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Glossary of Terms 

Antibiotic An antimicrobial agent produced naturally by a bacterium or fungus, see 

Antimicrobial agent. 

Antimicrobial agent A chemical that destroys pathogens without damaging body 

tissues. 

Bacteria All living organisms with procaryotic cells, i. e. cells whose genetic material 

is not enclosed within a nuclear membrane. 

Commensal Symbiont organism that lives without causing harm to its host, see Com- 

mensalism and Symbiont. 

Commensalism A system of interaction in which two organisms live in association 

where one organism benefits and the other organism neither benefits nor is dam- 

aged. 

Electronic Nose Instrumentation that used an array of solid-state gas sensors (where 

each sensor has overlapping sensitivity) coupled with a suitable pattern recogni- 

tion sub-system. 

ENT Ear, nose and throat. Common medical term. 

Epithelium Area in the roof of the nasal cavity where olfactory receptor cells exists. 

Flora The microbial population of an area in/on an animal, such as the throat. 

Genus The first of the two names used to specify bacteria. It is always capitalised. 

Microbial Consisting of microorganisms. 
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Micro-organism A living organism too small to be seen without visual aid. Microor- 

ganisms include bacteria, fungi, protozoans, microscopic algae and viruses. 

Mutual Symbiont organism that lives whilst helping its host and being helped by the 

host, see Mutualism and Symbiont. 

Mutualism A system of interaction in which two organisms live in association where 

both organisms benefit. 

Neuron Elementary processing unit, a network of which constitutes a neural network. 

Normal microbiota See Normal flora. 

Normal flora Microorganisms that colonise an animal without causing disease, see 

Flora. 

Odorant A molecule that has particular properties that allow it to be detected by an 

olfactory system. 

Parasite Symbiont organism that lives whilst causing harm to its host, see Parasit- 

ism and Symbiont. 

Parasitism A system of interaction in which two organisms live in association where 

one organism benefits and the other organism neither is harmed. 

Pathogen A disease causing organism which can be bacteria. 

Pattern Recognition A term that is used to describe the data analysis performed 

on datasets. It includes pre-processing and classification. 

Resident flora See Normal flora. 

Seeding Introduction of organisms from one growth environment to another. Often 

this term is used when bacteria from specimens are introduced to growth media. 

Species The specific type of a bacteria which is indicated by the nomenclature which 

comprises of two parts, for example Staphylococcus aureus refers to a specific 

bacteria species, see Genus and Specific epithet. 
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Specific epithet The second of the two names used to specify bacteria. It is never 

capitalised. 

Swab Pad of surgical wool, usually attached to the end of a thin rod. 

Symbiont An organism living in a symbiotic relationship, see Symbiotic. 

Symbiotic The relationship between two organisms when they live together, i. e. share 

the same environment. 

Transient flora Microorganisms that are present on an animal for a short time without 

causing a disease, see Flora. 



Summary 

This PhD thesis describes research for a medical application of electronic nose techno- 

logy. There is a need at present for early detection of bacterial infection in order to 

improve treatment. At present, the clinical methods used to detect and classify bacteria 

types (usually using samples of infected matter taken from patients) can take up to 

two or three days. Many experienced medical staff, who treat bacterial infections, are 

able to recognise some types of bacteria from their odours. Identification of pathogens 

(i. e. bacteria responsible for disease) from their odours using an electronic nose could 

provide a rapid measurement and therefore early treatment. This research project used 

existing sensor technology in the form of an electronic nose in conjunction with data 

pre-processing and classification methods to classify up to four bacteria types from 

their odours. Research was performed mostly in the area of signal conditioning, data 

preprocessing and classification. A major area of interest was the use of artificial neural 

networks classifiers. There were three main objectives. First, to classify successfully 

a small range of bacteria types. Second, to identify issues relating to bacteria odour 

that affect the ability of an artificially intelligent system to classify bacteria from odour 

alone. And third, to establish optimal signal conditioning, data pre-processing and 

classification methods. 

The Electronic Nose consisted of a gas sensor array with temperature and humidity 

sensors, signal conditioning circuits, and gas flow apparatus. The bacteria odour was 

analysed using an automated sampling system, which used computer software to direct 

gas flow through one of several vessels (which were used to contain the odour samples, 

into the Electronic Nose. The electrical resistance of the odour sensors were monitored 

and output as electronic signals to a computer. The purpose of the automated sampling 
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system was to improve repeatability and reduce human error. Further improvement 

of the Electronic Nose were implemented as a temperature control system which con- 

trolled the ambient gas temperature, and a new gas sensor chamber which incorporated 

improved gas flow. 

The odour data were collected and stored as numerical values within data files in 

the computer system. Once the data were stored in a non-volatile manner various clas- 

sification experiments were performed. Comparisons were made and conclusions were 

drawn from the performance of various data pre-processing and classification meth- 

ods. Classification methods employed included artificial neural networks, discriminant 

function analysis and multi-variate linear regression. For classifying one from four 

types, the best accuracy achieved was 92.78%. This was achieved using a growth phase 

compensated multiple layer perceptron. For identifying a single bacteria type from a 

mixture of two different types, the best accuracy was 96.30%. This was achieved using 

a standard multiple layer perceptron. 

Classification of bacteria odours is a typical `real world' application of the kind that 

electronic noses will have to be applied to if this technology is to be successful. The 

methods and principles researched here are one step towards the goal of introducing 

artificially intelligent sensor systems into everyday use. The results are promising and 

showed that it is feasible to used Electronic Nose technology in this application and that 

with further development useful products could be developed. The conclusion from this 

thesis is that an electronic nose can detect and classify different types of bacteria. 



Preface 

A brief description of the contents of each chapter is given below along with the amount 

of content of novel material. 

Chapter 1 is background information to the project and discusses, briefly, related 

biological issues. This chapter contains virtually no original material. However a 

novel (i. e. the application of new technology) solution is outlined for this research 

project. The possible role of an Electronic Nose in current clinical practice is 

proposed. 

Chapter 2 is a review of previous research performed in the area of Electronic Noses 

and bacteria classification using odour signatures. This chapter contains no ori- 

ginal material. 

Chapter 3 details improvements made to the Electronic Nose. The design and test- 

ing of a new and novel odour delivery system is documented. Characterisation, 

testing and experimental procedure development are described. The initial data 

collection experiments, which analysed two different bacteria types, are docu- 

mented. Larger amounts of electronic nose data were collected, for each odour 

class, than has previously been documented. 

Chapter 4 details the techniques and algorithms used for initial exploration of the 

data collected in the experiments detailed in chapter 3. Both old and new data 

pre-processing methods are investigated. Similarly, both established and novel 

classification techniques were employed. Comparisons are drawn from the per- 

formance of the various methods. The chapter contains a mixture of novel and 
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established techniques. 

Chapter 5 details further modifications to the Electronic Nose. This includes the im- 

plementation of new and novel ideas, such as a gas temperature control sub-system 

and a modified gas sensor chamber. Characterisation, testing and experimental 

procedure development are described. Also further data collection experiments 

are documented, which analysed four different bacteria types and mixtures of 

bacteria types. The analysis of mixtures of bacteria types has not to the au- 

thor's knowledge, been reported. Also the large amounts of bacteria odour data 

collected are the largest so far reported. 

Chapter 6 details the techniques and algorithms used for data analysis of the data 

collected in the experiments detailed in the chapter 5. Similar to chapter 4, 

both old and new pre-processing and classification methods are described. In 

this chapter the novel use of dynamic information from gas sensor responses 

are described, the method of extracting the dynamic information, using feature 

extraction models, is original. A new and original neural net is documented 

that consists of a growth phase compensation element. Finally, novel analysis of 

bacteria type mixtures is described. 

Chapter 7 contains the discussion and conclusions drawn from the results achieved. 

Briefly, the major conclusions were: the modifications to the electronic nose were 

successful and improved final performance, large data sets are necessary for signi- 

ficant classifier research, bacteria growth phase significantly effects performance, 

weak odours are significantly `masked' by stronger ones and that the research was 

successful. Also possible future explorations are discussed. 
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Chapter 1 

Clinical Background 

This research project was conceived by an ENT (Ears, Nose and Throat) consultant 

who identified a problem in the current methods of diagnosing infections. Today the 

treatment of infection of the upper respiratory system involves taking a sample (or 

specimen) of infected matter from a patient usually by means of a swab (used for col- 

lection of material from mucus membranes, e. g. lining of the throat) or screw-capped 

jar (used for collection of sputum resulting from a deep cough). The sample is then 

sent to a micro-biology laboratory for analysis. The patient is unable to receive ef- 

fective treatment before the analysis is completed, which can take up to 3 or 4 days. 

Once the sample has been analysed and the bacteria types that are responsible for the 

infection (pathogens) identified, the patient can begin to receive treatment in the form 

of antibiotics (antimicrobial agents) that are targeted to kill the pathogens. 

There is a need for a system that will allow early detection of bacteria types. It is 

proposed that this system should be based on electronic nose technology and involves 

the analysis of odours from specimens taken from patients suspected of suffering from 

an infectious disease. Subsequently the system will identify if there are any abnormal 

bacteria present, and if so, whether they are the cause of the disease (i. e. pathogens). 

This system does not necessarily need to be as accurate as the standard clinical tech- 

niques, however, it does need to be accurate enough to enable some early targeting of 

antibiotics'. Therefore this system is not seen as a replacement for existing techniques 

'Some antibiotics can be targeted to a genus of bacteria types rather than a specific species 
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of bacteria classification (or any other treatment technique), but rather as a system 

that would complement and enhance existing practices in this area. For example. this 

system could be installed either in an operating theatre or in a consultation room (i. e. 

the location of the ENT consultant) rather than in a microbiology laboratory. The 

specimens of infected matter could be analysed by this system within minutes, at the 

point of diagnosis and preliminary treatment can be started. Samples could then be 

sent on to the laboratory as usual, and at a later date when a more detailed report is 

available a better targeted antimicrobial agent can be administered. 

The concept of using smell to identify bacteria is not new, however, it is yet to be 

characterised and quantified. The experience of various members of staff in the medical 

profession, over a number of years, leads them to be able to recognise certain bacteria 

types by their characteristic odour which can originate from a variety of sources such 

as puss from infected wounds or swabs containing infected matter. Indeed, in the 

past (before micro-biological methods were developed), the sense of smell of a nurse or 

doctor was the primary method used to determine the nature of the infection. There 

are many difficulties that arise from using odour to classify as the bacteria, these are: 

" Given identical circumstances, a particular bacteria type may not produce a 

unique odour signature but more probably a range of similar odour signatures. 

This may reflect the chaotic processes that occur within the bacteria cell itself. 

" The effect of a single environmental parameter, such as growth medium pH, upon 

the odour signature may not be sufficient for prediction because other envir- 

onmental parameters, such as growth medium temperature, may influence this 

relationship. In other words, there may be a complex non-linear combinative 

relationship between the odour signature and all environmental parameters. The 

conclusion from this is that these parameters may need to be precisely controlled 

which would in turn lead to the need for more complex instrumentation, more 

demanding operating procedures, and ultimately less reliability. 

" When a mixture of different bacteria types (and/or genera) is smelt, the odour 

signature of a pathogen may be 'masked' by the odour of the other bacteria 
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types. Since most specimens have several bacteria species present, identifying 

the pathogen could prove to be problematic. However it is often the case that 

the pathogenic organisms are much greater in number than the other bacteria 

(hence the onset of disease in the first place) so that it is not uncommon for the 

pathogenic organisms to mask out the odour of other background bacteria. 

" When a specimen of infected matter is collected using, for example, a swab, 

from the moment the sample is collected the relative population sizes of any 

bacteria species present may start to change. This change is due to the different 

environmental conditions that exist on a swab (as opposed to those, for example, 

on the lining of the throat). Therefore the characteristic smell of a particular 

mixture of pathogen when `smelt' either on the patient or on a fresh sample of 

infected matter would not necessarily be recognised as the same smell by the 

electronic nose some time later. It may be possible for a bacteria species that was 

the pathogen in the original infection to die out and a previously small population 

of another bacteria species start to dominate. 

The proposed system comprises of an electronic nose together with suitable pattern 

classification algorithms which `smells' the bacteria odours and classifies the resultant 

odour signatures as belonging to particular bacteria species (or larger groupings such as 

genus). This approach would formalise the activity of bacteria classification by means 

of odour and produce both a useful and worthwhile system. 

In order to design and test such a system it is necessary to gain a greater under- 

standing of the problem. Questions such "as what bacteria types are we interested in? " 

and "what products do they manufacture that contribute to their odour? ", need to be 

resolved. The study of bacteria growth, bacteria metabolism (the products of which 

cause the odours in the first place), and the factors that cause pathogenic microbes to 

grow are consequently of great interest. Therefore this chapter will proceed to discuss 

the relevant issues of bacterial infections of the upper respiratory system in order to 

ascertain what bacteria types will be encountered. Bacteria growth will be discussed 

subsequently highlighting its effect on odours. 



4 1.1 Bacterial Infection 

1.1 Bacterial Infection 

When gaining an understanding of bacterial infections of the human body and more 

specifically the upper respiratory system, it is first necessary to take a look at how 

micro-organisms and humans interact. 

1.1.1 Interaction Between Humans and Micro-organisms 

The human body is constantly in contact with micro-organisms, some of which are bac- 

teria. Indigenous microbial flora (many different types of micro-organisms co-existing 

in an equilibrium) can be found on most parts of the body that come into contact with 

the outside world, including the upper respiratory system. Normally flora do not pose 

any great threat to the health of the host and can sometimes be of benefit to the host. 

Knowledge of how flora are composed and distributed is necessary for the analysis of 

specimens of infected matter and for the interpretation of any results from laboratory 

analysis. 

Micro-organisms that exist on the surface of the skin and internally for a significant 

length of time (at least several years) without normally causing disease are called normal 

flora, resident flora or normal micro biota. Those flora that exist for a short period of 

time (days, weeks or months) are called transient flora. The composition of a flora 

is complex and changes dynamically in response to environmental changes, some of 

which change due to human activities, such as diet, hygiene and exercise. If a person 

works in an environment where they breath air with high levels of contaminants then 

this would effect the dynamics of normal flora that exist in the respiratory system 

thus causing changes in the pattern of infections. The specimens that are required to 

be `smelt' using an electronic nose therefore tend to have not one but many different 

species of bacteria present. This point is important because previous applications of 

electronic nose technology have focused on a single source of odour (the odour may 

contain many different molecule types, but the source is usually one compound) such 

as alcohols [4], or mixtures of pure gases [5]. Even applications of electronic nose 

technology where the odour source has been bacteria, the bacteria concerned has been 
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mainly (if not exclusively) of one species [6,7,8] or sometimes many species in a 

stable environment [7,9,10). This application therefore requires the resolution of 

multiple bacteria species (or genera) in the presence of other multiple (and dynamically 

changing) bacteria species. 

The relationship between a normal flora and their host can be described as symbi- 

otic, where the participant organisms are referred to as symbionts. One particular type 

of symbiotic relationship is termed commensalisrn, meaning that the micro-organisms 

benefit by the relationship with the host and that the host neither benefits nor is 

harmed. Examples of normal flora microbes which are commensals are those that exist 

on the surface of the eye. Another type of symbiotic relationship is mutualism where 

both the micro-organisms and the host benefit each other. Examples of normal flora 

microbes that are mutuals are the Escherichia coli (often referred to as E. coli) bac- 

teria that exist in the large intestine; the host benefits because the bacteria produce 

vitamin K and some B vitamins as by-products of their metabolism, and in return, the 

hosts provides an environment where the bacteria can grow and receive nutrients. The 

third type (and worst as far as the host is concerned) is the symbiotic relationship of 

parasitism. Many pathogens are parasites, for example, Staphylococcus aureus (often 

referred to as S. aureus) which grows in the nostrils is normally a commensal, however 

when this bacteria is breathed into the lungs or introduced to a wound then it can 

become a pathogen and therefore a parasite. 

The odour produced by a bacteria species that is part of a normal flora may differ 

according to the symbiotic status (e. g. parasite) of that organism at the time collection 

of the specimen. The fact that a particular bacteria species being present in a specimen 

of infected matter does not necessarily mean that it is the pathogen; the electronic nose 

will be required to not only identify bacteria species as being present (especially if they 

are part of the normal flora at the site where the specimen was collected) but also the 

symbiotic status and therefore whether any bacteria species present is a pathogen2. 

2Moreover, it is possible for a specimen of infected matter to contain more than one species of 

bacteria that are pathogens 
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Figure 1.1: A simplified cross-section of the lower head and neck showing the major 

parts of the upper respiratory system. The ears are not shown for clarity. 

1.1.2 Bacterial Infections of the Upper Respiratory System 

The most common infectious diseases that afflict mankind, by a large margin, are those 

of the upper respiratory system. In order to classify infectious bacteria we must first 

detail what pathogens are common causes of infection, what conditions they grow in and 

therefore what products are likely to be found in their odours. Because disease of the 

upper respiratory system is common there are large amounts of reference material on 

the subject [11,12]. Figure 1.1 shows the major parts of the upper respiratory system 

(excluding the ears), it can be observed that the tissues have a complex structure that 

provide many sites for infection. 
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The purpose of the upper respiratory system is to regulate the temperature and 

humidity of air that passes into the lungs during breathing and to filter the air so that 

no foreign material or microbes pass through. Air reaching the lungs varies only by 2 

or 3°C, and particles as small as 1 to 5 µm are filtered with an efficiency of 50%. 

Over 11,000 litres of air per day is breathed by a normal and healthy person. This 

large amount of air flows through the upper respiratory system, contained in this air 

are vast numbers of air-borne microbes. The air firstly enters the nostrils, then enters 

the nasal cavity and finally enters the throat; from here (with the epiglottis3 moved 

downwards) it enters the lower respiratory system. The nasal cavity exists above the 

mouth and is partly divided into left and right parts. In this cavity there exist structures 

of spongy tissue which can become erect due to stimuli such as infections, temperature 

and mental state (this gives rise to the general feeling of nasal congestion during colds 

etc. ). The sinuses passages, eustachian tubes and tear ducts all have openings into 

the nasal cavity. Thus the various components of the upper respiratory system are 

all inter-connected; therefore the possibility for infection to spread from one area to 

another via these various connections exist. 

Although the main aim of this project is aiding antibiotic treatment of diseases, it 

has to be kept in mind that there are various natural mechanisms for preventing and 

fighting infection. These mechanisms work by means of lymphoid tissue, the tonsils and 

the adenoids (which are situated at the junction of the nasal passage with the throat). 

Oddly enough when these structures become swollen due to infection, they can prevent 

the drainage of fluid from the middle ear via the eustachian tubes and so increase the 

risk of infection. Another mechanism for reducing infection is a mucus secreted from 

cells in the lining of the nasal cavity and middle ear. Tiny hairs (cilia) move the mucus 

(and with it micro-organisms) from the nasal cavity to the throat and nose where it 

is expelled from the body. This action results in the ears and sinuses being free from 

organisms under normal circumstances. 

Although the cause of the infection starting can be quite complex, the origin of the 

pathogen is one of the following: 

3A muscular fold of tissue which, during swallowing, closes off the wind pipe. 
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Table 1.1: Typical composition of the indigenous flora of the upper respiratory system. 

Species (or genus) Possible pathogen 

Micrococci and staphylococci Staphylococcus aureus 

Corynebacterium Corynebacterium diphtheriae 

Neisseria 

Haemophilus 

B acteroides 

Streptococcus 

Neisseria meningitidis 

Haemophilus influenzae 

Strict anaerobes 

Streptococcus pneumoniae 

1. A micro-organism that was originally part of the normal flora for that area of the 

body. 

2. A micro-organism that was originally part of the normal flora for another part 

of the body. 

3. A micro-organism that is not part of the normal flora for any part of the body. 

The bacteria listed in Table 1.1 are pathogens from the first category in the list 

above. One in three people normally carry the Staphylococcus aureus in their normal 

flora, which is pathogenic. Therefore the bacteria listed in this table are likely to be 

encountered by the electronic nose system. 

An example of a pathogen from the second category in the above list is Escherichia 

coll. This bacteria is part of the normal flora of the large intestine but when it is intro- 

duced into an area such as the ear (this could happen by, for example, a contaminated 

object being inserted into the ear), disease can result. 

An example of a pathogen from the third category is Legionella pneumophilia which 

is responsible for Legionnaire's disease. In order to reduce the complexity of the problem 

to a manageable level, only common pathogens from the first two categories will be 

considered. It may be possible at a later stage of development to specialise the electronic 

nose system to isolate a rare, but important, pathogen. 

Table 1.2 lists most of the common pathogens. It can be seen from this table that 
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Table 1.2: Common bacterial infections of the upper respiratory system and their 

associated bacterial pathogens. 

Condition Cause 

Throat infections Streptococcus pyogenes(Strep throat), 

(pharyngitis-tonsillitis) Corynebacterium diphtheriae, Neisseria 

gonorrhoeae and Mycoplasma pneumoniae 

Ear ache (acute otitis media Streptococcus pneumoniae, Streptococcus 

and serious and mucoid otitis pyogenes, Haemophilus influenzae, Branhamella 

media) catarrhalis, Staphylococcus aureus, Staphylococcus 

epidermidis, Escherichia coli, Klebsiella 

pneumoniae and Pseudomonas aeruginosa 

Sinusitis Haemophilus influenzae, Streptococcus 

pneurnoniae, Streptococcus(nonpneumonococcal), 

Neisseria, Escherichia coli, Pseudomonas 

aeruginosa, Bacteroides, Fusobacterium, 

Rhinoviruses, and Penicilium 

Acute epliglottitis Haemophilus inflnenzae 

(inflammation of the 

epiglottis) 

Diptheria Corynebacterium diphtheriae 

Laryngotracheobronchitis Bordetella pertussis, Streptococcus pneumoniae 

the number of pathogens is large and varied; however, most infections are the result of 

only a few of these pathogens such as Staphylococcus aureus, Streptococcus pneumoniae 

or Escherichia coli. Therefore for the system to be effective it is not necessary to be 

able to classify large numbers of pathogens but rather to be able to classify a small 

number of pathogens well. 
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Viral infections have been deliberately left out of this project because by their very 

nature ' they are more difficult to identify by a odour signature. However, it is possible 

for a bacterial pathogen to trigger a dormant virus and therefore cause a secondary 

infection; it is possible for viral infections to result in super-infections with Streptococcus 

pneumoniae, Haemophilus influenzae, Streptococcus pyogenes, Neisseria meningitidis 

or other pathogens. Studies of the link between viral and bacterial infections is not 

complete, therefore no definitive arguments can be asserted here. Even if the bacterial 

pathogen could be identified and classified, the viral agent could not. This system could 

aid the treatment of the bacterial infection, but the viral infection would be left to the 

body's own defense systems (which may render the antibiotics ineffectual). The most 

common viral infection is the common cold for which presently there is no known cure. 

Further, it may be possible for a virus to change the odour of the bacterial pathogen 

if the virus also infected that pathogen, thus reprogramming the pathogenic cell to 

change its behaviour (including how it metabolises); this is outside the scope of this 

research at present. 

It can now be seen that the number of different types of bacteria that would be 

required to be detected and classified for this application to be a useful tool, is in the 

order of 5 to 10. This research project was carried out with these aims in mind. 

1.2 Biological Aspects Of Bacteria Growth 

In order to classify bacteria according to their odorous products we must first investigate 

the biology of bacteria growth. This will give us some knowledge of the sort of gaseous 

products that bacteria produce and how their odours might vary due to environmental 

conditions. More information about the constituents of the bacteria odours and sources 

of their variance will enable the system design to be better specified. 

The biochemistry of micro-organism metabolism is complex. There are two main 

groups of substances that contribute to make an odour; primary metabolites which are 

transitionary substances that are `stepping stones' from one process to another and 

4 Being genetic parasites they invade cells and so do not have a characteristic odour of their own. 
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can be crossed either way, and secondary metabolites which are end (waste) products 

that cannot be re-used. Examples of primary metabolites are amino acids, alcohols 

and aldehydes, and examples of secondary metabolites are toxins and acetic acid. The 

ratios of the various primary and secondary metabolites changes depending on the state 

of growth of the micro-organisms. 

When a small number of bacteria are inoculated into a liquid growth medium (or 

from one medium to another), and the population is counted at intervals, a plot of the 

typical bacterial growth curve that shows the growth of cells overs a period of time can 

be drawn. The four main phases of growth can be identified from this plot, an example 

is shown in Figure 1.2. This type of growth curve is typical of what happens when a 

specimen of infected matter is cultured on growth media. A disease may also follow a 

similar growth curve, where the onset of infection is defined by the first two phases, the 

peak of infection is defined by the third phase and the cessation of the disease (either 

by natural or artificial methods) is defined by the final phase. 

It is possible, when a particular specimen is collected, that the majority of the 

population of the pathogenic cells will be in one of the four growth phases. Therefore, 

the effect of growth phase upon bacteria odour is important. 

The metabolic activities of bacteria cells in each of the four phases are as follows: 

Lag phase: Initially there is very little change in the number of cells; this is because 

bacteria do not reproduce immediately in a new growth medium. This period 

of little change is called the lag phase. The duration of the lag phase can be 

anything from one hour to several days partly depending on environmental con- 

ditions, such as medium temperature and initial population distribution. The 

cells are not dormant during this period, there is intense metabolic activity, in 

particular enzyme synthesis. Towards the end of this phase some cells will double 

or treble their initial size in order to prepare for reproduction. This period could 

be described as 'tooling up' for cell division, i. e. growth without cell division 

where cells are synthesising and storing molecules that are required for the cell 

division process. The odour from the bacteria in this growth phase is relatively 

small in magnitude, and undergoes significant change from beginning to end. 
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Figure 1.2: Typical growth curve for a population of bacteria showing the four growth 

phases. 

Log phase: Some time later, the bacteria cells start to divide and enter a period of 

growth. During this phase cells divide at their maximum rate and a logarithmic 

increase in cell numbers results. This phase is called the log phase (or exponential 

growth phase). The increase in cell numbers does not occur in discrete steps 

but rather a continuous increase where at any one point in time cells may be 

observed at all stages of division. The minimum generation time is achieved here, 

i. e. the minimum time between divisions for a given cell. Each bacteria type 

has a characteristic generation time for a given set of environmental conditions. 

The generation time of many bacteria is as low as 20 minutes, therefore over 

a period of 10 hours, one cell will multiply to reach a population of 109 cells 

(usually, bacteria populations in most environments, stop growing when their 

number reaches approximately this amount). Due to their active metabolic state, 

0123456789 10 
Time (hours. ) 



13 1.2 Biological Aspects Of Bacteria Growth 

the cells are more vulnerable to adverse conditions and therefore are more easily 

controlled by antimicrobial drugs. The magnitude of the bacteria odour may 

increase 5 during this phase, the odour components may start to stabilise to the 

ones normally associated with primary metabolites such as C02, ketones, water 

vapour, alcohols and aldehydes will start to dominate. 

Stationary phase: Eventually the rate of growth reduces and a point is reached where 

the number of cell deaths balances the number of cells that are dividing (viable 

cells). The cells adapt to their changing environment in such a way that this 

balance is maintained for a period of time, this is called the stationary phase. 

The reason why the number of viable cells reduce is not totally clear in every 

case, it is usually due to a combination of two factors: 

" Cell metabolism produces as waste products substances that are toxins, these 

toxins accumulate in the environment of the bacteria and the concentration 

of toxins reach a level where the metabolism of the cells is adversely effected. 

" The available nutrition is reduced because the demand for nutrition rises as 

the population increases. The competition for nutrition inevitably leads to 

some cells receiving less nutrition than is required for division and therefore 

they fail to become viable cells. The material most commonly exhausted 

by aerobic organisms is oxygen, and for anaerobic organisms, energy supply 

substances, such as sugars. 

If the growth medium is renewed at a sufficient rate the population can be main- 

tained in the log phase. The majority of the odour components from bacteria in 

this phase are likely to be primary metabolites, with little change, even when the 

death phase is entered. 

Death phase: Sooner or later the rate of cell deaths rises to a point where cell division 

can no longer maintain the balance that was present during the stationary phase. 

'The total odour may reduce if the odour from the growth medium reduces by a greater amount 

than the bacteria odour increases. This is due to nutrients in the growth medium, which give off an 

odour, being metabolised by the bacteria. 



14 1.3 Current Clinical Practice for Analysis of Bacteria 

This phase is called the death phase (or logarithmic decline phase), during which 

the number of viable cells exponentially decreases. The population is reduced, 

usually within a few hours, to extinction or to a small number of more resistant 

cells. Exactly why some cells in the population should become more resistant is 

not entirely understood, this trait is not passed on to daughter cells. 

The odorous gases produced by growing bacteria are highly variable. This is partly 

because the cellular metabolism that is responsible for the production of gaseous meta- 

bolites is itself highly variable due to the changing environmental factors in which the 

bacteria is growing. Cell metabolism during the four phases of growth (as previously 

described) clearly changes; for example, the source of energy in the early phases may 

mostly consist of simple sugars which are easy to break down, but in the later phases 

the source of food may be mostly the products of other microbes (or other microbes 

themselves) which may be complex carbohydrates that are more difficult to break down. 

This is responsible for the change in relative quantities of primary and secondary meta- 

bolites. 

1.3 Current Clinical Practice for Analysis of Bacteria 

This section describes general current clinical bacteriological practices applied to the 

identification of infectious bacteria of the upper respiratory system originating from 

specimens taken from a patient. Here we identify problems and strengths of current 

practices, and having done so identify potential problems for an electronic nose. Fur- 

thermore, current problems and their effect on patient care will be examined. 

The subject is described by firstly detailing the clinical strategies, then by a func- 

tional breakdown of a single clinical investigation, and finally by a description of the 

different types clinical investigation based on the type of specimen involved. The pre- 

cise procedure followed for each different type of specimen is too complex to document 

here and would not be helpful background information to the project. Therefore special 

emphasis is placed on describing the most time consuming practices (e. g. incubation). 
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1.3.1 General Strategies Adopted in Clinical Bacteriology 

Clinical bacteriology is the study of specimens taken from patients suspected of infec- 

tious disease in order to find, firstly, if there is any change in the kind or distribution 

of the normal flora and, secondly, if the abnormal bacteria found are the cause of the 

disease. In most cases it is fairly easy to answer the first of these questions. The second 

is often difficult and sometimes impossible to solve; it may be approached in the fol- 

lowing way. The question "We have found microbe A, is it causing disease B in this 

patient? " is asked. We may use the statistical argument that in many previous cases 

A has been satisfactorily found to be the cause of B; therefore the chance of it being 

so in this case is very great and the assumption may safely be made. There are many 

pitfalls in the use of this argument for individual cases because no two patients are 

exactly alike and there is also wide variation in virulence between strains of the same 

species of microbe. For example, it has been established beyond reasonable doubt that 

Streptococcus pyogenes is the cause for a sore throat, and if we use this argument we 

shall assume that in all cases of a sore throat when this microbe is found it is the cause 

of the infection. But this is not so; healthy people are sometimes carriers of Streptococ- 

cus pyogenes and such a person may develop adenovirus infection, in which case if we 

say that microbe A (Streptococcus pyogenes) is the cause of disease B (sore throat) we 

may be at fault. It follows that clinical practices are not straightforward and that even 

a case that appears initially simple may turn out, eventually, to be highly complex. 

The conflict between the necessarily swift investigation of ENT specimens and 

the fact that, generally, the more detailed (and reliable) investigations require large 

amounts of time to perform, lead to two main courses of action. Firstly, scientific in- 

tegrity may be sacrificed by the investigation only including one or two easily tested 

strains, and that remaining strains may be guessed by morphological appearances and 

knowledge of the expected normal flora. Secondly, the investigation may be limited 

by excluding known pathogens and not attempting to identify the remaining organ- 

isms. Of the two the latter is preferable because the former can result in a misleading 

report which could lead to a worsening of the patient's condition. In practice an in- 

vestigation may contain elements of these two scenarios and in general there are four 
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types of investigation which can usefully be performed in a hospital laboratory on ENT 

specimens: 

1. Exclusion of known pathogens. 

2. Exclusion of known pathogens plus partial investigation of normal flora. 

3. Full bacteriological investigation of clinically rare conditions. 

4. Full investigation of all bacteria found in specimens. 

As to be expected, the strategies adopted tend to be a compromise between what 

is an ideal situation (e. g. identification of all micro-organisms) and what is practically 

possible (e. g exclusion of common pathogens). 

1.3.2 "escription of the Investigative Processes 

There are many clinical strategies and no two patients are identical, this means that 

there is a unique element to each clinical investigation. However, clinical investigations 

do tend to follow, overall, the same set of procedural steps. Therefore the investigative 

process can be broken down into the following broad areas6: 

" Specimen collection 

" Culture of specimens including routine and selective methods 

" Visual inspection 

9 Microscopic examination 

" Collation of reports and interpretation of results 

This description does not provide a comprehensive account of clinical bacteriology 

but an introduction for the intended application of electronic nose technology; a more 

complete description can be found in the many books written on the subject [13,14]. 

Figure 1.3 shows a typical laboratory investigation, from this it can be noted that 

laboratory techniques for culturing specimens is highly skilled and labour intensive. 

6These areas are not necessarily performed in the order given in this text For example, macroscopic 

and microscopic examination may be performed many times during the entire procedure. 
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Figure 1.3: A diagramatical representation of typical laboratory procedure, showing 

the main processes of activity. Note that this diagram is not specific to any particular 

type of clinical investigation. 

Specimen Collection 

The results of investigations of infected material and the speed with which they are 

obtained depend not only on laboratory methods but also on the manner in which the 

specimens are taken and the promptness with which they are delivered to the laboratory. 

Generally, specimens from areas of the body that have a normal flora (e. g. ENT) can 

be handled in a less stringent manner than those from areas that are normally sterile 

d 

resistant 

no growth 
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(such as urine). This allows more flexibility in the design of equipment for handling 

ENT specimens in the electronic nose system. 

The following points must be considered when designing equipment that handles 

ENT samples. Firstly, specimens must never be in contact with antiseptics or disinfect- 

ants. If equipment needs to come into contact with such substances it must be cleaned 

thoroughly afterwards. Secondly, specimens should be analysed as soon as possible. 

It is desirable for equipment to facilitate prompt usage, long delays before usage, for 

example because of calibration or testing, are to be avoided. 

1.3.3 Culture of specimens including routine and selective methods 

Because each investigation develops individually according to the findings at each stage, 

it is impossible to lay down a strict routine for all specimens. However, the culture 

process is the one which takes most of the time; the quickest cultures grow overnight 

and others can take several days. 

Selective culture greatly increases the chance of recovering known pathogens from 

sites with a normal flora such as ENT. There are several methods of selection: the 

atmosphere, the composition of the growth medium, the incubation temperature and 

antibiotics spread on the surface of solid growth media (or incorporated in it). An 

example of selective culturing using atmospheric factors is incubating a throat swab 

specimen anaerobically. The normal flora present grow mainly aerobically and are 

therefore inhibited but haemolytic streptococci grows at an increased rate and can 

easily be identified. The electronic nose, in order to operate under anaerobic conditions 

would not be able to use laboratory air as a carrier gas and would probably have to 

use an inert gas. 

There are a wide variety of selective growth media available. The incubation period 

for some elective media is at least 48 hours because the lag phase of some or all of the 

bacteria may be lengthened by the media and may last for up to 24 hours. Therefore 

selective culturing can have the effect of lengthening the investigation. Selective cul- 

turing using atmospheric temperature is not common because ENT bacteria (including 

pathogens) grow at (or very near) body temperature and therefore they all tend to be 
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able grow at the same temperature. The main use of temperature election is for other 

`low-temperature' bacteria such as the listeria bacteria group that can grow in food 

kept in a refrigerator; this is not directly of relevance to ENT disease. 

Antibiotics are common in use for selective culturing. A common practice is to 

divide a Petri Dish, containing a solid growth medium, such as blood agar, into two 

or four equal segments where each segment contains an antibiotic? and any subsequent 

colonies can be observed to grow only in one ore more segments. 

Visual Inspection 

Visual inspection is used at various stages in the investigation. Firstly, specimens are 

inspected for overall condition, if a specimen is contaminated with an antibiotic or is 

badly taken (e. g. contaminated, or taken from the wrong site) then a new specimen 

may be necessary. The plate cultures are examined by macroscopic inspection (visual 

inspection) in order to ascertain the appearance of the colonies. Changes in normal 

flora or the existence of pathogens can often be indicated by the appearance of visually 

distinctive colonies. Overall the results of the investigation are based on the observation 

(or non-observation) of colonies the types of which are identified by their morphology. 

Microscopic Examination 

Microscopic examination of stained films or of a wet preparation from the specimen 

should precede culture. The purpose of the examination is twofold; first it is a guide 

to further procedures (e. g. if fungi are observed then this can be cultured as well in 

special media) and second it is the most valuable indication of the proportion of different 

species in the specimen. The most popular method of staining is the Gram stain and 

one of the most common groupings of micro-organisms are Gram +ve or Gram -ve. 

Microscopic examination is also a useful tool after incubation of colonies; the precise 

method of staining is dependent on the type of specimen and the type of investigation 

being performed. 

7One segment is usually left untreated with antibiotics in order to act as a control. 
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Collation of Reports and Interpretation of Results 

Each laboratory tends to have its own standard for the structure of reports, however 

there are strict standards that have to be observed. Usually each specimen is labeled 

with a unique number and a corresponding record kept detailing the tests performed 

and the results observed. The results are not interpreted to any great degree by the 

laboratory staff, often results will be summarised in the report but the ultimate inter- 

pretation will be left to the physician concerned. 

1.4 Common ENT Specimen Types/Sites and Investiga- 

tions 

A useful way to categorize ENT clinical investigations is to classify them according to 

the site from which the specimen was taken. 

1.4.1 Throat Swabs 

The lining of the throat is sampled by wiping with a cotton swab. This swab is then 

placed into a protective container, is then labeled and sent to the laboratory for analysis. 

The most common cause of upper respiratory infection in Britain is Streptococcus 

pyogenes, therefore a common procedure is to exclude this pathogen from the specimen. 

The swab is seeded on a blood agar plate and incubated in an anaerobic environment, 

this selects haemolytic streptococci from the rest of the throat flora. If the incubation 

was performed in air, Streptococcus pyogenes might be missed amongst colonies of other 

throat commensals. Other common pathogens are affected by an anaerobic environ- 

ment; Streptococcus pneumoniae grow well (at least as good as in air), and Haemophilus 

influenzae grows less well (often 10% CO2 is added in order to encourage growth). The 

minimum time for this procedure is one day; if the visual inspection of colonies is not 

conclusive then further sub-culturing may be necessary which can take one or more 

further days. The plates are examined firstly using reflected light and some magnifying 

apparatus (probably a hand lens) and then using transmitted light. 

When a patient is suspected of suffering from tonsillitis then the presence of Coryne- 
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bacterium diphtheriae is usually investigated. The swab is seeded on blood agar and 

blood tellurite agar. The tellurite selects Corynebacteria from other throat flora. These 

plates need to be incubated for up to 48 hours. The blood agar plate is incubated in 

air and the tellurite plate anaerobically. The blood agar plate is visually inspected for 

the amount of growth. Stained slides can be made from both plates for identification of 

organisms. Tellurite inhibits all bacterial growth but Corynebacteria is least affected'. 

The blood agar serves two purposes; firstly it shows up any haemolytic streptococci 

which can exhibit similar symptoms and secondly it serves as a check to ensure that the 

sample was taken correctly. Various smears and stains are performed on the colonies 

formed on the tellurite medium in order to aid observation. 

Other pathogens found in throat swabs are Haemolytic streptococci other than 

Streptococcus pyogenes, Streptococcus pneumoniae, Haemophilus and Staphylococcus 

aureus. These organisms, if found, are usually discovered whilst investigations for 

the more common pathogens are being performed. When this is the cause a second 

investigation is started which can be performed simultaneously with the original one. 

Also Staphylococcus aureus is not commonly found on throat swabs and rarely causes 

a sore throat (more likely to cause swelling). 

1.4.2 Nasal Swabs 

The lining of the nasal cavity is sampled in much the same manner as that for the throat. 

The major complaint of infection of the nasal passage is rhinitis which is inflammation 

of the mucus membrane. Three cultures are made from the swab; the first is seeded on 

blood agar in air plus 5% C02, the second is seeded on blood agar which is incubated 

anaerobically and the third is seeded on blood tellurite medium. The purpose of the first 

culture is to investigate the presence of Neisseria meningitidis, Staphylococcus aureus 

and haemophilus. The purpose of the second culture is to investigate the presence 

of Streptococcus pneumoniae and haemolytic streptococci. And the purpose the third 

culture is to investigate the presence of Corynebacterium diphtheriae. It is possible for 

8It also has the helpful property of showing up the three major types of Corynebacteria diphtheriae 

although this is not always necessary. 
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Staphylococcus aureus to be present in the nose of a healthy person therefore detection 

does not necessarily mean that it is the pathogen. 

1.4.3 Nasopharyngeal Swabs and Aspirated Muco-Pus 

There are two main reasons for taking samples of matter by means of nasopharyngeal 

swabs; firstly for detection of carriers of meningococcal meningitus which involves isol- 

ating Neisseria meningitidis and secondly for suspected whooping cough which involves 

isolating Bordetella Pertussis. For adults, a special swab is employed called a `West's 

Swab'9 is used and is seeded on blood agar and incubated in air plus 10% C02. For 

children, a standard swab is used which is seeded on selective growth media in order to 

suppress the growth of the normal flora. After incubation, which usually takes one day, 

the organisms present are detected in the normal manner (i. e. visual inspections and 

stains). It is possible for gonococci and meningococci to exist in healthy people with 

carrier the rate being over half the population, this test therefore does not necessarily 

mean that the person is suffering from disease. However it is possible for a healthy 

carrier to become diseased and the health of the patient can reduce at a dramatic rate 

which can be fatal; speed of investigation can therefore be vital. 

When a person, most often a child, who has pneumonia is unable to produce spu- 

tum, aspirated muco-pus from the nasopharynx can provide a specimen suitable for 

investigation. The specimen is collected by inserting a plastic catheter into the nose 

and collecting the sample in a plastic bottle, once the specimen is collected it is treated 

in much the same manner as sputum (see §1.4.7). 

For the investigation of whooping cough a special swab called a pernasal swab is 

used. This swab has a flexible stem so that it can be inserted into the nose and can 

move down the nasal passages into the nasal cavity. It is possible to have the patient 

cough into a plate, however this method as satisfactory. The swab is seeded on special 

growth media that allows Bordetella Pertussis to be isolated from other commensals. 

The culture is inspected after 48 hours and if there are no colonies present of the 

'This is a specially curved swab that enters through the mouth and is protected so that it does not 

become contaminated with the normal flora. 



23 1.4 Common ENT Specimen Types/Sites and Investigations 

pathogen then the media is seeded again. If plates are used instead of swabs then 

these plates have to incubated in moist air for four days after which they are visually 

inspected. 

1.4.4 Laryngeal Swabs 

The swab is inserted through the mouth and into the larynx, when contact is made 

the patient is stimulated to cough and mater from the larynx and trachea is deposited 

on the swab. Apart from the common infections of the larynx, this type of swab is 

also useful for some types of diphtheria and some types of acute lung infection. The 

specimens that are collected in this fashion are treated in the same manner as samples 

of sputum (see §1.4.7). 

1.4.5 Mouth Swabs 

Most infections of the mouth exhibit themselves as ulcers, which are sometimes cause 

by bacteria. In order to investigate these infections, the lining of the mouth is sampled, 

this is performed in much the same manner as that employed for the throat and nose. 

The specimen is stained and examined for Vincent's organisms or yeasts, if this proves 

negative then the swab is seeded onto blood agar plates where one is incubated aer- 

obically and the other anaerobically. Organisms such as haemolytic streptococci or 

Staphylococcus aureus can be identified on these plates after 24 hours of incubation. 

1.4.6 Antrum Wash-Out Fluid 

The saline washings from patients that are suffering from chronic antrum infections 

can be the subject of investigation. There are two main problems; firstly that the 

washings are contaminated with the normal flora of the upper respiratory system and 

that the saline fluid can kill some of the more sensitive organisms that may be present" 

Often this type of specimen is investigated in order to gauge the success of a particular 

treatment (often antibiotic). If an electronic nose was used to sample the odour of the 

specimen immediately after it was collected then the saline solution would not have a 

10This usually occurs in the first few hours after the washings have been collected. 
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significant affect on the results of investigation. The ability of the electronic nose to 

cope with normal flora is also a factor here. 

1.4.7 Sputum 

There are many pathogens that are investigated in specimens of sputum from pa- 

tients with upper respiratory infections, examples of such pathogens (including some 

more rare ones) are Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus 

aureus, Haemophilus influenzae, Mycoplasma tuberculosis, fungae, Legionella pneumphila 

and Friedlander's bacillus. Stains of samples of the sputum can be made that allow 

immediate inspection, this can show up pneumonia. The sputum can also be chemic- 

ally treated and seeded on blood agar plates which are incubated for 24 hoursl1 in air 

plus 5-10% CO2. Also in order to isolate particular organisms, such as Haemophilus 

influenzae, antibaterial agents are used in the cultures to inhibit the growth of un- 

wanted micro-organisms. The colonies that grow in the cultures are visually examined 

(often with a hand lens) and sometimes the colonies are stained in order to aid iden- 

tification, for example to stop the similar colonies of Streptococcus pneumoniae and 

Streptococcus viridans from being mistaken for each other. Because there are so many 

different micro-organisms that can be isolated, the actual procedure is tailored to each 

patient, so therefore there is a very large number of different investigations that can 

be performed. The problem for an electronic nose might be the odour of the sputum 

itself, if the odour of sputum from patient to patient (or from day to day in the same 

patient) is highly variable then there may be difficulties in obtaining performance that 

is good enough to be useful. A possibility may be to treat the sputum chemically in 

some manner that would isolate the bacteria cells from, say, the pus cells within the 

sputum, once this is achieved then the bacteria could be smelt. 

"Cultures can be made of untreated sputum immediately after collection in order to perform quality 

checks on the specimen. 
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1.5 The Role of An Electronic Nose 

The application of an electronic nose would reduce the role of culturing as the major 

tool in clinical practice, and therefore a modified faster procedure would be followed. 

The description detailed in this section is for illustration purpose, the actual procedure 

followed would be developed by exhaustive clinical trials and development. Where 

originally 1,2 or more specimens were collected from various sites on the patient; 

double this number would be collected. The first set would be sent to the laboratory 

for analysis, as before and the second set would be 'smelt' by an electronic nose. 

An alternative to this method, in some cases, would be to use an electronic nose 

to sample a patient's breath. Work has been previously performed where an electronic 

nose was used to sample cows breath in order to identify those cows that were suffering 

from ketosis [15,16]. The variability of odour of the patient's breath may be a problem 

when analysing subtle odour differences. Directly smelling an ear would prove more 

difficult because air is not expelled from the ear. It may be possible to pump air 

carefully into the ear and use the air that would be expelled from the ear for analysis. 

The analysis procedure may be two stage; firstly ascertaining whether the specimen 

contains infected matter (i. e. abnormal bacteria populations compared to the normal 

flora) or not, and secondly if the specimen contain infected matter what is the respons- 

ible pathogen. 

If the electronic nose is differentiating between a specimen which includes a pathogen 

and a specimen with just the normal flora, is not that the former gives off an odour 

and the latter does not but rather that the odour associated with a normal flora is 

tainted (or changed) in some way. The exact nature of this change of odour from the 

normal flora odour is dependent on many variables, such as the type and population 

size of the pathogen, length of time since the onset of infection, the habits of the patient 

(does he/she smoke? ) and the action that triggered the infection (e. g. viral infection or 

wound). Therefore attributing a particular change in odour as being due to a particular 

variable is difficult, however if it can be attributed to the presence of a pathogen some 

useful results will result. 



26 1.5 The Role of An Electronic Nose 

This system could be used to test the efficiency of antibiotics. After a patient has 

received antibiotic treatment, the patient could return to the clinic at set intervals, 

for example once every two days, in order to have further samples analysed. If the 

treatment is effective, the analysis should reveal a decreasing presence of pathogens. 

Also, clinical trials of new antibiotics could involve this system. Comparisons between 

the effectiveness of different antibiotic treatments could also be performed. 

It would be possible to analyse bacteria growth from samples taken from many other 

sites around the body (or even bacteria samples that are grown within a laboratory). 

More details on the possible role of electronic nose technology is given are the last 

chapter. 

To summarise, an electronic nose was applied to the detection and classification of 

bacteria because it allows the possibility of a breakthrough in the area of treatment 

of infectious disease. Rapid analysis of infection may be possible using electronic nose 

technology. Current clinical methods have not undergone significant change for many 

decades, the solution proposed here is a major development. 



Chapter 2 

Review of Electronic Nose 

Technology 

This research project had a basis in electronic nose technology. The term `electronic 

nose technology' is used to mean the wide range of scientific disciplines that are in- 

volved with the application of the analysis of odours to various (mainly industrial) 

problems. Such scientific disciplines include sensor design, electronics design, micro- 

processor systems, artificial intelligence, statistics, chemistry and (in this particular 

research project) micro-biology. Here the basic theory of olfaction is introduced and 

the relationship between natural and artificial olfaction is highlighted. The major 

developments in electronic nose technology are also highlighted with theoretical and 

technical detail given in later chapters. The overall purpose of this chapter is to furnish 

the reader with an appreciation of the state of electronic nose technology, what methods 

have been attempted and what successes have been achieved. Decisions on the paths 

of research that were pursued were guided by results achieved in previous work in this 

field. 

2.1 Introduction to Electronic Noses 

An `electronic nose' has been defined in many ways: 

07 
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"An electronic nose is an instrument, which comprises an array of elec- 

tronic chemical sensors with partial specificity and an appropriate pattern 

recognition system, capable of recognising simple or complex odours [3]. " 

"An electronic nose consists of an array of gas sensors with different se- 

lectivity patterns, a signal collecting unit and pattern recognition software 

applied to a computer [17]. " 

"The concept of the electronic nose is the arrangement of an array of non- 

selective sensors (instead of biological sensors) feeding data to a pre-trained 

neural network [18]. " 

Moreover, an `electronic nose' is a system, inspired by biological systems, that 

samples odourous gases and provides information about those gases. The system en- 

compasses the sensor array, any interfacing electronics, any additional instrumentation 

and a pattern recognition sub-system. The sensor array consists of non-specific gas 

sensors the sensitivities of which overlap. Non-gas sensors (for example temperature 

and humidity) may also be included in the sensor array and they may be specific. 

A commercial electronic nose was the starting point in this research. The commer- 

cial electronic nose was itself the product of considerable research and development'. 

The appearance of commercial electronic noses has been a recent occurrence (mainly 

happening in the previous 3 years). Presently there are only a few manufacturers in- 

volved, these being mainly Alpha M. O. S. (France), Neotronics Scientific Ltd (UK) and 

Aromascan PLC (UK). There have been other commercial products available that can 

best be described as gas monitors which have been available for longer, however these 

products do not really come under the above definitions of `electronic nose' because 

they either comprise of one sensor or do not discriminate between odours but monitor 

the level of a particular gas (or group of gases). 

An Electronic Nose has been the subject of much research at the University of 

Warwick over the past 15 years. Research began at the University of Warwick in 

1982 [19], although the use of the term `electronic nose' did not enter common usage 

'Some of the research and development was performed at the University of Warwick. 
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until the late 1980's. The first work performed in the area of artificial olfaction was 

performed in the early 1960's by Moncrieff [20], this research was not electronic but 

mechanical based, it was three years later that the concept of an `electronic nose' was 

investigated by Wilkens [21]. The idea of using metal and semiconductor gas sensors 

within an electronic nose was developed one year later by Buck [22] and also the use 

of modulated contact potentials by Dravnieks [23]. A brief history of electronic nose 

technology has previously been published [3,24,25]. A more accurate description of 

the instrumentation employed is given in section 2.4 of this chapter. 

2.2 What Are Odours? 

Fundamental to a nose of any kind are the actual odours themselves. An understanding 

of what odours are, from a scientific point of view, is essential if electronic nose tech- 

nology is to be successfully applied. An odour consists of one or more types odorants 

(molecules responsible for odour), depending on the type. A simple odour, for example 

ethanol, has only one odorant note. A complex odour, for example coffee, has hundreds 

of odorant molecules [1]. Table 2.1 shows the composition of a typical coffee odour, 

it can be observed that this odour was in fact made up from 631 different molecules. 

For complex odours it is also important to consider the relative concentration of each 

odorant, a small change in relative concentration can result in a change in the odour 

quality. In general odorants are hydrophobic, polar and small (18-300 Daltons), these 

qualities allow odorants to react with gas sensing devices (natural or artificial) and so 

to give a response. 

The relationship between odorant structure and the perceived smell has been pre- 

viously researched [26,27] but still is not fully understood. However different groups 

of odorants have been identified, such as those indicated in Table 2.1, and particular 

notes (for example rose, lemon and off-flavours) have been linked to particular odor- 

ants. The large number of constituents of a complex odour, which can number many 

thousands, mean that it would be difficult to break down an odour into its constituents 

and perform an analysis of each constituent. Human perception of complex odours are 
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Table 2.1: Typical composition of a coffee odour (source [1]). 

Class of Odorant Number of Types in Class 

Furans 108 

Pyrazines 79 

Pyrroles 74 

Ketones 70 

Phenols 44 

Hydrocarbons 31 

Esters 30 

Aldehydes 28 

Oxazoles 28 

Thiazoles 27 

Thiophenes 26 

Amines 21 

Acids 20 

Alcohols 19 

Pyridines 13 

Thiols 13 

Total number: 631 

often associated with few simple notes, such as musky or nutty, rather than a detailed 

chemical analysis. The molecular construction of some typical odorants are shown in 

Figure 2.1; it can be observed that most odorants are simple cyclic molecules or short 

chains. 

Each odorant has an associated threshold above which they have a perceived odour. 

This thresholds are usually expressed as parts per billion in water (ppb in water). 

Table 2.2 shows some common odorants and their olfactory thresholds, it can be ob- 

served that the spread of thresholds covers up to 6 or 7 log steps, and that some 

odorants have very low thresholds (fractions of 1 ppb). This contrasts quite differently 
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Figure 2.1: Diagram showing the molecular construction of some typical odorants along 

with a description of their odours (source [1]). 

to artificial gas sensors (details of which are given in section 2.4.1) where sensitivity to 

volatile compounds, such as odorants, is at best in the region of 100 ppb to 100 ppm2. 

This raises the question whether an electronic nose would be sensitive enough to de- 

tect the subtle changes in odour from different bacteria types. Unfortunately this is a 

difficult question to answer other than to test this hypothesis empirically. The actual 

olfactory receptor cells only have sensitivities in the region of ppm yet the olfactory 

system as a whole, has a sensitivity as high as a fraction of ppb, this enhancement 

indicates the effect of signal processing that takes place within the neural pathways of 

the olfactory system (discussed in section 2.3). This enhancement principal may also 

apply to electronic noses. 

The odour resulting from the growth of bacteria have particular qualities, often 

these qualities are unpleasant to humans (such as the smell of off-food). It is common 

'The lowest published figure is 10ppb. Many odours have values at ppm in air. 
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Table 2.2: Table showing some common odorants and their thresholds of detection in 

the human olfactory system (source [11). 

Odorant Odorant Description Threshold (ppb in water) 

Diacetyl Beer off-flavour 500 

Trans-2-hexenal Green leaves 316 

Geraniol Rose 290 

5-isopropyl-2-methylphenol Thyme 86 

Limonene Lemon 10 

Cis-4-heptenal White fish off-flavour 0.04 

Octa-1,5-diene-3-one Butter off-flavour 0.01 

2-isobutyl-3-methoxypyrazine Green peppers 0.02 

a-terpinethiol Grapefruit 0.00002 

practice in a micro-biology laboratory to smell bacteria in order to aid the process 

of identification. Particular bacteria types, such as Pseudomonas aeruginosa, have a 

characteristic odour that is rarely mistaken to the trained nose. However, laboratory 

staff can only learn these smells by experience, simply being informed that, for example, 

a particular bacteria smells `nutty' or `musty' is not specific enough. This fact indicates 

another property of odours, which is association of odours to abstract concepts. The 

laboratory staff learn to associate a particular odour with a particular bacteria type. 

Because no formal system of bacteria identification has been developed from this skill, 

it is possible that the human nose is not able to discriminate reliably between bacteria 

types. Many smells that are important to humans are the result of bacteria activity, for 

example bad food and body odour, and failing to correctly associate a particular odour 

could result in, for instance, bad food being eaten (which could possible be fatal). The 

role of the electronic nose in treatment of disease is not to merely discriminate whether 

an odour originates from bacteria or not, but to discriminate between bacteria types 

(or genus) . 

A common procedure for analysis of odours are gas chromatograph scans (GC 
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scans). This results in a spectral breakdown of the chemical constituents. There 

are sensitivity problems with this procedure [28] that mean that some of the subtle 

differences between odours that a human can differentiate cannot be detected. Unlike 

the ear, the olfactory system does not work by spectral analysis. Usually, a singular 

property of an odorant, for example its molecular weight, accounts for only a limited 

number of the ascribed properties. Thus, one dimensional measurements (or primit- 

ives) such as wavelength for light (used for colour perception) or frequency for sound 

(used for hearing) are not suitable for classifying odorants; this accounts for the multi- 

dimensional analysis observed in natural olfactory systems [291. There seem to be three 

groups of properties of odorants that affects olfaction [30]: 

Determinants: These are individual properties of odorants such as functional groups, 

chain length, or positions of double bonds. 

Ligand: These are the properties of the single type (or group of) of odorant, in analogy 

with common terminology used to characterise the biochemistry of the molecular 

signals and receptors. 

Odour Object: These are the properties defined by mixtures odorants and result from 

the reactions that take place between odorants. 

From this is can be concluded that the analysis of odours at a molecular level, whilst 

being productive for particular types of odour research projects, would be inappropriate 

where odour classification is sought by means of a parallel to the human olfactory system 

(such as this research project). It is unnecessary to discuss the chemistry of odours 

further, however research has been performed in order to identify the components of 

bacteria odours [31], this showed that bacteria odours are complex and dependent on 

a large number a environmental variables. 

2.3 The Human Olfactory System 

Since the methods employed in this research project are inspired by and modeled on 

(from a mathematical point of view) the human olfactory system, an overview of the 



34 2.3 The Human Olfactory System 

human olfactory system is given here in order to indicate the origins of the data pre- 

processing and classification system design that were employed. 

The human olfactory system is stimulated by information contained within odorants 

that are released from an object, causing patterns of brain activity that are essentially 

the sense of smell. The relationship between brain activity and odorant quality is one of 

the least understood problems in biology. Research has, however, been reported [32,27] 

that allows sufficient understanding in order to implement the fundamentals of olfaction 

in an artificial system. Figure 2.2 shows where the olfactory system is located in a 

human and the basic structure of the olfactory nervous system. The olfactory system 

can be divided into three main stages as described in the following text. 

2.3.1 Human Olfaction: First Stage - The Olfactory Receptor Cells 

Odorant molecules are inhaled into the nasal cavity and onto the epithelium, which 

is the area where the olfactory receptor cells exist. The olfactory receptor cells have 

hairs, or cilia, which are embedded within a thin aqueous mucus layer which covers the 

epithelium. The odorants enter the mucus layer where they react with the cilia. The 

nature of this reaction seems to be based on G-protein neurotransmitter receptors [33] 

which exist on the surface of the cilia. Because of the number of different receptor 

protein types is relatively small (i. e. 200 to 500 [34]) and the number of receptor cells 

is relatively large (approximately 100 million for both nostrils), there is overlapping 

sensitivity between individual receptor cells3. The exact mechanisms employed in the 

olfactory receptor cells is not of great importance here since we are not able, at present, 

to clone artificial versions and also that what is of interest are the fundamental con- 

cepts that result from neurological investigation. The important qualities of olfactory 

receptor cells are that they are high in number, are non-specific and have a limited 

life-span4. The overlapping sensitivities of the olfactory receptor cells would indicate 

that our sense of smell would be non-specific, this however is not the case as we are 

3This may not precisely true because there may exist a small number of olfactory receptor cells that 

have a very specific sensitivity to special odours called pheromones. 

4The entire population of olfactory receptor cells is constantly being renewed, each cell has a life 

span of 3 to 4 weeks. 



35 2.3 The Human Olfactory System 

Cribriform Plate of Ethmoid 

Front,, 

Nasal 

Cartilage 

Maxilla 

(a) 

Olfactory Bulb 

[factory Bulb 

ºuperior Nasal Concha 

Middle Nasal Concha 

>pheniodal Sinus 

Interior Nasal Concha 
Eustachian Tube 

'alate 

' Signals 
to Brain 

Epithelium 

(b) 

Figure 2.2: Simplified diagrams showing (a) the anatomy of the human olfactory system 

(b) the olfactory nervous system. Note that the neurones shown do not reflect the actual 

neural topology of the system in order to aid clarity. 

able to discriminate between many different odours. There is an interesting comparison 

to colour vision where cone photo-receptors have different photo-pigments, the absorp- 

tion profiles of these cells peak at different wavelengths but overlap for much of the 
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spectrum. It has been indicated [35] that this overlap is necessary in order to discrim- 

inate wavelength independently of intensity. Similarly in the olfactory system it has 

been suggested [36] that overlapping sensitivities enable odour quality (ligands) to be 

discriminated separately from odour concentration. Therefore overlapping sensitivities 

enhance the ability to discriminate between many different odours. 

Given that an olfactory receptor cell has a response to an odour there are some 

characteristics of the response that affect subsequent stages in the olfactory system. 

Firstly, the response is delayed by several hundred milliseconds after the time at which 

the odour first starts to reach the cilia. Secondly, after an initial peak, the response 

(assuming that the concentration of the odour is constant) declines with time. Thirdly, 

the response only occurs over 1 or 2 log steps in odour concentration. 

A small amount of signal processing takes place in this stage of olfaction. The odour 

signal is amplified and secondary messenger signals are generated which are transmitted 

to the olfactory bulb. 

2.3.2 Human Olfaction: Second Stage - The Olfactory Bulb 

The olfactory bulb consists of three major layers of neurones: glomeruli, mitral and 

granular. Olfactory signals in this stage undergo considerable processing that enhances 

sensitivity, improves immunity to noise, increases selectivity and allows for the constant 

regeneration of the olfactory receptor cells. Figure 2.2(b) shows the arrangement of the 

individual layers within the olfactory bulb. It is slightly misleading to segregate the 

bulb in this manner because there is a high amount of interconnectivity between the 

layers and there are no strong functional distinctions between adjacent layers. However 

for the purposes of simplifying the olfactory system in order to gain some insight into 

its properties and makeup, the bulb will be described as composing of definite layers. 

Figure 2.3 shows the basic configuration of connections within the olfactory bulb. The 

primary olfactory nerve connects the olfactory receptor cells in the epithelium to the 

olfactory bulb, and the lateral olfactory tract connects the olfactory bulb to the piriform 

cortex in the brain. 

Two dimensional neural activity patterns have been observed on the surface of the 
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Figure 2.3: A simplified diagram showing the connectivity within the olfactory bulb, 

based on model proposed by Freeman [2]. Note the number of connections has been 

reduced to enhance clarity. Key: PG - Periglomerular (glornerular) neurone, M- Mitral 

neurone, G- Granule neurone. 

olfactory bulb [37]. Particular areas have not been linked to particular odours, so there 

is no area that corresponds to say alcohols. The observed patterns seem to be related 

to spatial information within signals received from the olfactory receptor cells. This 

therefore indicates that there is no corresponding areas of the olfactory receptor cell 

sheet that can be identified with particular odorants [38]. Therefore if a particular 

group of olfactory receptors cells are damaged, this does not result in the ability of the 

animal concerned to smell a particular odorant but rather the sensitivity is reduced. 

This aspect of the olfactory system highlights its fault tolerant design (a trend also 

reflected in the processes that occur in the brain). 

The glomeruli (glomerulus) layer contains in the order of 5000 neurones. The pat- 
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tern of neurone organisation is also observed in other parts of the brain (the brain 

is highly modular with common organisational patterns, such as `blobs', `barrels' and 

`columns' occurring throughout); this neural structure has been the subject of much 

research [39]. The glomerulus essentially extracts features (or descriptors), grouping 

olfactory maps that contain similar properties (such a ligands) and separating olfactory 

maps that contain dissimilar properties. There is massive convergence in this layer with 

up to 25000 olfactory receptor cell feeding into one glomeruli cell, this fact mediates 

the grouping activity and enhances sensitivity. The discriminatory behavior of these 

cells are further enhanced by lateral inhibitive connections; this layer is not a simple 

feed-forward structure but a complex feedback structure. 

The mitral layer 5 contains approximately 100000 neurones, in which there are two 

types of neurones, larger mitral cells and smaller tufted cells. Although the two types 

of neurones are high interconnected, they do perform separate functions. The mitral 

cells are highly involved in the divergent and convergent operations within the bulb 

(grouping of olfactory maps), whereas the tufted cells control interactions within the 

bulb (control mechanism). Another interesting property of the mitral cells is that they 

receive signals from areas of the brain (i. e. feedback) that relate to the current emotional 

status [40]. For example, if an animal is hungry, this emotional state is communicated 

to the mitral cells which results in a different response to food odours. An electronic 

nose might be able to implement a compensatory system where for example ambient 

air temperature is sensed and fed back into the pattern recognition sub-system. 

The granular layer may be involved in improving specificity in the olfactory sys- 

tem [27]. The connections between this layer and the mitral layer are mainly inhibitory, 

thus signal compression occurs. The output from this layer is then input to the brain 

via the lateral olfactory tract. 

Feedback within a neural network, in this case the olfactory bulb results in chaotic 

behavior which is extremely (if not impossibly) difficult to model precisely, most in- 

formation described here is the result of observation of neurone activity in the olfactory 

'The term `mitral layer' as used in this text actually refers to two layers called the External Plexiform 

Layer and the Mitral Cell Body Layer. 
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systems of various animals to various stimuli. The feedback connections are shown in 

Figure 2.3, it can be observed that there are many feedback neural paths. There have 

been attempts to form an accurate artificial model [2], these have shown some suc- 

cess. However the limitations of implementing close biological models on present day 

computer systems continues to be a limiting factor. 

2.3.3 Human Olfaction: Third Stage - The Brain 

The actual area of the brain that is concerned with olfaction is the olfactory (piriform) 

cortex. It is connected to the olfactory bulb via the lateral olfactory tract. This area 

is located in the sensory area of the cortex, compared to the visual cortex (which is 

the biggest single part) it is small. This reflects the simpler task of olfactory per- 

ception compared to the highly complex task of visual perception. The operation of 

this part of the brain is mainly that of content addressable memory where incoming 

odour signals are compared with previously learnt odour signals and, where appropri- 

ate, associations made. Because of the relative simplicity of the olfactory cortex, many 

attempts have been made to model this part of the system with artificial neural network 

(ANN) paradigms such as Hopfield Networks [41] and Boltzman Machines [42]. This 

work have shown some success, but it is difficult to model accurately such a complex 

system employing conventional computing resources. Many other workers have been 

able to model certain behavioral aspects of odour perception. These successes reinforce 

observations and theories that have resulted from biological empirical study. This type 

of research was highly relevant to this project where artificial neural networks were 

employed. Detailed description of the olfactory cortex topology is unnecessary, but 

there exist many publications which cover the subject in great detail [27]. The field of 

artificial intelligence is a fast moving one and developments in the artificial neural net- 

work models of olfaction are set to progress. However their suitability to a `real-world' 

application such as the one described in this thesis is as yet unproven. 
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2.4 Artificial Olfaction 

The graded shading indicates fuzzy functional 

The role of an electronic nose is to perform artificial olfaction. This section describes 

how electronic noses operate and how this is related to the human olfactory system (as 

described in section 2.3). Artificial olfaction usually includes of an array of gas sensors 

coupled via a suitable electronic interface to an analogue to digital conversion (ADC) 

circuit. The resultant digital information is fed into a computer system where software 

is running that applies signal processing algorithms. Figure 2.4 shows a comparison 

between a typical electronic nose, such as that employed in this research, and the 

human6 olfactory system. 

Although the electronic nose was inspired by nature, there are many functional dif- 

ferences. Firstly, the olfactory receptor cells in the human perform a limited amount of 

signal processing, whereas the artificial counterparts are `dumb'. The human olfactory 

system is difficult to segment in terms of functionality because of the manner in which 

the signal processing is distributed. The functionality within the artificial olfactory 

'This diagram also adequately describes the olfactory system of most vertebrates. 

Signal Processing 
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Table 2.3: 

(source [3]) 
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Chemoresistor 

Reactive Material Sensor Class 

Sintered metal oxide 

Catalytic metal 

Lipid layers 

Phthalocyanines 

Conducting polymer 

Electro-chemical 

Catalytic gate 

Organic semiconductors 

Thermal, e. g. pellistor 

Acoustic, e. g. piezoelectric/ SAW 

Chemoresistor 

Chemoresistor 

Potentiometric/amperometric 

2.4 Artificial Olfaction 

Target Gases 

Combustible 

Combustible 

Organic 

NOT, H2, NH3 

NH3 and alcohols 

NH3, CO, CH3CH2OH 

Potentiometric, e. g. Pd-MOSFET Combustible 

Optical, e. g. IR absorption CH45 C02, NO, 

system (an electronic nose) is much more segmented, this is due to the nature of the 

technology, for example the complex artificial neural networks employed are simulated 

in software and cannot exist at hardware level (unlike the gas sensor array). Artificial 

olfaction can therefore be split into three functional stages; (a) gas sensor array (and 

interface electronics), (b) signal pre-processing, and (c) odour classification. This re- 

view of artificial olfaction is therefore continued in sections that reflect these functional 

stages. 

2.4.1 Gas Sensor Technology 

There are many types of sensor technology that have been developed for gas sensing, 

see Table 2.3. 

As previously stated in section 2.3, the special feature of the gas sensor array within 

a nose is that they should be non-specific (i. e. have overlapping sensitivities). This is 

relevant to both human and artificial olfactory systems. It is more difficult to develop 

a specific gas sensor than to develop a non-specific gas sensor, and this has resulted in 

a wide range of applicable gas sensor types. The most commonly employed gas sensor 

types are sintered metal oxide [43,44,45], lipid layers [46] and organic polymers [45.6]. 

Tabe summarising common sensor technologies and their target gases 
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Table 2.4: Types of gas sensor array previously employed in electronic noses (source [3]). 

Gas sensor array type No. of sensors Country of origin 

Sintered metal oxide 6,6,8,12 Japan, USA, Japan, 

Chemoresistors UK 

Lipid layer (piezoelectric 8 Japan 

crystals) 

Lipid layer (SAW devices) 6 Japan 

Lipid layer (Phthalocyanine 5 UK 

Chemoresistors) 

Organic polymers 12,20 UK, UK 

(Chemoresistors) 

Organic polymers (SAW 12 USA 

devices) 

Lipid layer (electrochemical) 2-18 USA 

Pd-gate MOSFET 10 Sweden 

Optical FET camera 324 pixels Sweden 

Table 2.4 shows the types gas sensor array employed in previous electronic noses. 

At the University of Warwick, electronic nose research has focused on two sensor 

types, metal oxide and polymer. Sintered tin oxide sensors have been previously shown 

to perform well in electronic noses [45], their major weaknesses are drift due to slow 

chemical reactions in the reactive element and sensitivity to ambient temperature and 

humidity. The degradable effect of these weaknesses on electronic nose performance 

has been reduced by instrumentation design and compensation within the signal pre- 

processing and classification stages. Polymer based sensors tend to suffer from sens- 
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itivity to ambient humidity (generally worse than metal oxide sensor types), and this 

weakness is one of the current research activities at the University of Warwick. Careful 

setup of the experimental environment can reduced the effect of humidity, for example 

precise control of ambient humidity. This may prove difficult in some of the conditions 

that electronic noses may be required to operate in in future applications, for example a 

farmyard [15]. Miniaturisation has been attempted by producing thin-film devices [10]. 

One advantage of polymer based sensors is that there is a limitless number of polymer 

`recipes' which give these sensors the potential to be available in a wide number of 

sub-types which could allow for more application specific sensor arrays (for example 

one specialising in beverage odours). The current research effort is mainly directed to- 

wards miniaturisation, reducing power consumption, increasing stability and reducing 

production costs. It is difficult to state that one particular sensor type performs best 

but it has been suggested that the polymer types are the most promising [47]. A book 

edited by Gardner and Bartlett includes a good investigation into the major gas sensor 

technologies [45]. The sensor type employed in this research was sintered tin oxide, the 

operation of which are detailed in chapter 3, because it is particularly sensitive to the 

levels of primary metabolites (for example alcohols, ketones and amines). 

2.5 Signal Pre-Processing 

The signal pre-processing stage modifies the signals from the sensor arrays into features 

which are suitable for input into the pattern recognition stage. Signal pre-processing is 

described in detail in chapter 4, here the popular and promising algorithms are assessed. 

Numerous pre-processing algorithms have been employed in previous work. They 

mainly fall into two groups: sensor feature models and basic statistical manipulation. 

The Difference Feature model outputs features that are related to the difference in the 

sensor signal when exposed to air and when exposed to the odour being measured. 

This feature model has been often applied [48,49,50,51,52]. However, it has gener- 

ally proved inferior to the fractional feature model. The Fractional Difference Feature 

model outputs features that are related to the ratio of the difference of sensor response 
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(in air to that in the odour being measured, i. e. the Difference Feature model), to the 

response in air. This model has also been widely applied [50,6,52] with good results. 

Another common model is the Relative Feature Model, which outputs features that are 

related to the ratio of the sensor response in air to the response in the odour being 

measured [53,50]. This model also tended to perform less well than the Fractional 

Difference Feature model. It has been suggested that the Fractional Difference Feature 

model performs relatively well [50] for metal oxide sensors because it reduces the con- 

centration dependence of the features that are output. Also the effect of base-line drift 

of each of the gas sensors being modeled, upon the features being output, is reduced. 

One common feature of the Difference Feature model, Relative Feature model and Frac- 

tional Difference Feature model is that they are steady-state. They do not make use 

of transient information contained within each sensor response. It is only very recently 

that transient (or dynamic) information has been employed in addition to steady-state 

information [54]. This work is promising and has shown that pre-processing utilising 

both transient and steady-state information can improve classification performance 

compared to pre-processing utilising steady-state information. 

Basic statistical methods employed include linearisation, normalisation and auto- 

scaling. These methods are additional to the sensor model pre-processing algorithms. 

Linearisation methods have been, for example, included using the log of the output from 

the sensor model [43]. It has also been shown that, if operated over a limited output 

range, some sensor types (e. g. sintered tin oxide) behave in a quasi-linear manner [45]. 

In theory, linear data is simpler to process than non-linear data, this improves pat- 

tern recognition performance. Normalisation has been performed in one of two ways: 

array (or vector) normalisation and sensor normalisation. Array normalisation scales 

each vector, within the same data set, to the same length; usually unit length. This 

technique has been shown to improve performance for small sensor arrays and pattern 

recognition techniques that are sensitive to the scaling of input variables [50], in theory 

the scaling of input variables is unnecessary for many ANN paradigms [55]. Sensor 

normalisation scales the output of each sensor over the entire data-set to lies in the 

range [0,1], this technique has been shown to improve overall pattern recognition per- 
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formance, however performance can be reduced if a `noisy' sensor output is amplified 

during normalisation. Therefore, applying normalisation enhances good quality data 

and degrades bad quality data. Auto-scaling scales each sensor so that the average of 

its output is 0 and the standard deviation is 1. The effect of auto-scaling on pattern 

recognition has been previously discussed [55], and has been shown to be beneficial 

under certain circumstances. In general, more effort has been spent on researching 

classification than on pre-processing, this is not a good reflection of the importance of 

pre-processing on overall electronic nose performance. 

As mentioned earlier, a recent development in pre-processing is the use of dynamic 

(or transient) models, i. e. models which output features which contain time domain 

information. This was first highlighted as promising in previous work [52]. A compar- 

ison has been performed between the performance of static and dynamic models [54], 

it showed that dynamic models can perform better than static models. The dynamic 

model employed was applied to tin oxide sensors, although models have been applied 

to other sensor types, such as polymer sensors [56]. Spectroscopic methods have been 

employed to the transitory information within sensor signals with success [57], using 

a method called multi-exponential transient spectroscopy (METS) and applies it to 

alcohol vapour data. There is relatively a small amount of research where dynamic 

sensor signal information has been utilised, but the results so far are very encouraging. 

2.6 Odour Classification 

The field of classification, like many other fields of research, is still the subject of much 

argument. This field has been split into two areas within this text; classical statist- 

ical methods and ANNs. This categorisation is based more on implementation than 

any other quality. ANNs can be configured to behave as classifiers, and as such they 

implement classification by means of a network of simple interconnected nodes (or neur- 

ones). Classical statistical techniques implement classification by means application of 

a probability model. In reality, classifiers are `virtual' in that they are simulated in a 

computer environment (in theory pen and paper could be used but would be imprac- 
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Table 2.5: Table showing the major advantages and disadvantages of artificial neural 

networks and classical statistical classification techniques. 

Classification Type Advantages Disadvantages 

Artificial 

Neural 

Networks 

Good noise immunity, 

more able to cope with 

Optimum solution difficult 

to achieve, can be 

non-linear data, adaptable unpredictable, can require 

to system drift, confidence massive computing power, 

measure possible, ideal for 

VLSI implementation 

perceived as `black box' so 

difficult to analyse 

Classical Well established and 

Statistical trusted, tolerant of small 

Techniques data sets, better 

Poor immunity to noise, 

advanced methods require 

substantial expertise 

established software 

tical, to say the least); therefore implementation is the quality by which classifiers are 

visualised by their designers and simulated on computers. The field of classification is 

massive, a complete review of which is not possible here. The present review is based 

mainly on material published in the area of electronic nose technology. There are key 

texts, not based in electronic nose technology, such as [58,59,60,55] which were used 

as a basis in which to understand the field of pattern recognition as a whole. 

There have been many studies of the relative performance of artificial neural net- 

works, applied to electronic nose technology, compared to other classification tech- 

piques [3,45,25,48,61]. These studies have shown that, in some cases, ANNs have 

displayed some advantages when compared to classical statistical techniques. Table 2.5 

summarises the major advantages and disadvantages of ANNs compared to classical 

statistical techniques that have been identified in previous electronic nose research. 

The comparisons shown in Table 2.5 are only what has been reported, and should 

be used as an indication only. Any attempt to rule absolutely on the relative merits 
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of any classifier type is futile for many reasons. Firstly, qualities of the data used in 

conjunction with classification methods have a major influence on the performance. 

Secondly, the `skill' of the classifier designer can influence results (this is especially true 

of ANNs). Finally, the capabilities of the computer software employed impact upon 

the ultimate classifier performance. Therefore it was necessary to investigate a number 

of classification techniques, an exhaustive study of all possible classifier types would be 

too time-consuming, so the classifiers most likely to perform well, based on previous 

research, were studied. 

The boundary between ANNs and statistical techniques is not easy to define. There 

is strong opinion [58,60] that many ANNs simply implement previously known stat- 

istical algorithms, but using a different modelling method. For example, it has been 

proposed [62] that a feed-forward multi-layer perceptron (see section 2.6.2) can im- 

plement algorithms such as non-linear principal component analysis and multivariate 

non-linear regression. It has been claimed that the back-propagation ANN training 

technique (see section 2.6.2 was independently discovered in the statistical community, 

which called it `gradient descent'. This type of parallelism of discovery is the result 

of groups of researchers working independently. Recently, however, there has been a 

tendency for researchers from different groups to collaborate which has reduced these 

problems, as books such as [60] show. 

2.6.1 Classical Statistical Techniques 

The term `classical' as used in this text refers to those techniques of classification 

which where first developed and applied by the statistical community'. Although 

these techniques have been identified as inferior to ANNs in many applications it was 

necessary to investigate them in order to provide a `benchmark' for ANNs and to 

ascertain whether ANNs were better classifiers or not in this application. There have 

been recent reviews [50,63,64] of the performance of many pattern recognition methods 

when applied to electronic nose technology. Categorisation of classifiers of this type is 

difficult, however distinctions are usually made depending on certain aspects: 

7Statisticians who mainly work in the field of applied mathematics. 
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" Whether the classifier is parametric or non-parametric. Parametric classifiers 

assume quantities concerning the statistical nature of the data, such as the prob- 

ability density function (PDF). Advantages of these classifiers are that they are 

able to obtain good performance with small and/or bad quality data. An example 

of a parametric classifier is a Bayesian based classifier. A non-parametric makes 

no assumptions about the statistical nature of the data and therefore can adapt. 

So therefore complex data can be utilised that would be difficult to analyse in 

order to, for example, approximate its PDF. An example of a non-parametric 

classifier is density estimation. 

" Whether the classifier undergoes a supervised or unsupervised learning phase. A 

supervised learning technique is one where a data set (called the training set) 

comprising a set of input vectors with known output vectors are presented to the 

classifier during the learning phase. Internal classifier parameters are adjusted ac- 

cording to the error between the actual classifier output and the desired classifier 

output. When the classifier has been taught, a second data set can be input with 

unknown output vectors, the classifier should (if its design is correct) generalise 

in order to generate output. An example of a supervised learning classifier is 

discriminant function analysis. An unsupervised learning technique is one where 

the output vectors in the learning data set unknown and the internal paramet- 

ers of the classifiers are adapted using only information contained in the input. 

Examples of an unsupervised learning classifier is k-means cluster analysis. 

The following subsections describe the major classical statistical techniques so far 

applied to electronic nose technology. In each case the success of the technique is 

highlighted. 

Principal Components Analysis 

Principal components analysis (PCA) is a statistical technique used to reduce the di- 

mensionality of a multi-dimension data-set. PCA is often used to implement a linear 

supervised classifier, in conjunction with discriminant functions. PCA is suited to 
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handling a sensor array were the gas sensors have overlapping sensitivities but not par- 

ticularly suited to non-linear signals that gas sensors can output. PCA was applied to 

the discrimination of 5 different alcohols [50] with success (i. e. discrimination correct in 

all cases). Examination of the output from PCA in this application also showed that 

only 5 out of the total of 12 gas sensors were required. This highlights another useful 

function of PCA, namely that it can be used to simplify classifiers by eliminating un- 

necessary inputs. However, when PCA has been applied to more difficult applications, 

such as the discrimination between different beverages [50] or different coffees [65,51] 

the success has been somewhat less. In the former, PCA was only able to differentiate 

between more general groups such as beers and spirits (and with less accuracy between 

bitters and lagers). PCA has been applied to basic classes of odours [43] with good 

results. 

PCA does not necessarily have to be a linear technique [55]. The problem with non- 

linear PCA is that an optimum solution cannot be guaranteed and that the complexity 

of non-linear PCA is considerably greater than linear PCA. 

Feature Weighting 

Feature weighting (FW) is a statistical technique used to enhance separation. This 

technique is described in [64,44]. FW is parametric in nature, where the data set is 

assumed to have a normal PDF with known standard deviations. FW can be employed 

as a parametric classifier in conjunction with discriminant functions. FW has been 

used to discriminate between 4 different tobacco odours [44] using a sensor array of 2 

commercial semiconductor (tin oxide) gas sensors, where FW enabled all cases to be 

correctly discriminated. FW appears to be a promising statistical tool, although it is 

not always possible to accurately estimate the PDF of a small data set (especially if the 

data vectors have a high dimensionality, or are noisy). Also, this technique has not been 

widely appraised. It is common to employ this technique to 2 or 3 dimensional plots of 

features (such as principal components) in order to enhance groupings of vectors. 
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Multivariate Linear Regression 

2.6 Odour Classification 

Regression is probably the most popular general purpose statistical classification tech- 

nique. It is, however, used for predicting concentrations and not class membership, 

therefore its usefulness with electronic nose data is limited. Multivariate linear re- 

gression (MLR) is a form of linear regression where instead of 1 independent variable 

(input) being linearly regressed with 1 or more dependent variables (outputs), multiple 

(i. e. more than 1) dependent variables (inputs) are regressed. MLR has been applied 

to electronic nose data previously [66,5] with some success. In order for MLR to work 

has been shown that it is necessary for the input vectors to conform to the principal 

of superposition [66,44]. It has also been shown that an ANN can approximate a 

MLR classifier [55], and hence this technique has been unwittingly applied in many 

cases. It is possible, and probably likely, that electronic nose data is non-linear [50], 

for example tin oxide semiconductor gas sensors exhibit non-linear characteristics at 

high odour concentrations. MLR performs poorly with non-linear data which prob- 

ably accounts for many of the problems with achieving good classifier performance8. 

Non-linear multivariate regression (NLMR) is a non-trivial technique that requires con- 

siderable statistical skills. However, a simple ANN called a multi-layer perceptron can 

exhibit NLMR [55] but is very difficult to analyse. A MLR classifier (for quantity es- 

timation rather than class membership) provides a good benchmark by which other, 

similar, classifiers can be judged. 

Discriminant Function Analysis 

Discriminant function analysis (DFA) is a set of parametric statistical pattern recogni- 

tion techniques, they previously been applied to electronic nose data [50]. When used 

for classification, DFA is a supervised technique. Class membership of data is decided 

using a set of discriminant functions, these functions discriminate between data vectors 

belonging to different classes. The most basic for of DFA is linear discriminants, first 

pioneered by Fisher in 1936 [67], which does not require any prior knowledge of the 

data PDF. Other DFA techniques are quadratic discrimination and logistic discrim- 

'It is possible to limit this problem by ensuring that the odours measured are at low concentrations 
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ination9, these have been applied to the discrimination of coffee odours [65]. These 

other discriminant functions require some assumptions about the data but provide bet- 

ter performance. DFA showed better performance on coffee odours (81% with cross 

validation classifier performance estimation) than other techniques, such as PCA and 

ANNs. DFA has also been applied to alcohol vapours with good results [44,50] but 

this application is less `demanding' than the coffee application, most good classifiers 

achieved 100% performance on alcohol vapours. DFA is promising because it has been 

able to discriminate between data vectors that have highly complex and non-linear re- 

lationships, as shown with the application to coffee odours. The best performing DFA 

was the quadratic type which requires a normal PDF, a normal PDF is not a rare 

occurrence, therefore this assumption has not proved to be a major problem. Wilk's 

Lambda is used in DFA as a confidence measure, it measures how much of the variation 

is related to class membership (see chapter 4 for further details). 

Cluster Analysis 

There are many different algorithms that come under the heading of `cluster analysis'. 

In general cluster analysis (CA) undergoes an unsupervised `learning' phase and is non- 

parametric. CA has been widely applied to electronic nose data [43,50,68,45], the 

major CA algorithm has been one based on Euclidean Linear Cluster Analysis. In CA 

the data vectors are clustered during the `learning' phase. The clusterings are based 

on the proximity of the vectors in a domain (usually feature space). A popular CA 

technique is k-nearest neighbour (k-NN), this has been extensively researched in the 

statistical community and is a major non-parametric classifier technique [60]. k-NN 

has been applied to electronic nose data previously [61]. In general CA has performed 

less well than other techniques, one problem being that CA is very `sensitive' to the fea- 

tures that are supplied, and therefore pre-processing becomes very important. Another 

problem with CA is that clustering occurs according to the dominating information con- 

tent, ad hence it is possible for clusters to reflect the elapsed time at which an odour 

measurement was taken (due to sensor drift over the duration of data gathering) more 

'Further DFA types include canonical correlation and stepwise algorithms. 



52 2.6 Odour Classification 

than the quality of the odours measured. CA has been applied to the discrimination 

of beverages [50] (2 lagers, 2 bitters and 2 spirits). This work showed that although 

CA performed well (allowing almost perfect discrimination between beverage groups 

bitter, lager and spirit) it was also `sensitive' to data pre-processing methods. 

Other Statistical Techniques 

Apart from the major algorithms previously listed, there are a number of other 'clas- 

sical' statistical methods such as Auto-regression [69], Principal Component Regression 

(PCR) [70] and Partial Least Squares (PLS) [70] that have been applied to electronic 

nose data (prediction of gas concentration in binary mixtures). There are a very large 

number of different classifier types that could be termed as statistical. However in 

this research those methods that have been popular and have demonstrated good per- 

formance were considered. An exhaustive search of all possible statistical methods 

was unfeasible. However the methods reviewed here do demonstrate that they should 

not be ignored totally for any other electronic nose application (it would be unwise to 

exclusively use ANNs for example). 

2.6.2 Artificial Neural Nets 

A more detailed description of artificial neural networks (ANNs) employed in this re- 

search project are given later in this thesis (chapter 4. This section, however, gives a 

brief review of ANNs and how they have been previously implemented in the field of 

electronic nose technology. 

The term `artificial neural network' has been defined in many ways: 

"A neural network is a massively parallel distributed processor that has a 

natural propensity for storing experimental knowledge and making it avail- 

able for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network through a learning process. 

2. Inter-neurone connection strengths known as synaptic weights are used 

to store the knowledge [59]. " 
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"A neural network is a circuit composed of a very large number of simple 

processing elements that are neurally based. Each element operates only 

on local information. Furthermore each element operates asynchronously; 

thus there is no overall system clock [71]. " 

"Artificial neural systems, or neural networks, are physical cellular systems 

which can acquire, store, and utilize experiential knowledge [72]. " 

No one specification has been adopted by the artificial intelligence community as 

definitive, the previous quoted definitions however provide a good overall view. 

An increasingly popular technique for odour classification has been the employment 

of ANNs. The development of ANNs was (and is) inspired by biological neural networks. 

The largest biological neural network known to exist, i. e. the human brain, performs 

in a manner which fascinates mankind and has driven mankind to formulate many 

theories as to the nature of thought. It is only recently that the basic structure of 

the brain has been understood, and it was early this century (1911) that the idea 

of a network of neurones being the underlying structure of the brain was postulated. 

The first attempt to construct artificial neurones was performed in 1943 by McCulloch 

and Pitts [73]. Some success was achieved, but the parameters associated with these 

ANNs had to be hand-crafted which made using large networks difficult. In 1949 Hebb 

formulated a learning rule for the ANNs developed earlier by McColluch and Pitts [74]. 

He also suggested that the brain's connections where constantly changing as it learns 

throughout its lifetime. Basically the learning rule was based on reinforcement and 

allowed the parameters associated with a network to be systematically adjusted until a 

satisfactory performance was achieved. From this point in history, research into the area 

of ANNs increased and the next major advance occurred in 1958 with Rosenblatt [75]. 

This work introduced the Perceptron, with the possible functionality of a single layer 

network1° of perceptrons, taught using the Perceptron Learning Rule, was investigated. 

Classification problems were successfully solved by a single layer perceptron network. 

Widrow and Hoff in 1960 [76] proposed a neurone model called the Adaline (Adaptive 

'° Meaning a network where the input to the network is connected to the same neurones as the output 

from the network. 
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Linear Element) which is similar is many respects to the perceptron but is taught using 

a different algorithm called Least Mean Square. Research into perceptrons, adalines and 

other ANN models bloomed for many years. These networks were able to segment the 

weight space, by linear discriminant functions, into regions which allowed classification. 

In 1969 Minsky and Papert highlighted the limitations of single layer ANNs [77], where 

the XOR problem was proved mathematically to be unsolvable. They also postulated 

that none of the desirable qualities so far exhibited by single layer networks would 

also be exhibited by multi-layer networks. The XOR problem is now the `standard' or 

`benchmark' problem that is frequently used in ANN research. For many years after 

this publication research in the area of ANNs reduced, more accurately they became 

`unfashionable'; this slowed progress significantly. 

Developments in self-organising ANNs occurred during the 1970's and 1980's [78,79] 

which later gave rise to ANN paradigms such as ART (Adaptive Resonance Theory) . 

Hopfield in 1982 published work [80] which described a new ANN paradigm called the 

Hopfield Network, these networks were to become one of the major classes of ANN. 

Kohonen, also in 1982, published work [81,82] which proposed a new ANN paradigm 

which learnt using an unsupervised (or self-supervised) algorithm, these ANNs were 

called SOMs (Self Organising Maps) and have also become popular with derived types 

such as LVQ (Learning Vector Quantisation) being developed as classifiers. 

A major breakthrough in ANNs occurred in 1986 with a publication by Rumelhart, 

Hinton and Williams [83] which described a learning algorithm now known as `Back 

Propagation' (or just BP for short). The main reason why this discovery was important 

was because until this time there was no effective algorithm for training a perceptron 

(or similar neurone model) network that had more than one layer of adaptive weights. 

The famous XOR problem was no longer unsolvable by ANNs. It was also from this 

discovery that multi-layer perceptron (MLP) ANNs became the most popular ANN. A 

further review of literature concerning BP reveals two further facts; firstly two other 

publications describing BP were published at around the same time independently [84, 

85], and secondly that BP was described as early as 1974 in a PhD thesis [86]. which 
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unfortunately remained unknown for over a decade" 

In 1988 the first popular alternative to the MLP was discovered by Broomhead and 

Lowe [87]. A new network based on neurones which were modeled using radial basis 

functions (RBFs) was described, these ANNs have been applied to numerical analysis 

and linear adaptive filters, amongst others. Recently RBFs have become popular in 

control engineering applications where the advantages of RBFs over MLPs are signific- 

ant. 

The number of publications in the area of ANNs has grown significantly, especially 

since the discovery of BP. The historical review earlier in this section indicated only 

the major, initial, publications. Many of these publications were followed shortly after 

with further important research. The number of books and journals available is now 

enormous12. Luckily, there have been numerous quality publications describing the 

application of many ANN types to electronic nose technology. The first published 

application of ANNs to electronic nose technology occurred in the early 1990s [46,88] 

with the use of BP trained MLP ANNs. 

Figure 2.5 shows how the field of ANNs is sub-divided depending on ANN architec- 

ture and training algorithm, such categorisation aids the researcher into what paths of 

investigation have a high probability of success. 

The following subsections describe previous ANN research in the field of electronic 

noses based upon the type of ANN employed. In each case the relative performance of 

the ANN is reported. 

Multi-layer Perceptron 

By far the most popular arrangement of neurones within an ANN is the MLP. This is 

also reflected in the amount of published research where MLPs have been applied to 

electronic nose technology [46,88]. This type of ANN was the first to be applied to 

"Perhaps current writers of PhD theses and their institutions should take note! 

12A recent valuable source of ANN information and literature is the `Internet', the FAQ (Fre- 

quently Asked Questions) published regularly on USENET: comp. ai. neural-nets and archived at: 

ftp: //ftp. cs. cmu. edu/user/ai/pubs/news/comp. ai. neural-nets and http: //asknpac. npac. syr. edu, is well 

worth reading. 



56 

Supervised 

M! LP 
11 ýMj 

2.6 Odour Classification 

Unsupervised 

Other somm (non-MLP) 

ANNs 

RJBF 
Other 

(non-RBF) 

LVQ 

Other 
(non-SOM) 

A-PT 

Other 
; su; pervised 

Other 
unsupervised 

Figure 2.5: Categorisation of the major artificial neural network types. 

electronic noses. There are many different `flavours' of MLP ANNs and BP training 

algorithms, some of these have previously been applied to classification of odours from 

an electronic nose. The first `flavour' of MLP that most researchers have employed 

can be termed as `vanilla'. This is a standard, feed-forward, arrangement of neurones 

trained using standard BP which is described within the book "Parallel Distributed 

Processing: Explorations in the Microstructure of Cognition" by Rummelhart and 

McClelland [83]. Much ANN research has been performed by applying `vanilla' MLPs 

in order to establish a benchmark performance by which further classification techniques 

were compared. Gas mixtures have been analysed using MLP ANNs [89], `vanilla' MLP 

ANNs were employed and the effect of changes in internal parameters upon classification 

performance was investigated. Other similar works have been published; enhanced 

versions of MLP have been investigated when applied to the analysis of pure gases 

and complex odours [90,46,88]. There have been many more publications of this type, 
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there are too many to cite individually; however, it can be observed that there is a large 

amount of repetition where, firstly `vanilla' MLPs were shown to perform better than 

more established statistical based methods, or secondly empirical parameter derivation 

were described. The impression from this is that each set of researchers (i. e. each 

electronic nose project team) are at the same stage in ANN development and the field 

has not matured sufficiently for diverse ANNs to be significantly researched. 

Even if the ANN paradigm employed is of only one type, there are many parameters 

that need to be empirically derived, such as training parameters, network topology and 

estimation of classification performance. These parameters, according to the results 

published so far, seem to be highly dependent on the application. This limits the relev- 

ance of published material, therefore the review was biased towards research performed 

at the University of Warwick or with similar sensor technology. 

Radial Basis Functions 

Radial basis function (RBF) ANNs are popular in the field of control engineering. Their 

application to electronic nose data has been limited. An ANN inspired by RBF has 

been applied to surface acoustic wave (SAW) sensor arrays [91]. Research has recently 

been published which applies RBF ANNs to electronic nose technology [92]. There is 

a wealth of material published about RBF ANNs [59,60,55]. RBF ANNs have been 

found to be superior to MLP ANNs in some respects, firstly the training process for 

RBF ANNs is more reliable, secondly they only need one hidden layer of neurones, and 

thirdly in some cases they can generalise better 13 

Self-Organising Maps and Learning Vector Quantisation 

Self-organised maps (SOMs) and Learning Vector Quantisation (LVQ) ANNs were dis- 

covered by Kohonen [81,82]. They have been applied to a wide variety of problems 

including classification of odours [93,94]. SOM ANNs have proved to be a valuable tool 

for analysis of the information content within a data-set. It is not itself a classifier but 

13This depends on the quality of the data. MLP ANNs can interpolate between missing data points 

better than RBF ANNs because of the `global' approximations that result from training. 
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a MLP stage can be appended in order to construct a classifier [94]. SOMs have been 

employed in order to visualise the effects of various data pre-processing techniques and 

to identify the source of noise. Further, SOMs have shown to be better in some cases 

for adapting to, and therefore becoming tolerant of, noise effects such as sensor drift. 

SOMs are more closely related to the neural structures found in the human olfactory 

system than other ANN types such as MLP and RBF. The olfactory sensor neurones in 

the human nose are subject to considerable drift and time varying behaviour, therefore 

SOMs have shown some success in this area [95]. Workers have experienced problems 

when applying SOMs, notably their highly empirical design and lack of control during 

the unsupervised learning phase. 

A development from the SOM is the LVQ ANN, which is a classifier and undergoes 

a supervised learning phase, and which has been applied with some success to electronic 

nose data [96]. In this work, as well as MLP and LVQ ANNs, fuzzy learning vector 

quantisation (FLVQ) was employed, which is a `flavour' of LVQ with the incorporation 

of fuzzy set theory (see section 2.6.3). FLVQ was developed by the authors and shown to 

yield better performance than LVQ and MLP ANNs when applied to the classification 

of whiskey odours. It should be stressed that the MLP ANN employed was a `vanilla' 

type and was not enhanced in any way. This research does however show that LVQ (or 

`flavours' of LVQ) ANNs have potential. 

Other Network Types 

There have been a small amount of published material detailing the application of ANN 

types that do not fall into the previous categories. 

The performance of recurrent ANNs such as Elman and Jordan have been compared 

to `vanilla' MLP ANNs [97]. These recurrent networks were found to perform at best 

only marginally better than `vanilla' MLPs, it is possible that an enhanced MLP could 

outperform all the other types. The problem may not be that recurrent nets are 

unsuitable for application to electronic nose data, but that recurrent networks require 

more attention to data pre-processing and overall implementation. Of all the ANN 

types recurrent networks are most similar to the networks found in the olfactory bulb 
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(see section 2.3.2). In an effort to utilize the dynamic information within electronic 

nose data, time-delay networks were employed along with recurrent networks to simple 

volatile vapours [56]. Time-delay networks performed favourably compared to recurrent 

networks for this particular application. 

Hopfield networks, more precisely Boltzmann and Hamming networks, have been 

applied to the classification of alcohol and hexane vapours [48] and compared with 

the performance of classifiers based on statistical cluster analysis. Cluster analysis 

exhibited superior performance, especially on simple alcohol vapours such as methanol, 

ethanol and isopropyl alcohol. The poor performance of ANNs was blamed on poor 

data quality. 

Adaptive networks such as ART show great promise. Although ART has only 

recently been applied to electronic nose data [98], it shows great promise because it 

allows new odours to be learnt without having to completely rebuild the network. 

Within the ANN community, ART has received great criticism for lack of statistical 

foundation [62]. 

2.6.3 Fuzzy Set Theory 

Fuzzy set theory is a set of rules by which a set of numerical values are transformed 

into or out of a fuzzy domain. Fuzzy theory is well described in many publications [99, 

100] and the theory can be applied to many classification techniques [101]. It has 

been proposed that fuzzy sets enable performance of classification of odours to be 

improved because the signal conditioning that occurs during `fuzzification' and 'de- 

fuzzification' translates many properties of overlapping sensor arrays into parameters 

that are better handled by classifiers [61]. A discussion of the role of fuzzy logic within 

the field of electronic nose technology has previously been published [102], where it 

was concluded that neuro-fuzzy systems were a possible advance towards the goal of 

an intelligent sensor system. Fuzzy sets have been applied to LVQ ANNs [96], and 

to MLP ANNs [103]. Fuzzy reasoning has been used in conjunction with MLP ANNs 

(as opposed to a modified MLP) to classify odour groups (inflammable gases, fragrant 

smells and offensive odours) [90]. In this study, fuzzy reasoning enabled odour groups 
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to be distinguished with 100% accuracy. Fuzzy sets are currently popular and although 

there is less published material than ANNs in general they are possibly the fastest 

growing area of classifier development within electronic nose technology. 

2.7 Previous Applications 

This section highlights some of the novel applications which have employed an electronic 

nose, and an appreciation of the relative complexity of the application that composes 

this PhD can subsequently be gained. The field of electronic nose technology is still 

relatively young, having only been the subject of significant research in the last 15 

years. Consequently the variety of applications of electronic noses has grown at an 

almost exponential rate. 

The range of types of application of electronic noses is constantly expanding. In 

many industries today (for example the food, brewing and perfume) the primary 

method of assessing the flavour and/or smell of various substances is still the human 

nose and so had been the target of research in the area of electronic noses which has been 

performed for the past 15 years or so. It is therefore the area of beverage or foodstuff 

production which is responsible for the majority of electronic nose applications. 

At the University of Warwick, the electronic nose has been applied to the grading 

of coffees [45] and to determining the roasting level of coffee beans [51]. Also, beverages 

such as whiskey, lager and bitter have been graded [45]. 

The perfume industry is an obvious target for electronic nose applications [104]. Air 

quality has been estimated [45], and more specifically, the presence of dangerous gases 

in the air within mines has been detected using an electronic nose [105]. The detection 

of boar taint has been reported [106] (the release of volatile compounds that exist 

within pork fat). Irradiated tomatoes have been screened [17] where C02,02, water 

vapour and ethylene were detected. These substances are released from the tomato 

cells when they are stressed (which occurred during handling). Wine recognition has 

been previously performed [61], only two different wines were analysed but the results 

were conclusive with discrimination being easy. 
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Grain odour resulting from organism activity has been used as the subject for 

electronic nose application [8,107]. The organisms mainly responsible for grain odour 

are insects and fungae, such as moulds. This work is interesting because a large amount 

of data was collected (235 samples) which allowed many different types of pattern 

recognition to be investigated, they achieved 90% classification accuracy by employing 

a `vanilla' MLP ANN (for two classes: good and bad). 

2.7.1 Smelling Bacteria Odours 

There are a number of publications which detail the analysis of bacteria odours. However 

these studies do not treat the odours as being bacteria odours but as being odours 

such as 'off-flavour', `spoilt food' and `food freshness'. In reality, many odours that 

we perceive as originating from inanimate objects are the result of the metabolism of 

micro-organisms. An example of this was the analysis of fish freshness [45]. Micro- 

organisms grow on fish, and the level of perceived freshness depends on the amount of 

micro-organism activity. If fish is frozen, the activity of the micro-organisms is virtu- 

ally halted and the shelf life of the fish is extended. Given a particular type of fish, 

in this case haddock and cod, there is a very limited range of bacteria types that are 

responsible for spoilage. The study therefore analysed a limited number of bacteria 

growing in a consistent environment. Also in this study only three fish of each type 

were used, the relevance of the study to the fish industry as a whole is therefore limited. 

The principal of fish freshness estimation by electronic nose was proved to be feasible. 

The off-flavour of lagers has been estimated using an electronic nose [6]. This off- 

flavour is caused by the action of micro-organisms on the beer, acid producing micro- 

organisms (sometimes bacteria) contaminate the beverage. The brewing process in the 

beverage industry is highly developed and specially bred yeasts are employed that yield 

a high quality product with low production costs. The activity of these yeasts, under 

the normal brewing process, is highly consistent and therefore the odour given off by 

a satisfactory product is also highly consistent. A deviation from the normal odour is 

therefore simple to distinguish. 

Milk quality is related to the acidic products which build up as a result of micro- 
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organism growth. Fermentation of milk has been monitored using a biosensor ar- 

ray [108]. Similar to beverages, the fermentation of milk is highly controlled with only 

one yeast being involved. 

More closely related to this research project (in that bacteria living on/in hu- 

mans are involved), is work that was published that described the monitoring of body 

odours [18]. The flora that exist in the armpits cause body odour, and the effect of 

deodorant products upon this odour was investigated. This work did not attempt to 

distinguish between different odours but described the variance in odour concentration. 

If the quality of odour was effected as well as strength then this would have been missed 

in this investigation. 

The odorous products of pig slurry have been analysed [109], the research was 

significantly simplified by creating an artificial odour. Pig slurry was analysed initially 

using gas chromatography (GC), the major individual odorants were identified. From 

this information, the odour was reconstructed by reconstitution of an aqueous solution 

where each major odorant was present in similar relative concentrations. This odour 

reconstruction allowed a more stable odour to be analyse by the electronic nose, which 

in turn reduced noise within the subsequent data. Visualisation of the odour data was 

accomplished by using a statistical based clustering technique called Sammon Mapping. 

The closest published research was only recently published last year [110] (i. e. during 

the present PhD research). This work analysed the odour from 12 different microor- 

ganisms (including some types employed in this research). The odour sampling method 

was to place a Petri dish containing the bacteria to be sampled in a plastic bag (previ- 

ously filled with air) and leaving it for 2 minutes. The air was then pumped out of the 

plastic bag and into an electronic nose. For some classes, all the vectors were resulting 

from 1 bag of odour (i. e. all measured on the same occasion). The resultant data set 

was also imbalanced with some classes having 48 vectors and others only 6. A `vanilla' 

MLP ANN was employed to classify the odours, the network had 112 inputs and 13 

outputs (one for each class). Although the results seemed impressive14 the methods 

14 Some classes achieving 100% classification accuracy using cross-validation classifier performance 

estimation 
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employed do not have any substantial statistical foundation. The effect of culture 

age was ignored. This research can only therefore be considered as mildly interesting; 

other research although having a less similar application, was of more relevance to this 

research. 



Chapter 3 

Electronic Nose Development 

and Initial Data Collection 

Experiments 

This chapter describes the methods of data collection including the design of an auto- 

mated sampling sub-system, the procedures for testing and characterisation of the 

apparatus and the procedures employed for data collection itself. 

The purpose of data collection was to record signals from the sensors in the electronic 

nose and store them as data-sets in files1 on computer disc (i. e. non-volatile storage). 

Data file storage allowed subsequent analysis and processing to be performed more 

easily. 

3.1 System Overview 

Before describing individual system elements (sub-systems), it is necessary to give a 

brief description of the complete system in order to illustrate the role of each element. 

The photographs shown in figure 3.1 show the apparatus used for data collection in 

the Microbiology Laboratory in the Biological Sciences Department at the University 

of Warwick. These photographs show how the system was constructed, the size of the 

'The files were in text format where numerical values were represented as ASCII strings. 
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Figure 3.1: Photograph of (a) whole system (scale 9.3: 1)and (b) the valve/vessel as- 

sembly (scale 2.4: 1) within the Front-end, used to collect data in the Biological Sciences 

Department at the University of Warwick. 

system (and therefore its portability), and the environment in which it was used. 
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Figure 3.2: Schematic diagram of apparatus showing the three major stages. 

The system centered around a FOX 2000 unit. This was a commercial electronic 

nose which conssisted of a gas sensor array, temperature sensor, humidity sensor, va- 

cuum pump and interfacing electronics. It is described in more details in section 3.4. 

The system consisted of three main stages: the odour sampling sub-system, the FOX 

2000 unit, and the computer. Figure 3.2 shows how these main stages were combined 

to form the complete system. 

From figure 3.2 it can be seen that the information simply passes through the 

system, from one stage to another, in a feed-forward manner. The structure of the 

description of the apparatus is based on a function breakdown into these stages. 

3.2 Design of Odour Sampling Sub-system 

An odour sampling sub-system was designed and built as an add-on to the Electronic 

Nose. This sub-system was called the `autosampler'. The purpose of the odour sampling 

sub-system was to control the delivery of gases to the sensor chamber in the FOX 2000. 

This was necessary in order to address problems that had compromised performance 

in previous work [52]. Those problems may be summarised as: 

" Poor reproduceability of data due to a significant variance in several sampling 

parameters, such as the time the sensor array is exposed to the sample. 
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" Poor reproduceability of data due to changing environmental conditions, such as 

odour sample temperature. 

" Labour-intensive data gathering sessions leading to small quantities of data. 

" Real time comparisons between odours from different odour samples could not be 

made. Therefore an odour from an odour sample could not be subtracted from a 

reference (background), odour in order to reduce effects such as sensor drift. 

The overall goal of the sampling system was to reduce unwanted variation in sensor 

signals. This was achieved by implementing the following features: 

" Computer control of the gas flow using solenoid valves to switch gas flow through 

one of several vessels, each containing an odour sample. 

" Filtering of the air input to the sub-system in order to reduce sample contamin- 

ation due to external air-born contaminants, such as pollen or fungal spores. 

" Using a water bubbler to condition the air that was input to the system through 

water in order to reduce evaporation from the odour samples (which were aqueous 

solutions), and to control humidity. 

" Placement of sample vessels (and associated gas flow fittings) within a temperat- 

ure controlled environment, (± 0.1°)C. 

" Automated data gathering using software that interfaced to the sensor array 

within the FOX 2000 and autosampler. 

Figure 3.3 shows a schematic representation of the autosampler showing the gas 

and electrical connections. Gas flow was directed through one of three routes by the 

action of six solenoid valves (Lee Company LFAA1200118H). Each vessel had a pair of 

solenoid valves associated with it, one on the input side and one on the output side. 

When power was not applied to a particular pair of valves, the associated vessel was 

isolated from the rest of the sub-system. When power was applied to a pair of valves 

the associated vessel was fully connected to the rest of the sub-system and gas flow 
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Figure 3.3: Schematic diagram of the `autosampler' showing gas and electrical connec- 

tions. 

occurred via this route. At any one time, only one pair of valves were powered up. 

The gas connections to each valve were that the input was connected to the `common' 

terminal and the output was connected to the `normally closed' terminal, the `normally 

open' terminal was blocked off (this caused the valves to act as a simple on/off control). 

Control of the valves was by means electronic signals2 being applied to each valve via 

an interface circuit, which was in turn connected to an I/O card in the PC (National 

Instruments LPM-16). Software run on the PC ultimately controlled the solenoid 

valves and therefore controlled gas flow (the software is described in greater detail in 

appendix A). This sub-system therefore had three pathways (called channels) for gas 

to flow from the input to the output with one vessel per channel (these channels are 

subsequently referred to as channels #1, #2 and #3. Their corresponding vessels are 

2The signals to the solenoid valves were actually power supply connections rather than a control 

signal separate to the power supply. 
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referred to as vessel #1, #2 and #3). The diagrams in figure 3.4 show more clearly 

the valve/vessel assembly used within the autosampler. It can be seen that the gas 

pathways for all channels were designed to be of equal length. It was important to 

preserve identical gas flow characteristics across all channels in order to reduce any 

inter-channel variation. 

The autosampler was operated in a cyclic fashion, whereby a set sequence of timed 

valve activations was repeated for pre-determined number of times. Vessel #1 was used 

as a reference and vessels #2 and #3 held the odour samples. The reference vessel, when 

selected, allowed the sensor array to stabilise its response to a known odour3. Next, 

one of the sample vessels was selected and the change in sensor response was observed 

and recorded. It was possible to set up the autosampler to activate any channel at a 

specific time, but in reality this was only done during checks for faults. The sequence 

of channel activation that was adopted for each cycle was; #1-#2-#1-#3. Therefore 

each odour sample was measured, or `smelt', once during each cycle. The action of 

activating the reference channel (#1) followed by one of the other channels (#2 or #3) 

was called a `smell' and represented one complete measurement of an odour sample. 

One cycle represented a `smell' of sample #2 and a `smell' of sample #3. 

The vessels were placed into an aluminium block in a DRI-BLOCK heater (model 

DB-2p, manufactured by Techne Ltd. ). The DRI-BLOCK heater is a commercial 

product in which the target temperature is set by means of external trimmers to + 

0.1°C, and the internal heating element is powered by a PI controller in order to main- 

tain the target temperature. In the top of the heater was a large inlet, into which 

apparatus was placed (in this case a machined aluminum block). In the aluminium 

block holes were machined that were just big enough to accept a glass vessel (a vessel 

was a 25 ml glass jar which is commonly employed in microbiology research), only the 

plastic lid of the jar protruded out of the top of aluminium block which acted as a 

heater jacket. This meant that the heater target temperature was set and the bacteria 

samples in the glass jars were maintained at the target temperature (± 0.1°C). It was 

'In some experiments the vessel in the reference channel was empty and so the reference gas was 

laboratory air, technically this is still an odour because air contains small amounts of odorants. 
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Figure 3.4: (a) Plan view and (b) cross-section view, of the valve/vessel assembly used 

within the autosampler. Electrical and external connections have been omitted for 

clarity. 

assumed that the heat conduction properties of the aluminium block were such that 

cooling effects on the block of external environmental factors, such as the laboratory 
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atmosphere, would not have a significant effect on the stability of the temperature of 

the odour samples. The input pipe to each vessel extended to approximately 2/3 of 

the total depth, whilst the output pipe extended very little (2mm) below the lid. This 

was to allow a plug-flow characteristic within the vessel, this in turn allowed, at the 

moment of the particular vessel being selected, the static head-space to be pumped out 

first. 

Conditioning of the air entering the system was necessary because it was important 

to keep the environment in which the bacteria were growing as stable as possible (in 

order to reduce unwanted variability in the odour data). Therefore on the input to the 

autosampler air was passed firstly through a bubbler, secondly through a charcoal filter 

and finally through a fine filter (mesh size of 5 µm). The purpose of the charcoal filter 

was to reduce the amount of air-borne contaminants entering the system, such as dust, 

pollen and fungal spores and also to absorb volatile organic compounds that may be 

present. The bubbler helped maintain the humidity at a constant level. Obviously, the 

bubbler increased the humidity of the gas entering the system and this was desirable 

because the aqueous bacterial growth medium was prone to evaporation. The fine filter 

was a last barrier to stop contaminants entering the system, the mesh was fine enough 

to stop most common particulates. 

Additionally, in line with the input to the autosampler, a Rotameter (series 1100, 

MFG Co. Ltd. ) gas flow meter was installed. This device measured gas flow by chan- 

neling it through a vertical glass pipe, in which a metal indicator floated on a column 

of air. The higher the rate of gas flow, the higher the vertical displacement of the 

metal indicator. This particular Rotameter was capable of measuring gas flow up to 

1.0 litre min-1 with an accuracy of 0.02 litre min-1. The main reason for employing 

the Rotameter was to check for air leaks in the autosampler. For example, when the 

Rotameter showed a fall in flow-rate but the flow meter within the FOX 2000 showed 

no change in output, it was found that air leaks in and around the vessels was the 

cause. 
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The `autosampler' was under control of an IBM AT compatible personal computer 

(PC)4, via a control circuit, details of the computer system and software are given in 

section 3.3. The control circuit existed as electronic circuit which was separate from the 

computer. The circuit itself was simple in design, and figure 3.5 shows the sub-circuit 

for each valve. The sub-circuit was based on a design recommended by the solenoid 

valve's manufacturer (Lee Components). The circuit was simply 6 identical sub-circuits. 

each sub-circuit had a separate input and output. The sub-circuit consisted of a npn 

transistor (2N3055, rated at up to 15 A collector current! ) driven in the saturated region 

which therefore acted as a switch, the transistor was connected in common emitter 

mode. The power consumption of each valve was 1W maximum, therefore being driven 

at 11.4V from a 12 V power supply5, each valve consumed 88 mA maximum. Each 

digital output from the LPM-16 I/O card was rated at 100 mA maximum, this is more 

than ample to drive the base of the transistor. An LED was connected, via a current 

limiting 220 Sl resistor to the base of the transistor. This gave a visual indication of 

the status of the circuit; LED lit for valve on and LED not lit for valve off. 

Additionally it can be noted from the schematic diagram in figure 3.5 that there was 

a diode connected, across the solenoid valve terminals. The purpose of this was to allow 

a path for conduction (other than through the rest of the circuit) of current caused by 

back-emfs (called inductive `kick') which result from the generation or collapse of the 

magnetic field within the solenoid when the solenoid was energized or de-energized. 

The pipe-work between the valves and the vessels was brass piping with an approx- 

imate outer diameter of 1.5 mm and an approximate inner diameter of 1.2 mm. Brass 

can absorb a finite amount odorants as a result of chemical reactions on its surface. 

During the `burn-in' of the system (described in section 3.5), which had a duration 

of several days, the brass piping was exposed sufficient to odorants that subsequent 

odorant absorption was negligible (i. e. The effect of odorant absorption during the 

data collection experiments was negligible). The other piping was PVC (Lee Company 

4Manufactured by Viglen Ltd, with an Intel 80486DX33 cpu, 8MB of RAM, MSDOS 6.22 and MS 

Windows 3.11. 
'When switched on, the collector transistor terminal was approximately at 0.6V, which is normal 

for a npn transistor, the voltage drop across the valve input was therefore 12V - 0.6V =11.4V 
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Figure 3.5: The electronic sub-circuit for control of a solenoid valve. 

TUVA4220900A), which fit tightly over the brass pipes, inner diameter was approx- 

imately 1.37 mm (when unstretched). The small diameter of the pipe-work allowed a 

small `dead-volume' and therefore a fast response. 

3.3 Computer Control System 

The computer (PC) was central to the system. It controlled the supply of power to 

the valves via a control circuit and sampled the sensor signals within the FOX 2000. 

An LPM-16 I/O card was used to connect the computer to the valve control circuit 

and the FOX 2000. The LPM-16 I/O card allows both digital and analogue signals to 

be input to and digital signals to be output from the computer. In this case 6 of the 

digital output lines (and a0 volt, i. e. digital ground line) were connected to the valve 

control circuit, that is one digital line per valve. Nine analogue LPM-16 input lines 

were connected to sensors within the FOX 2000,6 to gas sensors, 1 to a temperature 
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sensor, 1 to a humidity sensor and 1 to a gas flow rate sensor. 
Software was written using a software package called Labview. Labview is a lan- 

guage sold by National Instruments, aimed at scientists and engineers who wish to 

control and communicate with external measurement equipment. Labview runs within 

the Microsoft Windows graphical environment and allows program development via a 

graphical interface. Labview programs were interpreted by a Labview interpreter in 

this project', this meant that Labview had to be installed on the computer within the 

system (as well as the computer used for software development). Labview therefore 

allowed programs to be written that communicated with the LPM-16 I/O card and 

therefore communicated with the valve control circuit and electronic nose. The main 

program written was called the `autosampler Control Program', this program combined 

the control of the gas flow and the recording of sensor signals from the FOX 2000. The 

overall purpose of the program was to allow the collection of large quantities of data 

from the FOX 2000 with the minimum of workload. The user was able to input para- 

meters into the program's graphical user interface (GUI) that determined the duration 

that each valve was open, the number of times (cycles) that an odour was sampled and 

where (in which data file) the sensor signals and valve states was stored. Because the 

valve states were also recorded with the sensor signals it, allowed timing information 

to be extracted from the data files. 

The computer software allowed, in theory, for a data gathering experiment to only 

need a worker to be present at the start and once the experiment was underway there 

was no reason for a to attend. Previous work [52] required a worker to be present 

throughout the entire duration of the data gathering experiment, and since this period 

of time was many hours human errors were inadvertently introduced. Until this system 

was employed, precise timed exposure of the sensor chamber to odour was difficult. All 

the Labview programs written for this project are detailed in appendix A. 

The autosampler Control Program, via a user friendly screen (see Figure A. 2), gave 

feedback to the user on the current status of the experiment by presenting information 

6It is possible to compile the programs in order to make stand-alone applications by buying an extra 

add-on package 
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such as number of completed cycles, sensor readings for the previous few minutes and 

current valve status. The user could therefore check that the experiment was run- 

ning smoothly at one glance. When the maximum number of cycles was reached the 

experiment was halted and put in the standby condition (detailed in section 3.6). 

The FOX 2000 Electronic Nose is `shipped' with dedicated software that is de- 

veloped by the manufacturers specifically for performing data collection experiments. 

However this software was unable to control the valve control circuit and the work 

involved in incorporating this extra functionality was deemed to be greater than the 

work involved in developing a smaller more dedicated program, the later strategy was 

therefore adopted. 

3.4 The FOX 2000 

The electronic nose employed was based on an early design of the Alpha M. O. S. FOX 

2000. This instrument, in its original form (before modification) consisted of a sensor 

chamber which contained six metal oxide gas sensors, a temperature sensor (LM35CZ) 

and a humidity sensor (MiniCap 2). On the output of the sensor chamber was a gas 

flow-rate sensor, a mass-flow controller (Parker 854TF) and a vacuum pump which 

exited to an exhaust fitted with a silencer. The Electronic Nose was connected to 

an LPM-16 I/O card within a PC via an external connector. Figure 3.6 shows the 

schematic layout of the FOX 2000. 

The FOX 2000 contains some analogue op-amp interfacing circuitry, that converts 

the resistance of the gas sensors (and the signals from the other non-gas sensors) into 

a DC voltage (0 to 10V) for input to a computer. This circuitry additionally outputs 

voltages to the front panel circuit and connects to the gain and calibration controls. A 

photograph of the FOX 2000 is shown in figure 3.1a. On the front panel there were the 

following controls: 

" Six numerical LED displays, 1 per gas sensor. These displays showed the voltage 

being output for each sensor. These displays allowed the user to check that the 

output from the sensors was within the range suitable for the I/O card (0 to 10 
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Figure 3.6: The construction of the Alpha M. O. S. FOX 2000 sensor array. 

V). 

" Six rotary controls, 1 per gas sensor. These controls altered the gain for the 

analogue interface circuit for each sensor, thus the magnitude of the output for 

each of the gas sensors could be controlled. If a particular sensor produced a 

voltage out of range (< 0 or > 10 volts), its corresponding control could be used 

to re-tune the output to the desired level. In practice, the base line output was 

set to be between 6 and 8 volts. 

" Six heater controls, 1 per gas sensor. The heater in each gas sensor could be 

controlled, more details on the heaters within the gas sensors are given in later 

in this section. The controls were selectors which had three positions; 5 volts. 4 

volts and 0 volts. The heater element of each sensor could be supplied with either 

0,4 or 5 volts. The normal heater voltage was 5 volts, supplying a gas sensor 
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heater at 4 volts resulted in the gas sensor operating at a lower temperature which 

altered its output characteristics. The heater could be turned off to save power 

if required. Heater controls were set at 5 volts at all times. 

Pump on/off switch. This switched the rotary vane? pump within the FOX 2000 

either on or off. During the setup of an experiment it can be useful to momentarily 

turn off the pump. During this work the pump was left running at all times in 

order to keep the gas sensors at equilibrium. 

" Pump purge/normal switch. This controls the voltage supplied to the rotary 

vane pump within the FOX 2000. After a measurement, the switch can be set 

to purge which increases the voltage to the pump. The resulting higher gas flow 

rate increases the rate at which the gas sensors recover from a measurement. In 

practice, the purge flow rate was not significantly higher than the normal flow 

rate, this switch was therefore set to normal at all times. 

" Calibration controls. There were two calibration controls; the first selected one 

of the 6 analogue voltage output channels (i. e. 1 per gas sensor), and the second 

set one of several resistances. These controls allowed a calibration routine to be 

performed by setting the resistance for each channel. It was found that calib- 

ration, in this manner, was only needed once as previous op-amps and resistors 

were employed in the FOX 2000 circuitry. 

Initially a graphite rotary vane vacuum pump (Type 122, Vacuum Pump Manufac- 

turing Co. Ltd. ) was employed (this is the supplied item). However, this was later 

replaced, after a number of initial experiments had been performed, by a diaphragm 

action vacuum pump (KNF Neuberger NMP30KNDC). This was because the former 

unit proved to be unreliable when pumping gas that had a significantly higher level of 

humidity than normal room air (due to the bubbler and aqueous odour samples in the 

autosampler). The problem was that within the rotary vane pump small amounts of 

graphite dust are produced as part of normal operation, and the high humidity levels 

caused condensation to form inside the pump causing graphite dust to form into a 

'Now membrane pumps are used for better reliability. 
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sludge. This sludge consequently prevented the rotor from turning which could lead to 

poor performance and in the worst case lead to the electric motor (which was driving 

the rotor) burning out. 

Other modifications to the standard FOX 2000 unit included the removal of the 

bio-filter which is in-line on the input to the sensor chamber. During characterisation 

tests condensation formed inside the filter (due to higher than normal humidity levels) 

causing an increase in resistance to gas flow, and this eventually resulted in gas flow 

being completely halted. Because the autosampler already performed filtration, the 

bio-filter was completely removed. It is interesting to note that the bio-filter used in 

the autosampler never suffered from this problem. 

Alpha M. O. S. have recently started to market a new FOX instrument. This device 

differs from the old FOX 2000 in two main ways; firstly the analogue to digital con- 

version now takes place within the FOX 2000 and the computer interface is a RS232c 

serial connection from an embedded Motorola 68HC11 micro controller, secondly the 

the new FOX series is able to use SAW sensors as well as metal oxides. The arrival of 

the new FOX was too late to be introduced into this project. Therefore at this time it 

was felt that the FOX 2000 was a more established model and should be continued to 

be used for the remainder of this project. 

3.4.1 The Gas Sensor Array 

The gas sensor type employed within the FOX 2000 was based on a semi-conducting tin 

oxide reactive element with a heater. There has been much electronic nose research per- 

formed at the University of Warwick employing commercial tin oxide gas sensors [45]. 

Tin oxide gas sensors have some desirable characteristics; firstly they are non-specific 

and have a broad range of sensitivity, and secondly they available with many different 

broad sensitivities (achieved by adding different impurities into the reactive element). 

Another advantage is that they are commercially available, initially the major manufac- 

turer was Figaro Engineering Inc in Japan, and now more recently, Alpha M. O. S. have 

begun to market tin oxide gas sensors which are compatible (i. e. the same footprint 

and pin functions) with the Figaro devices. The gas sensors employed in this research 
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were supplied by Alpha M. O. S. An exhaustive description of tin oxide gas sensors is 

not given here but other works exist which treat the subject more thoroughly [111]. A 

diagram showing the construction of a typical tin oxide gas sensor is shown in figure 3.7, 

the major components are highlighted. The basis of the sensor is a cylindrical ceramic 

former through which a heater element passes. On the surface of the former, a layer 

of sintered tin oxide is deposited with an electrode at each end in order to facilitate 

electrical connection. The sensor element is then encased and connections made to pins 

suitable for mounting on a PCB. The relationship between the type of metal catalyst 

employed an the effect on the broad sensitivity is detailed in other work [111]. 

The broad sensitivity of a tin oxide gas sensor is determined by the introduction 

of metal catalysts within the tin oxide, usually by means of doping. The following 

description of the mechanisms of modification of the conductance characteristics of the 

sintered tin oxide element is based on material published in a previous book [45]. Tin 

oxides behaves here as an n-type bulk semiconductor'. When exposed to oxygen (usu- 

ally the oxygen present in air), the oxygen is chemisorbed onto lattice vacancies in the 

non-stoichiometric semiconductor, one oxidation state is represented in equation 3.1. 

8It behaves as p-type in H2 atmosphere or under other conditions of temperature. 



80 3.4 The FOX 2000 

Table 3.1: Table summarising the gas sensor types employed within the FOX 2000. 

Number Model Sensitivity 

1 FIS P. 10.2 non-polar compounds 

2 FIS P. 10.1 hydrocarbons and others 

3 FIS T. 30.1 polar compounds 

4 FIS P. A. 2 polar compounds 

5 FIS T. 70.2 alcoholic compounds 

6 FIS P. 40.1 heteroatom/chloride/aldehydes 

site 
+e+2 02 

ý--' 
[°I 

site (3.1) 

Where e- is an electron abstracted from the conduction band. A depletion layer is 

created because the surface layer is depleted of electrons compared to the bulk semicon- 

ductor. Equation 3.2 shows the reaction that occurs when an odorant, R, is introduced 

to the semiconductor. 

[O-]+R-*ROý-e- (3.2) 

It can be observed from equation 3.2 that the previously chemisorbed oxygen reacts 

with the gaseous odorant. The reduction of sorbed oxygen causes a change in the 

amount of depletion and therefore of the conductivity of the tin oxide. Below 200°C 

water molecules react strongly with the surface of the tin oxide, and this affects the 

sensor response characteristic. In order to reduce reactions with water molecules, the tin 

oxide is heated to between 300°C and 500°C. Operating the sensor at a high temperature 

also speeds up the reaction of the tin oxide with odorants, so that typical response times 

are in the order to 10 s to 20 s. The heater causes the device, as a whole, to require 

more power than other, unheated, sensor types (such as conducting polymer). Table 3.1 

lists the details of the 6 Alpha M. O. S. tin oxide gas sensors that were employed. 

The choice of which 6 sensor models to use was partly determined by what was 

available and partly by the expected head-space of metabolites. The sensor models 
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used represented the widest range of sensitivities possible for the types of odorants 

expected. 

3.4.2 Non-gas Sensors 

In addition to the array of 6 gas sensors, there were also three non-gas sensors, these 

were: 

1. The temperature sensor used was a LM35CZ. This device is a common temperat- 

ure sensor and is widely available. It is manufactured by National Semiconduct- 

ors. The LM35CZ is a3 terminal integrated circuit temperature sensor which 

outputs a linear voltage of 10 mV per °C. The CZ version operates over a tem- 

perature of -40°C to +110°C. It has a typical accuracy (at 25°C) of +0.4°C. It 

can operate from a supply of 4V to 30 V and its typical quiescent operating 

current (supplied with 5 V) is 91 µA. The interface circuit consisted of a simple 

op-amp based amplifier with an adjustable offset. 

2. The humidity sensor used was a MiniCap 2 (MC-2) Relative Humidity Sensor. 

This device is manufactured by Panametrics Ltd and is a general purpose thin 

film polymer capacitive relative humidity sensor. The dielectric constant of the 

polymer thin film changes with atmospheric relative humidity. The output is a 

linear function (rated at 1% accuracy) of relative humidity. This device can oper- 

ate over a range of 5% to 95% R. H. and has an operational temperature range of 

-40°C to +180°C. Its capacitance at 25°C and 33%R. H. is 207pF (manufacturing 

tolerance is + 15%). The interface circuit was an variable pulse width generator 

feeding into a pulse width to voltage converter. The width of the pulse is directly 

and linearly proportional to relative humidity. 

3. Gas flow rate sensor used was a AWM3300V micro-bridge. This device is man- 

ufactured by Honeywell. Since the flow-rate was nominally constant during all 

tests and experiments, and also that a Rotameter was used on the input to the 

autosampler to measure flow rate, the exact characteristics of this device are not 
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of significant interest. However the output from this sensor was checked for large 

changes indicating gas leaks in the system, or pump failure. 

3.5 System Testing and Characterisation 

The system was first assembled in the Sensors Research Laboratory (SRL) at the Uni- 

versity of Warwick, and a characterisation test (or `dry-run') was performed. After 

these tests it was decided to perform the remaining tests and data gathering exper- 

iments in the Department of Biological Sciences at the University of Warwick. The 

reason for moving the equipment was that it was not possible to handle bacteria cul- 

tures safely in the SRL. However, performing the characterisation test in the SRL was 

beneficial because problems that arose were able to be dealt with much more easily 

because equipment and expertise was more readily at hand. 

During the construction of the autosampler and the computer software, checks were 

made to ensure correct operation. For example, the autosampler was checked during 

building by electrical signals being applied to the solenoid valves and the control circuit. 

In other words the standard electronic fault-finding procedures were adopted. Much 

attention was paid to the methods employed during the building of the autosampler. 

The software was checked for bugs regularly during development, the Labview program 

development software provided comprehensive tools for program debugging. 

The 'dry-run' tested all components of the system including the solenoid valves, 

their associated circuitry and air lines, computer software and the FOX 2000. A special 

Labview program was developed in order to aid testing, this program allowed direct 

manual control of the states of the digital output lines from the LPM-16 I/O card. This 

in turn allowed each solenoid valve to be controlled. Details of this program are given 

in appendix A. 

By using the rotameter at the input to the autosampler in order to independently 

monitor gas flow through the system, air leaks were detected by comparing the rate of 

gas flow when different channels were activated. There were no odour samples within 

the glass vessels during this test. Air leaks in the system were found in channels 
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#2 and #3, which originated from the interface between the plastic lid and the glass 
body of the vessels. PTFE tape was then wrapped around the neck of the bottles 

to ensure an air-tight fit. The reason that channel #1 had no air leaks was that the 

corresponding plastic lid had a better seal (apparently some lids had better seals than 

others). However the same amount of PTFE tape was used on all vessels in order to 

preserve identical gas flow and odour characteristics on all channels. The flow rate 

through all channels was found to be 0.4 1 min-1. This flow rate was valid for all the 

experiments performed. 

Next, 5 ml of 5% aqueous solution of ethanol was used as an odour source in each 

vessel. The progress of odour was monitored by observing sensor responses. Ethanol 

caused a strong response from tin oxide gas sensors because of its reactive nature, and 

as a result the sensor responses were well defined. Delay times of around 1 second were 

observed from the time a channel was activated to the time the gas sensor outputs 

started to change. The inside diameter of the pipe-work was small (1.37 mm), and 

hence the gas flow within the pipes can be considered plug flow. The time delay can 

be approximated to the time in which it takes for the odour to be propagated through 

the pipe-work (for a given channel) from the sample vessel to the sensor chamber, see 

equation 3.3: 

Td = 
Vd 
Q 

(3.3) 

Here, Td is the time delay, Vd is the dead volume (in this case the volume of pipe- 

work) and Q is the flow-rate. The total length of pipe-work was 55mm, therefore 

the volume of the pipe-work was 81.08mm3. However, inbetween the head-space and 

the sensor chamber was a pre-heater (the volume of which was 62.8mm3) and a pre- 

sensor chamber (the volume of which was 3455.75mm3). Assuming plug flow in these 

components, the total dead volume, Vd, was 3599.63mm3. The flow rate, Q, was 0.0067 

litres s-1. Using equation 3.3, the time delay, Td, was calculated to be 0.537 s. This 

model assumes the mixing time within the gas chamber to be negligible, although this 

assumption cannot be safely made and in reality the time delay is greater than Td. The 

original sensor chamber was rectangular, the dynamics of gas flow within this chamber 
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were dependent on many environmental variables, such as gas temperature, flow-rate, 

humidity level etc. It was deemed unnecessary to build a mathematical model that 

would describe the gas flow dynamics within the sensor chamber and a new design 

initiated which is described later on. 

The autosampler Control Program and the FOX 2000 was tested by performing a 

`dummy' experiment. The experiment was set up to run for 24 hours, each channel 

being activated in turn for a period of 10 minutes (this was not the usual 4 phase 

cyclic manner). The response from the ethanol solution contained in the vessels was 

stored as a data-set in a data file. The data file was examined using a program called 

Microsoft Excel, the signal profiles were consistent with correct operation of the system. 

Additionally, during these tests, the DRI-BLOCK heater was set to 25°C. 

The experiments conducted at the Biological Sciences Department will be described 

in terms of experiment groups with procedural details being described as and when they 

were employed. 

3.6 Initial Tests Performed At Biological Sciences 

Firstly the complete system was assembled at the Biological Sciences Department. For 

the entire duration of these tests the system was left in the standby condition (even 

between tests), the purpose of which was to ensure that the gas sensors were at their 

equilibrium. The standby condition was that the FOX 2000 was powered up with the 

pump running, channel #1 was activated, vessel #1 was empty, the gas conditioning 

and filtration systems were in place. Excessive sensor drift can occur if gas sensors 

are used to analyse odour when the sensors themselves have only been powered-up 

for a short period of time prior to use. Sensor drift was an undesirable occurrence 

because it introduced unwanted variance into subsequent data (details in chapter 4). 

During the remaining experiments and tests the DRI-BLOCK heater was set to a target 

temperature of 36.8°C, this corresponds to body temperature and is the temperature 

at which bacteria in the human body normally grow. 

The valve/vessel assembly up to the input to the sensor chamber, that is the pipes, 
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solenoid valves and vessels, were first cleaned. This was done by removing the assembly 

from the system and pumping through it a mixture of 75% ethanol 25% distilled wa- 

ter9(also known as ethanol/water mix). Clean air was later pumped through the as- 

sembly in order to remove and ethanol or water vapour that remained after the mix 

was pumped out (and would cause unwanted variance in the sensor signals). The clean 

assembly was then re-fitted to the rest of the system. 

The bio-filter was autoclaved. This process involved `pressure-cooking' the filter in 

high pressure steam for one hour. The result of this process is that all contaminants 

(unwanted microbes) within the filter were killed. Autoclaving is a common process 

employed in the field of microbiology. Equipment used in micro-biology tends to be in 

one of two classes; that which is autoclaveable and that which is disposable (used once 

only). Unfortunately the data collection system fitted into neither class which meant 

that more the difficult methods of cleaning had to be employed. 

After the cleaning phase, the system was left in the standby condition for 4 days. 

Then a test, called the `burn-in test' because it `burnt-in' the set of gas sensors, was 

performed for 22 hours and 20 minutes where one cycle was programmed to be 8 

minutes in length, see table 3.2. Alpha M. O. S. recommend, in their documentation, 

that each measurement (cycle phase) should be no less than 2 minutes in length (i. e. 

the length of time that the gas sensors are exposed to an odour). This measurement 

time was therefore used in all subsequent experiments. The `burn-in test' allowed the 

gas-sensors to monitored over a long period of time in order to check for stability in 

the new environment, all vessels were empty (i. e. there was no odour samples). It has 

been demonstrated that metal oxide gas sensors suffer from long term drift [45] and 

that reaching a state of equilibrium can take between 2 to 3 days. 

The `burn-in test' lasted for 170 cycles (translating as 81,600 valve operations). 

During this test ambient conditions, such as room temperature and humidity, varied. 

One reading was taken from each sensor every second, therefore an 8 minute cycle con- 

sisted of 480 measurements from each sensor, making a total of 4320 measurements from 

all 9 sensors. The signals from the gas sensors were analysed to investigate drift, the 

'This particular mixture acts as an anti-microbial agent 
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Table 3.2: Table showing cycle times used for an 8 minute cycle time. 

Channel Number Duration On (minutes) 

12 

22 

12 

32 

Total Cycles Time: 8 Minutes 

relationship between temperature and gas sensor output, and the relationship between 

humidity and gas sensor output. Figures 3.8 and 3.9 show these relationships. Because 

all the vessels were empty, there was no significant change in gas sensor output during 

the cycle. The sensor value is the corresponding voltage output for that sensor that 

was input to the LPM-15 I/O card, i. e. it shows the `raw' data-set. 

The output voltage from a gas sensor at time t can be given as: 

vt = F(9t, tt, ht, vt-1 (3.4) 

Where gt is a parameter related to the chemical composition of the gas the sensor 

is being exposed to, tt is the ambient temperature, ht is the ambient humidity and vt_l 

is the previous voltage output of the sensor (i. e. the sensor has a `memory'). It can be 

observed from the plot in figure 3.9, that the variance in humidity appears not to have 

been significant. 

However, analysing the plot in figure 3.8 shows that the variance in temperature is 

significant (a change of 6.45°C). A visually significant correlation between the output 

from the temperature sensor circuit and the outputs from the gas sensor circuits can 

be observed from this plot. Table 3.3 shows the results of correlation analysis on this 

data. It can be observed that there was high degree of correlation between the gas 

sensors. Also there was a relatively high correlation between the temperature and 

humidity sensors outputs and the gas sensors outputs. Negative correlation between 

two variables simply show that when one variable increased in value the other tended 
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Figure 3.8: Plot showing the relationship between temperature sensor output (grey 

line) and gas sensor 1 output (black line). The output from the other gas sensor is not 

shown for clarity. 

to decrease in value (i. e. an inverse relationship). It initially appeared from the plot in 

figure 3.9 that humidity was not a significant source of noise, however frorri the results 

of the correlation analysis it can be observed that it could have been as significant as 

temperature. There was negative correlation between temperature and humidity, the 

output of the humidity sensor was affected by ambient temperature 10. Therefore, after 

further analysis it can be deduced that humidity, in this case, was not as significant a 

source of noise as temperature. 

From the correlation analysis shown in table 3.3, in theory since there was no odour 

sample in the vessels (and therefore negligable odorants), each gas sensor should have 

had correlation value of 1.0 with the other gas sensors. It can be observed that the 

actual correlation values ranged from 0.88 to 0.99, this indicates that each gas sensor 

"Since the LM35 series of temperature sensors are in sealed packages, they are unaffected by hu- 

midity. Condensation was not significant. The MiniCap humidity sensor was not in a sealed package 

3.6 Initial Tests Performed At Biological Sciences 

because vapour must come into contact with the reactive element. 
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Figure 3.9: Plot showing the relationship between humidity sensor output (grey line) 

and gas sensor 1 output (black line). It can be seen that there is an inverse relationship 

between the output from the humidity and gas sensors, this confirms the effect of 

humidity upon the output of metal oxide gas sensors. Also, the humidity sensor may 

be responding to differently in the presence of different odours. The output from the 

other gas sensor is not shown for clarity. 

reacted differently to changes in temperature and humidity. This makes temperature 

and humidity compensation more complex because the same compensation cannot be 

applied to all gas sensors. In the presence of an odour, we would expect lower values 

of correlation between gas sensors. 

It can be observed from the plots in figures 3.8 and 3.9 that there was a period 

of relative temperature stability (from 12 to 15 hours, elapsed time), were the output 

from the temperature sensor was stable. During this period the output from the gas 

sensors was also relatively stable, showing that if ambient temperature was controlled 

there would be a reduction in the noise in the odour data. 

3.6 Initial Tests Performed At Biological Sciences 

05 10 15 20 
Elapsed Time (hours) 
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Table 3.3: Table showing the results of correlation analysis on the `burn-in' test data. 

Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 5 Temp Humidity 

Gas 1 1 

Gas 2 0.94 1 

Gas 3 0.95 0.99 1 

Gas 4 0.91 0.99 0.98 1 

Gas 5 0.99 0.92 0.93 0.88 1 

Gas 6 0.94 0.99 0.98 0.98 0.91 1 

Temp -0.43 -0.52 -0.46 -0.55 -0.40 -0.52 1 

Humidity -0.65 -0.49 -0.54 -0.47 -0.70 -0.46 -0.26 1 

3.7 Biological Experiment Procedures 

In order to carry out the experiments using real bacteria cultures it was first necessary 

to address some issues that pertain to the handling and measurement of growth of 

bacteria cultures. This section outlines these procedures. 

3.7.1 Methods for Culturing Bacteria Samples 

In order to take measurements from bacteria samples, it was necessary to be able to 

grow bacteria colonies. Bacteria cannot be treated as inanimate objects, a particular 

bacteria culture would have been be useless if all the cells have died, or if the culture 

has become contaminated with another, unwanted, micro-organism. 

The Biological Sciences Department keep in storage reference bacteria cells in order 

to be able to grow cultures containing known bacteria types. When the system was 

set up at the Biological Sciences Department, a set of cultures were started. For each 

bacteria type, two cultures were created (two cultures allowed a margin for problems 

such as contamination). The growth medium used was nutrient broth (NB), which 

is a common, multi-purpose, growth medium and which is able to allow the growth 

of bacteria found in humans. In a standard 25 ml glass jar, 20 ml NB was placed. 
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A small number of cells (contained in 0.1 ml of inoculum) from the reference storage 

were placed in the NB. These `master' cultures were incubated at 36.8°C, after 12 to 

24 hours of incubation the cultures were saturated with bacteria cells (i. e. Stationary 

Growth Phase), after 2 or 3 days the cultures entered the Death Growth Phase and 
finally after approximately two weeks, most cells in the culture were dead. At the start 

of each experiment it was necessary to have available a culture containing the desired 

bacteria type, in which the cells were in the Stationary Growth Phase. This ensured 

that a given volume of the culture would contain the maximum number of healthy 

cells (i. e. cells capable of growth). In order to make available such cultures, the day 

previous to an experiment, 2 sub-cultures would be made from one of the 2 current 

`master' cultures by inoculating 2 lots 20 ml fresh NB (in 2 new glass jars) each with 0.1 

ml from the one of the current `master' cultures. These new sub-cultures become the 

`master' cultures for subsequent experiments. Using this culturing technique a series of 

cultures for each bacteria type were created, at any time, cells in the `master' culture 

were in the Stationary Growth Phase. The diagram in figure 3.10 shows this technique 

in diagramatical form. 

After each subculturing, the new `master' cultures were kept in a refrigerator in 

order to slow the metabolism of the bacteria cells and thus lengthen their useful life. 

3.7.2 Viable Cell Counts 

In order to accurately estimate the growth phase of the cultures being measured, it 

was decided to perform a viable cell count of all cultures from the beginning of each 

data gathering experiment and at intervals of one hour thereafter. The procedure for 

executing a viable cell count was as follows: 

" Extract 0.1 ml from each culture using the syringe assembly in the vessel lid. Care 

has to be observed in order to prevent contamination. The 0.1 ml culture samples 

are placed into small, sterile, plastic vials for easy handling. All subsequent 

handling of culture samples was via these containers. 
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Figure 3.10: Flow chart showing how cultures were created and how a `master' culture 

was maintained. 

" Perform necessary serial dilutions. Because it is important that only a limited 

number of colonies develop on the plate, if overcrowding takes place then some 

colonies do not develop and cause errors in the count. Typically the number 

of colonies should be up to 300. A process called `serial dilution' is used to 

ensure overcrowding does not take place by diluting small sample, which was 

inoculum extracted via syringe from a vessel, several times. More precisely, 0.1 

ml of culture was diluted with 0.9 ml of phosphate buffer solution", 0.1 ml of 

this culture/buffer solution was further diluted with 0.9 ml of phosphate buffer 

solution, and so on; each dilution reducing the concentration of cells by a factor of 

ten. The precise number of times that this dilution was performed was determined 

by the experience of the laboratory technicians (typically from 6 to 10 times). 

"Phosphate buffer solution is a common substance used to temporarily contain microorganisms 

undergoing analysis 
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" Plate out 0.1 ml of the final 4 dilutions onto 4 nutrient agar (NA) medium Petri 

dishes. The growth medium employed for the viable cell counts was Nutrient Agar 

(NA). This is simply an Agar Jelly form of the Nutrient Broth (NB) medium used 

to grow the aqueous cultures employed as odour samples in all experiments. 

" Incubate Petri dishes for 24 hours at 36.8°C. It is possible to incubate the dishes 

for more than 24 hours but less than 24 hours risks colony counting errors. 

" Count and record the number of colonies in each petri dish. In the `standard 

plate count' method an assumption is made that each viable bacterium grows 

and divides to produce a colony, this colony is observable, after incubation, as a 

dot on the surface of a plate of NB agar (within a petri dish). 

The counting method employed during for viable cell count was the `standard plate 

count'. The viable counts obtained were an indication of the number of colony forming 

units12 (cfu), from this the growth phase of the bacteria colony at a particular time 

was deduced from a growth plot (see figure 1.2 for a typical plot) of cfu against elapsed 

time. In practice the actual cfu quantity was derived from the number of colonies 

counted in the Petri dishes corresponding to the final 4 serial dilutions, an average of 

the 4 individual counts. 

3.8 Tests At Biological Sciences Using Bacteria 

The next set of tests were concerned with problems of contamination. The bacteria 

samples were growing in a medium known as nutrient broth (NB), which is a com- 

plex mixture of carbohydrates, sugars and minerals. The majority of microorganisms 

can grow, to some degree, in NB. However because nutrient broth was designed as an 

all purpose growth medium, it allows contaminants like fungi to grow rapidly and it 

is possible for a contaminant to become the dominant microorganism in the growth 

environment. Great attention was given to the design of the system to eliminate con- 

taminants and therefore keep pure cultures pure, for example the extensive use of filters. 

12 Basically colony forming cells are cells that are capable of dividing into two daughter cells, i. e. are 

alive 



93 3.8 Tests At Biological Sciences Using Bacteria 

It was then necessary to also give great attention to experimental procedure. The bac- 

teria type used in these tests was Escherichia coli, the `benchmark' bacteria used in 

micro-biology. The adjective `benchmark' described the fact that this bacteria type is 

often used to characterise new laboratory techniques. It is easy to grow, it grows in a 

wide variety of media, it is well studied and when it has come into contact with humans 

is not particularly dangerous13. 

The autosampler was cleaned in the same manner, i. e. washed with ethanol/water 

mix, as that used in the `burn-in test'. In the first experiment using bacteria samples, 

called `bio-test 1', 25 ml of pure nutrient broth (NB) was placed in vessel #1 as the 

reference and 25 ml NB inoculated with 0.25 ml Escherichia coli `master' culture was 

placed in vessels #2 and #3. The samples were placed into the vessel by injection 

where a syringe needle was incorporated into the modified vessel lids. This allowed 

a syringe (with the standard neck size) to be inserted into the mouth of the needle 

(the needle has a plastic moulding at the top to facilitate this) and the contents of the 

syringe can be injected into the vessel. This mechanism also allowed for matter to be 

extracted from the vessel. Figure 3.11 shows this modification. It was necessary to put 

bacteria in vessels 2 and 3 so that it could be tested whether any cross-contamination 

occurred between channels. 

The system was checked for air leaks, and none were found to be present. The eight 

minute cycle was used (as described previously). This test was run for 153 cycles and 

therefore lasted 20 hours and 24 minutes. After this time the samples within the vessels 

were visually examined. 

Before the results of the examination are detailed it is necessary to describe the 

examination procedure. Pure NB, in solution, is a clear, amber liquid. NB that has 

has microorganisms growing in it is cloudy. This property is often used in micro- 

biology to count the number of microorganism cells in a given volume of solution, using 

a method called the Optical Density (OD) measurement. In these experiments the OD 

measurement was not employed because all that was required was to know if a particular 

13 Recently Escherichia coli 157 has been brought to the attention by the media after some food- 

poisoning outbreaks, this strain of the bacteria is extremely rare. 
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Figure 3.11: Diagram illustrating the modification of the vessel lids within the auto- 

sampler by introducing a syringe. 

NB solution contained any micro-organisms at all, and after an incubation period of 

20 hours or more, if the original solution contained only one or two thousand cells then 

the solution would appear significantly cloudy (easily observable by the human eye). 

All vessels were found to be cloudy and therefore contained microorganisms. However, 

only pure NB was originally introduced to vessel #1 and consequently this vessel had 

become contaminated. Since the system was free of air leaks the contamination was 

either a result of the system not being free of microorganisms at the start of the test 

or that microorganisms had entered the system via the input and were able to get past 

the filters. 

Following the problem of contamination encountered in experiment `bio-test 1' 

a second experiment, `bio-test 2', was performed where the procedure followed was 

identical to that used for `bio-test 1' (including the initial contents of the vessels) ex- 

cept that the valve/vessel assembly was not attached to the nose and all the channels 

were switched off. In other words no air was passed through the autosampler. The test 

was run for 18 hours, after this time the samples were examined. Vessel 1 was found to 

be contaminated, therefore contaminating microorganisms were present in the vessels 
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before the test was started. 

Following the results of experiment `bio-test 2' it was decided to clean the valve/vessel 

assembly with 5% sodium hyperchlorite solution. This substance is a bleaching agent 

and very powerful anti-microbial agent. Therefore experiment `bio-test 3' was per- 

formed where the procedures were identical to those employed in `bio-test 1' but an 

extra cleaning cycle was introduced. Before alcohol/water mix was pumped through, 

the sodium hyperchlorite solution was pumped through. It was not necessary to leave 

the solution in the assembly because micro-organisms are killed very rapidly (within 

seconds). Afterwards, when the alcohol/water mix was pumped through the assembly 

it also removed any traces of the sodium hyperchlorite and therefore also acted as a 

flushing process. The vessels were examined after the experiment had finished and 

again vessel #1 was contaminated. 

It was decided that a possible additional cause of contamination was the large 

mesh size of the bio-filter. Therefore a different filter was used with a mesh size of 

0.2 µm, a size commonly considered to be small enough to stop all common airborne 

contaminants. This new filter was autoclaved so that it was sterile. Experiment `bio- 

test 4' was started using the new bio-filter, the procedure being identical to that used 

in experiment `bio-test 3'. The vessels were examined after the experiment had finished 

and again vessel #1 was contaminated. 

Up to this point samples were injected into each vessel via a syringe in the lid 

of each vessel, it was thought that the mouths of the needles were a possible site 

of contamination. Therefore, in the next experiment to be performed ('bio-test 5'), 

the procedure of putting the samples into the vessels was changed. After the system 

has been cleaned and re-assembled instead of injecting the samples into the vessels, 

the vessels were removed from the autosampler, the samples poured into the vessels 

using a pipette and then the vessels re-fitted. Experiment `bio-Test 5' was carried 

using this modified procedure, and the vessels examined at the end. The results were 

that no contamination took place, i. e. vessel #1 remained clear and hence free from 

contamination. 

In order to test the experimental procedure further more experiments were per- 
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formed ('bio-tests 6,7,8,9 and 10'), it was therefore possible to establish whether con- 
tamination free odour samples were possible. The reason so many tests were performed 

was that there were equipment failures during experiments `bio-tests 7 ,8 and 9'. During 

`bio-test 7' one of the solenoid valves became faulty stopping gas flow through that chan- 

nel. During `bio-test 8' the rotary valve pump failed and was repaired; the experiment 

had to be aborted. During `bio-test 9' the pump failed again and was replace with a 

new identical unit. `Bio-test 10' was run in order to test the whole system with the new 

components (i. e. vacuum pump) with the experimental procedure developed in earlier 

experiments. The samples at the end of experiment `bio-test 10' were contamination 

free. 

The procedure developed, assuming that an experiment had previously been carried 

out using the same equipment, is described in the following list, the steps were executed 

in the order they appear in the list: 

1. Make sure software exited normally after previous run, i. e. channel 1 is selected. 

It was important that a channel should be open in order that gas flow should 

continue to the FOX 2000. If gas flow were to be interrupted then this would 

have caused the sensors to heat up (changing their characteristics) and would 

have stopped gas flow through the pump causing the electric motor to overheat. 

2. Detach the autosampler from the FOX 2000. Since chemicals were pumped 

through the pipe-work and vessels in the autosampler, in order to prevent those 

chemicals from coming into contact with the sensor array in the FOX 2000, it 

was necessary to detach these two sub-systems. 

3. Remove the bio-filter, bubbler and charcoal filter. Place the bio-filter in eth- 

anol/water mix. It is vital that the bio-filter should remain sterile. Placing the 

filter in ethanol/water mix prevented any microorganisms from gaining access. 

4. Remove vessels from the autosampler and fit new, autoclaved (therefore sterile). 

vessels. The vessels themselves are expendable and since the vessels contain 

the samples from the previous experiment and therefore probably contain micro- 

organisms the easiest option was to replace them completely. 
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5. Attach a pump to the autosampler output and a long pipe to the input. Attach a 

second long pipe to the output from the pump and place the other end of this pipe 
into a large vessel (1 litre capacity). Also halt the autosampler Control Program 

and start the LPM-16 output program. Activate all channels. 

6. Place the input pipe of the autosampler into a container containing 5% sodium 
hyperchlorite solution. Pump the sodium hyperchlorite solution through the auto- 

sampler for 2 minutes, ensuring that the solution has flowed through all pipes, 

valves and vessels. Also flush syringe needles in lids with solution. This solution 

can also leave small crystals if the water is allowed to evaporate, therefore the 

assembly should be flushed immediately afterwards with ethanol/water mix. 

7. Remove the input pipe from the vessel containing the sodium hyperchlorite solu- 

Lion and leave free. Invert the autosampler so that the vessels are upside down. 

Switch on the pump and pump out all the remaining sodium hyperchlorite solu- 

tion. 

8. Place the input pipe of the autosampler into a container with 75% ethanol/water 

mix. Turn the autosampler the right way up. Switch on the pump and pump 

the ethanol/water mix through the autosampler for 5 minutes, ensuring the eth- 

anol/water mix has flowed through all pipes, valves and vessels. Also flush syringe 

needles in lids with ethanol/water mix. 

9. Leave the remaining ethanol/water mix in the valve/vessel assembly for at least 

eight hours. During this time de-activate all channels to prevent the solution 

from leaking. 

10. Invert the valve/vessel assembly, switch on the pump and pump out remaining 

ethanol/water mix from the autosampler. Make sure all possible ethanol/water 

mix has been pumped out of the system. Turn the valve/vessel assembly the right 

way up. 

11. Purge the valve/vessel assembly with air to remove any residual vapours this is 

done by switching on all channels and pump air through the system for at least 
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2 hours. 

12. Switch off all channels. Remove vessels from the system and fill with samples 

that are to be analysed. Re-fit vessels (now containing the samples) to the auto- 

sampler. Also PTFE tape is wound around the neck of each vessel to ensure that 

the seal with the lid is air-tight. 

13. Re-fit bio-filter, charcoal filter, and bubbler to the rest of the system, also con- 

necting up any pipes that aren't yet connected except the pipe connecting the 

FOX 2000 to the rest of the system. 

14. Activate channel #1 and reconnect the FOX 2000 to the autosampler. At this 

point a final check of the system is carried out, checking for things like bad pipe 

connections and that the sensor output voltages are within working levels of the 

LPM-16 I/O card. 

15. Halt the LPM-16 Output Program and restart the autosampler Control Program. 

Input experimental parameters into the software and start the experiment. The 

operator should stay with the system for the first few cycles of the experiment in 

order to ensure that everything is running satisfactorily. Adjust any controls as 

necessary. 

Once a stable and reliable experimental procedure had been developed further ex- 

periments could then be carried out. 

After consultation with the laboratory technicians in the Biological Sciences de- 

partment, it was decided to run the data gathering experiments for a duration of 12 

hours. This time span is long enough to allow cells in the cultures of all the bacteria 

types to enter the Stationary Phase. It was decided that it would be impractical to 

try to take measurements from cultures in the death phase because the length of time 

required for this would probably be in the order of 2 to 3 days. Because a data gath- 

ering experiment requires the worker to be present in order to perform the viable cell 

counts, an experiment duration of 2 to 3 days would have been impractical. 

Therefore for vessels 2 and 3,13 viable cell counts were performed each. For vessel 
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1 one viable cell count was performed after 12 hours in order to determine if there were 

any contaminants present. A total of 27 counts per experiment. 

3.9 Experiments Performed Using Bacteria Cultures 

Once the apparatus was tested and experimental procedure was developed a series of 

tests were performed on 2 bacteria types; Escherichia coli and Staphylococcus aureus. 

The main reason that these two types were selected were that they are both ENT 

pathogens, they are readily available `benchmark' bacteria types and that they are 

very different organisms14 and should therefore produce easily distinguishable odours. 

It was felt at this time to limit the study to 2 bacteria types only in order to facilitate 

a more thorough analysis. 

In order to interpret the growth phases of the aqueous cultures, indicated by plots 

of colony forming units (cfu); the academic staff and laboratory technicians at the 

Biological Sciences Departments were consulted as to where the boundaries between 

growth phases occurred. The boundaries are not clear cut and are only an indication 

of progress of growth. 

3.9.1 Experiments Performed on 

In total, 3 experiments were performed using Escherichia coli as the sample bacteria. 

Originally two experiments were planned but one experiment had to be aborted when 

the vacuum pump in the FOX 2000 failed. At this time that it was decided to replace 

the rotary vane type vacuum pump with a more reliable diaphragm pump type, see 

section 3.4 for more details. Subsequent experiments proved the diaphragm pump to 

be reliable. Therefore the experiment where the pump failed will be discounted from 

further analysis. The valid experiments were denoted as `experiment 1' and `experiment 

2' respectively. The results of the viable cell counts performed during these experiments 

are given in appendix B, the analysis of the data sets gathered are given in later 

chapters. 

14Escherichia coli is gram -ve and Staphylococcus aureus is gram +ve. The gram stain is the most 

common differentiation test employed in micro-biology 
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All experiments were identical and were set-up using the procedures outlined in the 

previous sections, the odour sources were aqueous cultures of 25 ml NB in vessel 1 and 

25 ml NB inoculated with 0.25 ml Escherichia coli `master' culture in vessels #2 and 

#3. 

Table B. 1 and table B. 2 show the results of viable cell counts that were performed. It 

can be noted that there are small differences between count for colonies at the same age. 

Bacteria samples have chaotic components to their behaviour, no two samples which 

given near identical conditions will behave in an identical manner; therefore a small 

change in initial conditions can lead to a large change after a long period of time (in this 

case 12 hours). This can be observed as discrepancies in the colony forming unit (cfu) 

count between bacteria samples that have grown under near identical conditions 15 

Figures 3.12 and 3.14 are plots of the number of colony forming units in 1 ml of 

culture sample, the data source were the viable cell counts given in table B. 1 and 

table B. 2 respectively. The phases of growth in figures 3.12 and 3.14 are indicated by 

the shaded areas (see figure captions for colour key). It can be observed that, according 

to the plot, the bacteria samples used in the second experiment had virtually no lag 

phase at all, in reality there was probably a short lag phase which did not show on the 

plot because of the count frequency of one every hour was not sufficient in this case. 

Figure 3.13 is based on the plots in Figure 3.12, but with two extra plots. For each 

vessel (i. e. 2 and 3), the magnitude of the voltage change in the signal averaged over 

all 6 sensors, is shown. The magnitude of the voltage change is the change in output 

voltage that occurs when a given gas sensor is exposed to an odour. This measure is 

later referred to as the difference feature model in chapter 4. The purpose of Figure 3.13 

is to illustrate to the reader an example of the system response during an experiment. 

It can be seen that that the trend for the additional plots is to increase with time (and 

cfu count). There are many measures that could be plotted (see chapter 4), either 

averaged or not over all 6 sensors. It is therefore not practical to show all possible 

plots. 
"Identical cfu may be achieved if the initial conditions were the same, however this criteria is 

impractical to satisfy 
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3.9 Experiments Performed Using Bacteria Cultures 

Figure 3.12: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Escherichia coli experiment 1, vessels 2 and 3; showing the different phases of growth: 

light grey = lag phase, medium grey = log phase and dark grey = static phase. 

3.9.2 Experiments Performed on 

There were 2 experiments carried out using Staphylococcus aureus, the procedures that 

was used was identical to that employed for experiments 1 and 2, the only difference 

being that the odour source in vessels #2 and #3 contained aqueous cultures of 25 ml 

NB inoculated with 0.5 ml Staphylococcus aureus `master' culture. 0.5 ml of `master' 

culture was used instead of 0.25 ml (as used for Escherichia coli because Staphylococcus 

aureus grows slower in NB than Escherichia coli. These experiments were denoted as 

`experiment 3' and `experiment 4' respectively. The results of the viable cell counts 

performed during these experiments are given in appendix B, the analysis of the data 

sets gathered are given in later chapters. 

Table B. 3 and table B. 4 show the results of viable cell counts that were performed. 

Figures 3.15 and 3.16 are plots of the number of colony forming units in 1 ml of culture 

sample. It can be noted that, in general, the cfu counts for Staphylococcus aureus are 

lower than those for Escherichia coli even though more `master' culture was used to 
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Figure 3.13: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Escherichia coli experiment 1, vessels 2 and 3; showing the different phases of growth: 

light grey = lag phase, medium grey = log phase and dark grey = static phase. Also 

the magnitude of signal change averaged over all 6 gas sensors for vessels 2 and 3 is 

shown in order to give an indication of system response during the experiment (See 

difference feature model in chapter 4 for more details). 

inoculate the sample cultures. This confirms that Staphylococcus aureus is less suited 

to a NB growth medium. Also Staphylococcus aureus is nonmotile (which means that 

it does move under its own propulsion) unlike Escherichia coli and therefore does not 

disperse as quickly, so new cells tend to grow in areas where nutrients are already 

depleted (i. e. in other words it is not suited to growth in an aqueous solution). 

3.10 Summary 

The existing apparatus was improved in order to meet the needs of this more demanding 

application. The need for improvement was highlighted in a feasibility study performed 

prior to this research. The major improvement was automated delivery of odours 

by means of solenoid operated valves, increased speed of odour delivery to the gas 

3.10 Summary 
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Figure 3.14: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Escherichia coli experiment 2, vessels 2 and 3; showing the different phases of growth: 

medium grey = log phase and dark grey = static phase. 
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Figure 3.15: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Staphylococcus aureus experiment 3, vessels 2 and 3; showing the different phases of 

growth: medium grey = log phase and dark grey = static phase. 
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3.10 Summary 

Figure 3.16: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Staphylococcus aureus experiment 4, vessels 2 and 3; showing the different phases of 

growth: light grey = lag phase, medium grey = log phase and dark grey = static phase. 

sensors (in the sensor chamber) and better filtering of the air input to the system. 

Gas delivery was controlled using computer software which allowed easy tailoring of 

experimental parameters, such as the duration of time in which a particular sample 

was `smelt'. This meant data gathering experiments could be automated, however, 

in this case the experiments were not totally automated because the samples had to 

undergo simultaneous independent testing (viable cell counts). The vessels containing 

the samples were modified so that small amounts of bacteria culture material could be 

extracted without interfering with the `smelling' process. The electronic nose was tested 

and characterised. The effect of fluctuations of ambient temperature and humidity upon 

the baseline resistance of the gas sensors was investigated. Experimental methods for 

data collection were developed, this included methods to eliminate infection of samples 

by unwanted micro-organisms and the performance of viable cell counts. Finally a set of 

data gathering experiments were performed over a period of four weeks on two types of 

bacteria: Escherichia coli and Staphylococcus aureus, two experiments were performed 
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Table 3.4: Table summarising the data gathering experiments performed using the 

temperature controlled sensor chamber. Growth curve quality is an indication to how 

much the actual growth curve conformed to the ideal curve(see figure 1.2. 

Experiment Bacteria Growth curve 

no. types quality 

1 Escherichia coli good 

2 Escherichia coli good 

3 Staphylococcus aureus medium 

4 Staphylococcus aureus medium 

for each bacteria type. Since viable cell counts were performed during the experiments, 

the size of the populations could be calculated and the growth curves for each culture 

plotted. This external control added reliability to the data. Table 3.4 summarises the 

experiments performed. 



Chapter 4 

Initial Data Exploration Using 

Pre-Processing and Classification 

Techniques 

This chapter describes the initial data analysis that was performed on the data-sets 

collected in the experiments detailed in chapter 3. The purpose of this data analysis 

was to gain a better understanding of the nature of the data from the electronic nose. 

Data analysis consisted of pre-processing followed by classification. 

Data pre-processing, as employed in this application, was the application of one 

or more signal processing algorithm(s), such as feature extraction and normalisation, 

to an 'input' data-set (in this case a `raw' data-set which were voltages recorded from 

the sensor array). The resultant 'output' data-set (or Feature-Set) was then applied to 

subsequent classifiers. 

Pre-processing was carried out in order to improve the classification process. The 

importance of pre-processing has been well documented both in pattern recognition [55] 

and in the area of electronic noses [50]. The ultimate test of pre-processing methods is 

to study their effect on classifier performance. 

The application of numerous classifiers are described later in this chapter. Two 

classification tasks were performed; classification of bacteria culture growth phase and 

106 
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classification of bacteria type. The classification was performed by means of ANNs. 

Classical statistical methods were employed as benchmarks by which the performance 

of ANNs were compared. 

The boundary between pre-processing and classification is not easy to define because 

there are processes that can be performed both as an integral part of the classifier 

or as a separate stage. An example of such a process is the linear scaling of input 

variables'. For the purpose of documentation, the boundary between pre-processing 

and classification will be a practical one, i. e. those techniques that were applied to the 

`raw' data-sets which were not implemented as part of the classification software (since 

the classification was implemented as computer software). In reality the pre-processing 

techniques were applied by means of a separate suite of programs other than those used 

for classification. 

4.1 Pre-Processing Techniques 

Before pre-processing techniques can be applied, an understanding of the processes 

involved is desirable in order to predict the effect on classification performance. As 

employed in this research project, pre-processing can arguably be called `Feature Ex- 

traction' because the input to the pre-processor is the `raw' data-set and the output 

is a Feature-Set. In general, the importance of pre-processing has been overlooked in 

previous work where ANNs have been employed as classifiers (see chapter 2). Research 

into pre-processing techniques, in this project, was given equal importance as the clas- 

sification techniques. Pre-processing the `raw' data-sets from the gas sensors included 

up to two different types of processing function: feature extraction and normalisation. 

The following sections discuss these functions. The signals from the non-gas sensors 

were not pre-processed in the same manner as the signals from the gas sensors; this is 

discussed in a separate section 4.1.3. 

'The weights in an artificial neural network can (and do) scale input vectors 
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4.1.1 Feature Extraction 

Essentially Feature extraction is a process whereby the relevant information content 

of a data-set is preserved as much as possible whilst, at the same time, decreasing 

the amount of data. Relevant information is information that, when present, improves 

classification performance. Information that is not relevant can be considered as noise. 

Therefore if a ratio is visualised of the amount of relevant information contained in a 

data-set over the total data-set size; feature extraction increases this ratio. The ideal 

value for this ratio would be 1, but in reality this can never be achieved because a finite 

amount of relevant information is always lost during feature extraction. An ideal feature 

extraction technique would be one where relevant information is perfectly preserved, 

however, this cannot be practically achieved for complex tasks, such as classification of 

odours. 

The question could be asked: Why not input the `raw' data directly into a classifier? 

The answer is: It would be impractical to input the vectors in a `raw' data-set into a 

classifier because the vectors represent a time series. It initially seems possible that the 

entire time series for a single measurement phase (or `smell') could be simultaneously 

input to a classifier. However, considering only the gas sensors, if a `smell' contained 120 

vectors (for a4 minute `smell'), the classifier would need 720 inputs (for 6 gas sensors), 

which is a very large number. It has been shown that, in general, classifiers that are 

too complex suffer from poor performance [55]; this has also been shown previously on 

electronic nose data [48]. This shows that dimensionality reduction of the input is a 

vital property of feature extraction. 

The `raw' data-sets were processed on a `smell' by `smell' basis so that any classifier 

only had to cope with one `smell' at any one time. The next step was to extract a feature 

vector, Xj = (x13) x23, ... , x2A from each `smell'. Each feature vector component 

corresponds to a single feature, Xis, from a single gas sensor. Because the valve's status 

was recorded along with the sensor signals, identifying individual `smells' within the 

`raw' data-set was straightforward. This was defined by `smell' boundaries, which were 

the points in time where the valves for channels 2 or 3 were switched off and the valve 

for channel 1 was switched on, see figure 4.1. 
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Figure 4.1: Plot of of typical gas sensor response for a single gas sensor during a single 

measurement phase (a `smell'). The parameters used in gas sensor feature models are 

indicated. Note also that because in this example the maximum level is reached at the 

end of each half-cycle, the maximum and final voltages and times coincide, this does 

necessarily have to be the case. 

In figure 4.1 the parameters Vf Zeal Vmax Vf final vmax Vmin Vmin tmin tmax 
ref ) ref ) odour odour) ref I odourI ref 1 ref 1 

t feral' 
t do 

r 
odour and todpur are indicated. These are the parameters input into gas 

r 

sensor feature models. Many gas sensor feature models have been tried in previous 

work [49,53,50]. Each different model has associated with it a two letter notation (all 

notation is shown in italics) in order to ease handling of different feature-sets. Below 
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are shown the most promising gas sensor feature models: 

Difference model (df), this is the difference between the maximum output voltage for 

the reference odour and the minimum output voltage for the bacteria odour: 

X=V fx-Vdour (cc AR) (4.1) 

Relative model (ri), this is the ratio of minimum output voltage for the bacteria odour 

and the maximum output voltage for the reference odour: 

vmin R 
odour (_ 

_1 vmax lRl 
ref 

(4.2) 

Fractional difference model (fd), this is the ratio of the difference model and the max- 

imum output voltage for the reference odour: 

ý_ 
vmax _ Vman 

ref odour 
vmax 

ref 

OR 
R 

(4.3) 

Further to these gas sensor feature models a new set of feature models was employed. 

These models which also use Vef al and V f"" üal parameters are shown below: 

Absolute final output model (af); two features, x1 and x2, are output, which are the 

final output voltage for the bacteria and reference odours respectively: 

V. 
odour 

r Vf (4.4) 

Minimum output model (mn); two features, x1 and x2, are output, which are the min- 

imum output voltages for the bacteria and reference odours respectively: 

X1 =V dour and X2 =V fn (4.5) 

Final relative model (fr), this the the ratio of final output voltages for the bacteria 

odour and the reference odour: 

V final 
_ odour (4.6) 
- Vffinal 

ref 
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Modified difference model (md), this is the difference between the voltage change for 

the bacteria odour and the voltage change for the reference odour: 

e1 
n) X- (V 

dom ur -V dour) - 
(V 

fx- Vm 

Modified fractional difference model (mf), this is the ratio of the voltage change for 

the bacteria odour and the voltage change for the reference odour: 

vmax - odour 
Vman 

odour 
Vmax Vmin - ref ref 

Final fractional difference model (ff), this is the ratio of the difference of the final 

output voltage for the bacteria odour and the reference odour, and the final voltage 

(4. i) 

(4.8) 

output for the reference odour: 

ý_ 

Vfinal 
- 

Vfinal 
odour ref (4.9) 

Vf inal 
ref 

Therefore for sensor i and `smell' j, there is a feature x2j and consequently ixj 

features. Since the sensor interface circuitry outputs sensor signals in such a manner 

that output voltage V is proportional to resistance R, that is VaR= kV, therefore 

these feature models can be considered gas sensor resistance feature models. 

None of the gas sensor models so far described use timing parameters; tef, te f' 

tTfinal ,tir, tma' and tfinal Thus any information in the `raw' data-set that is 

directly related to dynamic signal behaviour is not included in any subsequent feature- 

set. The use of gas sensor models which employ these parameters are explored later in 

chapter 6. 

4.1.2 Normalisation 

Normalisation is a generic term which is used to describe any transformation of the vari- 

ables within a feature-set to lie within certain ranges. There is no general agreement of 

terms, the technique described here as `auto-scaling' is also known as `standardisation'. 

A set of scaled gas sensor features were produced by applying a linear transformation, 

the purpose of which was to equalise the vector components in the feature data-sets, 
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this can improve the performance in many types of classifiers [55]. Notation denoting 

feature-sets that were not normalised was an n appended to the gas sensor feature 

model notation. 

Auto-Scaling 

Auto-scaling is a simple linear scaling of vector components so that each vector com- 

ponent has, across the entire feature-set (i. e. column wise), a mean of zero and a unit 

variance. 

The feature-set contained feature vectors, Xj _ (x13') x2j, 
... , xis), each feature 

vector component was treated as being independent, its mean Yi was calculated by: 

IN 
xi =N xi j 

j=1 

(4.10) 

Where N is the number of feature vectors in the feature-set with i components to each 

vector. The variance a? is also calculated over the entire feature-set: 

N 

Q2 =E 
(Xz3 

N-13=1 
(4.11) 

Therefore the set of scaled feature vectors is calculated such that the vector components 

have a mean of zero and unit variance: 

X3 - 
xij - Yi 

ai 
(4.12) 

Auto-scaling assumes that the variables are independent. If the feature-set describes 

only one class of odour then this assumption may be true, the variables may also 

conform to a normal distribution. If the feature-set describes many different odour 

classes then it is more unlikely that the variables are independent, it is more likely 

that the variables may conform to several normal distributions, each one offset from 

the other and corresponding to a different odour class. This may not, however, be a 

problem because the variance is preserved. Notation for auto-scaling was an a, this was 

appended to the gas sensor feature model notation. 
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Array Normalisation 

4.1 Pre-Processing Techniques 

Array (or vector) normalisation scales all the components of a feature vector by a 

constant value so that the vector has unit Euclidean length. For each feature vector. 
Xj _ (x1j) X2j, 

"", xjj), its components are scaled by a constant, k, given as: 

%ý =1 
xlj ij 

(4.13) 

Each vector component is scaled by this factor, thus a new feature vector is calculated 

with a unit length: 

YJ = 
V((kxi )2 + (kx23* )2 +... + (kxij)2) (4.14) 

Thus, in feature-space, the feature vectors are mapped onto the surface of a unit hyper- 

sphere. If the odour quality information was related to the angle of the feature vector, 

and the odour concentration was related to the Euclidean length; this normalisation 

reduces the concentration dependent information within the feature-set [47). This as- 

sumption may not be valid. However if a particular feature vector is erroneous but 

small in magnitude, this transformation will amplify the noise it contributes to the 

feature-set. Therefore the overall noise content of a feature-set may be increased (this 

may not be a problem for classification by means of ANNs which can be robust to 

noise). Notation for array (vector) normalisation was a v, which was appended to the 

gas sensor feature model notation. 

Sensor Normalisation 

Sensor normalisation scales each feature over the entire feature-set so that it lies in 

the range [0, +1] (or [-1, +1]). Each sensor feature, xi, was scaled according to the 

maximum value, xmax, and the minimum value, x 'Qý, for that sensor (i. e. column): 

xij - xmzn 
yz3 - 

Xmax - Xmin 2i 

(4.15) 

Therefore each feature was transformed by a different amount, equalisation occurred. 

If a particular gas sensor was producing erroneous, but small, values; this scaling would 
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amplify the noise contributed by that gas sensor. This problem can be countered during 

the classification process by weighting the relevance of each feature. Notation for sensor 

normalisation was a s, which was appended to the gas sensor feature model notation. 

4.1.3 Non-Gas Sensors 

Feature models for the temperature, humidity and rate of gas flow were simple. The 

output from these sensors were averaged over each measurement phase to give 2 values 

per sensor per `smell' cycle. The non-gas signals were a time series of voltages, V. and 

there were N measurements in each measurement phase, therefore the non-gas sensor 

feature was defined as: 

1N 

=NE Vn 
n-1 

(4.16) 

The frequency of measurement was 1 per second. A `smell' cycles consisted of 2 meas- 

urement phases, each lasting 2 minutes. Therefore in one measurement phase there 

were 120 individual measurements (i. e. N= 120). 

4.1.4 Feature-Sets 

Table 4.1 and Table 4.2 show how the feature-sets employed in this chapter, were built 

up from the `raw' data-sets using the gas sensor feature models and normalisation 

algorithms presented so far. Each feature-set type had a name and number which 

identified which features it contained. There were a total of 36 different feature-set 

types, therefore for the 4 experiments so far conducted, there were a maximum of 144 

feature-sets. 

Software was written in the C++ language to implement the feature extraction 

and normalisation. Also, this software allowed the addition of target output vectors to 

the feature-sets, which were necessary for the training of classifiers. The generation of 

feature-sets was automated, thus large amounts of data could be generated and handled 

with more ease. 
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Table 4.1: Table showing the composition of Feature-Sets using reported gas sensor 
feature models. 

Set No. Notation Gas sensor model Normalisation 

1 dfn difference none 

2 dfs difference sensor 

3 dfa difference auto-scaling 

4 dfv difference vector(array) 

5 rin relative none 

6 rls relative sensor 

7 rla relative auto-scaling 

8 rdv relative vector(array) 

9 fdn fractional difference none 

10 fds fractional difference sensor 

11 fda fractional difference auto-scaling 

12 fdv fractional difference vector(array) 

4.2 Artificial Neural Networks: Multiple Layer Perceptron 

The most common type of ANN that is used for classification in a wide range of 

applications, ranging from decision making in insurance companies to the administering 

of medication, is the multi-layer perceptron (MLP) trained using back-propogation 

(BP). This is the type of ANN described here. This description is not intended to 

be comprehensive, MLP ANNs and BP are described in many publications [55,99]. 

However from this description the nature of this classification method is highlighted and 

so the reasons for its widespread application to electronic nose data can be investigated. 

A simple mathmatical model has been postulated [73] in order to account for the 

observed behaviour of the biological neuron, this model is a discriminant function sim- 

ilar to those previously highlighted by Fisher [67]. The following equation describes 

the neuron model as a non-linear discriminant function for a given neuron i: 
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Table 4.2: Table showing the composition of Feature-Sets using new gas sensor feature 

models. 

Set No. Notation Gas sensor model Normalisation 

13 afn absolute final output none 

14 afs absolute final output sensor 

15 afa absolute final output auto-scaling 

16 afv absolute final output vector(array) 

17 mnn minimum output none 

18 mns minimum output sensor 

19 mna minimum output auto-scaling 

20 mnv minimum output vector(array) 

21 frn final relative none 

22 frs final relative sensor 

23 fra final relative auto-scaling 

24 frv final relative vector(array) 

25 mdn modified difference none 

26 mds modified difference sensor 

27 mda modified difference auto-scaling 

28 mdv modified difference vecor(array) 

29 mfn modified fractional difference none 

30 mfs modified fractional difference sensor 

31 mfa modified fractional difference auto-scaling 

32 mfv modified fractional difference vector(array) 

33 ffn final fractional difference none 

34 ffs final fractional difference sensor 

35 ffa final fractional difference auto-scaling 

36 ffv final fractional difference vector(array) 
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1 
yi = 

0 

if vi>0 

if vj <0 
(4.17) 

The term v2 represents the level of excitement (or activity) of the neuron which is 

usually the weighted sum of N inputs, xj, offset by a threshold O i. The term vi is 

defined as: 

N 

vi =E wig xj - ei 
j=1 

(4.18) 

These equations form the basis for the majority of neural network research, including 

the MLP. The neuron model employed in MLPs is the Perceptron, this does not pre- 

cisely follow the non-linear discriminant (threshold) model described in equation 4.17, 

but a `soft' threshold model, the most popular of which is the sigmoidal logistic func- 

tion: 

1 
yi = (1 + e-avi 

(4.19) 

The term a is a slope term and determines the the slope of the logistic function, it 

is usually set to 1.0. The effect of these different activation functions, including the 

sigmoidal logistic function, can be observed in figure 4.2. 

Other activation functions include the hyperbolic tangent (tanh) which is another 

`soft' threshold function similar to the sigmoid function but is less commonly used (also 

shown in figure 4.2). The tank function allows negative inputs to change the activation 

of the neuron. The sigmoid function `squashes' the output of the perceptron to the 

range [0, +1] and the tank function `squashes' the output to the range [-1, +1]. The 

effect of `squashing' the output is important as it improves the training qualities of the 

network. Figure 4.3 shows a diagramatical representation of a single perceptron. 

From figure 4.3 it can be observed how the models quoted in equations 4.18 and 4.19 

combine to model a complete unit. The adaptive threshold, 9k, is in practice imple- 

mented as an extra weighted input fixed at -1. Figure 4.4 shows how a number of 

perceptrons are connected to form a `feed-forward' MLP ANN. 
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Figure 4.2: A plot showing the different activation functions, including the non-linear 

discriminant function given in equation 4.17, the sigmoidal logistic function given in 

equation 4.19 (for 3 different values of a) and the hyperbolic tangent function. 

The MLP ANN shown in figure 4.4 is fully connected because all the outputs from 

the previous layer are input to the next layer. Partially connected MLPs are less 

common. The term `feed-forward' is used because each layer feeds forward into the 

next. It is possible for the inputs to the network to connect directly to the output layer 

(i. e. bypassing the hidden layer), this arrangement of connections can be beneficial 

but also lead to problems with training. Also more than 1 hidden layer can be used, 

however MLPs with more than two hidden layers (or none at all) exhibit different 

classifying qualities. It has been shown that a MLP with 1 hidden layer, the perceptrons 

of which have non-linear activation functions (such as sigmoid), can be a universal 

approximator [99]. Therefore any continuous function can be approximated (including 

non-linear functions). Adding a second hidden layer can improve classifier performance 

but in practice is more problematic in training because it increases local minima. With 

-5 -4 -3 -2 -1 012345 

Preceptron Activity 
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Figure 4.3: Diagram showing the construction of a single perceptron having i inputs 

and 1 output. The implementation of an adaptable threshold level is also shown. 

no hidden layer the network can only approximate linear functions, therefore it would 

implement a linear discriminant function in feature space. This is not sufficient for 

complex odour classification [47]. 

MLPs are usually trained using BP2. BP is a supervised training technique where 

for each input vector, the target output vector is known. The target vector is the 

desired response from the network to the input vector. Before training can commence 

the weights have to be initialised. This is usually done by assigning a random number 

to each weight, often in the range [-1, +1] or [-0.5, +0.5]. Assigning large initial weights 

can lead to poor training solutions being found. The overall objective of training is 

to minimise the difference between the actual network output and the target output. 

This is achieved by adjusting the weights and thresholds for each perceptron. In order 

2There are other methods but BP is by far the most common. A study of all possible training 

methods is beyond the scope of this research. 
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Figure 4.4: Diagrams showing the arrangement of perceptrons to form a2 layer MLP 

ANN with 2 input perceptrons, 2 outputs (therefore 2 output perceptrons) and 4 hidden 

perceptrons. Note that the number of layers of adaptive weights is used to denote the 

number of layers of a MLP. 

to do this, an error measure is computed, the most common measure is the sum of the 

square of the difference for each network output. This measure, called sum of squared 

errors (SSE) can be written as (for N outputs): 

N 

Esse = 
(tn 

- yn)2 

n=1 

(4.20) 

Where t, z is the target for output n and y, is the actual value for output n. Many 

adaptions to this measurement are used, such as mean squared error (MSE) which is 

simply SSE divided by the number of outputs, N, to get a mean value for each output. 

Also the error measure is computed for each input vector and summed over the whole 

data-set (this is done throughout this research). A common analogy used in the field 

of ANNs is the `error surface', which exists in the weight-space (domain). If a network 
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is imagined that only has two weights (and a sigmoid activation function), an error 

surface can be drawn where the xy coordinates are the values of the weights and the 

height is the value of the error measure. If the surface is to be valid for an entire data- 

set, the the SSE summed over the data-set can be used. A peak is a point which has 

associated with it a high error, and a trough is a point which has associated with it a 

low error. The BP algorithm employs a method of gradient descent, where the network 

is initialised and its error (SSE) can be visualised by being at a random xy coordinate 

on the error surface. The gradient descent vector is calculated such that the steepest 

negative gradient is the path followed by the network error. The weights are adjusted 

so as to move the error down into a trough and eventually finish in a minimum. At this 

point no further weight adjustments are made and the network has reached a state of 

low error. The principle still holds true for networks which have an arbitrary number 

of weights, the error surface merely exists in multi-dimensional space. 

At this point, BP training algorithm can be formally described. First the error 

derivative is calculated, which is simply the ratio of the rate of change of error, Esse, 

over the rate of change of output, yn : 

d&sse 
=yn - tn 

dyn 
(4.21) 

Next the output derivative is calculated for each output perceptron, which is simply 

the ratio of the rate of change of error over the rate of change of total input, x: 

desse dEsse dyn 

dxn dyn dxn 
(4.22) 

Assuming an sigmoid activation function and substituting equation 4.21, equation 4.22 

can be simplified further to: 

d, -sae 
= (yn - tn)yn(1 - yn) 

dxn I 
(4.23) 

Where y, z 
(1 - y,,, ) is the derivative of the sigmoid function. It is no accident that the 

sigmoid function is so popular; its derivative is a simple function. It can now also 

be seen why the non-linear discriminant function given in equation 4.17 is not used. 
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Its derivative is either 0 or oo which makes calculation of the gradient descent vector 

impossible. From this, the weight derivative for each weight can be calculated, which 

is simply the ratio of the rate of change of error over the rate of change of a weight for 

the corresponding output perceptron, wmn: 

desse 
_ 

dEsse dxn 
(4.24) 

dwmn dxn dWmn 

Simplifying and substituting equation 4.23: 

d, -ase 
_ (yn 

- tn)yn(1 - yn)ym (4.25) dwmn 

Where yr,,, is the output from a hidden perceptron. From this the error derivative for 

the output from a hidden neuron can be calculated. This is the important stage because 

it is here that the error is `back-propagated'. This product of derivations is called the 

chain rule. If the output from a single hidden perceptron changes, it effects all the 

output perceptrons (assuming full connection), the effect on each output perceptron is 

therefore summed: 

dEsse N N dEsse dxn 
(4.26) 

dymn, 
nL_1 

dXn dym 

Simplifying and substituting equation 4.23: 

d 

dy 

N 

,,, 
= 

E(1Jn 
- to)yn(I - yn)Wmn (4.27) 

n=1 

These steps can be progressed further to find the weight derivative for a hidden 

perceptron. Thus all the derivatives for all weights in an MLP can be calculated. 

Summarising, a MLP has a vector applied to its inputs, from the resultant output 

the error measure is computed. Given that each weight currently has a particular 

value, and using the weight derivative calculations for the hidden and output layers, 

a gradient descent vector, V, is computed. This vector has a many components as 

there are weights in the MLP. The weights in the output layer are updated using the 

following rule: 
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Wmn (t + 1) = wmn (t) - rlV mit (4.28) 

Where Wmn (t) is the value of the weight between output perceptron n and hidden 

perceptron m at time t. Also Vmn is the gradient descent vector component for weight 

wmn and 77 is the learning rate constant. This same equation can be used for any 

two layers by substituting the corresponding weight value and gradient descent vector 

component value. The threshold value is considered to be an extra weight in each 

perceptron. 

Each input vector used in the training process is called a training vector and has an 

associated output target vector, i. e. a training vector pair. The data-set that contained 

the training vector pairs was called the training data-set. Each training vector pair in 

the training set was presented in turn to the network. In general weights can either 

updated with every training pair (called on-line method) or after all the training pairs 

have been applied (called batch method). Batch mode is the less popular mode. For 

training in on-line mode, each training vector pair is applied to the network, the error 

is calculated and thus the gradient descent vector is calculated. From this the network 

weights are adapted according to the update rule (see equation 4.28). After all the 

training vector pairs have been applied to the network, a criterion is measured in order 

to determine if the training should stop or carry on (by applying the training pairs 

once more). This criterion can be that the weights have ceased to be adjusted or that 

a particular minimum error has been reached. 

There are a large number of variants of BP. Despite this, there is a more advanced 

version of BP that is probably more popular than the original algorithm. This advanced 

version is called BP with momentum. The reason for its popularity is because of 

a serious problem with the original BP. Previously the idea of an error surface was 

described with peaks and troughs. The problem is that the network can get stuck in 

a trough which is not the deepest (called a local minimum), i. e. the network stabilises 

without reaching the global minimum error. There is no method of training so far 

(BP or otherwise) for a MLP that guarantees that the global minimum is reached. BP 

with momentum helps the network pass through high local minima and encourages the 
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network to stabilise in deep minima (possibly the global minimum). The weight update 

rule is modified thus (with Owmn, (t) = 

Wmn(t + 1) = Wmn(t) + (LWmn(t) + (x(L wmn(t - 1))) (4.29) 

Where a is the momentum coefficient. It can be observed how the weight change 

depends not only on the current gradient descent vector but also the one for the previous 

stage. There are limitations to BP with momentum, the network can become difficult to 

stabilise, and the training time may be increased. In reality, most learning algorithms 

improve some features at the expense of others. 

Now that the basics have been covered, some limitations of using BP trained MLPs 

for classification can be identified and their importance to classification of odours can 

be explored. 

ANNs were modeled using a software package called SNNS (Stuttgart Neural Net- 

work Simulator), version 4.1. This package allows a wide range of ANN types to be 

modeled and applied. ANNs were designed using a graphical interface, these ANNs 

were then trained and tested on data using an internal processing language (which also 

allowed automated systematic training and testing of ANNs). Lastly, ANN perform- 

ance was analysed using built-in analysis software. This program is public domain (i. e. 

freely available) and is supplied with source code (written in C language), modifications 

to the software were therefore possible. Although many other `professional' packages 

exist, for example NeuraiWorks (by NeuralWare), the user base of SNNS has become 

the biggest of any ANN software package and has therefore become the most tried and 

tested. Also, the author's previous experience with SNNS meant quick implementation 

of ANN models. 

4.2.1 Classification Of Bacteria Type 

Combined data from the first experiments with Escherichia coli and Staphylococcus 

aureus (i. e. experiment 1 and 3) was used in conjunction with MLP ANNs which 

were trained using BP with momentum. These ANNs were tested using combined 

data from the second experiments with Escherichia coli and Staphylococcus aureus 
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(i. e. experiment 2 and 4), this is called split-sample validation. MLPs trained and 

tested with such a combination were denoted using `13/24' as notation. The reason 

for combining the data in this manner was that it was a more challenging test for a 

classifier to classify data from one experiment when being trained from another. In 

this way, variances between experiments for the same bacteria type cannot be learned 

(which would have biased the test results), the classifier is forced to learn the variances 

due to bacteria type only. No doubt more impressive performance figures could have 

been attained if the classifiers were both trained and tested with data from the same 

experiment, this would have been less useful. Great effort was invested into obtaining 

data of sufficient amount that more realistic performance estimates could be calculated, 

rather than relying on other performance estimation techniques such as cross-validation 

(see [58]). All the feature-set types listed in Table 4.1 and Table 4.2 were used, therefore 

there were 36 training feature-sets and 36 testing feature-sets, each feature-set contained 

360 vectors (180 for each bacteria type). Each ANN was trained and tested using 

feature-sets of the same type (i. e. the same notation). Target output vectors were 

added to all feature-sets, this was easy since the prior class membership was obviously 

known in all cases. 

The network topology was 6 (12 for feature-sets using the Absolute Final Output 

and Minimum Output gas sensor feature models) inputs, 20 hidden nodes and 2 output 

nodes. The classes themselves were encoded using 1-of-C where each output node 

corresponded to 1-of-C classes, there were 2 classes therefore 2 output nodes. This 

method of encoding unordered categories (classes) is standard. The transfer function 

for the input nodes was unity (i. e. the output was the same as the input), because 

these nodes simply distribute the input vectors to the hidden nodes. The hidden and 

output nodes had hyperbolic tangent (tanh) transfer functions instead of the more 

common sigmoid function because some input vector components had negative values3. 

Therefore the maximum output value for both hidden and output nodes was 1 and the 

minimum was -1. 
3A sigmoid function would output 0 for all negative inputs, thus all information contained in negative 

input vector components would be lost and classification performance reduced. 
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The large number of hidden nodes was considered necessary because an early- 

stopping training technique was used. Early-stopping is a common technique used 

to improve the generalisation performance of an ANN. Generalisation is the ability 

of the ANN to correctly classify input vectors which have not been used for training. 

The usefulness of an ANN that can correctly classify all of its training vectors without 

consideration for the testing vectors, is very limited. The number of hidden nodes has 

a significant influence of the ability of an ANN to generalise [55] and yet no reliable 

method for estimating the optimum number of hidden nodes has so far been discovered. 

A MLP with too few hidden nodes can `under-fit' the data. Essentially the MLP is ap- 

proximating a mapping function from the input vector (the feature-set) domain to the 

output (class membership) domain. `Under-fitting' relates to the fact that the function 

approximation can be inaccurate due to the inability to accommodate enough of the 

training vectors. Conversely, a MLP with too many hidden nodes can `over-fit' the 

data where outlying training vectors unduly influence the function approximation and 

introduce error. The number of cycles the MLP is trained also affects the generalisation 

performance, a MLP trained with too few cycles will `under-fit' the training data, a 

MLP with trained for too many cycles may `over-fit' the training data. This problem 

was tackled by using a MLP with a large number of hidden nodes (e. g. 10 times the 

number of classes), which was trained in the standard way for up to 1000 cycles, but 

after each cycle the SSE over entire testing data-set was computed, a `snapshot' of the 

weights of the network which yielded the lowest SSE was recorded to allow later use. 

This method was not strictly early-stopping because it did not stop when the SSE star- 

ted to rise after the initial fall. The software that was employed allowed a `snapshot' 

of an ANN to be recorded, it was possible to train over a fixed period. 

Table C. 1 and Table C. 2 summarise the results obtained from the application of a 

MLP to the classification of bacteria type, the former table shows the results for the 

feature-set types previously employed by other workers, and the later table shows the 

results for the new feature-set types. Correct network outputs were calculated using 

the `402040' rule [112], in this case a lower output band was defined as the range [- 

1, -0.5] and an upper output band was defined as the range as the range [0.5,1]. A 
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pattern was correctly classified if precisely 1 output was in the upper band, all the 

other outputs were in the lower band, and the highest teaching output corresponded to 

the highest output. A pattern was incorrectly classified if precisely 1 output was in the 

upper band, all other outputs were in the lower band, and the highest teaching output 

did not correspond to the highest output. A pattern was unknown if it was neither 

correctly classified nor incorrectly classified. Specifying output vectors in this manner 

allowed for unknown feature vectors to be more accurately detected. A rule such a 

winner-takes-all (WTA) forces possible unknown classifications to be classified thus 

possibly increasing the number of incorrectly classifications'. The training parameters 

used were q =0.001, a =5.0 (see equations 4.28 and 4.29), c =0.1 (flat-spot elimination 

constant added to derivations) and dmax =0.1 (d = (tn - yn), maximum tolerance of 

error per output). The relatively low value for it and high value for a help reduce 

the effect of local minima, which is necessary for MLPs with a large number of hidden 

nodes, such as those used here. The vectors in the training set were shuffled into a 

random order for each training cycle, therefore there was no constant order in which 

the vectors were input to the net for training, this can improve generalisation. Also 

each training/testing data-set pair was used to train a 10 MLPs, therefore if 1 of the 

MLPs did not converge well due to the initial random weights, there was a good chance 

of a better MLP being produced. The random weights were assigned in the region [-0.5, 

+0.5]. 

The tables summarising the performance of the MLP classifiers are given in ap- 

pendix C, in Table C. 1 and Table C. 2. The SSE term was calculated over the entire 

testing feature-set and the other performance measurements are given as a% of the 

total number of patterns (feature vectors) in the testing feature-set. Further to these 

results, it was decided to repeat the same neural net analysis but reversing the training 

and testing feature-sets. Consequently, the MLPs were tested with feature-sets from 

experiments 1 and 3, and tested with data from experiments 2 and 4, the results of this 

4Although it can also give a more immediately impressive figure for the number of correct classific- 

ations. It does not increase the difference between the number of correct classifications and incorrect 

classifications, which is a more important measure. 
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Table 4.3: Average and standard deviation of performance of bacteria type classification 
by means of MLPs using data from different experiments for training and testing. 

Train/ SSE 

Test ta 

Correct (%) Incorrect (%) Unknown (%) 

QQtQ 

13/24 552.12 228.47 47.70 28.22 10.76 7.62 41.54 30.51 

24/13 512.31 202.00 51.84 28.57 9.94 7.64 38.22 31.79 

analysis are given in Table C. 3 and Table C. 4 in appendix C. MLPs trained and tested 

with such a combination were denoted using `2413' as notation. This reversal of train- 

ing and testing data-sets was valuable because it further tests the robustness of MLP 

classifiers. It is possible for the vectors in a feature-set from an experiment to describe 

a larger space in feature-space than a feature-set from a different experiment, thus a 

MLP trained with former feature-set can exhibit better generalisation. Comparing the 

results for the same feature-set pairs in Table C. 1 and Table C. 2 to those in Table C. 3 

and Table C. 4, it can be seen that reversing the training and testing feature-sets did 

effect performance. Table 4.3 lists the averages and standard deviations of different 

performance measures for both sets of results. Using the average, ±, and standard de- 

viation, a, of performance measures (SSE over the whole training feature-set, % correct, 

% incorrect and % unknown), 13/24 MLPs tended to be marginally inferior to 24/13 

MLPs. A large value of a highlights a quantity that is prone to high variance, i. e. not 

particularly consistent. Because there was no great difference in performance it can be 

assumed, at this point, that no one experiment provided data that was significantly 

better or worse than the others. 

Table 4.4 shows not the average and standard deviation of performance measures 

(Table 4.3) but the minimum and maximum. Again, no significant difference between 

the two sets of MLPs seems to be evident. However the corresponding minimums and 

maximums for the two sets of MLPs did tend to occur with different feature-set types. 

For example, the best % correct classifications for 13/24 MLPs occurred for the mnn 

Feature-Set, whilst that for 24/13 MLPs occurred equally for the frs and ffs feature-set 
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Table 4.4: Minimum and maximum of performance of bacteria type classification by 

means of MLPs using data from different experiments for training and testing. 

Train/ SSE 

Test min max 

Correct (%) Incorrect (%) Unknown (%) 

min max min max min max 

13/24 74.21 1085.51 0.28 96.11 0.00 34.17 0.00 99.72 

24/13 52.90 947.90 0.00 93.06 0.00 24.44 4.44 100.00 

types. 

SSE is an indication of the `depth' of the minimum in weight space that was con- 

verged upon during training. In general the lower the SSE, the higher the % of correct 

classifications, the lower the % of incorrect classifications, and the lower the % of un- 

known classifications. When unknown and incorrect classifications tended to differ 

greatly with the target outputs, the SSE increased even though the % correct classi- 

fications remained similar. MLPs where the SSE was very high and the % unknown 

classifications was also high (90% or more) can be judged to not have trained cor- 

rectly, no significant minimum on the error surface was converged upon. The better 

MLPs had a low SSE along with, high % correct, low % incorrect and low % unknown 

classifications. These criteria were used to define a `good' MLP. 

From results so far obtained, an idea of the effect of different pre-processing al- 

gorithms upon the performance of bacteria type classification can be obtained. For 

different gas sensor feature models, Table 4.5 and Table 4.6 summarise the results for 

both MLP sets. 

Looking at the results from Table 4.5, the df feature model resulted in the best MLP 

performance, and the mf feature model resulted in the worst MLP performance. The 

relatively low value of a for df indicates that it consistently performs well compared 

to the other gas sensor feature models. Because these statistics cover all the different 

normalisation algorithms, it is possible for a particular feature model to perform well 

with one normalisation algorithm and badly with another. Such behaviour increased 

the corresponding value for a. This fact is further enhanced by observation of the 
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Table 4.5: Average and standard deviation of performance of bacteria type classification 

by means of MLPs for different gas sensor feature models (see equations for model 

notation). 

Model SSE Correct (%) Incorrect (%) Unknown (%) 

df 346.94 128.53 77.22 9.19 10.28 4.30 12.50 6.73 

rl 547.24 124.13 40.00 25.68 8.99 7.07 51.01 30.37 

fd 543.13 125.22 43.54 22.97 10.17 4.07 46.28 24.75 

of 388.86 164.16 61.11 14.36 7.22 6.42 31.67 13.28 

inn 417.96 177.99 60.14 24.86 9.86 6.90 30.00 24.67 

fr 558.73 223.16 36.01 39.92 6.74 8.95 57.26 45.69 

grad 685.88 250.56 61.35 13.93 21.08 9.04 17.57 12.34 

mf 705.44 188.79 23.89 26.69 8.54 4.98 67.57 29.37 

ff 595.86 264.34 44.69 32.56 10.24 7.71 45.07 34.81 

minimums and maximums listed in Table 4.6. Thus good individual performance (i. e. 

performance for a particular feature model and normalisation algorithm) was achieved 

for df, fd, mn, fr and ff gas sensor feature models, some of which also yield low values 

for zt and high values for a. 

As well as feature model, it was also important to consider the effect of normalisation 

upon classifier performance. Table 4.7 and Table 4.8 are similar to Table 4.5 and 

Table 4.6 respectively except that performance was measured for all feature models, 

for a specific normalisation algorithm. 

From Table 4.7, auto-scaling appears to perform well. However its low values of a 

also highlight that it performed consistently and not the best. This fact is confirmed 

by observation of Table 4.8. Also, all the other normalisation algorithms gave both 

good and bad results. From this information it can be said that auto-scaling did not 

improve MLP classification performance, in fact it tended to decrease performance. 

The best MLP used the Minimum Output feature model and sensor normalisation 
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Table 4.6: Average and standard deviation of performance of bacteria type classification 

by means of MLPs for different gas sensor feature models (see equations for model 

notation). 

Model SSE Correct (%) Incorrect (%) Unknown (%) 

min max min max min max min max 

df 82.18 514.93 64.72 93.89 2.50 15.83 3.06 20.28 

rl 330.09 680.35 0.00 71.11 0.28 21.39 18.61 99.72 

fd 304.56 723.62 15.28 79.72 3.89 17.78 10.28 75.00 

of 226.19 750.79 42.22 82.22 2.50 21.94 12.22 55.00 

mit 74.21 625.15 20.28 96.11 1.67 19.44 0.00 78.06 

fr 52.90 714.34 0.00 93.06 0.00 21.11 6.67 100.00 

and 292.80 1085.51 44.17 78.33 3.89 34.17 4.44 36.11 

mf 422.78 933.21 1.11 71.39 0.00 13.33 16.11 98.89 

ff 52.90 947.90 0.00 93.06 0.00 21.11 6.67 100.00 

Table 4.7: Average and standard deviation of performance of bacteria type classification 

by means of MLPs for different normalisation algorithms. Key to notation: n= none, 

s= sensor normalisation, a= auto-scaling and v= array (vector) normalisation. 

Norm. SSE Correct (%) Incorrect (%) Unknown (%) 

Type t a ± a ± a ± a 

n 533.29 214.35 46.94 32.38 9.60 8.01 43.46 35.92 

s 528.41 279.02 54.21 30.32 10.65 8.29 35.14 31.07 

a 515.39 109.54 61.88 10.58 14.40 5.35 23.72 12.78 

v 551.80 237.97 36.05 29.55 6.74 6.87 57.21 30.94 

(runs Feature-Set), 96.11% of all vectors were correctly classified, 2.22% were incorrectly 

classified and 1.67% were unknown, SSE was 74.21, and used 13/24 Feature-Sets. A 

good method for visualisation of classifier performance is a confusion matrix, Table 4.9 
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Table 4.8: Minimum and maximum of performance of bacteria type classification by 

means of MLPs for different normalisation algorithms. Key to notation: n= none. s 

= sensor normalisation, a= auto-scaling and v= array (vector) normalisation. 

Norm. SSE Correct (%) Incorrect (%) Unknown (%) 

Types min max min max min max min max 

n 271.12 1085.51 0.00 88.33 0.00 34.17 0.00 100.00 

s 52.90 933.21 0.00 96.11 0.28 27.50 1.67 99.72 

a 349.96 680.35 46.11 76.39 4.17 24.44 7.78 44.44 

v 82.18 947.90 0.00 93.89 0.00 25.58 3.61 100.00 

Table 4.9: Confusion matrix for best single result for bacteria type classification, using 

Minimum Output feature model and sensor normalisation, experiments 1 and 3 for 

training and experiments 2 and 4 for testing. 

Actual Target Output 

Output Escherichia coli Staphylococcus aureus 

Escherichia coli 166 0 

Staphylococcus aureus 8 180 

Unknown 6 0 

is a confusion matrix for the output of the best MLP. From this matrix, it can be 

observed that Staphylococcus aureus was correctly classified 100% of the time and that 

Escherichia coli was correctly classified 92.22% (166 correct out of 180 total) of the 

time. Conversely, when Escherichia coli was actually output, the MLP was correct 

100% of the time, and when Staphylococcus aureus was actually output, the MLP 

was correct 91.01% of the time. This highlights the fact that there may be unwanted 

variance within the data representing Escherichia coli. 
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4.2.2 Classification of Culture Growth Phase 

Bacteria culture growth phase was classified (i. e. predicted) using similar methods to 

those used to classify bacteria type. It was postulated that classification of bacteria 

type might be improved by inputting, along with the sensor feature vector, information 

relating directly to culture growth phase. Growth phase could be classified (or pre- 

dicted) by a different functional phase (e. g. MLP). It could be argued that a classifier 

that was classifying bacteria type could also internally learn to become invariate to 

information that showed variance due to culture growth phase, however it could also 

be argued that such a classifier would be more prone to complications during design 

and training. Separation of classification of growth phase and type might therefore be 

beneficial. 

The MLP design, topology, training methods and testing methods employed were 

identical to that used for classification bacteria type with the exception of the number 

of output nodes. Since there were 3 growth phases, it was necessary to employ 3 

output nodes instead of 2. Another important consideration was the imbalance of 

class membership within feature-sets, where the target vectors reflected growth phase. 

Previously, there were equal numbers of vectors for each class (bacteria type), this was 

not the case here. Training MLPs where class membership within the training data is 

imbalanced can cause problems because the network learns the vectors associated with 

the predominant class more forcefully. Generalisation of the less predominant classes 

could therefore suffer. This problem was remedied by simply training using the vectors 

corresponding to the less predominant class more often. For example, if class A has 

25% of the total number of vectors and class B has 75%, the vectors for class A are 

used 3 times for each use of the vectors for class B5. 

Similar to bacteria type, for growth phase, 2 sets of MLPs were modeled, 13/24 and 

24/13. Table 4.10 and Table 4.11 summarise the results over both sets of MLPs. 

From Table 4.10, there does not appear to be any significant performance difference 

between the two sets of MLPs, however from Table 4.11, the MLPs from the 24/13 

5Another method is the change the learning rate parameter for vectors of different classes, unfortu- 

nately the software employed did not allow this. 
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Table 4.10: Average and standard deviation of performance of culture growth phase 

classification by means of MLPs using data from different experiments for training and 
testing. 

Train/ SSE Correct (%) Incorrect (%) Unknown (%) 

Test xata zt aa 

13/24 699.69 119.88 24.96 21.87 8.22 7.63 66.27 28.24 

24/13 741.41 165.91 25.68 23.65 10.14 10.27 64.18 31.10 

Table 4.11: Minimum and maximum of performance of culture growth phase classifica- 

tion by means of MLPs using data from different experiments for training and testing. 

Train/ SSE Correct (%) Incorrect (%) Unknown (%) 

Test min max min max min max min max 

13/24 529.03 997.97 0.00 70.00 0.00 26.11 11.67 100.00 

24/13 390.71 1168.41 0.00 80.28 0.00 31.67 6.11 100.00 

data-sets did show slightly better performance. The effect of different gas sensor feature 

models upon MLP performance was highlighted by compiling statistical measurements 

that described each different feature model, these are given in Table 4.12 and Table 4.13. 

From these results, the modified fractional difference (mf) feature model did not 

perform well, MLPs using this model never really converged on any minimum in the 

error surface. It also appears that the Absolute Final Output feature model (af) 

performed almost consistently better than other mödels. Apart from these two feature 

models, there was little significant difference between the performance of the other 

feature models. 

It can be noted, looking at the results so far for bacteria type classification and 

growth phase prediction, that different feature models perform better for different clas- 

sification problems. This further suggests that separate classification of culture growth 

phase and bacteria type might be advantageous compared to a single, complex, classi- 
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Table 4.12: Average and standard deviation of performance of culture growth phase 

classification by means of MLPs for different gas sensor feature models (see equations 

for model notation). 

Model SSE 

.ta 

Correct (%) 

ia 

Incorrect (%) 

a 

Unknown (%) 

a 

df 677.72 115.47 41.88 10.80 12.08 7.86 46.33 16.33 

rl 732.95 127.83 20.52 28.40 7.12 10.19 72.36 38.03 

fd 688.99 116.26 23.26 15.47 9.58 8.89 64.65 20.67 

of 603.51 147.95 44.65 31.43 9.83 6.21 45.52 36.38 

mit 829.38 152.64 25.83 19.00 14.86 9.16 59.31 26.32 

fr 627.06 101.37 25.28 19.73 7.33 8.94 67.40 27.45 

and 849.05 150.60 22.64 18.68 13.72 11.42 63.65 28.15 

mf 771.28 31.34 0.45 1.28 0.24 0.48 99.31 1.74 

ff 671.25 127.66 23.37 21.15 7.85 8.80 68.79 28.60 

fier. 

Different normalisation algorithms were also investigated, Table 4.14 and Table 4.15 

list the statistics for the performance measurements for the MLPs over different feature 

models but with the same normalisation algorithm. 

A ranking for normalisation algorithms was derived using the same criteria as that 

employed for ranking feature models: 

1. Auto-scaling (a) 

2. Sensor normalisation (s) 

3. No normalisation (n) 

4. Array (vector) normalisation (v) 

In common with the ranking table for feature model, this ranking is different from 

the corresponding ranking for classification of bacteria type. 
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Table 4.13: Average and standard deviation of performance of culture growth phase 

classification by means of MLPs for different gas sensor feature models (see equations 

for model notation). 

Model SSE Correct (%) Incorrect (%) Unknown (%) 

min max min max min max min max 

df 478.14 870.27 25.28 53.61 4.17 26.11 25.83 70.28 

rl 529.03 898.21 0.00 58.06 0.00 25.56 23.89 100.00 

fd 579.11 909.35 0.28 48.33 0.83 26.67 25.00 98.89 

of 390.71 835.83 0.00 80.28 0.00 18.33 6.11 100.00 

mit 695.03 1168.41 0.00 57.78 0.00 28.61 24.17 100.00 

fr 531.55 846.49 1.11 52.50 0.56 27.50 21.39 98.33 

and 664.87 1121.57 0.00 48.89 0.00 31.67 30.83 100.00 

mf 731.27 823.08 0.00 3.61 0.00 1.39 95.00 100.00 

ff 531.55 846.49 0.56 52.50 1.11 27.50 21.39 98.33 

Table 4.14: Average and standard deviation of performance of culture growth phase 

classification by means of MLPs for different normalisation algorithms. Key to nota- 

tion: n= none, s= sensor normalisation, a= auto- scaling and v= array (vector) 

normalisation. 

Norm. SSE Correct (%) Incorrect (%) Unknown (%) 

Type a a a a 

n 742.03 101.54 16.17 16.63 6.84 6.56 76.99 21.51 

s 656.26 139.80 31.85 23.75 7.64 6.57 60.49 28.79 

a 776.29 205.34 40.43 22.75 17.76 10.68 40.69 28.56 

v 692.62 61.16 12.82 15.42 4.46 5.53 82.72 20.00 

It has been suggested [47] that array normalisation reduces the concentration de- 

pendent information, since the growth phase is related to the size of the bacteria pop- 
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Table 4.15: Minimum and maximum of performance of culture growth phase classific- 

ation by means of MLPs for different normalisation algorithms. Key to notation: n= 

none, s= sensor normalisation, a= auto-scaling and v= array (vector) normalisation. 

Norm. SSE Correct (%) Incorrect (%) Unknown (%) 

Types min max min max min max min max 

n 581.18 928.13 0.00 48.89 0.00 20.83 30.83 100.00 

s 390.71 878.47 0.00 76.11 0.00 21.11 13.89 100.00 

a 423.38 1168.41 0.00 80.28 0.28 31.67 6.11 99.72 

v 572.03 780.29 0.00 47.78 0.00 19.44 43.61 100.00 

ulation within a culture, it is logical to speculate that greater numbers of bacteria 

produce a greater concentration of odour. Therefore concentration dependence inform- 

ation was being learnt in order to classify growth phase rather than qualitative odour 

information. 

The best MLP used the Absolute Final Output feature model and auto-scaling (afa 

feature-set), when 80.28% of all vectors were correctly classified, 13.61% were incor- 

rectly classified and 6.11% were unknown, SSE was 423.38, and used 24/13 Feature-Sets. 

Table 4.16 is the confusion matrix for the best MLP, where the imbalance in the class 

representation within the test feature-set can be observed (the Lag phase has only 14 

patterns). The figures represent the number of patterns classified. Classification of the 

Lag phase was the most problematic (only being correctly classified 14.29%), most often 

the Lag phase was mistaken for the Log phase. The other classes performed well, the 

Log phase was correctly classified 95.10%, and the Static phase was correctly classified 

73.10% of the time. It was subsequently discovered that most of the erroneous classi- 

fication occurred for patterns that existed near the boundary between growth phases. 

This may indicate that the hard boundaries used to derive the target output vectors 

are unsuitable. The fact that the Log phase was most easily classified may be related 

to the particular metabolism of the bacteria cells in this phase. 
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Table 4.16: Confusion matrix for best single result for culture growth phase classifica- 

tion, using Absolute Final Output feature model and auto-scaling, using experiments 

2 and 4 for training and experiments 1 and 3 for testing. 

Actual Target Output 

Output Lag Log Static 

Lag 2 2 0 

Log 12 154 32 

Static 0 1 133 

Unknown 0 5 17 

4.3 Principal Component Analysis 

Principal component analysis (PCA) has been used [50] as a tool for data visualisa- 

Lion. The feature vectors generated by the gas sensor models described in section 4.1.1 

have many dimensions, although viewing these vectors in 2 or 3 dimensions is problem- 

atic. PCA is essentially a dimension reduction technique where vectors were linearly 

projected onto a two dimension plane. Generally PCA analysis reduces the amount 

of information in the data, the objective is to achieve minimum discriminatory (i. e. 

relevant) information loss. Also PCA is an `unsupervised' technique where `target' (i. e 

prior classification knowledge) information is not used, but rather correlations between 

the clustering from PCA plots and `targets' can be analysed. The idea behind PCA is 

relatively straightforward. 

Let a feature-set containing feature vectors Xj = (x1, x23,. ""7 
XZ j) have the cov- 

ariance matrix > with eigen values Al > A2 > ... > An > 0. 

Let a vector X be transformed using linear coefficients z: 

y1, = z1jXj = z11x1j + Z21X23 '+... + zilXij 

y2j = z2jXj = Z12X1j + Z22X2j + ... + zi2ý23 
(4.30) 

yl, = Zi Xý = Z1 X1 j+ Z2nX2 j+... + ziiXZ j 
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Let the variance for a particular transformation be: 

Var (YnJ) = zn. 7 znj ý 

And the covariance be: 

Cov(Ynj, Ymj) = ZI zmj , nj 
1: 

whereas=1,2, """, i (4.31) 

where n, m= 1,2, """, i (4.32) 

Those uncorrelated combinations, Yj j, which, when their variance is calculated 

across the whole feature-set, have as large a variance as is possible can be considered 

as the principal components for that feature-set. 

The first principal component is that value Y1 which has a set of coefficients that 

maximises the variance as defined by both equation 4.31 and zi x z1 =1 (in order 

to eliminate indeterminacy of scaled of coefficient increasing the variance, by limiting 

attention to coefficient vectors of unit length). 

The second principal component is that value Y2 which has a set of coefficients that 

maximises the variance as defined in equation 4.31, that the covariance of Yl and Y2 as 

defined in equation 4.32 is zero and that z2 x z2 = 1. 

So the nth principal component (PC) can be defined as: 

PC,, = Y, z that maximises Var(YY,, ) with 

znzn =1 and 

Cov(Yn, Ym, ) =0 for m<n 

(4.33) 

It therefore follows that for a feature-set containing feature vectors with i dimensions 

(components), PCA will yield i PCs. The PCs are then ranked so that PC1 is the PC 

with the highest variance and PCZ is the PC with the lowest variance. A threshold can 

be set, for example at 85%, such that only PCs which have a variance within 85% of 

the maximum (i. ethe variance of PC1) are considered. This limiting of PCs is often 

necessary because it simplifies analysis of PCs whilst keeping the error introduced by 

information loss to a minimum. 

After the PCs are calculated, the vectors are plotted on a PCA plot. The PCA 

plots are plots where the two axes are 2 different PCs. For example if only the first 
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4 ranked PCs are being analysed, a total of six plots (i. e 1 vs 2,1 vs 3,1 vs 4.2 vs 

3,2 vs 4 and 3 vs 4) can be plotted. The method of plotting is to transform each 

feature vector, using the coefficients corresponding to the 2 PCs being plotted, into a 

set of 2D coordinates. A point is then plotted at these coordinates. It can be observed 

from PCA plots that data points corresponding to the same class can cluster. This is 

desirable because it shows that the variance within the data strongly describes class 

membership. If the data were noisy, the clustering would be less strong, and data 

that contained large amounts of noise may result in PCA plots that show no obvious 

clustering at all. Also the clustering may reflect other information, for example it would 

be possible for the clusterings to reflect the elapsed time of measurement from the start 

of the data gathering experiment. Such clusterings indicate significant variance within 

the data due to factors such a sensor drift or ambient temperature change. 

4.3.1 Analysis Of Culture Growth Phase 

The feature-set type which gave the best result when used with an MLP to classify 

culture growth phase was also used with PCA. This was in order for the information 

content to be visualised so that greater insight to the nature of the classification problem 

could be gained. The feature-set employed used the Absolute Final Output feature 

model with auto-scaling (afa). Data from experiments 1,2,3 and 4 were combined to 

form one large feature-set. This was the feature-set that was subject to PCA. 

Table 4.17 shows the results of PCA, the % of the variance described by a PC 

to the total variance within the feature-set is shown. Those PCs which describe a 

comparatively large amount of variance, also correspond to the variance which most 

affects classification. Since there were two features per gas sensor, each feature vector 

had 12 components, there were therefore 12 PCs in total. It can be observed that the 

first 5 PCs describe 98.95% of the total variance of the feature-set. 

Figure 4.5 is a PCA plot of the first 2 ranked PCs. The target classes are indicated 

by different plot colours (see caption for colour key). It can be observed from this plot 

that there was significant (meaning obvious to the eye) clustering amongst points of 

the same class. This indicates that there was significant variance within the feature-set 
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Table 4.17: Table showing the results of the application of PCA to the combined 
feature-set (afa) of experiment 1,2,3 and 4; by ranking the PCs in order of the % of 

total variance and % accumulated variance. 

PC No. % of Total % Accumulated I PC No. % of Total % Accumulated 

1 38.29 

2 28.77 

3 23.71 

4 5.75 

5 2.43 

6 0.40 

38.29 

67.06 

90.77 

96.52 

98.95 

99.35 

7 0.31 

8 0.15 

9 0.08 

10 0.06 

11 0.04 

12 0.01 

99.66 

99.81 

99.89 

99.95 

99.99 

100.00 

that is related to culture growth phase. Areas of overlap between clusters highlight 

potential sources of classification error. An ideal PCA plot would show clusters which 

have no overlapping regions. 

Also from figure 4.5, it can be seen that there were more than one clusters for each 

class, for example the Lag phase class showed three clusters (one across the top and 

two more circular ones beneath), this was caused by variance between experiments. 

The two Static phase clusters at the top of the plot appear to merge into lines of Log 

phase, these lines were the result of sensor drift, the earlier measurements occurred on 

the left side and moved, with time, to the right side. 

4.3.2 Analysis Of Bacteria Type 

In common with the PCA performed for culture growth phase, PCA was also used with 

the feature-set type which facilitated the best results when used with a MLP in order 

to classify bacteria type. The feature-set employed used the Minimum Output feature 

model with sensor normalisation (mns). Data from experiments 1,2,3 and 4 were 

combined to form one large feature-set, which was subsequently used for PCA. 

Table 4.18 shows the results of PCA, the ratio of the variance described by a PC 

to the total variance within the feature-set is shown. Similar to the feature-set used 
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Figure 4.5: PCA plot of the first 2 ranked PCs of the combined feature-set (afa) of 

experiment 1,2,3 and 4. The `target' data class is culture growth phase and is indicated 

by the plot colour, blue = lag, magenta = log and green = static. 

for PCA analysis of culture growth phase, each feature vector had 12 components and 

therefore there were 12 PCs in total. It can be observed that the first 5 PCs describe 

98.61% of the total variance of the feature-set. 

Figure 4.6 is a PCA plot of the first 2 ranked PCs. The target classes are indicated 

by different plot colours (see caption for colour key). Again, in this PCA plot several 

clusterings can be observed. There are two clusters for Escherichia coli, corresponding 

to the two experiments which were performed with this bacteria type (i. e. experiment 

1 and 2). There was one large cluster with many smaller clusters for Staphylococcus 

aureus, the large cluster corresponded to experiment 3 and the smaller clusters cor- 

responded to experiment 4. The long lines indicate sensor drift, thus there was less 

sensor drift during experiments 1 and 2, than there was for experiments 3 and 4. There 

were areas of overlap in the central region of the plot, although most clusters were not 

overlapping. In general, it would be expected that feature-sets exhibiting less overlap 

4.3 Principal Component Analysis 
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Table 4.18: Table showing the results of the application of PCA to the combined 

feature-set (runs) of experiment 1,2,3 and 4; by ranking the PCs in order of the I of 

total variance. 

PC No. % of Total % Accumulated PC No. % of Total % Accumulated 

1 52.18 52.18 7 0.33 99.62 

2 26.89 79.07 8 0.16 99.78 

3 9.80 88.87 9 0.11 99.89 

4 5.97 94.84 10 0.05 99.94 

5 3.77 98.61 11 0.04 99.98 

6 0.68 99.29 12 0.02 100.00 

Figure 4.6: PCA plot of the first 2 ranked PCs of the combined feature-set (mns) of 

experiment 1,2,3 and 4. The `target' data class is bacteria type and is indicated by 

the plot colour, blue = Escherichia coli and magenta = Staphylococcus aureus. 
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would also give good classification performance. 

4.4 Multi-Variate Linear Regression 

4.4 Multi-Variate Linear Regression 

One of the most common `classical' statistical techniques employed for classification 

problems with multi-variate data-sets is multi-variate linear regression (MLR). One 

(or more) dependent variables (i. e. class membership) are predicted from a set of in- 

dependent variables (i. e. gas sensor features and possibly non-gas sensor features). 

This subject is well documented and many books have been published which describe 

MLR [113,114). 

A brief description of MLR is given here. First consider a single dependent variable, 

Yj, that is predicted using a linear regression model: 

Vi = , 
ßo + , 

ß1i11 + ß2i21 +-*+ , 3X1 + 61 

Y2 = i30 + 01X12 + 02X22 ++ 0iX12 + E2 
(4.34) 

yj = 130 + 131xij + N2x2j + ... + ßixij + 93 

Where )3o,, 31 
.... , 

ßi are unknown coefficients and ej is an error term. This error 

term can account for measurement errors such as sensor drift and the effects of envir- 

onmental changes (e. g. ambient temperature). Thus MLR is a linear function mapping 

of input vectors X, from the input vector domain to output vectors, Y, in the output 

vector domain. The limitation on this method is that the output vectors are not cat- 

egories but continuous variables (for example, Y could be the age of death of a person 

and X could be various medical measurements). Thus MLR can be used to predict 

bacteria culture age but not bacteria type. 

Derivation of the coefficients is performed using the least squares method. The best 

fitting coefficients produce a prediction equation where the squared differences between 

the target and predicted outputs (SSE) are minimised. A detailed description of this 

process is not given here, but the reader is referred to many publications [60,113,114 

which contain such descriptions. The MLR model can be scored using the determination 

coefficient, r2, which indicates how much of the variation of the dependent variable is 
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Table 4.19: Regression coefficients derived for prediction of culture growth phase. 

Coefficient Value I Coefficient Value 

ßo 2.709580 07 -0.26833 
ßl 0.341223 ß8 -1.23841 

132 -0.03336 ß9 -0.45654 
ßs 0.946706 i3i 0.001384 

04 0.520986 31, -0.20216 
ß5 -0.46379 012 -0.00924 
ß6 0.957773 

described by the independent variables. The higher this figure the better the MLR 

model. Also the correlation coefficient, r, is often quoted which is simply the square 

root of the determination coefficient. 

4.4.1 Prediction of Bacteria Culture Growth Phase 

MLR was used to predict culture growth phase. The feature set which yielded the best 

result when used with an MLP was also used with MLR, this gave some indication of 

the relative performance of MLPs compared to other, more straightforward methods, 

in this case MLR. The feature-set employed used the Absolute Final Output feature 

model with sensor normalisation. Data from experiments 2 and 4 were used to calculate 

the coefficients, and the data from experiments 1 and 3 were used to test performance. 

Encoding the dependent variable, i. e. growth phase, was straightforward; giving the 

Lag phase a value of 1, the Log phase a value of 2 and the Static phase a value of 3, 

thus Y had one component which progressed from 1 to 3 (bacteria type could not be 

ordered in this manner, it being categorical variable). 

Table 4.19 lists the coefficients that were derived from the training feature-set. Since 

the vectors within the feature-sets had 12 components (2 features per gas sensor), there 

were a total of 13 coefficients. 

Once the coefficients were derived, they were used to predict the culture growth 
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4.4 Multi-Variate Linear Regression 

Figure 4.7: Performance of MLP when applied to culture growth phase prediction. The 

target output is shown along with the actual output. It can be noted that the data 

had 360 vectors which consisted of 4x90 feature-sets, each feature-set corresponded to 

an individual culture. 

phase of a feature-set that was not used in training, i. e. the testing feature-set. The 

output from the MLR model was rounded to the nearest integer, if the output was 

the same as the target output then the answer was deemed to be correct, if they were 

unequal, the output was deemed to be incorrect. The plot shown in figure 4.7 shows 

both the target and actual outputs for the MLR model. The output was correct for 

56.39% (203 correct outputs for a total of 360 vectors), this does not compare favourably 

with the figure for the MLP, which was 80.28%. 

From figure 4.7, it can be observed that the output from the MLR model was more 

accurate in the later half of the plot, this corresponds to features from experiment 3 

(Staphylococcus aureus), where the errors mainly occur around the boundaries between 

phases. The first half corresponds to features from experiment 1 (Escherichia coli), the 

^^NN t+1 

Elapsed Cycles 
(1-180 = sample#1,181-360 = sample 2) 
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errors occurred mainly during the Lag and Log phase. 

The MLR model gave a correlation coefficient, r, of 0.8691; and a determination 

coefficient, r2, of 0.7553; therefore independent variables (features), X, accounted for 

75.53% of the variability of the dependent variable (growth phase), Y. The SSE over 

the entire training feature-set was 268.27. 

4.5 Discriminant Function Analysis 

The main objective of discriminant function analysis (DFA) is to predict group mem- 

bership from a set of predictors, in this case the set of descriptors was a set of features 

(i. e. a feature-set). The features are referred to as predictors, the target memberships 

are referred as grouping variables. Based on the set of predictors, dimension(s) are 

found along which the vectors are separated mostly by class membership, from this 

classification functions are calculated which allocate predictors to classes. Discrim- 

inant functions (DFs) are not to be confused with classification functions (CFs), the 

former are used to calculate the later. The first DF is found which best performs class 

separation, then the second DF is found which best performs class separation but is 

orthogonal to the first DF. This process is repeated, with each new DF being ortho- 

gonal to the previous ones, the total number of DFs is equal the the number of degrees 

of freedom of class membership, i. e. the number of dimensions of the feature vectors. 

Often, only the first few DFs are reliable enough to be used. DFA is parametric, the 

predictors are assumed to be randomly sampled from a parent population, and that the 

predictors are normally distributed. DFA is robust to some types of non-conformity, 

such as skewness, but is not robust to other types, such as outliers. 

The following text is a basic description of the method for DFA, for a more de- 

tailed explanation several publication exist [113,114]. Initially the data is screened 

for outliers, if any are found they are either removed or limited. The data are then 

tested for normality, if serious non-conformity is discovered, the data are transformed. 

The variance within the set of predictors is attributed to either inter-class variance and 

intra-class variance. This is done by deriving cross-product matrices: 
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Mtotal = Minter + Mintra 

The total cross-products matrix, Mtotai, is partitioned into the matrix containing the 

cross products associated with inter-class variation, Minter, and the matrix containing 

the cross products associated with intra-class variation, Mint,,,. From this the Wilks' 

4.5 Discriminant Function Analysis 

(4.35) 

Lambda is calculated using their determinants: 

A= 
Imintral 

(4.36) Minter + Mintra I 

The parameter, A, is a measure of the amount of variance that is not involved in 

classification, I Mintra I, divided by the total variance, (Minter + Mintra l" The higher this 

parameter the more problematic classification becomes because the greater amount of 

variance is not attributed to class membership. From this the approximate F ratio is 

derived which is used to test the significance the variances, if the critical F is exceeded 

then the predictors can be used to distinguish between the classes'. The DFs are 

found such that the F ratio is maximised. DFs are similar in construction to regression 

functions (see equation 4.34), each predictor is weighted by a coefficient and summed: 

DFi = di1P1 + di2P2 +"-"+ dinPn (4.37) 

Where there are n predictors, p, and i DFs, therefore in DF coefficients. The 

coefficients are found in a similar manner to those for canonical variates (with the DFs 

corresponding to canonical variates), with it being a problem of canonical correlation 

similar to PCA. Basically the DFs are found which maximise the inter-class variance 

relative to the intra-class variance. The coefficients are auto-scaled so that, for all data, 

the mean of each DF is zero and the standard deviation is 1. Each class has associated 

with it, different means for each DF, the magnitude of which indicate the relevance of 

each DF. Thus the DFs are ranked in order of relevance. 

Once the DFs have been computed, the CFs can be calculated, a CF has the form: 

6In this test confidence levels, such as 95% or 99% can be specified. 
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CFA = Cep + Ci 1P1 + C3 2P2 +"""+ CjnPn (4.38) 

Where there are j CFs (j = no. of classes) and n CF coefficients, c for each CF. The 

coefficients are calculated from the means of the predictors , 
Mil and the pooled intra- 

covariance matrix, W. The classification procedure is simple, each set of predictors, i. e. 

feature vector, is input to each CF, the vector is assigned to a class, the CF of which 

outputs the highest value. It can be seen that the CF is linear in nature, therefore 

classification degrades where non-linear relationships describe class membership. 

A useful tool in DFA is a discriminant function plot, this is similar to a PCA plot 

except the axis correspond to the highest ranked DFs instead of PCs. The performance 

of DFA can be indicated by the separation of classes observed in such plots. 

There are many descriptive statistical measures used to predict the reliability of a 

set of DFs, two of which, Mahalanobis distance and Fisher's F distance, were employed. 

The Mahalanobis distance, D2, is based on the distance between pairs of class centroids, 

which is then generalisable to distances over multiple pairs of classes. The larger the 

measure, the higher the classification performance. Similarly, Fisher's F distance is a 

measure of class separation based on centroid distances, a large result is desirable. 

4.5.1 Classification of Culture Growth Phase 

DFA was used to classify culture growth phase for the same feature-sets as those used 

for PCA and MLR (i. e. Absolute Final Output gas sensor feature model, auto-scaled). 

The DFs and CFs were calculated using data from experiments 2 and 4, and were 

tested using data from experiments 1 and 3. Table 4.20 shows the results of DFA, the 

coefficients of the CFs are listed. 

Table 4.21 shows the corresponding Mahalanobis and Fisher's distance measure- 

ments. The value for Wilk's Lambda was 0.1271. Reclassification of the training 

feature set was 90.56% correct (326 correct out of 360 total), testing using the test 

feature-set yielded a classification performance of 67.50% correct (243 correct out of 

360 total). This result was worse than classification using a MLP (80.28%), but better 

than MLR (56.39%). 
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Table 4.20: Classification function coefficients calculated using discriminant function 

analysis for culture growth phase (using afa feature-sets). 

Coefficient 

Culture Growth Phase 

Lag Log Static 

co -7.60 -1.50 -3.73 

Cl 3.16 -1.88 2.63 

C2 -5.69 0.37 -0.16 

C3 -18.59 -2.87 5.69 

C4 25.90 -15.64 21.88 

C5 20.51 -3.16 3.31 

c6 -29.19 -0.52 2.89 

C7 -1.03 4.73 -7.11 

C8 4.26 12.28 -18.95 

C9 -14.70 1.40 -1.07 

c10 16.19 0.04 -1.23 

c11 3.85 1.54 -2.61 
C12 -10.32 1.76 -1.93 

Figure 4.8 shows a plot of the test feature-set against the first two ranked discrim- 

inant functions. The target class membership is indicated by plot colour (see figure 

caption). From this plot, clusterings can be observed between points corresponding to 

the same target class, and therefore class separation was possible. It can also be noted 

that there were some outlying points corresponding to the Lag phase near the bottom 

of the plot, it is likely that these were a source of error. 

4.5.2 Classification of Bacteria Type 

DFA was used to classify bacteria type for the same feature-sets as those used for 

PCA (i. e. Minimum Output gas sensor feature model with sensor normalisation). The 

DFs and CFs were calculated using data from experiments 1 and 3 and were tested 
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Table 4.21: Mahalanobis, D2, And Fisher's F distances between class centroids calcu- 

lated using discriminant function analysis for culture growth phase (using afa feature- 

sets). 

Lag Log Static 

Lag D2 0 13.93 31.31 

F 0 128.11 183.90 

Log D2 13.93 0 19.88 

F 128.11 0 111.39 

Static D2 31.04 19.88 0 

F 183.90 111.39 0 
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Figure 4.8: Results of discriminant function analysis of culture growth phase (using afa 

feature-sets). Colour key: blue = lag phase, magenta = log phase and green = static 

phase. 
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Table 4.22: Classification function coefficients calculated using discriminant function 

analysis for bacteria type (using runs feature-sets). 

Bacteria Type 

Coefficient Escherichia coli Staphylococcus aureus 

Co -36.56 -14.54 

Cl -6.76 -7.68 

C2 11.75 -6.38 

C3 -318.89 -124.18 

C4 -418.06 -57.92 

C5 40.59 156.64 

C6 -19.78 -50.02 

C7 348.61 9.77 

C8 194.34 117.75 

C9 49.98 6.32 

c10 2.80 14.77 

c11 -72.16 -24.79 

C12 -11.35 
0.01 

using data from experiments 2 and 4. Table 4.22 shows the results of DFA, where the 

coefficients of the CFs are listed. 

For a given coefficient, the higher its value the greater its influence on classification. 

From Table 4.20 it can be observed that no group of coefficients had a significantly 

higher value than the rest, however from Table 4.22 it can be observed that c3, c4, C7 

and c8 have values significantly higher than the rest. Thus is can be concluded that 

these coefficients are the most significant7. Coefficients c3 and c4 correspond to gas 

sensor 2 (FIS P. 10.1 sensitised to hydrocarbons and others), and that coefficients c7 

and c8 correspond to gas sensor 4 (FIS P. A. 2 sensitised to polar compounds). These 

7Similarly coefficients with small values are not significant for classification and may be a source of 

noise. 
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Table 4.23: Mahalanobis, D2, and Fisher's F distances between class centroids calcu- 

lated using discriminant function analysis for bacteria type (using mns feature-sets). 

Escherichia coli Staphylococcus aureus 

Escherichia D2 0 41.37 

coli F 0 300.76 

Staphylococcus D2 41.37 0 

aureus F 300.76 0 

sensors seem to be the most significant ones for DFA. 

Table 4.23 shows the corresponding Mahalanobis and Fisher's distance measure- 

ments. The value for Wilk's Lambda was 0.0877, this is less than the figure calculated 

for culture growth phase. This indicates that there was more variance corresponding 

to bacteria type (for feature-sets mns) than for culture growth phase (for feature-sets 

afa). This theory is further strengthened because the distance measures for bacteria 

type are considerably greater than those for culture growth phase. Reclassification of 

the training feature set was 98.89% correct (356 correct out of 360 total), testing using 

the test feature-set yielded a classification performance of 65.83% correct (237 correct 

out of 360 total). This result was considerably worse than classification using a MLP 

(96-11%). This suggests that there were significant sources of error that originated 

from variances between different data gathering experiments. 

Figure 4.9 shows a plot of the test feature-set against the first two ranked discrim- 

inant functions. The target class membership is indicated by plot colour (see figure 

caption). The clusters observable from this plot show well defined class membership 

clusters. The cluster corresponding to Escherichia coli is smaller than that for Staphyl- 

ococcus aureus indicating that the intra-class variance for the later was greater than 

that for the former. Given such well defined clusters and the poor classification per- 

formance it can be concluded that although the set of DFs calculated during the DFA 

separated classes well, the subsequent CFs were not optimal. 



154 

10 

9 

8 

4.6 Temperature Dependence of Baseline 

C0 
6 

1Q4 

3 

0 

2 

I 

" "80 ii 
"fR 

" """f "ý iR 
" 

" "" " I" " "" " 
iR" 

" 

"" 
""" 

i"i» 
ob " 

"i"R 

"" 

" 

" R 

Rs '"i" 

" S 
i" i MR 

"" "" 
ii R""""i 

" 

RR f" 

""""E. soli 

w"S 
Staph 

O 

-4 -2 02468 10 12 
First Discriminant Function 

Figure 4.9: Results of discriminant function analysis of bacteria type (using runs 

feature-sets. 

4.6 Temperature Dependence of Baseline 

The baseline response from a gas sensor is defined as the final output before the odour 

of interest is measured. Referring to the plot in figure 4.1, the baseline response can 

be specified as the Vef Ql parameter. This parameter is closely related to sensor drift 

because the reference odour was constant. It has already been established that air 

temperature was prone to drift (see figure 3.8). It was postulated that if the air tem- 

perature could be predicted from the baseline of the gas sensors, then a relationship 

existed between the two. In chapter 3 (section 3.6) correlation analysis revealed a signi- 

ficant level of correlation between gas sensor output and air temperature. A MLP ANN 

trained using BP with momentum, was employed as universal function approximator. 

The network had 6 inputs, one for each of the gas sensors, the baseline measurement 

was input. The network had 10 hidden nodes and 1 output node. The training para- 

meter values were the same as those used previously for bacteria type and culture 
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Figure 4.10: Air temperature prediction using a MLP, the plot shows both the target 

output and actual output. 

growth phase classification. Also the procedure for modeling and testing the network 

were the same as those previously employed. The MLP was trained using data from 

experiments 1 and 3 and tested using data from experiments 2 and 4. The interpret- 

ation of results was different to that previously adopted because the output did not 

represent a categorial variable (i. e. class membership), but a continuous variable. For 

each `smell' cycle, there was an input vector, which was the baseline response, and an 

output, which was the overage temperature sensor reading over the cycle. The target 

output for the MLP was the average temperature sensor reading. Figure 4.10 shows 

a plot where, for the training data, the target output is shown along with the actual 

output. 

It can be seen from this plot that the MLP was able to predict air temperature 

with reasonable accuracy. Data from each experiment contained data from 2 vessels 

(the cultures in vessels #2 and #3), therefore the plot clearly shows 4 distinct re- 

gions, each region corresponds to one culture in one experiment. The general initial 

1 51 101 151 201 251 301 351 
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upward trend and subsequent downward trend for each region reflect the initial increase 

and subsequent decrease in air temperature that was encountered within the experi- 

mental environment. The SSE for the entire training data-set was 0.015205, this seems 

small compared to the figures obtained for previous networks. However, the change 

in interpretation of network output meant that any errors that occurred were small in 

magnitude. From this result it was concluded that air temperature significantly effected 

gas sensor baseline response, therefore control of air temperature is desirable. 

4.7 Summary 

The data from the data gathering experiments previously performed and described in 

the previous chapter were explored in this chapter. Analysis was performed in two 

main areas: culture growth phase prediction and bacteria type. The analysis itself fell 

into two major phases: data pre-processing and classification. Pre-processing involved 

feature extraction and normalisation. Feature extraction was simply a method to ex- 

tract `features' from the data where the amount of data was reduced by the amount of 

information (related to the classification task) was retained. Normalisation re-scaled 

and transformed the features in order to make classifier training easier. The different 

types of classifier tried were: multivariate linear regression, discriminant function ana- 

lysis and multiple layer perceptron. Each classifier was trained and tested on data from 

different data gathering experiments, thus the need to classifier performance estimating 

techniques, such as cross-validation, was removed. 

The bar chart in Figure 4.11 shows the relative performance of each type of classifier 

for growth phase predication and bacteria type classification for the number of correct 

classification. From this diagram it can be seen that the MLP performed best in 

both cases. The results were very promising with up to 96.11% of bacteria types and 

80.28% of culture growth phases being correctly classified. It was found that different 

combinations of features and normalisation performed best in each case. Principal 

component analysis was used to analyse the variance in the data and to identify sensor 

drift. 
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Figure 4.11: Bar chart showing the relative performance of the number of correct 

classifications for each classification technique for culture growth phase and bacteria 

type, using the best single performance in each case. 

Finally in this chapter, the relationship between ambient temperature and baseline 

resistance was investigated further. It was shown, that if ambient air temperature could 

be controlled, then a source of unwanted variance (i. e. noise) could be removed and thus 

classification performance increased significantly. 

DFA MLP MLR 

Classifier Type 



Chapter 5 

Further Electronic Nose 

Development and Data 

Collection Experiments 

Having completed the first set of experiments and analysed the data, I decided to 

modify the Electronic Nose further and perform more data collection experiments. The 

instrument modifications took the form of a new sensor chamber within the Electronic 

Nose. The unit was moved back to the SRL in the Department of Engineering because 

of the need to test and re-calibrate the modified instrument. 

It was felt that the plastic rectangular box used for the sensor chamber was not 

ideal because the dead-space was large, gas flow was not uniform across each sensor 

and the material could show a matrix effect. The fact that individual sensor responses 

were dependent on the position of the gas sensor within the gas chamber is clearly 

problematic for instrument reproduceability (this is discussed in section 5.2). Also 

it was observed from the gas sensor responses (see figure 3.8) that variations in gas 

and ambient temperatures were a major potential source of sensor noise (i. e. unwanted 

variance). For these reasons it was decided to modify the instrument to introduce the 

following features: 

" Temperature control. After inspecting the problem, it was decided to set a spe- 

158 
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cification for the temperature of the gas reacting with the gas sensors to +0.1°C 

of the desired (target) temperature, the range of usable target temperatures were 

specified as +5°C to +25°C above ambient air temperature (which itself usually 

varied from 15°C to 25°C in out laboratory). Although the odour sources were 
kept at a near constant temperature, by use of the DRI-BLOC heater, the incom- 

ing gas to the sensor chamber fluctuated by as much as 10°C (see figure 3.8). 

" Improved gas flow within the gas sensor chamber. The new chamber has been 

designed to provide a uniform flow of gas across each gas sensor. The design also 

allows the incorporation of a resistive heating element that forms part of a gas 

temperature control sub-system. 

" Faster odour sampling speed. The dead-volume of the system should be main- 

tained at as low level as is possible. The internal volume of the chamber is 

minimal in order to reduce gas mixing times (which increases overall response 

speed). Moreover the pipe-work and valves have a lower dead-volume than pre- 

viously employed. 

9 Improved reliability. The original FOX 2000 unit had some reliability problems 

such as the pump failures detailed in chapter 3, our new unit had been re-designed 

to improve reliability and repeatabilityl. 

The modifications are described in two sections to aid the reader, although in reality 

the modifications made one sub-system. The sub-system is first described without 

specific detail about the physical design of the new main gas sensor chamber. Second, 

the actual design of the new main gas sensor chamber is discussed. 

A philosophy adopted during the design phase was that of ease of fitting. It was 

considered advantageous to be able to modify the original FOX 2000 in a simple fashion 

by removing the old sensor chamber sub-system and replacing it with the new sub- 

'This point may initially seem obvious, however, previous data collection required an operator to 

be constantly present (and so able to rectify problems). The new automated system only requires an 

operator at the start and the end of a data collection session. The system therefore operates alone for 

a considerable length, any problems that occur will not be detected until the end. 
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system. This would enable other instruments to be modified by this simple replacement 

operation. 

5.1 Design of Gas Temperature Control Sub-System 

Figure 5.1 shows the modified FOX 2000 incorporating the new sub-system. This can be 

compared to figure 3.6 which shows the original FOX 2000. The shaded area highlights 

the new sub-system components. 

The design of the temperature control sub-system is based on twin chambers. A 

pre-heater (and heat exchanger) chamber is placed in series with the input to the main 

chamber. A twin chamber system is better than a single chamber system because, 

given the temperature specifications, it allows the use of two relatively low power heat- 

ers rather than one much larger one. Because the chambers were heated, they were 

constructed from metal rather than plastic (used for the original chamber), providing a 

suitably low thermal resistance from the heater element to the gas within the chamber. 

The metal chosen was aluminium because it has a smaller density than other metals, 

it is easy to machine, and was readily available'. The pre-heater chamber was small 

(58mm length, 32mm width and 11mm depth) and had a mean specific heat capacity 

(VALUE) that allowed large incoming gas temperature fluctuations to be compensated 

for (see section 5.3). The pre-heater chamber consists of two halves, in one half the 

input and output pipes were fixed and the passageway for the gas was machined. The 

passageway was a series of folded bends (this is shown in figure 5.1) that enabled a 

large surface area between the gas and the heated chamber block, so heating of the 

gas was improved. The main sensor chamber had a larger mean heat capacity (37mm 

depth, 74mm diameter, excluding lid) than the pre-heater chamber, it also had a larger 

thermal time constant (see section 5.3). Because the pre-heater chamber significantly 

reduced the fluctuation of temperature of gas input to the main chamber (See Table 5.1 

and Figure 5.5), accurate control of the gas temperature within the main chamber was 

possible. A second sensor chamber, the pre-sensor chamber, was placed between the 

2The aluminium was coated with a thin film of PTFE to reduce gas sorption. 
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Figure 5.1: The Modified Electronic Nose showing the new main sensor chamber, pre- 

sensor chamber, pre-heater chamber, heater control circuit and the temperature sensor 

interface circuit. 

main sensor chamber and the pre-heater chamber. The pre-sensor chamber contained 

a temperature sensor (LM35CZ) and a relative humidity sensor (MiniCap 2), the same 

types as used in the original sensor array, this allowed the temperature and humidity of 

the gas exiting from the pre-heater chamber to be measured. The main sensor chamber 

contained the 6 gas sensors with a second temperature sensor (of the same type as the 

Pre-heater 



162 5.1 Design of Gas Temperature Control Sub-System 

temperature sensor in the pre-sensor chamber). An extra circuit was built so that a 

second temperature sensor could be interfaced to the computer. The analogue interface 

circuit has capacity to interface to 12 devices, originally only 9 analogue channels were 

used (6 gas sensors +1 temperature sensor +1 humidity sensor +I gas flow-rate 

sensor). In the original instrument there was only circuitry to interface to 1 temperat- 

ure sensor, the design of this circuit was copied and a second circuit was added which 

was connected to a spare analogue channel on the ADC in the LMP-16 card. The extra 

circuit was a copy of the original temperature sensor circuit within the FOX 2000. 

It can be observed from figure 5.1 that were 5 main elements in the new sub-system; 

these were a pre-heater chamber, pre-sensor chamber, a heater control circuit, a tem- 

perature sensor interface circuit and a main sensor chamber. Around the external 

perimeter of the pre-heater chamber a heater element was attached, the heater was 

a Thermofoil heater (manufactured by Minco, model: HK5368R7.4L12E). The Ther- 

mofoil heater was a thin flexible heating element consisting of an etched foil resistive 

element laminated between layers of flexible insulation. One side of the heater was an 

adhesive strip, which was used to attach the heater to the pre-heater chamber. The 

heater had a resistance of 7.4 SZ, therefore when supplied with 12 V, had a power 

rating of 19.5 W. There was a second Thermofoil heater (manufactured by Minco, 

model: HK5393R8.9L12E) attached to the external circumference of the main sensor 

chamber. This heater had a resistance of 8.9 SZ, and therefore when supplied with 12 

V, had a power rating of 16.2 W. Ultimate control of the heaters was via the PC and 

Figure 5.2 shows how the heaters were interfaced. 

From Figure 5.2, it can be observed how the voltage supply to the heaters was 

controlled using a simple transistor switch design. The transistor used (2N3055) is 

an easily available high power, general purpose, npn transistor (maximum collector 

current rated at 10 A). The base current required to drive the base of the transistor 

was in the order of ILA, as this was easily driven by the digital output of the LPM-16 

I/O card, rated at up to 100 mA per line. The Front-end used 6 digital outputs for the 

6 solenoid values, the LPM-16 I/O card had 8 digital output, so there were 2 unused. 

Via the Front-End Control Circuit, the base of the transistor switch was connected 
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Figure 5.2: The circuit involved in controlling the heaters in the new sub-system, 

showing how the heaters were controlled from signals output from the PC. 

to the unused digital output. When the PC output a high value, the corresponding 

transistor switch was on and so the its heater was turned on; when the PC output a 

low value, the corresponding transistor switch was off and so its heater was turned off. 

This method of heater control only allowed for the heaters to be either fully on or fully 

off, a proportional control would in theory have been better however in practice was not 

necessary3. Two external power supplies (basic 0-30 V bench-top models manufactured 

by Farnell, type E30/1) were used to power the heaters, when driven at 12 V, the pre- 

heater chamber heater element lead current was 1.82 A and the main sensor chamber 

heater element lead current was 1.35 A. The internal power supply of the FOX 2000 

was not of sufficient capacity to drive the heaters. 

3The LPM-16 I/O card had no analogue outputs and no free digital outputs, proportional control 

would not therefore have been possible from the computer using this I/O card. A separate, dedicated, 

circuit would have been possible; it was decided to try a simpler route first which turned out to meet 

the specifications. 
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5.1.1 Computerised Control of the Temperature Control System 

The heaters were controlled from the PC. A program was written in the Labview 

language in order to allow intelligent control of the heaters. This program, called 

the Temperature Control Program, allowed the user to set a target temperature for 

both the pre-heater chamber and the main sensor chamber. This program is detailed 

in appendix A, a basic description is given here. It was decided to write a separate 

program instead of extending the Front-end Control Program because future projects 

may use the new sub-system but not the Front-end (or vice-versa). Separate programs 

allow separate implementation of the either the Front-end or the temperature control 

sub-system to be achieved easier. Development of the Temperature Control Program 

was problematic for several reasons: 

" The specification of the PC computer was an Intel 80486DX33 CPU, which was 

run at a clock speed of 33 MHz. The available computing resources available to 

the Labview interpreter meant that running 2 Labview programs simultaneously 

pushed the limits of the computer. 

" Because the Labview interpreter runs programs in a non-preemptive environment, 

it was possible for one Labview program to `hog' the processor and so prevent the 

other from running. Essentially the programs would have to be `compatible' with 

each other. Also the graphical environment was Microsoft Windows 3.1, which is 

also a non-preemptive environment so an independent program was able to halt 

the Labview interpreter. 

" The Front-end Control Program changed the state of the digital output of the 

LPM-16 I/O card, if the Temperature Control Program did likewise, conflicts 

would occur. The LPM-16 digital output was controlled by writing a byte to a 

single location, hence it was impossible to change the state of one output line 

without affecting the other lines. 

The first problem was solved by writing all programs in such a manner that they 

were as efficient as possible with processor resources. This meant, for example, that 
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floating point operations were kept at a minimum and graphical output was kept simple. 
The second problem was solved by making sure no procedures in the Labview pro- 

grams demanded exclusive processor usage for any significant length of time (more than 

a few milliseconds) and no other Windows programs were running simultaneously. 

The third problem was the most difficult to overcome because both programs needed 

to be able to change the state of the LPM-16 I/O card digital outputs. The Front-end 

Control Program and the Temperature Control Program were adapted to communicate 

with each other using a Windows mechanism called DDE (dynamic data exchange). 

The Temperature control program acted as a server whereby the current status of the 

digital outputs were reported, the Front-end Control Program was the client, and read 

the status of the port and reported any change in output line status back to the server. 

Because of this no conflict occurred. The Temperature Control Program had to be 

started before the Front-end Control Program because the DDE server (the former) 

had to be operational before the DDE client (the latter) could start. 

The actual method of temperature control was a simple `bang-bang' controller4, 

i. e. when the output from a temperature sensor rose above a pre-defined threshold the 

appropriate heater was switched on, and when the output fell below the threshold the 

appropriate heater was switched off. The value of the thresholds were determined by 

empirical study, where external thermometers were used to monitor gas temperature. 

This type of control is not ideal, for example a proportional controller would have 

performed well. However given the hardware and time restrictions, it was felt that the 

`bang-bang' controller would suffice. 

As well as setting the target temperature, the Temperature Control Program dis- 

played a plot showing the output from the temperature sensors over the previous 10 

minutes. Also the current status of the heaters was displayed (either on or off), the 

current mean and standard deviation for each temperature sensor was displayed, the 

current output from the temperature sensors was displayed and a histogram of the 

4Originally pulse width modulation (PWM) was tried, however the implementation of a pulse width 

output software routine burdened the CPU too much and the PC internal time was not of a high 

enough frequency. The LPM-16 does not provide any timing circuitry suitable for implementing a 

PWM controller. 
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main sensor chamber temperature was displayed. The display, therefore, allowed at a 

glance the user to determine the current status of the temperature control system and 
its recent history. 

After the software development was finished, there were two versions of the Front- 

end Control Program, the original version which did not use DDE and could be run 

in its own, and the modified version which used DDE and needed the Temperature 

Control Program to run. 

Testing of the new software was performed during development using the Labview 

debugging tools. The new sub-system was connected to the LPM-16 using the connec- 

tions described, external instrumentation was employed to monitor its behaviour whilst 

the software was tested. This tested that the software was able to run without crashing 

etc., however, testing of the performance was not possible until characterisation was 

performed. 

5.2 Design of New Main Sensor Chamber 

The design new main sensor chamber was a radical change from the design of the 

original sensor chamber. The diagrams in figure 5.3 show how the designs differed. In 

particular, the difference in the gas flow characteristics between the two designs can 

be observed. In the original design, the gas flow was turbulent and different responses 

would result from the same gas sensor being placed at different distances from the 

input. Those gas sensors furthest from the input would tend to have a faster response, 

although the gas appears at the input first, it accumulates faster near the output, this 

region becoming saturated first. Finally, the saturated region would extend to the 

gas sensors near the input and so speed up their response. Once the entire volume 

of the original chamber was saturated, an equilibrium would be reached where the 

concentration of odourants would be uniform. However, it is possible that temperature 

gradients could occur, the gas sensors contain heaters, when stabilisation occurred, 

the coolest gas would first occupy the region near the output, the gas sensors in this 

region would be cooled more than the others. Overall, before equilibrium, the odorant 
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Figure 5.3: Diagram illustrating the new main sensor chamber fitted to the FOX 2000 

compared with the original sensor chamber. The heater wrapped around the new main 

gas sensor chamber is not shown for clarity. 

concentration differential would effect gas sensor response, and after equilibrium, the 

temperature differentials would effect gas sensor response. 

The symmetry of the gas flow within the new main sensor chamber can be observed 

from figure 5.3. Upon entry, the gas was split into 6 equal streams. Each of the 6 gas 

sensors was exposed to a gas sub-stream. The sub-streams re-combined at the output. 

Therefore the concentration of odorants at each gas sensor changed equally and once 

equilibrium had been reached, the temperature differential between the gas sensors 

was negligible. A significant difference between the two designs was chamber volume, 

the original chamber had a volume of approximately 124 cm3 and the new main gas 

chamber had a volume of approximately 14 cm3. This is important because a smaller 

volume allows equilibrium to be attained faster, which in turn speeds overall gas sensor 

(section view) 
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Figure 5.4: Photograph of the new main gas sensor chamber with lid and baffle removed, 

revealing gas sensors. 

response. The new design allowed for easy dismantling in order to make changing the 

gas sensors less problematic. The lid was attached to the main casing with 6 equally 

spaced bolts around the circumference. Once the lid was removed, the internal baffles 

could be removed (this was held in place with a further 3 bolts) which allowed each gas 

sensor to be individually removed. 

The temperature sensor was embedded approximately 20 mm into the aluminum 

casing. Standard heat sink compound was used to ensure a good heat conducting 

interface between the temperature sensor and the aluminum block. The temperature 

sensor therefore did not directly come into contact with the gas, but measured the 

temperature of the core of the aluminum block. The temperature differential between 

the core temperature of the aluminum block and the gas is set to be small. 

5.3 System Testing and Characterisation 

Before data gathering experiments were performed, it was necessary to characterise 

the new sub-system. The system was run in the `standby' condition for 2 days prior 

to characterisation. The temperature control sub-system was powered up, target tem- 
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Table 5.1: Table summarising the performance of the temperature control sub-system 
during the characterisation test. 

Parameter Pre-heater chamber Main sensor chamber 

Target temp (°) 34.0 36.8 

Minimum temp (°) 33.754 36.750 

Maximum temp (°) 34.096 36.870 

Mean temp (°) 33.945 36.789 

Standard Deviation (°) 0.104 0.029 

peratures of 34°C for the pre-heater chamber and 36.8°C for the main sensor chamber 

were set in the Temperature Control Program. This allowed the system to be in a 

stable condition before characterisation began. For the characterisation test, the sys- 

tem was run for a period of 23 hours with all vessels empty, the target temperature of 

the pre-heater chamber was set to 34°C and the target temperature of the main sensor 

chamber was set to 36.8° (the same as before). Table 5.1 summarises the statistical 

results from the characterisation experiment. It can be observed that the system meets 

the specifications (i. e. gas temperature in main sensor chamber +0.1°C of target tem- 

perature). The larger standard deviation for the pre-heater chamber is larger than that 

for the main chamber, this shows that the temperature fluctuations for the pre-heater 

chamber were greater, as expected. 

The plot in figure 5.5 shows the output from the temperature sensors for the dura- 

tion of the test. The vertical axis for this plot is the same scale as that for the plot in 

figure 3.8 so that a comparison can be drawn. External monitoring equipment showed 

that the ambient temperature during this characterisation test varied from 20°C (during 

the night) to 26°C (during the day). 

The performance was therefore tested at the temperatures of interest and at average 

ambient temperatures. The time constant for the pre-heater chamber was observed to 

be approximately 0.1°C s-1, and for the main sensor chamber to be approximately 

0.5°C min-1, by observing the display of the Temperature Control Program. The new 
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Figure 5.5: Plot showing the temperature of the gas in the pre-heater chamber and the 

main sensor chamber over a period of 24 hours. 

modified electronic nose system was deemed to operate satisfactory and further data 

gathering experiments were then able to be performed. 

5.3.1 Experimental Procedure "evelopment 

It was not necessary to repeat the development experimental procedures as a whole, 

with the operation of the new sub-system in mind, the original procedures were adopted 

with some minor changes. 

The major change in experimental procedure was connected the with operation of 

the computer software. Before a data gathering experiment could be performed, the 

Electronic Nose had to be in a stable state (the `standby' state), however, as well as 

the gas sensors being stable the temperature of the main sensor chamber also had to 

be stable. The `stand-by' state was re-defined to include the Temperature Control 

Program running with the desired target temperatures being set. The length of time 

for temperature stabilisation to occur was estimated from observations made diiriiig 

05 10 15 20 
Elapsed Time (hours) 
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development and characterisation to be approximately 1 hour. 

Viable cell counts were mostly performed in the same manner as those performed 
for experiments 1,2,3 and 4. Any changes are detailed in the section concerning the 

particular experiment. 

5.4 Experiments With Temperature Controlled Gas Sensor 

Chamber 

The Electronic Nose was moved back to the Biological Sciences Departments, and the 

system remained there for the duration of the remaining experiments. 

Experiments 1,2,3 and 4 were performed on just two bacteria types, Escherichia 

coli and Staphylococcus aureus. The reason only two types were used was that it was 

considered more important, at that stage, to study a few types thoroughly rather than 

a large number in less detail. Analysis of the data from these experiments allowed 

some insight to be gained as to the potential problems, such as sensor drift. In order 

to test the performance of odour classification further, it was decided to perform data 

gathering experiments on more bacteria types and also of mixtures of 2 different bacteria 

types. The analysis of odour data from a mixture of bacteria types represents a more 

difficult challenge, and is also more realistic of the growth environment in a patient. 

After consultation with members of staff at the Biological Sciences Department, it was 

decided to perform data gathering experiments on the following odour samples: 

" Escherichia coli, this is the benchmark gram -ve bacteria. It also served as a 

control because it was used in experiments 1 and 2. 

" Staphylococcus aureus, this is a common gram +ve bacteria and served as control 

because it was used in experiments 3 and 4. 

" Pseudomonas aeruginosa, this is a common gram -ve bacteria that grows easily 

in NB and also is a possible pathogen. 

'This time the experiments were conducted in an unused laboratory, which provided a more stable 

environment. Experiments 1,2,3 and 4 were conducted in the instrumentation laboratory, where there 

was considerable activity of both personnel and other equipment (thus the environment was less stable). 
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" Streptococcus pyogenes this is the most common bacterial pathogen in the upper 

respiratory system. 

" Escherichia coli and Staphylococcus aureus mixture, this mixed a gram-ve type 

with a gram +ve type. 

" Pseudomonas aeruginosa and Staphylococcus aureus mixture, this mixed a gram- 

ve type with a gram +ve type. 

" Escherichia coli and Pseudomonas aeruginosa mixture, this mixed a gram-ve 

type with a gram +ve type. 

Other considerations for choice of bacteria types was availability and handling. The 

bacteria types employed are common and the laboratory can prepare cultures within 

a short time. More exotic bacteria types have to be specially ordered. Also handling 

was an important consideration. The laboratories used were classed as hazard level 

2, this means that the microorganisms that are allowed to be handled are up to and 

including hazard level 2. In microbiology, microorganisms are classed from hazard level 

1 to hazard level 4. If a person is contaminated, hazard level 1 microorganisms are 

those that pose no threat to health; level 2 are those that are potentially a mild threat 

to health; level 3 are those that pose a serious threat to health but can be treated; 

level 4 are those that are deadly and have no treatment (for example Escherichia coli 

0157). For safety reasons, the experiments were only permitted to be carried out in a 

level 2 environment. Many ENT pathogens, for example Corynebacterium diphtheriae 

or Haemophilus influenzae were too dangerous to use6. 

It can be noticed that Streptococcus pyogenes was not used in a mixture. This 

bacteria type did not grow well in a NB growth medium, when mixed with one of the 

other types it would have been wiped out by the other type in the first 1 or 2 hours. 

Two data gathering experiments were performed employing each single bacteria type 

odour source, and 1 was performed employing each mixture, a total of 11 experiments. 

The experimental setup was identical to that employed for the first 4 experiments 

6Trained staff might be able to perform experiments on level 3 organisms, new experimental pro- 

cedures would be necessary, especially for equipment cleaning 
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apart from the odour source used as the reference. The original odour source was pure 

nutrient broth, this was found to be potentially problematic (discovered performing the 

work detailed in chapter 4), therefore in the remaining experiments the reference odour 

was air (i. e. vessel #1 was empty). 

The target temperature of the pre-heater chamber was set to 34.0°C and the tem- 

perature of the main sensor chamber was set to 36.8°C. The temperature differential 

between the pre-heater chamber and the main sensor chamber was necessary in order 

to allow accurate control of the temperature of the main sensor chamber. Since this 

chamber only had a heating element, temperature reduction was achieved by the cool- 

ing effect of the gas, which was initially 2,8°C cooler. The gas entering the pre-heater 

chamber was cool enough to ensure accurate control (this temperature approximately 

ranged from 20°C to 30°C). 

5.4.1 Experiments Performed on 

The first two data gathering experiments were performed on Escherichia coli. The 

odour sources were 25 ml NB in vessel #1 and aqueous cultures of 25 ml NB inoculated 

with 0.25 ml Escherichia coli `master' culture in vessels #2 and #3. These experiments 

were denoted as experiment 5 and 6, respectively. During experiment 5, the ambient 

temperature ranged from 18°C to 21°C and the relative humidity ranged from 39% to 

40%. During experiment 6, the ambient temperature ranged from 18°C to 19°C and 

the relative humidity ranged from 37% to 42%. The results of the viable cell counts 

performed during these experiments are given in appendix B, the analysis of the data 

sets gathered are given in later chapters. Figure 5.6 and figure 5.7 show the results of 

the viable cell counts performed during experiments 5 and 6, respectively. 

As expected the growth curves for these two experiments were similar to those for 

experiment 1 and 2. In all these experiments the maximum population count is in the 

same order of magnitude. In experiment 5 the a lag phase was detected, in experiment 

6 the lag phase was too short to be measured. 
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Figure 5.6: Plot of the number of colony forming units (cfu) in 0.1 ml of inoculum for 

Escherichia coli experiment 5, vessels 2 and 3; showing the different phases of growth: 

light grey = lag phase, medium grey = log phase and dark grey = static phase. 
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Figure 5.7: Plot of the number of colony forming units (cfu) in 0.1 ml of inoculum for 

Escherichia coli experiment 6, vessels 2 and 3; showing the different phases of growth: 

medium grey = log phase and dark grey = static phase. 
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Figure 5.8: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Staphylococcus aureus experiment 7, vessels 2 and 3; showing the different phases of 

growth: medium grey = log phase and dark grey = static phase. 

5.4.2 Experiments Performed on 

Two data gathering experiments were performed on Staphylococcus aureus. The odour 

sources were 25 ml NB in vessel #1 and aqueous cultures of 25 ml NB inoculated with 

0.50 ml Staphylococcus aureus `master' culture in vessels #2 and #3. These experiments 

were denoted as experiment 7 and 8, respectively. During experiment 7, the ambient 

temperature ranged from 19°C to 21°C and the relative humidity ranged from 39% to 

44%. During experiment 8, the ambient temperature ranged from 16°C to 22°C and 

the relative humidity ranged from 31% to 39%. The results of the viable cell counts 

performed during these experiments are given in appendix B, the analysis of the data 

sets gathered are given in later chapters. Figure 5.8 and figure 5.9 show the results of 

the viable cell counts performed during experiments 7 and 8, respectively. 

The maximum culture population for these two experiments tended to be slightly 

higher than those for experiments 3 and 4, the reason for this was not precisely traced. 

however it is possible that there was some variation in the quality of the growth medium. 
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Figure 5.9: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Staphylococcus aureus experiment 8, vessels 2 and 3; showing the different phases of 

growth: light grey = lag phase, medium grey = log phase and dark grey = static phase. 

The viable cell counts for experiment 7 show no stationary phase, the populations 

continued to grow steadily. The reason for this was unknown, the rate of growth can 

be observed to decline with time, if further measurements had been made it is likely 

the stationary phase would have been detected. 

5.4.3 Experiments Performed on 

Two data gathering experiments were performed on Pseudomonas aeruginosa. The 

odour sources were 25 ml NB in vessel #1 and aqueous cultures of 25 ml NB inoculated 

with 0.25 ml Pseudornonas aeruginosa `master' culture in vessels #2 and #3. These 

experiments were denoted as experiment 9 and 10, respectively. During experiment 9, 

the ambient temperature ranged from 18°C to 19°C and the relative humidity ranged 

from 36% to 39%. During experiment 10, the ambient temperature ranged from 18°C 

to 20°C and the relative humidity ranged from 34% to 39%. The results of the viable 

cell counts performed during these experiments are given in appendix B, the analysis of 

0123456789 10 11 12 
Elapsed time (hours) 



177 5.4 Experiments With Temperature Controlled Gas Sensor Chamber 

1.0E+09 T 

1.0E+08 

1.0E+07 

1.0E+06 

1.0E+05 

Figure 5.10: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Pseudomonas aeruginosa experiment 9, vessels 2 and 3; showing the different phases 

of growth: medium grey = log phase and dark grey = static phase. 

the data sets gathered are given in later chapters. Figure 5.10 and figure 5.11 show the 

results of the viable cell counts performed during experiments 9 and 10, respectively. 

Pseudomonas aeruginosa grows well in a NB growth medium (as it does in most 

general purpose growth media), like Escherichia coli, it is motile which means that 

it tends to grow well in aqueous media. The growth plots reflect the ability of this 

bacteria type to grow fast. Also Pseudomonas aeruginosa is a bacteria type that has a 

particularly characteristic odour which was often smelt and identified by micro-biology 

staff. 

5.4.4 Experiments Performed on 

Two data gathering experiments were performed on Streptococcus pyogenes. The odour 

sources were 25 ml NB in vessel #1 and aqueous cultures of 25 ml NB inoculated 

with 0.50 ml Streptococcus pyogenes `master' culture in vessels #2 and #3. These 

experiments were denoted as experiment 11 and 12, respectively. During experiment 
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Figure 5.11: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Pseudomonas aeruginosa experiment 10, vessels 2 and 3; showing the different phases 

of growth: light grey = lag phase, medium grey = log phase and dark grey = static 

phase. 
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Figure 5.12: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Streptococcus pyogenes experiment 11, vessels 2 and 3; showing the different phases of 

growth: medium grey = log phase and dark grey = static phase. 

11, the ambient temperature ranged from 18°C to 21°C and the relative humidity 

ranged from 39% to 41%. During experiment 12, the ambient temperature ranged 

from 16°C to 19°C and the relative humidity ranged from 39% to 43%. The results 

of the viable cell counts performed during these experiments are given in appendix B, 

the analysis of the data sets gathered are given in later chapters. Figure 5.12 and 

figure 5.13 show the results of the viable cell counts performed during experiments 11 

and 12, respectively. 

The culture populations in these two experiments did not reach high levels, they 

were several orders of magnitude less than the other bacteria types. The populations 

in experiment 12 show particularly slow growth. Streptococcus pyogenes does not grow 

well in a NB growth medium, an anaerobic environment is also preferential. Also, being 

nonmotile, an aqueous growth medium was the best. It would have been possible to 

grow the cultures in better suited conditions, but it was felt that continuity in the 

experiment was important and that measuring the odour from a different bacteria type 
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Figure 5.13: Plot of the number of colony forming units (cfu) in 1 ml of inoculurn for 

Streptococcus pyogenes experiment 12, vessels 2 and 3; showing the different phases of 

growth: light grey = lag phase, medium grey = log phase and dark grey = static phase. 

and growth media type would have caused complications. It was decided that although 

the populations were small, they were large enough to generate odour. 

The growth medium used in the Petri dishes used for the viable cell counts was 

not NA but blood agar. The reason for this is that Streptococcus pyogenes does not 

grow well on NA, and the colonies that would have formed on such a medium would 

have been slow growing and very small. Blood agar is simply sterile defibrinated blood 

(usually ox or sheep blood) mixed with agar base. Colonies of Streptococcus pyogenes 

have a hemolytic effect on the growth medium, i. e. the area surrounding the colony 

becomes transparent. Also Streptococcus pyogenes grow better on blood agar. thus the 

colonies were well formed and easily identifiable. 
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Figure 5.14: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Escherichia coli experiment 13, vessels 2 and 3; showing the different phases of growth: 

medium grey = log phase and dark grey = static phase. 

5.4.5 Experiment Performed on and 

mixture 

One data gathering experiment was performed on Escherichia coli and Staphylococcus 

aureus mixed. The odour sources were 25 ml NB in vessel #1 and aqueous cultures of 

25 ml NB inoculated with 0.25 ml Escherichia coli and 0.50 ml Staphylococcus aureus 

`master' culture in vessels #2 and #3. This experiment was denoted as experiment 

13. During experiment 13, the ambient temperature ranged from 17°C to 19°C and 

the relative humidity ranged from 39% to 42%. The results of the viable cell counts 

performed during these experiments are given in appendix B, the analysis of the data 

sets gathered are given in later chapters. Figure 5.14 show the results of the viable cell 

counts for Escherichia coli, and figure 5.15 show the results of the viable cell counts for 

Staphylococcus aureus, performed during experiment 13. 

As expected Escherichia coli showed a consistently higher population size than 

Staphylococcus aureus, however, the latter still managed to grow despite the former 
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Figure 5.15: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Staphylococcus aureus experiment 13, vessels 2 and 3; showing the different phases of 

growth: light grey = lag phase, medium grey = log phase and dark grey = static phase. 

using up the available nutrients. 

The growth medium used in the Petri dishes was NA, colonies of Escherichia colt' 

appear large, off-white in colour with no clear defined edges, colonies of Staphylococcus 

aureus appear white, small and well defined. Thus it was possible to detect the different 

types of colony with sufficient accuracy. 

5.4.6 Experiment Performed on 

mixture 

and 

One data gathering experiment was performed on Pseudomonds aeruginosa and Sta- 

phylococcus aureus mixed. The odour sources were 25 ml NB in vessel #1 and aqueous 

cultures of 25 ml NB inoculated with 0.25 ml Pseudomonas aeruginosa and 0.50 ml 

Staphylococcus aureus `master' culture in vessels #2 and #3. This experiment was 

denoted as experiment 14. During experiment 14, the ambient temperature ranged 

from 17°C to 20°C and the relative humidity ranged from 37% to 41%. The results 
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Figure 5.16: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Pseudomonas aeruginosa experiment 14, vessels 2 and 3; showing the different phases 

of growth: medium grey = log phase and dark grey = static phase. 

of the viable cell counts performed during these experiments are given in appendix B, 

the analysis of the data sets gathered are given in later chapters. Figure 5.16 show the 

results of the viable cell counts for Pseudornonas aeruginosa, and figure 5.17 show the 

results of the viable cell counts for Staphylococcus aureus, performed during experiment 

14. 

The population counts for Pseudomonas aeruginosa were again very high, the pop- 

ulation in vessel #3 did start to decline, whether this was a sign of entry into the death 

phase or whether it was a `hiccup' was unknown. As expected, Staphylococcus aureus, 

had populations an order of magnitude less than the former type, like experiment 13, 

it survived despite the presence of a dominant organism. 

The growth medium used in the Petri dishes was NA, colonies of Pseudornonas 

aeruginosa appear large, yellowish with no clear defined edges, colonies of Staphylococ- 

cus aureus appear white, small and well defined. Thus it was possible to detect the 

different types of colony with sufficient accuracy. 
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Figure 5.17: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Staphylococcus aureus experiment 14, vessels 2 and 3; showing the different phases of 

growth: light grey = lag phase, medium grey = log phase and dark grey = static phase. 

5.4.7 Experiments Performed on and 

mixture 

One data gathering experiment was performed on Escherichia coli and Pseudomonas 

aeruginosa mixed. The odour sources were 25 ml NB in vessel #1 and aqueous cul- 

tures of 25 ml NB inoculated with 0.25 ml Escherichia coli and 0.25 ml Pseudornonas 

aeruginosa `master' culture in vessels #2 and #3. This experiment was denoted as 

experiment 15. During experiment 15, the ambient temperature ranged from 18°C to 

21°C and the relative humidity ranged from 38% to 42%. The results of the viable cell 

counts performed during these experiments are given in appendix B, the analysis of 

the data sets gathered are given in later chapters. Figure 5.18 show the results of the 

viable cell counts for Escherichia coli, and figure 5.19 show the results of the viable cell 

counts for Pseudomonas aeruginosa, performed during experiment 15. 

Both bacteria types showed similar culture population sizes. Pseudomonas aeru- 

ginosa has smaller population counts than those measured in previous experiments, 
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Figure 5.18: Plot of the number of colony forming units (cfu) in 1 ml of inoculum for 

Escherichia coli experiment 15, vessels 2 and 3; showing the different phases of growth: 

medium grey = log phase and dark grey = static phase. 

this was probably due to Escherichia coli using up the available nutrients. No one 

bacteria type dominated the other to any large degree. 

The growth medium used for the viable cell counts was not NA but MacConkey 

Agar. The Petri dishes were prepared in a similar manner to the Petri dishes with NB. 

Colonies of Escherichia coli show up pink and colonies of Pseudomonas aeruginosa 

show up off-white colour. On NA, the colonies would have appeared too similar for 

viable cell counts to be performed with any accuracy. Also these bacteria types grow 

equally well on this growth medium, so colonies of one type did not mask out the 

colonies of the other. MacConkey Agar is popularly used to identify lactose-fermenting 

colonies, such as Escherichia coli from other types. 

5.5 Summary 

Following on from the analysis described in the previous chapter, a number of issues 

were highlighted. Firstly, there was unwanted variance in the data caused by fluctu- 
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Figure 5.19: Plot of the number of colony forming units (cfu) in 1 ml of inoculurn for 

Pseudornonas aeruginosa experiment 15, vessels 2 and 3; showing the different phases 

of growth: light grey = lag phase, medium grey = log phase and dark grey = static 

phase. 
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Table 5.2: Table summarising the data gathering experiments performed using the 

temperature controlled sensor chamber. 

Experiment 

110. 

Bacteria 

types 

External 

temp °C 

External 

humidity % 

Growth 

curve 

5 Escherichia coli 18 to 21 39 to 40 good 

6 Escherichia coli 18 to 19 37 to 42 good 

7 Staphylococcus aureus 19 to 21 39 to 44 medium 

8 Staphylococcus aureus 16 to 22 31 to 39 medium 

9 Pseudomonas aeruginosa 18 to 19 36 to 39 good 

10 Pseudomonas aeruginosa 18 to 20 34 to 39 good 

11 Streptococcus pyogenes 18 to 21 36 to 41 poor 

12 Streptococcus pyogenes 16 to 19 39 to 41 poor 

13 Escherichia coli 17 to 19 39 to 42 good 

Staphylococcus aureus medium 

14 Pseudomonas aeruginosa 17 to 20 37 to 41 good 

Staphylococcus aureus medium 

15 Escherichia coli 18 to 21 38 to 42 good 

Pseudomonas aeruginosa good 

ations in ambient temperature and other environmental causes (such as poor gas flow 

characteristics within the sensor chamber). Secondly, that data on more different bac- 

teria types was needed. Finally, that it would be desirable to collect data from mixtures 

of bacteria. 

In response to the issues highlighted, the electronic nose was modified further. A 

new gas sensor chamber was designed and implemented that incorporated improved 

gas flow characteristics, this chamber contained the gas sensors and a temperature 

sensor. A sub-system that controlled the ambient air temperature was also designed 

and implemented. This sub-system consisted of two heating elements, one incorporated 

into the main gas sensor chamber, and the other incorporated into a pre-heater chamber. 
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A second sensor chamber existed between the pre-heater chamber and the main gas 

chamber, this chamber contained a second temperature sensor and a relative humidity 

sensor. The temperature was controlled using computer software which work alongside 

the existing software which controlled the solenoid valves. The ambient temperature 

was controlled to an accuracy of ±0.1°C. 

Using the newly modified electronic nose, eight data gathering experiments were 

performed on cultures of a single bacteria type and three experiments were performed 

on cultures of a mixture of two different bacteria types. Table 5.2 summarises the 

experiments performed. Overall the experiments were satisfactory (i. e. there were no 

serious breakdowns and the planned experiments were done), however Streptococcus 

pyogenes did prove to be difficult to grow. The equipment proved reliable with no 

break downs, and no samples became infected. Thus the data gathered should be well- 

behaved. At this point there was a considerable library of bacteria odour data, a total 

of 15 data sets from the 15 data collection experiments, each data set contained 43200 

data points, this was more data than had ever been collected before for one application. 



Chapter 6 

Data Analysis Using Novel 

Techniques For Odour 

Classification 

Initial data analysis was previously performed (see chapter 4 using data from experi- 

ments performed using the original Electronic Nose (experiments 1 to 4). This chapter, 

using the knowledge gained from the initial exploration, details further data analysis 

using data from experiments performed using the modified Electronic Nose (experi- 

ments 5 to 15). The data analysis described in this chapter builds on that previously 

performed. Because significantly more data were gathered, more difficult classification 

tasks were attempted, i. e. classification of more bacteria types and identification of 

single types from binary mixtures. 

6.1 Classification of a Single Bacteria Type 

Previous classification used data-sets originating from experiments 1 to 4, which only 

contained information for 2 different bacteria types. The data-sets from experiments 5 

to 12 contained information for 4 different bacteria types. The ability to classify 1 of 

4 instead of 1 of 2 bacteria types was investigated. If MLPs were to be employed in 

a commercial electronic nose product that would be used in the treatment of infection 

189 
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it would be advantageous to be able to discriminate correctly between as wide a range 

of bacteria types as possible. Also, if satisfactory results can be achieved then this 

would indicate MLPs as being capable of performing the necessary pattern recognition 

functions. Classification using an increased number of types presents a more challenging 

test of MLPs as classifiers. 

The ANN MLP classifiers previously employed to classify 1 of 2 bacteria types were 

modified and re-applied to the classification of 1 of 4 bacteria types. The 4 bacteria 

types were Escherichia coli (collected from experiments 5 and 6), Staphylococcus aureus 

(collected from experiments 7 and 8), Pseudomonas aeruginosa (collected from exper- 

iments 9 and 10) and Streptococcus pyogenes (collected from experiments 11 and 12). 

All gas sensor feature models and normalisation algorithms were employed in turn (see 

the feature-set types described in table 4.1 and table 4.2). Thus a comparison of the 

relative performance of gas sensor feature models and normalisation algorithms was 

possible. For each feature-set type there were 2 feature-sets, the first (feature-set #1) 

contained data from experiments 5,7,9 and 11, and the second (feature-set #2) con- 

tained data from experiments 6,8,10 and 12. Thus each feature-set contained data 

which spanned all 4 bacteria types. Each feature-set a total of 720 feature vectors 

(4x180 feature vectors). It was previously shown (see tables 4.3,4.4,4.10 and 4.11) 

that reversing the training and testing feature-sets did not significantly effect classific- 

ation performance, so it was decided to train the MLPs with feature-set #1 and test 

with feature-set #2. Splitting the training and testing data according to experiment 

meant that any classification would have to overcome any inter-experiment variance, 

just as in the eventual application. Essentially the methods used with the MLPs were 

identical in all practical respects to that described in chapter 4, the only change in net- 

work topology was an increase in the number of output nodes from 2 to 4. The same 

early stopping training algorithm was again employed. Ten MLPs were trained and 

tested for each feature-set type, the best performing one is subsequently quoted. The 

training parameters (for BP with momentum) were the same as those used previously, 

i. e. u=0.001, a=5.0, c=0.1 (flat-spot elimination constant added to derivations) 

and dmax = 0.1 (maximum tolerance of error per output). Table C. 9 and table C. 10 in 
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Table 6.1: Average and standard deviation of performance of bacteria type classification 
by means of MLPs for different gas sensor feature models. 

Model SSE 

a 

Correct (%) 

ta 

Incorrect (%) 

ta 

Unknown (%) 

ta 

df 2146.62 90.53 12.50 9.98 9.13 4.54 12.50 6.73 

rl 2212.84 37.25 13.61 8.25 29.10 10.02 57.29 15.35 

fd 2064.23 105.26 22.26 8.38 22.95 12.64 54.69 20.27 

of 2118.20 318.80 36.28 19.44 26.32 10.20 30.24 26.33 

mit 1940.58 624.69 41.67 27.38 31.67 6.15 26.67 26.43 

fr 2013.36 40.75 21.91 6.91 25.24 11.42 52.85 18.26 

and 2103.20 185.18 22.15 15.19 27.99 13.33 52.92 28.17 

mf 2012.50 96.34 34.13 9.46 26.70 11.45 39.17 9.04 

ff 1952.99 72.08 31.95 21.35 25.45 10.83 42.61 31.97 

appendix C summarize the results, the former table shows the results for the original 

feature-set types, and the later table shows the results for the new feature-set types. 

For interpreation of the network output, the previous `402040' rule was used, therefore 

a number of input vectors were unclassified. Table 6.1 and table 6.2 show, using simple 

descriptive statistics, the performance of different gas sensor feature models. 

From table 6.1 it can be observed that MLP performance was not as good as that 

described in chapter 4 for the other data-set. Here the average error, SSE over the 

entire testing data-set, was in the order of 1900 to 2200 (as compared to 300 to 700 

previously, see table 4.5). However, in this case there were twice the number of vectors 

in each feature-set and there were twice the number of outputs, therefore the average 

SSE for each output for each vector is a fairier measure. The average squared error 

for each output node for each input vector (individual error) was in the order of 0.66 

(for 1900 SSE) to 0.76 (for 2200 SSE) compared to the previous values in the order of 

0.42 (for 300 SSE) to 0.97 (for 700 SSE). The major effect of increasing the number of 

classes from 2 to 4 was not to increase the error for each output (for each pattern) but 
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Table 6.2: Minimum and maximum of performance of bacteria type classification by 

means of MLPs for different gas sensor feature models. 

Model SSE Correct (%) Incorrect (%) Unknown (%) 

min max min max min max min max 

df 2107.89 2276.12 3.06 24.56 4.44 14.86 65.00 90.14 

rl 2132.04 2212.84 4.17 23.75 19.58 38.89 39.72 74.44 

fd 1944.94 2190.22 13.33 31.25 4.72 32.78 35.97 81.94 

of 1827.07 2467.92 15.00 53.19 17.50 36.81 10.00 67.50 

mit 1155.00 2530.37 16.11 73.61 25.56 37.50 0.83 56.67 

fr 1964.32 2064.10 15.00 29.03 11.94 35.83 35.14 73.06 

and 1934.30 2268.45 2.50 39.44 9.44 38.75 21.81 88.06 

mf 1931.35 2136.70 26.25 47.50 12.22 36.94 29.17 50.83 

ff 1850.41 2013.45 14.31 60.58 13.89 38.17 1.25 71.81 

to restrict its range. This may be due partly to the fact that individual erronous input 

vectors within a larger feature-set (i. e. 4 classes) may influence the overall performance 

less than would otherwise occur in a smaller feature-set (i. e. 2 classes), i. e errors were 

averaged out. In a larger feature-set there may be not only more erronous vectors 

but more sources of error, thus total eradication of error is less probable and partial 

eradication more probable than for a smaller feature-set. Given that individual errors 

were not significantly different, the overall performance' for classification of 4 bacteria 

types appears to be worse than that for 2 bacteria types (from table 4.5). The high 

values for a indicate a high degree of variance in classification performance for different 

normalisation (given the same gas sensor feature model). The minimum and maximum 

measures listed in table 6.2 indicate the best number of correct class achieved was 

73.61% with a lowest SSE of 1155. 

Looking at the relative performances of feature models for classification of 2 bac- 

'Overall performance can be summarised as the number of correct classifications compared to the 

number of incorrect and unknown classifications. 



193 6.1 Classification of a Single Bacteria Type 

Table 6.3: Average and standard deviation of performance of bacteria type classification 

by means of MLPs for different normalisation algorithms. Key to notation: n= none, 

s= sensor normalisation, a= auto-scaling and v= array (vector) normalisation. 

Norm. SSE Correct (%) Incorrect (%) Unknown (%) 

Type a ta a or 

n 1909.70 307.70 37.33 21.45 29.32 13.08 33.35 28.45 

s 2132.42 141.65 23.70 9.06 29.55 11.25 46.74 19.03 

a 2224.10 189.93 17.33 13.25 17.65 9.00 61.84 23.89 

v 1969.02 133.21 26.76 16.82 23.27 6.75 51.44 21.16 

Table 6.4: Minimum and maximum of performance of bacteria type classification by 

means of MLPs for different normalisation algor ithms. Key to n otation: n= none, s 

= sensor normalisation, a= auto-scaling and v = array (vector) normalisation. 

Norm. SSE Correct (%) Incorrect (%) Unknown (%) 

Types min max min max min max min max 

n 1155.00 2162.88 10.83 73.61 4.72 38.89 0.83 81.94 

s 1957.93 2343.88 5.97 35.83 4.44 37.50 34.03 89.58 

a 1964.32 2530.37 2.50 47.50 6.81 33.33 13.47 90.14 

v 1733.07 2212.84 4.17 55.14 14.86 36.39 8.47 74.44 

teria types, the Absolute Final Output (af) model performs comparatively better here. 

The Difference (df) model, which previously performed well, now performs comparat- 

ively worse. It is possible that different gas sensor feature models perform better for 

discriminating particular bacteria types. 

Table 6.3 and table 6.4 show, using simple descriptive statistics, the performance of 

different normalisation algorithms. From these tables significant differences in perform- 

ance can be observed. Compared to the ranking described for classification of 2 bacteria 

types (see chapter 4), there were a numbers of differences. Sensor normalisation, which 
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was previously the best algorithm, is now third. The best classification performance 

was achieved with no normalisation at all. Both sensor normalisation and auto-scaling 

apply a different linear transformation to each component of the feature vector. Thus 

information which was encoded as the angles between vectors, was changed. If the 

feature vectors for different classes had small angles between them, the ability of the 

classifier to differentiate between them could be diminished by such normalisation al- 

gorithms. Vector normalisation equalises vector lengths, if vector length was related to 

not only odour concentration but odour quality, then again the ability for a classifier 

to differentiate between similar vectors of different classes could be diminished. With 

no normalisation, the MLP internally scales the vector components, this may be the 

optimum method. The potential cost of letting the MLP learn the best scaling of the 

input vectors in that the learning phase would be more problematic, does not seem to 

have been significant. The motivation for developing feature-extraction and normal- 

isation was to make life easier when teaching a classifier. These results indicate that 

if there is sufficient, good quality data, it is best to implement minimal pre-processing 

and let the classifier do the work. 

The best performance for a particular feature-set type, was achieved with the Min- 

imum Output gas sensor feature model with no normalisation (mnn). This setup 

achieved 73.61% correct classifications, 25.56% incorrect classifications, 0.83% unknown 

classification and the SSE over the entire testing feature-set was 1155. 

Table 6.5 shows the confusion matrix for the output of the best MLP. From this it 

can be seen that there were significant differences in performance for each class. Es- 

cherichia coli was correctly classified with 108 patterns (60%) accuracy, Staphylococcus 

aureus was correctly classified with 87 patterns (48.33%) accuracy, Pseudomonas aeru- 

ginosa was correctly classified with 155 patterns (86.11%) accuracy, and Streptococcus 

pyogenes was classified with 180 patterns (100%) accuracy. Also from this matrix, a 

measure of confidence can be derived. When the Escherichia coli class was output. it 

was correct with 72.97% (108 out of 148 patterns) accuracy. When the class Staphylo- 

coccus aureus was output, it was correct with 96.67% (87 out of 90 patterns) accuracy. 

When the Pseudomonas aeruginosa class was output, it was correct with 81.58% (155 
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Table 6.5: Confusion matrix for best single result for bacteria type classification, using 
minimum output feature model and no normalisation, using experiments 5,7,9 and 11 
for training and experiments 6,8,10 and 12 for testing. 

Actual Target Output 

Output E. coli Staph. aureus Ps. aeruginosa Street. pyogenes 

E. coli 108 21 19 0 

Staph. aureus 0 87 3 0 

Ps. aeruginosa 

Strept. aureus 

Unknown 

0 

72 

0 

35 

32 

5 

155 

2 

1 

0 

180 

0 

out of 190 patterns) accuracy. When the Streptococcus pyogenes class was output. it 

was correct with 62.94% (180 out of 286 patterns) accuracy. Therefore, although Strep- 

tococcus pyogenes was correctly identified 100% of the time, when it was output by the 

MLP it was only correct 62.94% of the time. The reverse was true for Staphylococcus 

aureus. Confidence is important: when class A is output, how reliable is the answer? 

Some indication of `likeness' can also be observed from the matrix, the MLP mistook 

Escherichia coli for Streptococcus pyogenes in 40.00% (72 patterns) of cases. Also there 

was significant confusion between Staphylococcus aureus and the other bacteria types. 

The difference in performance between classification of 2 bacteria types and of 

4 bacteria types may be due to the increase in classifier complexity, therefore it is 

necessary to look at the significance of the number of output classes upon performance. 

If one wanted to achieve the highest number of correct classifications without designing 

a classifer, then all vectors would be assigned as belonging to the same class; or a random 

assignment. Therefore, for 2 classes, the number of correct classifications would be 50% 

(the number of incorrect classifications would be 50%), and for 4 classes the number of 

correct classifications would be 25% (the number of incorrect classifications would be 

75%). The larger the difference between correct and incorrect classifiction, the better 

the classifier. What was desired was classification performance that was significantly 
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better than could be achieved by constant or random classification. For 2 bacteria types, 

the best difference was 93.89% (the 1.67% of unclassified patterns was considered not 

to be significant). For 4 bacteria types, the best difference was 48.05%. Both of these 

are 100% better than would be expected for constant or random classification. So given 

the increase in complexity of the problem, the decrease in performance is no greater 

than that which would be expected for identical classifier designs. 

6.2 Dynamic Gas Sensor Feature Models 

All classification so far described in this thesis has employed static feature models. 

These feature models derive features from parameters which are measurements of static 

quantities in gas sensor responses to odours (see section 4.1.1 in chapter 4). It was 

briefly mentioned in the review (see chapter 2) that previous work had been published 

detailing the use of dynamic features [54]. Included in the diagram which illustrated a 

`smell', Figure 4.1, were several parameters which relate to timing (temporal) inform- 

ation. These were used here to derive dynamic features. 

Taking a resitive single gas sensor, its associated output voltage at time t after being 

exposed to a step-input function (for odour concentration) can be expressed as V (t). 

Conductance, G(t) is therefore W(t)-1 (where k is a constant). The transient response 

of the conductance of a tin oxide gas sensor [115] has been shown to approximate an 

exponential rule2: 

G(t) = Go + OG(1 - exp( Tt)) 
(6.1) 

Where Go is the initial conductance (also called baseline conductance) at time t=0. 

and T is the time constant for the gas sensor. As t -* oo, the conductance, G tends 

towards G f, which is the final, (steady-state) value and OG =Gf- Go. Thus the rate 

of change of output with respect to time can be defined: 

dG 
= 

OG 
exp( 

Tt dt T 
(6.2) 

2A bi-exponential rule is even better 
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The derivative -G 
, 

is related to both the type and concentration of the odour through 
OG as in the static model. From the `raw' data file, OG and r were extracted for each 

sensor response for each `smell' cycle. This transient information was used to construct 
a new feature, the Transient model (tr): 

dG 
dt It_T (6.3) 

Making t= -r, the first derivative simplifies to: 

dG 
_ 

OG 
exp(-1) '. ' 

AG 
(6.4) dt T 2.7, r 

Thus the derivative contains not only the static response, OG, but also the reaction 

kinetics through T. It is known that the value of r depends upon the analyte type 

and concentration too. The advantage of using the derivative is that baseline variance 

is removed, like biological systems. From this new model, and employing all types of 

normalisation, new feature-sets were formed. These feature-sets were applied to the 

classification of 1 of 4 bacteria types. 

6.2.1 Multiple Layer Perceptron 

The best feature model so far used was the minimum output feature model (mn) (see 

table 6.5). If the transient feature model (tr) contains discriminatory information that 

had previously been excluded in the static feature models, its inclusion should improve 

classifier performance. New feature-sets were formed from a combination of the mit and 

tr feature-sets, these were identified using tin notation. Two sets of experiments were 

performed, the first trained and tested MLPs using the tm feature-set (i. e. combined 

static and dynamic features), and the second using the tr feature-set (i. e. only dynamic 

features). The purpose of performing the second experiment was to provide a control 

by which the effect of dynamic features could be gauged, for example, would better 

performance be achieved by using dynamic features alone? In these experiments, as 

before, same training and testing methods were used. For each feature-set type there 

were 2 feature-sets, the first (feature-set #1) contained data from experiments 5,1. 

9 and 11, and the second (feature-set #2) contained data from experiments 6.8.10 
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Table 6.6: Performance of bacteria type classification by means of MLPs using combined 
Minimum Output and Transient feature models. 

Feature-set SSE Correct (%) Incorrect (%) Unknown (%) 

tmn 911.92 82.22 14.44 3.33 

tms 2193.68 13.19 11.39 75.42 

tma 2367.50 13.06 11.25 75.69 

tmv 1703.59 35.58 18.06 46.39 

and 12. The MLPs were trained using feature-set #1 and tested using feature-set #2. 

By adopting the same training and testing methods, useful comparisons can be made 

between the performance of different MLPS, i. e. any difference would not be due to 

experimental methods but the MLPs themselves. 

Combined Static and Dynamic Features 

For this experiment, MLP topology was 18 inputs feeding into 20 hidden nodes, feeding 

into 4 output nodes. All four normalisation methods were investigated. Table 6.6 lists 

the results obtained for different normalisation methods. The best single result was 

with no normalisation which achieved 82.22% correct classifications, 14.44% incorrect 

classifications and 3.33% unknown classifications (and with a SSE of 911.92 over the 

entire test feature-set). For 4 bacteria types, the previous best single performance was 

achieved using the mnn feature-set with 73.61% correct classifications. The combined 

feature-set improved this figure by 8.61%. 

The confusion matrix shown in Figure 6.7 shows the best individual MLP per- 

formance. Escherichia coli was classified with 96.11% accuracy (173 patterns), Sta- 

phylococcus aureus was classified with 77.78% accuracy (140 patterns), Pseudomonas 

aeruginosa was classified with 59.44% accuracy (107 patterns) and Streptococcus pyo- 

genes was classified with 95.56% accuracy (172 patterns). Confidence was highest for 

Pseudomonas aeruginosa at 98.17%, followed by Escherichia coli at 86.93%, Strepto- 

coccus pyogenes at 81.90% and Staphylococcus aureus at 78.21%. Therefore Escherichia 
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Table 6.7: Confusion matrix for bacteria type classification, using combined Minimum 

Output and Transient feature models and no normalisation, using experiments 5,7.9 

and 11 for training and experiments 6,8,10 and 12 For testing. 

Actual Target Output 

Output E. coli Staph. aureus Ps. aeruginosa Strept. pyogenes 

E. coli 173 4 16 6 
Staph. aureus 0 140 39 0 

Ps. aeruginosa 2 0 107 0 

Strept. pyogenes 4 32 2 172 

Unknown 1 4 16 3 

coli was most easily classified with a high accuracy and confidence. 

The combined feature-set has 3 features for each gas sensor, giving a total of 18 

inputs (for 6 gas sensors), and previous feature-set types yielded 1 or 2 features per 

gas sensor (giving 6 or 12 inputs). The increase in the number of inputs increases the 

number of weights in the network. The error surface of a network with a large number 

of weights is more likely to have a large number of local minima than an error surface 

of a network with a similar number of weights. In theory, the MLPs so far employed 

with 6 or 12 inputs (230 or 356 weights3) should be at an advantage compared to the 

MLP which used the combined feature-set which had 18 inputs (482 weights). Yet the 

results so far obtained indicate that the more complex MLPs have performed the best, 

mit feature-set and tm feature-set. 

Dynamic Features 

For this experiment, MLP topology was 6 inputs feeding into 20 hidden units, feeding 

into 4 output units. Again, all four different normalisation methods were investigated. 

Table 6.8 lists the results obtained for different normalisation methods. 

The results were significantly worse than those for the previous experiment, the best 

3The number of weights is for 20 hidden and 4 output nodes and includes thresholds. 
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Table 6.8: Performance of bacteria type classification by means of MLPs using combined 
Minimum Output and Transient feature models. 

Feature-set SSE Correct (%) Incorrect (%) Unknown (%) 

tmn 2169.39 18.06 28.97 53.47 

tins 2141.95 24.72 32.50 42.78 

tma 2191.03 24.58 11.94 63.47 

tmv 2093.99 22.08 35.69 42.22 

percentage of correct classification for this experiment was 24.72%, compared to 82.22% 

for the previous experiment. The SSE for this experiment was consistently high, around 

2100, this indicates that the networks did not converge well, this is also indicated by 

the large percentage of patterns that were unknown (from 42.22% to 63.47%). Using 

static features, the best performance achieved was 73.61% (see section 6.1). Dynamic 

information alone resulted in worse performance than static, and dynamic combined 

with static. 

It can be concluded from this that discriminatory information is contained in both 

static and dynamic features (possibly more in static features than dynamic) and that 

improved classification can be achieved by a combination of the two rather than each 

on their own. 

6.2.2 "iscriminant Function Analysis 

Linear Discriminant Function Analysis (DFA) has been applied (see section 4.5 in 

chapter 4) to classify bacteria type and to predict growth phase. Compared to MLPs 

its performance was found to be inferior, e. g. 67.50% correct classification of bacteria 

type compared to 96.11% for MLPs. DFA is an established statistical classification 

method that serves here as a benchmark. The relative performance of MLPs can be 

better judged when comparing their performance to that of a technique like DFA. The 

method of implementation here was identical to that used previously. The feature- 

sets used were that feature-set pair which was reported as being the best for MLPs 
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Table 6.9: Classification function coefficients calculated using discriminant function 

analysis for bacteria type (using tann feature-sets). 

Bacteria Type 

Coefficient E. coli Staph. aureus Ps. aeruginosa Strept. pyogenes 

co -391.18 -606.09 -678.63 -502.75 

Cl -48.34 -40.08 -43.11 -53.37 

c2 -30.98 -31.61 -33.28 -32.53 

C3 -17.69 -6.14 -8.83 -9.99 

C4 -2.41 -18.19 -4.02 -23.70 

c5 39.81 19.88 12.58 12.59 

C6 -4.17 -7.48 -5.16 0.36 

c7 -26.02 -48.55 -59.95 -28.35 

c8 -26.66 -35.68 -50.04 -25.47 

Cg 1.27 17.40 14.95 15.78 

c10 100.75 139.84 134.46 133.45 

c11 103.18 142.29 145.81 127.96 

c12 39.68 45.19 48.29 31.97 

C13 31.01 31.54 48.56 18.25 

1C14 -0.33 -7.52 -13.30 -1.02 

c15 -5.25 -19.92 -19.66 12.98 

C16 10.51 15.83 13.11 25.36 

C17 -28.62 -24.43 -4.76 -16.26 

C18 -27.62 -30.90 -30.68 -23.75 

so far, i. e. Combined Minimum Output and Transient gas sensor feature models with 

no normalisation (tmn). The discriminant functions (DFs) and classification functions 

(CFs) were calculated using data from experiments 5,7,9 and 11 and were tested 

using data from experiments 6,8,10 and 12. Table 6.9 shows the results of DFA, the 

coefficients of the CFs are listed. 
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From the table, coefficients c10 and c11 are dominant. These coefficients correspond 
to gas sensor 4. Previously, when bacteria type was classified using DFA, gas sensors 

2 and 4 were found to yield dominant coefficients. Here, gas sensor 2 (coefficients c4, 

c5 and c6) does not appear to be dominant, there is commonality with respect to gas 

sensor 4. This may indicate that gas sensor 4 (FIS P. A. 2, polar compounds) is the 

most significant. 

Since Wilk's Lambda is a measurement of variance not involved in classification, 

in this case the value measured for Wilk's Lambda was 0.001, thus unwanted variance 

was negligible. Table 6.10 shows the corresponding Mahalanobis and Fisher's distance 

measurements resulting from the DFA. From this table an appreciation of the similarity 

of classes can be gained, similar classes have small distances between each other, and 

dissimilar classes have larger distances. The largest distance is that between Pseudo- 

monas aeruginosa and Escherichia coli (D2=1001.82 and F=210.38), the smallest dis- 

tance is that between Staphylococcus aureus and Pseudomonas aeruginosa. This was 

reflected in the results, Pseudomonas aeruginosa was not misclassified as Escherichia 

coli, and vice versa for all test vectors. But, Staphylococcus aureus was misclassified 

as Pseudomonas aeruginosa (and vice versa) in 93 cases (out of 374 total misclassi- 

fications). This can be compared with the output from the MLP using the confusion 

matrix in Figure 6.7, the trend with regard to these two class pairs was repeated, with 

18 misclassified vectors for the former par of classes, and 39 for the later. 

Reclassification of the training feature set was 99.58% correct (717 correct out of 

720 total), testing using the test feature-set yielded a classification performance of 

48.06% correct (346 correct out of 720 total). This result was considerably worse 

than classification using a MLP (82.22%). It is also worse than that for the previous 

classification of 2 bacteria types, which was 65.83% (this is to be expected because of 

the increase of complexity) . 

Figure 6.1 shows a plot of the test feature-set against the first two ranked discrim- 

inant functions (DFs). The target class membership is indicated by plot colour (see 

figure caption). Streptococcus pyogenes showed the best clustering, Escherichia coli 

and Staphylococcus aureus show clusterings that have significant overlap. The first two 
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Table 6.10: Mahalanobis, D2, and Fisher's F distances between class centroids calcu- 
lated using discriminant function analysis for bacteria type (using tmn feature-sets). 

Escherichia Staphylococcus Pseudomonas Streptococcus 

coli aureus aeruginosa pyogenes 

Escherichia D2 0 191.76 210.38 107.34 

coli F 0 913.17 1001.82 511.17 

Staphylococcus D2 191.76 0 31.97 55.13 

aureus F 931.17 0 152.27 262.54 

Pseudomonas D2 210.38 31.97 0 55.13 

aeruginosa F 1001.82 152.27 0 515.82 

Streptococcus D2 107.34 55.13 108.31 0 

pyogenes F 511.17 262.54 515.82 0 

DFs described 96% of the variance of the data (the third DF described 4% of the vari- 

ance of the data). Misclassification between Escherichia coli and Staphylococcus aureus 

occurred in 66 cases (out of 374 total misclassifications), this relatively low number in- 

dicates that the other DFs reduced the overall cluster overlap. The plot in Figure 4.9 

is still however a good indication of the quality of the DFs calculated. 

6.3 Culture Growth Phase Compensation Using Fuzzy 

Sets 

It has been shown in chapter 4 that culture growth phase influences the odours released 

from bacteria cultures. Also the possibility of implementing a two stage classifier was 

discussed, where a separate classifier identified the culture growth phase, the output 

from this stage is then input to the classifier in order to aid bacteria type classification. 

Before this can happen, growth phase needs to be predicted in a more accurate manner 

in order to reduce error within the classifier system. The application of fuzzy set theory 

provided an opportunity to achieve this. 
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Figure 6.1: Results of discriminant function analysis of bacteria type (using tmn 

feature-sets). 

6.3.1 Fuzzy Set Theory 

The boundaries between the different growth phases are not `hard' but `soft'. What is 

meant by this is that the transition from one growth phase to the next is not instant- 

aneous but gradual. Previously in chapter 4, growth phase was predicted based upon 

the assumption that at a given time, the bacteria culture was exclusively in one of the 

growth phases. It was found that the majority of errors occurred in the boundary re- 

gions of growth phase, this was due to the implementation of `hard' boundaries. If the 

boundaries were implemented as `soft', which is closer to the reality of culture growth., 

better predication should result. There is no single point in time when all the cells 

within a culture spontaneously changed their behaviour, in actuality, the transition 

has taken place when the majority of cells in the culture behaved in a similar manner. 

Fuzzy set theory provides an technique for encoding these `soft' boundaries. 

Fuzzy set theory originated from control engineering in which fuzzy controllers use 

fuzzy set theory and have been applied to many problems. Fuzzy set theory (and its 
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derived area, fuzzy logic) has become recently fashionable, although there are publica- 
tions from researchers such as Zadeh [116,117] which date back to the 1960s and 1970s. 

A fuzzy set is simply a set the boundary of which is not sharp. If we have a fuzzy set, 
A, membership of this set can be characterised by a membership function, aA(x), where 

x are elements of a universal set, X. The set X is mapped to the interval [0,1], i. e. the 

higher the value of the membership function, the stronger the membership is to the set 
A. From this, the basic logical functions of intersection (n), union (U) and complement 
(c) are defined as: 

µanB = min(µA(X)5 µB (X)) (6.5) 

and: 

f'AuB = max(PA(X) t2(X)) (6.6) 

and: 

PAC -1- /IA(X) (6.7) 

In our case we have three sets describing growth phase4, A for the lag phase, B for the 

log phase, and C for the static (stationary) phase. The elements, x, correspond to the 

elapsed time during which the culture in question has been growing. If `classical' set 

theory were employed, for a given value of x, the culture would be deemed to be either 

fully in one or another class (assuming no overlap occurs between sets), i. e. A, B or C. 

Therefore thresholds exist in the domain of x where the culture growth phase changes, 

for example from A to B, this is what is meant by the term `hard' boundary. If these 

sets are fuzzy, then the determination of growth phase becomes different. Figure 6.2 

shows pictorially how fuzzy sets were applied to a typical culture growth curve. 

The different membership functions in this diagram are indicated by different colours 

(see caption for key). The membership functions are basically triangular., the first and 

4The fourth growth phase, i. e. death phase, is not considered here because no culture was used for 

long enough to enter this phase. 
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Figure 6.2: Fuzzy growth phase membership functions related to a typical culture 

growth curve. Key: Blue - lag phase membership (1. UA(X)), Pink - log phase membership 

(/iB(x)), Green - static phase membership (U, (x)). 

last functions extend to the minimum and maximum values of x, respectively; the 

sum of value of all memberships is unity for all values of x. These functions are the 

simplest that can be applied and are popular in many applications. It can also be 

noticed that the point of equal membership between two adjacent functions is the the 

original `hard' boundary, and the maximum is approximatley midway in the respective 

growth phase. For each growth curve, three values of x were specified, x1, x2 and x3, 

which corresponded the the points of maxmimum membership of the three membership 

functions, respectively. Maximum membership was at the midpoint in each phase. Thus 

for any value of x, pt, (x) can be defined as: 

ifx<x1 

µA (X) =1- X-xl if X1 <X< X2 
(6.8) 

X2 -r1 

0 if X2 <x 
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Table 6.11: List of membership maximum points for the growth curves obtained from 

the viable cells counts performed in experiments 5 to 12. 

Experiment no. x1 X2 X3 

5 0.45 2.20 7.75 

6 0.00 2.10 8.10 

7 0.45 6.45 12.00 

8 0.00 4.35 10.35 

9 0.50 4.90 10.40 

10 0.45 4.05 9.60 

11 1.45 6.60 11.15 

12 5.05 11.05 12.00 

The membership function µB (X) can be similarly defined as: 

X-Xj ifxl <x<x2 
x2-x1 

f. cB (X) =1- _X2 if x2 <x< x3 (6.9) 
X3 -X2 

0 ifx<x1orx3<x 

And the membership function µc (X) can be defined as: 

0 ifx<x2 

µc (X) _ _-2 if X2 <x< X3 
(6.10) 

X3-X2 

1 if x3 <x 

Table 6.11 lists the values of x1, x2 and x3 for the growth curves obtained from 

experiments 5 to 12. These points were determined by inspection of the growth plots 

which are shown in chapter 5. 

For any single value of x, allocation to a growth phase is now described by the three 

variables: IA(x), uB(x) and pc(x). 
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6.3.2 Fuzzification Using Multiple Layer Perceptrons 

The question to `ask' the classifier is not which growth phase is the culture currently 

in, but which growth phase describes the majority of cells in the culture. From this 

idea, a set of MLPs were constructed, trained and tested. The gas sensor feature model 

and normalisation algorithms that resulted in the best performance previously (i. e. 

Absolute Final Output Feature Model and Auto-Scaling) were re-applied to the new 

data to form new feature-sets. The training feature-set and testing feature-set were 

formed from different experiments as described in section 6.1. The methods of training 

and testing were the also the same as those applied previously to MLPs (i. e. the same 

training algorithm, the same learning parameters and the same validation techniques). 

The network topology was 12 inputs feeding into 20 hidden nodes feeding into 3 output 

nodes. Also the feature-sets were re-sampled in order to equalise class membership, this 

technique was also applied previously in chapter 4. Figure 6.3 shows the output from 

a MLP to a set of vectors in the testing feature-set which correspond to experiment 

8 (Staphylococcus aureus), vessel X35. The plots are shown in order to illustrate the 

behaviour of a MLP which was trained on fuzzy outputs as opposed to `hard' outputs. 

Over the entire testing feature-set (720 vectors), the SSE was 214.97. Therefore 

for each vector the average SSE was 0.3, so the average error was 0.32 per output. 

This compares to minimum SSE of 423.38 (360 vectors), or 0.63 per output, that was 

previously achieved in chapter 4. It can be seen from comparing the target outputs and 

the actual outputs in Figure 6.3, that the MLP was successful. Because the output was 

fuzzy membership, an algorithm such as the `402040' methods which has been used so 

far, cannot be applied in this case. This MLP is not envisaged as operating on its own, 

but as part of a larger classifier system. Its performance can therefore be measured by 

the relative performance of the larger classifier system. 

5The entire output cannot be shown in this form because the high number of data points would 

make the plots unreadable 
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Figure 6.3: An example of the results of predicting growth phase membership showing 

both the actual output (lines) and target output (shaded areas) of a MLP for experiment 

8, vessel #3. 

6.3.3 Implementation of Growth Phase Compensation 

The MLP design described in the previous section was combined with the MLP design 

described in section 6.2.1. Figure 6.4 illustrates how the compensated IMP was con- 

structed. There are two sets of inputs because optimum performance of phase pre- 

diction and type classification occurred using different gas sensor feature models and 

normalisation algorithms6. 

The method of training the network was to train the phase predictor and then train 

the type classifier separately'. Firstly, the phase detector was trained, this is described 

61f this wasn't the case it would have been better to employ a single network which internally learnt 

phase compensation. 
7Both MLPs could have been trained and tested simultaneously but the implementation of this in 

the simulation software would have been very time-consuming. The implementation of separate MLPs 

allowed more rapid development. 
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Feature 

vector 1 Growth phase 
predicting Fuzzy set MLP memberships 

Feature Type 

vector 2 Bacteria type classification 

classifing 
MLP 

Figure 6.4: Illustration showing the construction of a growth phase compensated MLP 

classifier. 

in the previous section, the training feature-set vectors were input and the output 

vectors recorded. The recorded output was then combined with the training feature- 

set (for the type classifier) to produce a new training feature-set which contained all 

the inputs to the type classifier. Similarly, the testing feature-set for the phase detector 

was input to the phase detector and the output recorded. This recorded output was 

combined with the testing feature-set (for the type classifier) to produce a new testing 

feature-set than contained all the inputs to the type classifier. Once the new training 

and testing feature sets were created, the type classifier was trained. The training, 

testing and validation methods employed were the same as those used previously. The 

network topology was 21 inputs feeding 20 hidden units feeding 4 output units. The 

performance obtained by re-classifying unknown patterns from the testing feature-set 

was 92.78% correct (668 patterns), 5.69% incorrect (41 patterns), 1.53% unknown (11 

patterns) and a SSE of the entire testing feature-set of 257.34. The classification results 

are summarised in confusion matrix in Table 6.12. 

The performance of this MLP design was better than the previous best of 82.33% 

correct classification which was achieved using combined static and dynamic features. 

The SSE measurement also showed a considerable drop, from 911.92 to 257.34, this 
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Table 6.12: Confusion matrix for bacteria type classification, employing a growth phase 
compensated MLP classifier, using experiments 5,7,9 and 11 for training and experi- 

ments 6,8,10 and 12 for testing. 

Actual Target Output 

Output E. coli Staph. aureus Ps. aeruginosa Strept. pyogenes 

E. coli 164 0 0 0 
Staph. aureus 1 163 1 2 

Ps. aeruginosa 0 0 177 5 

Strept. pyogenes 15 17 0 164 

Unknown 0 0 2 9 

gives an average error of 0.3 for each output for each pattern (compared to 0.56 previ- 

ously). This highlights that the MLP reached a lower global minimum during training, 

i. e. this MLP was better able to construct an internal representation which satisfactorily 

fitted the data. Comparing their respective confusion matrices (i. e. Figure 6.12 and Fig- 

ure 4.16) it can be noted that while the performance of the MLP overall has increased, 

the performance for individual classes has both increased and decreased. The number 

of correct classifications for Escherichia coli had dropped from 173 to 164, and those 

for Streptococcus pyogenes had dropped from 172 to 164. However, these reductions 

were less than the increases in the number of correct classifications for Staphylococ- 

cus aureus, which increased from 140 to 163, and those for Pseudomonas aeruginosa, 

which increased from 107 to 177. There was a considerable drop in the number of 

unknown patterns, from 24 to 11, this was a result of the lower minimum reached 

during training (confirmed by the lower SSE measurement). The incorrectly classified 

patterns were probably outliers, the better global minimum converged upon during 

training meant that the majority of patterns were classified at the expense of a small 

number of outlying patterns. This explains why the number of correct classifications 

for some types actually reduced. It is virtually impossible to accommodate all outly- 

ing patterns without over-fitting the data and reducing generalisation performance. 
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Confidence levels were 100% for Escherichia coli, 97.60% for Staphylococcus aureus. 
97.25% for Pseudomonas aeruginosa, and 83.67% for Streptococcus pyogenes. The low 

confidence for Streptococcus pyogenes indicates that the largest number of incorrect 

classifications was Staphylococcus aureus misclassified as Streptococcus pyogenes. This 

may be due to their similar nature, i. e. both gram +ve and non-motile. 

6.4 Classification of Multiple Bacteria Types 

There were three data collection experiments performed where mixtures of bacteria 

types were used. Experiment 13 employed Escherichia coli and Staphylococcus aureus 

mixture, experiment 14 employed Pseudomonas aeruginosa and Staphylococcus aureus 

mixture, and experiment 15 employed Escherichia coli and Pseudomonas aeruginosa 

mixture. Proportions of these mixture changes dynamically during the experiment 

with some bacteria types growing faster than others. Therefore the growth phase 

compensation that was described in the previous section cannot be applied here because 

each bacteria type may be in a different growth phase at any one time. From this, 

the static and dynamic feature models discussed in section 6.2.1 were used (also no 

normalisation was used). Each data gathering experiment yielded 180 vectors (90 per 

sample vessel), from all three experiments there were a total of 540 vectors. These 

vectors were split-up to provide two sets, a training vector set and a vector testing set. 

The training vector set contained all the vectors from vessel #2 (i. e. the first sample), 

the testing vector set contained all the vectors from vessel #3 (i. e. the second sample). 

Thus each vector set contained 270 vectors. Once the training and testing vector sets 

were formed, they were subject to feature extraction using the Minimum Output gas 

sensor feature model and the Transient gas sensor feature model, therefore combined 

data sets were formed containing the output from two feature models. Thus a training 

feature-set and a testing feature-set were formed. There were 3 features for each gas 

sensor, making a total of 18 inputs. Since there were only three different bacteria types 

used in these experiments, there were 3 outputs (one for each type). Ideally. for each 

input pattern, two outputs should be activated. The MLP topology was 18 inputs 
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Table 6.13: Table summarising the results of bacteria type classification from a mixture 

of two different types for each output (i. e. class), using experiments 13.14 and 15. 

sample 1 (Vessel #2) for training and sample 2 (vessel #3) for testing. 

Type Correct (%) Incorrect (%) Unknown (%) 

Escherichia coli 

Staphylococcus aureus 

Pseudomonas aeruginosa 

161 (59.60%) 76 (28.15%) 

260 (96.30%) 

171 (63.33%) 

4 (1.48%) 

25 (9.26%) 

33 (12.22%) 

6 (2.22%) 

74 (27.40%) 

feeding 20 hidden nodes feeding 3 output nodes. The training and testing techniques 

used were the same as those used previously. 

Because more than one output is intended to be activated at any one time (2 of 3 

instead of 1 of 3), the results were interpreted for each output, i. e. each bacteria type. 

From this, a modified version of the `402040' rule (see section 4.2.1 in chapter 4) was 

used for interpretation of the outputs. If the output from a node was in the upper band 

and the target output was high, then the output was deemed as correct. If the output 

was between the upper and lower bands, then the output was deemed as unknown. 

Otherwise, the output was deemed incorrect. Therefore for each output there was a 

correct, % incorrect and a% unknown measure. Table 6.13 summarises the results 

obtained. The SSE measured over the entire testing feature-set was 155.12. 

A meaningful confusion matrix cannot be constructed because incorrect classifica- 

tions occurred when more than one other class was the target output. However useful 

information can be gained from Table 6.13. In terms of percentages, Escherichia coli 

was correctly identified in 59.6% of all cases, Staphylococcus aureus was correct in 

96.30% of all cases and Pseudomonas aeruginosa was correct in 63.33% of all cases. 

For the Escherichia coli and Staphylococcus aureus mixture (experiment 13), both 

types were simultaneously, correctly identified in 51.11% of all cases. More specifically 

for these 90 patterns, Escherichia coli was identified output for 65 patterns (T 2.22%) 

and Staphylococcus aureus was correctly identified for 89 patterns (98.89%). Most of 

the errors for Escherichia coli occurred in the 11 patterns (i. e. during the first 88 
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minutes of data collection). This result was unexpected because Escherichia coli was 

the dominant bacteria in this mixture (see Figures 5.14 and 5.15). Also Escherichia colt' 

produces stronger odours than Staphylococcus aureus, given equal concentrations. It is 

possible that there was an odorant from Staphylococcus aureus which was not present 

in the odour from Escherichia coli, but which the sensor array was sensitive to. This 

is possible because the two types of bacteria are very different (for example different 

Gram types) and metabolise nutrients very differently. 

For the Pseudornonas aeruginosa and Staphylococcus aureus mixture (experiment 

14), both types were simultaneously identified in 28.89% of all cases. More specific- 

ally, Staphylococcus aureus was correctly identified for all 90 patterns (100%), but 

Pseudomonas aeruginosa was correctly identified for only 16 patterns (17.78%). For 

66 patterns, only Staphylococcus aureus was indicated as being present. This is unex- 

pected because of all the bacteria types used, Pseudomonas aeruginosa produces the 

strongest odours. 

For the Escherichia coli and Pseudornonas aeruginosa mixture (experiment 15), 

both types were simultaneously identified in 91.11% of all cases. Escherichia coli was 

identified in 87 patterns (96.67%) and Pseudomonas aeruginosa was identified in 89 

patterns (98.89%). The weights in the MLP for the paths to the Escherichia coli and 

Pseudomonas aeruginosa were very similar, basically one output was a duplicate of the 

other, thus errors occurred when only one of these types was present in the mixture. 

From all performance measurements so far described, the behaviour of the MLP 

was almost opposite to what was expected, i. e. that the presence of Staphylococcus 

aureus masked out the other two types and caused errors for those types. In reality, 

Staphylococcus aureus produces the weakest odour and therefore should have been 

masked out by the presence of the other two types. The greatest amount of similarity 

was between Escherichia coli and Pseudornonas aeruginosa (i. e. both Gram -ve and 

motile). Although lower in concentration, the MLP was able to more easily distinguish 

Staphylococcus aureus from the other types because of its different nature. These 

results support the theory that odours at different concentrations are not as big a 

problem as odour similarity for identification of single types from a mixture. Because 
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6.5 Summary 

Staphylococcus aureus gave off a very different odour from the other two, it came to 
dominate the MLP, rather than the other bacteria types whose odour concentration 

was greater. 

6.5 Summary 

The classification of bacteria type using the best classifier from chapter 4 was only 

partially successful, with only 73.61% of all patterns in the testing feature-set being 

correctly classified (compared to 96.11% for two bacteria types). Up to that point, 

only static gas sensor feature models had been employed. New feature-sets were formed 

using a dynamic feature model, this employed features relating to the rate of change 

of resistance with time of the gas sensor. Feature-sets which contained only dynamic 

features and feature-sets which contained a mixture of static and dynamic features were 

investigated. The classification performance using purely dynamic features was poor, 

at only 24.72% of all patterns being correctly classified. This figure rose to 82.22% for 

a mixture of dynamic and static features. Linear Discriminant Function Analysis was 

used to benchmark the MLP with dynamic and static features, this indicated that the 

MLP was superior as only 48.06% of all patterns were correctly classified. 

Previous investigation (chapter 4) highlighted a relationship between culture growth 

phase and odour, since growth phase could be predicted from bacteria odour (a MLP 

achieved 80.28% accuracy). A MLP was trained to predict the fuzzy membership of 

an input pattern to one of three growth phases. The output from this MLP was fed 

into a second MLP in order to provide growth phase compensation of variance within 

the data. The result of compensation for growth phase was an increase in classification 

performance to 92.78%. The bar chart in Figure 6.5 summarises the comparative 

performance of the different input features and classifiers. 

The identification of a single bacteria type from a mixture was attempted using a 

MLP. Data from three different mixtures was collected, Escherichia coli with Staphyl- 

ococcus aureus, Pseudomonas aeruginosa with Staphylococcus aureus, and Escherichia 

coli with Pseudornonas aeruginosa. The results were encouraging because the bac- 
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Figure 6.5: Bar chart showing the relative performance of the number of correct clas- 

sifications of the four different bacteria types for each set of input features and classi- 

fication technique. 

terium type with the weakest odour, Staphylococcus aureus, was identified with the 

highest accuracy, 96.30%. If odours with relatively low concentrations had been prob- 

lematic then further investigation into odour concentration dependence would have 

been necessary. Identification for Escherichia coli and Pseudomonas aeruginosa was 

less accurate at 59.60% and 63.33% respectively. Because of the similarity between the 

odours for these two types, there was error when the MLP distinguished between the 

two. The fact that weak odours can be distinguished is important because it allows 

easier application of electronic nose technology, thus these findings are important and 

promising. 

Static Dynamic Static + Static + Static + 
(MLP) (MLP) Dynamic Dynamic Dynamic 

(MLP) (DFA) + Phase 
(MLP) 



Chapter 7 

Conclusions and Future Work 

In this final chapter findings from this research are presented, conclusions made from 

them and possible future research is discussed. 

Overall, the results achieved were promising. It was shown that an Electronic nose 

is capable of identifying bacteria types from their odour with the best accuracy of 

92.78% being achieved using a multiple-layer perceptron incorporating growth phase 

compensation for classifying one from four types. Improvement upon initial results was 

achieved in two ways: the re-design of the instrumentation, and the development of 

new pattern recognition techniques. The following list states the major conclusions of 

this thesis: 

Automated Odour Delivery Using an automated delivery system, large amounts of 

data were collected, a total of 2700 `smells' were performed over 15 data collection 

experiments. The large amounts of data allowed a more accurate estimation of 

classifier performance (rather than inferior cross-validation). 

Rapid Odour Sampling Because the `dead-volume' up to the sensor chamber was 

significantly reduced, there was a more `step-like' response to odours. From this 

investigation into the dynamic behaviour of gas sensors was more meaningful. 

Gas Temperature Control The gas sensor type employed (metal oxide semicon- 

ductor) is sensitive to ambient temperature. Gas temperature control was in- 

crease to ±0.1°C and reduced unwanted variation in the signals from the gas 

217 
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sensors. 

Viable Cell Counts Performing simultaneous, independent counts of colonies en- 

abled odour quality to be correlated against the size and state (growth phase) of 
the culture. 

Feature Extraction Because the `raw' data were unsuitable for input directly to 

classifiers, feature-extraction was necessary to perform dimensionality reduction. 
The effect of different feature models was considerable, however the best feature- 

extraction models were those that performed minimal processing. Although the 

more basic feature models output more features and therefore increased the com- 

plexity of the classifier, their effect was beneficial compared to more complex 

models upon eventual classifier performance. 

Normalisation The aim of normalisation was to re-scale the feature vectors into 

ranges more suitable for the classifiers. However, it was found that normalisation 

at best marginally increased performance and at worst prevented the classifier 

from performing with any appreciable accuracy. Classifiers are capable of per- 

forming internal re-scaling of vectors, with no significant undesired effect upon 

training. 

Classification of Bacteria Type A starting point of classifying bacteria type from 

the odour of a culture containing a single type was adopted. The best performance 

achieved employing a multiple-layer perceptron. For two bacteria types, classi- 

fication accuracy was 96.11%, for four bacteria types using the same classifier 

design, the accuracy dropped to 73.61%. 

Prediction of Culture Growth Phase Because there was more variation in the fea- 

tures from bacteria type than for growth phase, prediction of growth phase was 

more problematic. The best accuracy achieved, which was using a multiple layer 

perceptron, was 80.28%. The initial phase was the biggest source of error, as 

expected. 

Advanced Gas Sensor Chamber Design Improving the gas flow and reducing the 
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volume of the gas sensor chamber improved the dynamic behaviour of the gas 
sensors. This helped to further reduced unwanted variation within the sensor 

signals. 

Classification using Compensated Neural Net It was found that different fea- 

Lures were optimum for bacteria type classification and growth phase prediction. 
Separating out these two tasks into two different neural nets and then feeding 

one (growth phase) into the other (type) enhanced performance. The analysis of 

odour from samples, such as bacteria, that are not stable requires information 

about the current state of the sample to be processed effectively. 

Identification of a Single Type From a Mix A more complex task to set the Elec- 

tronic Nose, and following on from classification of a single bacteria type, was the 

identification of bacteria types present in a mixture. It was found that odour 

similarity rather than concentration was the key factor. 

Sensor Drift Metal oxide sensors suffer from baseline drift. The causes of such drift 

are long term changes in the reactive element. Each data gathering experiment 

lasted 12 hours, and during this time the base line output from the gas sensors 

drifted by as much as 1.5 volts (out of a possible output range of 0 to 10 volts). 

There is no method of preventing sensor drift, it can only be compensated for. In 

this research, drift compensation occurred within the pattern recognition stage 

(i. e. many pre-processing models subtracted the baseline and therefore removed 

it, and the neural nets learnt to ignore drift). 

System Calibration In order to achieve good results, calibration of the system is 

important. Calibration involved exposing the sensors to air for a period of 12 

hours with the air temperature set at 36.8°C. During this time the sensors stabilise 

at their baseline value. The instrumentation was adjusted' so that the baseline 

output was 8 volts. Calibration occurred before each data gathering experiment. 

'The FOX 2000 has a calibration control for each gas sensor, calibration was therefore straightfor- 

ward 
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Some important research has been described in this thesis that will provide the 
basis for further development. It was never envisaged that a fully working prototype 

Electronic Nose product would be produced after this research, but rather that some 
fundamental questions be answered. Can an Electronic Nose classify bacteria types" 

The answer is yes. 

There is scope for future work. Data gathering experiments could be performed 

using swabs of infected matter from real patients. The Electronic Nose could `sniff' the 

breath of patients. Many diseases, such as diabetes, can result in a particular type of 

odour present in the breath. Wounds, such as burns, could be `sniffed' and the onset 

of any infection could be detected. 

Although the instrumentation was improved considerably during this research, fur- 

ther improvement might be advantageous: 

" The `bang-bang' temperature controller could be replaced with a proportional 

one, thus potentially improving performance. 

" The brass piping could be replaced with piping constructed from a less reactive 

substance, for example stainless steel. 

" The automated delivery system could be modified further to accommodate a 

larger number of sample vessels. A larger number of sample vessels would allow 

simultaneous data gathering from a larger number of bacteria types. 

" The gas flow characteristics of the gas sensor chamber could be modeled and 

possible improvements in gas flow within the chamber implemented. 

" Polymer based gas sensors might prove useful, they could also be used in an array 

containing more than one as sensor type (i. e. metal oxide and polymer types). 

As well a instrumentation improvements, there is scope for further pattern recog- 

nition research: 

" Non-linear DFA could be used. The linear DFA so far used may perform less well 

than the non-linear varieties. 
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" More novel neural nets, such as self-learning Kohonen Self Organising Maps 

(SOMs) or Adaptive Resonance Theory (ART) nets [98], could be tested. 

" Another branch of pattern recognition that may be relevant is expert systems. 

These systems are well established and may yield good results. 

Although much was done, there is still a great deal more that can be done. Elec- 

tronic Nose Technology still has some way to go in the research and development stage 

before it becomes a common rather than a rare appliance, but from this work and other 

similar work, the future looks bright for clinical applications. 



Appendix A 

Virtual Instrumentation 

Programs 

There were three programs in total: 

LPM-16 Output Program The LPM-16 Output Program allowed the digital out- 

puts on the National Instruments LPM-16 I/O card to be manually controlled. 

Front-End Control Program The Front-End Control Program had two main func- 

tions; firstly to control the solenoid valves within the Front-End, and secondly to 

record sensor signals from the FOX 2000. 

Temperature Control Program The Temperature Control Program controlled the 

temperature of the gas sensor chamber within the FOX 2000. 

The following sections show a screen snapshot and program detail for each program. 

A. 1 LPM-16 Output Program 

The LPM-16 output program was used to manually control the digital output lines 

from the LPM-16 I/O card. The purpose of the program was for trouble shooting. 

The program was run on its own within the Labview environment in order to avoid 

hardware clashes (i. e. two programs trying to exclusively control the same hardware). 

Each switch corresponded to a pair of digital outputs. For the first three switches 
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223 A. 2 Front-End Control Program 

(from the left), each switch controlled a pair of digital outputs which in turn controlled 
a single channel in the automated sampling sub-system. The fourth switch initially had 

no function, after the implementation of the temperature controlled sensor chamber, it 

Figure A. 1: Snapshot of the LPM-16 Output Program showing typical operation. 

A. 2 Front-End Control Program 

The Front-End control program was the main program. Using this program, the auto- 

mated sampling sub-system was controlled and the output from the sensors was sampled 

and stored. Figure A. 2 is a screen-shot of the program, references to details in this 

picture are used to describe its functionality. The `SAVE CONFIG' button was act- 

ive when the experiment was stopped or paused, its activation allowed configuration 

parameters to be saved to a file. Upon startup, a configuration file could be loaded 

in order to reduce repeated setting-up. Configuration parameters were valve timings, 

cycle duration and maximum number of cycles. The `Elapsed Time' display displayed 

the elapsed time since the beginning of the last completed cycle. The `Cycle Time' edit 

boxes allowed the duration of the cycle to be entered or edited. The `No Cycles' display 

displayed the number of complete cycles completed since the start of the experiment. 

The `Exit Program' button, when activated, simply exited the program. The Data 

File' edit box allowed the current edit file name to be entered or edited. The user is 

controlled the output to the heaters. Figure A. 1 is a screen-shot of the program. 
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prompted to enter a data file name upon program startup. The -Config File* edit }jux 

similarly allowed modification of the config file name. In the bottom right, a graph 

shows the sensor output for the last 200 minutes, with a key along the left hand side. 

In the bottom left are the edit boxes for setting on and off times for each channel, with 

an indicator for each channel along the left hand side. The `Run Mode' switch at the 

bottom simply paused the experiment when activated. Finally the `Max Cycles' edit 

box allowed the maximum number of cycles to set or edited. 

Figure A. 2: Snapshot of the Front-End Control Program showing typical operation. 

A. 3 Temperature Control Program 

The temperature control program was used in conjunction with the Front-End Control 

Program, it controlled the heaters within the Electronic Nose in order to maintain a 

constant temperature. Figure A. 3 is a snapshot of this program. The sereeii w ; t,, (iividcd 
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into seven areas, each area will be briefly described. The `System Controls' controlled 

the overall running of the program. The `Run Mode' switch when activated halted 

the program, the `Analysis' switch, when activated allowed analysis of the output from 

the temperature sensors (described later). The `Main Heater On' and `Pre Heater On' 

were simply indicators that turned red when the respective heater was being powered. 

The `Offset' and `Ratio' edit boxes allowed fine tuning of the internal conversion of 

temperature sensor output voltage into a numeric value of degrees centigrade. The 

controls in the `Target Temps' allows the target temperature for the pre-heater chamber 

and the main sensor chamber to be set/edited. The edit boxes in the `Histogram 

Parameters' section defined the minimum and maximum for the x-axis in the histogram 

plot (in the `histogram' section, bottom right section). The `Statistics (Main Temp)' 

section contained indicators for the values of the mean and standard deviation of the 

gas sensor chamber (main) temperature. The `Temperatures' section contained two 

indicators for the current temperature of the pre-heater chamber and the main sensor 

chamber. Finally, the `Temperature History' section contained a plot showing the 

previous temperature of the pre-heater chamber and the main chamber for the last two 

hours. 
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Figure A. 3: Snapshot of the Temperature Control Program showing typical operation. 



Appendix B 

Viable Cell Counts 

In total there were 16 experiments performed were viable counts (i. e. counts of colony 

forming units (cfu))of the bacteria cultures were performed. Here, the actual counts 

in tabular format are given. The notation for the dilutions denote the number of prior 

dilutions and the current dilution, therefore a serial dilution of -4 denotes that 3 prior 

dilutions were performed, therefore this is the fourth dilution. 

Table B. 1: Viable counts (cfu) in 1 ml of inoculum, experiment 1 (Escherichia coli). 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 -4, -5, -6, -7 2.90E+06 2.90E+06 
1 -4, -5, -6, -7 2.20E+06 2.70E+06 

2 -4, -5, -6, -7 1.60E+07 9.00E+06 

3 -5, -6, -7, -8 4.80E+07 4.00E+07 

4 -5, -6, -7, -8 8.90E+07 7.80E+07 

5 -6, -7, -8, -9 1.90E-1-08 1.60E+08 

6 -6, -7, -8, -9 2.00E+08 1.80E+08 

7 -6, -7, -8, -9 2.60E+08 1.40E+08 

8 -6, -7, -8, -9 1.70E+08 2.10E+08 

9 -6, -7, -8, -9 3.20E+08 2.10E+08 

10 -6, -7, -8, -9 2.20E+08 2.70E+08 

11 -6, -7, -8, -9 3.60E+08 1.70E+08 

12 -6, -7, -8, -9 2.80E+08 3.10E+08 

227 



228 Viable Cell Counts 

Table B. 2: Viable counts (cfu) in 1 ml of inoculum For experiment 2 (Escherichia coli). 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 -3, -4, -5, - 6 1.20E+06 1.20E+06 
1 -3, -4, -5, - 6 2.50E+06 2.50E+06 
2 -4, -5, -6, - 7 7.10E+06 1.70E+07 
3 -4, -5, -6, - 7 3.40E+07 3.70E+07 
4 -4, -5, -6, - 7 7.30E+07 6.70E+07 
5 -4, -5, -6, - 7 1.10E+08 7.70E+07 
6 -5, -6, -7, - 8 1.40E+08 2.10E+08 
7 -5, -6, -7, - 8 2.60E+08 2.90E+08 
8 -5, -6, -7, - 8 2.90E+08 6.60E+08 
9 -5, -6, -7, - 8 2.40E+08 1.30E+09 
10 -5, -6, -7, - 8 5.40E+08 1.40E+09 
11 -5, -6, -7, - 8 3.40E+08 1.30E+09 
12 -5, -6, -7, - 8 3.50E+08 1.20E+09 

Table B. 3: Viable counts (cfu) in 1 ml of inoculum For experiment 3 (Staphylococcus 

aureus). 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 
1 
2 

-2, 
-2, 
-3, 

-3 , 
-3 1 
-4, 

-4, - 
-4, - 
-5, - 

5 
5 
6 

1.30E+05 
6.60E+05 
2.20E+06 

1.30E+05 
3.70E+05 
1.70E+06 

3 -3, -4, -5, - 6 9.90E+06 4.90E+06 

4 -4, -5, -6, - 7 2.20E+07 2.70E+07 

5 -4, -5, -6, - 7 3.40E+07 3.50E+07 

6 -5, -6, -7, - 8 4.90E+07 7.10E+07 

7 -5, -6, -7, - 8 6.40E+07 6.00E+07 

8 -5, -6, -7, - 8 6.00E+07 4.70E+07 

9 -5, -6, -7, - 8 4.70E+07 6.60E+07 

10 -5, -6, -7, - 8 5.30E+07 5.10E+07 

11 -5, -6, -7, - 8 6.20E+07 6.00E+07 

12 -5, -6, -7, - 8 6.10E+07 6.00E+07 
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Table B. 4: Viable counts (cfu) in 1 ml of inoculum For experiment 4 (Staphylococcus 

aureus). 

Age (hrs) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Dilutions 

-2, -3 , -4, -5 
-3, -4, -5, -6 
-3, -4, -5, -6 
-4, -5, -6, -7 
-4, -5, -6, -7 
-4, -5, -6, -7 
-4, -5, -6, -7 
-4, -5, -6, -7 
-5, -6, -7, -8 
-5, -6, -7, -8 
-5)-6, -7, -8 
-5, -6, -7, -8 
-5, -6, -7, -8 

Vessel 2 

2.40E+05 

3.00E+05 

7.50E+05 

6.20E+06 

1.10E+07 

1.70E+07 

2.90E+07 

4.40E+07 

5.20E+07 

5.90E+07 

5.90E+07 

6.00E+07 

5.90E+07 

Vessel 3 

2.40E+05 

3.00E+05 

8.40E+05 

4.80E+06 

8.90E+06 

1.60E+07 

3.80E+07 

4.90E+07 

5.20E+07 

5.50E+07 

4.70E+07 

4.70E+07 

4.80E+07 

Table B. 5: Viable counts (cfu) in 1 ml of inoculum, experiment 5 (Escherichia coli). 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 
1 
2 

-2, 
-2, 
-3, 

-3 , 
-3 1 
-4, 

-4, - 
-4, - 
-5, - 

5 
5 
6 

1.93E+06 
1.43E+06 
8.40E+06 

1.93E+06 
2.09E+06 
1.11E+07 

3 -3, -4, -5, - 6 6.10E+07 6.50E+07 

4 -4, -5, -6, - 7 1.30E+08 1.08E+08 

5 -4, -5, -6, - 7 1.02E+08 1.10E+08 

6 -5, -6, -7, - 8 9.10E+07 1.23E-1-08 

7 -5, -6, -7, - 8 1.58E+08 1.06E+08 

8 -5, -6, -7, - 8 1.10E+08 1.28E+08 

9 -5, -6, -7, - 8 9.30E+07 1.21E+08 

10 -5, -6, -7, - 8 1.69E+08 1.54E+08 

11 -5, -6, -7, - 8 1.99E+08 2.11E+08 

12 -5, -6, -7, - 8 2.00E+08 2.42E+08 
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Table B. 6: Viable counts (cfu) in 1 ml of inoculum, experiment 6 (Escherichia coli). 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 -2, -3 , - 4, - 5 2.05E+06 2.05E+06 
1 -2, -3 , - 4, - 5 3.92E+06 2.84E+06 
2 -3, -4, - 5, - 6 1.09E+07 1.19E+07 
3 -3, -4, - 5, - 6 6.40E+07 5.00E+07 
4 -4, -5, -6, - 7 1.18E+08 1.26E+08 
5 -4, -5, -6, - 7 1.05E+08 1.32E+08 
6 -5, -6, -7, - 8 1.04E+08 1.23E+08 
7 -5, -6, -7, - 8 1.68E+08 1.51E+08 
8 -5, -6, -7, - 8 1.96E+08 1.47E+08 
9 -5, -6, -7, - 8 2.30E+08 9.90E+07 
10 -5, -6, -7, - 8 1.80E+08 1.06E+08 
11 -5, -6, -7, - 8 2.90E+08 2.20E+08 
12 -5, -6, -7, - 8 1.80E+08 1.39E+08 

Table B. 7: 

aureus). 

Viable counts (cfu) in 1 ml of inoculum, experiment 7 (Staphylococcus 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 
1 
2 
3 

-2, 
-2, 
-2, 
-3, 

-3 , - 
-3 1- 
-3 , - 
-4, - 

4, - 
4, - 
4, - 
5, - 

5 
5 
5 
6 

1.32E+06 
7.20E+05 
7.50E+06 
2.79E+06 

1.32E+06 
1.30E+06 
2.30E+06 
4.90E+06 

4 -3, -4, - 5, - 6 4.90E+06 8.50E+06 

5 -3, -4, - 5, - 6 8.00E+06 1.55E+07 

6 -41 -51 -6) - 7 1.51E+07 3.16E+07 

7 -4, -5, -6, - 7 2.30E+07 5.40E+07 

8 -4, -5, -6, - 7 4.60E+07 1.03E+08 

9 -4, -5, -6, - 7 7.10E+07 1.20E+08 

10 -4, -5, -6, -7 9.30E+07 1.74E+08 

11 -4, -5, -6, -7 1.28E+08 2.15E+08 

12 -4, -5, -6, -7 1.82E+08 2.63E+08 
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Table B. 8: 

aureus). 

Viable counts (cfu) in 1 ml of inoculum, experiment 8 (Staphylococcus 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 -2, -3 , - 4, - 5 9.70E+05 9.70E+05 
1 -2, -3 , - 4, - 5 1.50E+06 2.70E+06 
2 -2, -3 , - 4, - 5 3.00E+06 7.40E+06 
3 -3, -4, -5, - 6 1.06E+07 1.31E+07 
4 -3, -4, -5, - 6 2.96E+07 5.00E+07 
5 -3, -4, -5, - 6 5.90E+07 5.00E+07 
6 -4, -5, -6, - 7 8.40E+07 1.26E+08 
7 -4, -5, -6, - 7 1.41E+08 1.12E+08 
8 -4, -5, -6, - 7 1.80E+08 1.80E+08 
9 -4, -5, -6, - 7 2.09E+08 2.80E+08 
10 -4, -5, -6, - 7 2.50E-1-08 3.70E+08 
11 -4, -5, -6, - 7 4.10E+08 3.22E+08 
12 -4, -5, -6, - 7 3.60E+08 3.00E+08 

Table B. 9: Viable counts (cfu) in 1 ml of inoculum, experiment 9 (Pseudomonas aeru- 

ginosa). 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 
1 
2 

-2, 
-2, 
-3, 

-3 , 
-3 1 
-4, - 

-4, - 
-4, - 
5, - 

5 
5 
6 

2.59E+06 
9.90E+05 
4.90E+06 

2.59E+06 
1.02E+06 
4.40E+06 

3 -3, -4, -5, - 6 2.40E+07 1.41E+07 

4 -4, -5, -6, - 7 2.70E+07 1.63E+07 

5 -4, -5, -6, - 7 3.30E+07 2.80E+07 

6 -5, -6, -7, - 8 8.10E+07 6.50E+07 

7 -5, -6, -7, - 8 1.54E+08 8.50E+07 

8 -5, -6, -7, - 8 3.10E+08 2.73E+08 

9 -5, -6, -7, - 8 4.90E+08 5.30E+08 

10 -5, -6, -7, - 8 4.90E+08 6.80E+08 

11 -5, -6, -7, - 8 9.90E+08 8.60E+08 

12 -5, -6, -7, - 8 8.40E+08 1.08E+09 
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Table B. 10: Viable counts (cfu) in 1 ml of inoculum, experiment 10 (Pseudomonas 

aeruginosa). 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 -2, -3 , - 4, - 5 1.54E+06 1.54E+06 
1 -2, -3 , -4, - 5 1.10E+06 1.48E+06 
2 -3, -4, -5, - 6 5.90E+06 5.00E+06 
3 -3, -4, -5, - 6 1.89E+07 1.30E+07 
4 -4, -5, -6, - 7 2.70E+07 2.20E+07 
5 -4, -5, -6, - 7 4.40E+07 2.00E+07 
6 -5, -6, -7, - 8 5.80E+07 7.10E+07 
7 -5, -6, -7, - 8 2.23E+08 2.14E+08 
8 -5, -6, -7, - 8 2.57E+08 3.13E+08 
9 -5, -6, -7, - 8 2.24E+08 4.00E+08 
10 -5, -6, -7, - 8 4.80E+08 3.90E+08 
11 -5, -6, -7, - 8 6.50E+08 5.50E+08 
12 -5, -6, -7, - 8 6.10E+08 5.00E+08 

Table B. 11: Viable counts (cfu) in 1 ml of inoculum, experiment 11 (Streptococcus 

pyogenes). 

Age (hrs) Dilutions Vessel 2 Vessel 3 

0 
1 

-2, 
-2, 

-3 , -4, - 
-3 1-4, - 

5 
5 

7.90E+04 
2.10E+04 

7.90E+04 
3.20E+04 

2 
3 

-2, 
-3, 

-3 1- 
-4, - 

4, - 
5, - 

5 
6 

2.20E+04 
2.00E+04 

3.20E+04 
3.00E+04 

4 -3, -4, -5, - 6 3.00E+04 1.30E+05 

5 -3, -4, -5, - 6 4.00E+04 2.10E+05 

6 -4, -5, -6, - 7 8.00E+04 2.00E+05 

7 -4, -5, -6, - 7 2.64E+05 2.20E+05 

8 -4, -5, -6, - 7 4.40E+05 2.00E+05 

9 -4, -5, -6, - 7 6.30E+05 3.00E+05 

10 -4, -5, -6, - 7 8.20E+05 5.00E+05 

11 -4, -5, -6, - 7 1.00E+06 6.00E+05 

12 -4, -5, -6, - 7 1.00E+06 6.50E+05 
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Table B. 12: Viable counts (cfu) in 1 ml of inoculurn, experiment 12 (Streptococcus 
pyogenes). 

Age (hrs) Dilutions Vessel 2 Vessel 3 
0 -1, - 2, -3, - 4 4.80E+04 4.80E+04 
1 -1, - 2, -3, - 4 4.80E+04 5.00E+04 
2 -1, - 2, -3, - 4 3.50E+04 5.70E+04 
3 -1, - 2, -3, - 4 3.20E+04 3.90E+04 
4 -1, - 2, -3, - 4 2.40E+04 4.90E+04 
5 -1)- 2, -3, - 4 3.00E+04 3.10E+04 
6 -2, - 3, -4, - 5 2.50E+04 3.00E+04 
7 -2, - 3, -4, - 5 3.60E+04 2.20E+04 
8 -2, - 3, -4, - 5 2.20E+04 6.40E+04 
9 -21- 31 -4, - 5 2.00E+04 3.90E+04 
10 -21- 31 -4, - 5 2.20E+04 3.40E+04 
11 -2, -3, - 4, -5, -6 3.00E+04 1.61E+05 
12 -2, -3, - 4, -5, -6 3.80E+04 2.29E+05 

Table B. 13: Viable counts (cfu) in 1 ml of inoculum, experiment 13 (Escherichia coli 

and Staphylococcus aureus). 

Age (hrs) Dilutions Escherichia coli 
Vessel 2 Vessel 3 

Staphylococcus aureus 
Vessel 2 Vessel 3 

0 -2, -3, -4, - 5 2.50E+06 2.50E+06 7.40E+05 7.40E+05 

1 -2, -3, -4, - 5 1.75E+06 1.48E+06 1.60E+06 1.30E+06 

2 -3, -4, -5, - 6 9.20E+06 3.50E+06 3.10E+06 1.90E+06 

3 -3, -4, -5, - 6 4.70E+07 3.49E+07 4.10E+06 4.80E+06 

4 -4, -5, -6, - 7 6.80E+07 6.50E+07 1.00E+07 1.10E+07 

5 -4, -5, -6, - 7 8.10E+07 7.00E+07 1.10E+07 1.20E+07 

6 -5, -6, -7, - 8 1.06E+08 8.10E+07 3.20E+07 4.00E+07 

7 -5, -6, -7, - 8 1.86E+08 1.39E+08 1.80E+07 2.20E+07 

8 -5, -6, -7, - 8 2.70E+08 1.83E+08 2.30E+07 2.00E+07 

9 -5, -6, -7, - 8 4.50E+08 3.80E+08 2.20E+07 2.00E+07 

10 -5, -6, -7, - 8 6.30E+08 3.00E+08 2.40E+07 2.40E+07 

11 -5, -6, -7, - 8 7.40E+08 3.60E+08 2.80E+07 2-00E+07 

12 -5, -6, -7, - 8 7.40E+08 4.80E+08 2.40E+07 2.20E+07 
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Table B. 14: Viable counts (cfu) in 1 ml of inoculum, experiment 14 (Pseudomonas 

aeruginosa and Staphylococcus aureus). 

Age (hrs) Dilutions Pseudomonas aeruginosa 
Vessel 2 Vessel 3 

Staphylococcus aureus 
Vessel 2 Vessel 3 

0 -2, -3, -4, - 5 1.14E+06 1.14E+06 3.70E+05 3.70E+05 
1 -2, -3, -4, - 5 8.70E+05 8.50E+05 1.04E+06 1.00E+06 
2 -3, -4, -5, - 6 4.50E-j-06 5.90E+06 1.70E+06 3.90E+06 
3 -3, -4, -5, - 6 1.37E+07 9.90E+06 5.90E+06 6.20E+06 
4 -4, -5, -6, - 7 2.60E+07 1.52E+07 1.34E+07 1.11E+07 
5 -4, -5, -6, - 7 2.80E+07 2.24E+07 3.00E+07 2.56E+07 
6 -5, -6, -7, - 8 5.30E-1-07 3.80E+07 2.00E+07 2.30E+07 
7 -5, -6, -7, - 8 1.61E+08 1.54E+08 4.40E+07 4.50E+07 
8 -5, -6, -7, - 8 5.40E+08 1.98E+08 6.30E+07 4.80E+07 
9 -5, -6, -7, -8 4.80E+08 4.80E+08 1.83E+08 7.00E+07 

10 -5, -6, -7, -8 5.31E+08 3.19E+08 1.92E+08 7.70E+07 

11 -5, -6, -7, -8 5.88E+08 2.12E+08 2.01E+08 8.46E+07 

12 -5, -6, -7, -8 6.50E+08 1.41E+08 2.10E+08 9.30E+07 

Table B. 15: Viable counts (cfu) in 1 ml of inoculum, experiment 15 (Escherichia coli 

and Pseudomonas aeruginosa). 

Age (hrs) Dilutions Escherichia coli 
Vessel 2 Vessel 3 

Pseudomonas aeruginosa 
Vessel 2 Vessel 3 

0 -2, -3, -4, - 5 3.60E+05 3.60E+05 1.66E+06 1.66E+06 

1 -2, -3, -4, - 5 3.00E+05 4.60E+05 1.00E+06 1.20E+06 

2 -3, -4, -5, - 6 4.10E+06 2.70E+06 1.02E+07 6.80E+06 

3 -3, -4, -5, - 6 2.50E+07 5.40E+06 2.20E+07 8.00E+06 

4 -4, -5, -6, - 7 6.40E+07 4.80E+07 2.50E+07 8.00E+06 

5 -4, -5, -6, - 7 7.80E+07 7.20E+07 5.00E+07 1.90E+07 

6 -5, -6, -7, - 8 9.00E+07 7.10E-1-07 1.00E+08 9.00E+07 

7 -5, -6, -7, - 8 6.90E+07 4.00E+07 5.30E+07 7.90E+07 

8 -5, -6, -7, - 8 7.00E+07 4.00E+07 4.80E+07 7.50E-4-07 

9 -5, -6, -7, - 8 6.50E+07 4.40E+07 5.90E+07 1.48E+08 

10 -5, -6, -7, - 8 6.80E+07 4.50E+07 1.08E+08 1.71E+08 

11 -5, -6, -7, - 8 7.00E+07 4.20E+07 1.01E+08 1.04E+08 

12 -5, -6, -7, - 8 7.20E+07 4.40E+07 1.58E+08 1.25E+08 



Appendix C 

Results of ANN Analysis 

C. 1 Initial Analysis On Data From Experiments 1 to 4 

Table C. 1: Classification of bacteria type, results of a2 layer MLP trained using BP 

with momentum, trained from experiments 1 and 3 and tested with experiments 2 and 
4, using all the feature-set types listed in table 4.1. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

dfn 338.80 85.56 11.39 3.06 
dfs 514.93 64.72 15.83 19.44 
dfa 368.08 75.28 11.11 13.61 
dfv 82.18 93.89 2.50 3.61 

rln 577.14 19.17 6.11 74.72 

rls 530.37 58.06 13.89 28.06 

rla 538.97 51.11 14.44 34.44 

rlv 629.95 13.33 6.94 79.72 

fdn 617.38 17.22 8.89 73.89 

fds 517.33 61.67 13.61 24.72 

fda 516.22 46.11 9.44 44.44 

fdv 568.47 25.00 8.06 66.94 
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Table C. 2: Classification of bacteria type, results of a2 layer MLP trained using BP 

with momentum, trained from experiments 1 and 3 and tested with experiments 2 and 
4, using all the feature-set types listed in table 4.2. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

afn 271.12 76.67 3.89 19.44 

afs 298.24 56.39 2.50 41.11 

afa 366.93 62.78 7.22 30.00 

afv 226.19 82.22 5.56 12.22 

mnn 308.59 88.33 11.67 0.00 

mns 74.21 96.11 2.22 1.67 

mna 530.93 47.78 9.44 42.78 

mnv 487.91 20.28 1.67 78.06 

frn 648.41 0.00 0.28 99.72 

frs 675.81 53.33 16.39 30.28 

fra 430.91 74.44 14.44 11.11 

frv 707.62 0.28 0.56 99.17 

mdn 1085.51 46.11 34.17 19.72 

mds 851.73 61.39 27.50 11.11 

mda 644.03 46.94 16.94 36.11 

mdv 908.56 44.17 25.28 30.56 

mfn 875.25 10.00 12.50 77.50 

mfs 933.21 5.56 13.33 81.11 

mfa 567.99 47.50 12.22 40.28 

mfv 760.24 1.11 0.00 98.89 

ffn 570.13 35.00 5.00 60.00 

ffs 675.81 53.33 16.39 30.28 

ffa 430.91 74.44 14.44 11.11 

ffv 746.95 21.94 11.39 66.67 
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Table C. 3: Classification of bacteria type, results of a2 layer MLP trained using BP 

with momentum, trained from experiments 2 and 4 and tested with experiments 1 and 
3, using all the feature-set types listed in table 4.1. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

dfn 314.97 78.06 8.33 13.61 
dfs 424.41 68.33 11.39 20.28 
dfa 433.35 76.39 14.72 8.89 

dfv 298.78 75.56 6.94 17.50 

rin 330.09 71.11 6.94 21.94 

ris 677.59 0.00 0.28 99.72 

rla 680.35 60.00 21.39 18.61 

rlv 413.45 47.22 1.94 50.83 

fdn 304.56 79.72 10.00 10.28 

fds 723.62 15.28 9.72 75.00 

fda 628.27 58.06 17.78 24.17 

fdv 469.16 45.28 3.89 50.83 
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Table CA: Classification of bacteria type, results of a2 layer MLP trained using BP 

with momentum, trained from experiments 2 and 4 and tested with experiments 1 and 
3, using all the feature-set types listed in table 4.2. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

afn 472.13 65.28 9.72 25.00 

afs 750.79 42.22 21.94 35.83 

afa 349.96 61.11 4.17 34.72 

afv 375.48 42.22 2.78 55.00 

mnn 541.76 49.72 18.33 31.94 

mns 304.26 73.89 3.89 22.22 

mna 470.83 58.89 12.22 28.89 

mnv 625.15 46.11 19.44 34.44 

frn 600.22 0.00 0.83 99.17 

frs 52.90 93.06 0.28 6.67 

fra 639.63 66.94 21.11 11.94 

frv 714.34 0.00 0.00 100.00 

mdn 519.15 78.33 17.22 4.44 

mds 567.98 76.11 19.17 4.72 

mda 617.26 67.78 24.44 7.78 

mdv 292.80 70.00 3.89 26.11 

mfn 521.48 44.72 7.50 47.78 

mfs 885.30 3.33 3.06 93.61 

m fa 422.78 71.39 12.50 16.11 

mfv 677.26 7.50 7.22 85.28 

ffn 702.63 0.00 0.00 100.00 

ffs 52.90 93.06 0.28 6.67 

ffa 639.63 66.94 21.11 11.94 

ffv 947.90 12.78 13.33 73.89 
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Table C. 5: Classification of culture growth phase, results of a2 layer MLP trained using 
BP with momentum, trained from experiments 1 and 3 and tested with experiments 2 

and 4, using all the feature-set types listed in table 4.1. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

dfn 740.20 25.56 7.50 66.94 

dfs 691.46 50.83 14.72 34.44 

dfa 870.27 44.44 26.11 29.44 

dfv 670.30 25.28 4.44 70.28 

rin 717.09 0.00 0.00 100.00 

rls 529.03 55.56 14.17 30.28 

rla 599.55 58.06 16.67 25.28 

rlv 728.53 0.00 0.00 100.00 

fdn 604.10 28.33 8.61 63.06 

fds 579.11 26.67 3.33 70.00 

fda 579.55 2.22 4.72 73.06 

fdv 636.38 27.78 8.06 64.17 
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Table C. 6: Classification of culture growth phase, results of a2 layer MLP trained using 
BP with momentum, trained from experiments 1 and 3 and tested with experiments 2 

and 4, using all the feature-set types listed in table 4.2. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

afn 835.83 26.11 13.06 60.83 

afs 640.72 53.61 14.17 32.33 

afa 597.04 70.00 18.33 11.67 

afro 742.92 0.00 0.00 100.00 

mnn 928.13 19.72 9.44 70.83 

mns 771.62 31.39 13.89 54.72 

mna 695.03 57.78 18.06 24.17 

mnv 741.43 8.33 6.94 84.72 
frn 587.25 9.44 1.11 89.44 

frs 558.23 52.50 12.50 35.00 

fra 549.14 23.89 3.61 72.50 

frv 669.29 1.11 0.56 98.33 

mdn 761.39 48.89 20.28 30.83 

mds 799.95 0.00 0.00 100.00 

mda 997.97 33.61 25.28 41.11 

mdv 664.87 32.33 8.89 58.89 

mfn 776.80 0.00 0.28 99.72 

rnfs 742.75 0.00 0.00 100.00 

mfa 790.27 3.61 1.39 95.00 

mfv 731.27 0.00 0.00 100.00 

ffn 653.76 4.72 2.50 92.78 

ffs 558.23 52.50 12.50 35.00 

ffa 549.14 23.89 3.61 72.50 

ffv 630.06 0.56 1.11 98.33 
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Table C. 7: Classification of culture growth phase, results of a2 layer MLP trained using 
BP with momentum, trained from experiments 2 and 4 and tested with experiments 1 

and 3, using all the feature-set types listed in table 4.1. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

dfn 691.07 41.67 10.56 47.78 
dfs 478.14 45.83 4.17 50.00 
dfa 708.27 53.61 20.56 25.83 

dfv 572.03 47.78 8.61 43.61 

rln 807.08 0.00 0.00 100.00 

ris 878.47 0.00 0.56 99.44 

rla 898.21 50.56 25.56 23.89 

rlv 705.61 0.00 0.00 100.00 

fdn 752.10 0.28 0.83 98.89 

fds 777.43 25.56 5.00 69.44 

fda 909.35 48.33 26.67 25.00 

fdv 673.92 26.94 19.44 53.61 
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Table C. 8: Classification of culture growth phase, results of a2 layer MLP trained using 
BP with momentum, trained from experiments 2 and 4 and tested with experiments 1 

and 3, using all the feature-set types listed in table 4.2. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

afn 581.18 46.39 6.39 47.22 

afs 390.71 76.11 10.00 13.89 

afa 423.38 80.28 13.61 6.11 

afv 616.29 4.72 3.06 92.22 

mnn 766.12 15.28 20.83 63.89 

mns 802.36 30.00 21.22 48.89 

mna 1168.41 44.17 28.61 27.22 

mnv 761.93 0.00 0.00 100.00 
frn 648.96 6.94 3.61 89.44 
frs 531.55 36.39 5.83 57.78 

fra 846.49 51.11 27.50 21.39 

frv 625.56 20.83 3.89 75.28 

mdn 914.84 3.61 10.00 86.39 

mds 757.29 0.00 0.00 100.00 

mda 1121.57 31.11 31.67 37.22 

mdv 774.55 31.67 13.61 54.72 

mfn 770.13 0.00 0.00 100.00 

mfs 794.08 0.00 0.00 100.00 

mfa 823.08 0.00 0.28 99.72 

mfv 741.87 0.00 0.00 100.00 

ffn 820.48 14.47 8.06 77.78 

ffs 531.55 36.39 5.83 57.78 

ffa 846.49 51.11 27.50 21.39 

ffv 780.29 3.61 1.67 94.72 
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C. 2 

C. 2 Initial Analysis On Data From Experiments 5 to 12 

Initial Analysis On Data From Experiments 5 to 12 

Table C. 9: Classification of bacteria type, results of a2 layer MLP trained using BP 

with momentum, trained from experiments 1 and 3 and tested with experiments 2 and 
4, using all the feature-set types listed in table 4.1. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

dfn 2134.37 24.58 10.42 65.00 
dfs 2107.89 5.97 4.44 89.58 
dfa 2276.12 3.06 6.81 90.14 
dfv 2068.08 16.67 14.86 68.47 

rln 2162.88 10.83 38.89 50.28 

rls 2132.04 23.75 36.53 39.72 

rla 2202.66 15.69 19.58 64.72 

rlv 2212.84 4.17 21.39 74.44 
fdn 2100.33 13.33 4.72 81.94 
fds 2021.43 31.25 32.78 35.97 
fda 2190.22 17.22 24.44 58.33 
fdv 1944.94 27.22 29.86 42.92 
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Table C. 10: Classification of bacteria type, results of a2 layer MLP trained using BP 

with momentum, trained from experiments 5,7,9 and 11 and tested with experiments 
6,8,10 and 12, Using All The Feature-Set Types Listed in Table 4.2. 

`feature-set' SSE Right (%) Wrong (%) Unknown (%) 

afn 1827.07 53.19 36.81 10.00 

afs 2308.13 15.00 17.50 67.50 

afa 2467.92 24.58 33.33 13.47 

afv 1869.67 52.36 17.64 30.00 

mnn 1155.00 73.61 25.56 0.83 

mns 2343.88 21.81 37.50 40.69 

mna 2530.37 16.11 27.22 56.67 

mnv 1733.07 55.14 36.39 8.47 
frn 2064.10 26.53 33.61 39.86 

frs 2011.55 29.03 35.83 35.14 

fra 1964.32 15.00 11.94 73.06 

frv 2013.45 17.08 19.58 63.33 

mdn 1951.68 39.44 38.75 21.81 

mds 2268.45 21.81 36.53 41.67 

mda 2258.38 2.50 9.44 88.06 

mdv 1934.30 24.86 27.22 60.14 

mfn 1941.45 33.89 36.94 29.17 

mfs 2040.51 28.89 34.72 36.39 

m fa 2136.70 47.50 12.22 40.28 

Mfv 1931.35 26.25 22.92 50.83 

ffn 1850.41 60.58 38.17 1.25 

ffs 1957.93 35.83 30.14 34.03 

ffa 1990.18 14.31 13.89 71.81 

fly 2077.83 17.08 18.56 64.35 



Appendix D 

Data Pre-Processing and 

Normalisation Program Listings 

D. 1 Data Pre-Processing 

This program took data from the electronic nose and pre-processed it by feature- 

extraction. The program took command line arguments to control its behaviour, 

namely the algorithm to use, the number of gas sensors, the number of non-gas sensors, 

the number of cycles and the file name to input. 

----------------------------------------------------------------- 
// Program name: data pre-processor 

File name: preproc. cpp 
Author: Mark Craven 
Date last modified: 7/6/96 

Language: C++ 
// Command line: preproc alg_no no-gas no-nongas max-cycles base-filename 

Program description: Performs various preprocessing algorithms 
// 

pre-processing algorithms 

alg_no abbrev description 
// 

1 df difference 
2 rl relative 
3 fd fractional difference 

4 of absolute final 

// 5 mit minimum 
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6 fr final relative 
7 and modified difference 
8 mf modified fractional difference 
9 ff final fractional difference 
10 ba baseline 
11 tm transient model + mit 
12 tr transient model 

//----------------------------------------------------------------- 

#include 
#include 
#include 
#include 
#include 
#include 

<iostream. h> 
<fstream. h> 
<iomanip. h> 
<stdlib. h> 
<string. h> 
<math. h> 

#define VERSION "preproc ver 1.0 30/1/97" 
#define MAX_LINE_SIZE 200 maximum characters in one line 

#define DELAY 0 delay before max or mi n readings taken 
#define NO_MEAS_CYL 120 number of measurements per "smell" cycle 
#define EXP_PERIOD 12 number of hours coloni es were counted 
#define SENSOR_MIN 0.0 // minimum voltage value from any sensor 
#define SENSOR_MAX 10.0 // maximum voltage value from any sensor 

double transient(double *pVolts) 
{ 

double Min=10.0, 

thresh; 

for (int zz=0; zz<NO_MEAS_CYL; ++zz) 

if (pVolts [zz] <Min) 

Min =pVolts [zz] ; 

thresh =0.80*( pVolts[O]-Min ); 

for (zz =0; zz<NO_MEAS_CYL; ++zz) 

if ( (pVolts [0] -pVolts [zz]) > thresh ) 

break; 

return( (double)zz/NO_MEAS_CYL ); 

} 

int main(int argc, char * argv [] , char * envp [] ) 

{ 
// Ou ut info to screen 

cout « "Labview preprocessor V1.0" « endl; p 

// Check for incorrect number of arguments 
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if (argc ! =6) 
{ 

cout « "Usage: 
« endl; 
exit(1) ; 

J. 

D. 1 Data Pre-Processing 

preproc alg_no no-gas no_nongas max-cycles base-filename" 

// Initialise and check algorithm string from argument 3 value 
char sAlgorithm [3] ; 
int nAlgorithm =atoi(argv[1]); 

switch(n®lgorithm) 
{ 

case 1: 

strcpy(sAlgorithm, "df"); difference model 
break; 

case 2: 

strcpy(sAlgorithm, "rl"); relative model 
break; 

case 3: 

strcpy(sAlgorithm, "f d"); fractional difference model 
break; 

case 4: 

strcpy(sAlgorithm, "af"); absolute final output model 
break; 

case 5: 

strcpy(sklgorithm, "mn"); minimum output model 
break; 

case 6: 

strcpy(sAlgorithm, "f r"); final relative model 
break; 

case 7: 

strcpy(sAlgorithm, "md"); modified difference model 

break; 

case 8: 

strcpy(sAlgorithm, "mf"); // modified fractional difference model 

break; 

case 9: 

strcpy(sAlgorithm, "ff"); final fractional difference model 

break; 
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case 10: 
strcpy(sAlgorithm, "ba"); baseline model 
break; 

case 11: 

strcpy(sAlgorithm, "tm"); transient model 
break; 

case 12: 

strcpy(sAlgorithm, "tr"); transient model 
break; 

D. 1 Data Pre-Processing 

default : 
cout « "Incorrect algorithm number specified, must be 1 to 10" 
« endl; // error in argument 
exit (1) ; 

} 

// Initialise number of gas and non-gas sensors (hence no. of columns known) 
const int nNoGas =atoi (arge [2]) ; 
const int nNoNonGas =atoi(argv[3]); 

// Initialise maximum number of cycles to process 
const int nMaxCycles =atoi (argv [4]) ; 

// Initialise input and output file names and open files, check for errors 
char *sInFile =new char [strlen(argv[5])+5]; 

char *sOutFile new char [strlen(argv [5])+5] ; 

strcpy(sInFile, argv[5]); 
strcpy(sOutFile, argv[5]); 

f stream InputFile(strcat(sInFile, ". dat"), ios:: in), 

// construct file input object 
OutputFile(strcat(strcat(sOutFile, ". "), sAlgorithm), ios:: out); 
// construct file output object 

) if ( InputFile. f ail() 11 OutputFile. fail() 

// if a file cannot be opened then exit 
{ 

cout « "File Error! " « endl; 

exit(1); 
} 

// set some number formatting options for 0/P streams (file and console) 

cout. setf(ios:: showpoint); 

cout. setf (ios :: fixed, los: : floatfield) ; 
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OutputFile. setf(ios:: showpoint); 
OutputFile. setf (ios :: fixed, ios :: floatfieid) ; 
cout. precision(4); 
OutputFile. precision(4); 

char pTmpStr[200]; // temporary storage for reading lines 
double *pReadings =new double [nNoGas+nNoNonGas] 
// temporary space for readings 

// define the parameters to be extracted 

double *pVFinalRef =new double[nNoGas]; 
double *pVMaxRef new double [nNoGas] ; 
double *pVMinRef =new double[nNoGas]; 
double *pVFinalOdour new double[nNoGas]; 
double *pVMaxOdour new double[nNoGas]; 
double *pVMinOdour =new double[nNoGas]; 

double *pTMaxRef =new double [nNoGas] ; 
double *pTMinRef =new double[nNoGas]; 
double *pTMaxOdour new double [nNoGas] 

double *pTMinOdour =new double [nNoGas] ; 

double *pVAveNonGas =new double [nNoNonGas] ; 

double **ppVSensor =new double* [nNoGas] ; 
for (int counter=0; counter<nNoGas; ++counter) 

ppVSensor[counter] new double [NO_MEAS_CYL]; 

// Initialise Parameters 

for (int xx=0; xx<(nNoGas+nNoNonGas); ++xx) // zero workspaces 

pfteadings [xx] =0.0; 

for (xx=0; xx<nNoGas; ++xx) 
{ 

pVFinalRef[xx] =SENSOR_MIN; 

pVMaxRef [xx] =SENSOR_MIN; 

pVMinRef [xx] =SENSOR_MAX; 

pVFinalOdour[xx] =SENSOR_MIN; 

pVMaxOdour[xx] =SENSOR_MIN; 

pVMinOdour[xx] =SENSOR_MAX; 

pTMaxRef [xx] =0.0; 

pTMinRef [xx] =0.0; 

pTMaxOdour [xx] =0.0; 

pTMinOdour [xx] =0.0; 

} 
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for (xx=0; xx<nNoNonGas; ++xx) 
pVAveNonGas [xx] =0.0; 

// Output that file headrer is being read 
cout « "File header" « endl; 

// Output information into output file 
OutputFile « "#" « VERSION «": 11 « sAlgorithm « endl; 

int CurrChannel=O, // current channel being read 
PrevChannel=O, // previous channel that was read 
nCycleCount=1, 
time =1; 

double channel, 
featurel, 

feature2, 
feature3; 

// Read in input file header and output to console and outputfile 
while ( InputFile. get() '#' ) 
{ 

InputFile. getline(pTmpStr, MAX_LINE_SIZE); 

cout « pTmpStr « endl; 
OutputFile « "#" « pTmpStr « endl; 

} 

// Set input file pointer to begining of first data line 

InputFile. seekg(-1, ios:: cur); 

// Output column labels to console and output file 

OutputFile « "#Ch No. \t"; 

cout « "#Ch No. \t"; 

switch(nAlgorithm) 
{ 

case 1: 

case 2: 

case 3: 

case 6: 

case 7: 

case 8: 

case 9: 

case 10: 

case 12: 
for (xx=0; xx<nNoGas; ++xx) 

{ 

OutputF ile « "Gas" « (xx+1) « "\t"; 
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cout « "Gas" « (xx+i) « "\t"; 
} 
break; 

case 4: 

case 5: 
for (xx=0; xx<nNoGas; ++xx) 
{ 

OutputFile « "Gas" « (xx+1) « "a" « "\t"; 
cout « "Gas" « (xx+i) « "a" « "\t"; 
OutputFile « "Gas" « (xx+1) « "b" « "\t"; 
cout « "Gas" « (xx+1) « "b" « ""\t1"; 

} 

break; 

case 11: 
for (xx=0 
{ 

OutputFile « 

cout « "Gas" 
OutputFile « 

cout « "Gas" 
OutputFile « 

cout « "Gas" 
} 

break; 
} 

; xx<nNoGas; ++xx) 

"Gas" « (xx+1) « "a" « "\t"; 
« (xx+1) « "a" « "\t"; 
"Gas" « (xx+1) « "b" « "\t"; 

« (xx+l) « "b" « u\t"; 
"Gas" « (xx+1) « "c" « "\t"; 

« (xx+1) « "c" « "\t"; 

for (xx=0; xx<nNoNonGas; ++xx) 
{ 

OutputFile « "NGas" « (xx+i) « "\t"; 

cout « "NGas" « (xx+i) « "\t"; 

} 

OutputFile « endl; 
cout « endl; 

D. 1 Data Pre-Processing 

// lets mark the beginning of data within the input file 

streampos marker = InputFile. tellg(); 

// main loop: mode =0 for channel 2, mode =1 for channel 3 

for (int mode=0; mode<2; ++mode) 
{ 

while (( ! InputFile. eof() ) && ( nCycleCount <=nMaxCycles )) 

{ 

// read channel number, store as current channel and convert to number 

InputFile » channel; 
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CurrCharnel =(int)channel; 
switch(CurrChannel) 
{ 

case 3: 
CurrChannel =1; 
break; 

case 12: 
CurrChannel =2; 
break; 

case 48: 
CurrChannel =3; 
break; 

default : 
cout « "Error in channel notation in input file" « endl; 
exit (1); 

} 

// read data from ALL sensors and store in array 
for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 

InputFile » pfteadings [xx] ; 

switch(CurrChannel) 
{ 

case 1: 
if the current channel is 1 and the previous channel 

was 2 the end of "smell" 

if ( PrevChannel ==2 ) 

{ 

only process if in channel 2 mode (mode=0) 

if ( mode ==0 ) 

{ 

output previous channel (i. e. the last "smell" 

odour phase channel) 
OutputFile « PrevChannel; 

cout « PrevChannel « ": "; 

// using necessary parameters, calculate features 

for (xx=0; xx<nNoGas; ++xx) 
{ 

switch(nAlgorithm) 
{ 

case 1: 
// difference model 
features =pVMaxRef [xx] -pVMinOdour [xx] ; 

feature2 =0.0; 
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feature3 =0.0; 
break; 

// relative model 
case 2: 

features =pVMinOdour [xx] /pVMaxRef [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Fractional difference model 
case 3: 

features =(pVMaxRef [xx] -pVMinOdour [xx]) /pVMaxRef [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Absolute final output model 
case 4: 

fe ature l =pVFinalOdour [xx] ; 
feature2 =pVFinalRef [xx] ; 
feature3 =0.0; 
break; 

// Minimum output model 
case 5: 

featurel =pVMinOdour[xx] ; 
feature2 =pVMinRef [xx] ; 
feature3 =0.0; 
break; 

// Final Relative model 

case 6: 
features =pVFinalOdour [xx] /pVFinalRef [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Modified difference model 

case 7: 
featurel =(pVMaxOdour [xx] -pVMinOdour [xx]) - 
(pVMaxRef [xx] -pVMinRef [xx]) ; 

feature2 =0.0; 
feature3 =0.0; 
break; 

// Modified fractional difference model 

case 8: 
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featurel =(pVMaxOdour [xx] -pVMinOdour [xx]) / 
(pVMaxRef [xx] -pVMinRef [xx]) ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Final fractional difference mode 
case 9: 

f eature l= (pVFinalOdour [xx] -pVFinalRef [xx]) /pVFinalRef [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Baseline mode 
case 10: 

features =pVFinalRef [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Transient model + mit 
case 11: 

//features =(pVFinalRef [xx] -pVMinOdour [xx]) /pTMinüdour [xx] ; 
//feature2 =0.0; 
features =pVMinRef [xx] ; 
feature2 =pVMinOdour [xx] ; 
feature3 =transient (ppVSensor [xx]) ; 
break; 

// Transient model 
case 12: 

features =transient (ppVSensor [xx]) ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

} //end of case 

// Output featres to console and outputfile 

OutputFile « "\t" « features; 

cout « "\t" « features; 

if(feature2 ! =0. O) 

{ 

OutputFile « "\t" « feature2; 

cout « "\t" « feature2; 

} 
if(feature3 ! =0.0) 
{ 
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OutputFile « "\t" « feature3; 
cout « "\t" « feature3; 

} 
} // end of for 

// Output non-gas sensor features 
for (xx=O; xx<nNoNonGas; ++xx) 
{ 

featurel =pVAveNonGas[xx]/(NO_MEAS_CYL*2); 
OutputFile « "\t" « features; 
cout « "\t" « featurel; 

} 

// Finish current output line 
OutputFile « endl; 
cout « endl; 

} //end of if mode 

time =1; 
} //end of if channel 

if ( PrevChannel ==3 ) 
{ 

if (mode ==1) 
{ 

output previous channel 
phase channel) 

OutputFile « PrevChannel; 

cout « PrevChannel « ": "; 

(i. e. the last "smell" odour 

// using necessary parameters, calculate features 

for (xx=0; xx<nNoGas; ++xx) 
{ 

switch(nAlgorithm) 
{ 

case 1: 
// difference model 
features =pVMaxRef [xx] -pVMinOdour [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// relat 

case 2: 
featurel 
feature 2 

feature3 
break; 

ive model 

=pVMinOdour [xx] /pVMaxRef [xx] ; 

=0.0; 
=0.0; 
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// Fractional difference model 
case 3: 

feature l= (pVMaxRef [xx] -pVMinOdour [xx]) /pVMaxRef [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Absolute final output model 
case 4: 

featurel =pVFinalOdour [xx] ; 
feature2 =pVFinalRef [xx] ; 
feature3 =0.0; 
break; 

// Minimum output model 
case 5: 

f eature l =pVMinOdour [xx] ; 
feature2 =pVMinRef [xx] ; 
feature3 =0.0; 
break; 

// Final Relative model 
case 6: 

features =pVFinalOdour [xx] /pVFinalRef [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Modified difference model 

case 7: 
fe ature l= (pVMaxOdour [xx] -pVMinOdour [xx]) - 
(pVMaxRef [xx] -pVMinRef [xx]) ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Modified fractional difference model 

case 8: 
fe ature l= (pVMaxOdour [xx] -pVMinOdour [xx]) / 

(pVMaxRef [xx] -pVMinRef [xx]) ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Final fractional difference mode 

case 9: 
features =(pVFinalOdour [xx] -pVFinalRef [xx]) /pVFinalRef [xx] ; 
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feature2 =0.0; 
feature3 =0.0; 
break; 

// Baseline mode 
case 10: 

featurel =pVFinalRef [xx] ; 
feature2 =0.0; 
feature3 =0.0; 
break; 

// Transient model +mn 
case 11: 

//featurel =(pVFinalRef [xx] -pVMinOdour [xx]) /pTMinOdour [xx] ; 
//feature2 =0.0; 
features =pVMinRef [xx] ; 
feature2 =pVMinOdour [xx] ; 
feature3 =transient (ppVSensor [xx]) ; 
break; 

// Trans 

case 12: 
featurel 
feature 2 
feature 3 
break; 

} //end of 

Tent model 

=transient (ppVSensor [xx]) ; 
=0.0; 
=0.0; 

case 

// Output featres to console and outputfile 
OutputFile « "\t" « features; 

cout « "\t" « features; 
if(feature2 ! =0. O) 
{ 

OutputFile « "\t" « feature2; 

cout « "\t" « feature2; 

} 
if (feature3 ! =0.0) 
{ 

OutputFile « "\t" « feature3; 

cout « "\t" « feature3; 

} 

} // end of for 

// Output non-gas sensor features 

for (xx=O; xx<nNoNonGas; ++xx) 
{ 

features =pVAveNonGas[xx]/(NO_MEAS_CYL*2); 
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OutputFile « "\t" « feature 1; 
cout « "\t" « featurel; 

} 

// Finish current output line 
OutputFile « endl; 
cout « endl; 

} //end of if mode 
time =1; 
++nCycleCount; 

} 

if the current channel is 1 and the previous channel 
was 2 or 3 the reset parameters 

if (PrevChannel ! =1) 
{ 

for (xx=0; xx<nNoGas; ++xx) 
{ 

pVFinalRef[xx] =SENSOR_MIN; 
pVMaxRef [xx] =SENSOR_MIN; 
pVMinRef[xx] =SENSOR_MAX; 

pTMaxRef [xx] =0.0; 
pTMinRef [xxl =0.0; 

} 

for (xx=0; xx<nNoNonGas; ++xx) 

pVAveNonGas [xx] =0.0; 
} 

// Measure parameters for channel 1 (ref) phase 
for (xx=0; xx<nNoGas; ++xx) 
{ 

if (( pReadings[xx] > pVMaxRef [xx] ) && ( time >=DELAY )) 

{ 

pVMaxRef [xx] =pReadings [xx] ; 

pTMaxRef [xx] =time; 
} 

if ( (pReadings [xx] < pVMinRef [xx] ) && ( time >=DELAY )) 

{ 

pVMinRef [xx] =pReadings [xx] ; 

pTMinRef [xx] =time; 
} 

pVFinalRef [xx] =pReadings [xx] ; 
} 
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PrevChannel =CurrChannel; 
break; 

case 2: 

case 3: 
if ( (PrevChannel ! =2) && (PrevChannel ! =3) ) 
{ 

for (xx=0; xx<nNoGas; ++xx) 
{ 

pVFinalOdour[xx] =SENSOR-MIN; 
pVMaxOdour[xx] =SENSOR_MIN; 
pVMinOdour[xx] =SENSOR_MAX; 

pTMaxOdour [xx] =0.0; 
pTMinOdour [xx] =0.0; 

} 

time =1; 
} 

for (xx=0; xx<nNoGas; ++xx) 
{ 

if (( pReadings[xx] <pVMinOdour[xx] ) && ( time >=DELAY )) 
{ 

pVMinOdour [xx] =pReadings [xx] ; 
pTMinOdour[xx] =time; 

} 
if (( pReadings [xx] >pVMaxOdour [xx] ) && ( time >=DELAY )) 
{ 

pVMaxOdour [xx] =pReadings [xx] ; 

pTMaxOdour [xx] =time; 
} 

pVFinalOdour [xx] =pReadings [xx] ; 

ppVSensor [xx] [time-1] =pReadings [xx] ; 

} 

PrevChannel =CurrChannel; 
break; 

} //end of switch 

for (xx=0; xx<nNoNonGas; ++xx) 

pVAveNonGas [xx] +=pReadings [nNoGas+xx] ; 

++time; 
} // end of while 

InputFile. seekg(marker); // reset to beginning of file 
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InputFile. clear(0); 

nCycleCount =1; 
cout « "resetting file pos" « endl; 

} // end of for 

cout « "Finished" « endl; 

delete [] 

delete [] 

delete [] 

delete [] 

delete [] 

delete [] 

delete [] 

delete [] 

delete [] 

delete [] 

delete [] 

delete [] 

pReadings; 
pVMaxRef; 
pVMinRef ; 
pVFinalRef ; 
pVMaxOdour; 
pVMinOdour; 
pVFinalOdour; 
pTMaxRef; 
pTMinRef ; 
pTMaxOdour; 
pTMinOdour; 
pVAveNonGas; 

for (counter=0; counter<nNoGas; ++counter) 
delete D ppVSensor [counter] ; 

delete[] ppVSensor; 

return 0; 

D. 1 Data Pre-Processing 

} 
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D. 2 Data Normalisation 

This program took data that was output from the pre-processing program and applied 

one of several normalisation algorthms. The normalisation algorithm, number of gas 

sensor, number of non-gas sensors, the number of cycles and the filename to input were 

specified as arguments on the command line. 

//----------------------------------------------------------------- 
Program name: data normaliser 
File name: normal cpp 

// Author: Mark Craven 
Date last modiified: 31/1/97 

// Language: C++ 
Command line: normal alg_no no-gas no_nongas max-cycles filename 
Program description: Performs various preprocessing algorithms 

normalising algorithms 

alg_no abbrev description 
// 
// 1 

__n none 
2 

__s sensor(gas) normalisation (column 0->1) 
// 3 

__a auto-scaling 
// 4 

__v vector (gas components) normalisation (length =1) 

//----------------------------------------------------------------- 

#include 
#include 
#include 
#include 
#include 
#include 

<iostream. h> 

<fstream. h> 

<iomanip. h> 

<stdlib. h> 

<string. h> 
<math. h> 

#define VERSION "normal ver 1.0 10/6/96" 
#define MAX_LINE_SIZE 300 // maximum characters in one line 

#define LIMIT 0.0 // number of std devs to limit, 0=no limiting 

#define SENSOR_MAX 10.0 

#define SENSOR-MIN 0.0 

int main(int argc, char *argv[], char *envp[]) 
{ 

cout « "Labview data normaliser" « endl; 

// if incorrect number of arguments then exit 
if (argc ! =6) 
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{ 
cout « "Usage: 
« endl; 
exit (1) ; 

} 

D. 2 Data Normalisation 

normal alg_no no-gas no_nongas max-cycles filename" 

// Initialise and check algorithm string from argument 3 value 
char sAlgorithm [2] ; 
int nAlgorithm =atoi (argv [1]) ; 

switch(nAlgorithm) 
{ 

case 1: 

strcpy(sAlgorithm, "n"); 
break; 

case 2: 

strcpy(sAlgorithm, "s"); 
break; 

case 3: 

strcpy(sAlgorithm, "a"); 
break; 

case 4: 

strcpy(sAlgorithm, "v"); 
break; 

default : 
cout « "Incorrect algorithm number specified, must be 1 to 9" 

« endl; // error in argument 

exit(1); 
} 

// Initialise number of gas and non-gas sensors (hence no. of columns known) 

int nNoGas =atoi(argv[2]); 
int nNoNonGas =atoi (arge [3]) ; 

// Initialise maximum number of cycles to process 
int nMaxCycles =atoi (arge [4]) ; 

// Initialise input and output file names and open files, check for errors 

char *sInFile =new char [strlen(argv [5])+2] ; 

char *sOutFile =new char [strlen(argv [5])+2] ; 

strcpy(sInFile, argv[5]); 
strcpy(sOutFile, argv[5]); 
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// construct file input object 
f stream InputFile(slnFile, ios:: in), 
// construct f ile output object (append algorithm string) 
OutputFile(strcat(sOutFile, sAlgorithm), ios:: out); 

// if a file cannot be opened then exit 
if ( InputFile. fail () 11 OutputFile. fail () ) 
{ 

cout « "File Error! " « endl; 
exit(1); 

} 

// set some number formatting options for 0/P streams (file and console) 
cout. setf(ics:: showpoint); 
cout. setf (ios :: fixed, ios :: floatfield) ; 
OutputFile. setf(ios:: showpoint); 
OutputFile. setf (ios :: fixed, ios :: floatfield) ; 
cout. precision(4); 
OutputFile. precision(4); 

// temporary storage for reading lines 

char pTmpStr [200] ; 
// temporary space for readings 
double *pReadings new double [nNoGas+nNoNonGas]; 

// Output that file headrer is being read 
cout « "File header" « endl; 

// Output information into output file 

OutputFile « "#" « VERSION «": "« sAlgorithm « endl; 

// Read in input file header and output to console and outputfile 

while ( InputFile. get() '#' ) 

{ 

InputFile. getline(pTmpStr, MAX_LINE_SIZE); 

cout « pTmpStr « endl; 
OutputFile « "#" « pTmpStr « endl; 

} 

// Set input file pointer to begining of first data line 

InputFile. seekg(-i, ios:: cur); 
int xx; 

// lets mark the beginning of data within the input file 

streampos marker = InputFile. tellg(); 

int channel; 
double scale; 
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// stores average for each variable (one for channel 2 and for 3) 
double *pAveRead new double[nNoGas]; 

// stores standard deviation for each variable 
double *pStdDev =new double[nNoGas]; 

// stores minimu and maximum for seach gas sensor 
double *pMax2 new double [nNoGas] ; 
double *pMin2 new double [nNoGas] ; 
double *pMax3 new double[nNoGas]; 
double *pMin3 new double[nNoGas]; 

// zero workspaces 
for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 
pReadings [xx] =0.0; 

for (xx=0; xx<nNoGas; ++xx) 
{ 

pAveRead[xx] =0.0; 
pStdDev[xx] =0.0; 

pMax2 [xx] =SENSOR-MIN; 
pMin2 [xx] =SENSOR-MAX; 
pMax3 [xx] =SENSOR_MIN; 
pMin3 [xx] =SENSOR-MAX; 

} 

switch(nAlgorithm) 
{ 

case 1: 

while (! InputFile . eof () ) 
{ 

InputFile » channel; // read channel 

if (InputFile. eof ()) break; 

OutputFile « channel; 
c out « channel ; 

// read data from ALL sensors and store in array 
for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 
{ 

InputFile » pReadings [xx] ; 
OutputFile « "\t" « pReadings[xx]; 

cout « "\t" « pReadings [xx] ; 

} 
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OutputFile « endl; 
cout « endl; 

} 

break; 

case 2: 

while (! InputFile 
. eof () ) 

{ 

InputFile » channel; // read channel 

if (InputFile. eof()) break; 

// read data from ALL sensors and store in array 
for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 

InputFile » pReadings [xx] ; 

for (xx=0; xx<nNoGas; ++xx) 
switch(channel) 
{ 

case 2: 
if (pReadings [xx] <pMin2 [xx] ) 

pMin2 [xx] =pReadings [xx] ; 
if (pReadings [xx] >pMax2 [xx] ) 

pMax2 [xx] =pReadings [xx] ; 
break; 

case 3: 
if (pReadings [xx] <pMin3 [xx] ) 

pMin3 [xx] =pReadings [xx] ; 
if (pReadings [xx] >pMax3 [xx] ) 

pMax3 [xx] =pReadings [xx] ; 
break; 

} 

} 

InputFile. seekg(marker); // reset to beginning of file 

InputFile. clear(O); 

while ( ! InputFile. eof() ) 

{ 

InputFile » channel; // read channel 

if (InputFile. eof ()) break; 

OutputFile « channel; 

cout « channel; 

// read data from ALL sensors and store in array 
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for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 
InputFile » pReadings [xx] ; 

for (xx=0; xx<nNoGas; ++xx) 
switch(channel) 
{ 

case 2: 
OutputFile « "\t" 
« (pReadings [xx] -pMin2 [xx]) / (pMax2 [xx] -pMin2 [xx]) ; 
cout « "\t" 
« (pReadings [xx] -pMin2 [xx]) / (pMax2 [xx] -pMin2 [xx]) ; 
break; 

case 3: 
OutputFile « "\t" 
« (pReadings [xx] -pMin3 [xx]) / (pMax3 [xx] -pMin3 [xx]) ; 
cout « "\t" 
« (pReadings [xx] -pMin3 [xx]) / (pMax3 [xx] -pMin3 [xx]) ; 
break; 

} 

for (xx=nNoGas; xx<(nNoGas+nNoNonGas); ++xx) 
{ 

OutputFile « "\t" « pReadings[xx]; 
cout « "\t" « pReadings [xx] ; 

} 

OutputFile « endl; 
cout « endl; 

} 
break; 

case 3: 
// First Read values to calculate mean 

while (! InputFile . eof () ) 

{ 

InputFile » channel; read channel 
if (InputFile. eof ()) break; 

// read data from ALL sensors and store in array 
for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 

InputFile » pReadings[xx]; 

for (xx=0; xx<nNoGas; ++xx) 

pAveRead [xx] +=pReadings [xx] ; 

} 
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for (xx=0; xx<nNoGas; ++xx) 
pAveRead[xx] /=nMaxCycles; 

InputFile. seekg(marker); // reset to beginning of file 
InputFile. clear(0); 

Second Read values to calculate std dev 
(actually variance initially) 

while (! InputFile 
. eof () ) 

{ 

InputFile » channel; // read channel 

if (InputFile. eof()) break; 

for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 
// read data from ALL sensors and store in array 
InputFile » pReadings[xx]; 

for (xx=0; xx<nNoGas; ++xx) 

pStdDev [xx] +=( ( pReadings [xx] -pAveRead [xx] ) 
( pReadings [xx] -pAveRead [xx] )); 

} 

// convert variances to std dev 
for (xx=0; xx<(nNoGas); ++xx) 
{ 

pStdDev[xx] /=(nMaxCycles-1); 

pStdDev [xx] =sgrt (pStdDev [xx]) ; 
} 

InputFile. seekg(marker) ; reset to beginning of file 

InputFile. clear(0); 

while (! InputFile . eof () ) 

{ 

InputFile » channel; 

if (InputFile. eof ()) break; 

OutputFile « channel; 

cout « channel; 

for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 
// read data from ALL sensors and store in array 

InputFile » pReadings [xxl ; 

for (xx=0; xx<nNoGas; ++xx) 
{ 

pReadings [xx] -=pAveRead [xx] ; 
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pReadings [xx] /=pStdDev [xx] ; 

// limit the population to +/- "LIMIT" std dev 
if (LIMIT ! =0.0) 

if (pReadings [xx] > LIMIT) 
pReadings[xx] = LIMIT; 

else if (pReadings [xx] < (-1.0*LIMIT) ) 
pReadings[xx] = -1.0*LIMIT; 

OutputFile « "\t" « pReadings [xx] ; 
tout « "\t" « pReadings [xx] ; 

} 

for (xx=nNoGas; xx<(nNoGas+nNoNonGas); ++xx) 
{ 

OutputFile « "\t" « pReadings [xx] ; 
cout « "\t" « pReadings [xx] ; 

} 

OutputFile « endl; 
cout « endl; 

} 
break; 

case 4: 

while (! InputFile . eof () ) 
{ 

scale =0.0; 
InputFile » channel; // read channel 

if (InputFile. eof ()) break; 

OutputFile « channel; 
cout « channel; 

// read data from ALL sensors and store in array 
for (xx=0; xx<(nNoGas+nNoNonGas); ++xx) 

InputFile » pReadings [xx] ; 

for (xx=0; xx<nNoGas; ++xx) 

scale +_ ( pReadings [xx] * pReadings [xx] ); 

scale =1/(sqrt(scale)); 

for (xx=0; xx<nNoGas; ++xx) 
{ 

OutputFile « "\t" «( scale*pReadings[xx] ); 

cout « "\t" «( scale*pReadings[xx] ); 
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} 

for (xx=nNoGas; xx<(nNoGas+nNoNonGas); ++xx) 
{ 

OutputFile « "\t" « pReadings[xx]; 
cout « "\t" « pReadings [xx] ; 

} 
} 

OutputFile « endl; 
cout « endl; 

break; 
} 

delete[] pReadings; 
delete[] pAveRead; 
delete[] pStdDev; 

delete[] pMax2; 
delete[] pMi. n2; 
delete[] pMax3; 
delete[] pMin3; 

return 0; 

D. 2 Data Normalisation 

} 
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D. 3 Pattern File Generation 

This program took data files generated by the normalisation program and output pat- 

tern files that were suitable for input to the SNNS neural network simulator. The 

position of the classes within the file, the number of columns, the number of cycles and 

the filname to input were specified on the command line. 

----------------------------------------------------------------- 
Program name: labview data parser 

// File name: pattern. cpp 
Author: Mark Craven 
Date last modiified: 6/2/97 
Language: C++ 
Command line: pattern si fl s2 f2 s3 f3 s4 f4 cols max full_filename 
Program description: Converts data files to SNNS pattern files 

//----------------------------------------------------------------- 

#include <iostream. h> 
#include <fstream. h> 
#include <iomanip. h> 
#include <stdlib. h> 
#include <string. h> 

#define VERSION "pattern ver 1.0 6/2/97" 
#define MAX_LINE_SIZE 200 maximum characters in one line 

#define DELAY 5 delay before max or mi n readings taken 
#define NO_MEAS_CYL 240 number of measurements per "smell" cycle 
#define EXP_PERIOD 12 number of hours coloni es were counted 
#define SENSOR_MIN 0.0 minimum voltage value from any sensor 
#define SENSOR_MAX 10.0 // maximum voltage value from any sensor 

int main(int argc, char *argv [] 
, char *envp Q) 

{ 
// Check for incorrect number of arguments 
if (argc ! =12) 
{ 

cout « "Usage: pattern si fl s2 f2 s3 f3 s4 f4 cols max full-filename" 

« endl; 
exit (1); 

} 

// Initialise and check algorithm string from argument 3 value 

int nStart [4] 
, 

nFinish [4] ; 
int xx; 
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for (xx=0; xx<4; ++xx) 
{ 

nStart [xx] =atoi (argv [ (xx*2)+1]) ; 
nFinish[xx] =atoi(argv[(xx*2)+2]); 

} 

// Initialise maximum number of cycles to process 
int nMaxCycles =atoi (arge [10]) ; 

// Initialise number of columns to use 
int nCols =atoi(argv[9]); 

// Initialise input and output file names and open files, check for errors 
char *sInFile new char [strlen(argv[11] )] ; 

strcpy(sInFile, argv[il]); 

f stream InputFile(slnFile, ios:: in); // construct file input object 

if ( InputFile. fail () ) // if a file cannot be opened then exit 
{ 

cout « "File Error! " « endl; 
exit (1) ; 

} 

// set some number f ormatting options for 0/P streams (file and console) 
cout. setf(ios:: showpoint); 
cout. setf (ios :: fixed, los: : floatfield) ; 
cout. precision(4); 

char pTmpStr[200]; // temporary storage for reading lines 

double *pReadings new double [nCols] ; // temporary space for readings 

// Initialise Parameters 

for (xx=0; xx<nCols; ++xx) // zero workspaces 

pReadings [xx] =0.0; 

int nChannel=0, // current channel being read 

nCycleCount=1, 
time =1; 

// Read in input file header and output to console and outputf ile 

while ( InputFile. get() == '#' ) 

InputFile. getline(pTmpStr, MAX_LINE_SIZE); 

// Set input file pointer to begining of first data line 
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InputFile. seekg(-i, ios:: cur); 

// lets mark the beginning of data within the input file 
streampos marker = InputFile. tellg(); 

// main loop 
while (( ! InputFile. eof() ) && ( nCycleCount <=nMaxCycles )) 
{ 

// read channel number, store as current channel and convert to number 
InputFile » nChannel; 

if ( InputFile. eof() ) break; 

// read data from ALL sensors and store in array 
for (xx=O; xx<nCols; ++xx) 

InputFile » pReadings [xx] ; 
// Dummy readline 

InputFile. getline(pTmpStr, MAX_LINE_SIZE); 

cout « "# Input pattern "« nCycleCount « ": " « endl; 

for (xx=0; xx<nCols; ++xx) 

cout « pReadings [xx] «""; 

cout « endl; 
cout « "# Output pattern "« nCycleCount « ": " « endl; 

for (xx=0; xx<4; ++xx) 
if ((nStart [xx] ! =-l) && (nFinish [xx] ! =-1)) 

if ( (nCycleCount >=nStart [xx]) && (nCycleCount <=nFinish [xx]) ) 

tout « "1 

else 
cout « "-1 "; 

cout « endl; 

++nCycleCount; 

} 

delete[) pReadings; 

return 0; 

} 
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