Using polarisation-preserving seeding particles, dis-

crimination of the two light sheets is possible by placing appropriate polar-

ising filters on each camera system (Kähler and Kompenhans, 2000; Wernet

et al., 2005; Perret et al., 2006). When more than two instantaneous PIV

measurements are required, an alternative is to generate the light sheets using

separate wavelengths. Separation of the measurement planes can then be ob-

tained through the use of cameras with appropriate wavelength filters (Mullin

and Dahm, 2006; Pfadler et al., 2009) or a single camera system capable of

accurate colour-capture (McGregor et al., 2007; Pick and Lehmann, 2009).

Generation of light sheets of different wavelength has been achieved variously

by: multiple lasers of different wavelength (Mullin and Dahm, 2006; Pfadler

et al., 2009), separating the output of multiple-wavelength lasers (Post et al.,

1994) (and the subsequent mixing of wavelengths to produce multiple further

colours (Ruck, 2009)), splitting white strobe light into multiple components

(Pick and Lehmann, 2009), and through the use of stimulated Raman scatter-

ing (McGregor et al., 2007). Many of these approaches theoretically provide

the possibility of a large number of wavelength-separated light sheets (in the

case of McGregor et al. (2007), 11 separate planes were generated). However,

as the number of light sheets is increased, the wavelength separation of the

sheets is necessarily reduced, and the increased level of cross-talk between

neighbouring sheets ultimately places a limit on the depth of volume that can
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be measured.

Light sheet discrimination can also be obtained by introducing a tempo-

ral separation between successive measurements, assuming that this separation

is sufficiently small relative to the flow’s time scales of interest. This can be

achieved using a scanning light sheet and a single camera system (Brücker,

1996; Hori and Sakakibara, 2004). This approach is limited by the minimum

achievable time separation between measurements which, depending on the

equipment used, will be dictated by either the frame rate of the cameras, the

mechanical scanning speed, or the laser repetition rate if a pulsed laser is

employed. This ultimately restricts the approach to flows that have suitably

large time scales, although improvements in technology will help to increase

the applicability of the approach. To date, the most advanced application of

scanning light sheet PIV is the work of Hori and Sakakibara (2004) who were

able to measure 50 planes of a low Reynolds number (Re ≈ 1000) water jet

using 500Hz framing cameras.

2.2.2 Particle Tracking Velocimetry

The technique of particle tracking velocimetry (PTV) is closely related to PIV,

whereby velocity measurements are obtained from the displacement of tracer

particles in images of an illuminated flow region. Rather than dividing the

image(s) into interrogation areas, PTV instead measures the displacement of

individual particles. PTV can be used for planar measurements in a similar

manner to PIV, using a single camera to measure two velocity components

of particles in a planar light sheet (Adamcyzk and Rimai, 1988). Arguably

though, it has found most success when extended to volumetric measurements

(3D-PTV), which use multiple cameras at known positions to image an illu-
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minated volume. The 3D position of the tracer particles is calculated from the

images using the collinearity condition (Maas et al., 1993), which, assuming

a pinhole camera model, states that an image point, the camera projective

centre (i.e. pinhole) and the 3D object point all lie on the same line. In

3D-PTV, the positions of individual particle centres are found in each image,

and the 3D locations are found from the intersections of the lines projected

from the image points through the camera centres. A common extension of

the technique is to make time-resolved measurements, by tracking individ-

ual particles over consecutive locations. This provides knowledge of particle

trajectories through time and space, and makes PTV ideally suited for La-

grangian analysis of the flow. However, the process of detecting particles,

obtaining 3D locations and tracking their motion is not trivial, and the par-

ticle images must be sufficiently sparse in order to ensure accuracy. This in

turn, limits the seeding density and volume depth that can be measured by

3D-PTV techniques (Tropea et al., 2007). A further issue is that the resulting

vector maps are arbitrarily distributed within the region of interest, and vary

between measurements.

2.2.3 Holographic PIV

Holography provides a means of recording three-dimensional information about

a scene in a single image. The holographic process involves two coherent light

beams; the scene under investigation is illuminated with one beam, and the

second reference beam is directed onto the imaging medium. Scattered light

from the scene (known as the object wave) reaches the recording medium where

it interferes with the reference beam. The interference pattern is recorded as

an image, and can later be used to extract a three-dimensional representation
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of the scene.

In holographic PIV (HPIV) a holographic image of a particle field is

obtained, and the vector field is then extracted from the reconstructed scene

using 3D cross-correlation or particle tracking techniques (Hinsch, 2002). As

an intrinsic three-dimensional imaging technique, holography is, in principal,

ideally suited for volumetric measurement of particle fields. However, the prac-

tical success of HPIV is dependent on what Meng et al. (2004) describe as the

“critical issues” of axial accuracy and information capacity. Axial accuracy

refers to the ability to resolve the position of particles in the direction normal

to the image plane (axial direction). The axial accuracy is generally lower than

in the remaining two dimensions, and results in reconstructed particles that

appear elongated in the axial direction. The information capacity sets a limit

on the maximum measurement volume and particle density that can be mea-

sured before image aberration and reconstruction noise becomes too severe

to correctly determine particle positions. A variety of HPIV configurations

have been proposed (summarised in Meng et al. (2004)). Generally, improved

performance in the aforementioned areas comes at the cost of (often vastly)

increased complexity. Arguably, the largest trade-off involves the choice of

recording medium. Currently, the best performance is provided with tradi-

tional film emulsion. However, the holographic film must be removed from the

setup and wet processed to obtain the holographic image after exposure, and

reconstruction of the particle field involves illuminating the hologram with the

original reference beam (or by a reversed, or conjugate, version of the reference

beam) to create an image of the particle field in space. A permanent record

of the field is made by traversing an image sensor, plane-by-plane, through

the volume. Overall, these steps render the film-based HPIV procedure an

inconvenient and time consuming endeavour, which is far removed from the
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near-instantaneous measurements available with conventional PIV measure-

ments. Conversely, digital holography, which employs CCD or CMOS sensors

to record the hologram, allows for a considerably simpler setup. Most impor-

tantly, access to the digital image of the interference pattern is instant, and

reconstruction of the particle field can be computed in software. However, even

state-of-the-art digital sensors have a size and resolution that is far lower than

that of holographic film, which drastically reduces both the axial accuracy

and information capacity. As such, digital HPIV is only capable of measur-

ing small regions of sparsely seeded flows. For example, Raffel et al. (2007)

quote a typical measurement volume of 1cm3 for digital HPIV, as opposed to

5cm3 for film-based HPIV. To date, digital HPIV has been employed with a

seeding density of around 12 particles/mm3 (Meng et al., 2004), whereas up-

wards of 60 particles/mm3 has been used for film-based holography (Pu and

Meng, 2000). Furthermore, the decrease in axial accuracy results in recon-

structed particles that are elongated by 10-100 times in the axial direction

(Atkinson and Soria, 2008). In order to extract accurate velocity measure-

ments from the reconstructed particle field, this effect must be accounted for.

Suggested approaches include novel particle detection techniques (Meng et al.,

2004) software-based filtering (Shen and Wei, 2004) and a combination of holo-

graphic and tomographic techniques (Soria and Atkinson, 2008). Ultimately

though, the development of digital HPIV is likely to be driven most strongly

by improvements in digital sensor technology.

2.2.4 Tomographic PIV

Tomographic PIV is a recent approach to volumetric measurement (Elsinga,

Scarano, Wieneke and van Oudheusden, 2006), which employs the principle
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of tomography to reconstruct the most likely distribution of tracer particles

within a three-dimensional region, based on multiple views of the particle

field. A pulsed light source illuminates the volumetric particle field, which is

recorded with multiple cameras (typically three to six). Under the tomographic

approach, the illuminated particle field is interpreted as a three-dimensional

intensity distribution. Each camera pixel has a line of sight through this

distribution, and the measured intensity of the pixel is taken to be the integral

of the light intensity along the line of sight. Based on observed pixel intensities

and knowledge of the corresponding lines of sight, the goal is to calculate the

most likely intensity distribution that gave rise to the observed data. This is

achieved using an iterative algorithm, which reconstructs the intensity field

onto a discrete grid of three-dimensional voxels. The velocity field is then

calculated from the reconstructed field using a volumetric form of the standard

PIV cross-correlation approach.

Although in its infancy, tomographic PIV has successfully been applied

to a variety of different flows (Raffel et al., 2007). It is noted that, to date,

applications of the technique have employed a volume that is considerably

smaller in depth than in width and height. This may arise because of the need

to maintain focus throughout the entire volume. The volume depth may also

ultimately be limited by the fact that the occurrence of false positives in the

particle reconstruction process (ghost particles) has been shown to increase

with the depth of the volume (Elsinga, van Oudheusden and Scarano, 2006).

2.2.5 Taylor’s Frozen Field Hypothesis

Although not strictly a measurement technique, certain flows permit the use

of Taylor’s hypothesis (Taylor, 1938) to make a prediction of the velocity
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in a volumetric region of the flow. Taylor’s hypothesis, also known as the

frozen field hypothesis, states that the temporal derivative of a given velocity

component ui is related to the spatial derivative of ui along the mean direction

of the flow x, simply by the velocity U :

δui
δt

+ U
δui
δx

= 0 (2.1)

where U is conventionally taken to be the mean flow velocity. Essentially, this

implies that velocity fluctuations at a fixed point are due to the passage of a

“frozen” pattern of turbulence, which is convected along by the mean velocity

(Warsi, 2006). Using this assumption, it is possible to infer the spatial gradi-

ent along x from knowledge of the temporal gradient at a single point in the

flow. Taylor’s hypothesis has been used extensively in turbulence research,

primarily due to the fact that until the advent of full-field measurement tech-

niques, it provided the most feasible way to investigate the spatial dynamics

of the flow using the time-resolved measurements from hot-wire probes. Since

its introduction, it has been applied in a wide variety of situations, commonly

for the calculation of wavenumber (i.e. spatial frequency) spectra from tempo-

ral frequency spectra, and other mean quantities based on spatial derivatives

(Townsend, 1980). Another possibility is to use the approximated spatial gra-

dient to directly estimate the instantaneous velocity field along x using the

velocity time history at a single point in the flow. This was conventionally

applied using hot-wire “rakes”, to allow the construction of a two dimensional

velocity field from a one dimensional array of point measurements (e.g. (Bon-

net et al., 1998)).

With the advent of time-resolved PIV systems, the same approach can

be used to provide a full volumetric reconstruction of the flow by placing the
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measurement plane orthogonal to the mean flow direction, and approximating

the third dimension from the time history of the measurements. This has

been employed variously by Matsuda and Sakakibara (2005); van Doorne and

Westerweel (2007); Ganapathisubramani and Lakshminarasimhan (2007).

The validity of Taylor’s Hypothesis depends primarily how closely the

flow resembles the aforementioned “frozen field”. This is dependent on the tur-

bulence intensity, defined as the root mean square of the velocity fluctuations

relative to the magnitude of mean velocity, which should be small in order to

for the hypothesis to hold. However, what constitutes a “valid” flow depends

ultimately on what the hypothesis is used for. It is noted by Townsend (1980)

that the approximation of mean quantities are generally much less sensitive to

deviations from the frozen-field assumption than the approximation of exact

spatial gradients. This is particularly relevant when applying Taylor’s hypoth-

esis as a means of predicting the instantaneous flow field, as it implies that

although the reconstructed field may share many statistical properties with

the real flow field, instantaneous realisations of the flow may only be a poor

approximation to the truth. In practice, the error between the true and re-

constructed field will be small at distances close to the measurement position,

but will invariably increase with separation, due to the evolution of the ve-

locity fluctuations and the entrance of new structures into the line of travel

(Belmonte et al., 2000).

2.3 Summary

A review of several full-field measurement techniques has been presented,

which are relevant to the proposed MP-VSE technique, either as the basis

of the technique itself (in the case of PIV and multiple plane PIV), or as al-
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ternative ways of producing volumetric velocity data. A common limitation

of all the volumetric techniques described here is the amount of data that can

be measured, due to restrictions in terms of resolution, volume size, particle

density, etc. This highlights a major advantage of MP-VSE, which can be used

to predict a volume of a far greater size and resolution than currently avail-

able. As a prediction, MP-VSE will not be able to rival the accuracy of direct

measurements, but it’s ability to provide a more complete representation of

large flows regions is likely to motivate it’s use.

19



Chapter 3

Review of Mathematical

Concepts
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3.1 Introduction

This chapter serves as an introduction to some of the main mathematical con-

cepts employed in the following work on stochastic estimation. Traditionally,

stochastic estimation is viewed as a method of estimating conditional averages

in turbulence, and so the chapter begins by describing the theory of conditional

averaging, its role in fluid dynamics, and the practical difficulties of its use,

which motivated introduction of stochastic estimation. This leads on to sec-

tion 3.3, which provides the standard mathematical presentation of stochastic

estimation, and briefly documents its history. Section 3.4 details the statistical

technique of principal component analysis (PCA), which is employed in later

chapters as a tool to investigate a variety of implementations of the stochastic

estimation procedure. Furthermore, PCA, under the name of proper orthog-

onal decomposition (POD), is used extensively in fluid dynamics, and often

in conjunction with stochastic estimation. This aspect of the technique is

considered in section 3.5.

3.2 Conditional Averaging

Given the (possibly multivariate) random variables G and E, the conditional

average 〈G|E = e〉 describes the average behaviour of G during the occurrence

of the event E = e. Here, the angled brackets denote an ensemble average over

statistically independent observations. For convenience, the conditional aver-

age is often written as 〈G|E〉. The variable G is referred to as the conditional

variable, and E as the unconditional variable.

For fluid dynamics applications, the conditional variable usually consists

of velocity components at points within the flow. The unconditional variable
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may also be velocity, although many other measures, such as temperature,

pressure, or quantities derived from velocity have been used extensively. As

an introductory example, consider the case where G consists of the velocity

components, u, v, w at the points x′1,x
′
2, . . ., and E is the velocity at the points

x1,x2, . . ., i.e.:

G = {u(x′1, t), v(x′1, t), w(x′1, t), u(x′2, t), v(x′2, t), w(x′2, t), . . .} (3.1)

and:

E = {u(x1, t), v(x1, t), w(x1, t), u(x2, t), v(x2, t), w(x2, t), . . .} (3.2)

In this example, the event e is defined by the vector:

e = {e1 ±∆e, e2 ±∆e, e3 ±∆e, e4 ±∆e, e5 ±∆e, e6 ±∆e . . .} (3.3)

which specifies a set of velocities that define the event of interest, where the

quantity ∆e is chosen to ensure that the event occurs with sufficient frequency.

The conditional average 〈G|E = e〉 therefore describes the average behaviour
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of the velocity field at x′1,x
′
2, . . ., given the occurrence of:

u(x1, t) = e1 ±∆e

and v(x1, t) = e2 ±∆e

and w(x1, t) = e3 ±∆e

and u(x2, t) = e4 ±∆e

and v(x2, t) = e5 ±∆e

and w(x2, t) = e6 ±∆e

and . . .

(3.4)

The traditional role of conditional averages in turbulence is to investigate co-

herent structure. Here, the event is chosen to be a phenomenon of perceived

importance to the flow, which may be the occurrence of high velocity fluctua-

tions, acceleration or deceleration of velocity, high vorticity or particular types

of Reynolds stress (Antonia, 1981; George et al., 1989). The resulting field of

conditional averages can then provide information about the state of the flow

that caused the event in question. One of the strengths of conditional aver-

aging is that it can provide information about the flow at a large (technically

unlimited) number of locations, using only limited measurement equipment;

all that is required is the means to make simultaneous measurements of the

unconditional data, E, and at least one element of the conditional vector, G.

The conditional average for each element of G can be obtained separately,

with the full field of conditional averages obtained by traversing the condi-

tional measurement location to all the points in turn. In practice, the process

of acquiring conditional average measurements usually employs some form of

conditional sampling, whereby the occurrence of the event E = e is monitored
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in real-time, and one or more elements of the conditional quantity G are sam-

pled whenever E = e. This approach has several drawbacks. As evidenced by

equation (3.4), as the size of the event vector grows, the likelihood of the event

occurring reduces, and the time taken to acquire enough data for convergence

of the average can become prohibitively large. This problem is made worse if

the size of G is also large, and the conditional average is to be constructed

in a piece-wise manner, using the traversal method outlined above. Given the

amount of experimental effort required, a second problem is that the measured

data is only valid for the chosen event; if other events are to be investigated,

then the process must be carried out again.

3.3 Stochastic Estimation

Stochastic estimation was introduced by Adrian (1977) as a means of estimat-

ing conditional averages, without the problems associated with their direct

measurement. Underlying the approach of stochastic estimation is the idea

that the conditional average 〈G|E〉 is a function of the unconditional variable

E, i.e. 〈G|E〉 = f(E). Stochastic estimation aims to model this function,

which can then be used to estimate the conditional average for every possible

choice of the event e, without the need for repeat experiments. Furthermore,

stochastic estimation does not necessitate the experimental expense of tra-

ditional conditional average measurements. To show this, the derivation of

the stochastic estimation procedure will be presented. In the following, it is

assumed that the conditional variable G contains ñ elements, and for simplic-

ity, G is univariate (which is herein notated without boldface, i.e. G). For

multivariate G, a separate stochastic estimation model must be built for each

element. It is also assumed that both E and G have a mean of zero. The

24



approach here is based on the descriptions given in Adrian (1994) and Tropea

et al. (2007).

Stochastic estimation approximates the conditional average function us-

ing a power series expansion, centred around E = 0 and truncated at some

order:

〈G|E〉 = f(E) =
ñ∑
i=1

AiEi +
ñ∑
i=1

ñ∑
j=1

BijEiEj +
ñ∑
i=1

ñ∑
j=1

ñ∑
k=1

CijkEiEjEk + . . .+ ε

(3.5)

where ε is the truncation error. For simplicity, it is helpful to group the

coefficients, Ai, Bij, . . . and the unconditional variable terms into two separate

variables of length n:

L = {A1, A2, . . . , Añ, B11, B12, . . . , Bññ, C111, . . .} (3.6)

and:

F = {E1, E2, . . . , Eñ, E1E1, E1E2, . . . , EñEñ, E1E1E1, . . .} (3.7)

The truncated series expansion of the conditional average is then simply:

〈G|E〉 =
n∑
i=1

LiFi + ε (3.8)

Where Li and Fi are the ith elements of L and F, respectively. Stochastic

estimation estimates the coefficients L using the criteria of minimising the

mean squared error between the true and estimated conditional average:

argmin
L

〈(
〈G|E〉 −

n∑
i=1

LiFi

)2
〉

(3.9)
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The necessary condition for this minimisation is the orthogonality principle,

which states that the error, 〈G|E〉−
∑n

i=1 LiFi, must be uncorrelated with the

variable F: 〈(
〈G|E〉 −

n∑
i=1

LiFi

)
Fj

〉
= 0 (3.10)

for j = 1, . . . , n. This can be rearranged to yield a system of n simultaneous

equations:
n∑
i=1

〈FiF1〉Li = 〈F1G〉

n∑
i=1

〈FiF2〉Li = 〈F2G〉

. . .

n∑
i=1

〈FiFn〉Li = 〈FnG〉

(3.11)

or simply:
n∑
i=1

〈FiFj〉Li = 〈FjG〉 (3.12)

for j = 1, 2, . . . n. The solution to this system of equations requires knowledge

of the average quantities, 〈FiFj〉 and 〈FjG〉. Note that both these averages

are unconditional; as such, they can be acquired experimentally without the

need for conditional sampling. Furthermore, all the required quantities can be

measured independently, which means that the stochastic estimation model

can be constructed with a small number of measurement probes1. Contrast

this with approach of directly measuring conditional averages, which requires

each element of the conditional variable to be measured in conjunction with

the full unconditional variable E.

1technically, the number of probes required is determined by the order at which the
power series is truncated; two probes are required for a linear model, three for a second
order, etc
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Several comparisons between stochastic estimation and directly mea-

sured conditional averages have been made, and stochastic estimation has

been shown to provide an excellent approximation in a wide number of flows

(Adrian et al., 1989; Naguib et al., 2001; Guezennec, 1989). Commonly, the

expansion of 〈G|E〉 is truncated at the first or second order, leading to linear

stochastic estimation (LSE), and quadratic stochastic estimation (QSE). The

use of higher orders has been investigated, but only a negligible improvement

resulted from their use in the situations under investigation (Tung and Adrian,

1980).

An important new application for stochastic estimation was introduced

by Cole et al. (1991), who proposed that, rather than using a user-specified

event for the conditional average, the instantaneous measurements of E could

be used instead. The strength of this approach arises from the fact that the

best estimate (in terms of minimum squared error) of the instantaneous value

of a random variable, y, given knowledge of the variable x, is the conditional

average 〈y|x〉. Hence, a prediction of the instantaneous value of G can be

obtained whenever a measurement of the event E is made.

This approach has been exploited to overcome several limitations of

conventional measurement techniques. For example, a small number of probes

can be used to build stochastic estimation models using the piece-wise ap-

proach described above, which can then be used to predict a high resolution

velocity field using only a limited number of point measurements (Cole et al.,

1991; Geiseke and Guezennec, 1994; Cole and Glauser, 1998). In recent years,

stochastic estimation has combined the benefits of planar and point measure-

ments, to provide flow predictions with both high spatial and temporal res-

olution. By measuring PIV frames in conjunction with high frequency point

measurements (commonly pressure probes), a stochastic estimation model can
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be used to predict the PIV velocity field at the same frequency as the point

measurements. This approach has a further benefit in that the disruption

caused by the presence of physical probes can be avoided by predicting the

flow field using probes outside the region of interest. This has included the

investigation of boundary layer separation/reattachment using wall-mounted

pressure probes to predict the velocity field (Taylor and Glauser, 2002; Ukei-

ley and Murray, 2005; Hudy et al., 2007), and the use of near field pressure

measurements to predict the flow in jets (Picard and Delville, 2000; Tinney

et al., 2008).

Further developments of the stochastic estimation procedure have seen

the technique combined with other mathematical techniques. It is now com-

mon to carry out the stochastic estimation in conjunction with proper orthog-

onal decomposition (POD), which has enjoyed great success as a tool to inves-

tigate the existence and dynamics of coherent structures in turbulent flows.

A discussion of POD, and its use in stochastic estimation, is provided in the

following section.

Another extension of the technique, known as spectral stochastic es-

timation, carries out the estimation in the frequency domain by using the

Fourier coefficients of the unconditional vector to predict those of the condi-

tional vector (Ewing and Citriniti, 1999; Tinney et al., 2006, 2008). Whereas

conventional stochastic estimation uses a measurement of the unconditional

vector at a single point in time to make the prediction, spectral stochastic es-

timation can improve the prediction accuracy by incorporating unconditional

data measured over a range of times (Ewing and Citriniti, 1999). A further

benefit is that the technique automatically accounts for the time delays be-

tween the measurements when the conditional and unconditional locations are

separated by a large distance.
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Although stochastic estimation provides the means of predicting an un-

limited number of locations from a finite set of unconditional measurements, it

is rarely used for the prediction of volumetric regions. This is likely a result of

the practicalities of undertaking such an endeavour; before any prediction can

be made, each conditional variable must first be measured in unison with each

of the unconditional variables, in order to establish the stochastic estimation

model at that point. Using standard point, line or planar measurements to

build the stochastic estimation model, the task of producing a volumetric pre-

diction requires the measurement position to be traversed through the volume,

to account for every point of interest. As such, attempting to predict a vol-

ume of a reasonable size or resolution quickly becomes prohibitively complex

and time consuming. Nonetheless, there have been a few notable instances

of volumetric predictions. For example, Geiseke and Guezennec (1994) and

Druault, Delville and Bonnet (2005a) have both used stochastic estimation

to predict a time-resolved velocity field in a plane normal to the mean flow

direction. By applying Taylor’s hypothesis, the third spatial dimension was

then inferred from the time history of the predicted plane. To the author’s

knowledge, the only volumetric predictions to be obtained without resorting

to Taylor’s hypothesis were carried out by Tinney et al. (2008). In this work,

the velocity field of an axisymmetric jet was predicted using near-field pres-

sure measurements. A volumetric prediction was achieved by the piece-wise

mapping of the velocity field with a stereo PIV system, which was traversed

to 21 separate positions along the streamwise axis of the jet. To improve the

grid resolution in the streamwise axis, a sub-grid interpolation scheme was

subsequently employed.
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3.4 Principal Component Analysis

This section introduces the technique of principal component analysis (PCA).

The following treatment of PCA is similar to that found in most textbooks

on the subject e.g. (Kirby, 2001; Joilliffe, 2004; Jackson, 1991). However, in

preparation for the work in following chapters, PCA is described primarily in

terms of vector and matrix algebra, and particular emphasis is placed on the

geometric properties of the technique. Also, throughout the discussion, the

opportunity is taken to introduce several other important concepts that will

be referred to throughout the rest of the thesis.

As a necessary prelude to the discussion of PCA, the concept of vector

spaces will be introduced. Consider the multivariate random variable x, which

consists of a set of n real variables, i.e. x = [x1 x2 . . . xn]. Geometrically, an

observation of x can be considered as a single point in n-dimensional vector

space, Rn. The coordinate system within the vector space is determined by

the basis. A basis, B, for Rn consists of a set of n orthogonal vectors, i.e.:

v1 = [v11 v12 . . . v1n]

v2 = [v21 v22 . . . v2n]

...

vn = [vn1 vn2 . . . vnn]

(3.13)

which allow a point x to be uniquely expressed as a linear combination of the

vectors:

x = a1v1 + a2v2 + . . .+ anvn (3.14)

where a1, a2, . . . , an are the coordinates of x in terms of the basis, B. To illus-

trate this concept, the simple example in figure 3.1 shows how the coordinates
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x

Figure 3.1: The coordinates of x relative to the two different bases. The point
x has the coordinates (a1, a2) in terms of the basis defined by the vectors v1,
v2, and the coordinates (b1, b2) in terms of the basis defined by the vectors w1,
w2

of an observation of a 2-dimensional variable x differ depending on the basis.

In each case, the coordinates arise from the orthogonal projection of the point

x onto the basis vectors.

For practical purposes, it is helpful to express the vector space op-

erations in matrix form. Here, the basis vectors form the column vectors

of the matrix V = [vT1 vT2 . . . vTn ] and the coordinates are represented as

a = [a1 a2 . . . an]. The point x is then given by:

x = aVT (3.15)

An important basis of the vector space Rn is the standard basis, Bstd, which

consists of a set of unit vectors, where the ith element of the ith vector is one,
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and all other elements are zero:

e1 = [1 0 . . . 0]

e2 = [0 1 . . . 0]

...

en = [0 0 . . . 1]

(3.16)

In matrix form, the standard basis is the identity matrix I, and the coordinate

vector a is simply x, i.e. x = xI. Only orthonormal bases will be considered in

the following work, which are defined by vectors that are both orthogonal, and

of unit length. Geometrically, any orthonormal basis of Rn can be considered

a rotation and/or reflection of the standard basis about the origin.

It is often necessary to change from one basis to another. Given two

bases B1 and B2, defined by the vectors V and W, the point x is given by:

x = aVT (3.17)

and:

x = bWT (3.18)

Hence, with knowledge of the coordinates a, and the basis vectors V and W

the coordinates b can be found by:

b =aVT (WT )−1

=aVTW
(3.19)

which arises from the fact that the inverse of an orthonormal matrix is identical
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to its transpose. Similarly:

a =bWTV (3.20)

In this context, PCA can be viewed as a means of defining an “optimal” basis

for a set of m independent observations of the n-dimensional variable x, i.e.

x(1),x(2), . . . ,x(m). These observations are represented by the m × n matrix,

X:

X =


x(1)

x(2)

...

x(m)

 (3.21)

In the following section, it is assumed that the data is mean-centred, such that

1
m

∑m
j=1 x(j) = [0 0 . . . 0]. As such, the set of m observations of x forms a

“cloud” of points in Rn, centred at the origin. The aim of PCA is to choose a

basis for Rn, so that each consecutive basis vector passes through the cloud of

points in the direction of highest variance, subject to the constraint that the

vector must be orthogonal to all preceding vectors. These vectors, denoted,

U = [uT1 uT2 . . . uTn ], are known as the principal components of X. From

equation (3.15), a point x can be represented as:

x = zUT (3.22)

where z are the coordinates, or scores, of x in terms of the basis defined by the

principal components U. As U is orthonormal, the scores can be calculated

by:

z = xU (3.23)

which is commonly described as the projection of x onto the principal compo-
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(a) Scatter plot of the original data
set X. The red arrows represent the
principal components u1 and u2.

z1
11
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(b) Scatter plot of the resulting
scores Z = XUT

Figure 3.2: The application of PCA to a 2-dimensional data set

nents. Similarly, the ith score is given by:

zi = xuTi (3.24)

Also, the full set of n scores for all m observations can be calculated from X

as:

Z = XU (3.25)

where:

Z =


z(1)

z(2)

...

z(m)

 (3.26)

Figure 3.2 shows the application of the PCA procedure to a 2-dimensional

data set.

From the above description, it is evident that the calculation of the
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principal components is a maximisation problem, which must be carried out

subject to certain constraints. The quantity being maximised is the variance

of x along the direction of the principal component, ui, which is defined as

Var[xuTi ]. Therefore:

ui =argmax
ui

Var[xuTi ]

=argmax
ui

1

m

m∑
j=1

(
x(j)uTi

)2
=argmax

ui

1

m

(
XuTi

)T (
XuTi

)
=argmax

ui

uiCuTi

(3.27)

where C = 1
m

XTX is the covariance matrix of X. For all principal components,

the maximisation is carried out subject to the constraint that ui is a unit

vector, e.g. ‖u1‖ = uT1 u1 = 1. Also, for i = 2, . . . , n, it is required that the ui

is orthogonal to all preceding vectors, i.e. uTi uj = 0 for all j < i. The solution

to this problem may be found by the technique of Lagrange multipliers. The

working is quite involved, especially for an arbitrary number of components, n,

and so will not be undertaken here. The full derivation can instead be found

in Giri (2004), for example. The solution is given by the eigendecomposition

(EVD) of the covariance matrix C = 1
m

XTX:

C = ULUT (3.28)

where the matrix of principal components U = [uT1 uT2 . . . uTn ] are the eigen-

vectors of C, and L is a diagonal matrix consisting of the corresponding eigen-

values, l1, l2, . . . , ln, ordered in decreasing size. The eigenvalue li corresponds to

the variance accounted for by the ith principal component, i.e. li = Var[xuTi ].
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A property of the scores z is that the individual components, zi, are uncorre-

lated. Therefore, E[zizj] = 0 for all i 6= j, and E[zizi] = li , i.e. the variance

of X along the direction of the ith principal component.

For the purposes of this work, the most important property of PCA

concerns its optimality. This can be defined formally by considering an ap-

proximation of the variable x, built from only the first k principal components

and corresponding scores:

x̃ = z1u1 + z2u2 + . . .+ zkuk

= z̃ŨT
(3.29)

where Ũ = [uT1 ,u
T
2 , . . . ,u

T
k ] and z̃ = [z1 z2 . . . zk]. The mean square er-

ror (MSE) between the true and approximate values of x over the set of m

observations is therefore:

MSE =
1

m

m∑
i=1

(
x(i) − z̃(i)ŨT

)2
(3.30)

The principal components are an optimal basis in the sense that for any k,

there is no other choice of k orthonormal vectors that can approximate the m

observations of x with a lower MSE.

This property can be exploited in situations where the majority of the

observed n-dimensional data X is contained within a small number of dimen-

sions, k (otherwise known as a k-dimensional subspace of Rn). By calculating

the scores Z̃ = XŨ using the first k principal components, the observed data is

mapped from Rn to Rk space, while still preserving the important information

contained within X.

From equation (3.29), it is possible to reconstruct the approximation
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x2
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Figure 3.3: An approximation to the data set X using the first principal
component. The red points indicate the locations of the approximated points
x̃, which corresponds to the orthogonal projection of the original points onto
the first principal component. Although the approximated points still exist in
two-dimensional space, they are limited to a one-dimensional subspace.

to X as X̃ = Z̃Ũ which restores the data back to Rn space. However, all

information within the discarded dimensions is lost, which means that X̃ is

now limited to a k-dimensional subspace within Rn, which is defined by the k

principal components. In the following chapters, this subspace is referred to by

the term Ṽ . The concept is illustrated in figure 3.3, which shows the result of

approximating X with the largest principal component. It can be seen that the

resulting locations of the points in X̃ are found by the orthogonal projection

of the original points onto the first principal component. Hence, in the general

case X̃ can be thought of as the projection of X onto the subspace defined by

the vectors Ũ. The unused dimensions of Rn are subsequently referred to as

the null space of X̃, which is denoted Ṽ⊥.

Thus far, the process of approximating X has been described as a two-

stage process, although the final result can be achieved in a single operation.
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Given that Z̃ = XŨ, the approximation is simply:

X̃ = Z̃Ũ
T

= XŨŨT

= XP−→Ṽ

(3.31)

The matrix P−→Ṽ is known as an orthogonal projection matrix, which results

when any matrix of orthonormal column vectors is multiplied by its transpose.

The main property of such matrices is already apparent from the above dis-

cussion; namely, a projection matrix has the effect of projecting a vector or

matrix onto a subspace, which in this case is Ṽ . A technique closely related to

PCA is the singular value decomposition (SVD). The SVD can be considered

to be a form of the EVD extended to rectangular matrices, such that the m×n

matrix X can be decomposed as:

X = ULSVT
R (3.32)

where UL is an m ×m matrix of orthonormal left singular vectors uL(i)
2 i.e.

UL = [uL(1) uL(2) . . .uL(m)], and VR is an n× n matrix of orthonormal right

singular vectors, i.e. VR = [vR(1) vR(2) . . .vR(m)]. S is an m × n rectangular

2the slight change in naming convention here is necessary to distinguish between the left
singular values uL(i) and the principal components ui
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diagonal matrix of singular values, which for m > n is:

S =



s1 0 . . . 0

0 s2 . . . 0
...

...
. . .

...

0 0 . . . sn
...

...
...

0 0 . . . 0


(3.33)

and for m < n is:

S =


s1 0 . . . 0 . . . 0

0 s2 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . sm . . . 0

 (3.34)

Hence, there are a total of r = min(n,m) singular values.

The SVD is closely related to PCA, which, as shown in equation (3.28),

is performed by computing the EVD of the covariance matrix C = 1
m

XTX,

i.e.:
1

m
XTX = ULUT (3.35)

Consider the SVD of the matrix 1√
m

X:

1√
m

X = ULSVT
R (3.36)
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The matrix C can therefore be expressed as:

C =
1

m
XTX

=
(
ULSVT

R)TULSVT
R

= VRSUT
LULSVT

R

(3.37)

Multiplying an orthonormal matrix by its transpose produces the identity

matrix, I, hence:
1

m
XTX = VRST ISVT

R

= VRS2VT
R

(3.38)

where S2 is a diagonal matrix of the squared singular values, s21, s
2
2, . . . , s

2
n.

This expression is identical in form to the EVD of 1
m

XTX, which shows that

the principal components u, and eigenvalues l, of X are the right singular

vectors vR, and squared singular values s2, of 1√
m

X.

Hence, the SVD provides an alternative approach to performing PCA.

Also, the SVD can be used to establish a third approach, known as the method

of snapshots (Sirovich, 1987). This time, the EVD of the matrix 1
m

XXT is

found. Using the same approach as before, the EVD of this can be expressed

in terms of the SVD of 1√
m

X:

1

m
XXT = ULS2UT

L (3.39)

Therefore, the EVD of this matrix can be used to find the left singular vectors

UL and the singular values S. The corresponding right singular vectors can
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then be found by rearranging (3.32):

VT
R = UT

LS−1X (3.40)

From, (3.38), VR corresponds to U, the principal components of X. Notice

that the snapshot method is performed on the m×m matrix 1
m

XXT , whereas

the standard approach is performed on the n× n matrix 1
m

XTX. Due to the

computational cost of computing the EVD, the snapshot method is preferable

when m < n. A full discussion of the relative merits of these three approaches

is saved for section 5.3.

So far, PCA has been described as an operation on finite sets of data.

However, for many applications, PCA is used to make inferences about the

underlying population from which the data was sampled. Assuming that the

observed variables x are drawn from the same statistical population, the sam-

ple principal components, ui and eigenvalues, li can be used as estimates of

the population principal components γi and eigenvalues λi. These population

quantities can be can be viewed as those which would arise from the PCA

procedure as the number of samples m→∞.

3.5 Proper Orthogonal Decomposition

PCA, under its many guises, is ubiquitous throughout many fields, although

its treatment is expressed using a number of different terminologies, conven-

tions and derivations. In fluid dynamics, it has the title of Proper Orthogonal

Decomposition (POD). The final part of this section presents a brief summary

of the use of POD in fluids applications, and its relationship with stochastic

estimation. Before continuing, it is first necessary to address some pertinent
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differences between POD and PCA. A superficial difference relates to termi-

nology. For example, the principal components and scores are referred to as

POD modes and expansion coefficients. For consistency with POD literature,

this convention will be adopted for the duration of this section. A more funda-

mental deviation between the techniques arises from the interpretation of the

calculated quantities. It was mentioned at the end of the previous section that

PCA is often used to infer properties of the underlying population. In POD

applications, this concept is taken a stage further, Here, the data x is taken

to be the state of the flow within a domain in space (and possibly time). The

resulting sample principal components are not only used as an estimate of the

underlying population variables, but, as will be shown, it is also common to

attribute a degree of physical importance to the principal components.

Furthermore, POD is viewed, and subsequently derived, as an oper-

ation on continuous functions, rather than on finite observations of discrete

data as is the case with PCA. In practice, however, the implementation of the

two techniques is identical save for a few notable exceptions. For example,

in flows with homogeneous or periodic spatial dimensions (or stationary tem-

poral dimension), the application of POD can be shown to be equivalent to

the Fourier decomposition along these directions. In such cases, it is standard

procedure to first perform a Fourier transform of the data along the homoge-

neous directions, and then for each frequency, perform POD on the complex

Fourier coefficients along the remaining inhomogeneous dimensions. A final

difference between the two approaches is that POD permits the use of differ-

ent inner products to define the optimality of the decomposition. For PCA,

the principal components are chosen to maximise Var[xuTi ], where xuTi is the

dot product of x and ui. Generally, the dot product is also used in POD

applications, although in some instances other inner products may be chosen
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(usually in production of low order dynamical systems using the Galerkin pro-

jection, which will not be considered here). The reader is referred to Holmes

et al. (1996) for a full mathematical description of POD. Chatterdee (2000)

and Tropea et al. (2007) are also recommended for their comparison between

POD and the SVD.

POD was originally introduced by Lumley (1967) as an objective ap-

proach to identifying coherent structures in turbulence. Today, the majority

of its uses still fall into this broad category, although it is applied in a wide

variety of ways.

In many cases, coherent structure can be inferred directly from the

modes themselves. When a particular mode accounts for a sufficiently large

amount of energy (i.e. variance) of the flow under investigation, the shape of

the mode is often assumed to correspond to a physically occurring coherent

structure in the flow (Lumley, 1981)3. If the sole interest is the POD modes,

then only knowledge of the covariance matrix C is required. The elements

of C can be constructed in a piecewise manner, using two-point correlations

acquired with a minimum of two probes, and as with stochastic estimation,

this allows the construction of high resolution reconstructions with minimal

experimental effort.

This approach constituted some of the earliest uses of POD, and has

been used to extract the prominent coherent structure in turbulent pipe flow

(Bakewell and Lumley, 1967) the turbulent wake behind a cylinder (Payne

and Lumley, 1967), mixing layers (Delville et al., 1999), and rectangular jets

(Sakai et al., 2006). Even where more sophisticated measurement techniques

3In cases where POD has been applied in the Fourier domain (due to the presence of
homogeneous/periodic/stationary dimensions), the modes are also in the Fourier domain,
and so have no direct physical meaning. In order to produce a spatial representation of the
modes, the shot noise decomposition is usually performed (Holmes et al., 1996)
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enable further uses of POD, the presentation and analysis of the largest modes

is standard.

However, if the direct and full measurement of the variable x is possible,

then the observations can be projected onto a reduced set of modes to produce

a partial reconstruction x̃. Generally, the partial reconstruction is not simply

considered to be an approximation to the true state of the flow, but rather

a representation of the large scale, coherent structure. Similarly, projection

onto the lower modes can be thought of as capturing the small scale, incoherent

structure in the flow. This approach has been used extensively in the study

of a wide variety of flows (Citriniti and George, 2000; Druault, Delville and

Bonnet, 2005b; Graftieaux et al., 2001).

Given the availability of time-resolved measurements of x, POD can be

applied in two ways; the simplest approach is to perform POD solely on the

spatial dimensions. Then, the spatial modes can be projected onto each instan-

taneous measurement. The time variation of the resulting temporal expansion

coefficients can be used to investigate the temporal dynamics of the flow struc-

ture (Pederson and Meyer, 2002; Pastur et al., 2005). The second option is to

include both spatial and temporal information in the decomposition. However,

when the flow is stationary in time it is necessary to perform the Fourier trans-

form along the time dimension, yielding a set of Fourier modes. Such modes

cannot be directly interpreted as physical structures, but normally have the

benefit of providing a more efficient decomposition of the flow in terms of the

energy captured (Bonnet et al., 1998; Picard and Delville, 2000).

From this brief survey, it is evident that certain applications of POD

require more sophisticated experimental setups than others. However, there

are several ways of overcoming experimental limitations, which allow the ap-

plication of POD in ways that would not otherwise be possible. For example,
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Druault, Guibert and Alizon (2005) calculated the spatial POD modes from

time-resolved, yet relatively low-speed, PIV measurements of a flow in an en-

gine cylinder, and then interpolated the time-varying expansion coefficients to

produce a low-dimensional description of the flow that was effectively continu-

ous in time. In an investigation into the periodic vortex shedding of a flow over

a square-section cylinder, van Oudheusden et al. (2005) showed that the phase

of non-time-resolved PIV measurements could be identified from the relation-

ship between the first two temporal expansion coefficients. This consequently

enabled the construction of a low-order, phase resolved reconstruction of the

flow.

The most popular approach of extending the capabilities of POD is

through the use of stochastic estimation. As described in the previous section,

stochastic estimation can be used to extend the capabilities of measurement

techniques to provide high resolution, time-resolved flow predictions. This

makes it ideally suited for use with POD, and has the further benefit that both

stochastic estimation and POD are derived from the same measured quantities,

namely the covariances between the point locations in the flow, also referred to

as two-point correlations. The combination of the two techniques was first pro-

posed by Bonnet et al. (1994), under the name of the complimentary technique.

Two-point correlations are used to obtain both the principal components and

the stochastic estimation model. Stochastic estimation is then used to predict

the behaviour of the flow over a large number of locations, using only a small

number of point measurements. The predicted field is then projected onto

the POD modes to produce a low dimensional reconstruction. Employing a

similar approach, Taylor and Glauser (2002) showed that if instantaneous mea-

surements of x are available, stochastic estimation can be used to predict the

principal components directly, rather than predicting the full instantaneous
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velocity field. This involves finding the spatial principal components and cal-

culating the most important scores for each measurement, which are then used

as the conditional variables in the stochastic estimation process. The benefit

of this approach is to vastly reduce the amount of data involved in the pre-

dictions, which reduces the computational complexity required. As such, the

technique is particularly suited for applications of real-time flow sensing and

control (Taylor and Glauser, 2002; Ausseur et al., 2006). The combined use of

stochastic estimation and POD is often applied for purposes other than simply

overcoming experimental limitations for conventional POD analysis. Rather

than restricting the investigation to the behaviour of the predicted flow only, it

is increasingly used to analyse the relationship between the predicted quantity

and the quantity used to predict it. The approach introduced by Picard and

Delville (2000) is commonly used for this purpose, which involves performing

POD on the unconditional data instead, and using a reduced set of resulting

scores to predict the flow field. This was used to study the relationship be-

tween the velocity within the shear layer of a subsonic jet and the near-field

pressure signature. The scores from the largest pressure principal components

were used to predict the velocity field in turn, which revealed the presence of

vortical structure in the velocity field that directly related to the dominant

pressure principal components. Taking the opposite approach, Ukeiley and

Murray (2005) performed POD on the velocity field within a mixing layer and

partitioned the instantaneous measurements into large scale, small scale and

quasi-Gaussian fluctuations, which were used to predict the far field sound

pressure. This approach revealed that the small scale coherent structure was

responsible for the majority of the noise emission.
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Chapter 4

Stochastic Estimation and

Linear Regression
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The concept of exploiting the statistical relationship between variables

for the purposes of prediction and analysis is common across the entire spec-

trum of scientific inquiry. Arguably the most familiar and well-understood

approach is that of linear regression, which encompasses a broad range of

techniques with the shared goal of fitting a linear model to a set of dependent

and independent variables. In the following work, several linear regression con-

cepts are introduced to the field of stochastic estimation, which relate to the

performance that can be expected in practical situations, when the stochastic

estimation model is built from a finite number of observations. As described

in section 3.3, the aim of stochastic estimation is to find a set of model coeffi-

cients that are optimal, in the sense that they minimise the mean square error

between the resulting model and the true conditional average. However, while

the resulting model will always be optimal for the sample set it is built from,

this is generally not the case for the population at large. Unfortunately, it is

invariably optimality in terms of the whole population which is sought. For

example, when used for the instantaneous prediction of either an observable

property of the flow, or a quantity derived from such, this can be thought of

as the prediction of the conditional variable G, using observations of E sep-

arate from the data set used to build the model. In such cases it is required

that the performance of the stochastic estimation model extends beyond the

original data, and is capable of yielding accurate predictions for any future

observations. Even when stochastic estimation is used in its traditional role

of estimating conditional averages with a user defined event, is still important

to obtain a conditional average that is representative of the true conditional

average, rather than one which is specific only to the data it is built from.

The fact that the stochastic estimation model does not yield an op-

timum model for the whole population may come as no surprise. What is
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more interesting is the fact that, given a finite set of observations, stochastic

estimation may not even yield the best estimate of the optimum population

model. In other words, for a given set of observations, there are techniques

that may be able to produce a model that has a smaller MSE of prediction for

future observations, even though the model does not minimise the MSE for the

sample set it was built from, as is the case with stochastic estimation. This

can lead to situations where the benefits of using an alternative approach to

stochastic estimation are considerable. The questions of why and when these

situations occur, and which techniques may be more appropriate when they

do, form the motivation of the work in this chapter.

The chapter itself is split into two main sections. The first part is con-

cerned with the properties of one particular method of linear regression, known

as ordinary lest squares (OLS) estimation. This technique is shown to provide

an identical solution to the stochastic estimation procedure in many situations.

The properties of the OLS estimator are presented in a manner compatible

with stochastic estimation theory, which, to the author’s knowledge, have yet

to be considered in fluids literature. The implication that certain regression

techniques are theoretically capable of outperforming OLS is considered, and

the OLS properties are also shown to have a number of uses when determining

the choice of terms to include in a stochastic estimation model for a given ap-

plication. In the second part of this chapter, the concept of biased regression

is introduced. As well as offering the possibility of improved performance over

the traditional form of stochastic estimation, such techniques are shown to

be closely related to some of the POD-based stochastic estimation procedures

detailed in section 3.4. For the techniques under consideration, expressions

are derived to show how the introduction of bias into the model is able reduce

prediction error. These expressions are used to show how, and in which situa-
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tions, the techniques should able to outperform stochastic estimation. These

conclusions are subsequently tested quantitatively in chapter 5.

The chapter begins by introducing the linear regression model, which

will be used extensively throughout this work.

4.0.1 The Linear Regression Model

The aim of linear regression is to model the relationship between a dependent

variable, y, and a set of n independent variables, x1, x2, . . . , xn, using the

general form: iith independent variable

y = bc + b1x1 + b2x2 + ...+ bnxn + e (4.1)

where the model coefficients, bc, b1 . . . , bn are fixed scalar values, and the error

term e represents the component of y that is not explained by the model.

Using matrix notation, the model can be expressed as:

y = bc + xb + e (4.2)

where x = [x1 x2 . . . xn] and b = [b1 b2 . . . bn]T . To provide further sim-

plification, the first independent variable, can be set to one, x1 = 1;, and the

model can be written as:

y = b1x1 + b2x2 + ...+ bnxn + e (4.3)

where b1 = bc. Here, in vector notation, the model is simply:

y = xb + e (4.4)
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In contrast to Linear Stochastic Estimation, the term linear in the context

of linear regression refers to a model which is linear in terms of the model

coefficients, b, rather than in terms of the original variables. This provides

the ability to fit nonlinear functions to the data using the standard linear

regression model. For example, given the independent variable x̃,

y = b0 + b1x̃+ b2x̃
2 + b3x̃

3 . . .+ bnx̃
n + e (4.5)

is still a valid linear model of the form y = xb+e, where x = [1 x̃ x̃2 x̃3 . . . x̃n].

Given a finite set of observations of x and y, linear regression seeks to

calculate the coefficients b so that the resulting model is optimal in terms

of some criteria, which is usually defined as a maximisation or minimisation

problem. The resulting estimate of the coefficients, denoted b̂, has a wide

variety of uses, but in this work the focus is on the subsequent prediction of y,

given further observations of x, which is achieved using the estimated model:

ŷ = xb̂ (4.6)

where ŷ is the prediction of y for the given observation x.

4.1 Ordinary Least Squares Estimation

The standard method of estimating the coefficients b is the technique of or-

dinary least squares (OLS) estimation. OLS estimation uses the criterion of

squared error loss to derive an estimate from a finite set of observed data.

Hence, given a set of m independent observations of (y,x), the estimated co-
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efficients b̂OLS are determined by the minimisation of:

b̂OLS = argmin
b

(
m∑
i=1

(
(y(i) − x(i)b)2

))
(4.7)

where x(i) and y(i) are the ith observations of y and x. Representing the m

observations of x as the m× n matrix X:

X =


x(1)

x(2)

...

x(m)

 (4.8)

and the observations of y as the m× 1 vector y:

y =


y(1)

y(2)

...

y(m)

 (4.9)

Equation (4.7) can then be written in matrix form:

b̂OLS = argmin
b

(
(y −Xb)T (y −Xb)

)
(4.10)

The minimum is found by setting the first derivative, with respect to b, to

zero:
δ

δb
(y −Xb)T (y −Xb) = −2XTy + 2XTXb = 0 (4.11)
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The second derivative is:

δ2

δbδbT
(y −Xb)T (y −Xb) = 2XTX (4.12)

which is non-negative for all X, indicating that equation (4.11) is a minimum.

Rearranging (4.11) leads to:

XTXb = XTy (4.13)

This system of equations is known as the normal equations, which, assuming

XTX is invertible, is solved by:

b̂OLS = (XTX)−1XTy (4.14)

which is known as the Ordinary Least Squares (OLS) estimator. Until now,

the dependent variable y has been considered univariate. The OLS estimator

is also applicable in cases where the dependent variable consists of p separate

variables, i.e. y = [y1 y2 . . . yp], leading to the linear model:

y = xB + e (4.15)

where e = [e1 e2 . . . ep]. Given the finite matrices of observations, now

denoted X and Y, the OLS estimator is:

B̂OLS = (XTX)−1XTY (4.16)

The OLS estimator for multivariate y produces the same results as applying

the univariate OLS estimator to each element of y separately. For simplicity,
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only the univariate case will be considered in the rest of this work, although in

practical implementations, the use of the multivariate estimator can provide a

more computationally efficient approach.

4.1.1 Equivalence of Stochastic Estimation and Ordi-

nary Least Squares Regression

Superficially, OLS regression and stochastic estimation have separate goals,

in that stochastic estimation provides an estimate of a conditional average,

whereas linear regression aims to model the relationship between instantaneous

values of a set dependent and independent variables. However, in many cases,

the difference is purely one of interpretation, as both OLS and stochastic

estimation can be shown to yield identical solutions. Recall from chapter

3.3 that stochastic estimation gives an estimate of the conditional average,

〈G|E〉, where G is the conditional variable and E is a vector of ñ unconditional

variables. Stochastic estimation approximates the conditional average with a

truncated power series expansion:

〈G|E〉 =
ñ∑
i=1

AiEi+
ñ∑
i=1

ñ∑
j=1

BijEiEj +
ñ∑
i=1

ñ∑
j=1

ñ∑
k=1

CijkEiEjEk + . . .+ ε (4.17)

which can be written as:

〈G|E〉 =
n∑
i=1

LiFi + ε (4.18)

where:

L = {A1, A2, . . . , Añ, B11, B12, . . . , Bññ, C111, . . .} (4.19)
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and:

F = {E1, E2, . . . , Eñ, E1E1, E1E2, . . . , EñEñ, E1E1E1, . . .} (4.20)

where L and F are of length n.

The equivalence of stochastic estimation and OLS occurs when the

stochastic estimation model is built from joint observations of G and the full

event vector E. This will always be the case when the model is to be used

for the instantaneous prediction of G (see section 3.3), which is the focus of

the work in this thesis. However, in cases where the model is built piecewise,

i.e. from successive joint observations of G and subsets of E, the equivalence

does not apply, and will not be considered here. Given m observations of G

and E (and hence F), it is possible to build a linear regression model of the

form y = xb + e, that is equivalent to the stochastic estimation model. The

corresponding regression model involves the following equivalences:

y ≡ G (4.21)

and the n-element vector:

x ≡ F (4.22)

Although an equivalent for the ñ element event vector E is not strictly neces-

sary, for completeness it is defined as:

x̃ ≡ E (4.23)

which is introduced to make explicit the difference between the directly ob-

served variables, x̃, and the resulting regression variables x, which will gener-
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ally consist of the elements of x̃ and possibly functions of the elements of x̃,

such as powers and cross-terms.

As before, the m joint observations of x and y are contained within the

m × n matrix X and the m × 1 column vector y. As well as viewing X as

a collection of the m row vectors x(1),x(2), . . . ,x(m), it can be represented in

terms of the n column vectors x1,x2, . . . ,xn, i.e.

X =


x(1)

x(2)

...

x(m)

 = [x1 x2 . . . xn] (4.24)

Here, xi consists of the m observations of the single variable xi.

As described in section 3.3, the coefficients L of the stochastic estima-

tion model are found as the solution of:

n∑
i=1

〈FiFj〉Li = 〈FjG〉 (4.25)

for j = 1, 2, . . . n. Defining F
(k)
i as the kth observation of the ith element of

F, i.e. Fi, and G(k) as ith observation of G, (4.25) can be written as:

n∑
i=1

(
1

m

m∑
k=1

F
(k)
i F

(k)
j

)
Li =

(
1

m

m∑
k=1

F
(k)
j G(k)

)
(4.26)

Using the equivalent linear regression variables, this can be written as:

n∑
i=1

(
1

m
xTi xj

)
Li =

(
1

m
xiy

)
(4.27)

for j = 1, 2, . . . n. This system of equations can be expressed in matrix form
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as:

1

m


xT1 x1 xT1 x2 . . . xT1 xn

xT2 x1 xT2 x2 . . . xT2 xn
...

...
. . .

...

xTnx1 xTnx2 . . . xTnxn




L1

L2

...

Ln

 =
1

m


xT1 y

xT2 y
...

xTny

 (4.28)

which simplifies to:
1

m
XTXL =

1

m
XTy (4.29)

and finally:

XTXL = XTy (4.30)

These are the normal equations as introduced in equation (4.13), which yield

the OLS estimator b̂OLS. Hence, the OLS coefficients and the stochastic es-

timation coefficients, L are identical, under assumption that the stochastic

estimation model is built from joint observations of G and the full event vec-

tor E.

4.1.2 Prediction Properties of Ordinary Least Squares

Regression

This section concerns the finite-sample properties of OLS regression which,

as a result of the equivalence demonstrated in section 4.1.1, also apply to

stochastic estimation when the model is built from a finite number of joint

observations of the conditional variable G and the full unconditional vector

E. OLS regression possesses a number of appealing properties, which are

valid when the underlying data meets certain assumptions. The most famous

of these properties are those which arise when the so-called Gauss-Markov

assumptions are shown to hold, although there are a number of lesser quoted
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properties and corresponding assumptions that will also be presented here. In

this work, the OLS properties relevant to stochastic estimation are divided into

a hierarchy of four distinct tiers, with each tier placing certain requirements

on the nature of the underlying data. With each increasing tier, the resulting

performance of the OLS estimator is improved, but the necessary requirements

become stricter.

The treatment of OLS regression and its properties is commonplace

throughout several disciplines. However, the presentation provided here differs

somewhat from the prevalent approaches, which is necessitated by the differ-

ences in the ways linear regression and stochastic estimation are employed.

Perhaps the biggest discrepancy between the approaches, at least when

considering linear regression in its “traditional” form, is the treatment of the

independent variables x = [x1 x2 . . . xn]. The convention in most statistics-

orientated references is to require that the independent variables are non-

random; that is, that the value of the variables is directly controllable by

the practitioner. Clearly, this is inappropriate in stochastic estimation, where

the model is invariably built from observations of random events. As such,

the conditional form of the OLS properties are presented here, which is the

approach commonly used in the field of econometrics.

Another difference between stochastic estimation and linear regression is

that the linear regression model y = xb+e explicitly models the instantaneous

behaviour of the dependent variable y, whereas stochastic estimation models

the conditional average, expressed as E[y|x] in the current notation. In order

to interpret the OLS properties in terms of stochastic estimation, it is therefore

necessary to produce a model that directly describes the behaviour of y, but

remains compatible with the approach taken by stochastic estimation. This

is made difficult by the fact that the standard text book treatment of the
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OLS properties requires that the regression model applied to the data is of an

identical form to the hypothetical “true” model.

Of course, any attempt to define the “true” stochastic estimation model

in terms of the governing equations of the flow is inappropriate. Hence, it is

necessary to ignore the physical mechanisms that dictate the behaviour of the

data, and consider the behaviour of y simply as if it is a function simply of

the conditional average, and a random error term ε:

y = E[y|x̃] + ε (4.31)

where ε represents the part of y that is unexplained by x̃. However, even with

a suitably defined “true” model, there is no guarantee that the conditional

average E[y|x̃] can be modelled exactly using a linear model. Nor indeed

should there be, as this requirement is fundamentally at odds with the purpose

of stochastic estimation, which is defined merely as an approximation. In

situations where E[y|x̃] 6≡ xb, then the conventional OLS assumptions will not

hold. Nonetheless, the OLS estimator still possesses some useful properties

in these cases, although they are rarely considered in standard texts. The

properties of OLS regression, when used to approximate unknown functions

was detailed by White (1980), whose work provides the first tier of properties

presented here, and also motivates the following definition of the “optimum”

regression coefficients.

All the properties described in this section relate to how closely the

finite-sample OLS coefficients b̂OLS can be expected to match the optimal

model coefficients, denoted b̌, which can be viewed as those which minimise

the squared error between y and ŷ = xb, over the entire population of x and y.

From equation (4.31), y is a function of the random variables ε and x, which is
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in turn a function of x̃; hence, the behaviour x, x̃ and y are all determined by

the joint distribution of x̃ and ε, i.e. Fx̃,ε(x̃, ε). Following a similar approach to

that described by White (1980), the optimum coefficients can then be defined

as:

b̌ = argmin
b

∫
ε

∫
x̃

(
y − ŷ

)2
Fx̃,ε(x̃, ε) dx̃ dε

= argmin
b

∫
ε

∫
x̃

(
E[y|x̃]− xb + ε

)2
Fx̃,ε(x̃, ε) dx̃ dε

= argmin
b

∫
ε

∫
x̃

(
(E[y|x̃]− xb) + ε

)2
Fx̃,ε(x̃, ε) dx̃ dε

= argmin
b

∫
ε

∫
x̃

(
(E[y|x̃]− xb)2 + 2 (E[y|x̃]− xb) ε+ ε2

)
Fx̃,ε(x̃, ε) dx̃ dε

= argmin
b

(∫
x̃

(E[y|x̃]− xb)2 Fx̃(x̃) dx̃

+ 2

∫
ε

∫
x̃

(
E[y|x̃]ε

)
Fx̃,ε(x̃, ε) dx̃ dε

− 2

∫
ε

∫
x̃

(
xbε

)
Fx̃,ε(x̃, ε) dx̃ dε

+

∫
ε

ε2Fε(ε) dε

)
(4.32)

where Fx̃(x̃) and Fε(ε) are the marginal distributions of x̃ and ε, i.e.:

Fx̃(x̃) =

∫
ε

Fx̃,ε(x̃, ε) dε (4.33)

and equivalently for Fε(ε). The second and third term of (4.32) correspond

to the expectations 2E [E[y|x̃]ε] and 2E[xbε] respectively. As E[ε] = 0, and ε

is independent of x̃, both these terms are equal to zero. The fourth term is

the expectation E[ε2], which is the variance of the unexplained error, i.e. σ2
ε .

60



Therefore, equation (4.32) becomes:

b̌ = argmin
b

(∫
x̃

(E[y|x̃]− xb)2 Fx̃(x̃) dx̃ + σ2
ε

)
(4.34)

It can be seen that when the linear model is of the same functional form as the

conditional average, xb ≡ E[y|x̃], then the optimum coefficients are defined

so that the two are numerically identical. Conversely, when xb 6≡ E[y|x̃], the

distribution of x̃ is instrumental in the definition of b̌. This is demonstrated

in figure 4.1. Each plot shows the result of fitting the misspecified model

y = x̃b + e to the true function y = x̃2 + e (denoted by the blue line) where

the error term e is normally distributed. The red lines represent the optimum

misspecified model, x̃b̌ that occurs when the distribution of x̃ is a) negatively

skewed, and b) unskewed. In the presence of misspecification, it is clear that

the accuracy of fit is compromised. Also, this loss in accuracy becomes more

pronounced as the likelihood of the event x̃ decreases. This will be a particular

problem when the emphasis is on the accurate prediction of rare events, and

stresses the importance of choosing an appropriate linear model in such cases.

However, when the interest is in the instantaneous prediction of y, the resulting

optimum model will, on average, offer the best MSE performance.

With the necessary definitions in place, it is now possible to introduce

the properties of the OLS estimator.

Tier 1

For the first tier to hold, a single assumption is needed:

• Assumption 1 - The matrix of observations X is full rank, and of size

m× n, where m ≥ n.
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 y

(a) Positively skewed

 x

 y

(b) Unskewed

Figure 4.1: Comparison of optimum misspecified model (red) with true con-
ditional average (blue) for different distributions of x

The purpose of this assumption is simply to ensure that XTX is invertible,

and so guarantee that the OLS estimator b̂OLS = (X′X)−1X′y can be uniquely

solved. If this is true, White (1980) demonstrated that as the number of ob-

servations n increases, the OLS estimator b̂OLS will tend to b̌. This property,

known as consistency, ensures that, asymptotically, b̂ provides the best possi-

ble prediction of y allowable by the specified model1. In practice, this means

that as long as a sufficiently large number of observations are used, there will

be good agreement between b̂OLS and b̌. Of course, this property alone does

not necessarily mean the resulting predictions will be “good”. This requires,

firstly, that E[y|x̃] is a close approximation to y, and secondly, that the opti-

mum linear model xb̌ is a close approximation to E[y|x]. However, this is still

an important result, as the property holds regardless of the shape of E[y|x̃],

the type of linear model specified, and the distribution of the data involved.

In other words, this is the minimum level of performance that is guaranteed

1the reader is referred to White (1980) for the full proof of this property, which is beyond
the scope of this work
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when using stochastic estimation.

Tier 2

It may be the case, either through virtue of the data, or through a judicious

choice of linear model, that the functional form of the conditional average is

equivalent to the chosen linear model, i.e. E[y|x̃] ≡ xb. In essence, this is the

assumption that leads to the second tier of OLS properties. However, in line

with the convention, it is usual to express this assumption in terms of e, which

is the error term in the linear model y = xb + e. Taking the true underlying

model to be y = E[y|x̃] + ε, the error term is:

e = E[y|x̃]− xb + ε (4.35)

In the presence of a correctly specified model, however, the error e is simply

ε, which is independent of x. Hence the expectation of e, conditional on x, is

E[e|x] = E[ε] = 0. Therefore, the assumption can be expressed as:

• Assumption 2 - The expected error of the linear model, e conditional on

x, is zero, i.e. E[e|x] = 0.

The immediate implication is that, from the first assumption, the OLS estima-

tor will not only tend to b̌, but the resulting linear model xb̌ will be exactly

the conditional average E[y|x̃]. Asymptotically, the OLS estimator will be the

best possible predictor of y in terms of squared-error loss. Furthermore, it is

now possible to establish the first finite-sample properties of the OLS estima-

tor, which relate to the expected value of b̂OLS, if it were to be repeatedly

estimated using different observations of y and X. In particular, it can be
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shown (Appendix A.1) that:

E[b̂OLS] = b̌ (4.36)

which shows that the average value of the OLS estimator is in fact the true

underlying value, b̌. In which case, the OLS estimator is said to be unbiased.

Furthermore, the OLS estimator is also unbiased, conditional on X:

E
[
b̂OLS|X

]
= b̌ (4.37)

The concept of conditional unbiasedness can be interpreted by considering an

infinite number of joint observations of y and X; in this context, (4.37) would

then describe the expected value of b̂OLS , if it was repeatedly estimated from

only the joint observations where X takes on a specific value. While un-

conditional unbiasedness is perhaps the more intuitive measure, unbiasedness

conditional on X is the more desirable property. This is because unconditional

unbiasedness only requires that the estimator is unbiased on average. This al-

lows b̂ to be biased for particular values of X, as long as the bias cancels out to

zero over the entire distribution of X. In this light, unbiasedness, conditional

on X, is the stricter property.

The unbiasedness of the OLS estimator ensures the resulting OLS pre-

dictor, ŷ = xb̂OLS, is also an unbiased predictor of y. In this case, the strictest

form of unbiasedness is conditional on both X, which is used to build the

model, and x, which is used to make the subsequent prediction. From Ap-

pendix A.2, it can be shown that:

E [y − ŷ|x,X] = 0 (4.38)
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 y

(a) Homoskedastic error, where the
error variance is constant for all x.

 x

 y

(b) Heteroskedastic error, where the
error variance is roughly proportional
to the magnitude of x.

Figure 4.2: Examples of homoskedastic and heteroskedastic error

Tier 3

The assumptions for the third tier again relate to the model error, e. The

first assumption requires that the distribution of e is homoskedastic, which

means that the variance of the error is constant for all x. An example of ho-

moskedastic error, and the converse, heteroskedastic error, is demonstrated in

figure 4.2. The second assumption is that the error term for a given observation

is uncorrelated with the error terms for all other observations.

• Assumption 3.a - The error term e is homoskedastic. i.e. var(e|x) = σ2.

• Assumption 3.b - Cov(ei, ej) = 0 for any two separate observations i and

j.

The full set of assumptions 1 - 3 are known collectively as the Gauss-Markov

assumptions. When met, the OLS estimator is said to be the most efficient

amongst the class of linear unbiased estimators. The concept of efficiency will

be introduced shortly, but first, the class of unbiased linear estimators will be
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defined. An estimator b̃ is linear if it can be expressed as a linear function of

the matrix of observations, y, in the form:

b̃ = Ay (4.39)

where the matrix A can depend on X and on non-random constants. Also, an

estimator is unbiased if:

E
[
b̃|X

]
= b̌ (4.40)

It can be seen that the OLS estimator is both linear (where A = (XTX)−1XT )

and unbiased (as established in equation (4.37)). The term efficiency relates

to the amount of variation in an estimator over repeated estimations, with a

low variance indicating a high efficiency. As demonstrated in appendix A.3,

the variance of the OLS estimator can be shown to be lower than every other

linear unbiased estimator, i.e:

Var
[
b̃|X

]
≥ Var

[
b̂OLS|X

]
(4.41)

which will only hold with equality when b̃ = b̂OLS. Hence, the OLS estimator

is said to be the most efficient, or best linear unbiased estimator (BLUE). In

practice, this means that for a given set of observations (X,y), the resulting

OLS estimator is expected to be closer to the true value b̌ than any other linear

unbiased estimator. In this context, efficiency can be seen as the efficiency

with which an estimator is able to extract information about b̌ from a finite

observation of data.

As expected, the optimal properties of the OLS estimator also apply to

the subsequent predictions of the predictor ŷ = xb̂OLS. Defining the MSE of
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the linear unbiased predictor ỹ as:

MSE [ỹ|x,X] =E
[
(y − ỹ)2 |x,X

]
=E

[(
xb̌ + e− xb̃

)2
|x,X

] (4.42)

it is shown in appendix A.4 that:

MSE [ỹ|x,X] ≥ MSE [ŷ|x,X] (4.43)

which means that the OLS predictor will perform either as well as, or better

than, any other linear unbiased predictor.

This property provides obvious reassurances in situations when the

Gauss-Markov assumptions are known to hold, but it also carries with it some

negative connotations about the use of the OLS estimator. Firstly, it demon-

strates that when the assumptions are not met, there will be a linear unbiased

estimator that is more efficient than OLS, and secondly, even when the as-

sumptions do hold, there is the possibility that there are nonlinear unbiased

estimators that offer better performance. While both these statements are

technically true, the appropriateness of using more efficient estimators in such

cases is a complex issue, and is often only of theoretical, rather than practical,

importance. A full discussion is saved for section 4.2.2, but for now, it will be

shown that under a final assumption, the OLS estimator becomes the most

efficient of all unbiased estimators.

Tier 4

• Assumption 4 - The error term, e, is normally distributed.
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If this assumption holds, the OLS estimator is the Uniformly Minimum Vari-

ance Unbiased Estimator (UMVUE). This property is established by showing

that the OLS estimator attains the Cramér-Rao lower bound (CRLB), which

specifies the minimum possible variance attainable by any unbiased estimator.

Central to the task of establishing the CRLB is the concept of the

likelihood function. To produce a likelihood function, it is assumed that the

observed data y is sampled according to the probability density function (PDF)

F (y|θ), which is defined by the parameter vector θ. For example, consider

the case where y is a vector of m independent observations of the normally

distributed variable y. The PDF of y is defined by the mean µ and the variance

σ2, and so θ = [µ σ2]. i.e.

F (y|θ) = F (y|µ, σ2) =
(
2πσ2

)− 1
2 exp

(
−(y − µ)2

2σ2

)
(4.44)

which is the well-known PDF of the normal distribution, As the observations

of y are independent, the corresponding PDF of y = [y(1) y(2) . . . y(m)]T can

be found simply by multiplying the PDFs for each individual observation:

F (y|θ) =F (y(1)|θ)× F (y(2)|θ)× . . .× F (y(m)|θ)

=
(
2πσ2

)−m
2 exp

(
−
∑m

i=1

(
y(i) − µ

)2
2σ2

)
(4.45)

Once the PDF of the observed data y is established, the corresponding

likelihood function, L(θ|y), is simply equivalent to the PDF, i.e.:

L(θ|y) = F (y|θ) (4.46)
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Hence, the difference between F (y|θ) and L(θ|y) is simply one of interpre-

tation. A PDF is considered a function of y, which provides the probability

density of y given a fixed set of parameters. Conversely, a likelihood function

is considered a function of the parameter θ, with y held constant. In essence,

a likelihood function provides a measure of the likelihood that the fixed ob-

servation y was observed from the population defined by θ. As well as its

use in establishing the CRLB, the likelihood function also forms the basis of

maximum likelihood estimation (MLE). This technique will be referred to in

section 4.2.2, so the opportunity will be taken here to introduce the general

concept of MLE.

The maximum likelihood estimate of θ is defined as:

θ̂MLE = argmax
θ

L(θ|y) (4.47)

Therefore, θ̂MLE is the value of θ that maximises the likelihood of observing

the finite sample y. The approach to the maximisation will depend on the

likelihood function in question. In some cases, an analytical solution is possi-

ble, by taking derivatives of either the likelihood function or the log likelihood

function (the latter being appropriate when dealing with functions based on

the exponential family of distributions), although it is often the case that an

optimisation procedure must be applied.

Given the full set of assumptions 1-4, it is possible to establish a likeli-

hood function that is relevant to the estimation of the linear regression coef-

ficients b, from the standard model y = xb + e. Given that the error term is

normally distributed, with variance σ2 and a mean of zero, it follows that y,

conditional on x, is also normally distributed, this time with variance σ2 and

69



a mean of xb. From (4.44) the PDF of y conditional on x is simply:

F (y|θ,x) =
(
2πσ2

)− 1
2 exp

(
−(y − xb)2

2σ2

)
(4.48)

where:

θ =

b

σ2

 (4.49)

Similarly, for the set of m joint observations (y,X), it follows from (4.45) that

the PDF of y, conditional on X, is:

F (y|θ,X) =
(
2πσ2

)−m
2 exp

(
−
∑m

i=1

(
y(i) − x(i)b

)2
2σ2

)

=
(
2πσ2

)−m
2 exp

(
−(y −Xb)T (y −Xb)

2σ2

) (4.50)

which is equivalent to the likelihood function L(θ|y,X).

As an aside, the MLE estimate b̂MLE can be found by differentiating

the log-likelihood function, lnL(θ|y,X), which is shown in appendix A.5 to

produce:

b̂MLE = (XTX)−1XTy

= b̂OLS

(4.51)

Hence, under assumptions 1-4, the MLE and OLS estimate of b are identical.

The likelihood function defined by equation (4.50) can subsequently be

used to obtain the CRLB for an estimate of b. This is shown in appendix A.6

to produce:

Var(b̃|X) ≥ σ2
(
XTX

)−1
(4.52)
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From appendix A.3, the variance of the OLS estimator is:

Var(b̂OLS|X) = σ2
(
XTX

)−1
(4.53)

which shows that the OLS estimator achieves the CRLB, and hence is the

UMVUE.

4.2 The Properties of Ordinary Least Squares

in the Context of Flow Prediction

This section considers the relevance of the OLS properties to the task of flow

prediction, both in terms of their implications, and their potential uses. In

the first section, the task of choosing a valid stochastic estimation model is

discussed, and it will be shown how the properties of the OLS estimator can

provide useful and alternative guidance to conventional practice.

In light of the finite sample efficiency properties of the OLS estima-

tor, the validity of using the OLS estimator in cases where a more efficient

estimator exists is also investigated. The theoretical properties of the OLS

estimator and competing techniques will be considered alongside the practical

issues of implementing them in a traditional stochastic estimation. It will be

argued that the OLS estimator is often the most appropriate technique even

in situations when a more efficient estimator exists.

4.2.1 Validity of the linear model

Although there are an infinite number of linear models of the form y = xb + e

that can be used describe the relationship between y and x, the choice of
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model for stochastic estimation is relatively straightforward. First of all, the

model is generally limited to a truncated power series expansion (although

Brereton (1992) proposed the use of a Laurent polynomial expansion, which

contains both positive and negative powers), and it is widely accepted that

only the first few orders of the expansion are needed to produce an accurate

representation. Furthermore, stochastic estimation is considered a tool to

approximate the conditional average, which permits the use of a simple model

in situations that would otherwise require an overly complex model to capture

the true conditional average exactly. Nonetheless, for the sake of accuracy, it

is prudent to choose the stochastic estimation model that is best suited to the

data in question.

It many cases, the correct choice of model may have already been estab-

lished in past work of a similar nature. Often cited examples include the work

of Tung and Adrian (1980), which demonstrated that only the linear terms

are needed when both the unconditional and event data are velocities from

isotropic turbulence, and Naguib et al. (2001), which showed the necessity of

second order terms when estimating turbulent boundary layer velocities from

wall pressure events. In some cases, it may be possible to infer the correct

choice of model from an analysis of the underlying physical properties of the

flow. For example Jordan et al. (2007) used linear stochastic estimation to

model the relationship between the velocity field and far-field pressure of a

turbulent jet, based on evidence that the sound generating mechanisms are

predominantly linear. For further assurances, or in situations where the above

approaches do not apply, the correct model can be inferred from the data itself.

In these cases, a standard approach is to base the decision on the distribution

of the data. It is often quoted that linear stochastic estimation is optimal

when the distribution of the conditional and event data is jointly normal. As
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such, any deviation from joint normality is often used as an indication that

higher order terms are required in the model (e.g. (Brereton, 1992; Tinney

et al., 2006; Druault et al., 2009)).

Of course, the problem of identifying an appropriate model is not unique

to stochastic estimation; the detection and correction of model misspecifica-

tion has received a great deal of attention in the field of regression. As a result,

there are a wealth of techniques to aid this process, which can generally be

divided into qualitative approaches, which involve plotting and visual inspec-

tion of some aspect of the data, and quantitative approaches, which provide

an automatic approach to detecting and correcting the model fit. Of the two,

visual inspection is by far the most common, partly due to its effectiveness

and relative simplicity. The foundation of such approaches is commonly based

on inspection of the residuals of the model, ê, where ê = y − ŷ. As demon-

strated by assumption 2 of the OLS properties, the presence of a correctly

specified model is indicated when the expectation of the residuals conditional

on x̃ is zero, i.e. E[e|x̃] = 0. Therefore, the presence of misspecification can be

assessed by inspecting scatter plots of each x̃1, x̃2, . . . , x̃n versus the residuals

that result from the given model. If the model is correctly specified, then the

resulting distributions will be trendless and centred around ê = 0. Further-

more, when this is not the case, the distributions of the residuals can also

provide clues as to both the amount and nature of the misspecification. For

example, a symmetric trend in the residuals may indicate the need to include

further even terms in the model, and asymmetric trends may indicate the need

for odd terms. A problem arises when the size of x̃ is large, which may make

the inspection of each individual plot of x̃i vs. ê prohibitively time consuming.

In these cases, plotting the predicted values ŷ versus the residuals can often

yield the same, or at least similar, conclusions. Because ŷ is a function of each
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x1, x2, . . . , xn, the resulting plot will often convey the same information as the

individual xi vs. e plots. The effectiveness of this approach is compromised,

however, if the model misspecification manifests itself differently amongst the

(ê, x̃i) pairs, as the individual trends may no longer be obvious in the combined

plot, and may even counteract each other, leading to the false conclusion that

the model is correct.

As mentioned above, the process of inferring the stochastic model from

the distribution of the underlying data has enjoyed a great deal of success

within the field of stochastic estimation. Therefore, it is interesting to ob-

serve that the only property necessary for a correctly specified model, i.e. that

E[e|x̃] = 0, makes no reference to the distribution of the data at all. Fur-

thermore, although a linear model can be proven to be optimal in the case

of joint normality (Papoulis, 1985), it should be noted that theoretically at

least, the presence of non-normality does not require that the underlying con-

ditional average is non-linear. Therefore, the inclusion of higher order terms

in the presence of non-normality can be considered more of a well-established

guideline, rather than a strict requirement.

A final approach is to consider the accuracy of the predictions provided

by competing models, and to simply choose the one that yields the lowest

mean-square error between the true values of y, and the predicted values ŷ =

xb̂OLS. Although this approach may seem reasonable when model selection

is considered a linear regression problem, the same is not necessarily true

if the prevailing view of stochastic estimation is taken. This is due to the

fact a stochastic estimation model is viewed as an estimate of a conditional

average, rather than as a model of the behaviour of y. As such, model error

is viewed in the same light; for example, it is stated in Tropea et al. (2007)

that “the accuracy of an estimate must rest in direct comparison with the
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[true] conditional average”. This can be a problem in practice, because the

direct calculation of a conditional average can be difficult to obtain. Indeed,

as described in section 3.3, the original motivation for stochastic estimation

was to avoid the problems of doing so in the first place.

If the absolute accuracy between a stochastic estimation model and the

true conditional average is sought, then the above statement is certainly true.

However, for the purpose of model selection, it is the relative accuracy of the

models, rather than absolute accuracy, which is required. In which case, a

great deal can be learnt by considering the MSE of prediction. As established

in section 4.1.2, the behaviour of y is assumed to be dictated by the true model:

y = E[y|x̃] + ε (4.54)

The prediction error is therefore given by E[y|x̃]− ŷ + ε. This can be viewed

as consisting of two components; the unexplained error, ε, and the difference

between the true conditional average and the estimated linear model. As the

contribution of ε to the MSE is a constant, regardless of the chosen model,

any improvement in accuracy can be attributed to a reduction in the error

between E[y|x̃] and the estimated model xb̂OLS. As such, the model which

provides the lowest MSE can be considered to be the best specified, from the

point of view of both linear regression and stochastic estimation.

When using this approach, care must be taken to avoid over-fitting. If

the calculation of the MSE is performed on the same data used to build the

estimated model, then increasing the complexity will invariably reduce the

error, but the resulting model may be too specific to the sample data and

could actually be a worse model for the population in general. There are a

variety of procedures to avoid over-fitting, such as cross validation, which is
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employed in chapter 5 for this purpose.

The final part of this section will highlight a potentially unrecognised

form of model misspecification in the standard stochastic estimation proce-

dure, which occurs when including higher order terms in the model. The

stochastic estimation model, in its standard form, omits the zeroth order, or

constant term, bc from the series expansion. This decision may have been

motivated by the fact that bc will be zero when a linear stochastic model is

applied to the fluctuating components of the data in question. Unfortunately,

this is not necessarily the case when higher order terms are included in the

model. To illustrate this, a linear stochastic estimation model and a higher

order stochastic estimation will be considered, this time with the zeroth or-

der term included. It will be shown that in the latter case, the value of b̌c

in the optimum model is likely to be non-zero when second order terms and

higher are included, which suggests that its omission is not justified in these

situations.

For simplicity, the following work will consider the case where both x

and y are univariate. In line with the standard stochastic estimation procedure,

the model is applied to the fluctuating components of the data, x′ = x − x̄

and y′ = y − ȳ, where x̄ = E[x] and ȳ = E[y]. In this situation, the true

relationship between x′ and y′ is given by:

y′ = E[y′|x′] + ε (4.55)

First, consider the case where (4.55) is approximated with a model of the form

y′ = bc+x′b1 + e, which leads to the optimum model y′ = b̌c+x′b̌1 + e. Taking
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the expectation of the optimum model gives:

E[y′] =E[b̌c + x′b̌1 + e]

=b̌c + E[x′]b̌1 + E[e]
(4.56)

which is equivalent to:

E[y − ȳ] = b̌c + E[x− x̄]b̌1 + E[e] (4.57)

and so the value of b̌c is given by:

b̌c = E[y − ȳ]− E[x− x̄]b̌1 − E[e] (4.58)

A property of the optimum model is that the unconditional expectation of the

error term is zero, E[e] = 0, assuming that a constant term is included in the

model (Appendix A.7). Also, E[y − ȳ] = 0 and E[x− x̄] = 0. Hence:

b̌c = 0 (4.59)

which means that the omission of bc from the linear stochastic estimation

model is valid. Now consider the optimum linear model consisting of terms up

to the jth order, i.e.:

y′ = b̌c + x′b̌1 + x′2b̌2 + . . .+ x′j b̌j + e (4.60)

As before:

E[y− ȳ] = b̌c+E[x− x̄]b̌1 +E
[
(x− x̄)2

]
b̌2 + . . .+E

[
(x− x̄)j

]
b̌j +E[e] (4.61)

77



and:

b̌c = E[y − ȳ]− E[x− x̄]b̌1 − E
[
(x− x̄)2

]
b̌2 − . . .− E

[
(x− x̄)j

]
b̌j − E[e]

= −E
[
(x− x̄)2

]
b̌2 − E

[
(x− x̄)3

]
b̌3 − . . .− E

[
(x− x̄)j

]
b̌j

(4.62)

here, the term E [(x− x̄)i] corresponds to the ith moment of the independent

variable x. As such, b̌c cannot be assumed to be zero. Of course, this requires

a contribution from at least one of the terms E [(x− x̄)i] b̌i. This in turn is

dependent on two factors; firstly, that the inclusion of the ith order term of

the model actually contributes to the estimation of the conditional average,

which ensures that b̌i is non-zero, and secondly, that the ith moment of the

distribution of x exists (all the odd moments of a symmetric distribution are

zero, for example).

As it is commonly only the second order term that is included in practice

(in the form of quadratic stochastic estimation), it will often only be the term

E [(x− x̄)2] b̌2 that will be of concern. Unfortunately, this is the very term

which is likely to cause the most problems. The decision to include the second

order term in the first place is likely to be based on the belief that it will

make some contribution to the overall prediction of y, in which case b̌2 will

be non-zero, and the second moment of x, which is the variance, will always

exist and will generally be non-negligible. The resulting omission of b̌c can

therefore amount to a serious misspecification of the model. An example of

this misspecification is shown in figure 4.3. Both x and y have a mean of zero.

The red line shows the resulting fit when the zeroth order term is included,

and the blue line shows the fit with the zeroth order term omitted. It can be

seen that the omission of the zeroth order term forces the curve to pass though

the origin, which may not coincide with the correct intercept of the y-axis.
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Figure 4.3: Model misspecification due to omitted zeroth order term

4.2.2 Validity of the Stochastic Estimation Procedure

The discussion of the OLS properties introduced two forms of optimality for

an estimator; optimality within the class of linear unbiased estimators (BLUE)

and the more preferable, optimality within the entire class of unbiased esti-

mators (UMVUE). When the OLS estimator does not meet the requirements

to possess these properties, it is possible that there are alternative estima-

tors that do. For example, it is well-known that the generalised least squares

(GLS) estimator is the BLUE in cases when the 3rd set of assumptions are not

met (Rao et al., 2008) (in fact, the OLS estimator can be viewed as a specific

case of the GLS estimator). The UMVUE is slightly more complicated, as

its precise form, as well its existence, depends on the distribution of the data

in question. However, when such an estimator does exist, the technique of

maximum likelihood estimation (introduced in section 4.2) can generally be

used to find it ((Panik, 2005), for example).

With this in mind, it is reasonable to question the validity of choosing

the OLS estimator in situations when a potentially more efficient estimator

exists. As the finite sample properties of stochastic estimation seem not to
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have been considered previously, such issues have rarely been addressed before.

Perhaps the only work to question the validity of the stochastic estimation

procedure, relative to other techniques, was by Brereton (1992). In this paper,

Brereton related stochastic estimation to the technique of maximum likelihood

estimation (MLE). He concluded that the OLS procedure, as implemented by

stochastic estimation, was optimal when the model error, e, was normally

distributed. When this was not the case, he suggested that other techniques

may be more appropriate, and proposed MLE for this purpose.

Viewing these conclusions in the context of the OLS properties, it is

clear that Brereton’s conditions for optimality of stochastic estimation cor-

respond with the fourth tier of properties. This reveals the exact nature of

Brereton’s optimality in this situation; namely, that it corresponds to the

Uniformly Minimum Variance Unbiased Estimator, or UMVUE. However, as

Brereton points out, the property of normality is rarely an accurate model

in turbulence. As such, Brereton’s conclusions cast doubt on the validity of

stochastic estimation in the very situations where the technique is commonly

applied.

While these concerns about the optimality, or otherwise, of the OLS

estimator are theoretically valid, they do not account for the complexities of

adopting an alternative technique in the setting of stochastic estimation.

A fundamental issue with the aforementioned techniques is that they

require a specific knowledge of the underlying error term. For example, the

application of MLE requires that the underlying distribution of the error term

can be modelled by a parametric model, which must also be specified before-

hand. In applications of stochastic estimation, neither of these requirements

seems likely to be fulfilled exactly, although an approximate model of the em-

pirical distribution of the error term may be available. Unfortunately, any
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error between the true and estimated distribution will not only reduce effi-

ciency (i.e. the estimator will no longer be UMVUE, if it would have been

otherwise), but may also remove the property of consistency as well. A similar

problem occurs with the use of GLS estimation, which requires exact knowl-

edge of both the conditional variance of the error term, E[e|x], and the error

covariance, Cov[ei, ej], in order to be considered the BLUE. This is less restric-

tive than the requirements of MLE, but again, this information will generally

have to be approximated from empirical data (leading to the technique of Fea-

sible Generalised Least Squares (Cameron and Trivedi, 2005)), leading to a

loss of efficiency and consistency.

Ultimately, this puts the benefits of the OLS estimator into context.

As an estimator, it is unique in the fact that so many of its properties are

guaranteed with minimal requirements on the underlying data. Although the

OLS estimator may rarely be able to claim the property of either the BLUE

or UMVUE when applied to turbulence, the task of finding these optimum

estimators requires a knowledge of the underlying distribution that may simply

not be available. Therefore, it seems unlikely that the pursuit of such optimal

estimators will be fruitful in the field of stochastic estimation.

This established, it is still beneficial to be aware of the situations when

the OLS estimator is not optimal, as alternative techniques may still be able

to produce better, even if not the best, estimators when the error distribution

deviates sufficiently far from the ideal of homoskedastic, normally distributed

error. For example, feasible GLS can outperform OLS in the case of het-

eroskedastic error (Cameron and Trivedi, 2005), and MLE based approaches

can be more reliable when the error distribution exhibits fat or thin tails, or

skewness (Tiki and Akkaya, 2004). In these cited examples, the improvement

in accuracy was achieved even though the underlying error distribution was
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unknown, and had to be estimated from the data. As explained earlier, this

tends to invalidate the properties of such estimators, which means that their

ability to outperform OLS cannot be inferred from the properties alone, and

instead requires a careful analysis of the resulting prediction accuracy. This

highlights a further disadvantage to the use of these techniques, which is the

considerable effort required to implement and validate their use, coupled with

the fact that this must be carried out for each specific application. Given that

the OLS estimator will always possess the property of consistency, it must

be assessed whether it is worth the time and effort of introducing a different

technique, when the act of simply acquiring more data to produce the OLS

estimate may offer a similar improvement in performance.

Finally, assuming the practitioner is prepared to adopt an alternative to

OLS estimation in order to improve accuracy, it should be noted that there are

techniques besides those discussed here that may be better suited to the task.

Both GLS and MLE are limited by the Cramér-Rao lower bound (CRLB),

which places a restriction on the maximum accuracy of all unbiased estimators.

However, in many circumstances relevant in flow prediction, there are certain

biased techniques which, no longer restricted by the CRLB, can provide an

improvement in MSE that far exceeds the performance of even the UMVUE.

These techniques form the basis of the next section.

4.3 Biased Regression Techniques

This section introduces the concept of biased regression techniques, and consid-

ers their prediction performance in the context of stochastic estimation. When

first considered, it may not be immediately obvious why such estimators would

be of use. Purposefully introducing a systematic error seems contrary to the
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goal of minimising the error of the estimation, and naturally, it requires giv-

ing up the properties of consistency and small-sample unbiasedness, and the

assurances of validity that accompany them. In many situations, however, a

phenomenon known as the bias-variance tradeoff means that the introduction

of bias can greatly improve the stability of the estimation, to the point where

the accuracy of subsequent predictions is vastly superior to that of the OLS

estimation. While this still sacrifices the property of unbiasedness, it is often

the case that the amount of bias required is negligible. Furthermore, the care-

ful introduction of bias, followed by rigorous validation of the model, provides

a high level of confidence in the estimate, and removes any need to rely on

unbiasedness as a guarantee of validity.

The study of biased estimation is particularly relevant to the field of

stochastic estimation, as the properties of fluid flow are often conducive to the

use of biased techniques. Furthermore, it transpires that certain variations of

the stochastic estimation technique can in fact be viewed as biased estimation

techniques themselves. In the remainder of this chapter, the relationship be-

tween bias and accuracy is considered for a number of techniques, both from

within the field of stochastic estimation and from the more general field of

linear regression. This leads on to the work in the next chapter, where the

performance of the competing techniques is compared in a series of simulated

flow prediction tasks.

Much of the discussion in this section will focus on the bias-variance

decomposition of prediction error, which shall be derived for each of the tech-

niques under investigation. These expressions will subsequently be used to

investigate the mechanisms by which bias is able to reduce the overall error in

prediction. Each of the techniques has a unique bias-variance decomposition,
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but the general form is:

MSE[ŷ] = unexplained variance + model bias + model variance (4.63)

The decomposition contains three elements. The unexplained variance is the

variance of the error term, e, that is present in the optimum linear model

y = xb̌ + e. Hence, its presence in the MSE is unavoidable, even if the

true value, b̌ is known, and for this reason it is sometimes referred to as the

irreducible variance. The remaining terms constitute the model error, which

is the error between the estimated model and the true underlying value. This,

in turn, consists of the model bias, which is a systematic deviation from the

true value, and the model variance, which is the degree of variation in the

model when repeatedly estimated from independent observations of the data.

As such, the model variance is synonymous with the model’s stability.

Once again, the techniques here are presented in the context of instanta-

neous flow prediction, although the findings are just as relevant when the goal

of stochastic estimation is considered in terms of estimating the conditional

average. Here, the error in the estimate is the difference between the true con-

ditional average, xb, and the finite sample estimate xb̂. Therefore, the MSE

does not contain a contribution from the error term e, and the bias-variance

decomposition becomes:

MSE[xb̂] = model bias + model variance (4.64)

In the following work, the bias-variance decompositions of MSE[ŷ] can equally

be considered as decompositions of MSE[xb̂], simply by ignoring the unex-

plained variance term.
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All the biased techniques in this section can be thought of as variations

of the standard OLS estimator, so it makes sense to begin with a decomposition

of the MSE of the OLS estimator itself. The approach employed here and in

subsequent derivations is based loosely on the work of Næs and Mevik (2001).

What follows is a brief summary of the derivation; the full version is given in

appendix B.1.

The MSE of prediction is defined as:

MSE [ ˆyOLS] =E
[
(y − ŷ)2

]
=E

[(
y − xb̂OLS

)2]
=E

[(
xb̌ + e− x

(
XTX

)−1
XTy

)2] (4.65)

If assumptions 1-3 are assumed to be valid this expression can be reduced to

the form:

MSE [ ˆyOLS] =σ2 + σ2E
[
x
(
XTX

)−1
xT
]

(4.66)

The covariance matrix of X is defined as S = 1
m

XXT , which allows (XTX)−1

to be expressed as (mS)−1 = 1
m

(S)−1. Therefore:

MSE [ŷ] =σ2 +
σ2

m
E
[
x(S)−1xT

]
(4.67)

Representing S as a function of its eigenvectors (i.e. the principal components2

2Strictly speaking, the definition of principal component analysis given in section 3.4
requires that the observations of x have a mean of zero, which is not assumed here. However,
the general principle remains the same
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of X) yields S = ULUT =
∑n

k=1 lkuku
T
k :

MSE [ŷ] =σ2 +
σ2

m
E

[
x(

n∑
k=1

lkuku
T
k )−1xT

]

=σ2 +
σ2

m
E

[
n∑
k=1

xuku
T
k xT

lk

]

=σ2 +
σ2

m
E

[
n∑
k=1

(xuk)
2

lk

] (4.68)

At this point, an alternative approach to that of Næs and Mevik (2001) is

taken. By making the simplifying assumption that the sample principal com-

ponents of X are identical to those of the underlying population, i.e. ui = γi,

then E [(xuk)2] = E [(xγk)
2] = λk, which is the variance accounted for by the

kth principal component:

MSE [ŷ] =σ2 +
σ2

m
E

[
n∑
k=1

λk
lk

]
(4.69)

Also, assuming the sample and population eigenvalues to be equal, lk = λk:

MSE [ŷ] =σ2 +
σ2

m
E

[
n∑
k=1

λk
λk

]
(4.70)

This leads to the ultimate result:

MSE [ŷ] =σ2 +
n

m
σ2 (4.71)

The MSE decomposition consists of two elements; the unexplained variance,

σ2, and the model error, n
m
σ2. As the OLS estimator has the property of

unbiasedness, then the model error in this case consists solely of the model
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variance term. The expression for the model error provides a theoretical basis

for some of the observations that have been made previously; that the model

error is directly proportional to the model complexity, i.e. n, and inversely

proportional to the number of observations used to construct the model, m.

Furthermore, the model error is also proportional to the unexplained variance.

Hence, even when the aim of stochastic estimation is the estimation of the

conditional average, the unexplained variance will affect the accuracy of the

resulting estimate.

With equation (4.71) as a guide, it is clear that for any application of the

OLS estimator, the ratio n
m

should be as small as possible. However, achieving

a sufficiently small ratio may not always be possible in many applications of

stochastic estimation. Common sources of data, such as PIV or numerical

simulations, are capable of providing a huge (and ever increasing) number of

velocity vectors which may be used to generate event data, and the inclusion

of higher orders into the estimation will increase the size of n even further.

Conversely, time, cost or storage constraints may place an upper limit on the

size of m. In situations where n
m

is unacceptably large even after the maximum

number of observations has been reached, it may still be possible to improve

the accuracy by reducing n.

Rather than reduce the size of x on an element-wise basis, a more

prudent approach may be to instead replace x with a reduced-order model,

which effectively reduces n, while (hopefully) retaining the important features

of the original data. This approach provides the motivation for a number of

biased techniques. Two of which, namely Principal Component Regression and

Partial Least Squares, have been chosen for discussion due to their suitability

and relevance to the field of stochastic estimation.
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4.3.1 Principal Component Regression

Conceptually, principal component regression (PCR) can be thought of as OLS

estimation, except where the original data, x, is first transformed to the scores

z using the first k principal components of the matrix X, i.e.:

z = xŨ (4.72)

where Ũ is an n × k matrix of the first k principal components of X. This

leads to the regression model:

y =zc + e (4.73)

where the coefficients c are estimated by OLS:

ĉ = (ZTZ)−1ZTy (4.74)

It is possible to express this regression in the standard form of the linear

regression model, y = xb + e. Given that z = xŨ, it is possible to express y

as:

y =xŨc + e

=xbPCR + e
(4.75)

with b̂PCR given by:

b̂PCR =Ũ
(

(XŨ)TXŨ
)−1

(XŨ)Ty

=Ũ
(
ŨTXTXŨ

)−1
ŨTXTy

(4.76)
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From appendix B.2, this can be further reduced to:

b̂PCR =ŨŨ
T (

XTX
)−1

XTy

=ŨŨ
T
b̂OLS

=P−→Ṽ b̂OLS

(4.77)

where P−→Ṽ is a projection matrix that defines the projection onto the subspace

Ṽ , as determined by the first k principal components of X. Therefore, the

regression model is:

y =xP−→Ṽ b̂OLS + e (4.78)

Hence, PCR operates by restricting the independent variable x to a reduced

subspace. In order to understand how this can improve the performance of

standard OLS regression, a decomposition of the MSE of ŷ is once again

performed. Following a similar approach to before (see appendix B.3), the

MSE can be decomposed into:

MSE [ŷ] =σ2 +
k

m
σ2 + E

[(
xP−→Ṽ⊥

b̌
)2]

=unexplained variance + model variance + model bias

(4.79)

where the matrix P−→V⊥ is the projection onto the null space, Ṽ⊥, i.e. the

subspace defined by the discarded principal components. Compared with the

MSE of the OLS prediction, it can be seen that the model variance has been

reduced from n
m
σ2 to k

m
σ2, at the expense of the introduction of potential

model bias. Any actual inclusion of bias is dependent on two factors; first, the

expected value of x must contain components that encroach into the null space,

Ṽ⊥ (leading to a non-zero value of xP−→Ṽ⊥
), and second, that these components

would otherwise have contributed to the estimation of y (leading to a non-zero
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value of xP−→Ṽ⊥
b̌). By removing the principal components of x that contain

no, or little, variance, PCR can be seen to address the first of these factors.

However, no regard is paid toward the second, which may limit its effectiveness

when the subspace of x that is relevant to y only comprises a small part of

the total subspace spanned by x. As such, the use of PCR will generally

include more dimensions of x than are necessary for the prediction of y. In

applications of stochastic estimation, this may be a concern when x and y are

taken from domains with large spatial or temporal separations, and/or when

x and y are observations of two distinct properties of the flow. As an example,

this phenomena was observed by Jordan et al. (2007), who investigated the

sound production of a simulated turbulent jet using a novel technique called

the Most Observable Decomposition (MOD). They found that while the jet’s

velocity field resided in a large subspace (more than 350 principal components

were required to captured 50% of the kinetic energy), only a very small part

of this was related to radiated sound energy.

In situations where the effectiveness of PCR is compromised in this

manner, the technique of partial least squares may offer a more suitable alter-

native.

4.3.2 Partial Least Squares

To some extent, partial least squares (PLS) is similar in approach to PCR, in

that it seeks to decompose the n-dimensional prediction data x into a lower

dimensional set of scores, t, using the “weight” matrix R:

t = xR (4.80)
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and then carry out a regression of the form:

y = tQ + e (4.81)

where Q is estimated using OLS, i.e. Q̂ = (TTT)−1TTY. Again, PLS can

be expressed in terms of the linear model:

y = xRQT + e

= xBPLS + e
(4.82)

The major conceptual difference between PCR and PLS is the manner in which

x is decomposed. Whereas PCR provides a decomposition that is optimal only

in terms of x, PLS explicitly aims to extract components of x that are relevant

to y, so that the prediction of y from t can be carried out with as small a

value of k as possible. Also, note that the single element y has been replaced

by a p dimensional vector, y. Although both OLS and PCR can be applied

to a multivariate y (see section 4.1), the resulting regression yields the same

result as p independent regressions on each element y1, y2, . . . , yp. The same is

not true for PLS, however, and is recommended that PLS is applied to the full

vector y whenever there is correlation between elements (Wold et al., 2001).

This is likely to occur in most applications of stochastic estimation, so the

multivariate case will be considered here.

PLS can be considered a general framework to regression, open to a

degree of interpretation, rather than an explicitly defined technique. As such,

since its introduction by Wold (1975), it has undergone several revisions and

adaptations, to the point now where there are many competing algorithms

available. Central to all these implementations is the task of calculating the
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matrices R and Q, necessary for the construction of BPLS (although there

are generally several intermediate and non-essential variables available, for

diagnostics and interpretation of the results). The discussion here will focus

specifically on the SIMPLS algorithm (de Jong, 1993), which is regarded for

its computational efficiency and ease of interpretation (ter Vraak and de Jong,

1998; Boulesteix and Strimmer, 2005). Given a joint observation of (Y,X),

the SIMPLS algorithm decomposes X into the score matrix T:

T = XR (4.83)

where R is found by iteratively estimating its columns, r1, r2, . . . , rk, according

to the following criteria:

1. The first vector r1 is a unit vector that maximises the covariance between

YT and the resulting score vector, t1, i.e:

r1 = argmax
(∣∣YT t1

∣∣)
= argmax

(∣∣YTXr1
∣∣) (4.84)

2. Subsequent vectors ri where i = 2, 3, . . . , k, are unit vectors that max-

imise the covariance between YT and the resulting ti, subject to the

constraint that ti is orthogonal to all preceding vectors t1, . . . , ti−1.

It is important to note that SIMPLS does not place any requirement on the

orthogonality of the vectors ri. This is of relevance if it is necessary to re-

construct x from t; although t = xR, the quantity tRT is not a suitable

approximation to x, as would be the case if the columns of R were orthogonal

(such as if R consisted of principal components of X, for example). Instead,
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x is reconstructed using OLS regression, in the same way as y:

x̂ = tP̂ (4.85)

where P̂ = (TTT)−1TTX. Calculation of ri is achieved by means of the singu-

lar value decomposition. For the first iteration, the choice of r1 that maximises(∣∣YTXr1
∣∣) is simply the largest right singular vector of the matrix YTX. To

ensure that subsequent score vectors ti are orthogonal, the covariance matrix

YTX is “deflated” after every iteration, to ensure that the contribution to X

made by the previous values of t is not present in the covariance matrix for

future calculations. Details of this procedure, along with a summary of the

entire algorithm, are presented in appendix B.4.

Although the concept of PLS may seem to be a significant departure

from OLS regression, and hence from stochastic estimation, it has a number

of attractive features that may be relevant for the study and prediction of flow

phenomena. Firstly, it addresses PCR’s potential efficiency problem, which

occurs when the y-relevant components of x reside in a small part of the total

subspace of x. As before, the bias-variance decomposition of the MSE is a

useful guide to the performance of PLS. This time, the prediction yields the

multivariate vector, ŷPLS, so the MSE is redefined as:

MSE[ŷPLS] =
1

p
E
[
(y − ŷPLS)(y − ŷPLS)T

]
=

1

p
E
[
‖(y − ŷPLS)‖2

] (4.86)

which describes the average MSE of the p elements of ŷPLS. Due to the similar-

ities between PCR and PLS (as described above), the resulting decomposition
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is of the same form as equation (4.79):

MSE [ŷ] =
σ2

p
+

k

pm
σ2 +

1

p
E
[∥∥∥xP−→VR⊥

b
∥∥∥2]

=unexplained variance + model variance + model bias

(4.87)

where σ2 is the total unexplained variance contained within y, and the matrix

P−→VR⊥
defines the projection onto the null space of the columns of R. As with

PCR, prediction performance is maximised by limiting this null space to the

regions of the space spanned by x that are irrelevant to the prediction of y,

while keeping k, the number of factors, as low as possible. Ultimately, the

success of PLS rests on how closely the matrix R is able to meet this criteria.

Unfortunately, because of the iterative nature of the technique, and the relative

infancy of the SIMPLS algorithm, little is known about the exact properties

of R, so it is difficult to draw any strong conclusions about the predictive

ability of PLS, at least from a theoretical point of view. Nonetheless, given

how closely the above criteria coincide with the intended goals of PLS, it is

worth investigating how well it is able to achieve them in practice.

A second reason for the inclusion of PLS is that it has potential uses as

an analytical tool in the study of coherent structures in turbulence. A recent

development in this field has seen the use of POD, and POD-like techniques,

used as a means of simultaneously extracting correlated structures from sepa-

rate, but related, domains. These approaches include extended proper orthog-

onal decomposition (Borée, 2003), and the Most Observable Decomposition

(Jordan et al., 2007). PLS can also be viewed within this context, as a means

of performing a joint decomposition of the observed quantities X and Y in the
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form:

X̂ = TP

Ŷ = TQ
(4.88)

where X̂ and Ŷ are the parts of X and Y that are explained by the scores T.

By considering the ith joint observation (x(i),y(i)) (where i = 1, 2, . . . ,m),

the PLS decomposition can be written in the style of conventional POD:

x̂(i) =
k∑
j=1

tj(i)pj

ŷ(i) =
k∑
j=1

tj(i)qj

(4.89)

Here, the scores tj can be thought of as a type of expansion coefficient, which

describe the temporal evolution of the spatial “modes” pj and qj. Further

work would be required to assess whether PLS is capable of providing useful

and reliable information in this setting. However, the motivation behind the

technique, at least, is well suited to the task, as is the intuitive nature of the

resulting model.

4.3.3 Low Dimensional Modelling of Multivariate De-

pendent Variables

The biased techniques considered so far have used a decomposition of the

independent variable x in order to improve prediction performance. In cases

where the response variable is multivariate, performance benefits may also be

possible by carrying out the regression using a decomposition of y instead.

This section will focus on a specific approach to this concept, which involves

partially decomposing y into the k-element score vector t = yŨ
T

, where the
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k orthonormal columns, or modes, of the p × k matrix Ũ form the basis of a

reduced subspace of y. This results in a linear model of the form:

t = xC + e (4.90)

which is then solved using the standard OLS estimator, Ĉ = (XTX)−1XTT.

For a prediction of t̂, the subsequent value of y is then given by:

ŷ = t̂Ũ (4.91)

This approach is recognisable as the complimentary technique (herein referred

to as complementary stochastic estimation (CSE)), which is described in 3.4.

Here, the columns of the matrix Ũ are chosen to be the first k principal

components of the observed response matrix Y. Outside the field of stochastic

estimation, the technique of reduced rank regression (RRR) can be represented

in this form, only this time using the principal components of the predicted

response Ŷ = XB̂OLS instead. In both cases, the approach is normally applied

because a low dimensional model is explicitly sought for analysis purposes,

whereas in the context of this work, the low-dimensional nature of the approach

is considered solely as a means of improving the prediction of y.

Once again, the predictive ability of these techniques can be understood

by investigating the bias-variance decomposition of the MSE. In order to ex-

press the decomposition in a manner which is applicable to both CSE and

RRR, Ũ will be left undefined. For simplicity, this general approach will be

tentatively titled low-dimensional response (LDR) regression.

First, it is necessary to express LDR regression in terms of the standard
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linear model:

y = xCŨ + e

= xBLDR + e
(4.92)

where an estimate of BLDR is provided by:

B̂LDR = (XTX)−1XTTŨ

= (XTX)−1XTYŨ
T
Ũ

= B̂OLSŨT Ũ

= B̂OLS P−→Ṽ

(4.93)

where P−→Ṽ is the projection on to the subspace Ṽ , defined by the matrix Ũ.

This leads to:

ŷLDR = xB̂OLS P−→Ṽ

= ŷOLS P−→Ṽ

(4.94)

This result shows any performance improvement is due to the projection of

the OLS estimate of y onto the subspace Ṽ . It can be observed that although

the technique can be carried out by a decomposition of the original data y,

the technique is ultimately acting on the predicted data ŷOLS. Naturally, y

and ŷOLS differ due to the inclusion of prediction error in the latter, but there

can also be a fundamental difference in terms of subspaces that these vectors

inhabit. Both vectors are of length p, and so can be considered as points within

p-dimensional space Rp. However, whereas y can theoretically inhabit the full

p-dimensional space of Rp, ŷOLS is potentially limited to a smaller subspace,

the size of which is dependent on the rank of B̂OLS. At most, B̂OLS has a rank

of r = min (rank(X), rank(Y)) = min(n,m, p). Therefore, in cases where the

number of independent variables n, or observations m, is less than the length

of y, then r < p, and ŷOLS will be constrained to an r dimensional subspace
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within Rp. This subspace shall be denoted VOLS.

The differences between the true and predicted values of y have certain

implications on the use of CSE, both as a means of improving prediction

accuracy, and for the technique in general. This can be illustrated with a

simple example, which involves the prediction of a three dimensional dependent

variable y = [y1 y2 y3]. The behaviour of each element of y is determined by

the underlying model of the form:

y1 = x1 + x2 + x3 + e1 (4.95a)

y2 = x1 + x2 + x3 + e2 (4.95b)

y3 = 2x3 + e3 (4.95c)

For simplicity, x1, x2, x3, e1, e2 and e3 are independent, normally distributed

random variables, all with zero mean and variance σ2. The resulting distribu-

tion of y is shown in figure 4.4. Also shown on the plots is the direction of the

largest principal component, u1 =
[√

3
3

√
3
3

√
3
3

]T
. Consider a linear regression

model, y = xB + e, based on the independent variables x1 and x2 only, i.e.:

yi = b1x1 + b2x2 + e (4.96)

for i = 1, 2, 3. An OLS estimate of B is made using the observed matrices

Y and X. Assuming that the number of observations m ≥ 3, the resulting

OLS predictions xB̂ will have a rank of 2, which is limited by the number of

independent variables, n = 2. As such, the subspace VOLS is limited to a 2-

dimensional region of R3, as shown in figure 4.5 (a), along with some example

predictions of ŷ = xB̂OLS, which are constrained to the plane VOLS. From

equation (4.95c), it can be seen that the regression model has no predictive
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power over y3, so it follows that VOLS resides in the y1 − y2 plane at y3 = 0.

The differing approaches of RRR and CSE will now be considered. From

equation (4.94), both techniques involve the projection of xB̂ onto a subspace

Ṽ , defined by the user-specified matrix Ũ. In situations where the data al-

ready resides in a subspace VOLS, the projection from VOLS to Ṽ can produce

some unexpected results, which depend on the relationship between the two

subspaces.

In the case of RRR, the predicted values ŷ are projected onto a subspace

ṼRRR, defined by principal components of the predicted data Y = XB̂. This

means that ṼRRR is necessarily contained within VOLS, and so the projection

of xB̂ on to ṼRRR comprises simply of a reduction of subspace VOLS (figure

4.5 (b)). However, for CSE, the matrix Ũy is obtained from the principal

components of the original data Y rather than Ŷ, which means that the

subspace ṼCSE and VOLS need not be related. This is the case in the example,

where the subspace defined by the largest principal component of Y intersects

VOLS at a large angle. This is illustrated in figure 4.5 (c), and more clearly in

4.6.

The projection of xB̂ on to an unrelated subspace can be problematic

for three reasons. Firstly, it can be seen from the figures that the principal

components of y, which are optimal for the data they are built from, need

not provide an optimal decomposition of xB̂. Hence, when a compact low

dimensional representation of the predicted data ŷ is sought, the CSE approach

is not necessarily the most appropriate approach. In the context of biased

regression, this is likely to reduce the performance improvement provided by

CSE, relative to RRR, as will be discussed shortly. Another concern relates to

the interpretation of the resulting CSE predictions. This is most apparent in

figure 4.6, which shows that the CSE predictions have effectively been rotated
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(c) y2 vs. y3

Figure 4.4: Distribution of data in y. The dashed line indicates the direction
of the first principal component, u1
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y3

y2
y1

VOLS

(a) Example OLS predictions of y,
denoted by the black points. The
predictions are contained within the
2-dimensional subspace VOLS , illus-
trated by the grey plane

y3

y2
y1

VOLS
VRRR
~

(b) The RRR predictions of y (red
dots), resulting from the projection of
the OLS predictions on to the sub-
space ṼRRR as defined by the largest
principal component of ŶOLS . Note
that ṼRRR is contained within VOLS .

y3

y2
y1

VOLS

VCSE
~

(c) The CSE predictions of y (red
dots). The subspace ṼCSE , defined
by largest principal component of Y
is not contained within VOLS .

Figure 4.5: Comparison of the OLS, RRR and CSE predictions of y
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y3

VOLS

~
VCSE

Figure 4.6: CSE predictions of y, viewed in a plane defined by ŷ3 and the line
ṼCSE.

from their original positions, and the data now possesses a ŷ3 component. This

is at odds with the underlying regression model (equation (4.96)), which has

no predictive power over y3. This leads to the erroneous conclusion that the

behaviour of y3 is related to the behaviour of x1 and/or x2. Of course, this

situation has been manufactured to illustrate this problem, and is unlikely to

occur to such an extent in practical situations. Nonetheless, this does show

the risks involved in applying CSE. The most pressing concern, however, is

that the projection from VOLS to a potentially unrelated subspace Ṽ results

in behaviour that is too complex to account for in the derivation of the bias-

variance decomposition. As such, for the purposes of the following work, it is

necessary to assume that Ṽ must lie within VOLS. Obviously, this limits the

applicability of the bias-variance decomposition to CSE when r < p, although

it is still valid when r = p, in which case VOLS spans the full Rp, which

will contain all possible subspaces Ṽ . Also, the decomposition is valid for all

cases of RRR. While the limited applicability of the decomposition of CSE is
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unfortunate, it is noted that the expression is not intended to be used to make

exact calculations of the MSE, merely to provide an insight into the nature

of the techniques’ predictive performance. The assumptions made here will

hopefully not detract from this goal.

As the error between y and ŷRRR is a 1 × p vector, the MSE of ŷLDR

shall be defined as:

MSE[ŷLDR] =
1

p
E
[
(y − ŷLDR)(y − ŷLDR)T

]
=

1

p
E
[
‖(y − ŷLDR)‖2

] (4.97)

The resulting bias-variance decomposition (as described in Appendix B.5) is:

MSE[ŷLDR] =
σ2

p
+ σ̂2

⊥
n

pm

+ σ̃2 n

pm
+

1

p
E

[∥∥∥xB̌
(

P−→VOLS
− P−→Ṽ

)∥∥∥2]
=unexplained variance + unremovable model error

+ removable model variance + model bias

(4.98)

where:

• σ2 is the total unexplained variance in y.

• σ̂2
⊥ is the component of unexplained variance that resides in the null

space of ŶOLS, i.e. the region of Rp that excludes the subspace VOLS.

This term is only present when the rank r of BOLS is less than the size

p of y.

• σ̃2 is the component of unexplained variance contained in the subspace

Ṽ , which is defined by the choice of Ũ.
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• P−→VOLS
is the projection onto the subspace VOLS.

• P−→Ṽ is the projection onto the subspace Ṽ .

• P−→VOLS
− P−→Ṽ defines the projection on to the resulting subspace when

Ṽ is removed from VOLS.

Equation (4.98) differs from previous bias-variance decompositions due

to the inclusion of a fourth term, which can be interpreted as unremovable

model error. This term is present when r < p, and corresponds to a component

of model error that cannot be removed from the prediction error, regardless

of the choice of Ũ. The remaining three terms in the expression have similar

meanings to before.

The bias-variance decomposition demonstrates the improvement that

LDR regression can bring to the stability of the estimated model. In the case

of OLS estimation, the full sum of unexplained variance in y contributes to

the model variance, whereas in LDR regression this contribution is restricted

to the unexplained variance σ̃2 that lies within a reduced subspace of Rp,

defined by the matrix Ũ. As the number of modes in Ũ is decreased, the size

of this subspace is reduced, and it can be expected that the model variance

will fall. However, it is noted that the exact nature of the reduction of σ̃2 is

not defined; contrast this with the cases of PCR and PLS, where the bias-

variance expressions reveal that the model variance reduces proportionally to

the number of modes removed. The choice of Ũ also limits the subspace in

which resulting predictions can reside, leading to the introduction of bias of

the form E

[∥∥∥xB̌
(

P−→Û − P−→Ũ

)∥∥∥2]. Hence, the aim is to limit ŷOLS to as small

a subspace as possible, while only removing dimensions that are unimportant

to the true prediction quantity xB̌, under the assumption that the discarded

part of the estimated prediction contributes more towards the model variance
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than it does towards the correct prediction. Of course, the true value xB̌ is not

known, and so a sensible option is to remove the unimportant dimensions of

the estimated quantity XB̂OLS instead, which is the approach taken by RRR.

CSE on the other hand, bases the choice of Ũ on the principal components of

Y. As shown previously, such modes may not be ably to efficiently capture

the behaviour of xB̌OLS. In terms of prediction accuracy, at least, this would

suggest that CSE may not be the most appropriate technique.

Regardless of the relative benefits of RRR over CSE, both these tech-

niques are ultimately dependent on how well xB̂OLS can be represented in a

reduced subspace. xB̂OLS resides in the subspace VOLS, which, as explained

earlier, is of size r = min (rank(X), rank(Y)) = min(n,m, p). The success of

both these techniques therefore requires that xB̂OLS can be accurately rep-

resented in a subspace of size k, where k < r. The mechanisms that allow

for a reduction of VOLS can be identified by considering the situation where

the information in x is entirely contained within a subspace of size kx, and

the information in y is similarly contained within a subspace of size ky. As-

suming kx, ky < m, then xB̂OLS will be contained within a subspace of size

k = min(kx, ky). Hence, if yx and/or yy is less than r, then the subspace of

VOLS can be reduced, providing CSE and RRR with the potential to outper-

form OLS. This does not represent the complete picture though, as not all

information in x may be relevant to the prediction of y. For example, in the

extreme case where the quantities x and y are completely unrelated, the sizes

of kx and ky are rendered irrelevant, as the size of VOLS in this case will be

zero. This can be accounted for by redefining kx as the size of the subspace of

x relevant to the prediction of y. In most situations, it is highly unlikely that

either x or y will reside exactly within reduced subspaces, although this anal-

ysis is nonetheless a useful guide to identifying potential situations where CSE
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and RRR may be successful. In practice, it is more appropriate to consider

the following rule-of-thumb:

xB̂OLS can be accurately represented in a reduced subspace if:

1. the subspace of x that contributes to the prediction of y can be accurately

represented in a subspace k < r; and/or

2. y can be accurately represented in a subspace k < r.

One final aspect of performance to be considered is the inclusion of the

unremovable model error term, σ̂2
⊥

n
pm

, which is present whenever r < p. This

term cannot be removed by either CSE or RRR, and so is likely to place a

limit on the amount of model variance that can be removed. Also, it can

be seen that the size of the term is proportional to the unexplained variance

in the null space of xB̂, and so is likely to grow as the ratio between r and

p increases. Commonly, stochastic estimation is employed to predict a flow

field at a large number of points p, given knowledge of the flow at only a few

points, n. Because r = min(n,m, p), this is likely to produce an unfavourable

ratio between p and r, and may limit the effectiveness of this approach in this

setting.

4.4 Conclusion

The work in this section comprises a comprehensive study of the finite-sample

performance of stochastic estimation. This aspect of the technique has rarely

been explored previously, and so this work contributes further to the under-

standing of the field. Furthermore, it is hoped that many of the concepts

introduced here will be of significant practical use, which will lead to improve-

ments in the mean-square prediction performance of stochastic estimation in
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many situations. The first section concerns the performance of the OLS esti-

mation, which has been shown to be equivalent to stochastic estimation when

the prediction model is built from joint observations of the conditional vari-

able and the full set of unconditional variables. The finite sample properties of

OLS estimation were presented in a form both relevant and compatible with

stochastic estimation, and their implications have been considered. In light

of the fact that in many cases, alternative techniques are theoretically able

to outperform OLS, it was argued that their use in practice is inappropriate,

and that the use of OLS is generally valid in most conceivable applications of

stochastic estimation. It was also shown how some of the OLS assumptions

can be used to determine whether the chosen prediction model is correctly

specified, which may be useful to practitioners when choosing which terms to

include in the stochastic estimation model.

The second section concerns the use of biased regression techniques,

and their ability to offer potential improvements over the unbiased technique

of OLS estimation. Each of the techniques considered involves the projection

of some part of the standard OLS model to a reduced subspace, where the

subspace is defined by a set of user defined modes. Some of the techniques

discussed are already established in the field of stochastic estimation, and

are the result of combining the technique with principal component analysis.

However, such approaches are conventionally used for the analysis of coherent

structure, where PCA is used to restrict the prediction model to particular

scales within the flow. However, the focus in this chapter is somewhat different,

and it has been shown that by selectively discarding parts of the original data,

it is possible to produce a more accurate model than one built from the full

data set.

Analysis of the biased technique has focused on the trade-off between
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model bias and variance; a bias-variance decomposition has been derived for

each technique under investigation, which demonstrate the mechanisms by

which prediction performance can be improved. Also, the requirements placed

on the underlying data have been considered in each case, and have been used

to infer how suitable the techniques will be in typical applications of stochastic

estimation.

For PCR and PLS, the bias-variance decompositions reveal that the

improvement in accuracy is proportional to the number of dimensions removed

from the independent variables x. The number of modes that can be removed

is dependent on the data; for PCR to be effective, the information in x must be

contained in a small number of dimensions, whereas for PLS, the information

relevant to the prediction of y must be contained in a small number of modes.

As the latter case permits a larger number of dimensions to be removed, it

would appear that PLS is the more suitable technique, although it should be

noted that this conclusion is based on the stated goal of PLS, rather than

any theoretical evidence. Unfortunately, the complex, iterative nature of the

technique makes it difficult to assess its actual performance.

CSE and RRR act by projecting the OLS estimator ŷ = xB̂OLS onto

a smaller subspace. Unlike PLS and PCR, the bias-variance decomposition

for CSE and RRR does not give a clear relationship between the number of

dimensions removed and the level of improvement obtained, merely indicating

that an improvement is theoretically possible. It has been shown that any

such improvement requires one of two criteria to be met, namely that:

• the data in x relevant to y can be accurately contained in a subspace of

size k.

• the data in y can be accurately contained in a subspace of size k.
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In each case, k must be smaller than the subspace of the original OLS estima-

tor, which has a size r = min(n,m, p). If either of these criteria is true, then

the resulting prediction xB̂OLS can accurately be reduced to a k dimensional

subspace, and the unexplained variance in the discarded dimensions will no

longer contribute to the model error.

Assuming that a reduction of xB̂OLS is possible, it appears that RRR

may be better suited to doing so than CSE, due to the different choice of

subspace used by the techniques. For CSE, the largest principal components

of the observed matrix Y are chosen to define the reduced subspace, whereas

RRR uses the modes of the predicted data Ŷ = XB̂OLS. The performance of

both techniques appear to be limited when the number of dependent variables,

p is larger than r, which may be an issue in many applications of stochastic

estimation, where it is likely that p >> n, and hence p >> r.

Given the limitations of both CSE and RRR, it would appear that PCR

and PLS offer a more effective means of improving the predictions in stochas-

tic estimation applications. Therefore, the evidence suggests that the best

performance can be obtained by PLS, followed by PCR, RRR then CSE. Of

course, this conclusion is based purely on the theoretical work of this chap-

ter. As already mentioned, this is by no means a complete description of the

techniques’ performance, and involves some simplifying assumptions. In order

to confirm these conclusions, and address any omissions, an empirical study

of the practical performance of the techniques has been performed, which is

detailed in the following chapter.
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Chapter 5

Quantitative Accuracy Analysis

of Regression Techniques
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5.1 Introduction

In the following work, the quantitative performance of the regression tech-

niques from the previous chapter are assessed in a series of simulated experi-

ments. This will hopefully bring further understanding to the techniques under

consideration, provide evidence for the bias-variance decompositions derived

in section 4.3, and serve to identify situations when a particular technique may

be effective.

This chapter also introduces a rigorous methodology for assessing the

practical performance of a regression technique, which can be used to obtain

the optimum number of modes k to build a biased regression model, and

ultimately select the most appropriate regression technique for the application

in question.

All the following tests were performed on data obtained from a direct

numerical simulation of a channel flow, which is described section 5.5. Us-

ing this data, a number of simulated stochastic estimation experiments were

created, each of which is designed to investigate a particular aspect of the

regression procedure that dictates the accuracy of resulting predictions.

The process of obtaining a reliable, quantitative measure of a regression

model’s performance is commonly referred to as model validation. The chapter

begins with a discussion on this topic, before going on to discuss the practical

aspects of implementing the validation procedure for the current work. The

chapter ends with the presentation and discussion of the validation results

from the various test scenarios.
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5.2 Model Validation

The requirements for successful model validation are two-fold: first, it is im-

portant to choose a suitable metric with which to judge performance, and

secondly, the validation must be carried out in a manner that ensures the re-

sulting metric is representative of the regression model’s behaviour in general,

not just for the data it was derived from.

As the focus of this work is prediction, the obvious measure of a re-

gression model’s performance is the mean square error (MSE) of prediction.

However, the value of the MSE cannot be interpreted without knowledge of the

underlying data that is being predicted, which makes it difficult to compare

performance between different data sets. Therefore, it is useful to consider the

error in the more interpretable and generalisable form of unexplained variance.

The unexplained variance of prediction is defined as:

MSE[ŷ]

Var[y]
× 100% (5.1)

Although this metric should technically range from 0% (when there is no pre-

diction error), to 100% (when the regression model has no predictive power

over y), in practice, the regression model error can be so severe that the result-

ing MSE is actually higher than the variance of y, resulting in an unexplained

variance of > 100%.

A closely related statistic is the explained variance, which is simply:

(
1− MSE[ŷ]

Var[y]

)
× 100% (5.2)

The percentage explained variance is equivalent to the coefficient of

determination, R2, which is a commonly used measure in linear regression.
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Again, it is possible to produce a percentage explained variance of less than

0%.

In the following sections, particular emphasis is placed on the perfor-

mance of the biased techniques relative to that of OLS. Therefore, a final

measure will be introduced, which demonstrates the improvement in predic-

tion error of a biased regression technique over that of standard OLS regression.

This is given as a percentage, defined as:

MSE[ŷOLS]−MSE[ŷbiased]

MSE[ŷOLS]
× 100% (5.3)

In order to compare the relative performance of the regression tech-

niques, it is first necessary to determine the optimum number of modes, k, for

each biased regression technique. From the previous chapter, it was demon-

strated that all the biased approaches are subject to the bias-variance tradeoff,

where any improvement in model variance is accompanied by a subsequent

increase in bias. This is shown schematically in figure 5.1. For prediction pur-

poses, the optimum choice of k is that which yields the minimum prediction

error, which can be obtained in practice by building biased regression models

for every possible k, and then choosing the model with the lowest prediction

error. An example result from this procedure is shown in figure 5.2. The real

example has similarities to the theoretical case, with the exception that the

theoretical case considers only the model variance and bias, while the example

shows the full MSE (which consists of the model variance, model bias and the

irreducible variance). Although not apparent from figure 5.2, the unexplained

variance reaches 100% when k = 0, which is the case for all the biased tech-

niques under consideration here. Conversely, when the full set of modes is

used, all the biased techniques are equivalent to OLS regression.
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Figure 5.1: Schematic representation of the bias-variance tradeoff (taken from
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Figure 5.2: Example plot of prediction error v.s number of modes, indicating
the potential improvement over OLS regression
Data acquired from the validation of PCR regression, test scenario 1, sample
size = 350 (see section 5.6.2)
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The process of model validation is a complex subject, which has received

a great deal of attention in literature. It should be noted there are many

alternative, and potentially superior, approaches to the one outlined here,

although their complexity places them beyond the scope of this work. A more

detailed discussion of the subject is given in Harrell Jr. (2001).

As explained previously, it is important that the chosen approach to

validation produces a representative performance estimate. That is, it must

accurately reflect the performance of future predictions made by the model.

This rules out the option of validating a regression model on the same data

set used to create the model, as it yields considerably biased results that

will invariably underestimate the prediction error. Also, such an approach is

particularly inappropriate in the current context because the OLS estimator,

by design, will produce the estimate that minimises the error of prediction for

the data set it is built from. Furthermore, for a biased technique, the value of k

that minimises the prediction error will automatically default to the maximum

number of modes, which corresponds to the OLS estimator. Therefore, it is

vital that the validation is carried out on data that is independent from the

sample used to build the model.

For the purpose of this work, a simple form of k-fold cross-validation is

proposed. This is an iterative approach that involves partitioning the available

data into k sections. At each iteration, a different partition is removed from

the full data set. The removed partition becomes the test set, which is used to

assess the prediction performance of the model built from the remaining k− 1

partitions (the training set). This is carried out for a total of k iterations, each

time using a different partition for the test set. The resulting k validations are

then averaged to produce the final error measure.

The most appropriate choice of k is, again, a complex matter. In prac-
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tice however, 10-fold cross validation is often used as standard, and is adopted

for this work, as well for subsequent validations in later chapters.

5.3 Practical Implementation of the Regres-

sion and Cross-Validation Procedures

The process of 10-fold cross-validation requires each regression model to be

estimated ten times. Furthermore, for each biased regression technique, a

model must be built for every possible number of modes, k at each iteration

of the cross-validation procedure. The maximum value of k, and hence the

total number of regression models, varies with technique. For PCR, PLS and

RRR, the maximum number of modes is determined by the rank of X, which

is at most min(n,m), and for CSE, it is determined by the rank of Y, which is

min(p,m). In practice then, the total number of individual regression models

required to validate a technique can be very high; in the current work, this

number can reach 5, 000. Fortunately, with the use of optimised software

and a number of algorithmic improvements, a daunting number of regressions

does not necessarily translate into a time consuming or resource intensive

computation.

In the current work, the cross-validation procedure was performed on

a standard 32-bit Windows XP desktop computer, equipped with a 3GHz

Pentium processor and 1GB RAM, and the task of fully validating all five of

the regression techniques was accomplished in the order of minutes for all the

scenarios considered in this chapter.

The validation software was implemented using MATLAB 7.4. The

majority of the code consists of matrix operations, which makes the use of
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MATLAB particularly suited to this task, as it provides access to efficient

and optimised linear algebra libraries (in the form of the LAPACK library

and an architecture optimised implementation of the BLAS library). The

actual implementation of the regression techniques differs slightly from their

descriptions given in the previous chapters. In all the following test scenar-

ios, the dependent variable y is multivariate, and so the multivariate forms

of OLS and PCR are used (see section 4.1). Using the multivariate forms,

much of the computational workload involved is reduced to a series of matrix

multiplications, which are able to make use of the optimised linear algebra li-

braries. A more fundamental change relates to the calculation of B̂OLS, which

has been described thus far as B̂OLS = (XTX)−1XTY. While theoretically

correct, the direct implementation of this expression can be numerically un-

stable (Trefethen and D Bau, 1997), and so B̂OLS is instead solved using the

pseudoinverse of X:

B̂OLS = X+Y (5.4)

where the pseudoinverse is calculated by means of the SVD of X:

X+ = VRS−1UT
L (5.5)

Here, S is the matrix of singular values of X, and VR and UL are the corre-

sponding left and right singular vectors. A further advantage of this approach

is that the pseudoinverse exists for any rectangular matrix, which permits the

calculation of B̂OLS even when there are fewer observations than variables,

m < n. It should be noted however, that this violates the first OLS as-

sumption (section 4.1.2), which means that the corresponding properties do

not hold. Also, the bias-variance decomposition for the OLS predictor, which
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was derived using this assumption, is invalid when m < n. An alternative

derivation for this situation is provided in section 5.4.

Finally, the implementation of PCA (required in the calculation of the

PCR, RRR and CSE models) is performed using the SVD method (see section

3.4) wherever possible1. Again, this is due to potential instabilities in the direct

implementation either the “standard” or snapshot method of PCA (Trefethen

and D Bau, 1997).

The computational complexity of the regression techniques (excluding

PLS, which will be discussed separately) is dominated by two operations; the

calculation of B̂OLS, and the calculation of the principal components. However,

there are some simple modifications that allow these operations to be kept

to a minimum. Firstly, in the process of validating a biased technique for

every possible value of k, the same set of principal components are used each

time. Therefore, for a given biased technique the PCA need only be performed

once for each iteration of the cross-validation. Also, once B̂OLS has been

calculated, it can be reused by each biased regression technique, and only has

to be calculated once for each iteration of the cross-validation.

The case of PLS differs slightly from the other techniques, due to the

iterative nature in which it produces the regression model. If a particular k-

mode estimate is sought, then the PLS algorithm must go though k iterations

to find it. This in itself is not a problem, and can be exploited for the purposes

of cross-validation simply by setting the algorithm to iterate through the full

set of modes, and storing the current estimate of B at the end of every iter-

1The computational cost of the SVD is min[O(mn2),O(nm2)] floating point operations,
or flops, as opposed to O(n3) required for the traditional PCR approach (based on the cost
of computing the EVD of XTX), and O(m3) for the method of snapshots (based on the
EVD of XXT ). Hence, when n >> m or m >> n, the use of SVD becomes inefficient, and
the most appropriate EVD-based approach is used instead
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ation. Therefore, at the end of the procedure, PLS models for all values of k

are available, and so the algorithm only needs to be run once for each iteration

of the cross-validation. Nonetheless, the computational cost of validating PLS

is still much higher than for the other techniques, due to the fact that the

SVD of either the covariance matrix YTX, or the deflated covariance matrix

YTXP−→VP̂⊥
, must be calculated for each iteration. Moreover, the computa-

tional cost of computing the SVD of these matrices can often be substantial.

For an m × n matrix X and a m × p matrix Y, the size of the covariance

matrix is p × n, which may be difficult, or even impossible to solve in some

cases. It is shown in appendix D.1 how the SVD of a p× n covariance matrix

of the form YTX can be reduced to a series of EVDs of an m × m matrix,

which can be significantly more efficient than the direct approach when m is

smaller than n and p. This process is then generalised to account for the case

of the deflated covariance matrix YTXP−→VP̂⊥
.

5.4 MSE of OLS behaviour for m < n

In several of the conditions considered in this chapter, the sample size m, is

smaller than the number of independent variables n. A prediction can in this

case still be made using OLS by using the pseudo-inverse approach described

above, although the theoretical expression for the MSE of the OLS predictor

must be refined:

The MSE for m ≥ n is:

MSE [ŷ] =σ2 +
n

m
σ2 (5.6)

Recall from the derivation of this expression (esp. equation (4.70)) that the
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value n corresponds to the number of principal components present in the

matrix X, which is determined by the number of independent variables, m

when m ≥ n. In cases where m < n, the number of principal components is

limited by the number of samples, m. Hence, when m < n, the model variance

term becomes:
m

m
σ2 =2σ2 (5.7)

However, for future predictions of y from x, the omitted principal components

act to remove a subspace from x that can no longer contribute towards the

prediction of y. This introduces a bias term into the MSE expression. Essen-

tially, OLS is behaving in an identical manner to PCR in this situation, so the

bias term can be taken from the bias-variance decomposition for PCR (4.79),

leading to:

MSE [ŷ] =2σ2 + E

[(
xP−→Ṽ⊥

b̌
)2]

(5.8)

In order to generalise this expression for any m, the quantity q = min(m,n)

is introduced, giving:

MSE [ŷ] =σ2 +
q

m
σ2 + E

[(
xP−→Ṽ⊥

b̌
)2]

(5.9)

where PṼ⊥
is the projection onto the subspace defined by the omitted principal

components.

5.5 Overview of Data Set

The data used in this chapter, and subsequently in chapter 6, is taken from a

direct numerical simulation (DNS) of a turbulent channel flow subject to wall

suction and blowing, which was provided courtesy of Dr Yongmann Chung
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Figure 5.3: Flow configuration, showing the approximate position of the do-
main Ω, which provides the data used in this work.

and Tariq Talha of the University Warwick. The flow configuration consists of

a 3-dimensional domain, as illustrated in figure 5.3. The domain is bounded

at the top and bottom with impermeable wall conditions, except for a slot

on the lower wall that runs the entire spanwise direction z, which provides

the blowing and suction. Periodic boundary conditions are applied in the

spanwise direction, and the inflow boundary employs instantaneous data from

a separate, identically sized simulation of a fully developed turbulent channel

flow. A continuous, unvarying wall blowing and suction is applied through the

spanwise slot by imposing a sinusoidal wall-normal velocity profile along the

streamwise direction of the slot, as demonstrated in figure 5.4. The remaining

velocity components are set to zero. The flow variables are nondimensionalised

using the streamwise mean velocity Um and the channel half-height h. The

Reynolds number of the simulation is 5600, which is defined by Re = Umh/ν,

where ν is the kinematic viscosity. The flow is homogeneous in the spanwise

dimension z, inhomogeneous in y, and the presence of the blowing/suction

introduces inhomogeneity into the streamwise direction x. The x × y × z

dimensions of the flow domain in terms of the channel half height h are 12×
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Figure 5.4: Blowing/Suction profile imposed along the x direction of slot.

2×2. The grid resolution is 128×128×64 The grid spacing is uniform in x and

y, with a spacing of ∆x = 0.1h and ∆z = 0.031h The grid in y is generated

using a hyperbolic tangent function, which produces a dense grid close to the

walls of the domain, with a coarser grid in the centre of the channel.

The data used in this thesis is taken from a 32 × 32 × 32 subregion

Ω, which is located downstream from the blowing/suction slot. The position

and size has been chosen to capture the lower boundary layer of the flow. A

total of 250 time-uncorrelated instances of Ω were available, although for the

majority of the work, only 2-dimensional x−y slices of the data were required.

Due to the homogeneity in z, it was possible to extract multiple planes from

each instance of omega; analysis of the data revealed that up to 3 planes could

be taken from each instance, while still ensuring enough spatial separation

to ensure that the individual planes were uncorrelated. For the work in this

chapter, 600 slices were made available for the quantitative testing. The details

of the data used in later work is provided in chapter 6.
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5.5.1 Note Regarding Errors due to the Misrepresenta-

tion of the CFD Grid Spacing

Unfortunately, all the processing and analysis of the simulated data in this

thesis was performed under the erroneous assumption that the grid was uni-

form and equal in all dimensions, i.e. ∆x = ∆y = ∆z. As such, the data has

been represented on a grid with incorrect spacing, as illustrated in figure 5.5.

The depiction in 5.5 (a) is only an approximation to the actual grid, however;

currently the exact parameters of the inverse hyperbolic function are unknown,

and so the true grid cannot be replicated.

This issue was only discovered at a late stage in the work, and there

was not sufficient time to rectify the problem in either the calculations or

in their subsequent presentation and analysis. It should be stressed that for

the majority of the work, which involves the quantitative comparison of the

true data with predicted data, this is of little concern. Such calculations are

independent of the spatial distribution of the data, and so are valid regardless

of whether the true grid is known. However, this issue should be borne in mind

in the following chapters, where the spatial locations of the velocity vectors

used in the calculations are presented on the incorrect grid, as demonstrated

in 5.5.

The only major concern arises in chapter 6, where a qualitative analysis

of the MP-VSE procedure is made using the simulated data. In this section,

MP-VSE is used to predict instances of the full volume Ω, and the predicted

vorticity fields are compared with the true values. The calculated vorticity

data, which is a function of grid spacing, is therefore incorrect. Nonetheless,

the emphasis of the section is on the relative behaviour of the true and pre-

dicted flow field, and even though the absolute calculations are wrong, the
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(a) Representation of true grid (b) The same volume, rep-
resented on the grid used in
the following work

Figure 5.5: Comparison of true grid and erroneous grid spacing

problem manifests itself identically for both the true and predicted data. As

such, the incorrect vorticity data is still useful as a means of assessing the

ability of MP-VSE to predict derivatives of the velocity field.

Although the use of the incorrect grid should not affect the conclusions

of any of the work presented in the thesis, the correction of the issues discussed

here is currently being pursued as a matter of priority.

5.6 Performance of Regression Techniques: Re-

sults

5.6.1 Overview

The following sections describe the performance of the five regression tech-

niques under investigation for each of the test scenarios. In each scenario,

one test parameter is varied, with the remaining held fixed, yielding a set of

individual test conditions for each scenario. The accuracy of each technique

was determined for each test condition through the process of cross-validation.

124



The four test scenarios are:

• Test Scenario 1 - Number of observations, m, used to produce the

regression model.

• Test Scenario 2 - Number of independent variables, n.

• Test Scenario 3 - Multicollinearity in the independent variables.

• Test Scenario 4 - Number of dependent variables, p.

Scenarios 1, 2 and 4 are self-explanatory, although scenario 3 requires

further elaboration. Collinearity refers to the presence of correlation between

two variables, and multicollinearity is simply the generalisation of this concept,

to account for cases with more than 2 variables. The presence, and degree of,

multicollinearity in a data set plays an important role in the performance of all

the biased techniques considered here, as it dictates the intrinsic dimensionality

of a data set; for example, if the variables are all highly correlated, then it is

likely that the data can be accurately modelled with only a small number

of modes. As described in chapter 4, this is a necessary requirement for the

success of each of the biased techniques. In test scenario 3, the multicollinearity

is controlled by varying the distance between the locations of the independent

variables. This is motivated by the assumption that as the spacing becomes

smaller, the behaviour of the independent variables will become more similar,

hence increasing the multicollinearity.

For each test condition, a stochastic estimation problem was constructed

by defining a set of vectors within the 32×32 flow field to act as the conditional

and unconditional data (as shown in figure 5.6, for example). To the extent

possible, these conditional and unconditional vectors were chosen to provide a

realistic stochastic estimation procedure in each test condition.
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Conditional Vector
Unconditional Vector

Figure 5.6: Example vector placement within flow domain to provide condi-
tional and unconditional data

The unconditional and conditional vectors were used to create the inde-

pendent variables x and dependent variables y, of the linear model y = xB+e.

In the data set used, each vector consists of 3 velocity components, so the re-

sulting sizes of x and y (i.e. n and p) are 3 times the number of vectors used

to build them.

For the purposes of cross-validation, the 600 frames were split into 10

partitions of equal size. Thus, at each iteration of the cross-validation, 60

samples were available for the test set and a total of 540 samples could be used

for the training set. However, the actual size of the training set was usually

limited to 500 for simplicity, except in test scenario 1, where the number of

samples was varied from 50 to 500. For a given sample size, care was taken to

ensure that the samples were selected as equally as possible from each of the

nine partitions that made up the available data.

In many of the test scenarios, the position of the conditional and uncon-

ditional vectors overlapped, which meant that the resulting regressions were

predicting vectors whose values were already known. This in itself is not a
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Unconditional Vector

Figure 5.7: Unconditional vector placement within flow domain

problem, although it has the effect of artificially decreasing the overall MSE.

In these situations, the prediction was performed with the overlapping vectors

included in the data, but they were subsequently masked out before the MSE

was calculated, in order to provide a more representative error measure.

In all the scenarios, a standard linear stochastic estimation model was

employed, i.e. only the first order terms of the independent variable were

included. The use of higher-order terms was investigated (see appendix D.2),

but it was concluded that the linear terms were sufficient to correctly specify

the model, and no benefit was to be had from including further terms.

5.6.2 Test Scenario 1: Effect of Sample Size, m

For the first scenario, the sample size, m, used to build the regression models

was varied from 50 to 500, in steps of 50. Here, 64 uniformly spaced uncondi-

tional vectors were used to predict the full 32×32 flow field (see figure 5.7). A

summary of the parameter values is given in table 5.1, the optimum number

of modes is listed in table 5.2 and the results are illustrated in figures 5.8 and

5.9.
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Parameter Value

Sample size, m 50, 100, 150, . . . , 500
Unconditional Vectors 64
Independent Variables, n 192
Conditional Vectors 1024
Dependent Variables, p 3072

Table 5.1: Summary of parameter values for Scenario 1
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Figure 5.8: Average explained variance vs. sample size
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Figure 5.9: Percentage improvement over OLS prediction vs. sample size

Samples CSE RRR PLS PCR

50 45 (50 ) 45 (50 ) 38 (50 ) 39 (50 )
100 37 (100 ) 37 (100 ) 54 (100 ) 54 (100 )
150 22 (150 ) 22 (150 ) 66 (150 ) 66 (150 )
200 10 (200 ) 10 (192 ) 75 (192 ) 78 (192 )
250 36 (250 ) 36 (192 ) 86 (192 ) 93 (192 )
300 56 (300 ) 65 (192 ) 92 (192 ) 92 (192 )
350 83 (350 ) 80 (192 ) 98 (192 ) 101 (192 )
400 126 (400 ) 97 (192 ) 102 (192 ) 107 (192 )
450 500 (450 ) 122 (192 ) 104 (192 ) 108 (192 )
500 500 (500 ) 117 (192 ) 103 (192 ) 113 (192 )

Table 5.2: Optimum number of modes for differing sample sizes (the quantity
in brackets denotes the maximum permissible number of modes for the given
case).
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Discussion

The results show a number of interesting, and unexpected, phenomena, which

are best explained by considering the particular case of the OLS predictions.

From section 5.4, the MSE of OLS has been derived as:

MSE [ŷ] =σ2 +
q

m
σ2 + E

[(
xP−→Ṽ⊥

b̌
)2]

(5.10)

where q = min(n,m). This suggests that when m ≥ n, the prediction accuracy

will decrease with m, due to the increase in model variance. For m < n, the

model variance will remain constant, but the model bias is likely to increase

with decreasing m, and so the accuracy will continue to fall. This theoretical

behaviour is demonstrated in figure 5.10, which has been based on equation

(5.10). An estimate of the irreducible variance, σ2 was produced from the

convergence of the results in figure 5.8. The bias, which cannot easily be

estimated, has been chosen under the assumption that the largest principal

components of x are more important to the prediction of y than the smallest.

Also shown in figure 5.10 are the results of the OLS prediction. Clearly, there

is a large discrepancy between the theoretical and actual behaviour. Starting

at m = 50, the results show that with increasing m, the accuracy initially falls,

to the point where m = 200 (where m ≈ n), and then begins to rise again,

with the rate of growth slowing as m increases. Also, the theoretical value

consistently underestimates the true error.

The discrepancy between the theoretical and true behaviour is likely

to arise from assumptions used in the construction of the MSE decomposi-

tion. The problem appears to lie with the assumption that the empirical roots

and principal components are identical to those of the underlying population.

This results in a situation where each principal component contributes an
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Figure 5.10: Percentage improvement over OLS prediction vs. sample size
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equal amount to the overall MSE (equations (4.68) to (4.71), section 4.3). In

reality, the empirically calculated roots and principal components are subject

to a degree of estimation error, which becomes larger as the sample size, m,

decreases. As discussed in appendix D.3), it appears that this error causes the

smallest principal components of X to contribute a disproportionate amount

to the MSE. This contribution can be extremely large when n ≈ m, to the

point where a few small principal components act to vastly inflate the MSE,

far beyond what the theoretical expression suggests. This is observed in the

case where m = 200. At this point, the resulting MSE is larger than the total

variance of y, resulting in a negative explained variance.

However, when m < n, the rank deficiency of XTX effectively removes

the smallest principal components from the model, which would otherwise

cause the inflation of the MSE. As m decreases, more principal components

are removed, and the model variance reduces. Again, further explanation is

provided in appendix D.3, along with empirical evidence to support this theory.

This line of reasoning is helpful to explain the performance of the re-

maining techniques. PCR acts by removing the smallest principal components

from x, and so directly combats the source of the problem. PLS also removes

dimensions from x, and although the selection criteria is more complex than

PCR, the fact that the performance of PLS and PCR is roughly equal sug-

gests that it is just as capable of avoiding the problems caused by the smallest

principal components. As a result, these two techniques do not appear to be

affected by this phenomena at all, at least in this scenario. CSE and RRR,

however, perform a decomposition on xB̂OLS, rather than x, and so are un-

able to act directly on the underlying cause of the MSE inflation. This can be

observed in the fact that their performance, while often superior to OLS, still

follows the same pattern shown by the OLS predictions. On the whole RRR is
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more accurate than CSE, although their performance is roughly equal in the

first four cases. This is likely due to the fact that RRR performs an optimal

decomposition of xB̂, while CSE does not (CSE instead uses the principal

components of Y to decompose xB̂).

Care must be taken when attempting to generalise the results here. On

the one hand, the increase in estimation error in the principal components

due to decreasing m appears to be independent of the underlying data, and so

the poor performance of OLS seems certain whenever m ≈ n. What is more

debatable is whether biased techniques will always offer a suitable solution,

as is the case here. In this scenario, it is probable that the multicollinearity

in x ensures that the small principal components are unimportant to the pre-

diction, and can be removed without incurring a large bias penalty. However,

there may be situations where the small dimensions of x are important for the

prediction. Here, the removal of these components will prevent the aforemen-

tioned catastrophic error due to a reduction in model error, but the resulting

prediction will still be poor due to the large bias error. In these cases, the

only real solution will be to ensure that enough data is acquired to prevent

the problem in the first place.

A final observation concerns the number of modes used to build the

optimum biased models, which can be seen to vary considerably for each tech-

nique over the range of test cases, (see table 5.2). This highlights an aspect of

biased techniques’ performance that has yet to be considered in detail. Firstly,

it is noted that all the biased techniques correspond to the OLS model when

the full set of modes are used; essentially, the biased techniques act by re-

moving modes from the OLS model in order to improve its stability. In the

theoretical study of the biased techniques of section 4.3, the ability of all the

techniques was attributed to the ability to accurately represent the behaviour
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of a multivariate quantity within a reduced subspace, i.e. the reduction of x in

the case of PCR and PLS, and xB̂OLS for CSE and RRR. This is certainly an

important criteria, as it allows modes to be removed from the OLS regression

model without incurring a large bias penalty. However any improvement over

OLS ultimately requires that any increase in bias is smaller than the reduction

in model variance. As such, the level of model variance in the OLS predictions

is also of importance to the performance of the biased techniques. This effect

can be observed in the results of this scenario. Each condition considered here

uses the same x and y, which suggests that the distribution of data in the

relevant subspaces will remain roughly the same for all conditions. Hence, for

a given technique, the amount of bias introduced by removing modes from

the OLS model should also be similar across the conditions. Furthermore,

the unexplained variance also remains constant, which implies that the dif-

ference in the performance of the biased techniques is purely due to changes

in model variance of the OLS estimator. Inspection of the optimum modes

used by the biased techniques shows that, in general, the number of modes

removed by the optimum model is correlated with the model variance of the

OLS estimator. Furthermore, the reduction in the number of modes is also

directly linked to the relative improvement of all the biased techniques over

OLS. This shows, all else being equal, as the model variance of OLS increases,

the benefit of discarding a given mode from a biased regression becomes larger.

This is certainly the case here when m ≥ n, although the situation is slightly

more complicated for m < n, where the effect manifests itself differently for

the regression techniques considered here. The number of modes used by PLS

and PCR appears to be roughly proportional to m, while for CSE and RRR,

whose behaviour is closely coupled with the performance of OLS, the number

of modes is proportional to the accuracy of the OLS prediction. Nonetheless,
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Parameter Value

Sample size, m 500
Unconditional Vectors 4,16,64, 256
Independent Variables, n 12,48,192,768
Conditional Vectors 1024
Dependent Variables, p 3072

Table 5.3: Summary of parameter values for Scenario 2

the results still serve to show that a large model variance in the OLS model is

just as important to the performance of the biased techniques as the loosely

defined concept of “accurately representing the behaviour of a multivariate

quantity within a reduced subspace”.

5.6.3 Test Scenario 2: Effect of the number of indepen-

dent variables, n

The second scenario investigates the effect that the number of independent

variables, n has on the performance of the regression techniques. The number

of independent variables was controlled by varying the number of unconditional

vectors, as illustrated in figure 5.11. For each test condition, the regression

models were built from a sample size, m of 500, and the entire 32 × 32 flow

field was predicted each time. A summary of the parameters for this scenario

is given in table 5.3, while the optimum number of modes chosen to build the

biased models is given in table 5.4. The resulting accuracy of the regression

techniques, and the biased technique’s improvement over OLS is shown in

figures 5.12 and 5.13, respectively.
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Figure 5.11: Unconditional vector placement within flow domain, for
4, 16, . . . , 254 vectors
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Figure 5.12: Average explained variance vs. number of unconditional vectors
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Figure 5.13: Percentage improvement of different biased techniques over OLS
prediction vs. number of unconditional vectors

Vectors CSE RRR PLS PCR

4 500 (500 ) 12 (12 ) 12 (12 ) 12 (12 )
16 500 (500 ) 48 (48 ) 46 (48 ) 40 (46 )
64 500 (500 ) 117 (192 ) 103 (192 ) 113 (192 )
256 139 (500 ) 139 (500 ) 248 (500 ) 263 (500 )

Table 5.4: Optimum number of modes for differing numbers of unconditional
vectors.
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Discussion

To begin, the accuracy of the OLS predictions will be discussed. From the

decomposition of the MSE for the OLS predictor (equation 4.71), the accuracy

in this scenario is ultimately dictated by two conflicting phenomena: firstly, as

the number of unconditional vectors is increased, the knowledge of y contained

within x increases, and so the unexplained variance, σ2, becomes smaller.

At the same time, n becomes larger, which means that the term n
m

in the

model variance n
m
σ2 increases. Figure 5.12 shows that the accuracy of the

OLS prediction increases with n, up until n = 192 which has approximately

the same accuracy as n = 768, presumably because the model variance begins

to outweigh the reduction in σ2 at this point.

As discussed previously, although each of the biased techniques differ in

their approach, their success is greatly influenced by their ability to accurately

represent some multivariate quantity in a much reduced subspace. Also, from

the first scenario, the importance of a large model variance is also important.

In this scenario, changing n ultimately effects both of these aspects, although

the results indicate that the model variance is of far less importance here, as

the performance of the biased techniques can be seen to improve with increas-

ing n, even though the model variance is actually reducing. Interpreting the

results of the PCR and PLS regressions is fairly straightforward, where the

subspace in question is that of x. In the present study, as the number of un-

conditional vectors is increased, the spacing between these vectors is reduced,

leading to an increase in correlation between the elements of x (i.e. the level

of multicollinearity increases). This, in turn, has the effect of concentrating

the variance of x into a reduced subspace. Once the level of multicollinearity

is high enough, the reduction in model variance due to the removal of small
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and/or unimportant dimensions from x, will be larger than the resulting intro-

duction of bias. In the current scenario, this phenomena appears to occur once

n reaches 192, at which point both PLS and PCR are able to outperform OLS.

As expected, the improvement increases further for n = 768. In both cases, the

performance of PLS and PCR is roughly equivalent. The situation for CSE

and RRR is slightly more complicated, as these techniques act by reducing

the subspace spanned by the OLS predictor xB̂OLS. From section 4.3.3, the

size of this subspace is at most r = min (rank(X), rank(Y)) = min(n,m, p).

The success of both these techniques therefore requires that xB̂OLS can be

accurately represented in a subspace of size k, where k < r. As discussed in

section 4.3.3, the situations that allow for a reduction of VOLS to a subspace

of size k arise when:

1. the subspace of x that contributes to the prediction of y can be accurately

represented in a subspace k < r, and/or

2. y can be accurately represented in a subspace k < r

In the current scenario, m = 500, p = 3000, and n = 12, 48, 192, 768.

Therefore, r = n for all but the latter case, where r = m = 500. Consider-

ing the 2 requirements above, it seems unlikely that the second requirement

will be fulfilled, as the accurate reduction of the p-dimensional quantity y to

an r-dimensional subspace will be difficult, given that p >> r in all but the

last test case. The first requirement seems more plausible, as this is the very

requirement needed for the successful use of PLS and PCR. This is confirmed

by the results, which demonstrate that when PCR and PLS are able to out-

perform OLS, then RRR also outperforms OLS. CSE, however, only produces

an improvement in the final case.
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Parameter Value

Sample size, m 500
Unconditional Vectors 64
Independent Variables, n 191
Unconditional Vector Spacing 4, 2, 1
Conditional Vectors 1024
Dependent Variables, p 3072

Table 5.5: Summary of parameter values for Scenario 3

 

 

Unconditional Vector

Figure 5.14: Unconditional vector placement within flow domain, for a sepa-
ration of 4, 2 and 1 vectors

5.6.4 Scenario 3: Multicollinearity

Scenario 3 has been devised to show the effect of multicollinearity in x on

the performance of the regression techniques. Although this has already been

observed in scenario 2, the effect was an indirect result of varying n. Here n is

held fixed, and the degree of multicollinearity is controlled directly by adjusting

the spacing between the unconditional vectors, as shown in figure 5.14. As the

spacing is reduced, the degree of collinearity is expected to increase due to the

closer proximity of the vectors. The results are shown in figures 5.15 and 5.16,

and a summary of parameters is in table 5.5.
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Figure 5.15: Average explained variance vs. unconditional vector separation

Separation CSE RRR PLS PCR

4 500 (500 ) 117 (192 ) 103 (192 ) 113 (192 )
2 23 (500 ) 16 (192 ) 48 (192 ) 61 (192 )
1 1 (500 ) 1 (192 ) 37 (192 ) 33 (192 )

Table 5.6: Optimum number of modes for differing separation between uncon-
ditional event vectors
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Figure 5.16: Percentage improvement over OLS prediction vs. unconditional
vector separation
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5.6.5 Discussion

Although this scenario has been devised to study the effect of multicollinearity

in x, a result of decreasing the spacing between unconditional vectors is that

the ability to predict y from x is reduced. This can be observed in absolute

performance of all the results (figure 5.15), which falls as the vector spacing

decreases, due to a loss of predictive power over the vectors on the periphery

of the flow field (see figure 5.14). In the last condition, the performance of

OLS is particularly bad, where the combination of unexplained variance and

model error is larger than the variance of y, leading to a negative unexplained

variance. As such, the reduction in vector spacing is ideal for the use of

biased techniques for two reasons. Firstly, it was shown in scenario 2 that

as the multicollinearity increases, the variance in both x (needed for PLS

and PCR) and xB̂OLS (for RRR and CSE) will be concentrated in a reduced

subspace, which reduces the amount of bias introduced into the predictions

when modes are removed. Secondly, as the predictive power reduces, the

unexplained variance σ2 increases, which means that the OLS model error

n
m
σ2 will be large. The joint effect of these phenomena can clearly be observed

in the relative improvement of the biased techniques with decreasing vector

spacing, and also in the reduction in the number of modes used by the optimum

biased models (table 5.6).

5.6.6 Scenario 4: Number of Dependent Variables

The fourth scenario investigates how the prediction accuracy is affected by

the number of dependent variables included in the model. So far, the scenar-

ios have all investigated parameters that directly relate to the independent

variables, x, while the dependent variables y have consistently been defined
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Parameter Value

Sample size, m 500
Unconditional Vectors 64
Independent Variables, n 192
Conditional Vectors 4, 16, 64, 256, 1024
Dependent Variables, p 12, 48, 192, 868, 3072

Table 5.7: Summary of parameter values for Scenario 4

as the full 32 × 32 flow field. The subsequent results have shown that PCR

has offered the best performance overall (although the improvement over PLS

is marginal). However, unlike PCR, the biased techniques of PLS, CSE and

RRR, all take the dependent variables into account when producing the pre-

diction model. If any of these techniques are able to outperform PCR, then

it is likely to be for this reason, and it may be the case that until now, the

choice of y has not been favourable for their use. This certainly implied by

the bias-variance decomposition of CSE and RRR, which showed that their

ability to reduce the model error is limited when the rank of the OLS predic-

tor, r = min(n,m, p), is lower than than the number of dependent variables

p. This has been true of all the previous scenarios, where the full 32× 32 flow

field has been used as the dependent variables, resulting in a size of p which

has been considerably larger than r in most cases.

By varying the number of, and position of, the conditional vectors, as

illustrated in figure 5.17, this scenario aims to uncover situations which may

be favourable for the techniques of PLS, CSE and RRR. A summary of the

parameters for this scenario are given in table 5.7 and the optimum number

of modes used to build the biased models in table 5.8. Results are shown in

figures 5.18 and 5.19.
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Figure 5.17: Conditional vector placement within flow domain, for
4, 16, . . . , 1024 vectors
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Figure 5.18: Average explained variance vs. number of conditional vectors
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Figure 5.19: Percentage improvement over OLS prediction vs. number of
conditional vectors

Vectors CSE RRR PLS PCR

4 12 (12 ) 12 (12 ) 32 (192 ) 78 (192 )
16 44 (48 ) 43 (48 ) 81 (192 ) 122 (192 )
64 157 (192 ) 135 (192 ) 107 (192 ) 122 (192 )
256 500 (500 ) 127 (192 ) 76 (192 ) 75 (192 )
1024 500 (500 ) 117 (192 ) 103 (192 ) 113 (192 )

Table 5.8: Optimum number of modes for differing numbers of conditional
vectors.
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Discussion

First of all, it can be seen from figure 5.15 that the performance of the tech-

niques varies somewhat arbitrarily over the range of conditions considered here.

Unlike previous scenarios, the data being predicted differs for each condition

under consideration, which makes interpretation of the results slightly more

complex. However, it is shown that regardless of varying the parameter p, the

relative performance of the techniques is comparable to that observed in all

the previous scenarios. In particular, the performance of PLS and PCR here is

approximately equal, and consistently better than the other techniques. Also,

RRR is clearly better than CSE in the latter two conditions, with CSE barely

outperforming OLS across the entire scenario.

In hindsight, the similarity of the results between this and previous

scenarios is unsurprising; regardless of the intentions of this scenario, the effect

of varying p in the manner prescribed here is unlikely to be conducive to the

performance of either PLS, CSE or RRR. As observed in scenario 2, where the

number of independent variables was varied, the effect of reducing the number

of dependent variables increases the spacing between vectors, leading to a

reduction in the multicollinearity in y. For CSE and RRR, the theoretical

analysis of the techniques implies that this is actually detrimental to their

performance. Any improvement requires the accurate representation of xB̂OLS

in a reduced subspace, requiring that:

1. the subspace of x that contributes to the prediction of y can be accurately

represented in a subspace k < r, and/or

2. y can be accurately represented in a subspace k < r

Because x is fixed for all conditions, the subspace that contributes to the
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prediction of y is unlikely to change considerably, and as p decreases, the

decrease in multicollinearity will reduce the chances of the second condition

being met. This alone shows that in this scenario, the reduction in p offers no

benefits for the performance of CSE and RRR. What is worse, is that in the

first three conditions, the subspace r is now dictated by the size of p, which

makes the fulfilment of either of the two conditions even less likely, as the

relevant subspace must be reduced further before any benefit will occur. This

can be seen in the results, where the performance of the two techniques for

the first three cases (where p = r) is barely distinguishable from that of OLS.

Although not immediately apparent from bias-variance decomposition

of PLS, it is nonetheless cited that multicollinearity in y is favourable for

the use of PLS (Wold et al., 2001). As such, it is understandable that the

conditions in this scenario do not produce any notable improvement over PCR.

Interestingly, it should be noted that the decrease in multicollinearity with p

does not appear to adversely affect its relative performance either.

In conclusion, rather than identifying situations where the behaviour

of y can be exploited for the benefit of PLS, CSE and RRR, the results of

this scenario simply serve to highlight further conditions where PLS and PCR

offer very similar performance, and further consolidate the fact that RRR,

and particularly CSE, are ill-suited to the purpose of improving the prediction

performance of stochastic estimation.

5.7 Conclusions

The results and discussion presented in this chapter form a comprehensive

study into the behaviour of the prediction techniques under consideration.

Often, the results have served to corroborate the theoretical analysis provided
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in chapter 4.3. In other cases, the results have found limitations in the the-

ory, and identified the need for further study. Ultimately though, the main

accomplishment of this work is the wealth of practical information it provides

towards the goal of accurate flow prediction.

One of the most important observations here is that the use of OLS,

which is the standard stochastic estimation method, can perform badly, and

may even fail catastrophically. What is most surprising is that the situations

that led to this behaviour, namely when the number of samples, m, is slightly

larger than the number of independent variables, n, do not invalidate any of

the OLS assumptions. Furthermore, this behaviour is not predicted by the

theoretical expression of the MSE for OLS predictions derived in section 4.3.

This shows the importance of validating a regression model before use, as the

presence and extent of this phenomenon may not be apparent from theoretical

considerations alone. And once again, this demonstrates the need to acquire

as many observations as possible, especially if OLS is to be used.

The issues with the theoretical expression of the MSE for OLS have

been attributed to the presence of estimation error in the principal components

and eigenvalues of X, which was not accounted for due to assumptions in the

derivation. These assumptions also appear to produce a theoretical MSE that

is an underestimate of the true value. Unfortunately, the assumptions have

been used in the derivation of the model variance terms in all subsequent

bias-variance decompositions for the biased techniques, and so similar issues

will be present in these expressions as well. However, this need not detract

from the fact that, in general, the expressions have served as useful indicators

of the technique’s performance, and have been in good agreement with the

quantitative results. In particular, even though the theoretical form of the OLS

model variance, n
m
σ2 may not be numerically exact, its implication that model

149



variance increases with n and σ2, and decreases withm, has been demonstrated

extensively. Similarly, the bias-variance decompositions for the biased models

has often been useful in explaining the results observed in this chapter.

The performance of the biased techniques conclusively shows their suit-

ability to flow prediction, as the techniques under consideration have been

able to outperform OLS in many situations. This relative improvement has

been shown to increase with both multicollinearity in x, and with the model

variance of the OLS estimator. The most impressive of the these techniques

have undoubtedly been PLS and PCR, which have consistently outperformed

or equalled all the other techniques. Furthermore, unlike the remaining tech-

niques, PLS and PCR have provided relatively accurate predictions, regardless

of sample size. As such, they have not suffered from the catastrophic errors

that affect OLS, and they have even provided accurate predictions when the

number of observations is far less than the number of independent variables.

In all these cases, the superiority of PLS and PCR has been attributed to the

presence of multicollinearity in x, which will be a common occurrence in many

applications of stochastic estimation.

For this data set, the relative performance of PLS and PCR is very close,

but over the entire set of scenarios, it appears that PCR offers slightly higher

accuracy. Also, considering that the computational effort of PLS is far higher,

PCR would appear to be the best choice for prediction. However, on paper,

PLS does have some potential benefits over PCR, in that it theoretically only

selects modes from x that are relevant for the prediction of y, whereas PCR

chooses the largest principal components of x, regardless of their importance

to the prediction. It is quite plausible that the data set used here was not

able to make full use of PLS’s potential; in these scenarios, x and y are both

velocities from the same flow domain, and it is quite likely that the dominant
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dimensions of x are the ones that best predict the dominant dimensions of

y. However, in cases where x and y are taken from considerably different

measurements (either due to large spatial/temporal separation, or when two

different forms of measurement are made), PLS may be able to offer superior

performance. Another potential use of PLS, not investigated here, is its use as

a means of producing a low dimensional dynamical relationship between two

related flow quantities, as described in 4.3.2. For both these reasons, PLS may

still prove to be a useful tool in experimental fluids applications.

The performance of CSE and RRR, while often better than OLS, has

rarely rivalled that of PCR and PLS. A particular problem is that the accuracy

of CSE and RRR is closely linked with that of the OLS predictions, and

while they do not suffer to the same extent, their performance may still be

too poor to be of any practical use. From the results here, as well as the

theoretical discussion in section 4.3.3, it appears that the requirements for any

improvement over OLS are quite specific, and have been difficult to obtain

even in this artificial setting. Furthermore, even in favourable conditions,

these techniques have not always produced a noticeable improvement over

OLS. Clearly, the processes that dictate their performance are more complex

than the present study can account for. Nonetheless, even with an incomplete

understanding of these techniques, the available evidence strongly suggests

that their use for instantaneous flow-prediction is limited.

While the results in the chapter appear to rule out the use of CSE

as a tool to improve the prediction accuracy of OLS, it is perhaps unfair

to be too critical of the technique, as it is not conventionally used for this

purpose. Instead, it is employed as means of producing a low-order model

of the flow (i.e. the variable y in the current terminology), using a reduced

set of principal components of Y, which is usually considered to represent the
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coherent structure of the flow. However, the results of this chapter have shown

that RRR is generally better at predicting y than CSE, and it follows that a

low-order model of y built from the principal components of XB̂OLS should be

more realistic that one built from the principal components of Y. This may be

of particular use in applications of real-time flow sensing and control. Here, the

use of CSE is of benefit as it allows the prediction of the flow at an indefinitely

large number of points to be reduced to the prediction of a small number, k of

principal component scores, which intrinsically describe the behaviour of the

full flow field without the large computational overhead. However, instead of

predicting the scores of the principal components of Y, predicting the scores of

the principal components of Ŷ may be more appropriate, as it should provide

a better description of the flow for a given k.

Furthermore, in situations where a low-dimensional representation of y

using the principal components of Y is explicitly sought, the biased techniques

considered here may still be of use as a means of improving the accuracy of the

model. It has been established that because CSE acts on the OLS prediction,

xB̂OLS, it suffers when the OLS prediction is poor. A more accurate approach

may be to instead predict y using either PLS or PCR, and then produce the

low order model from this quantity instead.
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Chapter 6

Prediction of a Flow Volume

using MP-VSE
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6.1 Introduction

This chapter introduces the proposed technique of multiple plane volumetric

stochastic estimation (MP-VSE), which extends the use of stochastic estima-

tion to provide a volumetric prediction of a flow that possesses a homogeneous

dimension. The chapter begins with a step-by-step outline of the technique,

followed by a description of a synthetic MP-VSE experiment, performed to

demonstrate the feasibility of the approach. Finally, the issues regarding the

practical implementation MP-VSE are considered.

6.2 Theory

The basic approach of MP-VSE is illustrated in this section, using the example

of a flow that possesses a Cartesian homogeneous dimension. Here, the goal

is to predict a uniformly spaced i × j × k grid of velocity vectors within the

volume Ω, as illustrated in figure 6.1. The grid spacing is defined by ∆x, ∆y

and ∆z, so the size of Ω is i∆x × j∆y × k∆z. The flow is homogeneous in

the z dimension, which means that the statistical properties of the flow are

independent of the z location. It is assumed that all measurements are carried

out using stereoscopic particle image velocimetry (stereo PIV), which provides

3-component velocity vectors on a uniformly spaced planar grid.

6.2.1 Required measurements

The proposed technique involves two stages, each requiring a separate exper-

imental configuration. The first stage involves the measurement of m stereo

PIV measurements at a rectangular region, P , in a plane normal to the ho-

mogeneous dimension. Each PIV measurement consists of a set of velocity
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Figure 6.1: The prediction volume Ω. It is assumed that the flow in question
is homogeneous in the z dimension

vectors arranged on an i × j uniformly space grid. In the current example,

this is the x − y plane, as shown in figure 6.2 (a). This configuration is used

to acquire the data for the prediction model. The second stage consists of l

separate measurement planes, Q1, . . . , Ql, which must be parallel to the ho-

mogeneous dimension (illustrated in figure 6.2 (b) for 3 measurement planes).

At each plane, a grid of i× k vectors is measured. This configuration provides

the instantaneous data that is used to predict the full volume Ω.

The data acquired at P is used to build a stochastic estimation model,

where the unconditional vectors are defined by the intersections of Q1, . . . , Ql

with P , as indicated in figure 6.3. The full i × j flow field is used as the

conditional vector set.

MP-VSE is appropriate for both stationary as well as non-stationary

flows, although the approach is slightly different in each case. For stationary

flows, the acquisition of data at a plane P can be carried out without regard

to the time at which the observations are made, other than to ensure that the
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(a) Configuration 1: Position of plane P ,
which is used to build the prediction model

(b) Configuration 2: Position of planes Q1,Q2

and Q3, which provide the instantaneous
measurements for the prediction

Figure 6.2: Measurement plane configuration for the prediction of Ω

set of m observations are statistically independent. For non-stationary flows,

the acquisition of the data used to build the prediction model must be made

at the same point in time, over multiple runs of the same experiment.

Once the prediction model has been created, volumetric prediction is

possible. Once again, the temporal behaviour of the flow must be taken into

account; for a stationary flow, the prediction can be made at any point in

time, while for a non-stationary flow, the model is only valid for predicting at

the specific point in time that it was created from. As such, prediction of the

flow at multiple points in time requires a separate model to be built for each

occasion.
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Figure 6.3: Position of unconditional vectors for the prediction model, using
the data acquired from plane P . All the vectors that lie on the intersection
between Q1, Q2, Q3 and P are used as unconditional vectors

6.2.2 Prediction

The prediction of the flow at time t is carried out using instantaneous mea-

surements from the planes Q1, . . . , Ql, also acquired at time t. In the current

example, each Q consists of an i× k grid of vectors aligned in the y− z plane.

At each z position, the corresponding vectors in Q1, . . . , Ql form the uncondi-

tional vectors for the prediction model illustrated in figure 6.3, which allows

the full x− y plane to be predicted for the current z position. Performing the

prediction at z = 0,∆z, 2∆z, . . . , k∆z, allows the full i × j × k volume to be

reconstructed. This process is illustrated in figure 6.4.
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(a) The process begins with a the instanta-
neous measurements of Q1, . . . , Ql at time, t

(b) The values of vectors in Q1, . . . , Ql at each
z are used to predict the corresponding x− y
plane

(c) The full set of reconstructed x − y planes
provides the volumetric prediction of Ω at
time, t

Figure 6.4: Overview of the volumetric prediction process
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6.3 Proof of Concept - Volumetric Prediction

of Simulated Channel Flow

In order to demonstrate the feasibility of MP-VSE, the technique is applied

to a simulated experiment based on volumetric CFD data. The benefit of

carrying out the technique using simulated data is that the true velocity is

known throughout the full volume, and can thus be compared with the pre-

diction. In this section, the comparison is carried out both quantitatively and

qualitatively. A further purpose of this test is to assess the suitability of the

biased regression techniques for MP-VSE applications. The data used for this

work was taken from the channel flow simulation, described in section 5.5. A

32×32×32 volume, located in the position indicated in figure 5.3, was selected

as the prediction volume Ω. The flow is homogeneous in the z dimension.

A total of 250 independent observations of the volume Ω were available.

From this data set, an artificial MP-VSE experiment was created by selecting

slices of the volume to act as planar stereo PIV measurements, as illustrated

in figure 6.2, with the position of P placed at z = 16∆z in the x−y plane and

the three Q planes positioned at y = 5, 16, 26∆y. The resulting position of the

unconditional vectors in the prediction model is determined by the intersection

of the P and Q planes, as shown in figure 6.5.

6.3.1 Quantitative comparison

10-fold cross validation was employed to assess the accuracy the five regression

techniques for the prediction of the P plane data. As such, the 250 volumes

were partitioned into 10 sets. However, to build the prediction model, two x−y

planes were extracted from each of the 250 volumes, with sufficient separation
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Figure 6.5: Position of unconditional vectors in the prediction model

(a) Position of Q planes (b) Position of R planes

Figure 6.6: Positions of the planes used to compare the true and predicted
flow
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Parameter Value

Sample size, m 450
Unconditional Vectors 96
Independent Variables, n 288
Conditional Vectors 1024
Dependent Variables, p 3072

Table 6.1: Summary of parameters

CSE RRR PLS PCR

85 (450 ) 85 (288 ) 137 (288 ) 141 (288 )

Table 6.2: Optimum number of modes used for biased regression techniques

in z to ensure statistical independence, This allowed a total of 500 planes to be

used for the cross-validation procedure. At each stage of the cross-validation,

450 observations of P were therefore available to build the model, and a test

set of 50 planes were used to measure the MSE of prediction. At the end of

the process, the average MSE was calculated for each model, and the optimum

model was identified for each biased technique.

The overall accuracy results are presented in figures 6.7 and 6.8. The

number of modes used in the biased models is shown in table 6.2, and the

regression parameters are summarised in table 6.1.

The results here clearly exhibit the same trend identified in the results

of chapter 5. All the biased techniques outperform the standard OLS predic-

tion and once again, the best performance is obtained using PCR regression,

beating PLS by a small margin. This behaviour is unsurprising, as the close

spacing of the unconditional vectors along the intersection of the Q planes (see

figure 6.5) is likely to provide the high levels of multicollinearity conductive to
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Figure 6.7: Average variance explained vs. regression technique

the performance of the biased techniques, particularly PLS and PCR.

To some extent, this artificial experiment creates an unrealistically

favourable setting for the MP-VSE procedure, as the data is free from the nu-

merous sources of error that will be present in any practical implementation.

Nonetheless, the results are promising. In this example, the unconditional vec-

tors make up approximately 9% of total vectors in the volume. Therefore, the

fact that the best performing regression model (141-mode PCR) accounts for

approximately 88% of the total variance of the flow is impressive, especially

as this figure does not include the variance contribution of the unconditional

vectors themselves (as described in section 5.3, this component of the variance

is removed in order to provide a more representative error measurement).
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Figure 6.8: Percentage improvement over OLS prediction vs. biased regression
techniques
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6.3.2 Qualitative comparison

Further understanding of the performance of MP-VSE can be obtained from

a visual comparison of the true and predicted data. For this purpose, a set

of predicted volumes were obtained by performing the 10-fold cross-validation

procedure again. This time, only the optimum 141-mode PCR model was

built, and the resulting model was used to predict the full volume of the 25

observations of Ω in the test set, which was then stored for future analysis.

Hence, 250 predicted volumes were available at the end of the procedure.

Comparisons of the true and predicted flow field were made at selected planes,

R1, R2 and R3, shown in figure 6.6. At each plane, predicted and true flow

quantities were compared visually. The results for a representative volume are

presented here. Figures 6.9, 6.10 and 6.11 compare the u, v and w velocity

components at planes R1, R2 and R3, respectively, and figure 6.12 compares

the plane-normal vorticity for each R.

On the whole, the location, size and shape of the large-scale structure

in both the velocity and vorticity fields is represented well in the predicted

data. The ability to accurately capture the vortical structure is particularly

remarkable, as vorticity, which is based on the derivative of the quantity be-

ing predicted, will be particularly sensitive to error in the prediction. Also

of interest is the fact that the planes R1 and R2 do not show any noticeable

artifacts from the prediction process. Unlike R3, which is the result of a single

prediction, R1 and R2 are made up of slices from 32 individual planar pre-

dictions. An initial concern was that the errors between neighbouring planar

predictions would result in sharp discontinuities along the homogeneous di-

mension. However, inspection along the z axis of the relevant figures shows

that this does not appear to be a problem.
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Figure 6.9: Comparison of true and predicted instantaneous velocity field in
y − z plane, x = 16∆x
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Figure 6.10: Comparison of true and predicted instantaneous velocity field in
x− z plane, y = 22∆y
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Figure 6.11: Comparison of true and predicted instantaneous velocity field in
x− y plane, z = 16∆z
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Figure 6.12: Comparison of true and predicted instantaneous vorticity fields
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6.4 Practical Implementation of Technique

The basic principle of MP-VSE allows a great deal of flexibility in configu-

ration; by tailoring the position, quantity, and spacing of the measurement

planes, the technique can be put to a great many uses, over a wide range of

flow phenomena. This section presents an overview of potential applications,

along with other practicalities that must be considered in any experimental

setup.

6.4.1 Potential uses of MP-VSE

Clearly, the ability to produce instantaneous 3-dimensional, 3-component ve-

locity data lends itself to many applications, although it must be remembered

that the results are predictions, rather than a measurement of the flow. Un-

fortunately this precludes use of MP-VSE for a number of tasks that would be

possible with true volumetric measurements, particularly when the accurate

measurement of statistical quantities is sought. Instead, the strength of MP-

VSE is likely to be found in the study of coherent structures. The results from

the previous section confirm its potential to accurately characterise the domi-

nant flow structures in both the predicted velocity and vorticity fields. Also,

as a form of stochastic estimation, MP-VSE lends itself naturally to many

of the applications commonly found in this field, with the obvious benefit of

providing a full 3D-3C reconstruction. In particular, the reconstructed veloc-

ity fields could potentially provide the basis for subsequent low-dimensional

analysis and modelling using POD.
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6.4.2 Temporal response

One aspect of MP-VSE not yet considered is the temporal response. For time-

stationary flows, the rate at which predictions can be made is limited by the

speed at which successive Q plane measurements can be acquired. Hence,

with high-speed cameras and/or slow moving flows, the ability to make time-

resolved volumetric predictions may be possible. As explained in section 6.3,

there is an inherent difficulty producing predictions at multiple points in time

for non-stationary flows, as a separate prediction model must be made for each

time of interest. As such, MP-VSE is poorly suited for time-resolved predic-

tions of non-stationary flows; even with the availability of high-speed cameras,

the data and processing requirements to produce the prediction models would

quickly become prohibitive.

6.4.3 Practical limitations to volume

Although it is unable to rival the accuracy of existing 3D-3C measurement

techniques, MP-VSE does offer some unique advantages. Perhaps most impor-

tantly, neither the size nor resolution of the reconstructed volume are subject

to the same limitations as other techniques (as discussed in section 2.2). The

ability to predict large volumes is due to the extensibility of the technique,

whereby the size of the volume can be increased with the addition of further

Q planes. A wide variety of multiple plane PIV approaches exist (see section

2.2), which all have the potential to be used for MP-VSE, but each config-

uration appears to have an upper limit of the number of planes that can be

measured in practice. Furthermore, the increase in the number of planes is

likely to correspond to a increase in the cost of the equipment required. As

such, there will always be an upper limit to the size of volume that can be
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predicted.

Choice of number and positions of Q planes

A second, no less important limitation to the size of the prediction volume

is due to the flow itself. Accurate prediction of the flow requires that the

conditional vectors are well correlated with at least some of the unconditional

vectors. Regardless of the flow in question, it can be expected that the corre-

lation between two points will ultimately decrease as their separation becomes

larger. Generally speaking, given a finite number of Q planes, it is likely that

the accuracy of prediction will drop as the volume of interest is increased, and

the spacing between the Q planes becomes larger. Conversely, a reduction in

volume should be accompanied by an increase in accuracy.

Even though this effect serves to place a limit on both the volume

and accuracy of MP-VSE, the ability to easily trade one for the other, and

hence adapt the setup for the particular application, highlights the flexibility

of the approach. For any given application, however, an appropriate choice

for the number and position of Q planes will have to be made with regard

to the behaviour of the flow. As a minimum requirement, some knowledge of

structure size or correlation length would be necessary to make an informed

decision on the spacing of the planes, and to provide an indication of the

resulting predictive power. However, a more rigorous approach to Q plane

positioning can be achieved if preliminary PIV measurements of the P plane

are available first. As shown in section 6.2, the MP-VSE prediction model is

derived from the P plane measurements, in a progress that begins by specifying

the vectors in the P plane that correspond to the intersection of the Q planes.

With this in mind, prediction models can be build from the preliminary P
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plane measurements with Q planes in varying positions. Then, in the same way

that cross validation is used to assess the relative performance of competing

regression models, it can be applied to compare the prediction accuracy of

the different Q plane configurations. Viewed in this light, the task of Q plane

positioning is a straightforward mathematical optimisation problem where the

aim is to maximise prediction accuracy, which is a function of the Q plane

coordinates. In practice, this maximisation could achieved though any number

of approaches, ranging from simple trial-and-improvement, through to a fully

automated numerical optimisation.

6.5 Error sources

A requirement of any regression-based prediction is that the data used to build

the regression model is taken from the same population as the data used in

the subsequent predictions. However, the nature of the MP-VSE approach

means that the measurement setup used to build the model is different to

the setup used to provide the prediction data, which allows the potential for

variations between the model data and prediction data. Furthermore, the

majority of subsequent predictions are not made in the same position that

the model was created, which may introduce further error if the flow is not

perfectly homogeneous.

Thus, in the ideal case, the following criteria must be fulfilled:

1. the flow in question must have a homogeneous dimension, at least within

the bounds of the measurement volume

2. the P plane must be normal to the homogeneous dimension of the flow

3. the Q planes must be parallel to the homogeneous dimension
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4. the intersection of Q1, . . . , Ql and P must be known exactly, so that the

unconditional vectors in the prediction model are correctly defined

5. the distribution of the measurement error in the P and Q planes must

be identical.

Any deviation from these criteria will introduce error into the predic-

tions, beyond what is indicated by the process of cross-validation. Of course,

the likelihood of meeting any of these criteria in practice is unlikely, must it

is nonetheless important to ensure that these requirements are fulfilled to the

extent possible. Then, once all reasonable steps have been taken, the exper-

imental setup and flow properties must be assessed in order ensure that any

error is within tolerable limits. Section 7.4 provides details of this process.

It can be seen that three of these criteria relate to the accurate posi-

tioning of the PIV light sheet planes. Given the importance of this aspect

of the experiment, a simple and accurate light sheet measurement system has

been developed, which provides the means of detecting the alignment of a light

sheet, relative to an absolute reference, as well as to the position of another

light sheet. This approach is discussed in Appendix C.

6.6 Conclusion

The technique of MP-VSE has been introduced. A proof of concept has been

performed on simulated channel flow data, which has shown the potential of

the technique to predict a high percentage of the flow variance, as well as the

ability to accurately capture the large scale structure in both the velocity and

vorticity fields. The results also indicate that the biased techniques, especially

PCR and PLS, are ideally suited for use in MP-VSE applications, due to the
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close spacing, and hence high multicollinearity, in the unconditional vectors.

Potential applications of MP-VSE, and the practicalities of implementing the

procedure have been considered.
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Chapter 7

Experimental Prediction of

Vortex Rings
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(a) Laminar vortex ring (b) Unstable vortex ring with an
n = 8 azimuthal mode

Figure 7.1: Visualisation of vortex rings in water. Dye has been injected into
the rings at formation, which reveals the position and shape of the ring core.
(Courtesy of M. Brend, University of Warwick)

7.1 Introduction

This chapter describes the practical application of the MP-VSE technique,

which was used to investigate the three dimensional behaviour of unstable

vortex rings. The nature of a vortex ring’s development is determined by

the conditions of its creation (Lim and Nickels, 1995). Commonly, vortex

rings are formed by the ejection of fluid through an orifice. A low ejection

velocity will produce a laminar vortex ring, as shown in figure 7.1 (a), that

will propagate smoothly and decay naturally due to viscosity. At moderate

velocities, a laminar vortex ring will form, but small perturbations on the ring

are amplified, leading to the production and growth of wavy instabilities on the

core (figure 7.1 (b)). These instabilities continue to grow until a point where

they quickly break down, culminating in a turbulent ring. At sufficiently high

ejection velocities, the ring will be turbulent from the outset.

The following work is concerned with moderate velocity rings, specif-
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ically during their period of instability. This stage of development is itself

divided into two distinct stages, known as the linear and non-linear phases.

The first, which is characterised by the growth of stationary azimuthal waves

around the circumference of the ring, is well understood thanks to a wealth

of theoretical, numerical and experimental investigation (which is reviewed in

Lim and Nickels (1995)). The second stage, however, has received less atten-

tion (Dazin et al., 2006b). The most commonly observed phenomenon in this

latter stage is the presence of a net “swirling” flow around the circumference of

the ring, which has been observed experimentally (Maxworthy, 1977; Naitoh

et al., 2002; Dazin et al., 2006b) and in numerical simulations (Shariff et al.,

1994; Archer et al., 2008). The advancement of CFD and flow measurement

technology has recently lead to the observation of further phenomena, which

include the development of submodes and harmonics of the dominant mode

from the linear instability stage, and the formation of a 3-dimensional vortical

structure that wraps around the vortex ring core (Shariff et al., 1994; Dazin

et al., 2006b; Archer et al., 2008). So far, the latter has only been observed

in numerical studies (Shariff et al., 1994; Archer et al., 2008) and in qualita-

tive planar laser-induced phosphorescence (PLIF) measurements (Dazin et al.,

2006b).

As such, there is considerable worth in the use of MP-VSE to investigate

these phenomena, which provides a means of observing unstable vortex rings

experimentally, quantitatively and in three dimensions.

While an investigation of this nature is a worthwhile pursuit in its own

right, it also provides an ideal yet challenging flow to test the performance

of MP-VSE. Statistically, the vortex rings are axisymmetric, but individually,

their structure exhibits a combination of both randomness and periodicity

of arbitrary phase, and their trajectory and orientation is subject to a large
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degree of deviation from the average. The ability to capture such behaviour

will be a major step in establishing the merit of the MP-VSE concept.

The following chapter is organised as follows. To begin, section 7.2

provides a general overview of the experimental facility used in this work, and

describes the specific form of the MP-VSE procedure applied in this setting.

A detailed discussion of the experimental setup follows in section 7.3.

Prior to carrying out the volumetric predictions, the statistical prop-

erties of the stereo PIV data were analysed to assess the accuracy of the

light sheet alignment, and confirm the mean-axisymmetry of the vortex rings.

These results are given in section 7.4. Section 7.5 provides the results of the

cross-validation procedure, which is used to select the most appropriate re-

gression technique for the current application. In section 7.6, a selection of

reconstructed vortex rings is presented and their behaviour is compared with

findings from previous literature. Conclusions and further work are given in

section 7.7.

7.2 Overview of MP-VSE Procedure

The MP-VSE technique was applied to produce volumetric predictions of wa-

ter based vortex rings. The investigation was limited to a single point in the

lifetime of the vortex rings, which corresponds to the non-linear phase of de-

velopment. The rings were formed by pumping a finite volume of water into a

submerged box with a circular orifice. The fluid ejected from the orifice forms

a laminar vortex ring, which propagates forwards, and eventually becomes

unstable.

A preliminary dye visualisation experiment was carried out to determine

an experimental configuration capable of producing rings of this nature, and
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Figure 7.2: Experimental configuration

subsequently identify the average position and time at which the non-linear

phase occurs. This was used to determine the location of the prediction volume

Ω for the subsequent MP-VSE experiment, as shown in figure 7.2.

The characteristic properties of the vortex rings were calculated from

stereo PIV measurements of the rings just after generation, at the position

indicated in 7.2. One hundred vortex rings were measured, from which the

average initial ring radius R0 , core radius a0, ring translational speed V0, and

circulation Γ0 were calculated. These properties are depicted in figure 7.3.

The circulation was obtained by calculating the velocity line integral along

a rectangular path around the outside of the ring core (Fouras and Soria,

1998). The average Reynolds number (as defined by Glezer (1988)) was then

computed as Re0 = Γ0/ν, where ν is the kinematic viscosity. The resulting

parameters are provided in table 7.1.

Figure 7.4 shows the geometry of the prediction volume Ω, along with

the location and orientation of the coordinate systems used in this work. The
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Figure 7.3: Overview of parameters obtained from the initial stereo PIV exper-
iment. The rectangular box indicates the approximate position of the circuit
used to calculate the circulation.

Parameter Value

Circulation, Γ0 0.0045 m2/s
Kinematic viscosity, ν (water @ 15◦C) 1.14× 10−6m2/s
Reynolds number, Re0 = Γ0/ν ≈ 4000
Ring radius, R0 0.02 m
Core radius, a0 0.007 m
Ring translational speed, V0 0.05 m/s

Table 7.1: Summary of average vortex ring parameters upon generation. All
quantities are averaged from 100 individual rings, and were obtained from
stereo PIV measurements at the position indicated in figure 7.2.
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Figure 7.4: The prediction volume Ω. It is assumed that the flow in question
is homogeneous in θ.

position of Ω was chosen so that the mean path of the vortex rings passed

directly through the centre of the volume and along the z dimension. In this

configuration, the homogeneous dimension of the vortex ring flow corresponds

to the azimuthal dimension, θ, of the cylindrical coordinate system (r, θ, z). For

convenience, both the Cartesian (x, y, z) and cylindrical coordinate systems

share the same origin and a common axis, z.

As described in the MP-VSE theory chapter (chapter 6), the procedure

requires two separate experimental configurations. The first configuration in-

volves the acquisition of data at the plane P , to provide the data to build

the prediction model. Plane P was positioned in the y − z plane at x = 0,

normal to the homogeneous dimension of the flow, θ (figure 7.5 (a)) For the

second configuration, the position of the Q planes must then be parallel to θ,

which corresponds to the x − y plane. Three Q planes were used, positioned

according to the configuration shown in figure 7.5 (b).

The unconditional vectors of the prediction model were determined by
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(a) Configuration 1: Position of plane P ,
which is used to build the prediction model

(b) Configuration 2: Position of planes Q1,
Q2 and Q3, which provide the instantaneous
measurements for the prediction

Figure 7.5: Measurement plane configuration for the prediction of Ω

the intersection of the P and Q planes (figure 7.6) and the full 33× 62 vector

field was used as the conditional vectors.

Given an instantaneous set of observations of the Q planes (figure 7.7

(a)) , the volume is created by predicting planes of vectors at successive posi-

tions along the θ axis. At each θ, the corresponding line of vectors is extracted

from the Q planes to use as the unconditional vectors in the prediction model

(figure 7.7 (b)). However, the vectors in the Q planes, which are obtained from

stereo PIV measurements, are arranged on a uniformly-spaced grid and must

first be interpolated to match the required positions for use in the prediction

model, as shown in figure 7.7 (c). In the present work, the planes were recon-

structed at 88 equally spaced positions along θ. Finally, the resulting volume

was re-interpolated back onto a Cartesian grid, resulting in a 67×67×62 grid,

with ∆x = ∆y = ∆z = 1mm.
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Figure 7.6: Location of the unconditional vectors in the prediction model

7.2.1 Note regarding the number and position of Q planes

The decisions regarding the number and position of the Q planes in the ex-

perimental setup was determined, to a large part, by practical considerations.

The choice of three planes, for example, was dictated by the number of lasers

available for the experiment. The use of more Q planes would almost cer-

tainly have improved the predictions, but was simply not possible. In order

to maximise accuracy using the available Q planes, the size of the volume Ω

was then kept as small as possible, while still ensuring that the significant

majority of the generated vortex rings were within the volume when the PIV

measurements were triggered. Other decisions were made for convenience; it

was decided that separation between Q planes would be constant, and that

the Q planes would intersect exactly with the vector grid of the P plane, in

order to simplify the alignment and prediction stages of the MP-VSE pro-
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(a) The process begins with a set of instan-
taneous measurements of Q1, . . . , Ql at time
t

(b) The vector values along each θ in Q1, Q2

and Q3 are used to predict the corresponding
plane
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(c) In order to extract unconditional vectors
from the Q planes, the vectors must be inter-
polated on to a polar grid (only 32 azimuthal
angles are shown here; 88 are used in practice

(d) The full set of reconstructed planes pro-
vides the volumetric prediction of Ω at time,
t

Figure 7.7: Overview of the volumetric prediction process
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cedure. However, within these constraints there were a number of potential

configurations that had to be chosen from. For this purpose, a simple cross-

validation procedure was employed to assess the relative prediction accuracy

of the competing configurations (as described in section 6.4.3). This required

the P plane PIV system to be installed prior to the Q planes, so that P plane

measurements could be used for the cross validation procedure. The Q plane

configuration shown in figure 7.5(b), was found to offer the highest accuracy

out of a broad, albeit incomplete, range of possible options (a more rigorous

comparison was deemed unnecessary as the accuracy was relatively insensitive

to small changes in Q plane position).
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7.3 Experimental Configuration

The experimental set-up is shown in figures 7.8 and 7.9. The vortex rings were

produced in a transparent Perspex tank, which provided optical access for both

the light sheets and camera systems. Submerged in the tank was a vortex ring

generator (provided courtesy of Prof. P. Thomas, University of Warwick),

which comprised a box of dimensions of approximately 300 × 300 × 300 mm,

with five sides made out of Perspex, and the 6th being a metal plate with

a 35mm diameter precision-machined circular hole in the centre. Water was

injected via an inlet pipe on the top of the box, expelling a slug of water out

of the orifice in the metal plate, resulting in the formation of a vortex ring.

The inlet pipe was connected to the mains water supply, via a solenoid valve

and a flow control valve. Injection of water into the generator was obtained by

briefly opening the solenoid valve. The flow control valve ensured a constant

flow velocity into the generator, regardless of fluctuations in the mains water

pressure. The generator was mounted on three height-adjustable legs, the front

of which was fixed to a position in the tank but able to rotate. One of the

rear legs was attached to a micrometer traverse, which allowed the horizontal

adjustment of the leg’s position. This caused the tank to rotate around the

front leg, and allowed precise adjustment of the vortex ring’s trajectory.

Measurements were obtained using an individual stereo PIV system

for each plane. For the measurement of the Q planes, discrimination of the

individual sheets was achieved by introducing a small temporal separation

between each sheet. The full measurement system can be categorised into three

parts, consisting of the camera systems, the light sheet generation system and

the control system. Each part is described in detail in the following sections.
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Figure 7.8: Side-view of experiment
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Figure 7.9: Top-view of experiment, overlaid with the position of the P and
Q planes.
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7.3.1 Camera System

The four separate stereo PIV systems required the use of eight cameras in

total. The measurements of the P plane were obtained using two PCO Gmbh.

PCO.2000 cameras with Nikon 50mm f1.4 lenses (figure 7.10 (a)). For the

three Q planes six Point Gray Research Inc. Firefly MV board cameras with

Cosmicar (Pentax) 25mm 1.4 lenses were used (figure 7.10 (b)). The full spec-

ification of both types of camera is provided in appendix D.4. Although the

Firefly cameras have a considerably lower specification than the PCO.2000

cameras, they were nonetheless suitable for the low-speed flow in the present

application, and offered excellent value for money (all six cameras were pur-

chased for around $1300). They also have the major benefit of hardware trig-

gering, which allowed for the precise synchronisation required for the temporal

separation method of light sheet discrimination.

Each of the stereo PIV systems employed the angular displacement

method of arrangement (Prasad, 2000), which meant that the cameras viewed

the light sheet at an oblique angle. In a standard camera system the image

plane, lens plane and the plane of focus are all parallel to each other, which

means that the plane of focus would not coincide with the light sheet plane

in this configuration. As such, achieving accurate focus across the entire field

of view can be difficult; a small lens aperture may produce a sufficiently large

depth of field to focus the full light sheet, but this comes at the expense of a

reduced light intensity. This problem is avoided by employing a Scheimpflug

configuration to the cameras, which allows a camera to focus on an off-axis

plane by rotating the lens and/or sensor so that the image plane, lens plane

and object plane (i.e. the light sheet) intersect along a common line (Walker,

2002). This principle is illustrated in figure 7.11.
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Scheimpflug
mount

(a) PCO camera 1 with Nikon 50mm lens and
Scheimpflug adaptor, used for P plane mea-
surement.

(b) Firefly cameras 1, 3 and 5 (bottom, mid-
dle and top, respectively) fitted with Cosmicar
25mm lenses and custom Scheimpflug adap-
tors, used for Q plane measurements.

Firewire

Firefly MV
board camera

TTL trigger

Lens

Adapted mirror mount

(c) Individual components of a Firefly camera system

Figure 7.10: Configuration of camera systems used for stereo PIV measure-
ments.
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At the time of the experiment, Scheimpflug adaptors were available for

the PCO cameras, but not for the Firefly cameras. However, the need to

configure the Firefly cameras in the Scheimpflug arrangement was particularly

important, due to a combination of the poor light sensitivity of the cameras

which necessitated a large aperture, and the large angle between the cameras

and the light sheet planes (as shown in figure 7.10 (b)). A further complication

arose from the fact that the bottom two sets of Firefly cameras were also tilted

about a horizontal axis (figure 7.9). As such, the lower cameras necessitated

a two-axis Scheimpflug configuration, as shown in figure 7.11 (b). A solution

was obtained by modifying a set of Thor Labs kinematic mirror mounts to act

as Scheimpflug adaptors. This involved the addition of a C-mount lens thread,

and removing part of the back of the mount to house the Firefly board at the

correct distance from the lens. The resulting camera configuration is shown in

figure 7.10 (c).

After positioning and focusing the cameras, the camera systems were

calibrated using LaVision Davis 7.2 software. A camera pinhole model was

employed, which was fitted using an image of a 3-dimensional target (shown in

figure C.14 of appendix C.4), placed in the light sheet plane. The calibration

was then refined using the built in self-calibration procedure described by

Wieneke (2005).

7.3.2 Light Sheet Generation

Four separate light sheets are required for the experiment, each produced by

the expansion of a collimated laser beam with a cylindrical lens. As only three

light sheets were ever required at one time, only three lasers were needed,

with one laser used for the measurement of both P and Q3. Three Litron
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focal plane

lens plane

image plane

Scheimpflug line

light sheet

sensor

lens

y

z

x

(a) 2-dimensional view of a one-axis Scheimpflug condition, which is
met by rotating the lens plane around a single axis of the coordinate
system.

(b) A two axis Scheimpflug condition. The lens plane must be
rotated around two axes of the coordinate system to meet the
Scheimpflug criterion.

Figure 7.11: Two examples of the Scheimpflug principle
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Nano S PIV Nd:YAG lasers are utilised for this purpose. Each laser contains

two separately controlled 1064nm heads, each with a pulse duration of 4ns.

The output of both heads passes through a single frequency doubling crystal

to produce a double-pulsed 532nm visible beam, rated at 140mJ. The ability

to control the individual pulses allows the accurate control of pulse separation

∆t. For this work, the choice of ∆t was dictated by the minimum inter-frame

time of the Firefly cameras, which was 17ms.

The choice of this parameter, along with the light sheet thickness,

should allow for sufficient particles in the first PIV image to be present in

the second, which is determined by the maximum speed of the flow in the

out-of-plane direction, w0. As a guide it is suggested that w0∆t/∆z0 < 0.25,

where ∆z0 is the light sheet thickness (Keane and Adrian, 1990). For the

Q plane measurements, which contain predominantly out-of-plane motion, the

maximum out-of-plane velocity was determined to be approximately w0 = 0.08

m/s. With the minimum possible ∆t of 17 ms, this suggests that the light sheet

thickness should be around 5mm. However, for convenience, a sheet thickness

of 4mm was chosen, which corresponded to the diameter of laser beams and

allowed for a simpler optical arrangement for the light sheet generation. The

P plane measurements used identical values of ∆t and ∆z0 for consistency.

Light sheet discrimination was achieved by introducing a slight separa-

tion, δt = 160µs, between the pulses of the light sheets for Q1, Q2 and Q3,

to allow each camera system to acquire an image of the relevant light sheet

without interference from the others. The sequence of laser pulses is shown in

figure 7.12.

Theoretically, MP-VSE requires the Q plane measurements to be ac-

quired instantaneously, although it can be seen from the diagram that the

measurements were actually acquired over a period of 2δt = 320µs. For this
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Figure 7.12: Laser pulse sequence for Q plane measurements. Pulse separation
time ∆t = 17ms, time between light sheets Q δt = 160 µs.

approach to be valid, this period must be sufficiently small compared to the

timescales of the phenomena under investigation, so that the flow is effectively

stationary over the period of acquisition. An indication of the timescales in-

volved can be inferred for the numerical study of (Shariff et al., 1994), which

modelled the growth of vortex rings up to the early non-linear phase. In

this work the time variable was non-dimensionalised using the characteristic

timescale R2
0/Γ0. The subsequent simulations used a minimum time step of

0.05 time units, which was sufficient to capture the behaviour of the ring. Ap-

plying the same procedure here, the acquisition period of 320 µs corresponds

to a non-dimensionalised time-step of 0.02 time units. This would suggest that

a 320 µs period is sufficient to ensure the stationarity of the ring.

As described in section 6.4, the successful application of MP-VSE re-

quires the fulfilment of a number of criteria, three of which directly relate to

the alignment of the light sheets:

1. the P plane must be normal to the homogeneous dimension of the flow

2. the Q planes must be parallel to the homogeneous dimension

3. the intersections of Q1, Q2 and , Q3 with P must be known, so that the

unconditional vectors in the prediction model are correctly defined

For the experiment considered here, the task of meeting these require-
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ments was aided with the light sheet measurement technique proposed in ap-

pendix C, and was further simplified with the use of a custom-built cylindrical

lens mount shown in figure 7.13.

The mount consists of two rails, positioned at exactly 90◦ to each other,

which provide a physical reference for the cylindrical lens position; each of the

lenses was placed with its side in contact with the rail which ensured that

the optical axes of the three cylindrical lenses for the Q planes were exactly

parallel, and that the axis of the P plane cylindrical lens was exactly normal to

the Q plane lenses. 4mm apertures were then placed on the base of the mount

(see figure 7.13 (b)), to ensure the three Q planes had the correct separation

(16mm between the centre of each sheet).

An unconstrained plane has three degrees of freedom (DOF), each of

which must be set during the process of alignment. However, using the lens

mount, only one of the planes needs to be positioned using the full three

DOF. Once this plane is aligned, the remaining planes only have a single DOF

left to adjust. Assuming that the first plane is positioned accurately, the

constraints imposed by the mount guarantee the accuracy of the remaining

planes’ positions, at least up to the adjustment of the final DOF. Also, this

approach has the considerable benefit of accelerating the alignment process.

The complete light sheet forming system is shown in figure 7.14 (a). The

cylindrical lens mount was placed directly under the Perspex tank. The beams

were directed to the lens mount using a system of mirrors on kinematic mounts,

which provided fine adjustment of the light sheet positions. The process of

moving laser 3 from the P plane configuration to the Q plane configuration

was simplified with the use of a mirror mounted on a micrometer traverse.

This could be moved into the path of the beam from laser 3, which diverted

it from the Q cylindrical lens (figure 7.14 (b)) to the P lens (figure 7.14 (c)).
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alignment rails

P lens

Q1 lens

Q2 lens

Q3 lens

(a) Top view (b) Bottom view of the mount,
showing the position of aper-
tures and path of the Q plane
laser beams

(c) Top view of the mount,
showing the generation of the
Q plane light sheets

Figure 7.13: Mounting platform for cylindrical lenses
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(a) Light sheet forming system

(b) Q plane configuration (c) P plane configuration

Figure 7.14: The light sheet generation process
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The alignment process was carried out in the stages shown in figure 7.15.

The first stage involves the alignment of the P plane, which was facilitated by

attaching a long, straight target to the top of vortex generator, directly above,

and perpendicular to, the orifice. The light sheet and vortex ring generator

were then adjusted so that the sheet directly intersected the target (figure 7.15

(a)). The correct alignment was confirmed by inspecting the ensemble average

of measurements from the P plane stereo PIV system, to confirm that the

average vortex ring passed directly through the sheet. The next step was to

align the Q1 plane (figure 7.15 (b)). Although this plane only had a single

DOF to adjust, this stage was the most time consuming; unlike before, there

is no physical reference with which to position the sheet, and so the position of

the sheet had to be assessed solely from measurements with the Q1 stereo PIV

system, which were used to check the symmetry of vortex rings passing through

the sheet. Once this plane was set, however, it was then possible to employ the

light sheet measurement technique (described in appendix C) to position the

remaining Q planes (figure 7.15 (c)). First, the light sheet measurement frame

was used to align Q2 relative to Q1, and then the process was then repeated for

the position of Q3 relative to Q2. Finally, in order to calculate the positions

of the intersections of the Q and P planes, a ground glass screen was placed

directly in the path of the P plane (figure 7.15 (d)). The three Q plane light

sheets were then generated, which projected lines onto the screen (figure 7.15

(e)). An image of the projected lines was acquired using the P plane stereo

PIV system, which provided a means of identifying the exact position of the

Q plane intersections within the P plane measurements.

Upon completion of this process, a final validation was performed using

stereo PIV measurements from each of the planes. This was to ensure that the

three criteria mentioned above, as well as the remaining criteria from section
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(a) A thin alignment target, perpendicu-
lar to the vortex generator plate, is used
to align the P plane with the direction of
the vortex ring flow

(b) Plane Q1 is positioned to be exactly
normal to the direction of flow, which
is determined from PIV measurements
of vortex rings passing through the Q1

plane.

(c) Planes Q2 and Q3 are aligned paral-
lel to Q1, using the proposed calibration
technique

(d) A thin ground glass screen is placed
directly in the P plane

(e) The projection of the Q planes on the
screen is used to obtain the intersection
of the P and Q planes

Figure 7.15: Light sheet alignment process
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6.4, were adequately met. The results from the validation are presented in

section 7.4.

7.3.3 Control System

Almost all aspects of the experiment were automated and operated remotely

by computer. The control system is detailed in figure 7.16. At the centre of

the system was a purpose-built timing generator (figure 7.17), which provided

the triggering signals to the cameras and lasers, as well as the 24V dc power

supply for the solenoid valve which initiated the formation of the vortex rings.

The timing box was built around a Microchip dsPIC30 microcontroller,

which was programmed in C. Accurate generation of timing signals is achieved

via the on-board 32 bit timer, which generates an interrupt signal whenever

the state of the output channels needs to be changed. A serial port connection

allows communication with a PC, in order to download the timing sequence

programme to the timing box, which is stored to non-volatile memory. The

serial connection is also used to initiate the timing sequence, although the

box could be operated without connection to a PC if necessary. All cameras

and lasers were triggered using TTL-level signals. As described in section

7.3.2, each laser consists of two separately triggered heads. Each head in turn

requires two separate TTL-level signals, one for the flash lamp, and one, 160

µs later, to initiate the pulse by triggering the Q-switch. Therefore, firing

each laser requires four trigger signals, and so 12 TTL channels were needed

in total. The timing generator has a total of eight TTL-level channels, so a

demultiplexer system (courtesy of Dr Andrew Skeen, University of Warwick)

was incorporated into the system. This allowed both the flashlamp and Q-

switch of each laser head to be controlled with a single channel. As such, six
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Raid Array
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Other
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Figure 7.16: Overview of control system.
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(a) Front view (b) Rear view

Figure 7.17: Timing generator.

channels were used to control the lasers, with a final channel used to control

the demultiplexer.

Due to the shortage of channels, camera triggering was obtained by

combining the signals from the two corresponding flash lamps using a NOR-

gate (the negation was required because the lasers are triggered from the rising

edge of the signal, and the cameras from the falling edge).

The images from the cameras were downloaded to either the master PC

or one of the slave PCs. Images on the slave PCs were then transferred, via a

1 gigabit Ethernet connection, to a raid array on the master PC. Control of,

and acquisition from, the Firefly cameras was achieved using software written

by the author, which was based on the Point Gray Research Inc, FlyCapture

software development kit. Acquisition from the PCO cameras was handled

with the provided PCO CamWare software.

Control of the master PC was possible with two terminals; terminal one

was placed behind a safety screen, and was used for control and monitoring

purposes while the experiment was running. Terminal 2 was placed in close

proximity to the experiment, which allowed convenient access to the live feeds

202



from the cameras during camera alignment and focusing, and similarly allowed

access to the software for the light sheet position measurement system.

7.3.4 Overview of Stereo PIV procedure

The MP-VSE experiment consisted of stereo PIV measurements of 300 vortex

rings in the P plane configuration, and 80 rings in theQ plane configuration. In

both configurations, the measurements were made 2.6 seconds after generation

of the vortex ring and at one minute intervals, to allow the water in the tank

to settle. Prior to the procedure, the Perspex tank was seeded with Plascoat

Talisman 30, a powdered coating for metal with a particle size of 100−200 µm

(Yoshimoto, 2009). A high concentration of seeding was also placed directly

in the vortex generator to ensure that there was sufficient seeding within the

vortex core. After each run of 50 vortex rings, the experiment was paused, so

that further seeding could be added to the vortex ring generator, and to drain

water from the tank to keep the water level roughly constant.

Calculation of the stereo PIV vector maps was performed using LaVision

DaVis 7.2, using iterative multi-pass correlation with a reducing window size.

For all correlations, the final window size was chosen to be as close to 4 mm as

possible (12× 12 pixels for Firefly MV cameras, 32× 32 pixels the PCO.2000

cameras), in order to match the light sheet thickness. This way, all vector

measurements were derived from an approximately cubic volume of size ≈

4× 4× 4 mm, which ensured that the degree of spatial averaging inherent in

the PIV processing was the same for the in and out-of-plane velocities, and

consistent between the Q and P plane measurements.

A simple estimate of the measurement error was obtained by assuming

a cross-correlation uncertainty of 0.1 pixels, a figure which has been shown to
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Parameter Value

Total number of measurements 300
Valid measurements 288
Pulse separation, ∆t 17ms
Particle image size 2048× 2048 pixels
Final correlation window size 32× 32 pixels
Correlation window overlap 87%

Table 7.2: Summary of P plane stereo PIV parameters

be valid in idealised conditions (Tropea et al. (2007)). Based on the resolution,

field of view and ∆t of the camera systems, this equates to an uncertainty of

2× 10−3 m/s for the Q plane measurements and 7× 10−4 m/s for the P plane

measurements. Expressed as a percentage of the RMS velocity magnitude of

the measurements, this translates as < 3% and < 0.5% for the Q and P planes

respectively. As the Q plane measurements would go on to be interpolated

during the MP-VSE procedure, the cross-correlation was performed with a

high window overlap (87%), to ensure that a dense vector grid was available

for the interpolation process.

After the experiment, inspection of the stereo PIV vector maps revealed

that a small number of vortex rings had failed to form correctly and/or had

trajectories that were outside of the measurement planes. These measure-

ments were discarded, leaving 288 P plane measurements, and 66 Q plane

measurements.

The parameters of the stereo PIV procedure for the P and Q planes are

summarised in tables 7.2 and 7.3 respectively.
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Parameter Value

Total number of measurements 80
Valid measurements 66
Pulse separation, ∆t 17ms
Particle image size 640× 480 pixels
Final correlation window size 12× 12 pixels
Correlation window overlap 50%

Table 7.3: Summary of Q plane stereo PIV parameters
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(a) Positions of “plane” P , and measure-
ment region P ′ (checked area)

(b) Position of planes Q1,Q2 and Q3

Figure 7.18: Position of measurement regions

7.4 Validation of MP-VSE procedure

Before beginning the vortex ring prediction process, the statistical properties

of the stereo PIV measurements were analysed to assess the accuracy of the

light sheet alignment, confirm the axisymmetry of the vortex ring data, and

ensure that the P and Q plane measurements were consistent with each other.

A summary of the acquired measurements is provided in figure 7.18. Note

that the P “plane”, as it was referred to in previous sections, is not strictly a

plane, but a 62×34 mm rectangular area. In reality, the P plane measurements

consist not only of this region (i.e. the vectors above y = 0), but also of an

identically sized region directly below. This full 62 × 68 mm measurement

area, denoted by the checked area in 7.18 (a), is referred to as the region P ′.

In the presence of correct light sheet alignment and perfect axisymme-

try, a number of properties should be evident in the measurements. Under

these conditions, the vortex rings should, on average, travel directly along the
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z axis at (x, y) = (0, 0). This should manifest itself in the ensemble-averaged

measurements of P ′ in the form of a rotational symmetry. i.e. the lower re-

gion of P ′ should be identical to the top region, rotated about the z axis. This

property was later exploited to extract two separate measurements of P from

a single measurement of P ′. Previous studies have shown that unstable vortex

rings commonly exhibit a degree of azimuthal rotation (e.g. (Naitoh et al.,

2002; Dazin et al., 2006b)). Under ideal settings, it is expected that the occur-

rence of this rotation should occur in a clockwise and anti-clockwise direction

with equal probability, and so the mean vortex ring behaviour should not show

any rotational behaviour. Hence, the out-of-plane velocity component should

be zero across the entire field.

For the Q plane measurements, the ensemble averages should ideally

show a perfectly circular velocity distribution, centred about the origin.

Figure 7.19 shows that the P and Q measurements intersect along three

separate lines, at z = 15, 31, 47 mm. Hence, along these lines, the distribution

of the measured velocity components should be identical for both P and Q

measurements. This indicates that the relative alignment of the P andQ sheets

is correct, and also shows that any error in the measurements is consistent in

both data sets.

The aim of the following sections is to investigate the extent to which

these properties hold. The nature of the measurements means that throughout

this work, the velocity fields are presented in terms of both the cylindrical

and Cartesian coordinate systems, as defined in figure 7.18 (a). The velocity

components in Cartesian coordinates are given by u, v and w, , corr which

correspond to the x, y and z directions. In cylindrical coordinates the radial,

vr, azimuthal, vθ, and axial, w, velocity components correspond to r, θ and z

respectively. The w component is the same in both systems.
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Figure 7.19: Intersection of P and Q planes, as indicated by the red lines

7.4.1 Analysis of P ′ measurements

The mean in-plane velocity components (v and w) of the P ′ measurements are

displayed in vector form in figure 7.20. The individual components are shown

in figure 7.21.

Both the v and w components demonstrate rotational symmetry about

the z axis at y = 0. The mean u component however shows a distinct, albeit

small, non-symmetric and non-zero pattern, which would seem to indicate a

degree of misalignment. It is difficult to determine the exact nature of the

misalignment from these plots alone; the light sheet may be displaced from

the path of the mean-vortex ring, it may be at an angle to the path of the mean

vortex ring, or a combination of the two. There is also the possibility that the

pattern in the mean w component could, in part, be due to errors in the stereo

PIV calibration, which could lead to errors in the out-of-plane velocity field.

In any case, the average magnitude of this component is considerably lower

than the average in-plane velocity, (by a factor of about 30:1), and should not
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Figure 7.20: Vector map of average in-plane velocity of the P ′ measurements.
Vector colour corresponds to the velocity magnitude

be a major concern.

7.4.2 Analysis of the Q Measurements

The mean velocity magnitude of the Q plane measurements is shown in figure

7.22. These plots serve to demonstrate the alignment of the light sheets and

provide an indication of the mean axisymmetry of the flow, as indicated by

a perfectly circular velocity distribution about the origin. To all practical

purposes, this is shown in the contour plots of all three planes. The small

sample set (66 measurements) used to produce the mean vector maps is likely

to account for the unevenness of the contours, which is particularly pronounced

in the centre of the plots.
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Figure 7.21: Mean velocity field of P plane measurements
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7.4.3 Comparison of P and Q Statistics

The P and Q planes intersect along three lines along the r axis at z = 15, 31, 47

mm and θ = 90◦. The statistical properties of the P and Q measurements

along these lines should be identical; any deviation will be due to misalign-

ment between the sheets, differences in the errors associated with stereo PIV

measurement, and/or deviations from axisymmetry of the flow. As discussed

previously, only 66 measurements of the Q planes were available, but under the

assumption that rings are mean-axisymmetric, the statistics of the ring should

be independent of θ, which means that the sample size may be increased by

extracting multiple profiles at different θ from each Q plane measurement. To

achieve this, 88 lines were extracted from each vector map, resulting in 5808

samples for each Q plane to base the statistics on. By extracting two mea-

surements of P from each instance of P ′, 576 samples were available for the P

plane. The resulting mean velocity profiles are shown in figure 7.23, and the

velocity variances are shown in 7.24.

In general, the statistics of the radial vr and axial w components ap-

pear to match quite well. The relative shape of the profiles are similar, which

suggests that the relative light sheet positioning was accurate. The largest

deviations occur in the azimuthal velocity statistics. In the case of the mean

profiles, the corresponding P and Q measurements are largely dissimilar (fig-

ure 7.23 (b)). However given that the magnitudes of the mean azimuthal

velocities are relatively small compared to the other components, this does

not necessarily indicate a problem with alignment, or with the assumption of

axisymmetry of the flow. Interestingly, the azimuthal velocity variances only

differ significantly in the case of the z = 31 mm profile, with the profiles at

z = 15 mm and z = 47 mm showing reasonable agreement. It is not immedi-
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ately apparent why this should be the case, given that all the mean azimuthal

profiles are dissimilar.

As a final indication of light sheet alignment, the 2-point correlation

function Rij(r, r
′) was calculated at each of the three z positions. The corre-

lation function is defined as:

Rij(r, r
′) = 〈ui(r)uj(r′)〉 (7.1)

where the subscripts i, j denote the velocity component, i.e. vr, vθ or w. Be-

cause two-point correlations, or covariances, form the heart of the stochastic es-

timation procedure, the similarity between the two-point correlation functions

for P and Q measurements gives an important indication of how successful

the reconstruction process will be. Contour plots of the two-point correlations

for each velocity component are shown in figures 7.25, 7.26 and 7.27.

In each map, the diagonal line defined by r = r′ corresponds to the

variance along r, and so is identical to the corresponding profile in figure 7.24.

These maps reiterate some of the previous conclusions; generally, the shape

of the correlation maps is closely matched, with the only significant deviation

occurring in the case of the azimuthal velocity variance at z = 31 mm (figures

7.26 (c) and (d)).

Overall, the results in these sections confirm that the calibration of

the experiment was largely successful, and indicate that the assumption of

mean-axisymmetry is valid. A slight degree of misalignment of the P plane is

suggested, but its effect on the measurements is marginal. The comparison of

means, variances and two-point correlations for the P and Q measurements

shows that the alignment of the P and Q light sheet planes is good. The

similarity of these statistics also indicates that the use of data from the Q
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Figure 7.23: Mean velocity profiles. Crosses indicate the P plane measure-
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z = 31mm, blue: z = 47mm
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Figure 7.25: two-point correlations at z = 15mm
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Figure 7.26: two-point correlations at z = 31mm
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Figure 7.27: two-point correlations at z = 47mm
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measurements to make predictions with a model built from the P measure-

ments is valid. Although deviations between the statistics derived from the

azimuthal velocities, particularly at z = 31 mm, is evident, it is assumed that

the reconstructed vortex rings will not be adversely affected, due to the relative

insignificance of this velocity component.
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Parameter Value

Sample size, m 518
Unconditional Vectors 102
Independent Variables, n 306
Conditional Vectors 2278
Dependent Variables, p 4556

Table 7.4: Summary of parameters for the cross-validation procedure

7.5 Model Construction

Using the P measurements, 10-fold cross-validation was used to obtain the

prediction performance of the five regression techniques discussed in chapters

4 and 5. Only the standard linear stochastic estimation model was considered

for this work. Given that the prediction model was to be built with separate

data from that used for the subsequent predictions, it was felt that the use

of higher order terms would decrease the stability of the model, which may

amplify the prediction error due to deviations between the P and Q data.

The prediction model was built using the vectors shown in figure 7.6,

with the 102 unconditional vectors used to predict the full 62 × 33 grid as

indicated. As explained in section 7.4, due to the rotational symmetry present

in the full P ′ region measurements, a total of 576 observations of P could be

extracted from the 288 measurements of P ′.

For each iteration of the cross-validation procedure, 512 samples were

used to build the model, with the remaining 64 used for the validation. The

regression parameters are summarised in table 7.4. Results of the cross-

validation are presented in figures 7.28, 7.29, and table 7.5.

All the regression models provide excellent performance with this data

set, with each explaining over 90% of the variance. The relative performance
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Figure 7.29: Percentage improvement over OLS vs. biased regression technique
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CSE RRR PLS PCR

20 (518 ) 21 (518 ) 24 (518 ) 27 (518 )

Table 7.5: Optimum number of modes used for biased regression techniques

of the biased techniques over OLS is consistent with that seen previously in

chapter 5 and section 6.3, although the high accuracy of OLS means that

in absolute terms, the difference between the competing techniques is small.

Nonetheless, the 27-mode PCR model provides the best performance (94%),

and was ultimately used for the volumetric reconstructions. To maximise the

accuracy of the predictions, the model was rebuilt using the full set of 576

measurements before carrying out the prediction process.
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7.6 Results

7.6.1 Introduction

This section presents the results from the MP-VSE procedure. The work

begins with the visualisation of some example vortex rings, followed by an

investigation into some specific phenomena that have been observed in previ-

ous numerical and experimental studies. Many of the results in this section

are expressed in terms of a coordinate system which is aligned with the in-

stantaneous position of the vortex ring in question, as shown in figure 7.30.

The reference plane of the cylindrical coordinate system bisects the vortex

ring core, and the normal vector z′ corresponds to the direction of travel of

the ring. The vr′ , vθ′ and w velocity components correspond to r′, θ′ and z′

respectively. Figure 7.30 also indicates the two dominant velocity components

of the vortex ring’s movement; namely, the translational velocity of the ring,

V , and the core tangential velocity, vT .

7.6.2 Visualisation of Vortex Ring Core

Visualisation of the vortex core is commonly based on vorticity magnitude,

which for experimental rings should be “strongly peaked inside an inner core

and then decay algebraically until it drops to zero at the ill-defined edge of

the core” (Saffman, 1978). Unfortunately, the use of vorticity magnitude as

a visualisation tool was ill-suited for use with the predicted data, as the dis-

tribution of vorticity does not coincide directly with the core position. This

is illustrated in figure 7.31, which shows the distribution of vorticity in one of

the predicted P planes.

Identical behaviour is exhibited in the raw measurements in the P plane,
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Figure 7.30: Definition of the vortex ring coordinate system. The blue ar-
rows indicate the main velocity components of the vortex ring; V is the core
translational velocity, and vT is the core tangential velocity.
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Figure 7.31: Vector map from an example predicted P plane. The scalar
background shows the out-of-plane vorticity (ωθ). The green cross shows the
peak vorticity magnitude, and the green circle is the result of the vortex core
detection algorithm proposed by Jiang et al. (1990)
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which rules out the prediction process as the cause of the unusual vorticity

distribution. Instead, it may be due to the large correlation window size

employed in the PIV calculations, which was ultimately necessitated by the

large interframe time of the Firefly cameras (see the discussion in section

7.3.2). It is possible that the window size was too large to sufficiently capture

the velocity gradient within the core, causing a reduction in the vorticity in

this region. Regardless of the cause, the result is that the peak vorticity,

indicated by the green cross in figure 7.31, rarely corresponds to the centre

of the vortex ring core, which lies at the point of zero tangential velocity

(i.e. the centre of the swirling region of the vector field). As an alternative

approach to core detection, the algorithm proposed by Jiang et al. (1990)

was implemented, which uses concepts from combinatorial topology to detect

vortex core regions using only the angle of the vectors within the velocity field.

The green circle in figure 7.31 shows the result of this procedure, which can be

seen to coincide with the centre of the swirling region of the flow. Applying

this approach to each of the predicted planes in the volume provides the 3D

coordinates at 88 points along the vortex core (figure 7.32 (a)). However, to

improve both the resolution and accuracy of the detection process, a further

stage was introduced to the visualisation process. The w velocity component

was found at each detected point, and averaged to provide an estimate of the

translational velocity of the ring. This was then subtracted from the velocity

field, leaving only the tangential velocity as the dominant velocity component

in the flow. Using the fact that the core centre has zero tangential velocity, and

that the velocity increases monotonically to the edge of the core, a threshold

of the velocity magnitude provides an accurate indication of the core position.

An isosurface of velocity magnitude at ‖u‖ = 0.01 m/s is shown in figure

7.32 (b). The thresholded velocity isosurface shows excellent agreement with
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(a) Core detection process proposed
by Jiang et al. (1990)

(b) Velocity magnitude thresholding

Figure 7.32: Approaches to visualising the vortex core centre

the core centre as detected by the method of Jiang et al. (1990), and has

the further benefit of indicating how the relative core size and shape varies

along the ring circumference. The choice of threshold value used here and

in the following examples has been selected; firstly to aid the visualisation of

the core instability and secondly, because the behaviour of the ring in this

region is markedly different to that of the outer region of the core, as will

be demonstrated in section 7.6.4. It should be noted that the threshold has

not been chosen to coincide with any theoretical definition of the ring core (for

example, the velocity threshold is lower than the maximum tangential velocity,

which from Saffman (1978), defines the theoretical “inner core” boundary).

Instead, it is helpful to consider the visualisations as defining a “filament” of

finite thickness that encompasses the core centre.

Four individual rings at nominally the same stage of evolution have

been chosen for further study, which are shown in figures 7.33 to 7.36.
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(a) (b)

(c) (d)

Figure 7.33: Views of ring 1 core (isosurface of ‖u‖ = 0.01 m/s)

227



(a) (b)

(c) (d)

Figure 7.34: Views of ring 2 core (isosurface of ‖u‖ = 0.01m/s)
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(a) (b)

(c) (d)

Figure 7.35: Views of ring 3 core (isosurface of ‖u‖ = 0.01m/s)
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(a) (b)

(c) (d)

Figure 7.36: Views of ring 4 core (isosurface of ‖u‖ = 0.01m/s)
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7.6.3 Investigation of Core Instability

The development of the instability on a vortex ring begins with the linear

phase, which is characterised by the growth of one or more bands of waves

around the ring core, orientated at 45◦ to the direction of travel. The nature

of the instability was the focus of a great deal of experimental and theoreti-

cal work in the 1970s, which led to a detailed understanding of the physical

process by which the instability is formed and gave rise to models that can

accurately predict many aspects of its behaviour. However, it is only recently

that this theory has been truly validated. This was made possible by the quan-

titative data provided by numerical simulations (Shariff et al., 1994; Bergdorf

et al., 2007; Archer et al., 2008) and stereo PIV measurements (Dazin et al.,

2006a,b), which has allowed the Fourier spectra of the instability to be ac-

curately characterised. Some of the spectra from the work of Dazin et al.

(2006b) are reproduced in figure 7.37. The spectra were calculated from the

radial velocity of the ring, sampled at equally spaced points along the vortex

ring’s radius. Figure 7.37 (a) shows the spectrum of a vortex ring during the

linear phase, revealing a band of waves centred around n = 8, where n is the

number of waves in the radial direction.

These recent investigations have also brought about a greater under-

standing of the vortex ring behaviour during the non-linear stage, which is

the focus of this study. It is now understood that the non-linear stage begins

with the growth of harmonics of the dominant modes from the linear phase

(figure 7.37 (b)), which subsequently decay, and give way to the development

of low order modes (figure 7.37 (c)).

The volumetric data produced by the MP-VSE is ideally suited for such

Fourier-based analysis. As demonstrated in (Dazin et al., 2006a) and (Dazin
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(a) Spectrum during linear phase (b) Spectrum during early non-linear
phase

(c) Spectrum during late non-linear
phase

Figure 7.37: Radial velocity spectra of a vortex ring at different points in its
development. (Reproduced from (Dazin et al., 2006b))
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Figure 7.38: Position and radius of the vortex ring, as detected by the circle
fitting algorithm.

et al., 2006b), this requires planar measurements of the ring velocity, but the

accuracy is dependent on the ring passing directly normal to the measurement

plane. If this is not the case, then the misalignment will cause an artificial

increase in the n = 1 mode in the Fourier spectrum, as discussed in Dazin

et al. (2006b). However, with access to the full volumetric velocity field, it is

possible to position the plane directly through the vortex ring, thus avoiding

any misalignment.

In practice, this was achieved using a non-linear least squares circle

fitting algorithm1, which was used to fit a circle through the core coordinates

from the method of Jiang et al. (1990). An example is shown in figure 7.38.

The axial velocity at 88 equally-spaced points was then extracted along the

circumference of the fitted circle, and was used for the subsequent Fourier

analysis.

1ls3dcircle.m, from the Least Squares Geometric Elements Library, developed by the
National Physics Laboratory and available from the EUROMETROS software repository
(http://www.eurometros.org)
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Figure 7.39: Vortex ring streamlines, which are seeded at equal increments of
θ, 10mm upstream from the core centre

The resulting spectra are presented in this section alongside visuali-

sations of the ring core. To further emphasise the nature of the instability,

streamlines have been included in the visualisations, which are seeded directly

10mm upstream from the vortex core, as shown in figure 7.39.

As the predictions were made at a single point in time (5 seconds after

closing the solenoid valve), the behaviour of the rings in their earlier stages of

development is not known exactly. However, using the average initial vortex

ring parameters, (shown in table 7.4), it is possible to predict which waves

will appear on the ring during the linear phase. For this purpose, the model

proposed by Saffman (1978) is employed (detailed in appendix D.5), which

predicts the growth of bands of waves centred around n = 7.8, n = 13.5 and

n = 18.2. The relative sizes of the peaks has not been calculated, although it

is usually the case that the lowest peak will dominate (Saffman, 1978). This

coincides well with the spectra of the predicted rings, which commonly show

the presence of a dominant, (or at least, a large) peak at n = 6 and n = 7,

which is likely to be the dominant mode of the linear phase of development. Of
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course, this prediction is based on the average vortex ring data, and individual

rings will show a degree of variation from the average. Given the simple method

used to generate vortex rings, it is possible that the variation between rings

is quite large. This lack of repeatability is not a problem in itself; in fact,

it means that a wide range of vortex rings, at a variety of stages in their

development, are available for study. These differences are clearly evident in

the four rings selected for study here, whose spectra are shown in figures 7.40

to 7.43.

Of the rings considered here, it appears that ring 3 is in the earliest

stage of development, perhaps only just in the non-linear phase. Two clear

bands of peaks are visible, centred around n = 7 and n = 13 , which is

in excellent agreement with the prediction from the Saffman model. Also

evident is the 45◦ angle of the instability, relative to the axis of travel. The

presence of these phenomena is typical of the ring during the linear stage

of development, although the ring shows evidence of the secondary vortical

structure that occurs during the non-linear stage, which is shown in the next

section.

Ring 4 appears to have progressed slightly further though its develop-

ment, evidenced by clear harmonics of the dominant n = 5 mode at n =

10, 15, 20, and possibly also n = 25.

The spectra of rings 1 and 2 are dominated by low order modes (n = 2

for ring 1 and n = 3 for ring 2), which suggests that the rings are in the latter

stages of the non-linear phase. This is further supported by the visualisations,

which no longer exhibit the organised periodic behaviour of the linear phase.
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(a) Visualisation of ring core
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Figure 7.40: Ring 1 instability

(a) Visualisation of ring core
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Figure 7.41: Ring 2 instability
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(a) Visualisation of ring core
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Figure 7.42: Ring 3 instability

(a) Visualisation of ring core
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Figure 7.43: Ring 4 instability

237



7.6.4 Visualisation of Secondary Vortical Structure

This section investigates the presence of the secondary vortical structure that

has been observed in the numerical simulations of Bergdorf et al. (2007) and

Archer et al. (2008), and in the PLIF experiments of Dazin et al. (2006b).

The secondary structure, or “halo vorticity” (Archer et al., 2008), consists of

pairs of vortical “loops” of alternating sign, that wrap around the inner core.

The neighbouring loops join together in the peaks and troughs of the waves

on the inner core, forming a lattice structure around the ring. Examples of

this structure from previous literature are reproduced in figure 7.44.

Due to the issues described in section 7.6.2, the use of vorticity to visu-

alise the secondary structures was largely unsuccessful, as the major contribu-

tion to the vorticity arises in the centre of the rings, apparently from regions

of high shear. A number of alternative visualisation approaches were trialled,

and it was found that the curl angular velocity (CAV) was most suitable. The

CAV is defined as ω · u
‖u‖ [Evorticity]ωvorticity, which is the projection of the

vorticity onto the normalised velocity vector. The properties of the CAV make

it particularly appropriate for the visualisation of the secondary structure. In

regions of high shear (shown in the centre of the ring in figure 7.45), the result-

ing vorticity vector will be approximately orthogonal to the velocity vector,

and the CAV will be small. However, it is apparent from the images in figure

7.44 that the secondary vortical structure arises from the localised rotation of

the flow around an axis approximately tangential to the inner core. As the

velocity in this region is dominated by the tangential velocity around the ring

core, the axes’ vorticity and velocity should be closely aligned (also shown in

figure 7.45), producing a large CAV.

Isosurfaces of the CAV at 2s−1 (blue) and -2s−1 (red) are plotted for the
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(a) PLIF visualisation of the vortical structure, from (Dazin et al., 2006b). The im-
age shows the pairs of counter-rotating structures, uniformly aligned on the inside and
outside of the ring.

(b) Isosurface of positive and negative
z component vorticity, ωz, which shows
the presence of alternating loops, aligned
with the instability on the inner core
(from (Archer et al., 2008))

(c) Isosurface of the second in-
variant of the velocity gradient
tensor (a common vortex identi-
fication method, also known as
the “Q” criterion). The vortical
structure can be seen to form a
mesh around the inner core region
(from (Archer et al., 2008))

Figure 7.44: Examples of the secondary vortical structure
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ring core

direction of  
ring propagation

Figure 7.45: Orientation of velocity vectors (blue arrows) and vorticity vectors
(red arrows) in a hypothetical vortex ring.

four rings in figures 7.46 to 7.49. Evidence of secondary structure is present to

some extent in all rings, but perhaps clearest in rings 1 and 3, which clearly

exhibit the alternating regions of positive and negative rotation, demonstrated

in the PLIF and numerical visualisations in figures 7.44 (a) and (b). It is

apparent in rings 2 and 4 that there is some difficulty in distinguishing between

the inner core and secondary structure. However, for ring 2, the large region of

negative (red) CAV to the left of ring, and positive (blue) CAV to the right of

ring, appear to match the shape and orientation of the loop structure indicated

in figure 7.44 (c).
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(a) (b)

Figure 7.46: Isosurfaces of CAV = ±2s−1 for ring 1

(a) (b)

Figure 7.47: Isosurfaces of CAV = ±2s−1 for ring 2
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(a) (b)

Figure 7.48: Isosurfaces of CAV = ±2s−1 for ring 3

(a) (b)

Figure 7.49: Isosurfaces of CAV = ±2s−1 for ring 4
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7.7 Conclusions

This chapter describes an experimental implementation of the MP-VSE proce-

dure, which has been employed to investigate the behaviour of unstable vortex

rings. The experiment has yielded a series of unique volumetric visualisations

of vortex rings during an important stage of their development. In addition, it

has introduced a version of the MP-VSE procedure that is applicable for the

prediction of statistically-axisymmetric flows.

The rings selected for analysis here corroborate observations and theory

from previous literature; Fourier analysis of the core instability shows many

of the traits indicated in the work of Dazin et al. (2006a,b), and the number

of waves on the dominant modes is in good agreement with the corresponding

theoretical model of Saffman (1978). Plots of curl angular velocity isosurfaces

show the presence of a secondary vortical structure arranged periodically along

the core, which resembles those previously visualised from simulated data and

PLIF experiments.

The cross-validation procedure described in section 7.5 shows that the

prediction model used for the reconstructions is able to predict the P plane

data with remarkable accuracy, yielding an explained variance of 93%. How-

ever, this is unlikely to correspond to the accuracy of the final volumetric

predictions due to the introduction of further error, which arises from mis-

alignment of both the P and Q planes, PIV error and any deviation from

statistical-axisymmetry of the vortex ring flow. The extent of many of these

problems was investigated in section 7.4, and it was found that in general, their

contribution was minimal. Further assurances of prediction accuracy can be

had from the fact that the behaviour of predicted rings coincides so well with

previous observations in literature.
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Nonetheless, the conclusions drawn were only qualitative in nature, and

a quantitative measure of the actual accuracy of the final predictions has not

been calculated. However, a preliminary investigation into this task is de-

scribed in appendix D.6, where it is shown how the various sources of error

propagate through the procedure, and influence the ultimate MSE of predic-

tion. However, calculation of the MSE would require the variance of the many

potential error sources to estimated, which, due to time constraints, is beyond

the scope of this work.

The work in this chapter has served to demonstrate the feasibility of

the MP-VSE procedure in practice. In particular, it has shown that the task

of designing, implementing and calibrating an MP-VSE experiment can be

achieved without undue difficulty or excessive cost. Given that the experi-

ment was intended, first and foremost, as a proof of concept, it can be deemed

a considerable success. Nonetheless, due to equipment and budget constraints,

there are a number of improvements that could be made in future iterations of

the experiment. For example, the availability of only three lasers has served

to limit the number of Q planes that can be measured simultaneously, which

ultimately limited both the accuracy and the size of the predicted volume.

Another important constraint was the minimum interframe time of the Firefly

cameras; as explained in section 7.3.4, the inability to reduce the ∆t of the

PIV measurements below 17 ms meant that the light sheet thickness had to be

set to 4 mm in order to ensure that sufficient particle pairs were present in the

PIV images. For consistency, the cross correlation window sizes in the sub-

sequent PIV processing were then chosen to match the light sheet thickness,

which meant that all vector measurements were derived from approximately 4

mm3 regions of space. The size of this volume determines the level of spatial

averaging in the PIV measurements, and places a limit on the smallest de-
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tectable structure size. In the present experiment the 4mm3 volume may have

been too large to resolve some of the smallest structure. Any future MP-VSE

investigations into unstable vortex rings, especially where the secondary vor-

tex structure is of interest, would likely benefit from the use of faster-framing

cameras, allowing for a reduction in the size of this volume.
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Chapter 8

Conclusion
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The work in this thesis falls into two distinct but related categories. The

first comprises of a study into the prediction accuracy of stochastic estimation,

and the second concerns a novel application of stochastic estimation, which

provides a means of using multiple instantaneous stereo PIV measurements to

predict a volumetric flow region. The conclusions, contributions, and avenues

of further work in both these areas are provided in the following two sections.

8.1 Stochastic Estimation Theory

A major contribution of this work has been the investigation into the finite-

sample behaviour of the stochastic estimation procedure. The main motivation

for this work is the equivalence of linear regression and stochastic estimation,

which has allowed a wealth of existing knowledge, and a number of alterna-

tive techniques, to be applied in the context of flow prediction. Of particular

importance is the fact that stochastic estimation is identical to ordinary least

squares (OLS) regression. The OLS properties have been presented in a man-

ner appropriate to flow prediction, which will hopefully bring further rigour

and confidence to the procedure. In practical terms, the properties help to

clarify the relevance of the underlying distribution of the data, and provide

guidance when choosing the most appropriate stochastic estimation model to

apply to the given data set.

It is noted that OLS properties apply to stochastic estimation only in

applications where the model is built from simultaneous observations of the

complete set of variables under investigation. However, an alternative is to use

a “piecewise” approach, where the model is built from multiple independent

observations of subsets of the variables, allowing stochastic estimation to be

applied using a small number of point measurement devices. This approach
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has fallen out of favour in recent years due to the availability of full-field mea-

surement techniques, but for completeness, it would be beneficial to obtain a

set of small sample properties for the piecewise stochastic estimation model.

Although not presented here, preliminary quantitative and analytical studies

into this task indicate that the piecewise model appears to suffer from a sys-

tematic bias, which manifests itself in an overestimate of the magnitude of the

model coefficients. With further work, it may be possible to identify the exact

nature of this bias, which may subsequently allow for its correction in future

applications of the approach.

A second contribution concerns the use of biased regression techniques,

and their applicability to flow prediction problems. Biased regression involves

introducing an amount of bias into the regression model, which can improve the

model stability and led to improved accuracy over the unbiased OLS regression.

The exact mechanisms that cause this phenomena have been investigated by

deriving theoretical expressions for the mean-square error (MSE) of prediction

for both OLS, and four competing biased techniques. The ability of the biased

techniques to outperform OLS in practical situations was then investigated in

a comprehensive series of simulated stochastic estimation problems. This pro-

cedure lead to several notable conclusions. Firstly, it was observed that OLS,

which corresponds to the standard implementation of stochastic estimation,

can fail catastrophically in situations where the number of observations, m

used to build the model is similar to the number of independent variables, n.

Also, the biased techniques were shown to outperform OLS in a wide variety

of situations. In particular, the technique of principal component regression

(PCR) has outperformed or equalled the performance of all the other tech-

niques across the entire range of conditions considered. Furthermore, it has

proven to provide reliable predictions even when OLS is subject to the afore-
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mentioned failure. As such, PCR would appear to be an ideal replacement to

OLS as a means of performing stochastic estimation.

While the superior performance of PCR has been proven conclusively

in the scenarios considered here, all the tests were based on data taken from

a single simulation of a channel flow. Furthermore, all scenarios involved the

prediction of a velocity field, using velocity data taken from the same domain.

It is possible that these conditions were particularly favourable to PCR, and

that other techniques may perform better in other situations. This is partic-

ularly relevant in the case of partial least square (PLS), which, theoretically,

offers benefits over PCR that may arise when the conditional and uncondi-

tional data are taken from distinctly different locations, or are measurements

of different properties of the flow. A common stochastic estimation problem

involves prediction of a velocity field using pressure measurements, and vice

versa, and it would be interesting to see whether this configuration would lead

to different results from the ones shown here.

The quantitative performance of OLS has revealed a disparity between

the theoretical and actual performance of the technique. While the expression

derived for the MSE of OLS correctly identifies the factors which affect pre-

diction accuracy, it nonetheless underestimates the MSE, and does not predict

the failure of OLS when m ≈ n. It has been argued that the discrepancy

between theory and practice arises from the finite sample behaviour of the

principal components and eigenvalues of X, which was not taken into account

in the derivation of the theoretical expression. An intuitive explanation of

the cause has been provided, which has been corroborated with empirical ev-

idence. However, a more rigorous mathematical proof would certainly be of

use, not just to explain the performance of OLS, but also as a means of fur-

ther understanding of how and when biased techniques are able to outperform
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it. It is interesting to observe that the explanations offered here for the poor

performance of OLS differ somewhat to those found in literature, especially

in the field of chemometrics (e.g. (Næs and Mevik, 2001)). As such, further

study into this area may have relevance beyond that of stochastic estimation.

It was realised at a late stage that the simulated channel flow data has

been presented using an incorrect grid spacing, which affects some of the plots

in this thesis, and means that the vorticity calculations from the data are

incorrect. None of the conclusions have been affected by this problem, but it

is the author’s intention to correct this at the first possible opportunity.

Throughout the thesis, MSE of prediction (in both its theoretical and

directly measured form) has been used extensively to investigate competing

flow prediction techniques and to assess the accuracy of MP-VSE. This math-

ematical approach is in contrast to that undertaken in stochastic estimation

literature, where prediction performance is generally assessed qualitatively, if

at all. However, it must be noted that MSE alone is not sufficient to fully

understand the manner in which the error manifests itself in the prediction of

a complex flow phenomenon. Intuitively, it is clear that the range of scales

within a flow will be predicted with varying degrees of success, depending on

the spacing between measurement locations in the experiment, and the fact

that stochastic estimation is widely regarded as a technique to predict large

scale structure is an implicit recognition of the fact that the smallest scales

may be impossible to capture. However, a single error metric such as MSE

offers no insight into this behaviour, and further work is required to more

fully understand such mechanisms. An initial avenue of investigation could

be to compare wavenumber spectra in the original and predicted flow fields,

which would give a quantitative measure of how prediction accuracy varies

with structure size.
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8.2 Volumetric Flow Prediction

The technique of multiple plane volumetric stochastic estimation (MP-VSE)

has been proposed, which uses data from multiple stereo PIV measurements to

predict a volumetric region of a flow that possesses a homogeneous dimension.

The technique provides a means of predicting volumes of a size and resolution

that cannot currently be measured by conventional volumetric measurement

techniques.

An initial proof of concept was performed by applying the technique

in a synthetic experiment using simulated data of a channel flow. As shown

by the cross-validation, the resulting predictions accounted for approximately

90% of the variance of the true velocity field, and comparison of the true

and predicted data shows excellent qualitative agreement for all three velocity

components, as well as vorticity. The practical feasibility of MP-VSE was

subsequently demonstrated through the successful application of the technique

to the prediction of unstable vortex rings in water. Predictions of the rings

during the non-linear instability phase of development have been presented,

which closely match the expected behaviour based on theory and previous

observations.

To assist in the calibration of the vortex ring experiment, a novel ap-

proach to light sheet measurement has been devised. A custom-built target

is placed in the path of the light sheet, and an accurate measurement of the

light sheet plane position is obtained from a single digital image of the target.

Unlike existing approaches to light sheet measurement, the technique is able

to provide rapid positional measurement with minimal user interaction. Al-

though the technique is in its early stages of development, the measurement

accuracy of the current implementation has been obtained experimentally and
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is comparable to that of existing, more time consuming, approaches. However,

further improvements to the both the accuracy and speed of the technique

should be possible, and the ultimate aim is the removal of any need for user

input, thus allowing for true real-time feedback of light sheet position.

The light sheet measurement system was an instrumental part of the

calibration of the vortex ring experiment; a process which was subsequently

validated from the statistical properties of the PIV measurements. This in-

dicated that the measurement and calibration errors were low, although this

was only confirmed qualitatively, and a definitive estimate of the prediction

error has not been obtained. Such knowledge will be useful in determining the

degree of confidence that can be placed in the predictions, both for the present

experiment and for future applications. As such, the development of a reliable

approach to obtaining an estimate of prediction error will be an important

factor in the adoption of the technique. A preliminary investigation into this

task has already been performed (appendix D.6), which shows how the vari-

ous forms of measurement error propagate through the MP-VSE process. The

next step will be to develop a reliable means of estimating the variances of

each of these error terms.

Another important avenue of work will be the deployment of MP-VSE

in further, more challenging, applications. Presently, there is the possibility of

its use as part of an industrial study into the reduction of jet noise, where it

would be used to predict the downstream flow of a 1
10

th scale jet engine. Such a

project would provide an excellent test of the capabilities of the technique, both

in terms of the demanding experimental configuration required to measure the

flow, and inherent complexity of predicting flows at high Reynolds numbers.

When considering further applications of the technique, the suitability

of MP-VSE to the prediction of vortex rings should not be overlooked. The
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results from the experiment detailed in this work show that the technique is

capable of accurately capturing many aspects of the vortex rings’ behaviour.

Although the main aim of the experiment was to investigate the performance of

MP-VSE, rather than the study of the vortex rings themselves, the success of

the experiment suggests that MP-VSE would be a useful tool for this purpose.
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Appendix A

Properties of the Ordinary

Least Square Estimator

A.1 Small-sample Unbiasedness of the OLS Es-

timator

The expectation of the OLS estimator b̂OLS, conditional on X, is given by:

E
[
b̂OLS|X

]
= E

[
(XTX)−1XTy|X

]
(A.1)

Because y = Xb̌ + e:

E
[
b̂OLS|X

]
= E

[
(XTX)−1XTXb̌ + (XTX)−1XTe|X

]
= b̌ + E

[
(XTX)−1XTe|X

] (A.2)
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Because the expectation is conditioned on X, any instances of the term can

be considered as fixed quantities:

E
[
b̂OLS|X

]
= b̌ + (XTX)−1XTE [e|X] (A.3)

From the second tier of OLS assumptions (section 4.1.2), it is known that the

E[e|X] = 0, leading to:

E
[
b̂OLS|X

]
= b̌ (A.4)

which shows that the OLS estimator is conditionally unbiased. To show that

the estimator is unconditionally unbiased, the expectation of both sides of

(A.4) is taken:

E
[
E
[
b̂OLS|X

]]
= E

[
b̌
]

= b̌
(A.5)

The law of iterated expectations (LIE) states that for two random variables a

and b, the expectation of E[a|b] is simply the expectation of a, i.e.:

E[a] = E [E [a|b]] (A.6)

Therefore:

E[b̂OLS] = b̌ (A.7)
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A.2 Small-sample Unbiasedness of the OLS Pre-

dictor

The expectation of y − ŷ, conditional on both X and x, is given by:

E [y − ŷ|x,X] =E
[
xb̌ + e− xb̂OLS|x,X

]
=E

[
xb̌|x,X

]
+ E [e|x,X]− E

[
xb̂OLS|x,X

]
=xb̌ + E [e|x,X]− xE

[
b̂OLS|x,X

] (A.8)

Under the second tier of OLS assumptions, E [e|x,X] = 0, and from Appendix

A.1, E
[
b̂OLS|x,X

]
= b̌. Therefore:

E [y − ŷ|x,X] =xb̌− xb̌

=0
(A.9)

A.3 Efficiency of the OLS estimator

This section demonstrates that the OLS estimator is the best linear unbiased

estimator (BLUE) of b̌, under the Gauss-Markov assumptions (assumptions

1-3). The following is based on the derivation from Stock and Watson (2002).

The finite matrix of observations y used to build a linear estimator

b̃ = Ay can be expressed as y = Xb̌ + e, so the expectation of b̃, conditional

on X, can be written as:

E
[
b̃|X

]
= E [Ay|X]

= E
[
AXb̌|X

]
+ E [Ae|X]

= AXb̌ + AE [e|X]

(A.10)
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From assumption 2, E[e|X] = 0, so the second term is zero. As b̃ is unbiased:

E
[
b̃|X

]
= AXb̌ = b̌

which implies that:

AX = I (A.12)

Therefore:

b̃ = Ay

= AXb̌ + Ae

= b̌ + Ae

(A.13)

Defining the variance-covariance matrix of b̃ as:

Var
[
b̃|X

]
=E

[
b̃b̃

T |X
]

=E
[
AeeTAT |X

]
=AE

[
eeT |X

]
AT

=Aσ2IAT

=σ2AAT

(A.14)

By expressing the OLS estimator b̂OLS = (XTX)−1XTy as b̂OLS = Ây, the

general matrix A can be written as:

A = Â + D (A.15)

where D is the difference between b̂OLS and b̃. This leads to the following
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properties:

ÂÂ
T

= (XTX)−1XTX(XTX)−1

= (XTX)−1
(A.16)

ÂA
T

= (XTX)−1XTAT

= (XTX)−1(AX)

= (XTX)−1

(A.17)

and finally:

ÂD
T

= Â(A− Â)T

= ÂA
T − ÂÂ

T

= 0

(A.18)

The variance matrix of b̃ can now be written as:

Var
[
b̃|X

]
=σ2

(
Â + D

)(
Â + D

)T
=σ2

(
ÂÂ

T
+ ÂD

T
+ DÂ

T
+ DDT

)
=σ2(XTX)−1 + σ2DDT

(A.19)

For any matrix D, the resulting matrix DDT will be non-negative, which leads

to the inequality:

Var
[
b̃|X

]
≥ Var

[
b̂|X

]
(A.20)

which will only hold with equality when b̃ = b̂OLS, in which case:

Var
[
b̂|X

]
= σ2(XTX)−1 (A.21)

Hence, under the assumptions 1-3, b̂OLS is the BLUE of b̌.
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A.4 MSE of the OLS predictor under the Gauss-

Markov Assumptions

The following is based on a related derivation from Stock and Watson (2002).

For the unbiased linear estimator b̃, the MSE of subsequent predictions ỹ =

xb̃, conditional on x and X, is expressed as:

MSE [ỹ|x,X] =E
[
(y − ỹ)2 |x,X

]
=E

[(
xb̌ + e− xb̃

)2
|x,X

] (A.22)

Substituting the expression for b̃ in (A.13):

MSE [ỹ|x,X] =E
(
xb̌ + e− x(b̌ + Ae)

)2 |x,X
=E

[
(e− xAe)2 |x,X

]
=E

[
e2|x,X

]
− 2E [exAe|x,X] + E

[
(xAe)2|x,X

] (A.23)

From OLS assumption 3.b (section 4.1.2), the error terms e and e are inde-

pendent, with zero mean, and so the expectation of the second term is zero

.The first term corresponds to the variance of e:

MSE [ỹ|x,X] =σ2 + E
[
(xAe)2|x,X

]
=σ2 + E

[
xAeeTATxT |x,X

]
=σ2 + xAE

[
eeT |x,X

]
ATxT

=σ2 + xAσ2IATxT

=σ2 + x(σ2AAT )xT

(A.24)
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The expression σ2AAT is equivalent to Var[b̃|X], which, from (A.19), can also

be written as σ2(XTX)−1 + σ2DDT . Therefore:

MSE [ỹ|x,X] =σ2 + σ2x(XTX)−1xT + σ2xDDTxT (A.25)

which shows that the MSE of predictions is minimised when D = 0, which

occurs only when b̃ = b̂OLS

A.5 Maximum Likelihood Estimation of the

Linear Regression Coefficients

This section obtains the maximum likelihood estimate bMLE for the linear

model y = xb + e, under OLS assumptions 1-4. It was established in section

4.1.2 that the relevant likelihood function is:

L(θ|y,X) =
(
2πσ2

)−m
2 exp

(
−(y −Xb)T (y −Xb)

2σ2

)
(A.26)

where:

θ =

b

σ2

 (A.27)

The MLE estimate of b is found by considering the log-likelihood function:

lnL(θ|y,X) =− m

2
ln
(
2πσ2

)
− 1

2σ2

(
y −Xb̌

)T (
y −Xb̌

)
(A.28)

The first derivative with respect to b is:

δ lnL(θ|y,X)

δb
=− 1

σ2
XTy +

1

σ2
XTXb̌ (A.29)
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Setting to zero and rearranging, yields the Normal equations (equation (4.13)):

XTXb = XTy (A.30)

Hence, under assumptions 1-4, the MLE and OLS estimates of b are identical:

b̂MLE = b̂OLS = (XTX)−1XTy (A.31)

A.6 Obtaining the Cramér-Rao Lower Bound

of the Linear Regression Coefficients

Having defined the log likelihood, the next stage in the task of determining

the Cramér-Rao Lower Bound (CRLB) involves determining the Fisher infor-

mation matrix I(θ). Put simply, the Fisher information matrix is a measure

of the information that y theoretically contains about the estimator θ. The

CRLB is then defined as the inverse of I(θ).

The Fisher information matrix can be defined in terms of the matrix of

partial second derivatives of lnL(θ):

I(θ) =− E

[
δ2 lnL(θ)

δθδθT

]
(A.32)

In the present case, the parameter vector θ = [bTσ2]T , so the matrix of second

partial derivatives can be partitioned into four sections:

I(θ) =

 δ2 lnL(θ|X)
δbδbT

δ2 lnL(θ|X)
δbδσ2

δ2 lnL(θ|X)
δσ2δbT

δ2 lnL(θ|X)
δ(σ2)2

 (A.33)
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which ultimately leads to the Fisher information matrix1:

I(θ|X) =

 1
σ2 X

TX 0

0 n
2σ4

 (A.34)

and the CRLB:

CRLB = I(θ|X)−1 =

σ2(XTX)−1 0

0 2σ4

n

 (A.35)

The CRLB for the ith parameter in the vector θ is given by partition i, i in the

full CRLB matrix. Hence, under assumptions 1-4, the variance of an unbiased

estimator of b̂ is bounded by:

Var(b̃|X) ≥ σ2(XTX)−1 (A.36)

From Appendix A.3, the variance of the OLS estimator is:

Var(b̂OLS|X) = σ2(XTX)−1 (A.37)

which shows that the OLS estimator achieves the CRLB, and hence is the

uniformly minimum variance unbiased estimator (UMVUE).

1For a full derivation of the Fisher information matrix, see Hayashi (2000)
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A.7 Expectation of the Error Term in the Op-

timum Linear Regression Model

In this section it is shown that for the optimum linear regression model:

y = xb̌ + e (A.38)

the expectation of the error term is zero, assuming that the model includes

a constant term bc. The optimum model is defined as the linear model that

minimises the mean square error of predictions, E[e2] = E[(y − xb̌)2] over the

entire population of x and y. Such a model is subject to the orthogonality

principle, which states that the error term is orthogonal to the independent

variables, x = [x1 x2 . . . xn]. That is:

E[exi] = 0 (A.39)

for i = 1, 2, . . . , n. If the constant term is included in the model, then x1 = 1,

and so:

E[ex1] = E[e] = 0 (A.40)

which shows that the expectation of the error is zero.
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Appendix B

Bias-Variance Decompositions

B.1 Decomposition of the OLS Prediction Er-

ror

In this section, a decomposition of the mean square error of predictions for

the OLS predictor performed. The approach employed here is based loosely

on the work of Næs and Mevik (2001).

The MSE of prediction is defined as:

MSE [ŷ] =E
[
(y − ŷ)2

]
=E

[(
y − xb̂OLS

)2]
=E

[(
y − x

(
XTX

)−1
XTy

)2] (B.1)
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Because y = xb̌ + e, and y = Xb̌ + e:

MSE [ŷ] =E

[(
xb̌ + e− x

(
XTX

)−1
XT
(
Xb̌ + e

))2]
=E

[(
xb̌ + e− x

(
XTX

)−1
XTXb̌− x

(
XTX

)−1
XTe

)2]
=E

[(
xb̌ + e− xb̌− x

(
XTX

)−1
XTe

)2]
=E

[(
e− x

(
XTX

)−1
XTe

)2]
=E

[
e2 − 2ex

(
XTX

)−1
XTe +

(
x
(
XTX

)−1
XTe

)2]
(B.2)

As e and e are uncorrelated, the term −2ex
(
XTX

)−1
XTe cancels to zero:

MSE [ŷ] =E
[
e2
]

+ E

[(
x
(
XTX

)−1
XTe

)2]
(B.3)

To simplify the calculation, consider OLS assumptions 3 and 4 to be valid.

Therefore, E [e2|x,X] = σ2, and from the fact that Cov(ei, ej) = 0, it follows

that E
[
eeT|x,X

]
= σ2I, where I is the identity matrix:

MSEP [ŷ] =σ2 + E

[(
x
(
XTX

)−1
XTe

)2]
=σ2 + E

[
x
(
XTX

)−1
XTeeTX

(
XTX

)−1
xT
] (B.4)
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Applying the law of iterated expectations to the right hand side:

MSE [ŷ] =σ2 + E

[
E
[
x
(
XTX

)−1
XTeeTX

(
XTX

)−1
xT |x,X

]]
=σ2 + E

[
x
(
XTX

)−1
XTE

[
eeT |x,X

]
X
(
XTX

)−1
xT
]

=σ2 + E
[
x
(
XTX

)−1
XTσ2IX

(
XTX

)−1
xT
]

=σ2 + σ2E
[
x
(
XTX

)−1
XTX

(
XTX

)−1
xT
]

=σ2 + σ2E
[
x
(
XTX

)−1
xT
]

(B.5)

The covariance matrix of X is defined as S = 1
m

XXT , which allows (XTX)−1

to be expressed as (mS)−1 = 1
m

(S)−1. Therefore:

MSE [ŷ] =σ2 +
σ2

m
E
[
x(S)−1xT

]
(B.6)

At this point, an alternative approach to that of Næs and Mevik (2001) is

taken. Representing S as a function of it’s eigenvectors (i.e. the principal

components of X) yields S = ULUT =
∑n

k=1 lkuku
T
k :

MSE [ŷ] =σ2 +
σ2

m
E

[
x(

n∑
k=1

lkuku
T
k )−1xT

]

=σ2 +
σ2

m
E

[
n∑
k=1

xuku
T
k xT

lk

]

=σ2 +
σ2

m
E

[
n∑
k=1

(xuk)
2

lk

] (B.7)

By making the simplifying assumption that the sample principal components

of X are identical to those of the underlying population, then E [(xuk)2] =

E [(xγk)
2] = λk, which is the variance accounted for by the kth principal
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component:

MSE [ŷ] =σ2 +
σ2

m
E

[
n∑
k=1

λk
lk

]
(B.8)

Also, assuming the sample and population roots to be equal, lk = λk:

MSE [ŷ] =σ2 +
σ2

m

n∑
k=1

1

=σ2 +
m

n
σ2

=unexplained variance + model variance

(B.9)

B.2 Simplification of the PCR Estimator

From equation (4.76), the PCR estimator is given by:

b̂PCR =Ũ
(
ŨTXTXŨ

)−1
ŨTXTy (B.10)

To simplify this further, the inverse in this expression can be replaced by the

pseudo-inverse, which is equivalent in the case of a square, invertible matrix:

b̂PCR =Ũ
(
ŨTXTXŨ

)+
ŨTXTy (B.11)

If the matrices A, B and C are all of full rank, then (ABC)+ =

C+B+A+. This leads to:

b̂PCR =Ũ
(
Ũ
)+ (

XTX
)+ (

ŨT
)+

ŨTXTy

=ŨŨ
T (

XTX
)−1

ŨŨ
T
XTy

(B.12)
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For symmetric matrices A and B, AB = BA. Therefore:

b̂PCR =ŨŨ
T
ŨŨ

T (
XTX

)−1
XTy

b̂PCR =P−→Ṽ P−→Ṽ

(
XTX

)−1
XTy

(B.13)

The matrix P−→Ṽ is a projection matrix, which defines the projection onto the

subspace Ṽ , determined by the k principal components in Ũ. Projection

matrices possess the property of idempotency, i.e. AA = A. This leads to the

result:

b̂PCR =P−→Ṽ

(
XTX

)−1
XTy

=P−→Ṽ b̂OLS

(B.14)

B.3 Bias-Variance Decomposition of the PCR

Prediction Error

The MSE of prediction for PCR is given by:

MSE [ŷ|] =E
[
(y − ŷ)2

]
=E

[(
y − xb̂PCR

)2]
=E

[(
y − xP−→Ṽ

(
XTX

)−1
XTy

)2] (B.15)

282



Because y = xb̌ + e, and y = Xb̌ + e:

MSE [ŷ] =E

[(
xb̌ + e− xP−→Ṽ

(
XTX

)−1
XT
(
Xb̌ + e

))2]
=E

[(
xb̌ + e− xP−→Ṽ

(
XTX

)−1
XTXb̌− xP−→Ṽ

(
XTX

)−1
XTe

)2]
=E

[(
xb̌ + e− xP−→Ṽ b̌− xP−→Ṽ

(
XTX

)−1
XTe

)2]
=E

[(
e+ x

(
I− P−→Ṽ

)
b̌− xP−→Ṽ

(
XTX

)−1
XTe

)2]
(B.16)

The matrix I − P−→Ṽ defines the projection onto the null space of Ṽ , i.e. the

subspace defined by the discarded principal components. Denoting this matrix

as P−→Ṽ⊥
:

MSE [ŷ] =E

[(
e+ xP−→Ṽ⊥

b̌− xP−→Ṽ

(
XTX

)−1
XTe

)2]
(B.17)

When the squared brackets are expanded, the cross-terms cancel due to the

presence of the errors e and e, resulting in:

MSE [ŷ] = σ2 + E

[(
xP−→Ṽ⊥

b̌
)2]

+ E

[(
xP−→Ṽ

(
XTX

)−1
XTe

)2]
(B.18)
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Using the LIE, the third term can be written as,

E

[(
xP−→Ṽ

(
XTX

)−1
XTe

)2]
= E

[
E

[(
xP−→Ṽ

(
XTX

)−1
XTe

)2
|x,X

]]

= E

[
E
[
xP−→Ṽ

(
XTX

)−1
XTeeTX

(
XTX

)−1
P−→Ṽ xT |x,X

]]
= E

[
xP−→Ṽ

(
XTX

)−1
XTE

[
eeT |x,X

]
X
(
XTX

)−1
P−→Ṽ xT

]
= E

[
xP−→Ṽ

(
XTX

)−1
XTσ2IX

(
XTX

)−1
P−→Ṽ xT

]
= σ2E

[
xP−→Ṽ

(
XTX

)−1
P−→Ṽ xT

]

(B.19)

As before, (XTX)−1 can be expressed in terms of the covariance matrix S =

1
m

XTX = ULUT .

E

[(
xP−→Ṽ

(
XTX

)−1
XTe

)2]
=
σ2

m
E
[
xP−→Ṽ

(
ULUT )−1P−→Ṽ xT

]
=
σ2

m
E
[
xP−→Ṽ UL−1UT P−→Ṽ xT

] (B.20)

Here, P−→Ṽ U is the projection of U onto the subspace of Ṽ , and so is equal to

Ũ. Similarly, UT P−→Ṽ = ŨT . Therefore:

E

[(
xP−→Ṽ

(
XTX

)−1
XTe

)2]
=
σ2

m
E
[
xŨL

−1
ŨTxT

]
=
σ2

m
E

[
x(

k∑
i=1

liuiu
T
i )−1xT

] (B.21)
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Following the same procedure used for OLS (section B.1) leads to:

E

[(
xP−→Ṽ

(
XTX

)−1
XTe

)2]
=

k

m
σ2 (B.22)

Leading to the full bias-variance expression:

MSE [ŷ] =σ2 +
k

m
σ2 + E

[(
xP−→Ṽ⊥

b̌
)2]

=unexplained variance + model variance + model bias

(B.23)

B.4 Overview of the SIMPLS algorithm

(Following from the discussion in section 4.3.1 )

To ensure that subsequent score vectors ti are orthogonal, the covari-

ance matrix YTX is“deflated” after every iteration, to ensure that the contri-

bution to X made by all the previous scores is not present in the covariance

matrix for future calculations.

After the ith iteration of the algorithm, the contribution that the scores

T = [t1 t2 . . . ti] make towards X is given by X̂ = TP̂, where:

P̂ = (TTT)−1TTX (B.24)

Because the columns of T are orthogonal, the matrix TTT is diagonal, with

the element (i, i) = ‖ti‖2, i.e. the sum of squared elements of ti. This orthog-

onality allows each row of P̂ to be calculated independently at each iteration.

Denoting element (i, i) of TTT as ci, the ith row of P̂ is given by:

p̂i =
1

ci
tTi X (B.25)
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and so:

cip̂i = tTi X (B.26)

Orthogonality of t requires that, for every i > j:

tTj ti = 0 (B.27)

As ti = Xri:

tTj Xri = 0 (B.28)

and from (B.26):

cjp̂jri = 0 (B.29)

which shows that ri must be orthogonal to all preceding values of p̂j. This is

equivalent to requiring that ri is be restricted to the null space of the rows of

P̂, denoted as VP̂⊥
. Defining the matrix P−→VP̂⊥

as the projection onto VP̂⊥
, it

is required that:

ri = P−→VP̂⊥
ri (B.30)

which is only true if ri is contained entirely within VP̂⊥
. Therefore, for i > 2,

ri is chosen to maximise:

ri = argmax
(∣∣YT ti

∣∣)
= argmax

(∣∣YTXri
∣∣)

= argmax
(∣∣∣YTXP−→VP̂⊥

ri

∣∣∣)
(B.31)

which is solved by taking ri to be the largest right singular vector of the

matrix YTXP−→VP̂⊥
. In practice, the projection matrix can be calculated as

P−→VP̂⊥
= I − P̂+P̂, where P̂+ is the pseudo inverse. An overview of the

entire SIMPLS process is illustrated below. There are still several efficiency
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improvements that can be made to this algorithm (which are provided in full

in (de Jong, 1993)), and it is provided here only as an aid to understanding

the technique, rather than a basis for a practical implementation.

FOR i = 1, 2, . . . , k

IF i = 1

Calculate SVD of YTX

ELSE

Calculate SVD of YTX(I− P̂+P̂)

END

ri = first right singular vector

ti = Xri

pi = 1
‖ti‖

2
tiX

Store ri, ti and p̂i into R, T and P̂

END

Q̂ = (TTT)TTY

B̂PLS = RQ̂

B.5 Bias-Variance Decomposition of the LDR

Prediction Accuracy

The LDR prediction ŷLDR is a p dimensional vector, so the MSE is defined as:

MSE[ŷLDR] =
1

p
E
[
(y − ŷLDR)(y − ŷLDR)T

]
=

1

p
E
[
‖(y − ŷLDR)‖2

]
=

1

p
E

[∥∥∥(xB̌ + e− xB̂OLS P−→Ṽ

∥∥∥2]
(B.32)
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Following the standard procedure leads to:

MSE[ŷLDR] =
1

p
E

[∥∥∥(e− xB̌
(
I− P−→Ṽ

)
− x(XTX)−1XTEP−→Ṽ

∥∥∥2]
=

1

p

(
σ2 + E

[∥∥∥xB̌
(
I− P−→Ṽ

)∥∥∥2]

+ E

[∥∥∥x(XTX)−1XTEP−→Ṽ

∥∥∥2])
(B.33)

where σ2 = E
[
‖e‖2

]
=
∑p

i=1 E
[
e2i
]
, which is the sum of the unexplained

variance in y. Expanding the third term:

E

[∥∥∥x(XTX)−1XTEP−→Ṽ

∥∥∥2]
= E

[
x(XTX)−1XTEP−→Ṽ ETX(XTX)−1xT

] (B.34)

Using the LIE, this can be written as:

E

[∥∥∥x(XTX)−1XTEP−→Ṽ

∥∥∥2]
= E

[
E
[
x(XTX)−1XTEP−→Ṽ ETX(XTX)−1xT |X,x

]]
= E

[
x(XTX)−1XTE

[
EP−→Ṽ ET |X,x

]
X(XTX)−1xT

] (B.35)

The expression E

[
E
[
EP−→Ṽ ET |X,x

]]
can be expressed as σ̃2

|XI, where σ̃2
|X =

E
[∥∥∥eP−→Ṽ

∥∥∥ |X]. This describes the total unexplained variance of y contained

in the subspace Ṽ , conditional on X. The need to condition this expression

on X is due to that fact that in both CSE and RRR, the subspace Ṽ , which
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is defined by the columns of Ũ, is dependent on X. This leads to:

E

[∥∥∥x(XTX)−1XTEP−→Ṽ

∥∥∥2]
= E

[
σ̃2
|Xx(XTX)−1XTX(XTX)−1xT

]
= σ̃2E

[
σ̃2
|X
∥∥x(XTX)−1xT

∥∥2]
(B.36)

As with the OLS decomposition, this can be written as:

E

[∥∥∥x(XTX)−1XTEP−→Ṽ

∥∥∥2]
= E[σ̃2

|X]
n

m

= σ̃2 n

m

(B.37)

Where σ̃2 is now the total unconditional unexplained variance in the subspace

Ṽ . Reconstructing the full MSE gives:

MSE[ŷLDR] =
1

p

(
σ2 + +σ̃2 n

m
+ E

[∥∥∥xB̌
(
I− P−→Ṽ

)∥∥∥2]) (B.38)

Although this expression has similarities to those derived for the previous

techniques, it is not a true bias-variance decomposition. To be considered

such, the decomposition must contain:

• a variance term that reduces to zero when the number of modes k in the

model is zero, i.e. Ũ = 0.

• a bias term that reduces to zero when the LDR model is identical to the

OLS estimator.

The term σ̃2 n
m

meets the requirement of a variance term, as it reduces to

zero when the subspace Ṽ , defined by Ũ is zero. However, the third term,
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E

[∥∥∥xB̌
(
I− P−→Ṽ

)∥∥∥2] does not necessarily equal zero when the LDR model is

equivalent to the OLS estimator. To see this, the cases when the two techniques

are identical. From section 4.3.3, the LDR model is:

ŷLDR = xB̂OLS P−→Ṽ
(B.39)

The most obvious situation where OLS and LDR are equivalent is when P−→Ṽ =

I, which arises when Ũ consists of a complete set of p orthonormal modes.

Here, the third term of (B.38) cancels to zero, as hoped. However, in cases

where the rank r of b̂OLS is less than p, the OLS predictor resides in a VOLS

which is a smaller than Rp. In these situations, as long as P−→Ṽ projects onto a

subspace of size k < p, that still contains VOLS, LDR is still identical to OLS

even though P−→Ṽ 6= I. Now, the matrix I − P−→Ṽ will be positive semidefinite,

and the third term of (B.38) is unlikely to be zero.

To define a proper bias term, The identity matrix in the third term can

be expressed as I = P−→VOLS
+ P−→VOLS⊥

:

E

[∥∥∥xB̌
(
I− P−→Ṽ

)∥∥∥2]
= E

[∥∥∥∥xB̌
(

P−→VOLS
+ P−→VOLS⊥

− P−→Ṽ )
∥∥∥2]

= E

[∥∥∥xB̌P−→VOLS⊥

∥∥∥2]+ E

[∥∥∥xB̌
(

P−→VOLS
− P−→Ṽ

)∥∥∥2]
− 2E

[
xB̌P−→VOLS⊥

P−→Ṽ B̌TxT
]

(B.40)

Assuming that the subspace Ṽ is contained entirely within VOLS, then P−→VOLS⊥
P−→Ṽ

is zero, and the third term disappears. Also, the result from the subtraction

of the projection matrices, P−→VOLS
− P−→Ṽ will also be a projection matrix, that

describes the projection onto the subspace of VOLS that is not present in Ṽ :
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Therefore:

MSE[ŷLDR] =
1

p

(
σ2 + +σ̃2 n

m
+ E

[∥∥∥xB̌P−→VOLS⊥

∥∥∥2]

+ E

[∥∥∥xB̌
(

P−→VOLS
− P−→Ṽ

)∥∥∥2]) (B.41)

This can be thought of as a true bias-variance decomposition, consisting

of the unexplained variance term, a model variance terms, and model bias

term, which is zero for the OLS case, i.e. Ṽ = VOLS, and a further term,

E

[∥∥∥xB̌P−→VOLS⊥

∥∥∥2] which is present when size r of the subspace of VOLS is

smaller than p.

It is possible to express this final term in a more readily interpretable

form. The MSE of the OLS predictor for multivariate y is simply:

MSE[ŷOLS] =
1

p

(
σ2 + σ2 n

m

)
(B.42)

The total unexplained variance can be split into σ2 = σ̂2 + σ̂2
⊥, which is unex-

plained variance in VOLS, and VOLS⊥ respectively. This leads to:

=
1

p

(
σ2 + (σ̂2 + σ̂2

⊥)
n

m

)
=

1

p

(
σ2 + σ̂2 n

m
+ σ̂2

⊥
n

m

) (B.43)

As shown previously, LDR regression is equivalent to OLS regression when

Ṽ = VOLS, i.e:

MSE[ŷLDR|Ṽ=VOLS
] = MSE[ŷOLS] (B.44)
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Therefore:

1

p

(
σ2 + σ̂2 n

m
+ E

[∥∥∥xB̌P−→VOLS⊥

∥∥∥2]) =
1

p

(
σ2 + σ̂2 n

m
+ σ̂2

⊥
n

m

)
(B.45)

and:

E

[∥∥∥xB̌P−→VOLS⊥

∥∥∥2] = σ̂2
⊥
n

m
(B.46)

This term is a form of model error which is present in the MSE whenever

r < p. As it is present in the model, regardless of the choice of Ũ, is shall be

referred to as the unremovable model error.

The full MSE of ŷLDR can therefore be written as:

MSE[ŷLDR] =
1

p

(
σ2 + σ̂2

⊥
n

m
+ σ̃2 n

m
+ E

[∥∥∥xB̌
(

P−→Û − P−→Ṽ

)∥∥∥2])
=
σ2

p
+ σ̂2

⊥
n

pm

+ σ̃2 n

pm
+

1

p
E

[∥∥∥xB̌
(

P−→VOLS
− P−→Ṽ

)∥∥∥2]
=unexplained variance + unremovable model error

+ removable model variance + model bias

(B.47)
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Appendix C

A Novel Approach to Detect

Light Sheet Misalignment

C.1 Proposed Technique

The basis of the proposed technique is a purpose-built measurement frame,

shown in figure C.1. The frame consists of a square base plate, with three

angled sides which overhangs the base plate. It is constructed from black an-

odised aluminium with dimensions of 290 × 220 × 60mm. The overhanging

sides are angled at approximately 30◦, relative to the base plate. It should

be noted that the proposed technique only requires a measurement frame of

this general form, rather than a frame identical to the one shown here. The

dimensions of this particular frame have been chosen for the specific purpose

of calibrating the MP-VSE vortex ring experiment described in chapter 7. For

other applications, alternative configurations may be necessary to maximise

measurement accuracy. A discussion of the aspects of the design that con-

tribute towards accuracy are provided in appendix C.4, along with further
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details of construction of the frame described here.

To perform a measurement of the light sheet position, the frame is

positioned in the interrogation region of the flow, so that the three angled

sides intersect the path of the light sheet. On contact with each of the sides,

the light sheet projects a line (which shall be referred to as a projected light

sheet line, or PLL. Based on the known geometry of the frame, it is possible

to use the position of the PLLs to obtain the coordinates of several points on

the plane. As a plane can be explicitly defined if at least three non-collinear

points are known, it is therefore possible to calculate the exact position of the

light sheet relative to the measurement frame.

As can be seen in figure C.1, the edges of the frame are marked by a

series of white tracks. The inside edges of these tracks intersect at the eight

points A,B, . . . , H (as shown in figure C.2), which are at known coordinates,

and provide a reference for the calibration process. In turn, the consecutive

pairs of reference points define reference lines, i.e. AB, CD, EF and GH,

which will be intersected by at least one of the 3 PLLs (denoted as L1, L2 and

L3) at a particular point. In total there are six PLL/reference line intersec-

tions, AB.L1, CD.L1, CD.L2, EF.L2, EF.L3 and GH.L3. Theoretically, the

intersections CD.L1 and CD.L′2 are identical, as are EF.L2 and EF.L3. How-

ever, in practice the calculated intersections are subject to a certain amount

of error, which can be reduced to some extent by the inclusion of such re-

dundancy. The aim of the calibration procedure is to calculate the world

coordinates of these six points, which are sufficient to define its position of the

light sheet plane.

The world coordinates are calculated from an image of the calibration

frame. All the reference points, A,B, . . . , H, and PLLs, L1, L2, L3, will have

an equivalent in the image plane (denoted by a prime, i.e. A′, B′, . . . , H ′ and
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Figure C.1: The measurement frame.

L′1, L
′
2, L

′
3), although their positions will only be known in pixels and in 2

dimensions. In order to calculate the light sheet position, the relationship

between the image coordinates and the corresponding world coordinates must

therefore be established. This process is achieved using projective transforma-

tions, or homographies, which provide a one-to-one mapping of points between

two planes. All the points of interest on the measurement frame are located

on one of three planes (i.e. the left, top and right side), which means that

three homographies can be used to map all the necessary coordinates from the

image plane to each of the world planes.

If the frame is at a known position in flow coordinates, the light sheet

position will then be known absolutely. The procedure is also capable of

providing the relative position of two or more parallel light sheets, assuming

that the spacing of the sheets is sufficiently close that all lights sheets intersect
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Figure C.2: Position of reference points on the light sheet. The yellow arrows
define the origin and orientation of the measurement coordinate system.
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the measurement frame. The position of each light sheet (relative to the frame)

is obtained separately, which subsequently allows the relative alignment of the

planes to be calculated, without the need to know the absolute location of the

frame in the flow.

As the measurement process is based on data that is extracted in a

digital image, the resolution of the camera sensor stands to limit the accuracy

of the feature detection. In order to extend the accuracy of the process to

the sub-pixel range, the proposed technique has been designed so that all the

necessary features on the target are defined by the intersection of lines. This

is motivated by the fact that a discretely sampled image of an edge contains a

large amount of information that can be extracted to obtain its position and

orientation to sub-pixel accuracy. This concept is demonstrated in the example

in figure C.3. The process begins with a synthetically-generated perfect “knife”

edge. The line equation that defines this edge has also been used to produce

the discrete image in C.3(b), which includes a degree of blurring to simulate

lens effects. An edge detection algorithm is used to extract the “edge” pixels,

and a least-squares line fit is applied. The resulting line demonstrates excellent

agreement with the true position of the edge.

For this approach to obtain the location of the edge to sub-pixel accu-

racy, it is necessary for the edge to be off-perpendicular to the pixel grid of the

sensor. Otherwise, the result of the edge detection provides insufficient infor-

mation about the edge position. In figure C.4 the same procedure as before is

applied to a horizontal edge. Figure C.4(d) clearly shows that the fit suffers

in this situation.

In the following sections, the full process of calculating the light sheet

position from an image is described in detail. The discussion is split into five

sections, each covering a distinct aspect of the procedure.
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(d) Result of the line fitting process. The red
line shows the least-squares fit through the edge
points (denoted by the black squares)

Figure C.3: Stages of the line detection process
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(d) Result of the line fitting process for a hor-
izontal edge. The red line shows the least-
squares fit through the edge points (denoted by
the black squares). Note the disparity between
the true edge and fitted line.

Figure C.4: Stages of the line detection process
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C.1.1 Stage 1: Image Acquisition

The measurement process begins with the acquisition of an image of the mea-

surement frame, with the PLLs visible on the angled sides. If possible, the

camera should be placed approximately normal to the target in order to min-

imise the amount of perspective distortion in the image. Error in the mea-

surement can be minimised further by using a high resolution sensor and a

high-quality, distortion-free lens to produce the image. Also, care must be

taken to ensure that the image is correctly exposed. This may pose a problem

when using high-powered lasers, as the difference in brightness of the PLLs

and target tracks may exceed the dynamic range of the camera sensor. In this

case, it will be necessary to acquire two images; one of the target by itself and

one of the PLLs, possibly with the use of neutral density filters to attenuate

the light intensity. As long as the camera and target are not moved between

images this does not pose a problem for the technique, as the detection of the

target tracks and PLLs is carried out independently. For simplicity, the work

in this chapter will consider the case where only a single image is required.

The process will be illustrated using the example image shown in figure C.5.

Note that the camera has been rotated approximately 30 degrees. This is

a precautionary measure to avoid the possibility that edges in the image lie

perpendicular to the pixel grid.

C.1.2 Stage 2: Identification of Reference Points

Once a suitable image of the calibration frame has been acquired, the first

goal is to recover the coordinates of the reference points in image space. As

described earlier, the reference points are located at the intersections of the

edges of the white track lines that run around the sides of the frame.
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Figure C.5: Original image of the calibration plate

The process of recovering the reference points involves the following

stages:

1. Extracting the regions of the image that contain the track line edges.

2. Detecting the edge of the tracks.

3. Fitting lines to the edges.

4. Finding the intersections of the lines that define the reference points.

For the line fitting to work accurately, it is important that the line is

fitted only to points from the edge in question, as any other detected edge

features in the image may reduce the accuracy of the line fitting stage. There-

fore the first step towards the recovery of the reference points is to accurately

define the regions of the image that contain the track edges, so that the edge
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Figure C.6: Calibration plate image with the edge region mask applied. The
mask identifies the eight separate track edges of the input image (C.5).

detection process is applied only to the edge of interest. In the current imple-

mentation, the user is required to manually select the four extreme reference

points in the image (A′,C ′,E ′ and G′), which are used to map a mask on to

the image. The result of this process is shown in figure C.6. Each of the eight

edges can now be processed individually. Edge detection is carried out using a

simple differential based approach. An edge is characterised by a sharp change

in image intensity, which will manifest itself as a region of high magnitude in

the derivative of the edge image. The position of the edge can therefore be

found by a simple thresholding of the derivative magnitude. In the current im-

plementation, the Sobel convolution kernels, Gx and Gy, are used to provide

a simple approximation of the image derivative:

Gx =


+1 0 −1

+2 0 −2

+1 0 −1

 , Gy = GT
x =


+1 +2 +1

0 0 0

−1 −2 −1

 (C.1)
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The subsequent convolutions of Gx and Gy with the image approximate the

derivatives along the horizontal and vertical directions respectively. Conven-

tionally, the full approximation of the image derivative magnitude is given by

the norm of the two resulting derivatives. However, for this particular appli-

cation, only a single kernel is used. This is necessary because the detection of

the PLLs, described later in section C.1.3, is based on the sign of the gradi-

ent, which is not available if the norm of the derivatives is taken. The same

approach is used here for convenience.

The orientation of each edge is known in advance to be either approxi-

mately horizontal or vertical, which allows the derivative to be calculated using

the appropriate kernel. After the convolution, a threshold is applied to the

gradient image to identify the pixels that lie along the edge. In certain cases,

there will be spurious pixels in the thresholded image, as shown in the example

given in figure C.7 (a); here, part of the projected light sheet is present in the

image of the track edge, which will show up in the thresholded edge image.

If these points are included in the subsequent line fitting, the resulting line

will deviate from the true edge position. To avoid this problem, a robust line

fitting algorithm is used to identify and remove any points that are not part

of the true edge.

The process begins by extracting the coordinates of all the edge points

from the thresholded image, then carrying out a least-squares line fit to these

points. The distance between the line and each of the points is calculated, and

any points that fall outside of a specified distance threshold are discarded.

This process is repeated for a predetermined number of iterations, each time

reducing the distance threshold. Continuing the example from figure C.7 (a),

the resulting line fitting procedure is illustrated in C.7 (b). The red pixels

indicate points from the output of the edge detection process that are removed
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(b) Output of edge detection routine.
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(c) Closeup of detected edge points. The dashed line corresponds
to the position of the line when the spurious pixels are included
in the line fitting; the solid line shows the fit when the spurious
pixels are removed.

Figure C.7: Stages involved in the line fitting process

304



500 1000 1500 2000

500

1000

1500

2000

Figure C.8: Detected track edge locations (green lines), and resulting reference
points (red crosses)

in subsequent passes of the line fitting algorithm. The closeup in figure C.7 (c)

clearly shows the improvement in accuracy due to the robust approach; the

dashed line indicates the position of the original line fit, while the solid line

shows its final position.

Once lines have been fitted to all the track edges, the intersections of the

relevant lines are calculated, yielding the coordinates of the image reference

points, A′, B′, . . . , G′. The calculated positions of the edges and reference

points on the example image are given in figure C.8.

C.1.3 Stage 3: Light Sheet Line Detection

Detection of the light sheet lines uses a similar approach to the one described

in the previous section. The process begins by selecting the region of the
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image that contains the PLL in question. This is straightforward, as each of

the PLLs falls within a region defined by four reference points whose positions

in the image are already known. The process of edge detection is slightly

more sophisticated than before as the PLLs are of a finite thickness, and

so have two edges which must be detected separately1. The relevant Sobel

differential kernel is again applied to the image. This time, the magnitude of

the differentiated image is not calculated, as the sign of the derivative provides

a means of distinguishing between the two edges. One edge of the PLL will

be characterised by a sharp change from low to high pixel intensity, producing

a large positive gradient. For the second edge, the change from high to low

intensity will produce a large negative gradient.

From the image derivative, two separate edge images are produced by

applying both a positive and negative threshold in turn. The robust line

fitting method (described in section C.1.2) is then applied to each of the edge

images. The intersections of the resulting lines and the reference lines (i.e

A′B′, C ′D′, E ′F ′, G′H ′) are then found. Figure C.9 shows the result of this

procedure for the first PLL, L′1. Both the left edge, L′1a and right edge, L′1b

have been identified, and their intersections with the reference lines A′B′ and

C ′D′ are marked by red crosses.

At the end of this stage, the pixel coordinates are known for the six

1The term “edge” is used loosely here, as a light sheet will commonly have a Gaussian-
like profile, which makes it difficult to define where the edge actually starts. However, this
should not pose a problem in the current work as long as the same definition is used for
both edges
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Figure C.9: Result of the PLL detection process
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pairs of PLL/reference line intersections, i,e:

A′B′.L′1a , A
′B′.L′1b

C ′D′.L′1a , C
′D′.L′1b

...

F ′G′.L′3a , F
′G′.L′3b

(C.2)

C.1.4 Stage 4: Reprojection of image-space coordinates

With knowledge of the positions of the reference points, both in the image

and on the measurement frame, it is possible to calculate the positions of the

PLL/reference line intersections in world coordinates. Fundamental to this

is the concept of homography. If points on a plane π are projected through

a common point in space onto a second plane π′, the corresponding points

on the planes (x, y) and (x′, y′) are related by a homography, which provides

a transformation from the points on one plane to the corresponding points

on the other, and vice versa (see figure C.10). This is precisely the situation

when an image of the measurement target is acquired; points on a plane of

the target (i.e. either the left, top and right side of the frame) are projected

through the camera lens and onto the image sensor (figure C.10). Hence, if the

homography between the target plane and the image sensor is known, then the

image coordinates of the PLL/reference line intersections can be transformed

to their real-world equivalents.

A homography is described by a 3× 3 matrix, H:
kx

ky

k

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x′

y′

1′

 (C.3)
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(a) The points on the plane π′ can be obtained by pro-
jecting the points on plane π though the point p, and
vice-versa. This relationship can be expressed as a ho-
mography.

(b) The camera image is formed by the projection of the
points on the calibration target though the lens and on
to the sensor. Given a point in the image, knowledge
of the homography allows the corresponding location on
the calibration target to be calculated.

Figure C.10: The concept of homography and its use in the current application
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or simply:

x = Hx (C.4)

where k is a non-zero scalar. The matrix H can be obtained if at least four

point correspondences are known (i.e. a point whose coordinates on both

planes are known). In the present implementation, the solution is obtained

using the maketform function in the MATLAB image processing toolbox. For

the current application, four point correspondences are known for each of the

three calibration frame planes:

• on the left plane, the world reference points A, B, C and D correspond

to the image reference points A′, B′, C ′ and D′

• on the top plane, the world reference points C, D, E and F correspond

to the image reference points C ′, D′, E ′ and F ′

• on the right plane, the world reference points E, F , G and H correspond

to the image reference points E ′, F ′, G′ and H ′

In their original form, the coordinates of the world reference points de-

scribe their position in 3-dimensional space. Note that in the transformation

defined in (C.4), all coordinates are expressed in only 2 dimensions, which de-

scribes their position on the plane. Before a transformation can be computed,

the coordinate system of each plane on the measurement frame is rotated, in

order to make one of the 3 components redundant.

Once the three homographies are computed, the coordinates of the light

sheet/reference line intersection boundaries (A′B′.L′1a, A
′B′.L′1b, etc.) are pro-

jected onto the world plane, and their 3-D coordinates are recovered.
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C.1.5 Stage 5: Calculation of Light Sheet Position

After the reprojection stage, the position of the light sheet, which is of a finite

thickness, is represented by 12 points, with six points describing each side of the

sheet. In the current implementation of the technique, the aim is to represent

the position of the light sheet in terms of a single plane, which is assumed

to pass directly though the centre of the light sheet’s width. Therefore, the

coordinates of each point pair are averaged to produce an estimate of six points

that lie in the centre of the sheet, i.e: a

A′B′.L′1 =
A′B′.L′1a + A′B′.L′1b

2

C ′D′.L′1 =
C ′D′.L′1a + C ′S ′.L′1b

2
...

G′H ′.L′3 =
G′H ′.L′3a +G′H ′.L′3b

2

(C.5)

A plane in x-y-z space is defined by the homogeneous equation:

ax+ by + cz + d = 0 (C.6)

The equation has four unknowns, a, b, c and d, but only three degrees of free-

dom. Hence, three points on the plane are required to estimate the unknowns.

Six points on the light sheet are known, leading to an over-determined system

of equations:

Xa = 0 (C.7)
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where X is a 6× 4 matrix of points:

X =


x1 y1 z1 1

x2 y2 z2 1
...

...
...

...

x6 y6 z6 1

 (C.8)

and a = [a b c d]T . The least-squares solution, â, is given by the smallest right

singular vector of X, which minimises ‖Xa‖ subject to the constraint that

‖a‖ = 1.

The resulting values of a,b, c and d give the position of the light sheet in

space, defined in the coordinate system used by the reference point coordinates.

C.2 Assessment of Measurement Performance

A simple experiment was performed to quantify the accuracy of the light sheet

measurement technique, using the setup shown in figure C.11. The measure-

ment frame was mounted onto a micrometer traverse which allowed the target

to be accurately traversed along the z-axis of the frame’s coordinate system

(as defined in figure C.2). A continuous wave diode laser was passed through a

cylindrical lens to generate a light sheet, which was projected onto the frame

from below. Images of the frame were acquired using a PCO.2000 camera

(described in appendix D.4) fitted with a Nikon 50mm f1.4 lens.

Using the traverse, the measurement frame was moved forward in 2mm

increments to six different locations along the z axis, and an image of the

target was obtained at each position. This process was repeated three times;

in each case, the mirror and cylindrical lens were adjusted slightly to change
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Figure C.11: Experimental setup used to assess the performance of the pro-
posed technique

the orientation of the light sheet.

Relative to the measurement frame coordinates, each run effectively

created six parallel light sheets, separated by 2mm along the z-axis. The

measurement procedure was applied for each effective light sheet, and the

resulting plane equations were compared with the true situation to assess the

performance of the technique. Two separate error measurements were made.

Firstly, the z position of each light sheet was calculated at an x, y position

in the centre of the measurement target. For each possible combination of

light sheet pairs, the distance between the two planes was calculated, and the

deviation from the true distance (which was a multiple of 2mm) was recorded

in each case. Secondly, the vector normal to each plane were obtained. Again,

for each combination of light sheet pairs, the angle between these vectors was

calculated. As the sheets were parallel, the true plane-normal vectors were

identical, so the true angle between the vectors was zero. This procedure was
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performed separately for the three runs, which provided a total of 45 error

measurements for both the plane z position and the plane angle.

Over the three runs, the root mean square error in the measured z

positions was 40µm, and the RMS error in the plane angle was 0.03◦. These

figures represent the error in the measurement of the relative position of two

light sheets, and so include the error from two separate absolute position

measurements. As such, the error of an individual measurement may be lower

than given here. On the other hand, the possible presence of systematic bias,

which would be present in an absolute measurement of position, would be

cancelled out in the relative measurements, and would not be reflected in

these results. Further testing would be necessary to establish the performance

in the absolute case. However, for the purposes of calibrating the MP-VSE

experiment described in chapter 7, only the relative position of the light sheets

was required, so these results are sufficient to validate the use of the technique

for this purpose.

The majority of competing approaches described in section ?? do not

report measurement accuracy, and so a comparison of performance is only

possible in a couple of cases. A further problem is that the measure of accuracy

obtained here does not apply to the proposed technique in general, only to the

specific implementation used in the experiment. For example, different sized

measurement frames (i.e. for use with larger or smaller flow measurement

regions) would likely produce different results. Also, the effect of camera

resolution has not been considered. Fortunately, in the following cases in

literature, the reported accuracies apply to experimental configurations that

correspond closely to the MP-VSE experiment, which the measurement frame

has been specifically designed for. Therefore, at the very least, the performance

of the techniques can be compared for this particular scenario.
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For the technique described by Hori and Sakakibara (2004), an error of

100µm is reported for the measurement of the z position of the light sheet.

This approach was utilised in a scanning-light sheet PIV experiment, where

each PIV measurement consisted of a 10× 10mm region. This is equivalent to

the region employed in the MP-VSE experiment, and so a direct comparison

of the error is valid. It is noted, however, that the figure reported by Hori and

Sakakibara (2004) is an estimate, rather than a direct measurement, of the

error.

An experiment similar to the one employed here was made by Wieneke

(2005) to assess the accuracy of the PIV self-calibration approach outlined in

the same paper. This involved applying self-calibration to images of a ran-

dom dot target, which was mounted on a traverse. The resulting accuracy in

terms of z location was found to be within 4µm. Although this is an order

of magnitude lower than the accuracy obtained here, a comparison is perhaps

slightly unfair, as the experiment used a synthetic target rather than actual

particle images, and may not completely reflect the true performance. It is

noted that in practical applications, self-calibration approaches are reported

as being able to identify the position of the light sheet to within 0.2 − 0.5

pixels (Wieneke and Taylor, 2006). Assuming a 100 × 100mm measurement

region, this would correspond to an absolute error of 20−50µm for standard 1

megapixel cameras, or 10− 25µm for 2 megapixel cameras. However, to relate

the performance of self-calibration to the exact experimental setup described

in chapter 7, the error would be 42− 104µm due to the use of low resolution

cameras (Point Gray Research Inc. Firefly MV board cameras with a resolu-

tion of 640 × 480, described in appendix D.4). For this application at least,

the proposed technique may well offer the best performance.
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C.3 Conclusions and Further Work

A novel technique has been proposed to allow the rapid measurement of a light

sheet’s position, both absolutely and relative to another sheet. The required

hardware and software has been created and has been successfully applied to

measure the relative positions of multiple parallel light sheets. An experiment

has been performed to estimate the technique’s measurement error.

At present, the task of obtaining a position measurement from an image

still requires a small amount of user input. This arises from the need to correct

for differences in brightness of the three projected light sheet lines. The current

geometry of the target means that the top plane of the frame is directly in the

path of the light sheet, while the two side planes are intersected by the light

sheet at a shallow angle. As a result, the top PLL is far brighter than the

others. Presently, this requires the manual adjustment of the image contrast

in order to aid the process of line detection, although in future iterations of

the software, it would be simple to automate this process.

Nonetheless, the problem of differences in light intensity may still be

a problem that must be dealt with directly. This was apparent from the

use of the target in the MP-VSE experiment described in chapter 7. In this

application, the light sheets had a narrow angle of divergence, which meant

that the difference in the intensities of the PLLs was larger than the dynamic

range of the camera. Therefore, two separate images had to be acquired; one

for the top PLL (which was attenuated with a neutral density filter), and one

for the side PLLs.

To address this problem, it may be necessary to reconsider the current

design of the measurement target. For example, a target of the form shown

in figure C.12 would produce two PLLs of roughly identical intensity. The
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Figure C.12: Potential design to produce uniform intensity of projected light
sheet lines

measurement procedure would be carried out in the same manner as before,

although the number of points available to fit the plane will be reduced, at the

possible expense of accuracy of the measurement.

An alternative approach may be to consider the use of materials or coat-

ings with more appropriate reflectance properties. For example, a partially-

transparent material such as ground glass may provide flexible control over

the reflected light intensity, and different reflectivities could be employed for

the top and side panels.

Once all user intervention is removed from the procedure, the time to

produce a measurement would by dictated solely by the speed of the software.

With efficient code, it would therefore be possible to provide near real-time

feedback of the light sheet position, which would offer an unrivalled degree of

assistance to the task of light sheet alignment.

The changes considered so far relate mainly to the usability of the ap-

proach. However, there are potentially a number of changes that may bring
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about improvements in accuracy of the measurements. As such, it may be

useful to investigate the following aspects of the procedure:

• The effects of edge angle, image resolution, under/over exposure, etc. on

the accuracy of the edge detection routine.

• The use of a more sophisticated edge detection routine.

• The validity of defining the light sheet position with a plane mid-way

between the detected edges of the finite thickness sheet.

• The effect of curvature of the light sheet.

• The relationship between measurement accuracy and frame size.

A final, but no less important, avenue for work is the further assessment

of the technique’s practical accuracy. The tests described in the previous

section only addressed the accuracy of the measurement of one light sheet

relative to another. Before using the technique for the purpose of absolute

measurements, it would be useful to first assess its accuracy for this purpose.

Although a wide variety of potential improvements have been consid-

ered in this section, this should not detract from the current performance of

the technique. The experimental assessment of the technique in section C.2

has shown that in terms of accuracy alone, the technique compares favourably

with similar approaches. Of course, this does not account for the significant

advantage of the proposed technique, with regards to the speed and simplicity

in which measurements can be made. Furthermore, it is likely that the cur-

rent performance is already sufficient for many applications. For example, in

the dual-plane PIV experiment described in (Mullin and Dahn, 2005), a mis-

alignment of just under 1◦ was detected, and was deemed sufficiently small for
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the task of computing the velocity gradient tensor field. Clearly, this level of

misalignment is easily detectable with the current setup. A similar argument

is valid in the case of the MP-VSE experiment, where the sensitivity of the

sheet-forming adjustment mechanism meant that the obtainable resolution of

the light sheet position was far greater that the accuracy of the measurement

technique (see section 7.3.2). It was therefore necessary to accept a misalign-

ment of approximately 100µm in z, and a rotation of 0.2◦; again, this was well

within the capability of the technique.

C.4 Construction of the Light Sheet Measure-

ment Frame

Certain elements of the measurement frame design can be chosen by the user

to suit the required application. In this section, some of these choices will be

considered, with reference to the design of the particular frame used in this

thesis. An aspect of particular importance is the angle of the sides of the frame,

which makes a major contribution to the overall measurement accuracy. This

can be shown by considering how error manifests itself in the measurement of

a light sheet’s position. The aim of the proposed technique is to determine the

world coordinates of enough points on the light sheet to define its location in

space. This is achieved by first calculating the position of these points within

an image of the frame, and then projecting the points into world coordinates.

Any error in the calculation of the points in the image will propagate into the

world coordinates, which will no longer lie exactly on the light sheet plane.

This leads to error in the calculated light sheet position (of course, there are

other sources of error, such as in the physical construction of the target, but
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these will not be considered here). In this context, the angle of the frame sides

can be shown to have a considerable effect on the measurement accuracy. For

simplicity, a 2-dimensional approximation to the measurement process will be

considered, as shown in figure C.13. This example concerns a single point on

the light sheet, which is determined by the intersection of the sheet with the

frame side (represented by a red dot). This point is projected onto the image

plane (blue dot), but due to various error sources, the position of the true

point is not determined exactly; instead, the perceived position (blue cross)

is subject to a degree of error, ∆x. Projection of the erroneous point back

onto the target results in a point that no longer lies on the light sheet plane

(red cross). The amount of error introduced into the overall measurement is

a function of e, which is the closest distance from the calculated point to the

light sheet. Comparing figures C.13 (a) and (b), it is clear that for a given

∆x, the error e becomes smaller as the angle of the frame sides is reduced.

This suggests that the measurement frame should be designed with as

shallow an angle as possible. In practice, however, there are several factors that

limit the minimum achievable angle. Firstly, when the aim is to measure the

relative positions of multiple light sheets, the depth of the frame must be large

enough to allow all the light sheets to project onto the sides. As such, a shallow

angle on the sides will require a much larger frame than otherwise. Aside from

the fact that more material is required for the construction, the light sheet(s)

that project onto the outermost part of the frame may potentially have to be

much wider than the flow measurement region requires. This is undesirable,

as the full efficiency of the light source can no longer be used for the flow

measurement.

A secondary feature of the current measurement frame is the ability to

mount a PIV calibration target to the base plate, as shown in figure C.14.
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lens

image plane
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calibration frame

e

(a) Large angle frame, leading to a large error e in the calculated
light sheet point.

lens

image plane

Δx

light sheet
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e

(b) Shallow angle frame, with a smaller error e.

Figure C.13: Comparison of error for different angles of calibration frame sides.
The red dot corresponds to the true position of the light sheet point, and the
blue point is the position of the true point when projected onto the image
sensor. Due to errors in the calibration process, the perceived position light
sheet point (blue cross) on the image plane is subject to a degree of error ∆x.
The perceived position, reprojected in world coordinates (red cross) now lies
a distance e from the light sheet.
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Figure C.14: Measurement frame with PIV calibration target fitted to base
plate

This is beneficial from a time-saving point of view, as it allows the tasks of

light sheet alignment and PIV system calibration to be carried out with the

same equipment. However, this feature adds further size to the frame, which

will increase the effect of the aforementioned light source efficiency problem.

The current frame was designed for the specific purpose of calibrating

the vortex ring experiment, described in chapter 7. This necessitated a frame

that was capable of measuring two parallel light sheets, approximately 4mm

thick, with a spacing of 16mm. For each light sheet, the PIV measurement

region was approximately 100×100mm. Based on the issues described here, an

angle of approximately 30◦ was chosen for the frame sides, which was deemed

to be the best compromise between accuracy and overall frame size.

The frame was fabricated from four separate aluminium pieces, (the

base plate and the three individual sides), which were bolted together and
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subsequently anodised to provide a low reflectivity surface suitable for use

with high-power lasers. 5 mm reference tracks were milled into the anodised

frame, and filled with white silicone sealant. The optional PIV calibration

plate is mounted by bolting the plate to the frame through the diagonal slot

in the centre of the base plate. Two reference rails on the base plate are used to

accurately align the PIV target to a known position on the frame. A technical

drawing of the frame is included in figure C.15.
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Figure C.15: Technical drawing of calibration frame. Drawing has been resized
to 60% of original, so references to scale are no longer valid.
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Appendix D

Miscellanea

D.1 An Efficient Singular Value Decomposi-

tion of a Rank Deficient Covariance Ma-

trix

For an m × n matrix X and an m × p matrix Y, the size of the covariance

matrix C = YTX is p× n, which can often be very large in the test scenarios

considered in chapter 5. An extreme example of this situation occurs in ap-

pendix D.2, where the dimensions the covariance matrix reach 3072 × 18721,

and the computation of SVD would not possible with the available comput-

ing resources. However, in situations where m < n, p, the covariance matrix

will be rank deficient, which can be exploited to reduce the computational

complexity when the SVD of C is sought. As described in section 3.4, the

computation of the SVD of C can potentially be calculated from an EVD of

either CTC, or CCT , but in the current case, this would still only reduce the

problem to the EVD of a 3072 × 3072 matrix, which was still infeasible with

325



the resources at hand.

As a solution, the task of computing the SVD of C can be reduced to

a process involving 3 separate EVDs of m × m matrices (which corresponds

to a size 500 × 500 in the example in appendix D.2). To achieve this, a

specific form of the SVD, known as the thin SVD, is used, which only computes

the singular vectors that have a non-zero singular value. To illustrate the

difference between the thin and full SVD, the resulting decompositions can be

represented visually. Beginning with the full SVD, the resulting decomposition

of the m× n matrix A is:

m

n

A =

m

m

UL

m

n

S n

n

VT
R

while the thin SVD is:

m

n

A =

m

n

UL n

n

S
n

n

VT
R

The proposed approach begins with the separate SVD decompositions

of the m× n matrix X and m× p matrix Y, where m << n, p. For efficiency,

this is obtained from the EVD of XXT and YYT , which are both n × n

matrices. Continuing with the visual approach, matrix C can be represented

as:
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m

n

C =

p

m

YT m

n

X

Replacing X and Y with their corresponding SVDs:

m

n

C =

p

m

VY m

m

SY
m

m

UT
Y

m

m

UX
m

m

SX
m

n

VT
X

Multiplying the final 5 terms together produces a m× n matrix, denoted A:

m

n

C =

p

m

VY m

n

A

Representing the matrix A as it’s SVD (again, computed via the EVD of the

m×m matrix AAT ):

m

n

C =

p

m

VY m

m

UA
m

m

SA
m

n

VT
A

A property of an orthogonal matrix is that it preserves the inner product, i.e.

if A is orthogonal, then for two real vectors, x and y the inner product:

〈x,y〉 = 〈xA,yA〉 (D.1)
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Also, an orthonormal matrix preserves length:

‖x‖ = ‖xA‖ (D.2)

The matrix UA is orthonormal, and the matrix VY has orthonormal columns.

Therefore, for any two different columns i, j of VY:

〈vYi,vYj〉 = 〈vYiUA,vYjUA〉 = 0 (D.3)

and also:

‖vYi‖ = ‖vYiUA‖ = 1 (D.4)

Hence, the orthonormality of the columns of VY is preserved in the matrix

VYUA, which shall be denoted U. The resulting decomposition can then be

written as:

p

n

C =

p

m

U m

m

S
m

n

VT

(D.5)

Here, the matrices U and V both have orthonormal columns, and the matrix S

is a diagonal matrix with positive elements of decreasing size. A factorisation

of this form is unique, and corresponds to the SVD.

This approach is equally applicable when finding the SVD of the deflated

covariance matrix, YTXP−→P̂⊥
. Here, rather than beginning the procedure by

finding the SVDs of X and Y, the SVDs of XP−→P̂⊥
and Y are found instead.
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As the dimensions of X and XP−→P̂⊥
are identical, the procedure can then

continue as before.

D.2 The Inclusion of Higher Order Terms in

Regression Models Using the Simulated

Channel Flow Data

This section considers whether higher order terms are required to correctly

specify regression models built from the simulated channel flow data described

in section 5.5. Two approaches are used for this purpose, both of which are

outlined in section 4.2.1. In the first, the residuals of an OLS regression model

are inspected, and in the second, the MSE of prediction is compared for two

models; one containing only 1st order terms, and the other containing zeroth,

first and second order terms. Both approaches indicate that only first order

terms are necessary.

D.2.1 Inspection of Residuals

As explained in section 4.2.1, a correctly specified linear model can be identified

by plotting the predicted values ŷ against the residuals y − ŷ. The model

can be assumed to be correctly specified if the residuals are trendless, and

centred around zero. This approach was applied using the predicted values and

residuals from a first-order OLS regression. In line with the other scenarios

in chapter 5, 64 evenly spaced conditional vectors (figure D.1) were used to

predict the full 32× 32 field, and the model was built from 500 observations.

Due to the large number of elements in y in the resulting model (p =
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Figure D.1: Position of unconditional vectors used in regression model

 p
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Figure D.2: Position of predicted vectors used to assess linearity

3072), an inspection of the residuals for each element is not possible. Instead,

a small selection were chosen for analysis, which correspond to the u,v and w

velocity components of the vectors shown in figure D.2. The resulting plots

are shown in figure D.3.

The plots clearly meet the requirements of a correctly specified model,

suggesting that the relationship between the unconditional and conditional

vectors is entirely linear. Of course, only 4 vectors out of a total of 1024

have been inspected here, so it possible that some non-linearity in the data

exists elsewhere. Therefore, further reassurances can be had from a direct

comparison of the performance of first and second order models, which is

undertaken in the next section.
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Figure D.3: Scatter plots of predicted data vs. residuals
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D.2.2 Comparison of Prediction Performance for First

and Second Order Regression Models

Once again, 64 evenly spaced conditional vectors were used to predict the full

32 × 32 field, using 500 observations. The number of independent variables

depends on the order of the linear model in question. Starting with ñ original

(i.e. directly observable) independent variables, x̃ = x̃1, x̃2, . . . , x̃ñ, the full

set of independent variables x for a jth order linear model will consist of

polynomial and cross terms of x̃, up to the order of the model. The the total

number of independent variables, n, is given by the binomial coefficient:

n =
(k + j)!

k!j!
(D.6)

In the present case, k = 192, resulting in a value of n = 18721 for the 2nd

order model. Due to the size of n, the cross-validation procedure could not be

carried out on the original computer (described in section 5.3), as the mem-

ory requirements of cross-validating the full second order models exceeded the

1.2GB of addressable memory available to MATLAB on the 32-bit machine.

The validation was instead performed on a Linux machine equipped with a

1.86GHz Core 2 duo processor and 8GB RAM. The extra memory and pro-

cessing power afforded by this machine allowed the full second order models to

be implemented, although the execution time of the cross-validation was far

greater than usual, taking approximately 1 hour for the full validation of CSE,

RRR and PCR, and 24 hours for PLS. The summary of parameters used in

this investigation are shown in table D.1, and the results are shown in figures

D.4 and D.5. The number of modes used in the biased models are given in

table D.2.
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Parameter Value

Sample size, m 500
Unconditional Vectors 64
Independent Variables, n 192,18721
Conditional Vectors 1024
Dependent Variables, p 3072

Table D.1: Summary of parameter values
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Figure D.4: Average explained variance

Model CSE RRR PLS PCR

1st Order 500 (500 ) 117 (192 ) 103 (192 ) 113 (192 )
2nd order 120 (500 ) 120 (500 ) 142 (500 ) 138 (500 )

Table D.2: Optimum number of modes for the biased regression models
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Figure D.5: Percentage improvement over OLS prediction
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Comparison of the first and second order models shows that no im-

provement results from the inclusion of higher order terms. In fact, the second

order model actually performs worse, which will arise the due to an decrease

in stability resulting from the extra terms in the model. The relative perfor-

mance of the competing techniques is consistent with the results for the four

test scenarios in chapter 5. As such, discussion of these results will not be

undertaken here.

D.3 Estimation Error in the Principal Com-

ponents and Eigenvalues of X, and the

Effect on Prediction Error

The results from test scenario 1 demonstrate that the theoretical MSE decom-

position of the OLS prediction is unreliable in situations when m < n and/or

m ≈ n. The work in this section suggests that this discrepancy is likely to

be caused by the presence of estimation error in the principal components

and eigenvalues of X , that has not been taken into account in the theoretical

expression. In the original form of the MSE decomposition, the empirical prin-

cipal components, uk, and eigenvalues, lk, are assumed to equal the underlying

population principal components, γk, and eigenvalues, λk. The implications

of these assumptions are recapped by returning to the derivation of the MSE

decomposition, beginning at equation (4.66):

MSE [ŷ] = σ2 + σ2E
[
x
(
XTX

)−1
xT
]

(D.7)
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Which can be expressed in terms of the principal components and correspond-

ing eigenvalues of X as:

MSE [ŷ] =σ2 +
σ2

m

n∑
k=1

E

[
(xuk)

2

lk

]
(D.8)

However, as noted in section 5.4, for situations where m < n, the number of

principal components in X is limited to m, rather than n. Hence, equation

(D.8) can be generalised to account for any m:

MSE [ŷ] =σ2 +
σ2

m

q∑
k=1

E

[
(xuk)

2

lk

]
+ E

[(
xP−→Ṽ⊥

b̌
)2]

(D.9)

where q = min(n,m), and the final term is the bias introduced into the pre-

diction when m < n (see section 5.4). Given the assumption that uk = γk,

and lk = λk, this becomes:

MSE [ŷ] =σ2 +
σ2

m

q∑
k=1

E

[
(xγk)

2

λk

]
+ E

[(
xP−→Ṽ⊥

b̌
)2]

(D.10)

The expected value of (xγk)
2 gives the variance accounted for by the kth

population principal component, which is the kth eigenvalue λk. Therefore:

MSE [ŷ] =σ2 +
σ2

m
E

[
q∑

k=1

λk
λk

]
+ E

[(
xP−→Ṽ⊥

b̌
)2]

(D.11)

and so:

MSE [ŷ] =σ2 +
q

m
σ2 + E

[(
xP−→Ṽ⊥

b̌
)2]

(D.12)

The steps outlined here imply that each principal component in X contributes

an equal amount to the model variance q
m
σ2. In reality, the assumptions that
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uk = γk, and lk = λk do not hold exactly, as both uk and lj are subject to

a degree of estimation error. In the following discussion, it is assumed that

m ≥ n (i.e. q = n), which ensures that the full set of n population principal

components and eigenvalues are estimated from X.

Firstly, it is known that the small-sample estimate uk is an unbiased

estimate of γk but is subject to a degree of variance, which increases as

the sample size decreases. This has implications on the assumption that

E[(xuk)
2] = E[(xγk)

2] = λk. Considering the largest principal component,

u1, and assuming that the λ1 is larger than λ2, the quantity E[(xu1)
2] will

only equal λ1 when u1 = γ1. As γ1 is the vector that passes through the

direction of highest variance in the distribution of x,, any vector v will will

necessarily produce E[(xv)2] < λ1, when v 6= γ1. Due to the small-sample

variance of u1, on average u1 6= γ1, and so E[(xu1)
2] < λ1. Similarly, the

smallest population principal component γn passes through the direction of

lowest variance, which means that E[(xv)2] > λn when v 6= γn, assuming that

the λn is smaller than λn−1. As such, E[(xun)2] > λn. In general then, it

appears that the expected contribution of E[(xuk)
2] will be smaller than λk

for the largest principal components, and larger for the smallest.

For small-sample estimates of λk, Lawley (1956) showed that there is

bias of the form,

E[lk] = λk

(
1− 1

m

n∑
h6=k

(
λh

λk − λh

))
+ O(1/n2) (D.13)

assuming that the elements of X are normally distributed, and the population

eigenvalues are distinct. The exact nature of this bias is rather difficult to

predict exactly, as each E[lk] is determined by a complex interaction between

all the underlying population roots. However, contrary to the behaviour of
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E[(xuk)
2], the general effect is that the largest roots will be larger than the

equivalent population roots, and the smallest roots will be smaller. As before,

the overall severity of bias increases as the sample size, m, decreases.

This combination of small-sample behaviour of uk and lk is likely to

have an effect on the model variance component of equation (D.9). Writing

this term as:
σ2

m

q∑
k=1

E

[
(xuk)

2

lk

]
=

σ2

m

q∑
k=1

Ck (D.14)

Under the original assumptions, Ck = 1 for all k. However, given the be-

haviour described above, it is expected that Ck < 1 for the largest principal

components, and Ck > 1 for the smallest. This suggests that the smallest prin-

cipal components of X will contribute a disproportionate amount towards the

model variance. Moreover, it is noted that as m decreases, the lowest possible

value of that Ck can take for the largest principal components is 0, whereas

for the smallest components, the term can increase indefinitely. Therefore, it

is possible that overall, the model variance will be larger than the σ2 q
m

quoted

in the original derivation.

This line of reasoning would explain the fact that the theoretical ex-

pression for the MSE is an underestimate of the true error for m, and why it

becomes increasingly erroneous with decreasing m, However, the argument is,

at best, only a hypothesis, and it does not directly explain the behaviour of

the MSE when m < n. Furthermore, the above discussion has considered the

behaviour of E[(xuk)
2] and E[lk] independently, even though these two terms

are not actually independent in the model variance term, i.e:

σ2

m

n∑
k=1

E

[
(xuk)

2

lk

]
6= σ2

m

n∑
k=1

E[(xuk)
2]

E[lk]
(D.15)
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In the absence of a more rigorous mathematical explanation, it is necessary to

rely on empirical evidence to support this argument. For this purpose, a simple

regression problem was created using simulated observations of the univariate

variable y and the 50 element vector x. The behaviour of y was determined

by the model y = xb̌ + e, where b̌ = [1 1 . . . 1]T , and both the error term e,

and the elements of x were normally distributed. The underlying distribution

of x was designed so that the population eigenvalues linearly decreased from

λ1 = 5 to λ50 = 1.

Using data generated from this underlying model, the MSE of prediction

MSE[ŷ] for OLS regression was measured, for a model built using a sample

size ranging from m = 1, 2, . . . , 500. Alongside the regression procedure, the

average values of E[(xuk)
2], E[lk] and E[Ck] were obtained. Also, when m < 50,

the bias term from equation (D.8):

E

[(
xP−→Ṽ⊥

b̌
)2]

(D.16)

was also calculated. To ensure representative statistics, this process was re-

peated 200 times, and the results averaged.

Figure D.9 shows the resulting average behaviour of E[(xuk)
2] versus

k, for m = 25, 50, 100, 500. The dashed line on the plot corresponds to λk,

which is the value of E[(xuk)
2] that would arise if uk = γk. As predicted,

the small-sample variance of uk ensures that E[(xuk)
2] is less than λk for the

largest principal components, and larger than λk for the smallest. Also, the

deviation from λk increases with decreasing m. Note that for m = 25, only 25

principal components exist, and so E[(xuk)
2] is truncated at this value.

Figure D.7 shows how E[lk] varies with k for the same choices of m.

Again, this corresponds to the expected behaviour, where E[lk] is too large
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Figure D.6: Size of E[lk] for differing sample sizes. The true values of the
eigenvalues are indicated by the dashed line.

for the largest principal components, and too low for the smallest. In the case

of m = 50, that bias is so large that many of the smallest eigenvalues are

almost zero. However, note that for m = 25, the omission of the lowest 25

principal components ensures that these extremely small eigenvalues are no

longer present. The effect of this is illustrated in the plot of Ck versus k in

figure D.8. Here, the horizontal dashed line corresponds to Ck = 1, which was

the assumption in the original derivation of the OLS MSE expression.

The behaviour illustrated here corresponds exactly with the proposed

hypothesis. For small k, the value of Ck is less than 1, and for large k, it is

larger. Also increase in Ck for the smallest principal components can exceed

the corresponding decrease in Ck for the largest components by many orders of

magnitude, which is likely to inflate the model variance far beyond the original

value of σ2 q
m

. However, for m = 25, the omission of the smallest components

appears to avoid this problem to a large extent. These concepts are made
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explicit in the final plot, which shows how the theoretical MSE, based on the

expression:

MSE [ŷ] =σ2 +
σ2

m

q∑
k=1

E[Ck] + E

[(
xP−→Ṽ⊥

b̌
)2]

(D.17)

varies with m. Also shown on the plot are the individual components of the

theoretical MSE, as well as the actual MSE based on predictions of y. First

of all, it can be seen that the theoretical MSE, which is derived purely from

the behaviour of X, and knowledge of the true underlying model, matches

the actual MSE precisely. This confirms that equation (D.17) is exact. As

hypothesised, when m > n and m ≈ n the model variance,
∑q

k=1Ck becomes

vastly inflated due to the contribution of the smallest principal components,

to the point where at m = n (i.e. m = 50), the model variance is in the order

of 106. When m < n, and with decreasing m, the problematic principal com-

342



Parameter Value

Sensor type 15.6× 15.3mm Peltier cooled CCD
Sensor resolution 2048× 2048 pixels
Pixel size 7.4µm
Analog-to-digital converter 14-bit
Maximum dynamic range 72dB
Minimum exposure time 5µs (first frame only)
Minimum inter-frame time 500ns
Maximum frame rate 14.7 Hz
Interface CameraLink

Table D.3: Specification of PCO.2000 cameras.

ponents are removed consecutively, which begins to reduce the model variance

again. However, as shown in the plot, this increases the model bias, leading

to a distinct local minimum in the MSE at around m = 30.

The results from this simulation provide convincing evidence that the

proposed hypothesis is correct. It remains to be seen how these results would

differ if the behaviour of the underlying data was changed; certainly, the pre-

cise values of E[(xuk)
2] and E[lk] appear to be determined by the complex

interaction of the underlying eigenvalues of x. However, it seems likely that

for most practical applications, the smallest principal components of X will

always be a serious problem for OLS regression in situations where m ≈ n.

D.4 Specification of PIV Cameras

The specification of the PCO Gmbh. PCO.2000 and Point Gray Research

FireFly MV cameras are provided in tables D.3 and D.4, respectively.
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Parameter Value

Sensor type 1/3” progressive scan CMOS
Sensor resolution 752× 480 pixels
Pixel size 6µm
Analog-to-digital converter 10-bit
Maximum dynamic range > 50dB
Minimum exposure time 120µs
Minimum inter-frame time ≈ 17ms
Maximum frame rate 60Hz
Interface Firewire 400

Table D.4: Specification of Firefly MV cameras.

D.5 Prediction of the Number of Waves on

the Experimental Vortex Rings

This section shows how the number of waves on the experimental vortex rings

can be calculated, using the model proposed by Saffman (1978). The work-

ing here is adapted from the approach outlined by Dazin et al. (2006a), and

uses the average vortex ring parameters from the initial PIV measurements

(summarised in table 7.4) to calculate the prediction.

Saffman (1978) describes how a confluent hypergeometric function is

well suited for modelling the vorticity distribution within an experimental

vortex ring. This behaviour of this function is determined by the parameter ε,

which can be calculated from the inner core radius, ai, and the effective core

radius, ae:
ai
ae

=
1.45ε

0.47 + 0.63ε
(D.18)

The inner core radius ai is defined as the distance from the core where the

tangential velocity is maximum, the average of which was calculated from the
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initial PIV study. The effective core radius is calculated from:

V =
Γ

4πR

(
ln

(
8R

ae

)
− 0.25

)
(D.19)

where the ring translational velocity V , radius R, and circulation Γ are ob-

tained from the PIV measurements. The instability on a vortex ring is a result

of an infinite number of unstable modes, each with a different number of waves,

nj (although the importance of the modes quickly falls with mode number).

The number of waves, nj for mode j is given by:

nj =
κjsi

8

ae
ai
e(Ṽ+0.25) (D.20)

where Ṽ is the nondimensional velocity:

Ṽ =
V 4πR

Γ
(D.21)

For a given ε, the values of κjsi are found numerically. Solutions for a variety

of different ε are given in Saffman (1978), which are used here. From equation

(D.18), a value of ε = 0.4 is obtained, which gives values of κ1si = 2.37,

κ2si = 2.37 and κ3si = 5.74. The resulting number of waves on the first three

modes are n1 = 7.8, n2 = 13.5 and n3 = 18.2.

D.6 Propagation of Error in the MP-VSE Pro-

cedure

This section shows how the various sources of error propagate through the MP-

VSE procedure, and dictate the ultimate prediction accuracy of the technique
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for a given experiment.

In practice, the prediction error will differ for each predicted velocity

component in the volume Ω. For simplicity, the prediction of a single velocity

component y̌ will be considered here, which lies at a point (x1, y1, z1) in the

prediction volume. The flow is assumed to be homogeneous in z.

The MP-VSE process begins by making a series of measurements at a

plane P̃ , positioned as closely as possible to the hypothetical plane P , which

lies exactly normal to the homogeneous dimension (i.e. the x− y plane) at a

location zP . It is assumed that z1 and zP are at different locations in z. In

the actual prediction model, an i× j grid of vectors is predicted, but for this

example, it is the variable y̌P , which is of importance. This is the variable on

the P plane that corresponds to the true value y̌; i.e the velocity component

that has the same (x, y) location as y̌, but lies at zP . However, due to PIV

measurement error and any misalignment of the P̃ plane, there will be a dis-

crepancy between the measured data ỹP , and the true value y̌P . To account

for this, y̌P can be expressed as:

y̌P = ỹP + eỹP (D.22)

Using the measured data ỹP and x̃P , a prediction model of the form ŷP = x̃Pb̂

is built. To account for the prediction error present in ŷP (i.e. the combination

of unexplained error and model error), ỹP is expressed as:

ỹP = ŷP + eŷP

= x̃P b̂ + eŷP

(D.23)

It is noted that after the process of cross-validation, an estimate of the MSE
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of prediction, E[(eŷP )2] is known. For the final reconstruction, x̃Q is extracted

from the measurements of the Q̃ planes, (which are aligned, as best as pos-

sible, to lie parallel to the homogeneous dimension z), and used to predict

ỹP . This introduces further error, due to the fact that measurement error and

misalignment in the Q̃ planes results in a disparity between x̃P and x̃Q:

x̃P = x̃Q + ex̃Q
(D.24)

Finally, because zP and z1 lie at different locations, any inhomogeneity in the

flow means that the prediction model, built at zP , will introduce an error term

eH when applied at z1. The various sources of error considered here can be

combined into a single expression for the MSE of prediction:

MSE[ŷ] = E
[
(y̌ − ŷ)2

]
= E

[
(y̌P − ŷ + eH)2

]
= E

[(
y̌P − x̃Qb̂ + eH

)2]
= E

[(
y̌P − x̃P b̂− ex̃Q

b̂ + eH

)2]
= E

[(
ỹP − eỹP − x̃P b̂− ex̃Q

b̂ + eH

)2]
= E

[(
eŷP − eỹP − ex̃Q

b̂ + eH

)2]

(D.25)

Assuming that each of these error terms is independent, the MSE can be

expressed as:

MSE[ŷ] = E[(eŷP )2] + E[(eỹP )2] + E[(ex̃Q
b̂)2] + E[(eH)2] (D.26)

which shows that the final MSE is a relatively simple sum of error variances,
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one of which, E[(eỹP )2], will already be known from the cross-validation pro-

cess. Therefore, an estimate of the variance of the remaining error terms will

provide an estimate of the final prediction error, although it should be remem-

bered that each of these error terms is in fact a combination of various errors

that arise at each stage of the process. For some of these errors, such as the

PIV measurement error, it may be possible to obtain a reasonable estimate of

the variance from PIV literature. Variances relating to light sheet misalign-

ment may be more difficult to obtain. One approach would be to estimate

the distances that the light sheets are misaligned by, and then estimate the

resulting error by calculating the drop in the correlation of velocity over this

distance. It may be possible to achieve this using the P and Q plane data, or

it may require a further set of measurements to be made.

The total number of error terms is likely to be far too large to be es-

timated individually, and so it will be necessary to make further assumptions

and generalisations in order to make the process remotely feasible, especially

considering that the above expression only applies to a single predicted com-

ponent. Of course, the introduction of further assumptions may reduce that

accuracy of the estimate. Already, the assumption that the error terms are

independent is unlikely to hold, but accounting for the covariances between all

the error terms would be impossible. Nonetheless, the results in this section

indicate that with further work, an estimate of the overall MSE can be ob-

tained. This will be of considerable use in determining the degree of confidence

that can be placed in the predictions for a given application.
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