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Abstract 
 
 Since the first reported use of carbon nanotubes (CNTs) as an electrode 
material in 1996 the use of CNTs within electrochemistry has grown rapidly.  Single 
walled carbon nanotubes offer bio-compatibility combined with nano-scale 
dimensions and low background currents in the pristine state.  Over the past decade 
the quantity of SWNTs synthesised globally has greatly increased making the material 
available for a variety of studies and potentially a feasible material for commercial 
electrodes.   
 
 Despite this rise in popularity there is still an on going debate about the sites 
of electron transfer (ET) at a carbon nanotube.  Some reports claim that the sidewall 
of the carbon nanotube exhibits sluggish ET rates with the majority of the ET 
occurring at defect sites and the end of the CNT.  In contrast there is also evidence 
that suggests that ET at the sidewall is facile and not sluggish.  The origin of ET is 
investigated using both theoretical and experimental data to probe the developing 
diffusion profiles to active ET sites.  This is achieved on the timescale of a typical 
voltammetric experiment by significantly reducing the rate of diffusion to the 
electroactive sites using a NafionTM film.  The reduced rate of diffusion allows the 
developing diffusion profiles to the individual sites to be decoupled. 
 
 The use of convection and diffusion is a proven electrochemical technique to 
increase the sensitivity of analytical measurements and to probe reaction rates and 
mechanisms.  The well-defined mass transport within a channel flow cell or an 
impinging jet electrode, combined with the continual replacement of solution, makes 
this geometry amenable to online studies, e.g. bedside or industrial monitoring, or a 
combination with chromatography.  One draw back of conventional channel flow and 
impinging jet electrode set-ups is the need for specialist equipment or calibration steps 
each time the system is assembled.  The use of microstereo lithography (MSL) to 
construct custom designed cells for use with a variety of planar electrodes is 
investigated.  The hydrodynamics within the proposed designs are theoretically tested 
and verified experimentally.  The devices constructed are easily assembled using a 
wide range of electrode materials and the computer aided manufacture provides 
flexibility in critical dimensions.  Importantly, the devices only require a one-off 
determination of the height prior to assembly, removing the need for an 
electrochemical calibration step as the cells do not distort during assembly. 
 
 Of particular interest for analytical studies is the greatly reduced background 
currents provided by a carbon nanotube network compared to an equivalent size 
carbon macroelectrode.  The lower background signal allows small Faradaic currents 
to be observed experimentally, allowing lower concentrations to be distinguished.  
The enhanced sensitivity is combined with the increased mass transport of channel 
flow and impinging jet convective systems to determine the limit of detection for 
particular channel and impinging jet geometries under constant flow rates. This 
approach allows the successful detection of nano-molar concentrations under 
hydrodynamic control using standard voltammetric techniques. 
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1. Introduction 

1.1. Overview 

 

This thesis investigates two key areas of electrochemistry; (i) surface activity of 

electrode materials, focusing on the sites of electron transfer (ET) at the surface of 

single walled carbon nanotubes (SWNTs), and (ii) the design and development of 

methods for hydrodynamic control of mass transport to electrode surfaces with 

particular emphasis on low concentration detection of redox active analyte solutions.  

This chapter introduces electrochemical concepts pertinent to the results outlined in 

the thesis and outlines experimental techniques that are used throughout this thesis 

including the effect of electrode geometries on the electrochemical response, and 

finite element modelling (FEM). 

 

1.2. Dynamic Electrochemistry 

 

Dynamic electrochemistry is used predominantly to probe the charge transfer of a 

redox species under non-equilibrium conditions.1  A potential is applied to a working 

electrode (WE) with respect to a stable reference electrode (RE), in order to drive ET 

at the WE surface.  Both metallic and a variety of carbon based electrode materials are 

used within this thesis.  The current response observed at an electrode surface is 

attributed to both Faradaic and non-Faradaic processes.2, 3  A typical reaction 

schematic is shown in figure 1.1, where the reduction of the oxidised form of the 

redox mediator, O, to the reduced product, R, occurs over several steps.  The rate 
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limiting step is the slowest process and can be caused by any one of the processes 

shown in figure 1.1; for example ET at the WE surface, a chemical step prior to or 

after ET, a surface reaction (adsorption or desorption), or mass transport to or from 

the WE surface.4  The work within this thesis focuses upon reactions which are 

limited by mass transport under both static and convective regimes. 

 

Figure 1.1 Schematic of a basic electrochemical reaction, showing the mass transport and kinetic ET 

steps in the reduction of species O to R at the electrode surface. 

 

Two types of potential scan are used for electroanalysis within this report, linear 

sweep voltammetry (LSV) and cyclic voltammetry (CV).  An LSV is performed by 

sweeping the electrode potential in either the positive or negative direction, over a 

potential range sufficient to cause oxidation or reduction of the analyte of interest.  

The speed of the sweep can affect the resulting current response as it affects the 

concentration gradient.  A CV is similar to a LSV except that the polarity of the 

potential ramp is swept in one direction and then reversed, allowing the reversibility 

of a reaction to be probed.  LSV and CV measurements are reported by plotting a 

current with respect to voltage applied against a stable reference electrode.  
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Chronoamperometric (CA) measurements involve a potential step, typically from a 

position where no Faradaic reaction occurs to a point of interest, e.g. a potential where 

the reaction at the electrode surface is not kinetically hindered.  CA allows the 

investigation of current time profiles, for instance to probe a developing diffusion 

profile.5 

 

1.2.1. Faradaic Processes 

 

The transfer of electrons during a reaction is proportional to the number of moles 

of reactant involved, in accordance with Faraday’s laws of electrolysis.2, 3  For 

example the reduction of species O to R by electrolysis involves the transfer of a 

number of electrons (n), equation 1.1. 

 

O + ne- → R (1.1) 

 

The Faradaic current, i, observed is proportional to the flux (J), rate of the reaction 

per unit area, which can be expressed by equation 1.2,   

 

 (1.2) 

 

where N is the number of moles electrolysed and t is time.  The number of moles 

electrolysed (N) is proportional to charge, Q (equation 1.3), hence the flux can be 

expressed as the transfer of charge as shown in equation 1.4. 
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 (1.3) 

 (1.4) 

 

where F is Faraday’s constant (96485 C mol-1).  Current is the transfer of charge 

per unit time, which gives rise to equation 1.5, 

 

 (1.5) 

 

As flux is the rate of reaction per unit area, the current produced for a specific area 

(A) can be calculated from equation 1.6 

 

 (1.6) 

 

1.2.2. Non-Faradaic Processes 

 

The current observed during an experiment can also have a contribution from non-

Faradaic processes.  These do not involve electron transfer, but relate to a charge 

difference at the WE/solution interface.2  The Faradaic processes are of primary 

interest throughout this thesis; however for accurate analysis of the data obtained an 

awareness of these non-Faradaic processes is essential. 

The WE/solution interface can be considered analogous to a capacitor, when a 

change in potential is applied to the WE surface, ions within the solution move to 

balance the change in electron density at the WE surface, perturbing the “electrical 
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double layer”.  The model presented by Bockris, Devanathan and Muller,6 proposes 

that the solution side of the “electrical double layer” consists of solvent and solute 

molecules, which form several layers as shown in figure 1.2.  This model is based 

upon previous models proposed by Helmholtz (1853), Gouy (1910), Chapman (1913), 

Stern (1924) and Grahame (1947) and takes into consideration that the solvent 

molecules are in a greater excess than the solvated ions.3  The layer closest to the 

electrode surface consists of solvent molecules and desolvated adsorbed ions.  The 

inner Helmholtz plane (IHP) is located through the centre of the desolvated adsorbed 

molecules.  The outer layer is formed from solvated ions and is called the outer 

Helmholtz plane (OHP).1-3 

 

 

Figure 1.2 Model for the "electrical double layer" as proposed by Bockris et al.6 at an electrode surface 

assuming a negatively charged electrode.  Red molecules are specifically adsorbed anions, green 

molecules are cations, and blue molecules represent solvent molecules. 
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Resistance within an electrochemical cell can be attributed to the resistance of the 

solution and the resistance of the electrode materials employed.  Resistive and 

capacitive effects within electrochemical systems can be treated simply by assuming 

the electrochemical cell is analogous to a capacitor, of capacitance C, and resistor, of 

resistance RΩ, in series as shown in figure 1.3 (a).  RΩC effects in an electrochemical 

system will contribute to the currents flowing during a CA or a CV experiment, and in 

the case of high RΩ result in a measurable ohmic drop (section 1.2.4).  The RΩC 

response can be quantified by performing a CA experiment, equation 1.7, or running a 

LSV, equation 1.8.2 

 

 (1.7) 

 (1.8) 

where E is the potential, and ve is the scan rate of the LSV or CV.  The general 

shape of the current-time decay in a CA and the effects of RΩC on the background 

currents in a CV are shown in figure 1.3 (b) and (c) respectively.  Note that for a CV, 

when a constant current response is reached, the hysteresis is dependant only on v and 

C. 
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Figure 1.3 (a) The analogy of a resistor and capacitor to an electrochemical cell. (b) The current-time 

decay for a CA experiment for a 1 V potential step and (c) the hysteresis in a CV for the same system 

at ve = 100 mV s-1 for systems of C = 10 µF, (-) RΩ = 0.1 MΩ, (-) RΩ = 0.01 MΩ, and (-) RΩ = 0.1 MΩ 

and C = 1 µF. 

 

1.2.3.  Other Background Processes 

 

During an electrochemical measurement the applied potential can result in other 

reactions occurring that contribute to the overall current response.  For example, the 

oxidation or reduction of the solvent causes the measured current to rapidly increase.  

The potential range between the oxidation and reduction potentials for a solvent is 

referred to as the solvent window.  The majority of quantitative electrochemical 

measurements are taken within the solvent window.  It is important to note that for 

different solvents and WE materials the solvent window varies.7, 8 

In some situations the WE surface may undergo a surface reaction or a reaction 

with another species in solution, for example a Pt electrode in 0.5 M H2SO4 undergoes 

the electro-adsorption and electro-desorption of hydrogen and oxygen as shown in 

figure 1.4 (a).9, 10  Additionally Pt is also prone to reaction with dissolved oxygen as 
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demonstrated in figure 1.4 (b) where the red line represents an aerated KNO3 solution, 

and the black line represents the same solution after being purged with nitrogen.11  

The affect of other background processes on the analysed data are minimised by using 

species that undergo reduction or oxidation away from the extremes of the solvent 

window and by thoroughly purging all solutions used on metal electrodes with 

nitrogen prior to the experiment. 

 

 

Figure 1.4 (a) CV showing the background surface reactions occuring on a Pt electrode in 0.5 M 

H2SO4, the potential taken relative to the normal hydrogen electrode (NHE).9 (b) Comparison of (-) 

aerated and (-) nitrogen purged 0.1 mol dm-3 KNO3 solution on a 3 mm Pt disc electrode.11 

 

1.2.4.  Ohmic Drop and Counter Electrodes 

 

In addition to the RΩC effects as mentioned above, the resistance within the 

electrochemical system has an effect upon the applied voltage to the working 

electrode.  For a two electrode system the potential applied to the electrochemical cell 

is assumed to be the same as the potential difference between the WE and the RE.  

However, the measured current also passes through the RE causing the potential 
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difference between the WE and the RE to vary from the potential applied to the 

electrochemical cell, as shown in equation 1.9, 

 

 (1.9) 

 

where Eappl and EWE are the applied potential and the potential at the WE, 

respectively.  The difference between the actual potential and the applied potential is 

known as Ohmic drop.2  This situation is exacerbated for high currents passed and 

low conductivity solutions.  When the iRΩ term becomes significant (greater than 1 

mV) the current is passed through a third electrode, called the counter electrode (CE).  

Typically the counter electrode has a large surface area and is made from a material 

that does not react with the solution of interest (typically platinum for aqueous salts).  

Unless the resistance between the RE and WE is zero, the addition of a CE does not 

entirely stop the current flow through the RE.2, 3 

 

1.3. Mass transport 

 

The case of the electrochemically driven reduction of electroactive species O to R 

as shown in equation 1.1 is considered.  If the rate of reaction is limited by the rate 

that species O moves towards or species R moves away from the WE surface, then the 

reaction is said to be mass transport controlled. 

Mass transport to the WE surface can be broken down into three categories; 

diffusion, convection, and migration.  When a system is under mass transport control 

the flux can be described by the Nernst-Plank equation2-4 which combines the 
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contribution of diffusion, convection and migration terms respectively as shown in 

equation 1.10:2-4 

  

 (1.10) 

 

where D is the diffusion coefficient of the electroactive species,  is the vector 

differential operator, c is the concentration of electroactive analyte, V is the velocity 

of the solution, z the charge on the analyte, R the gas constant, Tm the temperature, 

and  the electrostatic potential. 

 

1.3.1. Migration 

 

Migration is the movement of a charged species under the influence of an electric 

field.  Within an electrolyte solution the electric double layer at an electrode surface 

creates an electrical shielding, exponentially decreasing the strength of the electric 

field upon the ion with respect to distance from electrode.1-3  For example the 

observed potential ( ) 10 nm away from the electrode has decayed to less than 1% of 

the original potential step ( ) in a 1:1 electrolyte at a concentration of 0.1 mol dm-3 

according to equation 1.11.2 

 

 (1.11) 
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Where tanh is the hyperbolic tangent, e is the charge on an electron,  is the 

Boltzmann constant, x is the distance from the electrode surface (cm) and  is 

defined by equation 1.12, 

 

 (1.12) 

 

where cb is the bulk concentration. 

At supporting electrolyte concentrations of 0.1 mol dm-3 and higher the potential 

drop is significant across the first 10 nm of the double layer.  For example at a 

supporting electrolyte concentration of 0.1 mol dm-3 observed electrostatic potential is 

close to zero at ~10 nm from the electrode surface.  As the concentration increases to 

1 mol dm-3 the observed electrostatic potential is approximately zero observed 

electrostatic potential at 5 nm from the WE surface.  As a result the current 

contribution due to migration is negligible within is thesis (equation 1.10).  Therefore 

the contribution due to migration can be ignored within this thesis. 

 

1.3.2. Diffusion Controlled 

 

In a static solution where mass transport due to convection is negligible and 

migration has been suppressed, movement of electroactive species from the bulk of 

the solution to the electrode surface is controlled by diffusion.  Diffusion is the 

movement of species down a concentration gradient.  The rate that a species moves 

due to diffusion is proportional to the concentration gradient, as described by Fick’s 

first law of diffusion for a 1D system, equation 1.13,2, 3 
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 (1.13) 

 

where  is the concentration gradient at a specific point in the x direction at a 

given time, where the x axis is perpendicular to the electrode surface.  Figure 1.5 

illustrates the time-dependant concentration profile due to diffusion at an electrode 

surface under conditions where at x = 0, c = 0 and where t3>t2>t1; the diffusion layer 

thickness is defined as the distance which the concentration changes from 0 to cb.  As 

the concentration gradient decreases, the flux of the species towards the electrode 

surface decreases.  The time-dependant expansion of the diffusion layer depends upon 

the experimental conditions employed. 

 

 

Figure 1.5 The concentration profile within the diffusion layer for a system where the rate of ET is 

limited by diffusion to the electrode surface. 

 

When Fick’s laws are considered in more than one dimension the WE geometry 

plays a significant effect upon the concentration gradient.  Several geometries 

important to work within this thesis are summarised below. 
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Figure 1.6(a) shows a 2D representation of a disc macroelectrode, where a flat 

electrode, assumed to be uniformly active, is embedded within a co-planar insulating 

surface.  When the reaction is driven at the electrode surface the local concentration 

of the mediator is decreased, creating a difference in concentration from the bulk 

concentration.  Assuming diffusive mass transport control, the ET reaction will 

proceed at a rate greater than the rate of diffusion to the WE surface. With time the 

diffusion layer grows.  For a macroelectrode the expanding concentration gradient 

creates a predominantly linear diffusion profile as the contribution due to edge 

diffusion is small in comparison to the linear diffusion to the WE surface.  Over time 

the expansion of the diffusion layer results in a reduced flux to the electrode surface.  

This is observed in a CV as a peak current as mass transport cannot support the 

increasing rate of ET at the electrode surface.  For CA measurements, stepping from a 

potential where no reaction occurs to a potential where ET is diffusion-controlled, the 

current response can be described by the Cottrell equation (equation 1.14),2, 3 

   

 (1.14) 

 

where it is the current response with respect to time, and cb is the bulk concentration 

of the redox active analyte.  
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Figure 1.6 Schematic of the diffusion profiles (black lines) caused by (a) the cross section through a 

macro disc electrode and (b) the cross section of a disc ultra micro electrode. 

 

If the dimensions of the electrode are reduced to the micrometer scale, then 

diffusion to the edges of the electrode becomes significant.  A disc or hemispherical 

electrode of diameter less than 100 µm is often referred to as an ultramicroelectrode 

(UME).12-14  The developed diffusion profile to a UME disc electrode imbedded co-

planar within an insulator is shown in figure 1.6 (b).  At short times, after a potential 

has been applied to the electrode which is suitable to initiate diffusion controlled 

electrolysis, the UME initially behaves as a macroelectrode, where an initial linear 

profile is established.  With time the contribution of edge diffusion to the linear 

diffusion regime results in a hemispherical concentration profile.  The diffusion 

controlled flux is thus greater for an UME than for a macroelectrode.  The initial 

diffusion regime can be predicted using the Cottrell equation for semi-infinite linear 

diffusion (equation 1.14) and holds until the diffusional edge effects significantly 

contribute to the flux to the electrode surface.15  When edge diffusion becomes 

significant the flux to the UME surface deviates from that predicted by the Cottrell 

equation and reaches a steady state where the diffusion layer thickness becomes 
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constant.16  The current response for both regimes of a UME can be predicted by the 

Shoup-Szabo equation (equation 1.15 to equation 1.17),17 

 

 (1.15) 

 (1.16) 

 (1.17) 

 

where r is the radius of the disc.  Figure 1.7 shows the effect of edge diffusion 

upon the time-dependant current response at a UME as predicted by the Shoup-Szabo 

equation, compared to linear diffusion only, predicted by the Cottrell equation. 

 

Figure 1.7 Comparison of the Cottrell predicted response (-) to the Shoup-Szabo equation (-) for a disc 

electrode of r = 12.5 µm, D = 6 x 10-6 cm s-1, and cb = 1 x10-3 mol dm-3. 

 

The above cases consider diffusion to an individual electrode within an infinite 

insulating plane.  However if multiple electrodes are present the diffusion profiles to 

the electrodes can become perturbed.  The developing diffusion profiles for two 
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UMEs positioned so that the diffusion profiles will overlap on a typical timescale is 

shown in figure 1.8.18-20  Initially the diffuse layer expands at each UME as described 

previously for an individual UME (profiles 1-3).  As the diffuse layer expands with 

time the presence of the diffusion field associated with the neighbouring UME 

perturbs the regular hemispherical profile; an effect referred to as diffusional overlap.  

This is shown in profiles 4 and 5 of figure 1.8.  As time progresses overlap results in 

an essentially linear profile.21, 22  As the thickness of the diffusion layer is dependant 

upon the diffusion coefficient of the electroactive analyte and geometry of the UME 

employed the critical inter-electrode spacing for diffusional overlap is dependant on 

the experimental conditions utilised.20 

 

 

Figure 1.8 The expansion of the diffuse layer with time to two UMEs, profiles 1-6 represent the 

movement of cb away from the electrode surface with time.  Profile 1 represents the initial linear 

diffusion, profiles 2 and 3 show the establishment of hemispherical diffusion to the individual UMEs, 

profiles 4 and 5 show diffusional overlap occurring, and profile 6 shows the development of a diffusion 

profile similar to the profile that would be obtained if the central insulating region was active. 

 

Expanding the two electrode example further to an array of UMEs where 

complete diffusional overlap is possible on the timescale of the electrochemical 

experiment, a measured current response is the same as that for an entirely active 

macroelectrode of the same geometric area.  If the conditions are such so that 
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diffusional overlap does not occur (e.g. UMEs are spaced sufficiently far apart) then 

the array will maintain the characteristic electrochemical response of an UME (e.g. a 

CV with a limiting current for a mass transport controlled reaction), however the 

overall current response will be the sum of the currents from each individual UME in 

the array.  Simulations of uniform21 and random22 UME arrays have been used to 

visualise the diffusional profiles to arrays.  A significant advantage of using the array 

geometry is the reduction in the active electrode area compared to  an electrode of the 

same geometric area (i.e. including the insulator area), resulting in the capacitance of 

the array system being smaller.23  The reduced non-Faradaic background signal 

provides an enhancement in the signal-to-noise levels allowing for lower 

concentrations to be detected than for a conventional all active electrode material.24 

 

1.3.3. Convection and Diffusion 

 

Convection is the physical motion of a solution, and as described by the Nernst-

Planck equation (equation 1.10), contributes to mass transport to an electrode surface.  

The combination of convection and diffusion to increase and vary the rate of mass 

transport to an electrode surface is particularly valuable in electroanalysis.  

Hydrodynamic control has been used to (a) increase the signal-to-noise ratio,25-28 (b) 

for trace level detection,29, 30 and (c) for kinetic studies.31-37  Figure 1.9 shows the 

effect on the CV response of a macroelectrode of increasing mass transport using 

convection.  Under diffusion only conditions, the typical peak-shaped current-voltage 

response can be observed, figure 1.9 (a).  Under convective control the size of the 

diffuse layer is reduced compared to diffusion only conditions, and the convective 

contribution increases the current response as predicted by the Nernst-Planck 
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equation.  When the convective term dominates the electrochemical response a 

steady-state response is typically observed due to the increased mass transport, figure 

1.9 (b). 

 

 

Figure 1.9 CVs showing the effect of increasing mass transport to a macro-electrode, (a) diffusion 

controlled, (b) convection and diffusion. 

 

The velocity profile within a convective system can be simulated using the 

Navier-Stokes equations for momentum balance (equation 1.18) and continuity 

(equation 1.19), 

 (1.18) 

 (1.19) 

 

where ρ is the density of water (assumed reasonably to be 1.00 g cm-3),38 V is the 

velocity vector, p is pressure, η is the dynamic viscosity of water, which is reasonably 

1.00 mPa s for the experimental conditions used herein, and T is the total pressure 

(Pa).  The Navier-Stokes equations are derived from Newton’s second law of motion 

and assume that the solution is incompressible.  All simulations of velocity within this 
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thesis are performed by applying equation 1.18 and equation 1.19 within a finite 

element model of the system, which will be discussed in more detail in chapters 4 and 

6. 

 

1.4. Hydrodynamic Methods 

 

There are different methods for generating and controlling convection to the 

surface of the electrode.  Typically these techniques involve the movement of either 

the electrode with respect to the solution or by inducing motion in the solution.  

Specific examples are described below. 

 

1.4.1. Laminar and Turbulent Convection 

 

Laminar flow within a cylindrical pipe has a velocity profile that is greatest along 

the centre of the pipe and decreases as the distance from the centre (r) increases 

(figure 1.10 (a)).39  The solution is considered to flow perpendicular to r, as such the 

radial decrease in velocity along the channel is thought of as a series of concentric 

rings or lamina around the centre of the pipe.  Turbulent flow is the chaotic motion of 

solution, where the motion of solution at a particular point is not predictable as for 

laminar flow, and is shown schematically in figure 1.10 (b).  Whether a solution is 

laminar or turbulent depends upon the velocity of the solution, the geometry of the 

hydrodynamic system and the viscosity of the solution and is described by the 

Reynolds number (Re) of the system.39 
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Figure 1.10 (a) 2D schematic of a laminar velocity profile within a pipe and (b) turbulent flow within a 

pipe.  Size and direction of arrows represents local velocity. 

 

1.4.2. Rotating Electrodes 

 

The rotating electrode provides well defined hydrodynamics to the electrode 

surface.40, 41  Common electrode geometries for the rotating electrode include the 

rotating disc electrode (RDE),42 and the rotating ring disc electrode (RRDE).43, 44  The 

WE is mounted centrally within a cylindrical insulating material and attached to a 

motor.  By rotating the electrode, solution is drawn into the centre of the electrode 

before flowing outwards.  The coefficient of mass transport (kt) to the electrode 

surface for a RDE can be quantified using equation 1.20,2 
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 (1.20) 

 

where W is the rotation frequency and v is the solution viscosity.  The flow profile 

at the RDE is shown in figure 1.11. 

 

 

Figure 1.11 (a) A cross section of a RDE and the flow profile with respect to a rotating disc electrode 

surface, (b) perpendicular to the surface and, (c) in the plane of the surface. 

 

  Due to the enhanced mass transport to the electrode surface the rotating electrode 

geometries have been a fundamental tool for electrochemically investigating reaction 

kinetics.45-49  The RRDE has been successfully modified with enzyme films50-52 and 

with polymer films53-55 to allow the catalytic effects of the films to be studied beyond 

the limit of diffusion, under well defined hydrodynamic control.  More recently, the 

RDE has proved a popular technique for investigating fuel cell catalysts and other 
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electro-catalysts.56-59  However due to the mechanical motion of the electrode the 

ability to access higher rotation rates is limited by how quickly the electrode can be 

rotated whilst maintaining an electrical contact, typically an upper limit of ~300 Hz.60 

 

1.4.3. Channel and Tubular Flow 

 

The tubular and channel flow cells for electrochemical detection typically consist 

of an electrochemical detector situated within a cylindrical pipe (a) or a rectangular 

duct (b), as illustrated in figure 1.12. 

 

 

Figure 1.12 Schematics showing the key dimensions of (a) a tubular flow cell  and (b) a channel flow 

cell  

In theory, laminar flow occurs in tubes and channels when Re, defined in equation 

1.21, is less than 200039  

 

 
(1.21) 

 is the mean fluid velocity (cm s-1), v is the kinematic viscosity (~0.01 cm2 s-1 

for water at 20 °C),38 and Dh is the hydraulic diameter (cm), which is dependant upon 

the channel geometry and dimensions. 
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For the case of the tubular flow cell it is important to know the radius (rt) of the 
 
cylinder and the electrode length (xe).  The radius can be used to predict if flow within  

the pipe will be Laminar or turbulent by substituting the values calculated for  and 

Dh from equation 1.22 and equation 1.23 respectively, into equation 1.21.39 

 

 (1.22) 

 (1.23) 

 

where Vf is the volume flow rate (cm3 s-1). 

For a channel flow electrode the critical dimensions are the channel height (2h), 

width (w) and electrode length (xe).  The values for  and Dh can be calculated from 

equation 1.24 and equation 1.25 for a channel flow electrode, 

 

 (1.24) 

 (1.25) 

 

Once flow has been determined to be well-developed and laminar the current response 

can be predicted by equation 1.26 for a pipe61 and equation 1.27 for a rectangular 

channel,61 

 

 (1.26) 

 (1.27) 
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The approximations made for both tubular and channel flow electrodes are that there 

are no mass transport edge effects to the electrode (e.g. a band electrode is not near a 

side wall), mass transport to the electrode is dominated by uniform convective flow 

within the channel or pipe, and that the reaction at the electrode is mass-transport 

limited. 

Originally pipe flow electrodes consisted of insulating delivery and waste pipes 

that were secured to a metal ring, or metal piping.62  This effectively gave the 

electrode no lead-in length from the change of delivery pipe to electrode, which could 

result in the flow at the electrode surface not being fully developed and laminar in 

nature.  Stulik et al.63 presented a multipart tubular electrode (TE) consisting of two 

main Teflon sections.  The electrode section is readily assembled by sandwiching 

metal foils between these Teflon supports which fit into the electrode housing; 

typically the foils are pierced post assembly to ensure a smooth interface (figure 

1.13).  Similar designs have been adopted, however to simplify the design the 

reference and counter electrodes are typically positioned outside of the main Teflon 

body.64, 65 

 

 

Figure 1.13 (a) Schematic of an assembled multipart TE cell where (b) is the dismantled electrode 

section, showing two electrodes. 63 
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An alternative design involves imbedding the electrode within an insulating 

support that can be attached to the delivery and waste pipes.66  Typically this 

approach involves sealing a metal ring inside a resin.  This design methodology has 

very recently been further refined where the material for electrode and insulator is the 

same; in this case intrinsic and boron doped diamond (BDD) to create an intrinsic 

(insulating) diamond entry channel that feeds directly to a BDD electrode ring.67 

The tubular electrode has been applied to low concentration detection using 

constant flow,62 pulsed flow,68 and stripping analysis.65  The TE geometry is 

amenable to the continuous monitoring of an analytical solution for long periods of 

time.63  The combination of electron spin resonance (ESR) with the tubular electrode 

has also facilitated the study of reaction kinetics.69 

Theoretically the axial symmetry of a pipe is very appealing, allowing an axially 

symmetric 2D approximation of the flow system to be established.70  Experimentally, 

the pipe system suffers from several drawbacks.  For example, cleaning the electrode 

is difficult if abrasion is required as the electrode sits within the pipe.  The surface 

roughness within the TE cannot be assessed by conventional topographic techniques 

(e.g. atomic force microscopy), and refraction at the curved electrode surface and 

variable path length through the cross section of the tube can be problematic for 

optical spectroscopy.  These drawbacks make the channel flow geometry an 

experimentally appealing alternative due to the electrode being easily accessible, 

planar, and the uniform cross section of a channel. 

The channel flow cell is amenable to many electroanalytical experiments and can 

be easily combined with spectroscopic techniques.  The channel flow electrode allows 

for on-line and flow injection analysis of analyte concentration,71-73 and has also 

found considerable use for kinetic and mechanistic studies of electrode processes,74-77 
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homogenous kinetics,78, 79 dissolution studies and general reactions at solid/liquid 

interfaces.33, 35, 80-87  These fundamental studies and related comprehensive treatments 

of mass transport in channel electrodes88, 89 have provided a foundation for the recent 

use of channel flow in microfluidic devices90, 91 and also for the characterisation of 

fuel cell catalysts.37  A particularly attractive feature of the channel flow electrode is 

the possibility of making simultaneous spectroscopic measurements using, for 

example, UV-visible spectroscopy77 and electron paramagnetic resonance.74,69, 92, 93 

The channel flow cell is typically constructed from either a two part assembly or 

more commonly, a three part assembly.  The three part assembly, illustrated in figure 

1.14, consists of a planar electrode forming the channel base, a spacer part that forms 

the four side walls of the channel and defines the length, width, and height of the 

channel, with the third part providing the inlet and outlet ports and completes the 

channel roof.61, 94  The two part design is made from a planar electrode base and a 

second piece that provides the inlet, outlet and remaining five channel walls.  

Importantly, both designs allow easy access to the electrode surface to allow cleaning 

and post experimental studies.  The methodologies for constructing these types of 

channel are discussed in more detail in chapter 4. 
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Figure 1.14 Schematic of a three part channel flow cell design where the electrode is incorporated in 

the channel base, a spacer defines the height and width of the channel, and the channel roof 

incorporates the inlet and outlet connections 

 

1.4.4. Impinging Jet Electrodes 

 

The impinging jet electrode (IJE) controls convection by fluid exiting a nozzle 

perpendicular to the electrode surface.  The jet of fluid flows radially away from the 

centre of the nozzle.  Depending on the wall thickness of the nozzle, and the height 

above the electrode surface, the radial flow profile is either undistorted,95 or distorted 

due to the formation of a “thin layer cell” wall jet configuration, i.e. the nozzle is 

close to the surface and the nozzle wall thickness is large.96, 97  The schematics and 

flow profiles of these two types of IJEs are shown in figure 1.15. 
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Figure 1.15 (a) Schematic of an impinging jet electrode with a small nozzle in relation to the size of 

the substrate the jet impinges on showing  the  four predicted flow zones.98 (b) A large nozzle outer 

diameter close to the electrode surface showing the formation of a thin layer cell and distortion of the 

flow profile in (a). 

 

For the case of figure 1.15 (a) four regions exist within the flow profile; (1) the 

zone where solution exits the nozzle, known as the potential core; (2) a region of 

laminar axial flow towards the electrode; (3) a stagnation zone, directly underneath 

the nozzle, and (4) a developed radial flow zone, where solution flows outwards 

decreasing in velocity.98  The same regions exist in figure 1.15 (b) but are distorted by 

the proximity of the nozzle side walls compared to figure 1.15 (a).  The 

hydrodynamics of both these cases have been solved analytically98, 99 and are analysed 

in detail using finite element modelling, shown in chapter 6. 

In addition to the two hydrodynamic geometries there are two limiting cases that 

depend upon the location and size of the WE on the substrate with respect to the flow 

profile of the IJE.  The situation where the WE extends into the fully developed radial 

flow regime within an IJE is called the wall jet electrode (WJE),100, 101 shown in figure 

1.16 (a).  Here the electrode is always bigger than the nozzle.  If the WE is located 

fully within the stagnation zone, figure 1.16 (b), then the term wall tube electrode 



Chapter 1. Introduction 

29 

(WTE) is used.102-104  The WE is typically smaller than the nozzle for the WTE 

geometry. 

 

 

Figure 1.16 representation of a wall jet electrode (a) and a wall tube electrode (b) 

 

The flux to the WE in the WJE is not uniform and decays with the radial decrease 

in fluid velocity.  For the WJE the limiting current response can be described by 

equation 1.28,105 

 

 (1.28) 

 

where rn and re are the radii of the nozzle and electrode respectively. 

Importantly, the assumptions that the concentration is not perturbed at the centre 

of the electrode, and that the nozzle does not interfere with the radial flow profile are 

made.  These assumptions are adequate for the treatment of a WJE where the 

contribution to the overall current from the centre of the electrode is negligible and 

where the hydrodynamics are not distorted by the experimental setup.  For the WTE 

the current contribution close to the axis of symmetry contributes significantly to the 
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measured limiting current response.  At sufficiently high volume flow rates the WTE 

behaves similarly to a uniformly accessible electrode,106, 107 and the current response 

can be predicted using equation 1.29.36, 98, 108   

 

 
(1.29) 

 

where  is a constant coefficient (determined to be 1.51 by Chin and Tsang,98 

and Macpherson et al.108).  Numerical investigations of the WTE have been 

performed by finite element modelling.102, 104, 109 

The IJE is typically employed as an end of column detector in flow through 

detection,110-114 e.g. high performance liquid chromatography (HPLC).115, 116  As for 

the channel electrode the increased mass transport due to convection has also allowed 

kinetic and mechanistic studies to be performed.117-120 

The combination of a UME in the IJE setup is referred to as a micro jet electrode 

(MJE).  This set-up is analogous to the WTE except that both the nozzle and the WE 

are miniaturised, typically a UME of 25 µm and nozzle 100 µm are employed.102, 104, 

114, 115, 121  This method deserves particular attention due to the greatly increased mass 

transport it provides.  Diffusional mass transport to an UME is already greater than 

that to a macro electrode, as discussed above, but when employed in the MJE setup 

the steady-state current can be increased by up to two orders of magnitude enabling kt 

values of 0.5 cm s-1 to be generated.  A RDE would have to rotate at 200 kHz to 

achieve a similar kT which is practically impossible.36, 108  Thus the increased mass 

transport makes this system particularly powerful for fast kinetic studies and the 

electroanalysis of heterogeneous reactions.106 
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Furthermore, by attaching the nozzle to piezo positioners it is possible to image 

the hydrodynamic profile of the MJE at the UME by recording the limiting current as 

a function of x and y nozzle position. 102, 106, 108  By using a UME as the WE the local 

mass transports can be probed, this allows the lower rate of convection directly under 

the centre of the nozzle, the stagnation zone, to be probed.  As figure 1.17 shows the 

stagnation zone98 is clearly visible with figure 1.17 (b) showing a central area of low 

current.  The maximum current, and hence highest rate of mass transport, occurs when 

the electrode is offset from the centre of the nozzle.  The locations that provide the 

maximum limiting current to the UME is a ring centred on the nozzle.  As the 

distance of the UME from the centre of the nozzle increases, the mass transport to the 

UME decreases.  This results in the observed decrease in the limiting current.106 

 

Figure 1.17 (a) 3D plot showing the variation of the steady-state current response of a UME at 

different positions within an impinging jet, (b) 2D plot highlighting the stagnation zone in the centre of 

the impinging jet (colours relate to currents from (a)). Note: Centre of jet at x = -50 µm, y = 0 µm.106  

 

Figure 1.17 demonstrates the variation in mass transport with respect to the radial 

position of the electrode from the centre of the nozzle. Equation 1.28 assumes that the 
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electrode is positioned centrally within the impinging jet, as any offset will not 

provide the electrode with the axially symmetric radial flow from the impinging jet.  

Equation 1.29 assumes that the electrode is sufficiently smaller than the nozzle so that 

the mass transport to the electrode surface is effectively constant across the surface; 

however figure 1.17 demonstrates that due to the stagnation zone this is a rough 

approximation. 

The IJE geometries have proven to be powerful electroanalytical devices in a 

variety of configurations.  Typically the nozzle or WE is mounted on a stage with x, y 

and z controllers, as shown in figure 1.18 (a).  Alternatively, it is possible to place the 

electrode on the nozzle itself and create a ring electrode which when brought close to 

the surface defines a “thin layer cell” arrangement.  The “thin layer cell” ring 

electrode behaves similarly to a channel flow cell.60  This geometry has been used to 

successfully probe fast heterogeneous ET kinetics.122 

 

 

Figure 1.18 (a) Schematic of a wall jet cell  with x,y, and z mobility of the nozzle and (b (i)) where the 

WE is a ring incorporated into the nozzle,108 (b (ii)) is a photograph of the experimental setup.60 
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1.4.5. Modulation of Flow Rates 

 

By varying the rate of mass transport discrimination between the background 

signal, and the current response due to the mediator of interest can be significantly 

enhanced.123  This can provide an advantage over both (i) potential step voltammetric 

studies where the current time signal has a contribution from RΩ and C and; (ii) CVs 

recorded at a low electroactive concentrations, where the redox signal can be 

obscured by the background current-voltage response.124 

With hydrodynamic techniques it is easy to modulate the mass transport rate by 

varying the rate of convection, e.g. modulating the rate of stirring.125  For the RDE the 

speed of rotation can be varied.126  Wang et al.127 and Miller et al.128 demonstrated 

both (i) the stopped-rotation RDE, where the rotation rate was turned on and off, and 

(ii) modulated rotation RDE, where the rotation rate was varied from high to low 

rates.  As the limiting current response for a RDE is dependant upon the rate of 

rotation of the electrode, by varying the rate of rotation, and hence the mass transfer 

rate, the difference in the limiting current response can be measured.  By holding the 

WE at a fixed potential whilst modulating the rate of rotation the background signal 

remains constant (figure 1.19).  This approach obtained the detection limits of ~40 

nmol dm-3 for nitrobenzene on a gold electrode, and for Fe (II) – Fe (III) on a graphite 

electrode.128 
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Figure 1.19 Example of a stopped-rotation RDE CA response for 7 µmol dm-3 ascorbic acid.127 

 

 

For the channel flow, tubular flow cells with electrochemical detection and IJE 

configurations the volume flow rate can be varied.36  The pulsed and stop flow 

techniques were initially employed by Blaedel and Boyer,68, 129 where the rate of 

solution delivered through the channel was varied.  Combining this technique with 

vitreous carbon discs enabled a detection limit of ~1 nmol dm-3 to be obtained for 

Fe(CN)6
4-.27  In addition to varying the volume flow rate, the IJE also provides the 

interesting possibility of varying the nozzle height over the electrode to create an 

oscillating rate of mass transport.114  This technique was used to enhance the signal-

to-noise for the “thin layer cell” micro ring electrode by oscillating the nozzle up and 

down and thus changing the height between electrode and a planar surface.130 

An enhancement in detection limits similar to the stop-rotation method can be 

achieved by using an oscillating MJE.  As shown in figure 1.17, by varying the 

lateral position (i.e. x and y) of the electrode with respect to the nozzle the limiting 

current response varies from that of an UME in static solution when the nozzle is not 

over the electrode (figure 1.20 (b)), to the convectively enhanced limiting current of 

an IJE configuration (figure 1.20 (a)).  By oscillating the lateral position during a CV 

the change in the mass transport rates can be observed producing the oscillating 
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change in current observed in figure 1.20 (c).  It is important to use UMEs with small 

insulating sheathes to minimise the lateral displacement of the nozzle.  A detection 

limit of ~5 nmol dm-3 for IrCl6
3- on a Pt disc UME was obtained by Macpherson et 

al..121 

 

 

Figure 1.20 Schematic of the hydrodynamic profiles to a MJE where the UME has a small insulating 

sheath, (a) where the solution impinges directly onto the centre of the UME, (b) when the fluid does 

not impinge onto the substrate. (c) A typical CV produced by modulating the lateral position.121 

 

1.5. Carbon as an Electrode Material 

 

This section introduces carbon as a WE material, and discusses several of the 

commonly used forms of carbon.  The carbon atom has six electrons, four of which 

are in the valence orbitals, allowing a carbon atom to form sp, sp2 and sp3 bonds.131  

Carbon covalently bonds to 4 atoms in the sp3 hybridization, for example in diamond 

each carbon is bonded to 4 neighbouring carbon atoms a tetrahedral geometry.  With a 

sp2 hybridization carbon bonds to 3 neighbouring atoms in a planar triangle 

configuration, the fourth valence electron can be localised into a double bond (e.g. 

CH2O), or delocalised in conjugated systems.  In the sp bonding hybridization the 
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carbon atom bonds linearly to two atoms, forming a triple bond and a single bond, for 

example acetylene (C2H2). 

Carbon materials, such as highly oriented pyrolytic graphite (HOPG), glassy 

carbon (GCE), and carbon fibre, have been used extensively as electrode materials as 

they offer many advantages over metallic electrodes.132  For example, the chemical 

stability of carbon, the wide potential window8 in aqueous solution, and 

biocompatibility with biological and organic redox mediators make these materials of 

electroanalytical interest.133-136  The forms of carbon referred to and used within this 

thesis are discussed below, with an overall focus on carbon nanotubes (CNTs) for use 

as an electrochemical detector. 

 

1.5.1. Highly Oriented Pyrolytic Graphite 

 

This material is of particular importance throughout this thesis due to the 

analogies drawn between the surface sites of highly orientated pyrolytic graphite 

(HOPG) and CNTs.  Figure 1.21 (a) shows the crystal structure of HOPG consisting 

of layers of sp2 bonded planar hexagons, individually known as graphene (figure 1.21 

(a i)).132  As each carbon has only 3 neighbouring carbon atoms this leaves a dangling 

bond which weakly connects neighbouring planes together, (figure 1.21 (a ii)) and of 

particular importance for an electrode, allows conduction through the material.137  

Defects occur on the surface of HOPG, either in the disruption of the regular lattice 

structure, or where a graphene layer is broken forming step edges.138  Figure 1.21 (b) 

shows the typical surface features of HOPG consisting of basal plane (sp2) sites, 

which consist of the hexagonal structure of a graphene sheet and edge plane (sp3) 

sites, which occur at step edges and constitute the end of a graphene sheet.139, 140     
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Figure 1.21 (a) The crystal structure of HOPG, (i) a single layer or graphene sheet, and (ii) three layers 

stacked, dashed lines represent weak bonding between the plances, (b) illustrates the surface features of 

HOPG.138 

 

HOPG is synthesised by the high temperature decomposition of hydrocarbons, 

typically acetylene, followed by hot pressing at a high temperature and high 

pressure.132  The regular lattice structure and nano-meter flat surface over extended 

regions of HOPG makes the material surface appealing for a range of studies.  The 

well defined structure of HOPG provides an appealing surface for investigations into 

controlling the morphology and quantity of metal nano-particles deposited on a 

carbon surface using electrodeposition techniques.141-144  HOPG has also been used as 

a carbon support for investigations into the catalytic effect of electrodeposited 

nanoparticles for fuel cell investigations.145, 146  For example the extended flat surface 

of HOPG facilitates the combination of atomic force microscopy (AFM) and scanning 

electrochemical microscopy to probe the catalytic properties of different metal 

nanoparticles to be for a variety of reactions (e.g. proton generation and oxygen 

reduction).146  
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However, there is still consideral debate about the electroactivity of the basal 

plane and edge sites on HOPG.  Some claim that the electroactivity of HOPG is 

predominantly due to edge plane sites, with strongly hindered ET at the basal plane.22, 

147-150  However, others believe that the basal plane is able to support ET at significant 

rates.5, 151, 152  This debate is of particular interest as the surface structure of HOPG 

has been considered as analogous to that of a CNT, and will be discussed in more 

detail in chapter 3. 

 

1.5.2. Carbon Nanotubes 

 

CNTs possess remarkable structural, mechanical and electronic properties, making 

CNTs of interest to a broad range of fields.  These include the use of CNTs as probes 

in scanning probe microscopy,153-157 composite materials,158-160 nanoelectronics161-164 

and solar cell technology.165, 166  The low resistance167 and low capacitance168 of 

“pristine” CNTs (i.e. clean and unpurified) makes them particularly attractive to 

electrochemistry and applications in electrochemical sensing. 

The basic component of a CNT is considered analogous to a rolled graphene 

sheet, resulting in a single walled nanotube (SWNT) (figure 1.22 (a)), with a typical 

diameter between 0.5 - 3 nm.169  A multi walled nanotube (MWNT), contains several 

layers of rolled graphene.  For a SWNT the chiral vector, Ch, of the circumference of 

the SWNT determines whether the SWNT is metallic or semiconducting.170, 171  The 

chiral vector is derived from equation 1.30, 

 

 (1.30) 
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where a1 and a2 are vector components of the graphene sheet as defined in figure 

1.22 (b), and n and m are integer values.  Equation 1.31 can be used to determine if 

the SWNT is metallic or semiconducting. 

 

If  then the SWNT is metallic (1.31) 

 

Thus for random growth probability dictates one out of three SWNTs will be 

metallic. 

 

 

Figure 1.22 (a) A graphene sheet rolled to form a SWNT, (b) diagram illustrating the labelling 

conventions for the chiral vector of SWNT circumference. 

 

Both SWNTs and MWNTs have been used for electrochemical studies, however it 

is important to note that as a SWNT consists of one graphene sheet, effectively the 
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electrode is all surface atoms.  In contrast a MWNT consists of many layers,172  which 

can be arranged in different ways as shown in figure 1.23.131, 147  Thus, when the 

layers are non-concentric the MWNT is referred to as herring bone or bamboo-like.  

Depending upon the structure of the MWNT employed for electrochemical studies the 

proportion of sidewall and step edge sites on the MWNT will vary.  Thus it is 

essential CNTs are fully charaterised prior to use.  This is even more important as the 

different synthesis and cleaning techniques employed will result in different CNT 

structures e.g. acid functionalised173 and surfactant stabilised174. 

This thesis is primarily interested in the use of SWNTs as an electrode material, 

however as MWNTs have been used extensively for electrochemistry and for 

determination of the electroactivity of CNTs it is important to discuss both materials 

(chapter 3). 

 

 

Figure 1.23 Various configurations of MWNTs (a) concentric,  (b) bamboo and (c) herring bone147 

1.5.3. Synthesis of Carbon Nanotubes 

 

There are several methods for the synthesis of CNTs; arc discharge,175-177 

catalysed chemical vapour deposition (cCVD),178-180 laser ablation181, 182 and high 
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pressure carbon monoxide conversion (HiPCO).183, 184  Arc discharge is the original 

method for fullerene185 and CNT synthesis.175 Here graphite electrodes are placed ~1 

mm apart in an inert atmosphere and a bias of 10 – 35 V is applied to produce an 

electrical discharge, resulting in soot formation, which contains the CNTs and 

amorphous carbon.  Metallic catalysts can be added to the anode to control the CNT 

composition, for example Co, Fe, Y and Ni are known to promote the growth of 

SWNTs.177, 181, 186, 187  Due to the carbon on the anode being transferred to the cathode 

and surroundings the anode is progressively moved towards the cathode to maintain 

the separation distance.  A major drawback of arc discharge is that the resultant 

product often has more than a 2:1 weight ratio of catalyst nanoparticles to CNTs.188 

Laser ablation involves heating a graphite target which incorporates a metal 

catalyst, for example Co and Ni for the synthesis of SWNT,189 to 1200 °C under an 

inert gas flow, CNTs are produced by directing Nd:YAG laser pulses onto the carbon 

source.  Depending on where the product forms inside the oven the yield of CNTs to 

amorphous carbon varies from ~90% to under 50%.182, 189 

HiPCO was developed at Rice university by Smalley et al169, 184, 190 with the aim 

to mass produce SWNTs.  The HiPCO method involves the flow of a carbon 

containing gas mixed with a catalyst in the vapour phase (e.g. Fe(CO)5 in CO)184 

through an oven heated to ~1000 °C at 1-10 atm of pressure.  The SWNTs form in the 

gas flow and are removed either from a collection area or from the furnace walls.184  

The produced SWNTs typically have catalyst residue on the sidewall with a density of 

approximately 1 metal atom per 10 carbon atoms.184  As with arc discharge and laser 

ablation the HiPCO CNTs need post-growth purification in order to remove the 

catalyst and carbon residues.  It is important to note that many early electrochemical 
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studies used unpurified CNTs and were effectively making measurements on 

composite materials (e.g. CNTs/metal nanoparticles/amorphous carbon).191, 192 

Synthesis of CNTs by cCVD produces CNTs with little amorphous carbon and is 

thus considered a clean process.193, 194  Also one catalyst nano particle yields one 

SWNT and the catalyst nano particle is typically encapsulated in the SWNT thus the 

metal nano particle contamination is minimised.  The method will be described in 

detail in the section 2.1.  Figure 1.24 outlines the general cCVD methodology, where 

a substrate loaded with catalyst particles is heated inside an oven under the flow of 

hydrogen, argon and a carbon feedstock gas.  After a defined period of time the 

substrate is cooled and removed from the oven.178, 195  This technique is used 

exclusively for the in-house synthesis of SWNTs used for the electrochemical studies 

herein. This is a direct result of the SWNTs containing negligible amounts of 

amorphous carbon, having a low defect density196 and the fact they can be directly 

synthesised on the substrate of interest.152, 195, 197-199 

 

 

Figure 1.24 Outline of the basic method for synthesising CNTs by cCVD where (a) the clean substrate 

has catalyst deposited upon the surface (b), before (c) being placed inside the cCVD furnace. 
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1.5.4. Purification of CNTs 

 

As SWNTs synthesised by arc discharge, laser ablation and HiPCO are formed in 

soot containing a high proportion of undesired material (e.g. catalyst particles and 

amorphous carbon) the CNTs are typically purified prior to use in electroanalysis. 

Purification of CNTs is typically performed using strongly acidic solutions at 

elevated temperatures.200-203  Acid cleaning of SWNTs provides a significant 

reduction in the amount of impurities however it does not always remove all of the 

impurities and thus post cleaning characterisation is essential.204-206  Dumitrescu et 

al.207 demonstrated how an acid reflux CNT treatment step caused the reduction in 

length of CNTs (figure 1.25) and functionalises the outer wall.  Vibrational 

spectroscopy studies indicates acid treatment provides a mixture of C-O and C=O 

functional groups on the sidewall of the SWNT.208-210  Functionalising the sidewall 

disrupts the regular structure of the CNT, in the case of metallic SWNTs this could 

result in points of higher resistance.211, 212   

 

 

Figure 1.25 AFM images showing SWNTs (a) prior to treatment and (b) after 14 hours reflux 

treatment in HNO3.207 
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Ultra sound treatment of CNTs is typically used during the cleaning of CNTs and 

for the separation of CNTs.  The sonic treatment can damage the CNT structure 

resulting in the shortening of the CNTs.173, 174, 213  For the creation of drop cast films a 

surfactant can be used to prevent aggregation, e.g. sodium dodecylsulfate (SDS)214 or 

benzylalkonium chloride.215  The surfactant can be difficult to remove, or like acid 

cleaning, functionalise the outer wall.172 

 

1.5.5. Carbon Nanotubes as Electrodes 

 

The first reported use of CNTs as an electrode material was for the detection of 

dopamine in 1996 by Britto et al.191  The CNTs were prepared by arc discharge and 

made into a paste with bromoform.  The electrode was prepared by packing the 

CNT/bromoform paste into a glass tube.  An electrical contact was made by inserting 

a copper or platinum wire into the paste.  This method provided a reversible 

electrochemical response for the electrolysis of dopamine upon a large capacitive 

background signal as shown in figure 1.26. 
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Figure 1.26 CV of 5 mM dopamine in PBS (pH 7.4) at a carbon nanotube electrode (sweep rate, 20mV 

s-1 reference electrode, SCE).191 

 

As an alternative to making a CNT-paste electrode, CNT samples have been drop 

cast onto conducting supports (e.g. metals174, 216, 217 and glassy carbon218, 219).  Luo et 

al.218 showed that deposition of CNTs onto a glassy carbon support resulted in 

improved sensitivity towards dopamine detection compared to a bare glassy carbon 

electrode.  These early reports indicated an enhanced electrochemical signal which 

was attributed to the presence of the CNTs.  However, work by Moore et al.220 on 

modified basal plane HOPG showed that the same electrochemical enhancement for 

several redox species could be achieved using either an abrasively attached graphitic 

powder or a drop cast MWNT film (>95% purity).  This report questioned the 

previously claimed “electrocatalytic effects” of CNTs221 and highlighted the need to 

fully characterise the electrode material being used for structure and purity. 

It should be noted that drop cast deposition procedures require suspending the 

CNT solution in an organic solvent or with a surfactant which coat the CNT, and the 
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use of sonication which can damage the structure of the CNT.174, 213  Also the method 

produces an uneven distribution of CNTs across the surface; resulting in clumps of 

CNTs218.  Finally the use of an electrochemically active support makes discrimination 

of the electrochemical response due to the CNTs alone difficult.   

Importantly these treatment steps can be avoided by the use of cCVD for the 

synthesis of SWNTs directly onto an insulating substrate.  Individual SWNT,151, 199 

array SWNT222, 223 and random 2D network SWNT152, 195 electrodes have been 

prepared this way.  For example, work by Bertoncello et al.196 demonstrated that the 

use of a SWNT 2D network covering less than 1% of the surface of the underlying 

insulating substrate produced an electrode, figure 1.27 (a), with greatly reduced 

capacitive currents compared to a glassy carbon electrode of the same geometric 

dimensions (figure 1.27 (b)).  This enabled CV detection of the outer sphere redox 

mediator ferrocenylmethyl trimethylammonium hexaflorophosphate (FcTMA+) at 25 

nmol dm-3 directly using CV alone.  The synthesis of SWNT 2D network UMEs was 

demonstrated by Dumitrescu et al.224 and proved that the electrode behaved as a 

conventional UME but with the advantage of reduced capacitive currents. 
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Figure 1.27 (a) Schematic of the droplet cell used on the 2D SWNT network, (b) the reduced 

capacitive background of the 2D SWNT network (-) compared to a GCE (-), note different current 

density scales. 

 

However, despite the many applications of CNTs to electrochemistry there is still 

debate about where electron transfer occurs on a CNT and whether MWNTs and 

SWNTs can be treated in the same way, see chapter 3 for further discussion. 

 

1.6. Finite Element Modelling 

 

The theoretical prediction of the current response to an applied voltage at an 

electrode surface is performed using the finite element modelling (FEM) package 

FEMlabTM (Comsol) in this thesis.   This technique uses a computer to solve a defined 

set of equations (i.e. Fick’s second law of diffusion and Navier-Stokes equations for 

the work within this thesis) within a user defined domain.  For both 2D and 3D 

simulations the problem is broken down into a set of triangular elements, known as a 

mesh, which is used to approximate the domain being simulated (figure 1.28).225, 226 
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Figure 1.28 An example of a simple triangular mesh used for FEM (a) and the same domain where the 

mesh is finer at two edges (b) 

 

After generating a mesh the chosen equations are calculated at the corners of each 

triangular element.  For areas where the result is likely to change the most, for 

example a concentration gradient near an electrode surface, the mesh density is 

increased (figure 1.28 (b)).  This can be either defined by the user or using an 

algorithm to focus on areas of greatest change in a property (e.g. fluid velocity and 

concentration).  Both mesh refinement approaches allow simulations to be run 

efficiently without sacrificing accuracy.102, 104, 109, 227  For situations where multiple 

sets of equations are being solved, the problem can be broken down into multiple 

domains.  This technique is used in the 2D simulations of the wall jet electrode 

(section 6.3.8) to ensure a high level of accuracy for the predicted limiting currents.99 
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With the increasing power of computers the use of FEM within electrochemistry 

has risen.228-231  For example Kwak and Bard232 showed how FEM could be used to 

predict the limiting current response of an UME at different distances from a surface.  

Initially this was done for insulating and conducting cases232 but now any surface 

reaction can be studied provided it can be approximated with the correct equations.233  

Work by Holder et al.234 used FEM 3D modelling to explore the effect of probe tip 

and cantilever geometry for SECM-AFM studies.  An adaptive mesh routine within 

the solver was used for the investigation of the current response at an electrode due to 

the increased mass transport caused by acoustic agitation of the solution.235  The 

investigation of diffusional cross talk between micro-bands inside a channel flow 

cell.236  Numerical simulations and experimental results were in agreement at both the 

electrodes in a dual micro band system, for both the generator-generator and 

generator-collector electrode modes over a range of flow rates and diffusion 

coefficients.237  Norton et al.238 applied FEM to the mass transport limited reduction 

or oxidation of bio-molecules in variable concentrations of supporting electrolyte.  

This approach also enabled the limiting current to be analysed for mediator species of 

different charge to be predicted.  Grime et al.239 showed that the proton transport 

across a lipid bilayer can be accurately modelled.  Protons were generated at an UME 

and the pH was monitored by fluorescence microscopy.  By analysing the 

experimental and theoretical data the permeation coefficient across the membrane was 

determined.  The electrochemically induced transport across the interface of two 

immiscible liquids has been modelled by Qui et al.240  In particular, the affect of the 

boundary layer geometry upon the CV response was investigated. 

FEM has been used to investigate non-planar electrodes, for example the effect of 

having a disc or ring raised or recessed with respect to the surrounding insulating 
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surface.  The resultant diffusion profiles established at the electrodes were predicted 

and the effect of the geometry studied.241  FEM has also been employed for a range of 

hydrodynamic techniques, including IJEs,99, 102-104, 242 and RDEs.243, 244  The technique 

is particularly powerful for situations where the electrode does not experience a 

uniform flow profile, or the hydrodynamics are distorted from a conventional or 

idealised set up (e.g. a hindered RDE243). 

The FEM calculations performed throughout this thesis are based upon Fick’s 

second law of diffusion2, 3 and incompressible Navier-Stokes fluid mechanics.39  

Simulations will be described in more detail in their relevant sections. 

 

1.7. Thesis Aims 

 

The use of CNTs within electrochemistry is a growing field, with a wide range of 

techniques for synthesis and applications as electrode materials.  Despite the increased 

use of CNTs within electrochemistry there is still debate about the sites of ET at the 

CNT surface.  Some claim that the step edge-like defects, catalyst particles and 

amorphous carbon all contribute, whilst the sidewall remains effectively inert, 

although there is evidence to the contrary, which indicates the sidewall is active.  One 

of the main aims of this thesis is to investigate the sites of ET at well characterised 

SWNT electrode systems.  In conjunction with this work the use of SWNTs for ultra-

low concentration detection has also been explored.  This has involved the 

construction of new flow cells which are compatible with the SWNT network 

electrodes employed and a full characterisation of the hydrodynamics of the resultant 

flow devices. 
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In more detail; chapter 2 discusses the experimental techniques used throughout 

this thesis, in particular the synthesis and characterisation of SWNT networks for use 

as electrode materials.  The fabrication techniques for a range of electrode materials 

are introduced.  The microstereo lithography (MSL) process is described for 

applications to create novel hydrodynamic devices.  Finally, a list of all chemicals and 

the purities employed throughout the work herein is given. 

The sites for electron transfer at a SWNT network electrode are investigated in 

chapter 3.  By reducing the rate of diffusion to the electrode using a drop-cast 

NafionTM film, it is possible to distinguish between defect and sidewall 

electroactivity.  Theoretical models for the two limiting cases of discrete site activity 

and entire sidewall activity are proposed and critically compared to experimental data. 

Chapter 4 introduces current methods for channel flow cell construction, where 

the advantages and disadvantages of all are considered.  The design and development 

of an improved flow cell using MSL is presented and rigorously tested on both gold 

and polycrystalline boron doped diamond band electrodes.  The channel produced is 

amenable to mass production, and importantly for analytical applications is easily 

assembled and does not distort during assembly.  The FEM simulation is compared to 

the Levich predicted response for several electrode geometries.  Chapter 5 describes 

the employment of the MSL produced flow cell in conjunction with SWNT network 

electrodes.  This combination is used for the low concentration detection of FcTMA+ 

and dopamine. 

Chapter 6 continues the application of MSL produced hydrodynamic devices with 

the development of a MSL fabricated IJE.  FEM is used to determine the 

hydrodynamics in a range of configurations, ensuring that the MSL IJE device 

provides well-defined radial flow to an electrode surface.  FEM is also used to predict 



Chapter 1. Introduction 

52 

the limiting current response for the experimental testing of the flow cell.  This device 

is compared to existing IJE experimental set-ups, and is used experimentally in 

conjunction with both metal and SWNT network electrodes. 

Finally chapter 7 summarises the findings of chapters 3-6, and proposes future 

work based upon the designs presented. 
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2. Experimental 
 

 

This chapter describes the experimental techniques which are used throughout this 

thesis, including details of the synthesis and characterisation of 2D SWNT random 

networks used as a WE material and the MSL fabrication procedure.  Additionally, a 

complete list of all materials employed throughout this thesis is summarised at the end 

of the chapter. 

 

2.1. SWNT Electrode Fabrication 
 
 

This section describes the synthesis of high density (HD) and very high density 

(VHD) 2D SWNT networks using cCVD.  The HD SWNT networks used typically 

have a density of 3-4 µm SWNT length per µm2 of substrate (<1 % SWNT surface 

coverage), the density of VHD samples used within this thesis is greater than 6 µm 

length of SWNT per µm2 of substrate (~1 % SWNT surface coverage).  For all studies 

the substrate used was insulating silicon oxide.  Initially the silicon oxide substrate is 

cut to the required dimensions, cleaned, and then the catalyst is deposited.  The 

synthesis of SWNT networks is performed using cCVD and the resulting substrate 

characterised by the techniques outlined in section 2.2.  Figure 2.1 outlines the steps 

required to create an electrode from an as grown SWNT network, all steps will be 

explained in detail in the relevant sections. 
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Figure 2.1 A schematic outlining the key steps in preparing an SWNT network as an electrode for 

electroanalysis, (a) cleaving samples from the wafer, (b) cleaning the sample, (c) catalyst deposition, 

(d) synthesis of SWNTs, (e) creating electrical contacts, (f) defining the electrode dimensions by 

photolithography, and (g) electrochemical set up employing the SWNT electrode. 

 

2.1.1. Substrate Preparation 
 

All SWNT networks used within this thesis were synthesised on a silicon wafer 

with a thermally oxidised layer of ~300 nm thick silicon oxide.  Wafers were obtained 

as 4” diameter discs and cut to the required size.  Substrate samples of ~1 cm x ~1 cm 

were cut by scratching the polished side of the wafer with a diamond tipped scribe 

followed by the application of a small force over the scratch on the non-polished side 

of the wafer.  Samples were cleaned by rinsing thoroughly with acetone and isopropyl 

alcohol followed by being blown dry with nitrogen.  The substrate preparation was 

identical for both HD and VHD samples. 
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2.1.2. Synthesis of high density networks 
 

 

HD samples were synthesised using an iron catalyst with methane as the carbon 

feed source.  The iron catalyst was delivered to the substrate surface using ferritin.  

Ferritin is a bio-molecule which consists of an outer protein shell of ~12 nm in 

diameter with a central core containing up to 4500 oxidised iron atoms, ~8 nm in 

diameter.1  The ferritin was prepared by diluting 1 volume ferritin to 200 volumes of 

water, the total volume used was dependent upon the number of samples to be 

processed.  The ferritin solution was sonicated for 5 minutes immediately before use.  

The silicon samples were submerged for 1 hour in the ferritin solution, before being 

gently rinsed with water and blown dry under a low flow rate of nitrogen.  The 

samples were exposed to an oxygen plasma (Emitech, K1050X) at 100 W plasma 

power, 1 x 10-6 bar plasma pressure, for 1 minute to remove the ferritin protein shells. 

Samples were placed within the centre of the cCVD furnace, which consisted of a 

split tube oven (Lindberg/Blue M, Thermo/Fisher Scientific), a quartz tube (25 mm 

outer diameter, 1.5 mm wall thickness, 50 cm length, fused quartz, Enterprise Q Ltd., 

U.K.) connected to a programmable heat controller.  The furnace was connected to 

mass flow controllers (MFCs, model 1179A, MKS Instruments UK Ltd., U.K.), 

which were controlled using an appropriate analogue readout unit (Type 247, MKS 

Instruments UK Ltd., U.K.), as shown in figure 2.1. 
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Figure 2.2 Photograph of the HD cCVD system 

 
Samples were heated to 875 °C under a flow of 200 sccm H2.  Once the 

temperature had stabilised a methane flow of 1800 sccm was supplied for 5 minutes.  

After growth the samples were cooled under a flow of H2, the lid was opened at 700 

°C to speed cooling.  Samples were removed from the oven once the temperature was 

below 200 °C.2 
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2.1.3. Synthesis of very high density networks 
 

 

The VHD networks were synthesised using a cobalt catalyst with ethanol 

vaporised in argon as the carbon feedstock.  The cobalt catalyst was sputtered onto the 

silicon oxide samples using a desktop sputter deposition system (SC7640 sputter 

coater, Quorum Technologies Ltd., U.K.) and a target made from high purity cobalt 

film (Neubauer Chemikalien, Agar Scientific Ltd., U.K.) adhered to an aluminium 

support.  Prior to deposition the entire chamber was wiped clean with isopropyl 

alcohol and the chamber was repeatedly purged with argon.  To remove any 

impurities from the cobalt target a burn in cycle was performed at 1.5 kV.  Deposition 

of the cobalt catalyst particles was performed at 1 kV under an argon pressure of ~4 x 

10-2 bar, adjusted to provide a constant current of 10 mA for 10 s. 

The samples were placed in the centre of a cCVD furnace and heated to 850 °C 

under a constant flow of 150 sccm H2.  Once the temperature was stable argon, 

bubbled through an ethanol bath, held at 0 °C, was passed through the cCVD furnace 

for 10 minutes.3  After the growth period the samples were cooled under H2 before 

being removed when the temperature was less than 200 °C.  As for the synthesis of 

HD networks the furnace lid was opened at 700 °C to speed the cooling of the 

samples.  The VHD cCVD system is shown in figure 2.3. 
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Figure 2.3 Photograph of the VHD cCVD system. 

 

2.2. Characterisation of SWNT networks 
 

To determine the suitability of growth conditions and quality of individual 

samples a range of surface analysis techniques were employed within this work. 

 

2.2.1. Atomic Force Microscopy 
 
 

AFM was employed extensively to investigate the diameter of SWNTs and the 

network density.  This technique is non-invasive and provides information on the 

cleanliness of the sample, the size of residual catalyst particles and whether SWNT or 

MWNT are present.  However it is important to realise that this technique is time 

consuming and is limited to small area scans, within this thesis typical scans are 

between 1 µm x 1 µm to 5 µm x 5 µm. 
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Images were taken using a Veeco MultiModeTM AFM, equipped with either a 

NanoScopeTM IIIa controller or a NanoScopeTM V controller.  A ‘J’ series piezo 

scanner, allowed a maximum scan range of 150 µm × 150 µm in the lateral direction, 

and ± 2.5 µm in the vertical direction.  A vibration isolation table (Micro-g, Technical 

Manufacturing Corporation, U.S.A.) with microscope stand (in house) was used to 

reduce noise and to allow lateral tip positioning.  All images reported in this thesis 

were taken in TappingModeTM (TM) to minimise the lateral forces exerted upon the 

sample.  TM involves the driven oscillation of the cantilever near the resonance 

frequency.  The tip is lowered to the surface and an “amplitude set point” is specified 

by the user, this controls how hard the tip contacts the surface, and requires a balance 

to be achieved which accurately maps the surface topography without damaging a soft 

sample.  The tip is raster scanned across the surface whilst varying the height of the 

cantilever to maintain the amplitude of the oscillation.  The variations in the height of 

the cantilever are recorded with respect to the scan position to create a topographic 

map of the surface. 

For all samples used in electrochemical experiments the CNT diameter, density 

and cleanliness of samples were obtained from a series of AFM images.  The CNT 

diameters were taken from the height of the scan, as tip convolution distorts the lateral 

dimensions of the CNTs.  A visual inspection of the scan was used to determine if 

there was an excess of catalyst particles or amorphous carbon present nearby and 

upon the CNTs.  The density of the samples was calculated by measuring the length 

of CNTs present on the scan and dividing by the area of the scan, reported as µm µm-2 

(length of SWNT per area of substrate).  AFM was used as the method of 

characterisation once a stable growth procedure had been established. 
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A typical AFM image of a HD SWNT sample is shown in figure 2.4 (a). The 

image shows a low density of unreacted Fe catalyst particles and the resulting SWNT 

network at a density of ~4 µm µm-2.  The SWNT height is between 0.8 nm to 3 nm 

and typically one Fe nanoparticles nucleates one SWNT, with the Fe nanoparticles 

likely to be coated in carbon to form iron carbide.4  The presence of tubes of larger 

height is attributed to bundles of SWNT or small MWNTs.  Figure 2.4 (b) shows a 

typical VHD SWNT network.  Here a higher density of unreacted Co catalyst 

particles can be seen for the HD sample, however the density of grown SWNTs is 

much higher.  CVs performed in only supporting electrolyte using UMEs of the VHD 

networks do not display Co stripping peaks3.  Hence we believe that the reacted Co 

particles are encapsulated at the end of a SWNT, with the majority of unreacted Co 

nanoparticles not being electrically connected to the network.  Those that are 

connected are either in a significantly low quantity not to contribute to the 

background current response or exist as cobalt carbide which does not undergo an 

electrochemical redox reaction within the solvent window. 

 

Figure 2.4 AFM images of a HD SWNT network (a) and a VHD SWNT network (b) 
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2.2.2. Field Emission Scanning Electron Microscopy 
 

Field emission scanning electron microscopy (FE-SEM) was used to determine 

the density and how uniform the growth of a CNT network was over a sample.  The 

contrast in the FE-SEM images shown is due to the potential difference caused by 

charging of the conducting network upon the insulating silicon oxide layer.2  This 

causes CNTs connected to the network to have a higher contrast from the silicon 

oxide layer than isolated CNTs.  FE-SEM allows for large areas of the sample to be 

assessed quickly for network density; however the data obtained is limited as it does 

not allow for the assessment of CNT diameters, or the presence of amorphous carbon 

and catalyst particles.  As such FE-SEM images were used to ensure that the synthesis 

protocols described in section 2.1 produced uniform networks across the entire 

sample. 

All FE-SEM images were obtained using an ultra-high resolution FE-SEM 

instrument (Zeiss Supra 55VP), under an acceleration voltage of 1 kV. Samples were 

fixed to a holder using 54 carbon adhesive pads (G3347N, Agar Scientific Ltd., U.K.). 

2.2.3. Raman Spectroscopy 
 

CNT samples were checked for the presence of amorphous carbon using Raman 

spectroscopy and importantly to confirm the presence of SWNTs.  The Raman active 

modes of SWNTs of importance are the D and G peaks present at ~1300 cm-1 and 

~1600 cm-1 respectively and the radial breathing modes which occur between 100 cm-

1 to 300 cm-1.5  The D peak represents disorder within the graphitic lattice of the 

CNTs, relating to either defects or amorphous carbon in the sample, and the G peak 

signifies the sp2 lattice.5, 6  Only SWNT networks with a negligible D peak (less than 
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5% of the G peak height) were used for electrochemical experiments throughout this 

thesis.  The radial breathing mode can be used to determine the diameter of a SWNT, 

however as the samples used consist of randomly grown SWNTs with many SWNTs 

exposed to the laser spot the SWNT dimensions were not derived from this 

information. 

Micro-Raman spectra of SWNT networks were recorded using a Renishaw inVia 

Raman microscope with incorporated Leica microscope and CCD detector.  SWNT 

peaks were calibrated against a Si peak at 521 cm-1.  An Ar laser with an excitation 

wavelength of 514.5 nm (2.41 eV), at 10 mW power was focused in a ~ 2.5 µm spot 

for all experiments.  Figure 2.5 shows typical Raman spectra for both HD and VHD 

networks.  Due to the lower density of CNTs in the HD sample, the peaks are weaker 

than for the VHD samples.  Note that the size of the D peak relative to the G peak is 

small for both cases indicating high quality and clean SWNT networks. 

 

 

Figure 2.5 Raman spectra of a HD SWNT network (a) and a VHD network (b). 
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2.3. Working Electrode Fabrication 
 
 

The methodologies employed to synthesise and define all planar metal electrodes 

used within the chapters 4 and 6 and SWNT network electrodes follow the same 

procedures described within this section. 

 

2.3.1. Metal Deposition 
 

 

Au working electrodes and ohmic electrical contacts to a SWNT network were 

made by thermal evaporation of a chromium adhesion layer followed by a thicker 

gold layer. Evaporation was performed using a custom made evaporation/sputter 

coater unit (Moorfield Associates, U.K.) where the required metal was heated by 

applying a current to the metal source.  The chromium adhesion layer, ~10 nm thick, 

was deposited from a chromium bar by applying a current of ~90 A.  The gold layer 

was evaporated off an aluminium boat at ~50 A.  For the all metal electrodes a Au 

layer of 200-300 nm was used, for the SWNT networks a Au layer of ~100 nm was 

employed.  Deposition was monitored via a quartz crystal microbalance located near 

the samples, and the area of deposition was defined by shadow mask. 

 

2.3.2. Photolithography 
 

 

Photolithography was used to define the dimensions of the WE by optically 

patterning a photoresist film on the sample.  The geometry of the electrode area was 

dependant upon the application e.g. band electrode for channel flow, and the masks 
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employed are described in more detail in chapters 5 and 6.  Samples were cleaned by 

gently passing nitrogen over the surface before spin coating a primer layer followed 

by a layer of S1818 positive photo resist.  Spin coating was performed at 3000 rpm 

for 45 seconds (G3-8, Specialty Coating Systems Inc., U.S.A.).  Samples were heated 

in air at 115 °C for 1 minute.  The defined electrode dimensions were created by 

positioning the samples under a custom made photo resist mask (J.D. Photo Tools, 

UK), exposing to UV light (mask aligner), and developing the photo resist film in 

MF-319 solution. 

2.4. Microstereo Lithography 
 

 

MSL was used to construct both the channel flow units and the WJE units, the 

designs for both of these parts will be discussed in more detail in the relevant sections.  

The procedure is summarised in figure 2.6.  Initially the device was designed using 

the 3D design package Solid Works (Dassault Systémes, France), before being sent to 

the MSL machine (Envisiontec PerFactory Mini Multi-Lens, Germany), which 

employed a dynamic masking system. The process involved forming an initial 25 µm 

thick polymer layer by lowering the build platform into a tray containing a 3 mm deep 

reservoir of photoactive resin (R11, Envisiontec). The resin consists of an acrylic 

oligomer, dipentaerythritol entaacrylate, propoxylated trimethylolpropane triacrylate, 

photoinitiator and stabilizers. Each X-Y slice of the CAD model was recreated in a 

masked output by the MSL machine projector, focussed onto the plane of the trapped 

resin layer. Once cured, the resin tray tilts, “peeling” the new layer from the tray and 

leaving it attached to the build platform. Subsequent layers (also 25 µm thick) were 

built up by repeating these steps, with layers after the initial slice being attached to the 

previously fabricated layer, rather than directly to the build platform. 
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Once complete, the product was removed from the base plate, cleaned with 

isopropyl alcohol, then acetone and finally rinsed thoroughly with distilled water. A 

final high intensity UV-light cure for approximately 30 minutes ensured completion 

of the polymerisation process.7  The whole process took 6-8 hours to complete, with 

four units produced during one build. The height of each channel was measured 

independently using interferometery (WYKO NT-2000 Surface Profiler, WYKO 

Systems). 

 

 

Figure 2.6 Schematic outlining the important steps in the MSL production of a device. (a) The product 

is designed using a computer modelling package, (b) the design is converted and sent to the MSL work 

station, (c) the base plate is lowered into the resin, (d) a patterned light source initiates the 

polymerisation, (e) the layer is removed from the resin and allowed to cure, (f) steps (d) and (e) are 

repeated to complete the product, followed by removal and final curing of the product. 
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2.5. Electrochemistry 
 

 

This section covers common features of typical LSV, CV and CA measurements 

which are performed upon a variety of electrodes throughout this thesis.  Specific 

details of each setup will be described in the relevant sections. 

When working with low currents (~1 µA or lower) a two electrode setup was 

employed.  This typically involved the use of a chlorinated silver wire quasi-reference 

electrode and WE within solution.  When currents were greater than 1 µA, a three 

electrode setup was employed.  This involved a reference electrode, counter electrode 

(platinum wire) and a WE.  Two different reference electrodes were employed for the 

two and three electrode experiments, a chlorinated silver wire, and a fritted saturated 

calomel electrode.  For both setups an electrical connection to the WE was created by 

touching the gold band (or exposed gold for an entirely gold electrode) with a needle 

tipped micropositioner (Qatar Research). 

Experiments were carried out on either a CH Instruments 600B potentiostat, or 

760C bipotentiostat.  Several experiments within chapter 4 were performed using an 

Autolab electrochemical workstation (Eco Chemie). 

 

2.6. Chemicals and Materials 
 

The chemicals and materials used throughout this thesis are summarised in table 

1. 
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Material Supplier 
SWNT synthesis  
Substrate  
Oxidised silicon wafer 4” diameter, 525 µm thick, <100>, 1 – 10 

Ω cm resistivity, n-type, single-side 
polished, 300 nm thermally grown oxide, 
IDB Technologies Ltd., U.K. 

  
Gases  
H2 99.95%, high purity, BOC Gases, U.K. 
Ar 99.9995%, BOC Gases, U.K. 
CH4 99.995%, BOC Gases, U.K. 
Catalysts  
Ferritin, from horse spleen 50 – 150 mg mL-1 in 150 mM aqueous 

NaCl, Sigma-Aldrich Co., U.K. 
Cobalt Foil 0.5 mm, 99.95%, Testbourne Ltd., U.K. 
  
Metal Deposition  
Chromium bar Cr coating on tungsten rod, 99.9% 
Gold 99.99%, Goodfellow Cambridge Ltd., 

U.K. 
  
Solvents  
Acetone 99%, Fisher Scientific Ltd., U.K. 
Isopropyl Alcohol 99.99%, Fisher Scientific Ltd., U.K. 
Ethanol 99.99%, Fisher Scientific Ltd., U.K. 
  
Photo Resists and Developers  
Primer Primer Rohm and Haas Ltd., U.K 
S1818 MicroChem Corp., U.S.A. 
MF-319 Shipley Europe Ltd., U.K. 
  
Chemicals  
Ferrocenylmethyltrimethylammonium 

hexafluorophosphate, FcTMA+PF6
- 

Prepared from FcTMA+I- via metathesis 
with Ag+PF6

- 

Sodium chloride, NaCl  99.999%, Sigma-Aldrich Co., U.K. 
99% Potassium nitrate, KNO3  Fisher Scientific Ltd., U.K. 
99.999% Potassium nitrate, KNO3 Fisher Scientific Ltd., U.K. 
Dopamine hydrochloride Sigma-Aldrich Co., U.K. 
0.1 M Phosphate buffered saline solution 
(PBS) 

81 mM Na2HPO4, 19 mM NaH2PO4 

Na2HPO4 Sigma-Aldrich Co., U.K. 
NaH2PO4 Sigma-Aldrich Co., U.K. 
Water ≥18 MΩ	  resistivity, purified with a 

Milli-Q™ unit, Millipore Corp., U.S.A. 
Table 1 List of all the materials used for the work described within this thesis 
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3. Electrochemical Activity of Single Walled Carbon 
Nanotubes 

 

3.1. Aim 
 

As discussed in section 3.2, two opposing views currently exist for the sites where 

electron transfer occurs at a CNT.  We perform further studies in this area by 

combining both theoretical and experimental studies in order to elucidate the potential 

sites of electron transfer (ET) at a SWNT.  The methodology employed by Edwards et 

al.1 for slowing solution diffusion of a species using a NafionTM film, is adapted for 

application to HD SWNT networks.  This allows diffusion profiles, on short length 

scales (<50 nm), to be observed electrochemically, within the timescale of the 

electrochemical experiment.  The experimentally observed data is compared to FEM 

simulations which have been formulated for the two theories for the sites of electron 

transfer at a SWNT. 

 
 

3.2. Active sites on CNTs 
 

 

The electrochemical activity of carbon electrode materials has been debated for 

several decades.1-5  Due to the wide use of carbon electrodes in electrochemical 

analysis6-9 fundamental understanding of the activity is of particular interest.4, 10, 11  

ET at CNTs has been investigated by a range of electrochemical studies with different 

claims attributing the electrochemical activity  to the sidewall12, defect sites,3 or 

metallic catalyst particles used in synthesis.13, 14  In general there appears to be two 
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opposing theories for where ET occurs on a CNT; (i) ET occurs only at discrete sites, 

or (ii) across the entire sidewall. 

 

3.2.1. Discrete site activity 
 

 

As discussed above it has been proposed that a CNT is an “electrochemically inert 

stick decorated with electrochemically active sites.”15  Initial reports drew an analogy 

between MWNTs and HOPG, considering the sidewall of the MWNT to be similar to 

the basal plane of HOPG with tube ends, or defects in the sidewall being compared to 

edge plane sites.2, 16, 17  Figure 3.1 shows a schematic of HOPG highlighting the 

location of the basal plane and the edge plane sites. 

Studies on HOPG have largely suggested, from CV analysis alone, that the 

electrochemical activity of HOPG is attributed primarily to the edge plane, with ET 

kinetics at the basal plane being significantly slower.18, 19  Thus it was assumed the 

sidewall of the MWNT is largely inactive with only edge-like defects, which occur as 

a graphene layer terminates or at an open end, being responsible for ET. 
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Figure 3.1 (a) Schematic of HOPG showing the basal and edge plane sites.  (b) Activity of basal plane 

cleaved HOPG is confined to edge plane bands as proposed by Davies et al.18 

 
Using voltammetric studies on HOPG, Banks et al.17 demonstrated slower ET for 

the basal plane of HOPG, whilst reversible ET was seen for a surface consisting of 

predominantly edge plane graphite.  When the basal plane HOPG was modified with 

MWNTs the electrochemical response observed was similar to that for edge plane 

graphite.  Similar work by Moore et al.20 further complicated the situation by 

reporting that a similar electrocatalytic effect to MWNTs could be achieved on basal 

plane HOPG by modification with graphite powder.  A modified basal plane HOPG 

electrode was used to investigate the effect MWNT structure (e.g. herring bone or 

hollow tube) had on the observed CV response.  The conclusion was drawn that 

MWNT structure had minimal effect on the CV response of the modified electrode, 

and again assumed that ET was observed at the edge plane like defects caused by 

open CNT ends and open side walls.3 

Based upon the work drawing comparisons between HOPG and MWNTs, SWNTs 

were assumed to exhibit the same ET properties of MWNTs, i.e. sidewall relatively 

inactive to ET with defects of ends active.15, 21  Liu et al.22 observed that a 2D 
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horizontal array of SWNT had slower ET than a vertically grown SWNT array.  From 

this they inferred that as there was probably a higher density of end sites in the 

vertically arranged SWNTs, that it was the end sites which were the major contributor 

to the increased ET. 

From these findings a model for ET activity being due to discrete active sites is 

proposed based upon the experimental configuration.  This model is described in 

detail in section 3.4.1 

 

3.2.2. Electrochemical Activity of the Sidewall 
 

 

Contrary to the reports highlighted in section 3.2.1 there is strong evidence to 

support the theory that ET occurs at the sidewall of a CNT.  Work by Heller et al.23 

using an individual SWNT on an insulating support as the electrode (ends were not 

exposed to solution) showed that the electrochemical response increased with the 

increasing length of exposed SWNT.  Gong et al.24 showed that the electrochemical 

activity of the tips and sidewalls of CVD grown CNT forests varied depending upon 

the mediator being studied, for example the oxidation of H2O2 was observed on the 

CNT sidewall but not on the tips.  The synthesis of a CNT network on an insulating 

support e.g. SiO2, allows for the CNT network electrode to be studied without 

interference from a conducting support.25, 26  By deliberately introducing defects by 

acid cleaning and oxygen plasma ashing, Dumitrescu et al.27 demonstrated that the 

most noticeable effect was a decrease in network conductivity.  Moreover, at suitably 

low currents to avoid Ohmic drop, for electrolysis of the outer sphere redox mediator 

Ru(NH3)6
3+ the quantity of defects did not affect the voltammetric response.  In light 
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of these reports the opposing theory, that the entire SWNT side wall is active, is 

proposed.  Further examples of the electrochemical activity of CNTs are available in 

the recent review by Dumitrescu et al.13 

The model for the sidewall being electrochemically active is proposed from the 

evidence reported within this section, and will be discussed in more detail in section 

3.4.2. 

 

3.2.3. Defects on carbon nanotubes 
 

 

The theory of discrete active sites proposes that defects within the SWNT sidewall 

are solely responsible for ET at a SWNT.  In this report the term defect refers to any 

point where the regular graphitic lattice of the outer wall is disrupted.  In the case of 

MWNTs, where the outer layer is broken edge plane like defects are observed, this is 

reported to occur either regularly in the case of “herring bone” and “bamboo” like 

MWNTs or irregularly for MWNTs with concentric tubular layers, as shown in figure 

1.23.2, 3  In addition to the step edge defects there are additional faults within the 

graphene lattice,28-31 including non-hexagonal hybridization e.g. Stone-Wales,32 

vacancies,33 and local impurities.34  These defects are illustrated in figure 3.2. 
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Figure 3.2 Schematic of several common lattice defects found on a CNT (a) Stone-Wales 

hybridization, and (b) a vacancy site. (c) Transmission electron microscopy showing impurities on the 

CNT surface.35 

 
The SWNTs used within this chapter are all synthesised by CVD.  As a result the 

SWNTs have a low density of defects, negligible amorphous material on the sample 

and also the SWNT ends are closed.  The number of defects along the length of CVD 

synthesised SWNTs has been studied by various techniques, including scanned gate 

AFM to show points of varying resistance and defect driven metal nanoparticle 

deposition,36, 37 although it must be noted that these techniques do not reveal all 

defects.  Previous studies by Day et al.37 and Fan et al.36 have shown that metal 

electro-deposition at very low driving force occurs initially at discrete locations, 

which indicate sites of favourable surface energy for nucleation, thought to be defect 

sites.  The smallest spacing between nucleated metal nanoparticles along an individual 

SWNT was found to be ~100 nm; however the average spacing of nanoparticles 

reported by Fan et al. was up to ~4 µm apart.  For both studies as the nucleation 

driving force increased the number of nucleation sites also increased moving towards 

contiguous nano-wire formation. 
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3.3. Experimental Overview 
 

 

This section presents the experimental concepts and techniques employed to 

experimentally distinguish between the two proposed cases for ET at a SWNT 

network electrode. 

 

3.3.1. Reducing the Rate of Diffusion 
 

 

The critical difference between the two theories is the quantity and geometry of 

the active parts of the SWNT, as this affects the resulting diffusion profile to the 

electrode on a short time scale.  Work by Bertoncello et al.25 utilising a droplet (10 

µL, ~4 mm diameter) placed directly onto a SWNT network showed that on the 

typical time scales of aqueous electrochemical measurements (CVs at a scan rate of 

100 mV s-1) the diffusion profiles overlapped, giving a Faradaic current response 

identical to a macroelectrode of the same dimensions.  To observe diffusion profiles 

associated with individual SWNTs, one approach is to significantly reduce the rate of 

diffusion of the electroactive species to the SWNT network.  Previous work by 

Edwards et al.1 utilising a HOPG electrode modified with a ~90 nm thick NafionTM 

film showed that the apparent diffusion coefficient of a redox mediator (e.g. 

[Ru(NH3)6]3+/2+) could be reduced by up to 5 orders of magnitude.  This technique is 

applied here to HD SWNT networks in preference to the VHD films as there is a 

greater separation between the SWNTs in the HD arrangement thus providing a 

longer timescale before diffusion profiles overlap. 
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3.3.2. Experimental Techniques 
 

Each HD SWNT sample was characterised by taking multiple AFM images.  Only 

samples with a network density in the range of 3 µm µm-2 - 4 µm µm-2 were used for 

analysis.  A Pt disc UME was prepared by sealing a 25 µm diameter Pt wire 

(Goodfellow, England) within a borosilicate capillary and polished flat using silicon 

carbide paper (SIC Paper #4000, Struers) and progressively finer grades of diamond 

impregnated polishing pads (Buehler, Germany).38, 39  To facilitate the deposition of 

the drop cast film onto the UME the radius of the insulating sheath was ~2 mm. 

NafionTM (Aldrich) was drop cast onto a SWNT network or 25 µm Pt UME from 

stock solution (5% wt in aliphatic alcohol/H2O) using a micropipette tip (Finn, 

Thermo Scientific) and allowed to dry under room conditions (figure 3.3 (a)).  For the 

SWNT samples the droplet diameter was measured by an optical microscope 

(Olympus BH2).  The average drop cast film diameter was approximately 1.1 mm 

with a thickness of ~100 µm.  The NafionTM was pre-concentrated with mediator by 

soaking in an aqueous solution of 2 mM FcTMA+ in 0.1 M NaCl for at least 18 hours.  

After soaking the SWNT sample was attached to a glass microscope slide by gelpack 

and rinsed under double distilled H2O and dried using a gentle flow of nitrogen.  A 

borosilicate capillary (1.5 mm outer diameter 0.86 mm inner diameter, Clark 

Electromedical Instruments) containing 0.1 M NaCl and a chloridised silver wire, 

used as a reference electrode for SWNT experiments, was lowered onto the NafionTM 

film using a micrometer equipped micropositioner (Newport).  Electrical connection 

to the network was made by touching the gold band with a needle tipped micro-

positioner (Quater Research) (figure 3.3 (b)). 
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Figure 3.3 Schematics of the experimental techniques used for probing the electroactivity of the 

SWNT network. (a) NafionTM is drop cast onto the sample prior to preconcentration. (b) A capilary 

containing only supporting electrolyte and a Ag/AgCl reference electrode is lowered over the drop cast 

NafionTM film. 

 

The NafionTM-Pt UME was used by directly placing the UME into a solution 

containing 0.1 M NaCl and a chloridised silver wire was used for the reference 

electrode.  Electrochemical measurements were taken using a CHI 760C 

Bipotentiostat (CH Instruments).  Repeat measurements were taken on samples after 

rinsing and soaking in the mediator solution for at least half an hour. 

 

3.4. Finite Element Modelling 
 

 

Two models are proposed for the competing theories for the sites of ET at a 

SWNT electrode.  Here we use a 2D random network of SWNTs.  The FEM 

approximations to the experimental setup are described and the assumptions of each 

model are discussed.  Both models assume the electrochemically driven reaction at 

the surface of the SWNT is complete and instantaneous, with mass transport driven 

solely by diffusion. 
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3.4.1. FEM of the Discrete Active Site Theory 
 

The discrete active site model considers the SWNT sidewall to be 

electrochemically inert, except for active “defect” sites which are spaced randomly 

along the length of the SWNT.  Each active site is considered to be an equally sized 

disc, approximated to the SWNT diameter, in the plane of the sample. 

A diffusional domain approach was used to calculate the current response as 

described by Davies et al.40, 41  A Monte Carlo simulation was performed to generate 

the location of the active sites on the SWNT network.  Initially the locations of 

SWNTs were generated under the assumption that the SWNTs were linear, of infinite 

length, and with a specified density (figure 3.4 (a)).  Active sites were considered to 

be of equal size and positioned randomly on the SWNTs (figure 3.4 (b)).  Following 

the method of Davies et al.40, 41 a Voronoi mesh for the active sites was calculated 

(figure 3.4 (c)). 

 

 

Figure 3.4 Schematic to show the calculation of Voronoi cells for the active site model.  (a) Straight 

SWNTs are placed randomly to generate the network, (b) active sites are placed along the SWNTs, (c) 

the Voronoi cells for each active site is calculated.  
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The contribution of an individual active site was then approximated by a disc 

within an insulating cylinder of equal area to its Voronoi cell, (figure 3.5). Details of 

the model calculating the current to an individual defect are given below.  Perimeter 

cells were discarded as neighbouring defects which were not necessarily included 

could bias results.  The area of the simulated domain was sufficiently large so that 

increasing the area of domain did not affect the current density response. 

For the discrete active site simulation the individual active sites were 

approximated as an electrochemically active disc, radius r1, within a cylinder, radius 

r2, with insulating walls of height, h, governed by the thickness of the NafionTM layer.  

Each site contributed to the overall current response of the network.  The 2D axially 

symmetric geometry of a disc within an insulating cylinder is shown in figure 3.5 with 

z and r being the axial and radial coordinates respectively. 

   

Figure 3.5 (a) Translation of a Voronoi cell to (b) an isolated active disc of radius r1 within an 

insulating cylinder of radius r2, where r2 is controlled by the the area of the Voronoi cell. (c) The unit 

cell for the 2D axial symmetric domain (dashed line) is shown with boundary numbering conventions 
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Edge 1 represents the active site where the following reaction (equation 3.1) is 

considered: 

 

R → O + ne- (3.1) 

 

A potential step from a value where R is not electrolysed to a potential where the 

complete oxidation of species R to species O occurs is applied to the electrode at a 

time, t = 0 s.  The time-dependent diffusion equation (equation 3.2) was solved for 

species R within the interior of the domain shown in figure 3.5.42, 43 

 

 

(3.2) 

 

where Dapp and c are the apparent diffusion coefficient and concentration of 

species R within the NafionTM film, respectively.  The reaction is considered to be 

complete and instantaneous at the active site, edge 1, which can be expressed by the 

boundary condition described in equation 3.3 

 

 (3.3) 

 

Edge 2 represents the electrochemically inactive Si/SiO2 substrate, of radius r2 

chosen for each diffusion domain as described previously, and was set to have no 

normal flux, as shown in equation 3.4. 

 

 (3.4) 

c D 
t 
c 2 

app ∇ = 
∂ 
∂ 
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where  is the inward pointing unit normal vector. 

The diffusion domain approach dictates that there was no normal flux along the 

entirety of axis (3) and cylinder edge (4).  Edge (5) represents the upper limit of the 

NafionTM film, it was assumed that there was no net transfer of mediator out of or into 

the film, thus equation 4 sufficed as the boundary condition.  The domain surrounded 

by edges 1-5 is initially set to be at the bulk concentration, cb, of the saturated 

NafionTM film as determined by experiments on the drop cast NafionTM modified 25 

µm diameter Pt UME in section 3.5.1.  The current, i, generated by an individual 

active site can be calculated by integrating the flux to boundary 1 and multiplying by 

2πr1F, where F is Faraday’s constant (96485 C mol-1).  The overall response is the 

sum of all active sites within the simulated area. 

The two assumptions made by this model are that the defects are of uniform size 

and that the individual diffusion domains can be approximated to a cylinder.  The 

defect size is assumed to be the same as the radius of a SWNT, which maximises the 

expected amount of active material for this model, in turn maximising the current 

response of this model.  The assumption that the individual Voronoi cells can be 

approximated to a cylinder is valid as long as the defect spacing is sufficiently large 

so that diffusional overlap is not dominated by active sites along the same SWNT 

(minimum spacing of ~100 nm). 
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3.4.2. FEM model of sidewall activity 
 

 

The situation where the entire sidewall of the CNT is electrochemically active was 

approximated by an array of parallel tubes upon an insulating surface (figure 3.6 (a)), 

with the average inter tube spacing, w, was chosen to match the sample density. The 

time-dependant diffusion equation (equation 3.2) was solved for the interior of the 

domain as shown in figure 3.6 (b), which represents the 2D repeating unit of the 

model.  The initial concentration was set to the bulk concentration throughout the 

interior of the domain.  As for the active site model the oxidation of species R is 

assumed to be complete and instantaneous at the electrode surface (edge 1) and is 

implemented by applying the boundary condition expressed in equation 3.3 to this 

edge.  Edges 2 and 5 have no normal flux as explained previously in section 3.4.1, and 

edges 3 and 4 have no normal flux due to the 180° reflection symmetry of the unit 

cell, the boundary condition on these edges is described in equation 3.4.  The current 

density, j, is calculated by integrating the flux at edge 1, multiplied by F divided by 

the domain width. 

 

 

Figure 3.6 (a) Representation of the SWNT parallel array, the boxed area is shown in more detail in (b) 

where the 2D repeating unit (dashed line) and boundary labelling conventions are shown. 
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This model assumes that the randomly distributed SWNT network is a uniform 

array of SWNTs where the entire sidewall is active.  The approximation allows the 

problem to be simplified to the 2D domain shown in figure 3.6 (b), greatly reducing 

the computational time required for each simulation compared to the 3D model 

required to explicitly simulate a random network.  It should be noted that this 

provides an idealised diffusive response as sections where the experimental SWNTs 

are not at the average spacing will experience diffusional overlap at different times. 

As the area of the electrode for the experimental measurements is large the 

average spacing is a reasonable approximation.  However, the theoretical features of 

the current-time response are expected to be more defined due to the uniform nature 

of the simulation.  The simulation should over-estimate the current response 

compared to that observed experimentally, as the SWNTs are assumed to be 

uniformly active.   However, the SWNTs within the network electrode are a random 

mixture of semi conducting, metallic, or quasi-insulating (non-conducting due to no 

connection to the network or defects on the SWNT) and as such are likely to have 

different ET properties.44 

3.4.3.  Insights from Simulations 
 

The two theoretical models show different sites for ET at a SWNT, and thus will 

result in differences in the developing diffusion profiles when the SWNT is operated 

as an electrode for the electrolysis of an electroactive species.  This section uses Dapp 

= 1 x 10-10 cm2 s-1, obtained experimentally in section 3.5.1 when NafionTM is used to 

slow down diffusion.  It is important to note that a higher diffusion coefficient will 

make the transition from isolated diffusion profiles around an individual active site or 
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sidewall to linear diffusion, due to overlapping diffusion fields, occur on a shorter 

time scale. 

Figure 3.7 presents the development of the diffusion profile for one active site 

within the discrete active site model.  For the discrete active site model, at short times 

(~10-5 s) linear diffusion to the active site is evident (figure 3.7 (a)) (domain 1).  At 

longer times (t > 10-4 s) this profile begins to change into hemispherical diffusion 

(figure 3.7 (b)) (domain 2).  After sufficient time (~ 2 s) the affect of neighbouring 

active sites is apparent as the concentration gradient now begins to reflect linear 

diffusion (figure 3.7 (c)) (domain 3).  The example shown in figure 3.7 has an active 

site spacing of 100 nm. 

 

 
Figure 3.7 (a) The initial linear diffusion to an active site (t ~10-5 s) (domain 1), (b) the developed 

hemispherical diffusion (t > 10-4 s) (domain 2) and (c) transition to the final linear response (domain 3) 

where diffusional overlap occurs with a neighbouring defect site 100 nm away (t ~ 2 s).  Black box 

represents location of active site. 

 
The time dependant diffusion profile to a SWNT for the sidewall active model can 

also be broken down into 3 domains.  However, the development of the diffusion 

profiles is different to the discrete active site model within domains 1 and 2.  At short 

timescales (t ~10-5 s) the cylindrical shape of the active sidewall results in a 

hemispherical diffusion profile being established quickly (figure 3.8 (a)) (domain 1).  

The expansion of the diffusion layer with time is cylindrical in domain 2, as shown in 
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(figure 3.8 (b)).  Finally the diffusion profile overlaps with that of the neighbouring 

SWNT at ~1 s (figure 3.8 (c)) to provide linear diffusion (domain 3).  The transition 

from isolated sites (domain 2) to when diffusional overlap between neighbouring sites 

(domain 3) occurs at ~1 s for the sidewall active model compared to ~2 s for the 

smallest defect spacing of 100 nm used in the discrete active site model. 

 

 

Figure 3.8 Diffusion domains for the sidewall active model with a network density of 3 µm µm-2, (a) 

domain 1, rapid development of a hemispherical diffusion profile (t ~10-5 s), (b) domain 2, expansion 

of the hemispherical diffusion profile (t > 10-4 s), and (c) diffusional overlap with neighbouring 

SWNTs (t ~1 s) (domain 3). 

 
 

As the flux is dependant upon the diffusion profile the two models produce 

different flux - time responses for domains 1 and 2.  As described in sections 3.4.1 

and 3.4.2 the flux is proportional to the current, hence the CA response of the systems 

will be different in domains 1 and 2.  The log j – log t response for both models is 

shown in figure 3.9.  The different time-dependent diffusion profiles, presented 

above, can be seen in the corresponding current-time decay responses.  The key 

differences between both models is the development of a plateaux in the log j - log t 

response for the discrete active site model compared to a gradual decay observed for 

the sidewall active model.  This occurs within domain 2 due the discrete active sites 
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being isolated nano-disc electrodes compared to the sidewall active model consisting 

of isolated nano-band electrodes.  Thus, within domain 2, the active site model will 

provide a steady state current, whereas the sidewall active model does not reach a 

transport limited steady state response.  The overlap of the diffusion profiles (domain 

3) also occurs earlier for the sidewall active model (t ~1 s) than for the discrete active 

site model (t ~2 s).  Hence it should be possible to discriminate between the two 

proposed models based upon the current density-time data obtained experimentally. 

 

Figure 3.9 Comparison of the theoretical response for the discrete active site model  for active site size 

of 0.5 nm and network density of 4 µm µm-2 (―) to the side wall active array model with radius 0.5 nm 

and network density of 3 µm µm-2 (―) for a drop cast NafionTM film with Dapp = 1.00 x 10-10 cm2 s-1 

and cb = 1.25 mol dm-3 for a tube.  Numbers 1-3 represent diffusion profile domains 1-3 which are 

described above. 
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3.5. Results and Discussion 
 

3.5.1. Characterising the Drop Cast NafionTM Film 
 

 

The dropcast NafionTM/FcTMA+ film was electrochemically characterised on a 25 

µm diameter Pt UME.  The diffusion limited potential for the oxidation of FcTMA+ at 

the Pt-NafionTM modified UME was first determined by CV as shown in figure 3.10 

(a). The transport properties for the redox mediator FcTMA+ within the drop cast 

NafionTM film were then extracted using CA by stepping from 0 V to the diffusion 

limited potential (0.5 V vs Ag/AgCl).  The limiting current (ilim) was extrapolated 

from the intercept of i vs t-1/2 from the chronoamperometric data. The maximum and 

minimum experimentally observed values of ilim = 0.80 ±0.20 nA (5 repeats) were 

considered, in order to give error bounds on Dapp.45, 46 

The i-t transients were analysed using the Shoup-Szabo equation47 to extract Dapp 

independently of knowledge of the bulk concentration (cb) as shown in figure 3.10 

(b).  The currents were normalised with respect to ilim against t-1/2.  The values for Dapp 

and cb at the extremes of the error range are considered to allow for any uncertainty in 

the measured properties of the film to be taken into account, at ilim = 1 nA Dapp = 3.02 

x 10-10 cm2 s-1 and cb = 0.325 mol dm-3
 and at ilim = 0.6 nA, Dapp = 1 x 10-10 cm2  

s-1 and cb = 1.25 mol dm-3.  It is also worth noting that the Pt UME only fits the 

Shoup-Szabo equation for times greater than 0.3 s due to capacitive effects and other 

non-Faradaic processes contributing at shorter times. 
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Figure 3.10 Experimental data for the drop cast NafionTM modified Pt UME used for the 

characterisation of the NafionTM film (a) CV at 100 mV s-1 used to determine the over potential and 

(b) Shoup-Szabo analysis of CA data. 

 
As shown by the FEM simulations in section 3.4.3 a value of Dapp of ~1 x 10-10 

cm2 s-1 should allow the differences in the developing diffusion profiles for the two 

proposed ET models to be distinguished on a typical experimental timescale.  For the 

highest diffusion coefficient obtained (3 x 10-10 cm2 s-1) the maximum distance 

travelled (d) by diffusion only is predicted to be 50 nm when t ≈ 0.1 s using equation 

3.5.  Given that the typical spacing between SWNTs is ~100 nm, the Dapp values will 

provide a suitable time period to observe the development of the diffusion profiles. 

 

 Equation 3.1 

 

The value for Dapp determined in the drop cast NafionTM films is higher than the 

value reported for films formed by the Langmuir-Blodgett method by two orders of 

magnitude.1, 48, 49  This could be due to the different deposition and drying methods 

resulting in the films with different general structure and order.50-52 
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3.5.2. Characterisation of SWNT Samples 
 

 

Figure 3.11 (a) and (b) show an AFM image of a typical SWNT network, which 

has a network density of 3.3 µm µm-2.  To avoid contamination of the sample arising 

from FE-SEM, the density was characterised by recording several AFM images in 

different locations.  An FE-SEM image, taken after experiments, of a typical SWNT 

network (figure 3.11 (c)) demonstrates the distribution of SWNTs is not quite uniform 

across the sample.  To take into account density variations the values of 3 and 4 µm 

µm-2 were used in the theoretical calculations.  The majority of SWNTs have a height 

between 0.8 nm and 2 nm, with the occasional bundle being up to 3.5 nm in height as 

seen in the inset of figure 3.11 (a) and (b).  Taking into account the variation in 

SWNT height values of 1 nm and 3 nm were assumed for the theoretical calculations.  

It should be noted that an average height of 3 nm at a density of 4 µm µm-2 is the 

upper-limit for SWNT surface area and is greater than that observed experimentally; 

these values were chosen to provide a theoretical upper limit on the current density for 

both models. 
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Figure 3.11 (a) Typical AFM image of a SWNT network of density 3.3 µm µm-2 used x and y scale bar 

is 1 µm, z scale bar 5 nm.  (b) Shows a cross section of the sample, taken from the black line in (a), 

where the height of a bundle of SWNTs is 3 nm and the height of individual SWNTs are between 0.8 

nm and 1.5 nm (c) SEM image showing the variation in density over the sample (scale bar 6 µm). 

 

 

3.5.3. Drop Cast NafionTM Modified SWNT Networks 
 

 

The driving potentials for chronoamperometric analysis were chosen based on the 

CV data recorded on the FcTMA+ loaded NafionTM modified SWNT networks.  

Figure 3.12 (b) shows the results of CV at 100 mVs-1 for the oxidation of FcTMA+.  

From this wave it is possible to calculate the diffusion limited, three quarter wave 

(E3/4), half wave (E1/2) and quarter wave (E1/4) potentials of 0.5 V, 0.42 V, 0.38 V and 

0.32 V respectively.  Work by Bertoncello et al.25 demonstrated that the CV response 

of the oxidation of FcTMA+ on a bare SWNT network electrode produced a 

characteristic peak shaped macro-electrode response (figure 3.12 (a)), due to the 
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complete overlap of diffusion fields of neighbouring SWNTs on the timescale of the 

measurement.52  In contrast, in the presence of NafionTM it can be seen that a quasi 

steady-state regime is established for potentials equal to or greater than 0.5 V on the 

forward scan (figure 3.12 (b)).  This indicates that diffusion to the network has been 

significantly reduced for FcTMA+ so that the diffusion fields of neighbouring sites do 

not sufficiently overlap. 

 

 

Figure 3.12 (a) CV of a droplet upon a bare SWNT network.25 (b) CV on the drop cast NafionTM 

modified HD SWNT network used to determine part potentials for the CA measurements (dashed 

lines). (c) Comparison of CA response of a drop cast NafionTM film prior to (i) and after pre 

concentration with FcTMA+ (ii) where the potential step is from 0 V to 0.5 V. 

 

The CA response of the SWNT-NafionTM sample prior to saturation (i) with 

FcTMA+ is compared to that obtained with the FcTMA+ saturated NafionTM (ii) as 

shown in figure 3.12 (c).  The former i-t response (i) indicates that any charging, 

resistive effects or other non-Faradaic processes within the film have a minimal 

impact upon the FcTMA+ oxidation chronoamperometric response (ii). For both cases 

the potential is stepped from 0 V to 0.5 V. 
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Chronoamperometry at the FcTMA+ loaded SWNT-NafionTM electrodes show a 

linear scaling of current density when stepping to different driving potentials i.e. E1/4, 

E1/2, E3/4 and the diffusion limited potential (figure 3.13 (a)).  By driving the oxidation 

of FcTMA+ at different potentials it may be possible to provide information on 

whether the defects or sidewall are of uniform activity or have a potential dependant 

activity.  This is of interest as the reduction of metal at the SWNT surface is observed 

to occur at discrete sites when the driving potential is low, however as the potential is 

increased a higher density of metal particles is observed before the entire SWNT has 

metal deposited upon the SWNT surface.  As the current-time transients in figure 3.13 

exhibit the same general shape when the driving potential is varied, it is thus unlikely 

that there is a potential dependant switch in the sites of ET at the SWNT electrode. 

In general on the CA curves three distinct regions are visible as shown in figure 

3.13 (b).  For times less than 1 ms there is a linear relationship between log i and log t, 

for times between ~1 ms and 0.5 s the gradient becomes less negative, indicating a 

change in the diffusion profile to the surface, and a finally for times greater than 0.5 s 

the gradient starts to become more negative.  For comparison to the theoretical models 

the current density is reported. 
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Figure 3.13 (a) Chronoamperometry of drop cast NafionTM on SWNT network saturated with 

FcTMA+ at the diffusion limited potential (―) E3/4 (―) E1/2 (―) and E1/4 (―) showing linear scaling 

between the different driving potentials. (b) Comparison of the current – time decay by logarithms. 

 

3.5.4. Comparison of Experimental Data to the Discrete 
Active Site Model 

 

The effect of different SWNT network densities and the size of active sites is 

shown theoretically for the active site model in figure 3.14 for both the upper (a) and 

lower (b) limits of Dapp and cb in the NafionTM film.  It is important to note that the 

reported current densities are for an area of the insulating substrate, hence the 

difference in reported current densities relates to the variation in the quantity of active 

material present upon the surface.  In figure 3.14 it can be seen that by increasing the 

radius of the active sites from 0.5 nm to 1.5 nm the predicted current density for the 

whole sample area increases due to the increasing area of active material upon the 

sample.  Similarly as the network density increases from 3 µm µm-2 to 4 µm µm-2 the 

current density for the sample increases due to a higher density of active sites.  The 

transients presented in figure 3.14 are all shown for the smallest expected average 
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spacing of active sites (100 nm) and as such represent upper bounds for the predicted 

current response. 

 

 

Figure 3.14 Theoretical response for the discrete active site model for a sample of (―) defect radius 

1.5 nm, network density 4 µm µm-2, (―) defect radius 1.5 nm, network density 3 µm µm-2, (―) defect 

radius 0.5 nm, network density 4 µm µm-2, (―) defect radius 0.5 nm, network density 3 µm µm-2 for 

(a) D = 3 x 10-10 cm2 s-1 and cb = 0.325 mol dm-3 (b) Dapp = 1.00 x 10-10 cm2 s-1 and cb = 1.25 mol dm-3. 

 

A comparison of the experimental current density with the active sites model is 

shown in figure 3.15.  The experimental current density is greater than that predicted 

by the simulations for all theoretical parameters considered.  The largest theoretical 

current density (red line in figure 3.14 (a) and figure 3.15) is for the maximum SWNT 

density (4 µm µm-2), Dapp (3 x 10-10 cm2 s-1), largest defect size (3 nm diameter) and 

the smallest average defect spacing (100 nm).37, 53, 54  Larger defect separations result 

in a decrease in the predicted current density for the sample area as there is a reduced 

active area, as shown by decreasing the network density in figure 3.14.  Typical 

SWNT heights observed by AFM and SWNT network densities observed by AFM 

and  FE-SEM data (figure 3.11) show that these values represent maximum values for 

both network density and active site diameter.  Hence the value for the largest current 
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density represents a generous upper limit on the current density we could expect from 

ET occurring solely at isolated active sites. 

 

 

 
Figure 3.15 Comparison of (―) experimental data to the theoretical responses for the discrete active 

site model for networks of density 4 µm µm-2 with an active site spacing of 100 nm, D = 3 x 10-10 cm2 

s-1 and cb = 0.325 mol dm-3 for sites of (―) 1.5 nm radius and (―) 0.5 nm radius, and for Dapp = 1.00 x 

10-10 cm2 s-1 and cb = 1.25 mol dm-for sites of (―) 1.5 nm radius and (―) 0.5 nm radius 

 

As the predicted response for the active site only model is lower than the current 

density response observed experimentally, as shown in figure 3.15 (a), this suggests 

that the experimental response cannot be attributed solely to isolated active sites.  It 

could be argued that SWNT open ends and catalytic metal nano-particles contribute to 

the measured i-t response.  As the simulation does not explicitly take into account 

these additional sites for electron transfer the predicted response is an under-estimate 

of the experimental conditions.  However, using CVD the grown SWNTs are highly 

likely to have closed ends.55  Additionally, as the majority of the iron catalyst 

nanoparticles are not in contact with the SWNT network and sit isolated on the 

insulating SiO2 support it is unlikely they have an electrical connection to the SWNT 
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network.  Therefore the contribution of any active end sites and connected catalyst 

particles to the experimentally observed current density is negligible. 

 

3.5.5. Comparison of Experimental Data to Parallel Tube 
Model 

 

The situation where the entire SWNT sidewall is active was investigated using a 

range of parameters with Dapp
 of  1 x 10-10 cm2 s-1 and 3.02 x 10-10 cm2 s-1 for values 

of cb of 1.25 mol dm-3 and 0.325 mol dm-3
 respectively, network density (3 µm µm-2 

and 4 µm µm-2) and SWNT radius (0.5 nm and 1.5 nm).  Figure 3.16 shows the 

theoretical current density-time response for these parameters compared to the 

experimental response.  As for the discrete active site model the current density is 

largest for the higher density networks with the largest SWNT radius (figure 3.16).   

 

 

Figure 3.16 Comparison of experimental data (―) where the potential is stepped from 0 V to 0.5 V to 

the all active parallel tube model for a network with tube radius 0.5 nm density 3 µm µm-2 (―), tube 

radius 0.5 nm density 4 µm µm-2 (―), tube radius 1.5 nm density 3 µm µm-2 (―), tube radius 1.5 nm 

density 4 µm µm-2 (―) for (a) Dapp = 1.00 x 10-10 cm2 s-1 and cb = 1.25 mol dm-3 and (b) D = 3 x 10-10 

cm2 s-1 and cb = 0.325 mol dm-3. 
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Figure 3.16 shows that the experimental data (-) is now lower than that simulated 

for an entirely active parallel array of SWNTs.  This could be due to several factors. 

(1) Due to the random nature of the network the parallel SWNT model of equivalent 

density, may not accurately predict the current density. (2) The drop cast NafionTM 

film may not provide uniform diffusion over the whole droplet, especially at the 

perimeter of the drop where the film becomes thinner, in addition to the boundary 

caused by the circumference of the film (figure 3.17).  As a result the active areas 

nearest to the boundary will have hindered diffusion reducing the flux to these 

perimeter sites.  Most importantly (3) it is also possible that the SWNTs are not 

uniformly active resulting in a smaller active network density than that observed 

topographically by AFM imaging.  The chiral properties of individual SWNTs could 

result in different SWNT sidewalls having a different rate of ET, creating areas where 

ET is kinetically hindered rather than diffusion-controlled as assumed in the 

theoretical models.  Differences in SWNT electroactivity have been observed 

previously using metal deposition on CVD grown SWNTs.  Crucially some SWNTs 

were found not to support metal deposition, and display quasi-insulator properties, 

believed to be due to poor conductivity through the individual SWNT.36, 37, 44, 53, 54  

Thus the density, if quasi-insulating SWNTs are present, of the electrochemically 

active SWNT networks will be lower than measured.  Hence the theoretical i-t values 

will provide an over estimate.  
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Figure 3.17 Schematic of the drop cast NafionTM film, (a) cross section through the film illustrating 

the film being thinner at the edges and (b) top down view highlighting the boundary at the 

circumference of the film. 

 

3.5.6. Analysis of Diffusion Profiles 
 

 

The results presented in sections 3.5.4 and 3.5.5 showed that the FEM simulations 

proposed do not fully agree with the experimentally obtained data when stepping from 

0 V to the over potential (0.5 V).  Figure 3.18 (a) shows that the experimental data has 

a current density which lies between both models for 0.1 ms ≤ t ≤ 2 s.  Importantly, 

the current density due to the discrete active site model underestimates the 

experimental response, even when using parameters that represent the maximum 

possible response.  This indicates that there must be other contributions to the current 

such as the sidewall of the SWNTs.  The predicted results for the entirety of the 

sidewall being active over estimates the current density but as noted above it is likely 

that not all the network is homogenously active. 
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Figure 3.18 Comparison of experimental data to the extremes of both models, (―) experimental data, 

all active model for D = 3 x 10-10 cm2 s-1 and cb = 0.325 mol dm-3 for a tube radius 1.5 nm and network 

density of 4 µm µm-2 (―),all active model for Dapp = 1.00 x 10-10 cm2 s-1 and cb = 1.25 mol dm-3 for a 

tube radius 0.5 nm and network density of 3 µm µm-2 (―), discrete active site model for D = 3 x 10-10 

cm2 s-1 and cb = 0.325 mol dm-3 for defects of 0.5 nm and network density of 4 µm µm-2 (―), and 

discrete active site model for D = 1 x 10-10 cm2 s-1 and cb = 1.25 mol dm-3 for defects of 0.5 nm and 

network density of 4 µm µm-2 (―).  In (b) 1 represents the initial linear diffusion region, 2 the 

developed diffusion profile and 3 the overall linear regime. 

 

Figure 3.18 (b) shows the log j vs log t response for both theoretical models and 

the experimental data.  The domains 1-3 refer to the developing diffusion profiles 

associated with the electrochemical response as presented in section 3.4.3.  The 

changes in the gradient in the log j vs log t plot are considered for the experimental 

data and both theoretical models.  The initial response of the SWNT experimental 

data (t < 1 ms) in figure 3.18 (b) shows a response similar to domain 1, where an 

initial linear regime is present.  However the current density response is much greater 

than the discrete active site model, and the change in gradient occurs after a greater 

period of time than predicted by a 100 nm defect spacing on a neighbouring SWNT, 

and does not reach a plateaux.  This indicates that there is a greater area of active 
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material present than predicted by the discrete active site model, even when a 

generous approximation to the size and number of defects within the network is used.  

After the change in gradient the current time decay is similar in profile to the parallel 

tube model, however the transition into domain 3 occurs earlier than predicted by the 

parallel SWNT model at ~0.5 s.  This could be due to the experimental sample not 

being a uniform array, instead consisting of a random distribution of SWNTs, with 

some that are closer together than the average spacing and that cross each other 

(figure 3.11).  The SWNTs that are closer together will have diffusional overlap 

occurring at lower values of t than predicted by the idealised array.  However, as there 

are SWNTs which have a larger than average spacing on the experimental samples, 

the change in gradient is much more gradual as the diffusional overlap does not occur 

uniformly for across the network. 

 
 

3.6. Conclusions 
 

 

The use of drop cast NafionTM redox mediator films as a method for slowing down 

diffusion and thus observing electrochemistry at short diffusional length scales (d ≈ 

10 nm) has been successfully demonstrated.  The experimentally observed current 

upon stepping the potential from 0 to the over potential (0.5 V) is greater than 

predicted for isolated active sites only, even when using parameters which maximise 

the current response.  Thus it is highly likely that the sidewalls of CNTs contribute to 

ET.  The experimental results are lower than the i - t predictions for an all active 

parallel SWNT model.  However, this could be due to the over simplification of the 

network to a uniformly spaced array of parallel tubes; heterogeneities within the drop 
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cast NafionTM film and the interface between the drop cast NafionTM and finally a 

heterogeneously active SWNT network due to differeing electronic properties of 

individual SWNTs which are not accounted for in the FEM models.  These data 

indicate that it is highly likely that defect sites cannot be solely attributed to the 

electrochemical activity of SWNTs. 
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4. Design and Verification of Channel Flow Electrodes 
by Microstereo Lithography 

 

4.1. Introduction 
 
 
 The development of a channel flow cell using microstereo lithography (MSL) 

that provides well-defined hydrodynamics to an electrode surface is demonstrated 

within this chapter.  The MSL-fabricated channel flow cell is simply mounted onto 

the electrode by binding with thread, removing the need for adhesives or high 

mechanical forces.  Importantly the MSL produced channels are not distorted during 

assembly, unlike conventional channel flow cells, hence removing the need for 

electrochemical calibration, which has not been achieved before using conventional 

channel flow experiments.  With this simple method of assembly flow rates up 64 mL 

min-1 can be obtained.  The design is successfully applied to gold and polycrystalline 

boron doped diamond (pBDD) band electrodes, providing an electrochemical 

response in agreement with the Levich equation for band geometries under Laminar 

channel flow conditions.  FEM is also used to accurately predict the limiting current 

response for the situation where the electrode dimensions are governed by the entire 

channel base. 

 

4.2. Channel Flow Construction Methods 
 

 

Most practical channel flow designs consist of either a two-part or three-part 

assembly.1-14  In the latter case (which is common), the parts are: (i) an electrode 

either embedded in the bottom face of the channel or glued to it; (ii) a spacer, the 
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thickness of which defines the channel height (which typically distorts under 

pressure); and (iii) a top layer, which typically includes the flow inlet and outlet pipes, 

as illustrated in figure 4.1 (a).  Figure 4.1 (b) shows an example of this type of cell 

which is held together by mechanically applied pressure (e.g. the use of nuts and 

bolts).1-14 

 

 

Figure 4.1 (a) Schematic of a three part flow cell design and (b) example of a 3 part flow cell held 

together by screws, where the red block houses the working electrode, the white section is the spacer 

and the clear upper block houses the inlet and outlet connections. 

 
In the two-part cell, the channel unit contains the duct, consisting of the 4 side 

walls and roof, and this is assembled onto the substrate containing the electrode using 

a hard-setting wax,15, 16 or a high external pressure (figure 4.2).17, 18  With both 

arrangements the channel length is often 4 cm or more, the electrode length, xe, is in 

the range 20 µm – 4 mm; the channel width, wch, ~ 6 mm - 10 mm and the total 

channel height, 2h, ~ 0.4 mm - 1 mm.  Typical volume flow rates, Vf, of 0.0001 – 0.1 

cm3 s-1 are usually applied.1-14 
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Figure 4.2 Schematic of the main body of a 2 part channel housing the inlet, outlet and duct which 

defines the channel dimensions.   The two-part design is fixed to a planar substrate (not shwon). 

 

The three-part cell is the most commonly adopted channel flow with 

electrochemical detection system, the two-part cell design tends to be adopted when 

using higher flow rates.  For example, a fused-silica channel has been employed 

which is secured to a cover plate, incorporating the WE, by the use of significant 

external pressure.17, 18  Though highly effective for analysis at high volume flow rates, 

the cell is made from silica, which is fragile, and assembly of the channel requires a 

high pressure chamber, which may limit possible electrode materials.  Finally the cell 

is more expensive to set up and operate than conventional channel flow designs. 

Presently, channel flow cells are made either by hand, which is time 

consuming and expensive, or from a mould, where one is limited to the dimensions of 

available moulds.1-14  In addition, few channel flow cells can be used with high flow 

rates, unless the specialised set-up, discussed earlier, is employed.17  Moreover, in all 

conventional cells, the application of mechanical pressure (screws) to close the cell 

results in compression of the channel spacer changing the height and width of the 
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channel.  This makes quantitative electrochemical measurements possible only after a 

calibration experiment has been performed each time the cell is assembled, which is 

time-consuming.1-14  Additionally, the use of an adhesive, such as wax, to secure the 

channel assembly, creates a brittle seal that may be prone to leaking and, again, 

creates uncertainties in the cell dimensions.1-14 

This chapter describes a new methodology for the construction of a channel 

flow cell for electrochemical detection, which overcomes the issues highlighted and 

also significantly shrinks the dimensions of the cell, without impairing the inherently 

well-defined mass transport. Furthermore, the approach described allows the 

application of a wide range of flow rates and is versatile in terms of the material used 

for the substrate and the geometries of the electrodes employed. 

 

4.3. Experimental 
 

4.3.1. Channel Design 
 
 

The design of the channel was based upon the two-part cell approach, where a 

flow cell consisting of the inlet, outlet and 5 walls of the channel, is assembled on top 

of the working electrode, mounted within a planar substrate.  For the channel flow cell 

to provide well defined hydrodynamics, and for the current response to be predicted 

by theoretical calculations the internal dimensions of the channel must be known 

accurately.  Of particular importance are the height (2h) and width of the channel 

(wch), and the electrode dimensions (xE and wE).  To facilitate the use of the flow cell 

with a wide range of electrode materials the device has to be customisable, easy to 

assemble and not require electrochemical calibration of the height once assembled.  
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For these reasons MSL was employed for the construction of the channel flow cell 

units. 

The design for the channel flow cell is shown in figure 4.3, where solution 

impinges from the inlet onto the planar substrate before flowing through a well 

defined channel of 2h = 200 µm and wch = 3 mm.  The standard MSL construction 

process described in section 2.4 was used to produce the channel flow unit.  In one 

MSL batch run, which takes ~8 hours, 4 channel flow units could be produced.  After 

production the height of each channel was measured by white light interferometry and 

used for all calculations related to experiments within the channel. 

 

 

Figure 4.3 The design of channel flow cell where (a) is the view along the length of the channel, (b) 

the width of the channel, (c) view from above the channel, and (d) isometric view of the exterior of the 

channel.  All measurements are in mm 
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4.3.2. Electrode Fabrication 
 

 

Three different working electrodes were employed to characterise mass 

transport in this new type of flow cell: (a) a macroscopic gold (Au) substrate, where 

the resulting electrode area was governed by the dimensions of the entire bottom face 

of the channel, i.e. 3.5 mm x 3 mm; (b) a lithographically-defined Au band electrode, 

with w defined by the width of the channel (w = 3 mm) and xe = 680 µm; and (c) a 

polycrystalline boron doped diamond (pBDD) band embedded within insulating 

epoxy resin and polished flat. For both (a) and (b), Au (120 nm thick) was thermally 

evaporated (with a 10 nm thick Cr adhesion layer) onto Si/SiO2 wafers (IDB 

Technologies Ltd.) cut to ~1 cm x 1 cm.  The Au band was created by shadow 

masking the Si/SiO2 wafer during evaporation and the resulting dimensions were 

measured optically (Olympus BH2 microscope). The electrode surface was cleaned 

between experiments with ultra pure Milli-Q water (Millipore Corp.), and then blown 

dry with nitrogen. 

For electrode (c), the pBDD band of the desired dimensions (xe = 200 µm and 

w ≈ 2.0 mm) was cut using laser micromachining (Oxford Lasers), from a larger 500 

µm thick pBDD sample, which had been polished on one side (electrode surface) to 

~2 nm roughness (Element Six Ltd. Ascot, UK).19  The boron dopant density of this 

material was ca. 5 × 1020 atoms cm-3.  The pBDD band was cleaned in boiling H2SO4 

(98%) supersaturated with KNO3
20

 and electrically contacted by sputtering a gold 

contact with a titanium adhesion layer onto the back of the diamond (non-polished 

face). Tinned copper wire was attached to this surface using silver dag paint (Agar).  

The pBDD band was sealed in insulating epoxy resin (Delta Resins) using a 

cylindrically-shaped Teflon mould.  After curing, the encapsulated electrode was 
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removed from the mould and polished flat to expose the pBDD surface, using silicon 

carbide polishing pads (Buehler) and 0.05 µm alumina paste (Buehler). 

 

4.3.3. Flow System and Cell Assembly 
 

The channel flow unit was assembled on the electrode surface of interest 

simply by binding the flow cell and electrode substrate together with a cotton thread.  

Figure 4.4 shows a typical channel flow cell and how the flow cell was assembled 

onto the electrode.  Inlet and outlet tubing (PVC 1/8'' inner diameter and 1/4'' outer 

diameter) were connected directly to the cell by push-fitting, and connections to a 

flow pump made using Omni-fit adapters (Bio-Chem Fluidics).  One of two different 

pumps was employed to control flow through the cell, either: (i) a syringe pump (KD 

Scientific), equipped with a 50 mL Hamilton syringe with a 32.57 mm bore 

(maximum volume flow rate (Vf) of 64 ml min-1); or (ii) a single piston liquid 

chromatography pump (Gilson 305) fed through a manometric module (Gilson 806) 

to maintain a constant volume flow rate, maximum Vf = 25 ml min-1. 

 

Figure 4.4 Photographs of a typical channel flow cell, (a) top view, (b) bottom view and (c) assembled 

onto the electrode 
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4.3.4. Electrochemical Measurements 
 
 

 All electrochemical measurements were carried out in the two-electrode mode 

with a WE and a quasi-reference electrode.  The system could easily incorporate a 

three-electrode dynamic electrochemical set-up if required.  The quasi-reference 

electrode was a silver wire coated in silver chloride.  Note that as voltammetric 

measurements were made over a relatively wide potential range, a true limiting 

current could always be determined.  Solutions containing 0.1 mM ferrocenylmethyl 

trimethylammonium (FcTMA+) hexaflorophosphate (synthesised in house21) in 0.1 M 

KNO3 supporting electrolyte (99% Fischer Scientific) were used for all experiments.  

Linear sweep voltammograms were recorded using either a CHI760C bipotentiostat 

(CH Instruments) or an Autolab electrochemical workstation (Eco Chemie), typically 

at a scan rate of 10 mV s-1. 

 

4.4. Theoretical Testing 
 

 

The channel design shown in figure 4.3 was theoretically tested to ensure that 

the device would operate under laminar flow conditions and provide a response in 

agreement with the Levich equation. 

To determine if the flow through the channel would be laminar, the Reynolds 

number was calculated for the highest experimental flow rate (64 mL min-1) using the 

equation 1.21.  The Reynolds number at this flow rate for the channel is 1350, hence 

flow is laminar, for all practically obtainable volume flow rates (e.g. up to 64 mL min-

1).  This indicates that the channel will provide well defined hydrodynamics to the 
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electrode surface.  The velocity profile within the channel and limiting current 

responses for each of the electrodes was determined by the use of FEM. 

A desktop computer equipped with an Intel Pentium III Xeon quad core 2.5 

GHz processor and 8 GB of RAM running Windows XP Professional 64 bit was used 

for all of the FEM simulations.  These were performed using the commercial FEM 

package Comsol Multiphysics 3.5a (Comsol AB, Sweden), using the Matlab interface 

(Release 2009a) (MathWorksTM Inc., Cambridge, UK).  This approach has previously 

proven powerful for investigating complex hydrodynamic electrode systems.22, 23  The 

channel was approximated to a 2D cross-section, along the direction of xe, making the 

assumption that channel and electrode edge effects in the direction of w are negligible 

(figure 1.12(b)).  Such an approach has been adopted in previous treatments of mass 

transport to channel electrodes.15, 24-30  

 

4.4.1. FEM of Convection Within the Channel Flow Cell 
 
 

Initially, the velocity profile within the 2D channel cross-section, figure 4.5, 

was determined by solving the incompressible Navier-Stokes equations for 

momentum balance (equation 4.1) and continuity (equation 4.2). 

 

 (4.1) 

 (4.2) 

 

where ρ is the density of water (assumed reasonably to be 1.00 g cm-3),31 V is the 

velocity vector (with components u and v in the x and y directions, respectively), p is 

pressure, η is the dynamic viscosity of water, which is reasonably 1.00 mPa s for the 
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experimental conditions used herein, and T is the matrix transpose operator.  Figure 

4.5 shows the 2D cross section used in the FEM simulation and defines the boundary 

labelling conventions employed.  The following boundary conditions were used for 

the finite element calculations (equation 4.3 – equation 4.5) 

 

Boundaries 1, 3 to 8, and 10: ,  (4.3) 

Boundary 2: ,  (4.4) 

Boundary 9: ,  (4.5) 

 

where wch and xch are the channel width (in this case 3 mm in the w direction) 

and principal inlet dimensions (length of boundary 2, 0.5 mm), respectively, p0 is the 

pressure of the system, and n is the vector normal to a particular boundary.  

Boundaries 1, 3 to 8, and 10 represent the walls of the flow cell, substrate and 

electrode, and consequently have a no slip boundary condition (equation 4.3).  Flow is 

introduced to the channel normal to the inlet, boundary 2, as described in equation 

4.4, with the outlet, boundary 9, being set to standard pressure with no shear stress 

exerted upon the fluid exiting the cell (equation 4.5).  The inlet and outlet heights of 2 

mm were chosen to ensure that Poiseuille flow had developed, in the inlet section to 

the main channel and to ensure that the outlet did not distort flow at the extreme 

downstream section of the main channel. 
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Figure 4.5 (a) View of the channel flow cell design highlighting the section taken for the FEM domain 

(b) 2D cross section showing the numbering convention for the FEM of the channel 

 

4.4.2. FEM Convection and Diffusion Simulations 
 
 

After determining the velocity distribution at a particular value of Vf, the local 

values of u and v were used in the solution of the steady-state convection-diffusion 

equation for transport-controlled electrolysis at the channel electrode to evaluate the 

mass-transport limited current response and predict the concentration distributions: 

 

 Equation 4.1 

 

where D is the diffusion coefficient (6 x 10-6 mol dm-3 for FcTMA+)32 and c 

the concentration of FcTMA+. 

The boundary conditions for the convection and diffusion model are shown in 

Table 1.  Boundaries 1, 3 to 5, 7, 8, and 10 for the band electrodes and boundaries 1, 

4, 5, 8 and 10 for the case where the electrode is defined by the area of the channel, 
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are the insulating walls of the channel and substrate.  Boundary 2 is the inlet where 

fresh solution enters at the bulk concentration, boundary 6 (or boundaries 3, 6 and 7 

where the channel defines the entire electrode area) is the electrode surface where 

complete and instantaneous electrolysis of the analyte occurs and boundary 9 is the 

outlet where the flux normal to the boundary is solely due to convection.  This is 

reasonable for the cell dimensions and flow velocities of interest. 

 

Convection-Diffusion Boundary Navier-Stokes 

Band electrode Channel defined electrode 

1 No slip Insulation ( ) Insulation ( ) 

2 Inlet Inlet (c = cb) Inlet (c = cb) 

3 No slip Insulation ( ) Electrode (c = 0) 

4 No slip Insulation ( ) Insulation ( ) 

5 No slip Insulation ( ) Insulation ( ) 

6 No slip Electrode (c = 0) Electrode (c = 0) 

7 No slip Insulation ( ) Electrode (c = 0) 

8 No slip Insulation ( ) Insulation ( ) 

9 Outlet Outlet ( ) Outlet ( ) 

10 No slip Insulation ( ) Insulation ( ) 

 

Table 1 Summary of the boundary conditions used in the simulation of the limiting current response 

for the channel electrode, where no slip refers to equation 4.3, inlet refers toequation 4.4, and outlet 

refers to equation 4.5 for the Navier-Stokes simulation, and where where N is the inward flux, and cb is 

the bulk concentration of FcTMA+ (0.1 mmol dm-3) for the convection and diffusion calculations. 
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The limiting current (ilim (A)) response was calculated by summing the flux at 

boundary 6 (or boundaries 3, 6 and 7 for the situation where the electrode is defined 

by the channel area) and multiplying by the electrode width (we), n, the number of 

electrons transferred per redox event, and F, Faraday’s constant (96485 C mol-1). 

 

4.5. Results and Discussion 
 

4.5.1. Insights from Simulation 
 

 

All three electrode geometries were simulated to determine flow through the 

channel at rates between 0.1 - 64 mL min-1.  The most stringent test is the highest flow 

rate, giving the longest lead-in length for the development of Poiseuille flow.33  

Figure 4.6 (a) shows that for this case, after a very short lead in length, with respect to 

the top face of the channel, a steady Poiseuille velocity profile is achieved down the 

channel.  This is a consequence of the channel design, where a rectangular section 

(faces 1 and 4) feeds solution into the main part of the channel cell. 
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Figure 4.6 (a) Velocity profile in the channel cell for Vf = 64 mL min-1, showing that flow within the 

channel is laminar.  The concentration profiles resulting for transport-controlled electrolysis of a 

reactant at a band electrode (xe = 680 µm, 2h = 250 µm, Vf = 64 mL min-1) (b) (Vf = 0.1 mL min-1).  

(All measurements in mm). 

 

 Figure 4.6 (b) shows the typical concentration profile for the situation where a 

band electrode is situated in the bottom face of the channel at the midpoint.  It can be 

seen that the concentration boundary layer in the vicinity of the electrode is confined 

close to the wall, and consequently one would expect the Levich equation to hold.  

That this is the case can be seen by comparing the simulated steady-state current 

response () and that predicted by the Levich equation (_____) which are in excellent 

agreement, (figure 4.7 (a) and (b)), over the volume flow rate range, 0.1 to 64 ml min-

1. The electrode dimensions and flow cell heights used to produce figure 4.7 (a) and 

figure 4.7 (b) (xe = 680 µm, wch = we = 3 mm, and 2h = 250 µm for the Au electrode, 

xe = 200 µm, w = 2 mm, wch = 3 mm, and 2h = 192 µm for the pBDD electrode) are 

those that were used experimentally for the Au band and pBDD band flow cell 

electrochemical experiments (vide infra). 
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Figure 4.7 Comparison of the limiting steady-state current response predicted by the finite element 

model (▲) and the Levich equation (solid black line) for D = 6 x 10-6 cm2 s-1, cb = 1 x 10-4 mol dm-3; (a) 

a band with xe = 680 µm we = 3 mm and 2h = 250 µm, over the Vf range 0.1 to 64 mL min-1; (b) a band 

with xe = 200, µm we = 2 mm and 2h = 192 µm, over the Vf range 0.1 to 64 mL min-1. 

 

 

For the case where the bottom face of the cell defines the entire electrode, the 

simulated response (; figure 4.8 (a)) has an approximate Vf
1/3 dependence, but the 

measured currents are slightly lower than predicted by the Levich equation (______; 

figure 4.8 (a)).  This is because convective effects at the extreme upstream and 

downstream edges of the flow channel are diminished, giving rise to lower mass 

transport rates and thus a smaller transport-limited current density, than for an 

electrode positioned in the Poiseuille flow regime.  Such effects are evident in the 

simulated concentration profiles, for example in figure 4.8 (b) where one can see an 

increased concentration boundary layer thickness at the upstream and downstream 

edges of the macroscopic electrode (reflecting a lower mass transport rate), compared 

to the characteristic concentration boundary layer which scales as x-2/3 for an electrode 

in Poiseuille flow. 1-14  Nonetheless, the effect is actually rather small, and as shown 

later such electrodes can be treated in a highly quantitative fashion. 
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Figure 4.8 (a) Diffusion profile for the transport controlled electrolysis of a species where the entire 

base of the channel is active (Vf = 0.1 mL min-1), (b) comparison of the FEM limiting current to the 

Levich predicted response for the entire base of the channel being active the entire channel floor as the 

electrode i.e. xe = 3.5 mm, w = 3 mm and 2h = 250 µm, over the Vf range 0.1 to 25 mL min-1. 

 

4.5.2. Experimental Investigation of Channel Flow Cells 
 

To verify mass transport to the channel flow electrode, measurements were 

first carried out with the Au and pBDD band electrodes defined earlier.  These 

electrodes, were located sufficiently downstream of the channel entrance (electrode 

leading edge from wall 1, ~1.7 mm and ~2 mm for the Au and pBDD bands, 

respectively) to ensure that Poiseuille flow had been established.  Figure 4.9 shows: 

(a) typical LSVs for the one-electron oxidation of 0.1 mM FcTMA+ in 0.1 M KNO3, 

at the Au band electrode, at a scan rate of 10 mV s-1, over the Vf
  range 0.03 – 64 ml 

min-1; and (b) a plot of experimental ilim (•) versus that predicted by the Levich theory 

(solid black line) for xe
 = 680 µm, w = 3 mm, 2h = 250 µm and D = 6.0 x 10-6 cm2  s-1 

for FcTMA+.32  

 



Chapter 4. Design and Verification of Channel Flow Electrodes by Microstereo 
Lithography 

 

128 

 

Figure 4.9 (a) Typical LSVs for the oxidation of 0.1 mM FcTMA+ in 0.1 M KNO3 at a Au band 

channel electrode (w = 3 mm, xe = 680 µm, 2h = 250 µm) at 10 mV s-1 at Vf values of 0.03 (lowest 

current), 0.2, 0.5, 1.0, 3.4, 8.0 (highest current) ml min-1. (b) Comparison of the experimentally 

obtained ilim (●) to the Levich equation (solid black line). 

 

As can be seen in figure 4.9 (b) there is an excellent correlation between the 

experimentally measured limiting current values and those predicted by the Levich 

equation, up to Vf values of 64 ml min-1 (also expected based on the finite element 

simulations above).  It is important to note that, even under these high volume flow 

rate conditions the cell did not leak and could be assembled very easily in the simple 

way described. These experimental data fully support the theoretical simulations 

shown in figure 4.6 (a and b) and figure 4.7 (a). Note that the value of 2h (250 µm) 

used for the simulations indicates that the method adopted to bind the cell to the 

underlying substrate electrode does not distort the channel dimensions. This was 

found to be the case for all cells employed (vide infra, e.g. figure 4.10) and means that 

once h has been defined quickly by interferometry, the channel can be used further 

without the need for re-calibration of cell dimensions after cell assembly. 
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Figure 4.10 (a) shows typical LSVs for the one-electron oxidation of 0.1 mM 

FcTMA+ in 0.1 M KNO3, at a pBDD band electrode defined by w = 2 mm and xe = 

200 µm, over the Vf
  range 0.1 – 10 ml min-1 at a scan rate of 10 mV s-1 and (b) a plot 

of experimental ilim (•) versus that predicted by the Levich theory (solid black line) 

for the electrode dimensions defined, 2h = 192 µm (measured by interferometry) and 

D = 6.0 x 10-6 cm2 s-1. The plot of ilim vs Vf 1/3 is linear and again supports the 

hypothesis that mass transport in the channel is very well-defined and the limiting 

current can be quantified using the Levich equation. These results also show the ease 

at which the substrate electrode can be interchanged; enabling the easy use of a wide 

range of electrode materials with this flow cell configuration. 

 

 

Figure 4.10 (a) Typical LSVs for the oxidation of 0.1 mM FcTMA+ in 0.1 M KNO3 at a pBDD channel 

band electrode (w = 2 mm, xe = 200 µm and 2h = 192 µm) at 10 mV s-1 at Vf values of 0.1 (lowest 

current), 0.4, 0.7, 1.0, 2.0, 5.0, 10.0 (highest current) ml min-1. (b) Comparison of the experimentally 

obtained ilim (●) to the Levich equation (solid black line). 

 

 We finally consider experiments where the electrode area was defined by the 

area of the channel base in the flow cell i.e. w = 3 mm and xe = 3.5 mm. Here, the 

solution moving through the inlet pipe effectively impinges directly onto the upstream 
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edge of the electrode surface and then flows down the channel, soon establishing a 

Poiseuille profile (figure 4.6 (a)). This case is important in connection with the 

present flow cell device as there may be electrode materials that cannot be readily 

encapsulated in a support and where one would simply wish to attach a flow cell in 

the simple and effective manner that we have developed herein. 

Figure 4.11 (a) shows typical LSV responses for the oxidation of 0.1 mM 

FcTMA+ in 0.1 M KNO3 at 10 mV s-1 at the larger Au electrode, over the Vf range 

0.005 mL min-1 - 10 mL min-1, using the same flow cell as employed for the 

experiments in Figure 4 i.e. 2h = 250 µm.  The steady-state limiting current at the 

electrode is in excellent agreement with the response predicted by the finite element 

simulations (figure 4.11 (b)).  The response is lower than predicted by the Levich 

theory, for the reasons described above (figure 4.8 (a)), but critically, the response is 

quantitative and can be accurately modelled.  These data provide further evidence that 

the channel flow cell is not distorted on assembly and provides well-defined, 

predictable mass transport to the substrate electrode. 
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Figure 4.11 Typical LSVs for the oxidation of 0.1 mM FcTMA+ in 0.1 M KNO3 at a channel flow cell 

Au electrode (area defined by the bottom face of the channel, w = 3 mm, xe = 3.5 mm and 2h = 250 µm) 

at 10 mV s-1 at Vf values of 0.005 (lowest current), 0.025, 0.2, 0.5, 1.0, 2.0, 10.0 (highest current) ml 

min-1 and (b) comparison of the experimentally obtained ilim (●) to the predicted response by the finite 

element model (solid black line). 

 

4.6. Conclusions 
 

We have shown that MSL can be used very effectively to produce channel 

flow units that enable channel flow cells to be rapidly assembled for electrochemical 

detection under hydrodynamic control.  A considerable practical attribute of these 

cells is that they do not require high mechanical forces e.g. screws or an adhesive seal. 

The flow cell sits atop a planar substrate, which contains the working electrode; the 

two are held together simply using a cotton thread that is sufficient even when 

working at volume flow rates as high as 64 ml min-1. The flow cell can be rapidly 

assembled or dismantled, allowing working, counter and reference electrodes to be 

removed and replaced easily.  
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Four flow cells can typically be produced in a 6-8 hour run by MSL, and once 

the channel height has been independently verified, the flow cell is ready to use 

without further calibration. Crucially we have shown that the channel height remains 

unchanged after assembly i.e. the polymeric material does not distort, allowing the 

cell to be assembled/disassembled repeatedly and rapidly e.g. in order to clean the 

working electrode without fear of altering the channel dimensions between 

measurements.  The production process also lends itself to the easy redesign of the 

cell for different applications.  For example, current work involves the fabrication of 

channel cells with mixing chambers incorporated within the design.  All of these 

attributes should lead to the greater use of channel flow electrodes in kinetic and 

analytical applications. 

The channel flow electrode is characterised by well-defined mass transport; 

data for the diffusion-limited oxidation of FcTMA+ demonstrated an excellent 

agreement with the Levich equation and finite element simulations for band 

electrodes.  This was found to hold for a wide range of volume flow rates, up to 64 ml 

min-1 and was demonstrated herein using both Au and pBDD band electrodes.  For 

electrodes where the active area is defined by the whole area of the channel i.e. 3 mm 

x 3.5 mm (for the flow cell designs employed here), the steady-state current response 

can be predicted accurately using FEM. This bodes well for further applications of the 

flow cell and variants thereof as demonstrated in the following chapters on low 

concentration detection and by application of MSL to create a wall jet electrode. 
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5. Ultra-sensitive Voltammetry at SWNT Channel 
Electrodes 

5.1. Aim 
 

The deployment of SWNT network electrodes in channel flow for well-defined 

hydrodynamic voltammetry is reported.  In essence, 2D VHD SWNT networks are 

combined with the MSL developed channel flow cell reported in chapter 4.  The 

configuration provides well-defined hydrodynamics over a large range of flow rates 

(0.05 mL min-1 – 25 mL min-1) providing a limiting current response of the SWNT 

electrode in agreement with the Levich equation (Equation 1.27).  Furthermore, 

analysis with theoretical predicted values is demonstrated for FcTMA+ over a wide 

concentration range of 13 nmol dm-3 to 21 µmol dm-3.  The hydrodynamic 

configuration is applied to the detection of dopamine where an estimated detection 

limit of 10 nmol dm-3 is reached. 

5.2. Introduction 
 

As discussed previously in chapters 1 and 4, hydrodynamic electrodes have been 

used for the continual monitoring of a solution1-4.  The well-defined convection 

provided by tubular and channel flow cells is of particular interest for analytical 

studies, which can result in an increased signal for mass transport controlled 

reactions,5-8 or facilitate the investigation of reaction kinetics.9-13  By continually 

replacing the analyte solution at the electrode surface, soluble products that can foul 

or block an electrode can be removed as they are formed, enhancing the life time of 

an electrode. 
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Previously the channel flow and tubular electrode geometries have been used to 

increase the sensitivity of various electrodes.14-16  Work utilising a platinum tube 

electrode, by Blaedel et al.,8, 17 demonstrated the high sensitivity of convective 

systems by detecting 50 nmol dm-3 ferrocyanide via continual CA injection analysis.  

The technique was applied to channel flow electrodes where the combination of 

reticulated vitreous carbon discs with stop-flow techniques allowed for the detection 

limit of 1 nmol dm-3 ferrocyanide to be obtained from the difference between the two 

limiting current responses.18  To allow a greater depth of analytical evidence to be 

obtained, the modulated flow technique was combined with CV measurements by 

Blaedel et al.19 resulting in a detection limit of ~100 nmol dm-3.  However, the 

utilisation of modulated flow rates greatly limits the available scan rates for steady-

state electrochemical measurements due to the relaxation time associated with the 

variation of the flow rate (figure 5.1).  The scan rate and frequency of modulation of 

the flow rate can be increased, however the change in amplitude between the two flow 

rates is reduced (figure 5.1) and can no longer be easily predicted by the difference in 

the theoretical Levich responses.  To allow fast scan CV and easily predictable data 

this chapter focuses on detection using a constant flow rate, this approach sacrifices 

the enhanced sensitivity provided by variable flow rate techniques but removes the 

associated scan rate limitations. 
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Figure 5.1 The effect of increasing the frequency of modulation of flow rates upon the CA response.  

The frequency of modulation decreases from left (highest) to right (lowest).  The right hand image 

shows the measurement at steady state for flow rates H and L.19  Results shown for a tubular electrode 

of with a tube of radius 0.2 mm and electrode length of 1 mm, flow rates are modulated from 3 mL 

min-1 – 6 mL min-1. 

 

As discussed in chapter 3, the diffusion profiles to the active areas of the SWNT 

network overlap to provide linear diffusion similar to that of a macro electrode on the 

observable timescales for a typical redox mediator in aqueous solutions.  The 

diffusional overlap provides a transport limited current similar to an all active 

electrode material, however as the active area is reduced the non-Faradaic background 

signal is reduced.  Bertoncello et al.20 demonstrated a 100 fold decrease in the 

background current on a SWNT network compared to a GCE of the same size, this 

reduced current was attributed to only 1% of the surface being covered by SWNTs.  A 

similar reduction in the non Faradaic-background was also observed for a SWNT 

network UME by Dumitrescu et al.21 

The detection and accurate analysis of dopamine levels within solution is a 

medically relevant area, which provides insights into neurological processes.22-24  
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Dopamine is a neural transmitter and monitoring the levels of dopamine present 

within the brain could further the investigation, and potentially lead to the 

development of cures, for several neurological diseases e.g. attention deficit disorder25 

and Parkinson’s disease23.  One of the major problems with the detection of dopamine 

is the fouling or blocking of the electrode during oxidation.  This effect has been 

observed upon GCEs and carbon fibre electrodes leading to reduced electron transfer 

rates.26, 27  The blocking effect was noted to be significantly reduced upon a GCE 

modified with CNTs by Britto et al.28, and similar results were observed with UMEs 

made of VHD SWNT networks by Dumitrescu et al.29  This makes CNTs, particularly 

the VHD SWNT networks, an interesting electrode material for the electroanalysis of 

biomolecules. 

The MSL channel designed in chapter 4 is applied to a VHD SWNT network and 

used to probe nano-molar concentrations of FcTMA+ and dopamine.  The reduced 

non-Faradaic background currents and fouling effects towards biomolecules allows 

the detection limit of constant flow rate measurements to match those previously 

provided by pulsed flow voltammetry.  This greatly reduces the time for analysis 

without sacrificing the accuracy of measurements. 

 

5.3. Experimental 
 

This section highlights several methods which were used in creating a well 

defined and electrochemically sensitive macro electrode from a VHD SWNT 

network, and techniques employed to provide accurate low concentration analysis. 
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5.3.1. Electrode Preparation 
 

 

The VHD SWNT network was grown by cobalt catalysed cCVD using ethanol as 

the carbon feedstock, as described in section 2.1.  Only samples with a network 

density ≥ 4 µmSWNT µm-2 were used within this chapter.  Electrical contacts were 

made by evaporating a Cr/Au band (10 nm/120 nm) defined by shadow masking onto 

the sample.  The electrode area was defined by a photolithography using a custom 

made mask producing 2 bands of we = 1.5 mm and xE = 0.5 mm (figure 5.2). 

 

 

Figure 5.2 Photograph of a SWNT network sample with the 2 band electrodes defined by 

photolithography. 

5.3.2. Analyte Preparation and Delivery 
 

 

Solutions of FcTMA+ (synthesised in house30) in 0.01 M KNO3 (99.999% Sigma 

Aldrich), and dopamine hydrochloride (Sigma Aldrich) in 0.01 M phosphate buffered 

saline solution (PBS) were used for all experiments.  The channel flow cell was 
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created in house by MSL, as reported in chapter 4.  The channel height was measured 

by white light interferometry (Wyko NT-2000 Surface Profiler, WYKO Systems) and 

all channels used in this report had working dimensions of w = 3.0 mm and 2h = 192 

µm.  Analyte solutions were delivered via a Gilson 305 HPLC pump at a flow rate of 

25 mL min-1.  To minimise the effect of analyte adsorption onto the walls of the 

delivery system all parts were soaked for 1 hour in a 25 µmol dm-3 analyte solution.  

The flow cell was rinsed with 0.01 M KNO3 until the CV response was identical to 

the pre-soak background. 

 

5.3.3. Electrochemical Measurement 
 

CV and LSV measurements were performed in the 2-electrode mode using a 

CHI750C potentiostat at 10 mV s-1 scan rate with a SCE quasi-reference electrode.  

The SCE electrode was mounted inside a pipette tip (Finn, Thermo Scientific).  A 5 

mL pipette tip was cut across the circumference of the central body.  A rubber O-ring 

was mounted onto the SCE and inserted into the pipette.  Once assembled analyte 

solution was injected into the tip of the pipette until the entire pipette-SCE assembly 

was filled with analyte.  The pipette tip was inserted into the reference hole designed 

in the flow cell, and secured with modelling putty.  A schematic of the modified SCE 

used and a photograph of the SCE setup are shown in figure 5.3.  The use of this 

reference method prevented contamination of the SWNT sample observed with the 

use of a chlorinated silver wire. 
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Figure 5.3 (a) Schematic of the SCE electrode assembly and (b) photograph of the assembled SCE 

with Finn tip. 

 

5.4. Results and Discussion 
 

5.4.1. VHD SWNT Network Characterisation 
 
 

The samples to be used were for electroanalysis were characterised for network 

density by AFM.  Only samples with a density ≥ 4 µmSWNT µm-2 were used for the 

experiments within this chapter.  A typical AFM image of a VHD SWNT network is 

shown in figure 5.4 (a).  To ensure that the electrode preparation methods were 

suitable for electrochemical analysis, CVs were performed within a solution 

containing only supporting electrolyte (0.01 M KNO3).  Figure 5.4 (b) shows the 

potential window and the low non-Faradaic background currents for the VHD SWNT 

network. 
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Figure 5.4 (a) A typical AFM image of a SWNT network of density ~8 µm µm2, scale bar is 200 nm 

with a z scale bar of 7.5 nm., and (b) a typical background CV in 0.01 M KNO3   

 

CVs over a range of flow rates on the SWNT electrodes were performed using 21 

µmol dm-3 FcTMA+ in 0.01 mol dm-3 KNO3 using a band electrode of xe = 0.5 mm, we 

= 1.5 mm within a channel of width 3 mm and 2h = 192 µm.  Figure 5.5 (a) shows the 

LSVs which were used to determine the limiting current response with respect to flow 

rate.  The agreement between the experimental limiting current and the theoretical 

values, figure 5.5 (b), shows that the SWNT band electrode is well defined and does 

not affect the hydrodynamics of the channel as the limiting current responses are 

accurately predicted by the Levich equation (equation 1.27). 
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Figure 5.5 (a) LSVs taken at 10 mV s-1 in 21 µmol dm-3 FcTMA+ and 0.01 mol dm-3 KNO3 at flow 

rates of 0.2, 1.0, 2.0, 5.0, 10.0, 15.0, 20.0 and 25.0 mL min-1 and (b) linear fit of the limiting current 

response to the Levich equation, for a band electrode of xe = 0.5 mm, we = 1.5 mm within a channel of 

width 3 mm and 2h = 192 µm. 

 

To explore low concentration detection, measurements were made using FcTMA+ 

in 0.01 M KNO3, CVs for the detection of various concentrations of FcTMA+ are 

shown in figure 5.6 (a), compared to the background scan in only 0.01 mol dm-3 

KNO3.  The volume flow rate of 25 mL min-1 was chosen to provide the largest 

increase in the mass transport to the electrode surface.  From the CVs it is possible to 

detect concentrations as low as 13 nmol dm-3 of FcTMA+, with a linear relationship 

between the limiting current and the concentration observed over a range of 1 µmol 

dm-3 to 13 nmol dm-3 as shown in figure 5.6 (b). 
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Figure 5.6 (a) CVs taken at 10 mV s-1 with a volume flow rate of 25 mL min-1 in (-) 156 nmol dm-3 (-) 

52 nmol dm-3 (-)13 nmol dm-3 in 0.01 M KNO3 and (-) only KNO3, (b) shows the agreement with the 

Levich predicted response. 

 

The concentration gradient follows a linear response with excellent agreement to 

the Levich predicted response for the experimental setup.  The VHD SWNT network 

band electrode has a linear dependence upon the concentration and the response can 

be predicted simply from the Levich equation.  The detection limit could be further 

improved by implementing the pulsed flow rate voltammetric techniques.  The 

detection of 13 nmol dm-3 FcTMA+ is shown in figure 5.7 compared to the 

background in supporting electrolyte.  From the background scan and the linear 

concentration dependence on the limiting current response, a limit of detection of 10 

nmol dm-3 FcTMA+ is estimated, with a sensitivity of 14.8 mA dm3 mol-1 (15 pA dm3 

nmol-1) determined from the concentration gradient. 
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Figure 5.7 CV of 13 nmol dm-3 FcTMA+ in 0.01 mol dm-3 KNO3 (―) and in only 0.01 mol dm-3 

KNO3 (―). 

 

Figure 5.8 (a) shows CVs of 133 nmol dm-3, 500 nmol dm-3 and 1.0 µmol dm-3 

of dopamine at a scan rate of 10 mV s-1 using a flow rate of 25 mL min-1.  The CVs 

presented in figure 5.8 (a) are slightly more distorted than those obtained for 

FcTMA+.  This is to be expected as dopamine exhibits sluggish electron transfer 

kinetics at conventional carbon electrodes (such as GCE and carbon fiber electrodes) 

unless rigorous steps are taken to pre-treat the electrode surface.26, 27 

   The relationship between the bulk concentration and the limiting current is 

linear over the concentration range of 100 nM - 1 µM, as shown in figure 5.8 (b).  

However, the limiting current is 60% of that predicted by the Levich equation for the 

cell employed (assuming n = 2, D = 6 x 10-6 cm2 s-1).28, 31  This could be due to 

blocking of the electrode surface.32-34  The estimated limit of detection for Dopamine 

within the system employed within these studies is 10 nmol dm-3, with a sensitivity of 

16 mA dm3 mol-1. 
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Figure 5.8 (a) CVs taken at 10 mV s-1 with a volume flow rate of 25 mL min-1 in (―) 1.0 µmol dm-3 

(―) 500 nmol dm-3 (―) 133 nmol dm-3 in 0.01 M PBS, (b) shows the linear concentration gradient of 

dopamine (black data) against the Levich predicted response (―). 

 

5.5. Conclusions 
 

 

SWNT network band electrodes have been successfully combined within the 

channel flow cell for low concentration detection.  The photo-resist mask provides a 

well defined band electrode of width = 1.5 mm and length = 0.5 mm, which has 

negligible effects on the hydrodynamics of the channel.  This is demonstrated by the 

excellent agreement of experimental and theoretical limiting currents with the 

variation of flow rate.  The limit of detection as determined by using FcTMA+ is 10 

nmol dm-3 at a flow rate of 25 mL min-1.   A linear response to the concentration is 

demonstrated from 10 nmol dm-3 – 21 µmol dm-3 for FcTMA+.  Importantly the 

detection limit using a constant volume flow rate is comparable to that obtained by 

pulsed voltammetric analysis.  This removes the time restrictions associated with 

solution relaxation times allowing the use of fast scan LSV or CV measurements. 
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The limiting current response for dopamine is linear with respect to concentration 

over the range of 100 nmol dm-3 to 1.0 µmol dm-3.  The response is lower than 

predicted by the Levich equation, further investigation is required to determine if the 

effect is due to blocking of the electrode.  Importantly this demonstrates that a SWNT 

electrode can be applied to channel flow electrochemistry, and that the flow cell 

design is amenable to a wide variety of novel electrode materials. 
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6. Design and Testing of a MSL Radial Flow Cell 
 

6.1. Aim 
 
 

The advantages of MSL for the fabrication of channel flow cells has been 

demonstrated in chapters 4 and 5, allowing high precision features to be developed 

and maintained when assembled onto an electrode material.  This methodology is 

applied to the fabrication of an impinging jet electrode (IJE) to create well defined 

radial flow.  As for the channel flow cell, the radial flow cell can be rapidly assembled 

and can be applied to a variety of electrode materials.  This is demonstrated by the 

application to Au and SWNT disc electrodes.  2D and 3D FEM simulations are 

performed to critically assess the hydrodynamics within several potential designs of 

the channel.  The final design is tested by comparing experimental data to the current 

response predicted by 2D simulations of the device. 

 

6.2. Introduction 
 

Radial flow is an important component of the hydrodynamics of IJEs, widely used 

in the study of reaction mechanisms and kinetics.1-4  For all IJE techniques, the height 

of the nozzle over a planar substrate and the position of the electrode with respect to 

the nozzle must be well known.  There are two common variants for the assembly of 

an IJE.  These involve either encapsulating an electrode within a planar substrate 

beneath the nozzle (figure 6.1(a))2, 5-9 or combining the electrode with the nozzle10, 11 

(figure 6.1(b)). 
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Figure 6.1 Cross-sectional schematics of electrode position in IJEs. (a) Disc electrode mounted within 

the substrate below the nozzle, and (b) ring electrode mounted in the nozzle. 

 

The dimensions of the IJE setup have been greatly miniaturised over the past half 

century,  from a few millimetres for the nozzle radius and electrode radius8, 12, 13 down 

to micro-jet setups with the nozzle diameter being ~100 µm located over an UME.14, 

15  The miniaturisation of the electrode and nozzle sizes allows for greater mass 

transport rates to be achieved enabling fast kinetics of electrochemical processes to be 

studied.1, 16 

The height of the nozzle above the substrate is typically determined by optical 

measurement using a camera,15 by contact and z-axis manipulation,8 or by 

electrochemical calibration.17  Optical measurement is the least invasive technique as 

the nozzle and substrate do not make contact but limits the type of cells and solutions 

that can be used.  The contact methodology provides an accurate measurement of the 

nozzle height but care must be taken not to damage the nozzle or the substrate surface.  

As discussed previously for the channel flow electrode, the use of electrochemical 

calibration experiments introduces the possibility of complications from fouling of the 

substrate-electrode surface. 
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The alignment of the electrode and the nozzle has a large impact on mass transport 

to the electrode surface.  This is illustrated by the variation in limiting current for a 

WTE when the x and y position of the nozzle, with respect to the electrode, is varied 

(figure 6.2).  The central stagnation domain of mass transport and the radial flow 

profile of an IJE can be observed by the concentric variation in the limiting current 

the further the electrode is positioned from the centre of the nozzle (figure 6.3 (a) and 

(b)).2  It is important to note that the decrease in limiting current when the electrode 

and nozzle are aligned, due to the stagnation zone, is only observed when the 

electrode is sufficiently small that the entire electrode is within the stagnation zone.  

Hence, the method where the electrode is imbedded within the planar substrate 

requires accurate x and y alignment of the nozzle over the centre of the electrode.1, 2, 5, 

8, 18  This can be performed by piezo or micrometer manipulation; however accurate 

alignment maybe time-consuming. 

 

Figure 6.2 Illustration of the movement of the nozzle with respect to the electrode surface.17  By 

measuring the ilim response with respect to x and y displacement the plots in Figure 6.3 can be created. 

Not to scale. 
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Figure 6.3 (a) Variation in the limiting current response with respect to x-y position of a 105 µm 

diameter nozzle 300 µm above the surface of a 25 µm diameter UME. (b) Plot (a) redrawn to 

emphasise the radial decrease of the limiting current response.  Colours represent the same currents as 

shown in (a).2 

By incorporating the electrode into the nozzle design the position of the electrode 

can be easily characterised prior to assembly of the IJE, as in the radial flow 

microring electrode.  However, this technique restricts the electrode geometry to a 

ring and has so far only been applied to metallic electrode materials, though the 

fabrication technique employed by Macpherson et al.,10 utilising a metal paint, is 

feasible for any electrode material used for the fabrication of screen printed electrodes 

(figure 6.4). 
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Figure 6.4 Schematic showing the stages of construction for a radial flow microring electrode. (a) The 

capillary is pulled before (b) being evenly coated with Pt paint.  (c) The Pt paint is insulated in epoxy 

and (d) polished flat to expose a Pt ring.10 

 

The MSL channel flow devices, demonstrated in the chapters 4 and 5, have shown 

that the height of the channel is well defined and is not distorted upon assembly.  It is 

shown herein that this advantageous feature of the MSL designs can be applied to an 

impinging jet configuration.  Additionally, the high precision and resolution of 

features in the x and y axis of the build allow for complex internal structures to be 

created, giving freedom in design to create novel structures which were previously not 

easily produced.  As discussed in section 1.4.4 the size of the electrode governs 

whether the system is defined as a wall jet electrode (WJE) or wall tube electrode 

(WTE).  As the design is a 2 part assembly, similar to the channel flow cell presented 

in chapter 4, the size and geometry of the electrode can be easily varied allowing the 
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device to be used in both the WJE and the WTE configurations.  As such the device 

developed is generically referred to herein as a radial flow cell (RFC). 

 

6.3. Hydrodynamic FEM Simulations 
 

This section discusses the simulations which investigate the hydrodynamics 

within potential designs for a RFC.  All numerical simulations within this chapter 

were performed on a desktop computer equipped with an Intel Pentium III Xeon quad 

core 2.5 GHz processor and 8 GB of RAM running Windows XP Professional 64 bit, 

using the commercial finite element modelling package Comsol Multiphysics 3.5a 

(Comsol AB, Sweden), with the Matlab interface (Release 2009a) (MathWorksTM 

Inc., Cambridge, UK). 

FEM has previously provided valuable insights into the hydrodynamics of 

impinging jet electrodes,7, 15, 19-25 and is used herein to theoretically verify the design, 

and later within the chapter to experimentally assess the MSL fabricated RFCs. 

As discussed in section 1.4.4, there are two limiting cases for the hydrodynamics 

caused by an impinging jet.  One where the nozzle is sufficiently far from the 

electrode surface so that the fluid flow is not restricted (figure 6.5(a)),7, 26 and the 

other where the nozzle wall is close to the electrode surface, causing a radial channel 

flow profile (figure 6.5(b)).6, 10  This section describes both cases with the use of FEM 

and discusses the design advantages that the latter case provides for a MSL fabricated 

RFC. 
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Figure 6.5 Schematics of the two limiting cases of impinging jets (a) where the nozzle is far from the 

surface, and (b) where the nozzle is close to the surface.  Not to scale. 

 

6.3.1. Hydrodynamics of an IJE where the Nozzle is far 
from the Surface 

 
 

This situation has been used widely for investigations of the hydrodynamics 

caused by an impinging jet.7, 15, 21, 27  The schematic shown in figure 6.5 (a) can be 

approximated to a 2D model with axial symmetry around the central axis of the 

nozzle.  A schematic of the 2D domain with the boundary labelling conventions is 

shown in figure 6.6. 
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Figure 6.6 2D domain used for the simulation of the hydrodynamics of an impinging jet where the 

nozzle is far from the electrode surface. (Not to Scale) 

 

Solving the incompressible Navier-Stokes equations for momentum balance 

(equation 6.1) and continuity (equation 6.2), allowed the calculation of the velocity 

profile for the impinging jet. 

 

 (6.1) 

 (6.2) 

 

where ρ is the density of water (assumed reasonably to be 1.00 g cm-3),28 V is the 

velocity vector (with components ur and w in the r and z directions, respectively, as 

defined in figure 6.6, p is pressure, η is the dynamic viscosity of water, which is 1.00 

mPa s for the experimental conditions used herein, and T is the matrix transpose 

operator.  The following boundary conditions were applied: 
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Boundary 1:  (6.3) 

Boundaries 2, and 4-6: ,  (6.4) 

Boundary 3: ,  
(6.5) 

Boundary 7 and 8: ,  (6.6) 

 

where ur is the fluid velocity in the r direction.  For the simulations within this section 

the nozzle radius (rn) was 25 µm with a height (2h) of 500 µm above the planar 

surface. 

Previous work by Bitziou et al.7 has shown that there are essentially three distinct 

flow regimes which depend upon the flow rate of the solution out of the nozzle, the 

density and viscosity of the liquid, and the geometry of the impinging jet setup.  The 

first situation occurs for low nozzle exit velocities, which is illustrated in figure 6.7 

for the case of Vf = 1 µL min-1.  The potential core region of the flow does not extend 

far from the nozzle due to the solution viscosity causing resistance to motion, 

resulting in a broadening of the potential core. 
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Figure 6.7 FEM of the velocity profile for the low nozzle exit velocity situation where Vf is 1 µL min-1. 

(a) The entire simulated domain and (b) close up of the radial decay of the fluid velocity exiting the 

nozzle. 

 
For the second situation, the solution is moving fast enough to develop a potential 

core that broadens just above the electrode (substrate) surface.  After impinging upon 

the electrode surface the solution flows out radially.  Due to the low velocity, a 

recirculation effect occurs due to the transfer of momentum from the potential core to 

the neighbouring solution.  This creates an eddy, or vortex, which draws part of the 

solution that has passed over the electrode surface back towards the potential core, as 

shown in figure 6.8 for Vf = 0.1 mL min-1. 
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Figure 6.8 FEM of the velocity profile for the intermediate nozzle exit velocity situation at Vf = 0.1 mL 

min-1. (a) The entire simulated domain and (b) close up of the decay of the fluid velocity exiting the 

nozzle. 

 
The third regime occurs for fast moving solution, in this case a Vf of 0.3 mL min-1, 

where the potential core impacts the surface resulting in the radial flow being 

sufficiently fast that the impinged solution flows out similar to a radial channel (figure 

6.9).  Due to the high speed of the potential core, the vortices observed in the second 

situation are much larger.  The hydrodynamics of this situation are much harder to 

simulate than for the previous two situations, due to the high velocities involved, and 

the large change in velocities between the fluid in the vortices and within the potential 

core.  Simulations for this geometry, with fluid speeds greater than those presented 

infigure 6.9, require a more complex approach for solutions using Comsol.  For 

example, by gradually increasing the flow rate, or by decreasing the viscosity, within 

the simulation through the use of a sequential solver, it may be possible to increase 

the upper fluid velocity limit.  The sequential solver initially performs a simulation 

that is known to converge, for example at a low volume flow rate.  The initial result is 

used as a starting point for the next simulation where the volume flow rate is 

increased.  This process is continued until the desired fluid velocity for the liquid is 
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reached.  The details of sequential solvers are beyond the scope of this thesis and are 

the subject of further investigations. 

 

Figure 6.9 FEM of the velocity profile for the high nozzle exit velocity situation for a Vf of 0.3 mL 

min-1.  (a) The entire simulated domain and (b) close up of the fluid velocity exiting the nozzle. 

 
The information provided by the FEM of this geometry shows the complexities of 

the hydrodynamics of this impinging jet geometry.  The effects of recirculation and 

the variation of the fluid profile with inlet velocity complicate mass transport and 

hence the electrochemical response observed at an electrode directly beneath the 

nozzle.  This geometry is practically assembled by lowering a pulled pipette tip over a 

surface.6, 7, 15, 21  Typically, this requires an external support for the nozzle (usually 

attached to a micro manipulator) and the assessment of the height must be made for 

each setup (for example, an optical microscope). 

 

6.3.2. Hydrodynamics for an Impinging Jet where the 
Nozzle is Close to the Surface 

 
 

The 2D geometry, presented in figure 6.10, is also an axisymmetric cylindrical 

geometry.  Convection within the entire simulation domain is solved for using the 
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incompressible Navier-Stokes and continuity equations, with the following boundary 

conditions: 

 

Boundary 1:  (6.7) 

Boundaries 2, 5-7, 9-11, and 13: ,  (6.8) 

Boundary 4: ,  
(6.9) 

Boundary 12: ,  (6.10) 

 

 

Figure 6.10 2D FEM domain used for the simulation of the electrochemical response of an electrode 

within the RFC 

 

Boundary 1 is the centre point of the inlet nozzle and is the axis of rotational 

symmetry in the system.  Boundaries 2, 5-7, 9-11, and 13 are the walls of the system 

and are set to have a no slip boundary condition.  Boundary 4 represents the inlet, 

boundary 12 the outlet section of the wall jet, and boundaries 3 and 8 are not 

considered in the calculation of the velocity profile. 
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A typical flow profile is shown in figure 6.11, where solution from the nozzle in 

section 1 develops Poiseuille pipe flow by section 2.  The solution impinges upon the 

electrode surface before flowing outwards through the confined channel.  Section 3 

shows the stagnation zone within the centre of the nozzle, with section 4 showing the 

increase in fluid velocity as the solution is confined at the start of the channel.  The 

decrease in fluid velocity with increasing r is a result of the channel volume 

increasing with radial distance from the centre of the nozzle in section 5.  An 

interesting difference between this situation and where the nozzle is far from the 

surface is that the velocity profile remains proportionally constant to the flow rate.  

This is due to the system effectively being closed, preventing the formation of 

vortices and recirculation. 

 

 
Figure 6.11 FEM predicted hydrodynamic profile for the situation where the nozzle confines the 

hydrodynamic flow.  Vf = 5 mL min-1. 
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The flow profile is consistent over the tested range of flow rates (0.05 mL min-1 – 

25 mL min-1).  Additionally, the geometry is more amenable to MSL production than 

for when the nozzle is far from the surface.  Hence, this system was considered for 

development into the RFC. 

 

6.3.3. Critical Features for a Successful RFC 
 

The critical feature for the MSL RFC setup is axially symmetric radial flow from 

the nozzle, which is both well-defined and predictable for a large range of volume 

flow rates.  The device must deliver well-defined hydrodynamics for the observed 

electrochemical responses to be meaningful and predictable.  Figure 6.12 (a) shows 

the 2D cross section upon which the RFC design was based; an idealised system 

where solution flows to waste along a planar substrate.  So that the height of the 

nozzle above the electrode is accurately determined by securing the RFC to the 

substrate, a variation on the idealised IJE system is required.  The resulting conceptual 

2D RFC design, based upon the MSL channel flow cell (chapter 4), is shown in figure 

6.12 (b).  The conceptual design, defines the RFC height without the need for an 

external supporting arm, and houses the inlet and outlet.  In order to replace the 

external support commonly employed by conventional microjet electrodes,7, 15 an 

outer wall is required to support the bulk of the RFC (highlighted in red, figure 6.12 

(b)) over the electrode.  Hence, the conceptual design of a one piece RFC unit cannot 

have full 360° 2D rotational symmetry and support the bulk of the RFC at a known 

height.  To overcome this design limitation, several outlet designs are investigated by 

FEM simulations.  The information obtained is used to determine the effect of each of 

the outlet designs on the hydrodynamics.  The insights provided by these simulations 
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are used to determine a viable outlet system which has minimal impact upon the ideal 

hydrodynamics. 

 

 
Figure 6.12 (a) 2D cross section of a radial flow wall jet system, and (b) a 2D concept sketch of the 

key sections of the RFC showing the unsupported internal section in red. 

 
 

6.3.4.  Determination of the Ideal Hydrodynamics within 
the RFC 

 

To determine the hydrodynamics of the 2D conceptual system presented in figure 

6.12 (b) an initial 3D model of the RFC was created.  This model was initially used to 

determine the accuracy of the hydrodynamics within a 3D simulation compared to the 

2D simulation, which will be discussed later in this section.  This model acts as a 

bench mark for determining the effect the position of the outlet sections has on the 

hydrodynamics within the RFC.  A wire frame view of the initial model is shown in 

figure 6.13. 
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Figure 6.13 Wire Frame of the idealised radial flow cell with labelling conventions. 

 

Solving the incompressible Navier-Stokes equations for momentum balance 

(equation 6.1) and continuity (equation 6.2) allowed the calculation of the velocity 

profile within the 3D simulation of the wall jet electrode.  However for the 3D 

simulation, the velocity vector, V, used components u, v and w in the x, y and z 

directions, respectively, as shown in figure 6.13.  The boundary conditions described 

by equation 6.11 – equation 6.13 were used for the finite element calculations: 

 

Boundary “Wall”: , ,  (6.11) 

Boundary “Inlet”: , ,  (6.12) 

Boundary “Outlet”: ,  (6.13) 

 

where rn is the nozzle radius (in this case 250 µm, a size that could initially be 

produced consistently by MSL), p and p0 are the local pressure and the pressure of the 
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system, respectively, and n is the vector normal to a particular boundary.  The “Inlet” 

boundary condition refers to the top of the central tube, where solution enters the 

system before impinging onto the base of the channel, the “Outlet” boundary 

condition applies to any boundary where solution leaves the system, and all other 

surfaces are defined by the boundary condition “Wall”, illustrated in figure 6.13. 

The flow profiles presented in figure 6.14 demonstrate well defined radial flow 

from the nozzle to the outlets.  The fluid speed is initially low near the substrate at the 

centre of the nozzle, before increasing to a maximum as r increases.  After the 

maximum speed the fluid speed decreases with the radial distance as the channel 

volume increases (due to the cylindrical geometry). 

 

 
Figure 6.14 FEM of the Navier-Stokes convection within the idealised IJE configuration for rn = 250 

µm, 2h = 200 µm at Vf = 1 mL min-1 (a) top-down view, (b) cross section.  Dark red represents a fluid 

speed of 0.13 m s-1, dark blue represents a speed of 0 m s-1. 

 

The fluid velocity profiles for the 3D and 2D models of the idealised RFC 

geometry are shown in figure 6.15 (a) and (b).  Both simulations use rn = 250 µm, 2h 

= 200 µm at a Vf of 1 mL min-1.  As can be seen from figure 6.15, both models show 

the 5 hydrodynamic regions outlined in section 6.3.2. 
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Figure 6.15 Comparison of the hydrodynamics within (a) the 2D simulation (black line represents 

cross section for the fluid velocity plot, figure 6.16) and (b) the idealised 3D simulation, where rn = 250 

µm, 2h = 200 µm at a Vf of 1 mL min-1.   

 

A plot of the fluid velocities, taken at a height of 50 µm, against radial distance 

from the centre of the nozzle is shown in figure 6.16.  As expected, both models are in 

excellent agreement.  This confirms that the methodology employed for the 3D 

simulation is an accurate method for the prediction of the hydrodynamics within the 

RFC. 

 

 

Figure 6.16 Comparison of the fluid velocity profile for the 2D simulation (black line) to the 3D 

idealised simulation (red line), where rn = 250 µm, 2h = 200 µm at a Vf of 1 mL min-1.   
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6.3.5. Hydrodynamics of a RFC with One Outlet 
 

The first practical design tested was based upon a currently available commercial 

package (DropSens, Spain), where the device has one central inlet nozzle and a single 

outlet nozzle.  figure 6.17 shows the wire frame of the model and illustrates where the 

boundary conditions used in section 6.3.4 are applied. 

 

 
Figure 6.17 Wire frame schematic of the one outlet design with the inlet in the centre and an outlet 

recessed from the outer wall of the channel. 

 

A major drawback of the device is the breaking of the cylindrical symmetry about 

the centre of the inlet nozzle.  This results in the non-radial flow profile shown in 

figure 6.18.  The solution velocity quickly becomes distorted upon exiting the nozzle, 

generating a higher solution speed at the leading inlet and outlet nozzle edges.  This 

effect is more pronounced further from the centre of the inlet, with a stagnation effect 

evident at the furthest point from the outlet. 
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Figure 6.18 FEM of the Navier-Stokes convection within the one outlet configuration for rn = 250 µm, 

2h = 200 µm at 10 mL min-1 (a) top down view, (b) fluid velocity profile plot taken through the centre 

of the inlet and outlet at a height of 50 µm, and (c) graphical cross section of (b). 

 

The hydrodynamics provided by this design are inadequate for true radial flow 

systems, however this kind of device could be easily produced using conventional 

manufacturing techniques, e.g. drilling. 

 

6.3.6.  Hydrodynamics of a 4 Outlet Design 
 

Clearly, from the one-outlet design simulations, multiple exit points positioned 

around the peripheral of the cell would be required to produce a truer, more 

symmetric radial flow.  The 4-outlet design shown in figure 6.19 (a) has a 4 fold 

rotational symmetry around the inlet nozzle.  The solution speed profiles generated 

for this design are very close to those for the idealised geometry discussed in sections 
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6.3.2 and 6.3.4.  The break down of symmetric radial flow occurs near the outlet 

sections.  Importantly, the distortion of the radial flow does not extend to the substrate 

surface.  As can be seen from the velocity plot close to the electrode surface (at h = 50 

µm in a channel of 2h = 200 µm), this does not impact upon the convection to the 

substrate as shown in figure 6.19 (b-d).  Figure 6.19 (d) shows that the outlet sections 

have minimal impact on the radial decay of the fluid velocity 50 µm above the 

substrate surface, as the fluid velocities reported for a cross section through the centre 

of an outlet and wall sections are similar.  The uniform radial flow provided by this 

design makes it amenable to be developed into a finished RFC. 

 

 
Figure 6.19 (a) Wire frame schematic for the 4 outlet design.  FEM of the Navier-Stokes convection 

within the four outlet configuration for rn = 250 µm, 2h = 200 µm at a Vf of 10 mL min-1 (b) cross 

section view, (c) top down view, (d) fluid velocity profile plot taken through the centre of an inlet (-) 

and an outlet compared to the cross section taken through the centre of a blocked section (-) at a height 

of 50 µm. 
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Figure 6.20 (a) and (b) show the hydrodynamics for the 2D simulation is similar 

to that for a cross section through the 3D simulation of the 4 outlet design.  

Additionally, the plot of fluid speed with radial distance for the 4 outlet model is in 

excellent agreement with the 2D simulation (figure 6.20 (c)).  This information 

validates the design principle, and suggests that the 4 outlet design should provide 

well-defined mass transport to the electrode surface.  Importantly, the mass transport 

can be predicted by approximating the RFC to the 2D domain presented in section 

6.3.2. 

 

 
Figure 6.20 Comparison of the hydrodynamics for (a) the 2D simulation and (b) the 3D simulation of 

the 4 outlet system, where rn = 250 µm, 2h = 200 µm at a Vf of 1 mL min-1.  (c) Comparison of the fluid 

speed with respect to the radial position for the 2D simulation (black line) to the 3D simulation of the 4 

outlet design (red line). 
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6.3.7. Final Design 
 

The FEM simulation of the four outlet design (section 6.3.6) demonstrated that the 

hydrodynamics near the substrate surface, and hence the electrode, are radial.  The 

simulated domain was used as the basis for the RFC design.  As the simulation 

assumes that the pressure on the four outlets is identical it was deemed necessary to 

join the 4 outlets within the RFC.  This approach reduces the amount of user 

connections to the RFC, making setup easier for the end user, and provides equal back 

pressure to the 4 outlets.  This was achieved by having the outlets converge directly 

over the centre of the channel (figure 6.21), hence maintaining the 4 fold axial 

symmetry of the outlets.  Due to the outlet system the impinging jet was required to 

curve from an initial off centre delivery connection (figure 6.21 (b)), towards the 

centre of the cell.  Note the final section of the nozzle has sufficient straight length to 

achieve fully developed Poiseuille flow before impinging upon the surface (as for the 

simulations). 

 

 
Figure 6.21 Cross section of the MSL RFC design through (a) the centre of 2 outlets and (b) the inlet. 

(c) Wire frame view of the MSL RFC design.  
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6.3.8. FEM Simulation of Convection-Diffusion Mass 
Transport within the RFC 

 

The 3D FEM model presented in sections 6.3.4 and 6.3.6 demonstrated that 

the RFC design provides well-defined hydrodynamics similar to the idealised system 

with 360° rotational symmetry.  With this evidence, the RFC can be approximated to 

a 2D model with axial symmetry around the centre of the inlet nozzle.  This section 

describes the FEM performed to predict the limiting current response for an electrode 

aligned centrally beneath the nozzle within the RFC. 

The local values of ur and w were determined for a particular value of Vf 

within the RFC, as for section 6.3.2.  The values of ur and w were used to solve the 

convection-diffusion equation to determine the transport-controlled steady-state 

current response for the complete oxidation of a solution analyte at the electrode 

surface (equation 6.14).  The FEM simulation was only performed within a domain 

close to the electrode surface to improve the speed and accuracy of the calculations.  

The domain, enclosed by boundaries 1-3, and 6-8, was sufficiently large to prevent 

distortion due to boundary edge effects on the results.  The domain was treated by 

solving the following equation: 

 

 (6.14) 

 

where D is the diffusion coefficient (assumed to be 6 x 10-6 cm2 s-1, as for FcTMA+)29 

and c the concentration of FcTMA+. 

The following boundary conditions were applied for the convection and 

diffusion calculations: 
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Boundaries 1, 6 and 7:  (6.15) 

Boundary 2: c = 0  (6.16) 

Boundary 3: c = cb (6.17) 

Boundary 8:  (6.18) 

 

where N is the inward flux, and cb is the bulk concentration of FcTMA+. 

Boundaries 1, 6 and 7 have no net flux normal to the boundary due to boundary 1 

being the axis of symmetry, and boundaries 6 and 7 being inert walls of the wall jet 

set-up.  Boundary 2 represents the electrode, a disc of radius re, where the complete 

and instantaneous oxidation of FcTMA+ occurs.  Boundary 3 is positioned sufficiently 

far from the electrode so that the assumption of bulk concentration at the boundary is 

reasonable, and boundary 8, the end of the convection-diffusion domain, is placed 

sufficiently far from the downstream electrode edge so that the boundary condition of 

only convective flux does not affect mass transport at the electrode surface.   

The transport limited current (ilim (A)) response was calculated from the total flux 

at boundary 2, multiplying by nFπre, where n is the number of electrons transferred 

per redox event, and F is the Faraday constant (96485 C mol-1). 

The approximations of the convection-diffusion only domain are validated in 

figure 6.22 where the concentration profile within the entire RFC has a difference of 

less than 0.1% to the response within the convection-diffusion only domain for a RFC 

of dimensions, rn = 150 µm 2h = 100 µm re = 1 mm Vf = 0.1 mL min-1 cb = 10 µmol 

dm-3 and D = 6 x 10-6 cm2 s-1, both approaches predict a limiting current response of 

313 nA. 
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Figure 6.22 Validation of the convection-diffusion only domain for the RFC theoretical calculations. 

(a) The concentration profile predicted by simulation for convection and diffusion within the entire 

geometry and (b) the concentration profile calculated only within the domain close to the electrode 

 

6.3.9. Simulated Current Response 
 

As discussed in section 1.4.4, the geometry of the impinging jet and substrate 

affect the mass transport to the electrode.  Equations 1.28 and 1.29 show that the 

relationship of the limiting current response to Vf, rn, 2h and re depend on whether the 

impinging jet electrode is in the WJE or WTE configuration.1, 5, 16, 27  Additionally, the 

position of the nozzle, and the nozzle wall, affect the mass transport to the electrode 

surface.  A series of simulations were performed to determine the dependence of the 

ilim response upon Vf, rn, 2h and re.  It should be noted that for all geometries the 

reported cb and D dependencies are the same, with a linear dependence to cb and a 

D2/3 dependence.1, 5, 16, 27  For all simulations reported in this section cb = 20 µmol dm-

3 and D = 6 x 10-6 cm2 s-1. 

Figure 6.23 shows the dependence of ilim on Vf
 for a RFC of rn = 375 µm, 2h = 100 

µm and re = 500 µm.  The gradient of the log ilim – log Vf plot, figure 6.23 (b), is 0.33 

suggesting that ilim increases proportionally to Vf
1/3, which is similar to the flow rate 
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dependence experienced at a channel flow electrode.30, 31  It is important to note that 

at sufficiently low flow rates (~0.05 mL min-1 for this system) diffusion dominates 

mass transport to the electrode and the Vf
1/3 dependence is no longer valid. 

 

 

Figure 6.23 (a) Effect of varying the Vf on the ilim response, (b) log Vf - log ilim plot where the gradient 

is 0.33. 

 
The effect of varying rn can be seen in figure 6.24, where rn is varied from 100 µm 

to 375 µm in a cell of 2h = 100 µm and re = 500 µm.  As rn decreases the mean fluid 

velocity from the impinging jet increases, resulting in a higher rate of mass transport 

to the electrode surface.  Within the RFC, the roof of the channel influences the 

hydrodynamic profile.  Thus, varying the radius of the nozzle affects the 

hydrodynamics within the stagnation zone and the area of developing radial flow.  As 

the log ilim – log rn plot (figure 6.24 (b)) is not linear, the effect of varying nozzle 

dimensions on the ilim response requires analysis by FEM. 

 



Chapter 6. Design and Testing of a MSL Radial Flow Cell 
 

177 

 

Figure 6.24 (a) Effect of varying the rn on the ilim response for rn = 100 µm (black line), 200 µm (red 

line), 300 µm (green line), and 375 µm (blue line), (b) log rn - log ilim plot at Vf  = 1 mL min-1, for a 

RFC of dimensions 2h = 200 µm, re = 0.5 mm. 

 

The ilim dependence on the cell height is shown in figure 6.25, where 2h is varied 

from 50 µm to 200 µm in a cell of rn = 375 µm and re = 500 µm at a Vf of 1 mL min-1.  

Figure 6.25 (a) shows that as the height decreases the ilim response increases, and that 

the Vf value where diffusion dominates the mass transport increases.  This effect is 

due to depletion of the analyte within the channel occurring faster, hence at higher Vf 

values, when 2h is decreased.  Figure 6.25 (b) has a gradient of -0.4, suggesting ilim is 

proportional to 2h-2/5, here the RFC deviates from the channel electrode behaviour 

which has a h-2/3 dependence.30, 31 
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Figure 6.25 (a) Effect of varying h on the ilim response, where 2h = 50 µm (black line), 100 µm (red 

line), 150 µm (green line), and 200 µm (blue line), (b) log 2h - log ilim plot where the gradient is -0.4. 

 
As the electrode radius increases the ilim response increases, as shown in figure 

6.26.  The log ilim – log re plot is approximately linear over the re range of 0.38 mm – 

2 mm, with a gradient of 1.7 for a RFC with dimensions rn = 375 µm and 2h = 100 

µm at a Vf of 1 mL min-1.  The deviation from linear dependence of the limiting 

current to the electrode to re
1.7 is negligible over the simulated range.  It should be 

noted that the range of electrode sizes ensures that the bulk of the electrode is within 

the area of developed radial flow.  Electrodes entirely within the stagnation zone or 

with a circumference near the outlet sections will deviate from the approximate 

limiting current – electrode radius dependence. 
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Figure 6.26 (a) Effect of varying the re on the ilim response, (b) log re - log ilim plot where the gradient is 

1.7. 

The reported simulations demonstrate that it is essential to know the RFC 

dimensions in order to accurately predict the limiting current response.  The influence 

of the nozzle radius on the internal hydrodynamics requires each device to be 

simulated explicitly.  By only simulating the convection and diffusion close to the 

electrode (section 6.3.8) it is possible to analyse the limiting current response for over 

20 flow rates in a few hours.  As such, the hydrodynamic profile, and electrochemical 

response within individual RFCs can be readily predicted. 

 
 

6.4. Experimental 
 
 

6.4.1. Electrode Fabrication 
 
 

Gold and VHD SWNT network electrodes were prepared as described in chapter 

2.  The electrode area was defined using a custom made macro disc mask with 

alignment marks to aid the assembly of the RFC.  Electrode dimensions were 
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measured using an optical microscope (Olympus BH2).  The SCE reference electrode 

was used with the modified pipette tip described in section 5.3.3, and a Pt wire was 

utilised as the counter electrode. 

 
 

6.4.2. RFC assembly 
 

 

The RFC was produced using the same method described for MSL production, 

section 2.4, using the unit cell in figure 6.21.  As for the channel flow cell four units 

could be produced in one run (chapter 4).  The design could be easily modified to 

provide a range of nozzle diameters and channel heights.  As for the channel flow cell 

the channel height was determined by white light interferometry (WYKO NT-2000 

Surface Profiler, WYKO Systems). 

Two methods were used to align the electrode directly underneath the inlet of the 

wall jet cell.  (i) The first method, illustrated in figure 6.27, used on the gold 

electrode, was performed using a manually controlled vertical stage.  Initially, the disc 

electrode was positioned centrally underneath a custom made alignment tip, attached 

to the vertical stage (figure 6.27 (b)).  The outlet of the RFC was attached by push 

fitting to the alignment tip and lowered onto the electrode surface (figure 6.27 (c) and 

(d)).  The RFC was temporarily secured to the electrode surface by modelling putty, 

which allowed the removal of the tip from the RFC.  Finally, the RFC was bound to 

the electrode using thread (figure 6.27 (e)).  This method allowed an accuracy of ~100 

µm (radial offset) to be achieved reliably. 
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Figure 6.27 Illustration of the RFC and electrode alignment method used for assembling the RFC and 

Au electrodes.  (a) Schematic of the developed Au electrode, (b) alignment of the electrode, (c) 

mounting the RFC onto the alignment tip over the electrode, (d) the RFC is lowered onto the electrode 

surface, (e) the RFC is secured to the electrode and the alignment tip is removed. Not to scale. 

 

The second method (used for the SWNT samples) involved alignment of the wall 

jet cell to alignment features on a photo resist mask (figure 6.28) before being bound 

to the electrode with thread.  To further improve accuracy the overall pattern has 

identical dimensions to the base of the RFC.  The alignment accuracy was comparable 

to the first method (~100 µm radial offset), but can be achieved in less than half the 

time.  Solution was delivered to the system through piping, (PVC, Vincon Tubing) 

using a single piston liquid chromatography pump (Gilson 305) fed through a 

manometric module (Gilson 806) to maintain a constant volume flow rate, minimum 

Vf = 0.0025 mL min-1, maximum Vf = 25 ml min-1. 
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Figure 6.28 Design of the photo resist mask where the actual area was the same as the base of the RFC 

and the alignment marks fitted features on the RFC.  Several masks were made with different electrode 

radii. 

6.5. Results and Discussion 
 
 

 The transport limited current was initially measured using the gold electrode.  

For these measurements a RFC with rn = 375 µm and 2h = 100 µm (figure 6.10) was 

used with the gold electrode (re = 540 µm).  Figure 6.29 (a) shows typical LSVs for 

the oxidation of 10 µmol dm-3 FcTMA+ in 1 mol dm-3 KNO3 at 100 mV s-1 at various 

flow rates.  Figure 6.29 (b) shows the comparison of the experimental limiting current 

response is in reasonable agreement with that predicted by the finite element model.  

This demonstrates that the device provides well-defined mass transport, as predicted 

by the finite element model.  As reported in chapter 4 the RFC dimensions are not 

distorted by assembly, this useful feature of MSL removes the need for calibration 

measurements for each assembly of the RFC. The small variation from the predicted 

response is attributed to the RFC not being exactly over the centre of the electrode, as 

the alignment method employed had a maximum error of ~100 µm radial offset.   
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Figure 6.29 (a) Typical LSVs for the oxidation of 10 µM FcTMA+ in 1.0 M KNO3 at a Au disc 

electrode (re = 0.54 mm rn = 375 µm and 2h = 100 µm) at 100 mV s-1 at Vf values of 0.01 (lowest 

current), 0.05, 0.05, 0.2, 0.4, 1.0 (highest current) ml min-1. (b) Comparison of the experimentally 

obtained ilim (black data) to the finite element predicted response (solid red line). 

 

 To ensure that the wall jet cell could be used in conjunction with SWNT 

networks it was essential to verify that the SWNT networks were not damaged during 

the assembly of the RFC or by the impinging flow.  An electrode of radius 500 µm 

was used in conjunction with a wall jet cell with rn = 375 µm and 2h = 100 µm to 

experimentally verify this. 

 Figure 6.30 (a) shows typical LSVs for the oxidation of 20 µmol dm-3 

FcTMA+ in 1 M KNO3.  Particular attention should be drawn to the reduced non-

Faradic signal, as observed previously by Bertoncello et al.32  Figure 6.30 (b) shows 

the comparison of the experimentally observed limiting current to that predicted by 

the 2D finite element model.  The experimental response is slightly lower than 

predicted; this can be attributed to the nozzle not being directly over the centre of the 

disc.  This is due to the alignment procedure providing an error of up to 100 µm.  

Figure 6.19 (d) shows that the outer edge of the electrode (radius 500 µm) is located 

near the two maxima of the fluid velocity.  The effect of this error in alignment can be 



Chapter 6. Design and Testing of a MSL Radial Flow Cell 
 

184 

minimised by using a larger radius electrode so that the electrode circumference lies 

in an area where the change in fluid speed is small (e.g. re = 1 mm).  It is important to 

note that the error is small (less than 5%), and is consistent across the entire Vf range. 

 These data fully support the theoretical model for both the gold and SWNT 

network disc electrodes, demonstrating that the MSL RFC provides well-defined mass 

transport to the electrode surface. 

 

 

Figure 6.30 (a) Typical LSVs for the oxidation of 20 µM FcTMA+ in 1.0 M KNO3 at a SWNT disc 

electrode (re = 0.5 mm rn = 375 µm and 2h = 100 µm) at 100 mV s-1 at Vf values of 0.01 (lowest 

current), 0.05 0.1 0.2 0.3 0.4 0.5 0.7 1.0 2.0 5.0 10.0 15.0 (highest current) ml min-1. (b) Comparison of 

the experimentally obtained ilim (black data) to the finite element predicted response (solid red line). 

 

 To demonstrate the use of the RFC and SWNT electrode a concentration 

gradient for FcTMA+ was performed.  The detection of 100 nmol dm-3 of FcTMA+ on 

a disc of radius 1 mm, is shown in figure 6.31 where a RFC of dimensions rn = 375 

µm and 2h = 202 µm at a Vf of 15 mL min-1 was employed. 
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Figure 6.31 (a) LSV of 100 nM FcTMA+ 1 M KNO3 on a SWNT disc electrode (re = 0.99 mm, rn = 

375 µm, h = 202 µm, and Vf = 15 mL min-1 

 

The ilim response follows the same Vf trends as for the previous electrodes (figure 

6.32 (a)), and produces a linear ilim - Vf response for the concentration range of 100 

nmol dm-3 to 1 µmol dm-3.  Figure 6.32 (b) shows the.  The gradient of the log cb vs 

log ilim plot is approximately 1, suggesting that the limiting current response is 

directly proportional to the concentration, providing confirmation of this new type of 

flow cell as an analytical device.  The linear concentration dependence holds for all 

tested flow rates (1 mL min-1 – 25 mL min-1).  The detection limit is estimated to be 

10 nmol dm-3 for the RFC and SWNT disc electrode dimensions tested. 
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Figure 6.32 (a) ilim response at different concentrations, 10 nmol dm-3 (), 1 µmol dm-3 (●), 0.5 µmol 

dm-3 (▼) and 0.1 µmol dm-3 (▲). (b) Concentration gradient at Vf = 10 mL min-1 using a SWNT disc 

electrode (re = 0.99 mm, rn = 375 µm, h = 202 µm 

 

6.6. Conclusions 
 

This chapter has reported the successful design and development of a RFC that 

can be rapidly assembled and provides well-defined mass transport to electrode 

surfaces.  The use of MSL to create the RFCs allows the ready realisation of 

modifications to the nozzle dimensions and channel height, and facilitates the 

customisation of the wall jet cell to specific applications.  This could include the use 

of optically transparent materials for the RFC, or electrode, to facilitate the 

combination of electrochemical and spectroscopic techniques; e.g. confocal 

microscopy and UV- visible spectroscopy. 

It has been shown that the limiting current response of the two piece RFC design 

can be predicted by FEM.  The RFC can be assembled onto the electrode quickly, and 

without the distortion of the channel dimensions, making the device applicable to a 

wide range of planar electrode materials.  This has been demonstrated by the use of 

gold and SWNT disc electrodes.  The SWNT electrode facilitates the low 
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concentration (100 nmol dm-3) detection of FcTMA+ with a detection limit of 10 nmol 

dm-3. 
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7. Conclusion 
 
 The work within this thesis has covered two key topics; the properties and use 

of SWNT networks as an electrode material and the design and development of 

hydrodynamic cells fabricated by microstereo lithography. 

 The investigation into the sites of ET at a SWNT network is of fundamental 

importance to the use of SWNTs as an electrode material.  To make efficient use of 

electrode treatment steps and to optimise the material it is important to know what 

gives rise to the electrochemical response.  The two proposed theories for ET, 

sidewall activity and discrete site activity, were investigated by the combination of 

theoretical and experimental studies.  Diffusion to the active sites was successfully 

decoupled on a typical voltammetric timescale by reducing the rate of diffusion using 

a drop-cast NafionTM film. This prevented diffusion layer overlap and allowed the 

critical comparison of the theoretical and experimental data.  Even when using a 

generous quantity of active sites the discrete active site model significantly 

underestimated the current response, indicating that the sidewall of the SWNT must 

contribute to the electrochemical activity of the SWNT network.  However, the 

predicted current response for the SWNT side wall being entirely active 

overestimated the observed current response, indicating that the SWNTs were not 

homogenously active. 

 The design of hydrodynamic devices for application to a variety of planar 

substrates, whilst removing the need for electrochemical calibration experiments and 

sealant material is advantageous to numerous electrochemical experiments.  The 

channels were fabricated using MSL, a computer aided layer-by-layer photo-

polymerisation.  MSL allowed devices with complex internal structures to be 

constructed with a high level of accuracy.  Importantly, the cured polymer used to 
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construct the channel is not distorted by the operating conditions employed.  The 

work within chapter 4 outlined the design concepts and demonstrated that the 

electrochemical response within the channel was predictable for band electrodes and 

for the entire channel floor being active.  The device was successfully applied to a 

range of electrode materials, including metallic electrodes, pBDD and SWNTs (in 

chapter 5).  The channel was ready to use, without the need for calibration after 

assembly of the cell, allowing application to any planar electrode material.  The use of 

MSL allows the basic channel design to be easily modified to incorporate additional 

electrodes, e.g. ion selective electrodes, and mixing channels for dissolution studies. 

 The success of the channel flow cell presented in chapter 4 was applied to the 

impinging jet geometry in chapter 6.  The complexities and common variants of the 

impinging jet set-up were theoretically investigated to determine the final design for 

the radial flow cell.  The layer-by-layer construction method of MSL was utilised to 

create a true radial flow geometry which would be difficult to produce by 

conventional manufacturing techniques.  The device features a four-fold symmetric 

outlet system which prevented distortion of the characteristic radial flow of an 

impinging jet.  Importantly the use of MSL allowed a variety of internal dimensions 

to be varied providing a device that could be customised for the desired solution speed 

and flow rates.  As for the channel flow cell, the RFC could be constructed rapidly 

and with the use of custom built photo-resist alignment masks the nozzle could be 

positioned accurately over the centre of the electrode. 

 This thesis has provided evidence for the sidewall activity of SWNTs, and 

demonstrated the benefits of the low non-Faradaic noise associated with a two 

dimensional SWNT network.  The networks were readily synthesised using the cCVD 

techniques outlined within the thesis and were amenable to hydrodynamic 
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applications.  The application of MSL to the production of hydrodynamic devices 

provides the fundamental framework for future studies using both channel and radial 

flow.  The flow devices can be assembled onto any planar substrate, allowing for 

dissolution studies and for generation/collection studies.  Further developments of 

MSL could provide access to smaller dimensions, and potentially assembly from 

polymers with optical windows.  This could replace complex channel designs 

featuring quartz windows for combined spectroscopic studies and will maintain the 

design freedom provided by the MSL design methodology.  The design flexibility 

inherent in the channel and radial flow cell designs allows for many exciting 

possibilities which were previous hindered by cell dimensions, or difficult assembly 

procedures. 
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