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Abstract 

 

Background:  Genomic DNA sequences in cell-free plasma are biomarkers of cancer 

prognosis, where characteristic changes in methylation of tumour suppressor or 

oncogene DNA regions are indicative of changes in gene activity. Also, cell-free fetal 

DNA can be distinguished, by its methylation status, from the maternal DNA in the 

plasma of pregnant women, hence providing DNA biomarkers for the proposed 

minimally-invasive diagnosis of fetal aneuploidies, including Down’s syndrome. 

However, the production and clearance of cell-free DNA from plasma in relation to its 

methylation status, are poorly understood processes. 

 

Methods: We studied the methylation status of DNA derived from the imprinted 

GNAS1 locus, in cell-free plasma DNA of healthy adults.  Heterozygotes were 

identified that carried the SNP rs1800905 in the imprinted region. The parent-of-

origin-dependent DNA methylation was analysed by bisulfite conversion, followed by 

cloning and sequencing. 

 

Results: Genomic DNA molecules derived from both the methylated, maternal, allele 

and the unmethylated, paternal, allele were found in plasma. Methylated and 

unmethylated DNA molecules were present in equal numbers. 

 

Conclusions: Our data indicate that the methylation status of a DNA sequence has no 

effect on its steady state concentration in the cell-free DNA component of plasma, in 

healthy adults. 
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1. Introduction 

 

Cell-free human genomic DNA occurs in the plasma of healthy individuals [1]. The 

DNA molecules are heterogeneous in size, with the majority ranging from 100 bp to 2 

kb, and their numbers vary between individuals, 50-2000 diploid genome 

equivalents/ml blood being typical for a particular DNA sequence. The origins and 

clearance of the cell-free plasma (cfp) DNA are poorly understood [2]. However, it 

has been concluded from studies of sex-mismatched bone marrow transplant patients, 

that most of the cfp DNA originates from the hematopoietic lineage [3]. Proposed 

mechanisms for the production of cfp DNA include ‘accidental’ lysis of nucleated 

blood cells, apoptosis, and a derivation from nuclei ejected from maturing 

erythrocytes [2]. A significant contribution from vascular endothelial cells has been 

excluded [4]. 

 

In pathological conditions and pregnancy, cfp DNA can clearly originate elsewhere. 

Thus, there has been much effort in analysing DNA markers in patients with solid 

tumours [5,6]. In these situations the quantity and methylation status of DNA regions 

derived from oncogenes or tumour suppressor genes provide biomarkers for disease 

progression and prognosis [1]. The changes in DNA methylation status indicate 

changes in gene expression of the relevant biomarker genes; for example, 

hypermethylated APC gene DNA in plasma may be a useful biomarker of aggressive 

disease in esophageal adenocarcinoma patients [7]. In pregnancy, a proportion 

(typically 3-6%) of the cell-free DNA in maternal plasma is of fetal genotype, 

originating largely from the placenta [8,9]. Cell-free fetal DNA can be detected from 

as early as 5 weeks after conception [10], and provides a basis for fetal chromosomal 
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gender determination (using SRY or DYS14 markers [11]), and for detection of an 

RhD+ fetus carried by a RhD- mother [12]. In those examples fetal DNA is 

distinguished from the maternal ‘background’ by its paternal genotype. In other, 

proposed, applications particular cell-free fetal DNA biomarker sequences in maternal 

plasma are to be distinguished on the basis of their characteristic methylation status. 

This is the rationale for minimally-invasive genetic diagnoses of fetal aneuploidies 

(such as Down’s syndrome), using a peripheral blood sample from the mother [13].  

 

It has been concluded from studies of cell-free fetal DNA in plasma that the DNA is 

cleared very rapidly, with a half-life of under an hour, after delivery of the fetus [14]. 

It remains unknown whether cfp DNA turns over with similar rapidity in healthy non-

pregnant adults, although this seems likely. A known potential effect that may 

influence amounts of methylated and unmethylated cfp DNA in the circulation arises 

from interactions of DNA with cells of the immune system. Bacterial DNA with 

unmethylated CpG dinucleotides is immunostimulatory [15], and hypomethylated 

DNA from peripheral blood monocytes stimulates an autoimmune response in SLE 

[16]. The amount of cfp DNA is small (typically 50-2000 ge/ml blood) relative to the 

numbers of cells of the immune system, of various classes, present in blood. So it is 

conceivable that clearance of cfp DNA depends in part upon a methylation-dependent 

interaction with the immune system in healthy adults.  

 

In view of the interest in the methylation of cfp DNA for providing biomarkers, we 

have investigated whether the methylation of the DNA influences its abundance in the 

plasma of healthy adults. As a critical test, we have examined the abundance of 
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genomic DNA molecules derived from the imprinted GNAS1 locus, which encodes 

the alpha subunit of the stimulatory G protein, Gs.  

 

2. Materials and Methods 

2.1 Plasma and cellular DNA 

Peripheral venous blood (10ml) was obtained from individual adult donors, with 

appropriate ethical approval. Blood was collected into EDTA and centrifuged at 1,600 

x g for 10 min, and the plasma fraction was recentrifuged at 16,000 x g for 10 min.  

Plasma was stored frozen at -80°C until required. DNA was extracted using a QIAmp 

Blood Maxi kit (Qiagen, UK) using the ‘Purification of DNA from whole blood’ spin 

protocol, according to the manufacturer’s instructions.  Peripheral blood leukocyte 

genomic DNA, isolated from buffy coat preparations from individual donors, was 

purchased from BioChain (Hayward, California USA). 

 

2.2 Bisulfite conversion 

Genomic leukocyte DNA (10µg) was bisulfite-converted using a protocol described 

previously [17]. For cell-free plasma DNA the bisulfite protocol was modified to 

allow for the small quanitity of plasma DNA obtained. The plasma DNA was mixed 

with carrier DNA (2.5 μg  of  bacterial plasmid DNA) before bisulfite treatment, 

which was carried out as above, but at 95°C for 5 minutes followed by 55°C for 3.5 

hours. 

 

2.3 PCR amplification, cloning and sequencing 

To amplify the GNAS1 region for digestion with FnuDII, the following primers 

were used 5’ ctt cca aaa agg gac cca tc 3’ and 5’ agc ctc ctc tct tcc cac tc 3’. To 

amplify the GNAS1 region after bisulfite conversion, bisulfite-specific primer pairs 
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(Bsps), were used. The Bsp primers were designed using MethPrimer software [18].  

The primers were 5’ gat ttt ttt tgt ttt tat gga ttt agg 3’  and 5’ cta acc aac taa acc tcc tct 

ctt c 3’. No CpG dinucleotides are included in Bsp sequences, to allow the 

amplification of both methylated and unmethylated sequences. PCR amplifications 

were performed as follows: 95°C for 3 min, (95°C for 30 s, 55°C annealing for 30 s, 

72°C for 60 s) for 35 cycles, with a final step at 72°C for 10 min.  PCRs were carried 

out in 25µl, including each Bsp primer at 0.4 µM, 2 units of Platinum Taq DNA 

polymerase (Invitrogen), and 4.0 µl of bisulfite-treated DNA, and standard PCR 

components. PCR products were purified using QIAquick PCR Purification Kit 

(Qiagen, UK), eluted in 50 µl of H2O. For DNA sequence analysis, the amplified 

DNA was cloned into the pGEM-T Easy (Promega) vector. 

 

3. Results 

 

The GNAS1 locus (Fig. 1) on chromosome 20 is imprinted, displaying parent-of-

origin-dependent DNA methylation that regulates the complex transcriptional activity 

of this locus [19]. The region of DNA that comprises the XL promoter, first intron 

and first exon has been shown to be methylated in the maternal allele, in a number of 

adult tissues. The paternal allele is unmethylated in this DNA region. This region of 

differential methylation also includes a common single nucleotide polymorphism, 

rs1800905, which is an A/G difference [20].  

 

The SNP provides an opportunity to distinguish between alleles from different parents 

in heterozygous individuals. This A/G SNP creates a restriction site polymorphism 

(Fig.1). for the restriction enzyme FnuDII whose target site is CGCG. This was 
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exploited to detect individuals heterozygous for the SNP, using amplicons of the 

relevant region obtained by PCR amplification of cfp DNA obtained from a number 

of individual healthy adult plasma donors. 

 

The ability to detect SNP heterozygotes in this way (data not shown) immediately 

indicated that both paternal and maternal alleles were represented in cfp DNA. 

Making the assumption that parent-of-origin differential methylation is maintained in 

this adult DNA source, this finding suggested that both methylated and unmethylated 

molecules were represented in cfp DNA in readily detectable amounts. 

 

To enable us to interrogate the methylation status of several CpG sites in the GNAS1 

imprinted region, and to directly examine the representation of methylated and 

unmethylated DNA molecules in cfp DNA in detail, we employed bisulfite 

conversion. Treatment of DNA with bisulfite converts unmethylated cytosine residues 

to uracil residues. Following PCR amplification by a DNA polymerase (such as Taq 

DNA polymerase) that is tolerant of uracil in DNA, unmethylated cytosine residues 

appear as thymine in the amplified product. Methylated cytosine residues are resistant 

to conversion by bisulfite [17]. 

 

Following bisulfite conversion of cfp DNA from SNP heterozygous donors, part of 

the differentially methylated region was amplified using bisulfite-specific primers. In 

addition, bisulfite converted cfp DNA from some homozygous donors was similarly 

processed, as well as leukocyte DNA to represent genomic DNA isolated directly 

from a cellular source. The region targeted by the bisulfite-specific primers contains 

four or five CpG dinucleotides, depending upon whether it is derived from the A or G 
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SNP allele respectively (Fig. 1). For each plasma donor, amplicons were cloned in a 

plasmid vector, and numbers of independent recombinant plasmids were DNA-

sequenced. The presence of C residues in the DNA sequences indicated methylated C 

residues at each of the four or five CpG sites (Fig. 2). 

 

The results for leukocyte cellular DNA obtained from two heterozygous donors 

demonstrated clear parent-of-origin-dependent methylation. For the leukocyte cellular 

DNA from donor 6, the A allele is hypomethylated, with the G allele 

hypermethylated; and vice versa for donor 7 (Fig. 2). Although overall the imprinting 

is distinct between the two alleles, as expected from previous work on methylation of 

this locus in other tissues there is a certain amount of variation in the methylation 

status of the two alleles, with a small proportion of methylated CpG sites in the 

presumed paternal allele and unmethylated sites in the presumed maternal allele. 

Combining data from both individuals, 19 maternal and 16 paternal alleles were 

recovered, which is consistent with the expectation that there is no bias in our 

experimental system for the bisulfite conversion, PCR, cloning and sequencing of the 

two alleles, i.e. that both alleles are recovered equally. 

 

For the plasma DNA from three individual heterozygous donors, 1-3, the results also 

showed distinct imprinting, with clear parent-of-origin-dependent methylation. In 

each case the A allele was the hypomethylated allele, presumed to be paternal. 

Combining data for all three heterozygotes, 27 maternal and 24 paternal alleles were 

recovered, consistent with the hypothesis that there is equal representation of both 

alleles in cfp DNA. For such data, it could be argued that dividing the data into 

maternal (hypermethylated) and paternal (hypomethylated) classes on the basis of the 
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SNP ignores partially-methylated molecules, where presence of even a single 

methylated CpG site might be significant in determining abundance in cfp DNA. 

However, the variations from complete hyper- or hypomethylation in cfpDNA are 

similar to those seen in the cellular DNA, indicating that the population of molecules 

in cfp DNA does in fact reflect cellular DNA. 

 

Fig. 2 also presents data for the cfp DNA from two SNP homozygotes. As expected 

the data indicate two distinct classes of DNA molecules on the basis of their 

methylation. Here the parent-of-origin distinction cannot be made on the basis of the 

SNP (both donors are G  homozygotes), but categorising the molecules simply on the 

basis of whether the majority of CpG sites are methylated  or unmethylated, we 

conclude that 22 maternal and 21 paternal alleles were recovered from these samples. 

 

4. Discussion 

 

Analysing an imprinted locus in the cell-free component of blood has provided, for 

the first time, a critical test for the steady-state concentrations of methylated and 

unmethylated cfp DNA. This test has the advantage that it is focused on a single DNA 

sequence (or two allelic sequences that differ only by an SNP) and is therefore 

independent of assumptions about equal representations of completely unrelated 

sequences in plasma. 

 

We have found that the population of cfp DNA contains equal numbers of both 

maternal and paternal alleles, with their characteristic different methylation profiles, 

which correspond with the methylation profiles found in cellular DNA sources. We 
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can therefore conclude that methylation has no effect upon the representation of the 

GNAS1 DNA molecules in plasma. We suggest that this is likely to be generally true 

for cfp DNA from other genomic regions, with the possible exception of 

heterochromatinised regions of the genome, such as the inactive X-chromosome in 

females, or Alu repeat sequences which are highly methylated, associated with a 

closed chromatin configuration, and present in increased proportions in serum when 

compared to unique gene sequences [21]. Such methylated regions may persist as 

nucleosomes in the circulation, perhaps protecting the DNA from degradation [22]. 

 

Although the production and clearance of cfp DNA from the circuation are not well 

understood processes [2], it is likely that our finding of equal representation in the 

steady state can be seen as indicating equal rates of clearance of the two allelic forms 

from the circulation. Our data indicate that interaction with cells of the immune 

system [23], and other potential factors affecting clearance, do not in fact lead to 

differential clearance of methylated and unmethylated DNA from the circulation in 

healthy adults. A consequence of this conclusion is that the quantity of a specific 

methylated (or unmethylated) cell-free DNA biomarker in plasma is a reliable 

indication of the release of the biomarker by a tumour for cancer studies, or by the 

placenta for minimally-invasive prenatal diagnosis of fetal aneuploidy. 
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Figure legends 
 
Fig. 1 
 
(A) Schematic of the complex GNAS1 locus on chromosome 20. The patterns of 

primary transcripts produced from the maternal and paternal alleles are indicated 

above and below the indicated exonic structure of the locus [19]. Curved arrows 

represent transcription initiation sites. Maternal-specific and paternal-specific regions 

of  differential DNA methylation are indicated by asterisks. The rs1800509 SNP is 

indicated within the intron separating exons XL and 1A.  

 

(B) Nucleotide sequence of the DNA region surrounding the rs1800509 SNP. The 

single nucleotide polymorphism is indicated by R, representing the purines A or G at 

this site. CpG dinucleotides are indicated in large bold type. The region contains four 

CpG sites in the A allele.  The G allele has an additional CpG site. 

 

 

Fig 2. Methylation status of the four or five CpG sites surrounding rs1800509, in 

seven individuals. DNA was bisulfite converted, amplified by PCR, cloned in a 

plasmid vector, and individual plasmids sequenced. For each donor, 1-7, the 

methylation status of each CpG site in each sequenced DNA is indicated along a short 

horizontal line by an open (unmethylated) or closed (methylated) circle.  The extra 

CpG site present in the G allele is indicated in parenthesis, with a gap at the 

corresponding position in the A allele. Samples of cell-free plasma DNA were 

obtained from donors 1-5. Leukocyte DNA was obtained from donors 6 and 7. 
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FIGURE  1 
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FIGURE 2 
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