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Glossary of Terms

Antibiotic An antimicrobial agent produced naturally by a bacterium or fungus, see

Antimicrobial agent.

Antimicrobial agent A chemical that destroys pathogens without damaging body

tissues.

Bacteria All living organisms with procaryotic cells, i.e. cells whose genetic material

1s not enclosed within a nuclear membrane.

Commensal Symbiont organism that lives without causing harm to its host, see Com-

mensalism and Symbiont.

Commensalism A system of interaction in which two organisms live in association

where one organism benehits and the other organism neither benefits nor 1s dam-

aged.

Electronic Nose Instrumentation that used an array of solid-state gas sensors (where

each sensor has overlapping sensitivity) coupled with a suitable pattern recogni-

tion sub-system.
ENT Ear, nose and throat. Common medical term.

Epithelium Area in the roof of the nasal cavity where olfactory receptor cells exists.
Flora The microbial population of an area in/on an animal, such as the throat.

Genus The first of the two names used to specify bacteria. It is always capitalised.

Microbial Consisting of microorganisis.
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Micro-organism A living organism too small to be seen without visual aid. Microor-

ganisms include bacteria, fungi, protozoans, microscopic algae and viruses.

Mutual Symbiont organism that lives whilst helping its host and being helped by the

host, see Mutualism and Symbiont.

Mutualism A system of interaction in which two organisms live in association where

both organisms benefit.

Neuron Elementary processing unit, a network of which constitutes a neural network.

Normal microbiota See Normal flora.

Normal flora Microorganisms that colonise an animal without causing disease, see

F'lora.

Odorant A molecule that has particular properties that allow it to be detected by an

olfactory system.

Parasite Symbiont organism that lives whilst causing harm to its host, see Parasit-

1Ism and Symbiont.

Parasitism A system of interaction in which two organisms live in association where

one organism benefits and the other organism neither is harmed.

Pathogen A disease causing organism which can be bactera.

Pattern Recognition A term that is used to describe the data analysis performed

on datasets. It includes pre-processing and classification.

Resident flora See Normal flora.

Seeding Introduction of organisms from one erowth environment to another. Often

this term is used when bacteria from specimens are introduced to growth media.

Species The specific type of a bacteria which is indicated by the nomenclature which
comprises of two parts, for example Staphylococcus aureus refers to a specific

bacteria species, see Genus and Specific epithet.
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Specific epithet The second of the two names used to specify bacteria. It 1s never

capitalised.
Swab Pad of surgical wool, usually attached to the end of a thin rod.
Symbiont An organism living in a symbiotic relationship, see Symbiotic.

Symbiotic The relationship between two organisms when they live together, 1.e. share

the same environment.

Transient flora Microorganismsthat are present on an animal for a short time without

causing a disease, see Flora.
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Summary

This PhD thesis describes research for a medical application of electronic nose techno-
logy. There is a need at present for early detection of bacterial infection in order to
improve treatment. At present, the clinical methods used to detect and classify bacteria
types (usually using samples of infected matter taken from patients) can take up to
two or three days. Many experienced medical staff, who treat bacterial infections, are
able to recognise some types of bacteria from their odours. Identification of pathogens
(i.e. bacteria responsible for disease) from their odours using an electronic nose could
provide a rapid measurement and therefore early treatment. This research project used
existing sensor technology in the form of an electronic nose in conjunction with data
pre-processing and classification methods to classify up to four bacteria types from
their odours. Research was performed mostly in the area of signal conditioning, data
preprocessing and classification. A major area of interest was the use of artificial neural
networks classifiers. There were three main objectives. First, to classity successtully
a small range of bacteria types. Second, to identify issues relating to bacteria odour
that affect the ability of an artificially intelligent system to classity bacteria from odour
alone. And third, to establish optimal signal conditioning, data pre-processing and
classification methods.
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