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1 Introduction

The structure for spatial permutations consists of a large box Λ ⊂ Rd , a large number N of points
in Λ, and permutations of those points such that all permutation jumps remain small. The relevant
parameter is the density ρ = N/|Λ|. In many models there is a critical density ρc that corresponds to
a transition from a phase with only finite cycles (when ρ 6 ρc) to a phase where a nonzero fraction
of points belong to infinite cycles (when ρ > ρc). The goal of the present article is twofold. First, we
prove that such a transition occurs in a class of models of spatial random permutations with cycle
weights. Second, we show that the cycle structure of infinite cycles satisfies a Poisson-Dirichlet law.

The main motivation for our models comes from the interacting Bose gas of quantum statistical
mechanics. The possible relevance of long permutation cycles to Bose-Einstein condensation was
pointed out by Matsubara [17] and Feynman [10]. Sütő made important clarifications for the
ideal Bose gas, showing in particular that long cycles are macroscopic [19, 20]. It is a notoriously
difficult problem to prove Bose-Einstein condensation. Another problem, that is related but not
subordinated, is to understand how the critical temperature is modified by particle interactions.
In the recent article [5], we derived (non-rigorously) a model of spatial permutations where the
original interactions between quantum particles have been replaced by cycle weights. The simplified
model retains some features of the original model, as they have the same free energy to lowest order
in the scattering length of the interaction potential. We then used the formula (2.9) below for the
critical density. The validity of this formula for the model with cycle weights is proved in the present
article.

Models of spatial permutations are also attractive per se. They have both specific and general fea-
tures. One general feature that is especially striking is the Poisson-Dirichlet law for the distribution
of cycle lengths. The literature on the subject is huge, see e.g. [1, 14, 12] for a sample. The Poisson-
Dirichlet distribution is expected to make an appearance in other models with spatial structure and
permutations such as the random stirring model [13, 21]. This was proved recently by Schramm on
the complete graph [18]; see also Berestycki [2] for several useful observations and clarifications.

The models considered here are “annealed" in the sense that spatial positions vary and they are
integrated upon. Annealed models are both simpler and more relevant for the Bose gas. But the
“quenched" models, where the positions are fixed and chosen according to a suitable point pro-
cess, look very interesting in probability theory. One conjectures that long cycles satisfy the same
Poisson-Dirichlet law as in the annealed model — the only difference being the critical density. This
is supported by numerical evidence [11, 15]. An unrelated but very interesting problem is the com-
plete description of Gibbs states, involving crossing fluxes that depend on the boundary conditions.
Such a description has been recently achieved by Biskup and Richthammer in the one-dimensional
model [7].

2 Setting & results

The state space of the (annealed) model of spatial permutations with cycle weights is ΩΛ,N = ΛN ×
SN , where Λ ⊂ Rd is a cubic box of size L, and SN is the symmetric group of permutations of
N elements. We denote by |Λ| = Ld the volume of Λ. We equip ΩΛ,N with the product of the
Borel σ-algebra on ΛN and the discrete σ-algebra on SN . We introduce a “Hamiltonian" and its
corresponding Gibbs state. Namely, the Hamiltonian is a function H : ΩΛ,N → R ∪ {∞} that we
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suppose of the form

H(x ,π) =
N
∑

i=1

ξ(x i − xπ(i)) +
∑

`> 1

α`r`(π). (2.1)

Here, x = (x1, . . . , xN ) ∈ ΛN and π ∈ SN . We always suppose that e−ξ is continuous with positive
Fourier transform, and that it is normalized,

∫

Rd e−ξ(x) dx = 1. Notice that ξ is allowed to take the
value +∞, and that positivity of the Fourier transform implies that ξ(x) = ξ(−x). The cycle weights
α1,α2, . . . are fixed parameters. Finally, r`(π) denotes the number of `-cycles in the permutation π.

Boundary conditions are not expected to play a prominent rôle here, and we therefore choose those
that make proofs simpler. These are the “periodized" boundary conditions, where we replace ξ by
the function ξΛ, defined by

e−ξΛ(x) =
∑

z∈Zd

e−ξ(x−Lz) . (2.2)

The normalization assumption
∫

Λ
e−ξΛ =

∫

Rd e−ξ = 1 implies that e−ξΛ(x) is finite for at least
almost every x . When e−ξ has bounded support with diameter smaller than L we recover the usual
periodic boundary conditions. We let HΛ be as H in (2.1), but with ξΛ instead of ξ. The Gibbs state
is given by the probability measure

Prob(dx ,π) =
1

N !Y
e−HΛ(x ,π) dx (2.3)

on ΩΛ,N , where dx is the Lebesgue measure on ΛN and Y is a suitable normalization, namely

Y =
1

N !

∑

π∈Sn

∫

ΛN

e−HΛ(x ,π) dx . (2.4)

In typical realizations of the system, points are spread all over the space because of the Lebesgue
measure that prevents accumulations. The lengths of permutation jumps ‖x i − xπ(i)‖ stay bounded
uniformly in Λ because of the jump weights e−ξ(x i−xπ(i)) . The lengths of permutation cycles depend
on the density of the system. For small density, points are far apart and jumps are unlikely, which
typically results in small cycles. But as the density increases, points have more and more possibilities
to hop, and a phase transition takes place where “infinite" cycles appear. The cycle weights modify
the critical density and also the distribution of cycle lengths, see below. The model is illustrated in
Fig. 1.

This model arises naturally from the Feynman-Kac representation of the dilute Bose gas. The jump
function is then ξ(x) = 1

4β
‖x‖2 (plus a normalization constant), with β the inverse temperature of

the system. Notice that if the original quantum system has periodic boundary conditions, we get the
periodized Gaussian function. Cycle weights were introduced in [3] as a crude way to account for
the particle interactions. But the calculations of [5] suggest that the cycle weights can be chosen so
that the model describes the Bose gas exactly in the dilute regime. We do not write here the precise
formula for the weights, but we observe that they satisfy the asymptotic α j = −α(1−O( j−1/5)), so
that α j converges as j→∞ fast enough for our purpose.

We are solely interested in properties of permutations and we introduce random variables that are
functions on SN rather than ΩΛ,N . Let `(1)(π),`(2)(π), . . . denote the cycle lengths in non-increasing
order, repeated with multiplicities. We will prove that, above the critical density, the cycle lengths
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Figure 1: A typical realization of a spatial permutation. As |Λ|, N →∞, the jumps remain finite but
the cycle lengths may diverge.

scale like N and they converge in distribution to Poisson-Dirichlet. The latter is conveniently defined
using the Griffiths-Engen-McCloskey distribution GEM(θ), which is the distribution for

�

X1, (1− X1)X2 , (1− X1)(1− X2)X3 , . . .
�

,

where X1, X2, . . . are i.i.d. beta random variables with parameter (1,θ); that is, Prob(X i > s) =
(1− s)θ for 0 6 s 6 1. The Poisson-Dirichlet distribution PD(θ) is the law obtained by rearranging
those numbers in non-increasing order. See [1, 14] for more information and background. In
the sequel, we say that a sequence of random variables Y (1)n , Y (2)n , . . . converges in distribution to
Poisson-Dirichlet as n → ∞ if, for each fixed k, the joint distribution of Y (1)n , . . . , Y (k)n converges
weakly to the joint distribution of the first k random variables in Poisson-Dirichlet. This is denoted

(Y (1)n , Y (2)n , . . . )⇒ PD(θ). (2.5)

As already mentioned, we make the important assumption that the jump function has nonnegative
Fourier transform. This allows to define the “dispersion relation" ε(k), k ∈ Rd , by the equation

e−ε(k) =

∫

Rd

e−2πik·x e−ξ(x) dx . (2.6)

Notice that ε(k) is real, ε(0) = 0, and ε(k) > 0 for all k 6= 0, and lim‖k‖→∞ ε(k) =∞ (by Riemann-
Lebesgue). In order to avoid pathological cases we assume that e−ε(k) is uniformly continuous on
Rd . We also suppose that ε(k) > a‖k‖η for small k, for some a > 0 and η < d. It is easy to
see that ε(k) is always greater than a‖k‖2 for small k, so the latter assumption always holds in
dimensions d > 2. Among possible jump functions other than Gaussians, let us mention e−ξ(x) =
const (|x |+1)−γ with 1< γ < 2 in d = 1, for which η= γ−1. As for the cycle weights, we consider
three cases:

(i) lim j→∞α j = α with α > 0, and
∑

j |α j −α|<∞.

(ii) lim j→∞α j = α with α6 0, and
∑

j
1
j
|α j −α|<∞.
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(iii) α j = γ log j with γ > 0.

We now introduce the fraction ν of points in infinite cycles. It is obvious that finite systems can
only host finite cycles, so the definition of ν must involve the thermodynamic limit. Given a finite
number K , let νK denote the fraction of points in cycles of length larger than K . Precisely,

νK = lim inf
|Λ|,N→∞

E
� 1

N

∑

i:`(i)>K

`(i)
�

. (2.7)

Here and in the sequel, the limit |Λ|, N →∞means that both go to infinity while keeping the density
ρ = N/|Λ| fixed. This is the standard thermodynamic limit of statistical mechanics. We then define

ν = lim
K→∞

νK . (2.8)

This limit exists since (νK) is decreasing and bounded. Let ν̄K denote the limsup of (2.7). We expect
that ν̄K = νK but we do not prove it. On the other hand, we will prove in Section 5 that ν̄K also
converges to ν as K →∞.

Next we introduce the critical density by

ρc =
∑

j > 1

e−α j

∫

Rd

e− jε(k) dk. (2.9)

It follows from our assumptions that the critical density is finite. Indeed, the numbers e−α j are
bounded, so ρc is bounded by the integral of a geometric series,

∫

1
eε(k)−1

, which is finite.

We propose now two theorems that confirm that ρc is indeed the critical density of the model,
at least in several interesting situations. The formula (2.9) is presumably valid beyond the cases
treated in this article, but the precise extent of its validity is not clear. The first theorem states that
macroscopic cycles occur precisely above the critical density, and that they obey the Poisson-Dirichlet
law.

Theorem 2.1. Assume that α j → α as described above. Then

(a) the fraction of points in infinite cycles is given by

ν =max
�

0,1−
ρc

ρ

�

;

(b) when ν > 0, i.e. when ρ > ρc, the cycle structure converges in distribution to Poisson-Dirichlet:
As |Λ|, N →∞ we have

�`(1)

νN
,
`(2)

νN
, . . .
�

⇒ PD(e−α ).

Such a law was already observed in absence of spatial structure, and when the cycle weights are
constant. This case is known as the Ewens distribution, see e.g. [9, 12, 1]. Results about weights that
are asymptotically Ewens can be found in [16, 6]. Spatial permutations with small cycle weights,
i.e. when the limit is α= 0, were studied in [4].

The second theorem concerns cycle weights that diverge logarithmically — it is somehow the limit
α→∞ of Theorem 2.1. Cycle weights have a striking effect as a single giant cycle occurs above the
critical density! This is in accordance with a similar observation for non-spatial permutations [6].
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Theorem 2.2. Assume that α j = γ log j with γ > 0. Then

(a) the fraction of points in infinite cycles is given by

ν =max
�

0,1−
ρc

ρ

�

;

(b) when ν > 0, i.e. when ρ > ρc, there is a single giant cycle that contains almost all points in
infinite cycles: As |Λ|, N →∞ we have

`(1)

νN
⇒ 1.

The rest of this article is devoted to the proof of the results above. We reformulate the problem in
the Fourier space in Section 3, following Sütő [20]. The model involves a measure on occupation
numbers of Fourier modes, and of random permutations of those numbers. In Section 4 we obtain
information about occupation numbers using techniques of Buffet and Pulé [8], and using certain
estimates of our recent joint work with Velenik [6]. Random permutations within each mode involve
the cycle weights and are thus similar to those studied in [6]. Combining all those results allows us
to prove Theorems 2.1 and 2.2 in Section 5.

3 Random permutations and Fourier modes

The goal of this section is to introduce an alternative model of random permutations that involves
Fourier modes, and that has the same marginal distribution on cycle lengths. Let Λ∗ = 1

L
Zd be the

space dual to Λ in the sense of Fourier theory.

3.1 The marginal distribution of cycle lengths

Recall that the cycle structure of a permutation π ∈ SN is the sequence of cycle lengths ` =
(`(1),`(2), . . . ,`(m)), with `(i) > `(i+1) and `(m) > 1; the number of cycles m depends on π,
1 6 m 6 N . Those numbers form a partition of {1, . . . , N}. Another way to write ` is to intro-
duce the occupation numbers r = (r1, . . . , rN ), where r j = #{i : `(i) = j}. We always have

m
∑

i=1

`(i) =
N
∑

j=1

jr j = N . (3.1)

One should not confuse the occupation numbers r with the occupation numbers n = (nk) to be
introduced later; they are not related in any direct way.

Proposition 3.1. The marginal of the probability measure (2.3) on occupation numbers is

Prob(r ) =
1

Y

N
∏

j=1

1

r j!

� e−α j

j

∑

k∈Λ∗
e− jε(k)

�r j
,

with Y the normalization of (2.4).

1178



Proof. The marginal probability on permutations is

Prob(π) =
1

N !Y

∫

ΛN

e−HΛ(x ,π) dx

=
1

N !Y

∫

ΛN

e−
∑N

i=1 ξΛ(x i−xπ(i))−
∑

j > 1 α j r j(π) dx1 . . . dxN .

(3.2)

We observe that integrals factorize according to permutation cycles. The contribution of a cycle of
length j is (with y j+1 ≡ y1)

e−α j

∫

Λ j

e−
∑ j

i=1 ξΛ(yi−yi+1) dy1 . . . dy j = e−α j |Λ|
∑

z∈Zd

�

e−ξ
�∗ j(Lz). (3.3)

To see the equality in (3.3), we start with the right hand side. Using the definition of the convolution,
writing |Λ|=

∫

Λ
dy1, and shifting all the variables in the convolution integrals by y1 gives

|Λ|
∑

z∈Zd

�

e−ξ
�∗ j(Lz)

=
∑

z∈Zd

∫

Λ
dy1

∫

Rd( j−1)
dy2 . . . dy j e−ξ(Lz−y2+y1) e−ξ(y2−y3) . . . e−ξ(y j−y1)

=
∑

z1∈Zd

∫

Λ
dy1

∑

z2,...,z j∈Zd

∫

Λ j−1

dy2 . . . dy j e−ξ(y1−y2+L(z1−z2)) e−ξ(y2−y3+L(z2−z3))

. . . e−ξ(y j−1−y j+L(z j−1−z j)) − e−ξ(y j−y1+Lz j) .

(3.4)

The last equality is obtained by decomposing the domain of integration Rd into cubes Λ+ Lz with
z ∈ Zd and then changing variables in the integrals so that all the boxes become centered at 0. We
now change to summation index: z̃ j = z j , and z̃i = zi − zi+1 for i < j. It is easy to see that this is
indeed a bijection on (Zd) j . Summing over z̃i instead of zi now gives the left hand side of (3.3).

The Fourier transform of (e−ξ )∗ j is e− jε(k) . The Poisson summation formula states that

∑

z∈Zd

f (Lz) =
1

|Λ|

∑

k∈Λ∗
bf (k), (3.5)

where bf is the Fourier transform of f , whose precise definition can be found in Eq. (2.6). We then
get

Prob(π) =
1

N !Y

N
∏

j=1

�

e−α j
∑

k∈Λ∗
e− jε(k)

�r j(π)
. (3.6)

All permutations of a given cycle structure have the same probability, and there are

N !
∏

j jr j r j!
(3.7)

elements in the cycle structure defined by r . We get the claim by multiplying the above probability
by this number.
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3.2 Decomposition of permutations according to Fourier modes

We denote by n = (nk) the occupation numbers indexed by k ∈ Λ∗, and byNΛ,N the set of occupation
numbers such that

∑

k∈Λ∗ nk = N . Next, we introduce permutations that are also indexed by Fourier
modes, π = (πk). LetMΛ,N be the set of pairs (n,π) where n ∈ NΛ,N and π = (πk) with πk ∈ Snk

for each k ∈ Λ∗. We introduce a probability measure on NΛ,N :

Prob(n) =
1

Y

∏

k∈Λ∗
e−ε(k)nk hnk

(3.8)

with

hn =
1

n!

∑

π∈Sn

e−
∑

j > 1 α j r j(π) , (3.9)

and h0 = 1. We will check later that the normalization Y is the same as given in (2.4). Then we
introduce the probability of a pair (n,π) by

Prob(n,π) =
1

Y

∏

k∈Λ∗

1

nk!
e−ε(k)nk−

∑

j > 1 α j r j(πk) . (3.10)

Notice that (3.8) is the marginal of (3.10) with respect to π. The conditional probability Prob(π|n),
where πk ∈ Snk

for all k, is given by

Prob(π|n) =
∏

k∈Λ∗

� 1

nk!hnk

e−
∑

j > 1 α j r j(πk)
�

. (3.11)

That is, given n, each πk is independent and distributed as nonspatial random permutations with
cycle weights (see Eq. (5.1) below). Given π, let r j =

∑

k r j(πk).

Proposition 3.2. The marginal of the probability measure (3.10) with respect to r is identical to the
marginal of the probability measure (2.3).

Proof. We check that the marginal of (3.10) gives the formula of Proposition 3.1. For this, let r be
a collection of occupation numbers, and write (r jk) : r for the set of all integers r jk ( j > 1, k ∈ Λ∗)
such that

∑

k r jk = r j for all j. Then,

Prob(r ) =
1

Y

∑

(r jk):r

∑

(n,π):
r j(πk)=r jk

∏

k∈Λ∗

� 1

nk!
e−ε(k)nk−

∑

j α j r j(πk)
�

=
1

Y

∑

(r jk):r

∏

k∈Λ∗

� 1
∏

j jr jk r jk!
e−ε(k)

∑

j jr jk−
∑

j α j r jk
�

.

(3.12)

We have summed over πk that are compatible with r jk, using the formula (3.7) for the number of
elements. The bracket above factorizes according to j. Using

∏

k∈Λ∗

e−α j r jk

jr jk
=
� e−α j

j

�r j
, (3.13)
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and writing, for fixed j > 1, (r jk) : r j for the set of integers r jk with
∑

k r jk = r j , we get

Prob(r ) =
1

Y

∏

j > 1

�

� e−α j

j

�r j
∑

(r jk):r j

∏

k∈Λ∗

1

r jk!
e− jε(k)r jk

�

. (3.14)

For each fixed j, the multinomial theorem gives

∑

(r jk):r j

∏

k∈Λ∗

e− jε(k)r jk

r jk!
=

1

r j!

�
∑

k∈Λ∗
e− jε(k)

�r j
. (3.15)

Then Prob(r ) is indeed given by the formula of Proposition 3.1. This also proves that Y is the correct
normalization that makes (3.8) and (3.10) probability measures.

4 Properties of occupation numbers

We study in this section the probability measure of occupation numbers of Fourier modes, Prob(n),
that is defined in (3.8). We show that the typical n has the following properties:

• n0

N
=max(0,1− ρc

ρ
);

• 1
N

∑

0<‖k‖<δ nk is small when δ is small.

• For all δ > 0, 1
N

∑

‖k‖> δ nk1nk>M is small when M is large.

The behavior of the normalizations hn defined in (3.9) play an important rôle. We assume that hn
grows or vanishes at most polynomially, i.e., there are constants C and κ such that for all n > 1,

(Cn)−κ 6 hn 6 (Cn)κ. (4.1)

We also need that certain ratios of hn be bounded. Precisely, for s > 1, let

C(s) = sup
m,n > 1

n/s<m<sn

hm

hn
. (4.2)

We assume that C(s) is finite for any s.

Those properties have been verified in [6]when α j → α and α j = γ log j. Indeed, one finds hn ∼ n−r ,
with r = e−α − 1 in the first case and r = −1− γ in the second case. The results of the present
article actually extend to other cycle weights, as long as Eqs (4.1) and (4.2) hold true.

The radius of convergence of the generating function of hn is equal to 1. We have the following
identity for all γ > 0:

∑

n > 0

e−γn hn = exp
∑

j > 1

1
j
e−γ j−α j . (4.3)

See [4, 16] for the proof.
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4.1 Macroscopic occupation of the zero mode

We use a strategy that is inspired by Buffet and Pulé in their study of the ideal Bose gas [8]. It
consists in looking at the Laplace transform of the distribution of n0

N
. Let Y (N) be the normalization

of Eq. (2.4). We now put the explicit dependence on N because it is going to vary. Notice that Y (N)
also depends on Λ, but the domain is fixed throughout.

We have

Prob(n0 = j) =
h j

Y (N)

∑

n∈NΛ,N
n0= j

∏

k 6=0

e−ε(k)nk hnk
= h j

Y̌ (N − j)
Y (N)

, (4.4)

with
Y̌ (N) =

∑

n∈NΛ,N
n0=0

∏

k∈Λ∗
e−ε(k)nk hnk

. (4.5)

Notice the relation

Y (N) =
N
∑

j=0

h j Y̌ (N − j). (4.6)

We are often going to interchange infinite sums and products. Let N be the set of finite sequences
of integers. Notice that N is countably infinite. The following lemma is easy to prove and sufficient
for our purpose.

Lemma 4.1. Let a(k, n) be a nonnegative function such that a(k, 0) = 1 for all k. Then
∑

n∈N

∏

k > 1

a(k, nk) =
∏

k > 1

�
∑

n > 0

a(k, n)
�

.

(It is possible that both sides are infinite.)

Proof. Let `(n) be the index of the largest nonzero integer in n. For every m > 1 we have

∑

n∈N :`(n)6 m

`(n)
∏

k=1

a(k, nk) =
∑

n1,...,nm > 0

m
∏

k=1

a(k, nk) =
m
∏

k=1

�
∑

n > 0

a(k, n)
�

. (4.7)

The left hand side and the right hand side are clearly increasing in m, and we obtain the lemma by
letting m→∞.

Lemma 4.1 also holds for complex a(k, n) under the assumption
∑

k > 0

∑

n > 1 |a(k, n)| be finite.
This can be proved using dominated convergence, but it is not needed here.

We introduce a Riemann approximation to the critical density (2.9) which will be useful in Proposi-
tion 4.3 below.

ρ(Λ)c =
∑

j > 1

e−α j
1

|Λ|

∑

k 6=0

e− jε(k) . (4.8)

Lemma 4.2. lim|Λ|→∞ρ
(Λ)
c = ρc.
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Proof. Since e−ε(k) is uniformly continuous, the Riemann sum |Λ|−1
∑

k 6=0 e− jε(k) converges to
∫

e− jε(k) dk for each j. We need to show that the limit |Λ| → ∞ can be interchanged with the
sum over j and we use dominated convergence. We sum separately over ‖k‖ 6 1 and ‖k‖ > 1. For
‖k‖> 1 we use ε(k)> c > 0, so that

1

|Λ|

∑

‖k‖>1

e− jε(k) 6 e− jc/2 1

|Λ|

∑

k∈Λ∗
e−ε(k) (4.9)

for j > 2. The latter sum is easily seen to converge using Eq. (3.5), so the right hand side is bounded
by C e− jc/2 , which is summable. For ‖k‖ 6 1, we use ε(k) > a‖k‖η with a > 0. Since e− ja‖k‖η is
decreasing, we can estimate it with integrals, namely

1

|Λ|

∑

k 6=0,‖k‖6 1

e− jε(k) 6
1

|Λ|

∑

k 6=0

e−a j‖k‖η

6 2d

∫

Rd

e−a j‖k‖η dk =
2d dπd/2Γ( d

η
)

Γ( d
2
+ 1)η(a j)d/η

.

(4.10)

The only relevant term in the upper bound is j−d/η, which makes the sum over j summable in Eq.
(4.8). The claim follows from the dominated convergence theorem.

Let NΛ = ∪N > 0NΛ,N be the set of occupation numbers on Λ∗ where
∑

k nk is an arbitrary finite
number. Using Lemma 4.1 we find

Ž =
∑

N > 0

Y̌ (N) =
∑

n∈NΛ
n0=0

∏

k∈Λ∗
e−ε(k)nk hnk

=
∏

k 6=0

�
∑

n > 0

e−ε(k)n hn

�

= exp
�
∑

j > 1

1
j
e−α j

∑

k 6=0

e− jε(k)
�

.
(4.11)

The last identity follows from (4.3) since infk 6=0 ε(k) = c(Λ) > 0. Ž is finite by Lemma 4.2. This
allows to introduce the following probability measure on [0,∞):

µΛ =
1

Ž

∑

N > 0

Y̌ (N)δN/|Λ|. (4.12)

The motivation for µΛ is that the distribution of the occupation of the zero mode can be expressed
as

Prob( n0

N
> a) =

N
∑

j=daNe

h j
Y̌ (N − j)

Y (N)
=
b(1−a)Nc
∑

j=0

hN− j
Y̌ ( j)
Y (N)

=

∫ (1−a)ρ

0
h(|Λ|(ρ− s))dµΛ(s)

∫ ρ

0
h(|Λ|(ρ− s))dµΛ(s)

.

(4.13)

Here h(x) can be any function interpolating the values hn at n ∈ N, e.g. linear interpolation. We use
the notation purely for convenience and will never evaluate h(x) at non-integer points.

We now have all the elements that allow to state and to prove the key properties leading to the
macroscopic occupation of the zero Fourier mode.
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Proposition 4.3.

(a) µΛ→ δρc
weakly as |Λ| →∞.

(b) Let λ(Λ) ∈ R such that |λ(Λ)|6 |Λ|
1−η/d

2 , then

EµΛ
�

eλ(Λ)(X−ρ
(Λ)
c )
�

→ 1.

The parameter η in the claim (b) is the one that appears in the condition for ε(k), see the paragraph
after Eq. (2.6). The relevant aspect of the claim (b) is that the expectation is bounded uniformly in
the domain even though λ(Λ) diverges. Markov’s inequality then gives the following concentration
property for |Λ| large enough, which will be used later:

ProbµΛ(|X −ρc|> ε)6 e−ε|Λ|
1−η/d

2 EµΛ

�

e|Λ|
1−η/d

2 (X−ρ(Λ)c ) + e−|Λ|
1−η/d

2 (X−ρ(Λ)c )
�

6 3 e−ε|Λ|
1−η/d

2 .

(4.14)

Proof of Proposition 4.3. (a) follows from (b), see (4.14). For (b) we note that a(k, n) =
e−(ε(k)−λ(Λ)/|Λ|)n hn fulfils the assumptions of Lemma 4.1, and thus

EµΛ(e
λ(Λ)X ) =

∫ ∞

0

eλ(Λ)s dµΛ(s) =
1

Ž

∑

N > 0

Y̌ (N)eλ(Λ)N/|Λ|

=
1

Ž

∑

n∈NΛ
n0=0

∏

k 6=0

e−(ε(k)−λ(Λ)/|Λ|)nk hnk

(4.15)

Since infk 6=0 ε(k)−λ(Λ)/|Λ|> 0, (4.3) applies, and together with (4.11) we obtain

EµΛ(e
λ(Λ)X ) = exp

�
∑

j > 1

1
j
e−α j

∑

k 6=0

e− jε(k) (e jλ(Λ)/|Λ| − 1)
�

(4.16)

By (4.8) and rearranging, we get

EµΛ
�

eλ(Λ)(X−ρ
(Λ)
c )
�

= exp
�
∑

j > 1

1
j
e−α j

∑

k 6=0

e− jε(k) �e jλ(Λ)/|Λ| − 1− j λ(Λ)|Λ|
�

�

. (4.17)

We show that the exponent vanishes as |Λ| → ∞ using dominated convergence. We use |ex − 1−
x | 6 1

2
x2 e|x | (which is easy to check using Taylor series) with x = jλ(Λ)/|Λ|. The exponent in the

right hand side of (4.17) is bounded, in absolute value, by

1
2

∑

j > 1

e−α j
1

|Λ|

∑

k 6=0

e−
1
2

jε(k)
h

jλ2(Λ)
|Λ| e− j( 1

2
ε(k)−|λ(Λ)|/|Λ|)

i

. (4.18)

Since ε(k) > a|Λ|−η/d and |λ(Λ)|2 6 |Λ|1−η/d , the bracket is bounded above uniformly in j for all
|Λ| large enough. The sum over k has been estimated in (4.9) and (4.10). Since

∑

j e−α j j−d/η <∞,
we can interchange the limit |Λ| → ∞ and the sum over j by dominated convergence. The bracket
in (4.18) tends to 0 as |Λ| → ∞, for all fixed j. It follows that (4.18) converges to zero and (4.17)
converges to one.
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Proposition 4.4. Suppose that ρ > ρc. Then, in the thermodynamic limit |Λ|, N →∞,

Prob( n0

N
> a)→







1 if a < 1− ρc

ρ
,

0 if a > 1− ρc

ρ
.

Proof. We show that, for every ε > 0,

Prob
�

�

�

n0

N
− ρ−ρc

ρ

�

�> ε
�

→ 0. (4.19)

Using the expression (4.12) which involves the measure µΛ, we write the probability as

Prob
�

�

�

n0

N
− ρ−ρc

ρ

�

�> ε
�

=
J−+ J+

J−+ J0+ J+
, (4.20)

with

J− =

∫ ρc−ερ

0

h(|Λ|(ρ− s))
h(|Λ|(ρ−ρc))

dµΛ(s),

J0 =

∫ ρc+ερ

ρc−ερ

h(|Λ|(ρ− s))
h(|Λ|(ρ−ρc))

dµΛ(s),

J+ =

∫ ρ

ρc+ερ

h(|Λ|(ρ− s))
h(|Λ|(ρ−ρc))

dµΛ(s).

(4.21)

By (4.2), the ratios of h(·) are bounded above and below for all 0 < s < ρ− c uniformly in Λ. This
shows that J−→ 0 and that J0 is bounded away from 0 as |Λ| →∞. As for J+, we need to be careful
with the integration over s close to ρ. By (4.1), the ratio in J+ is bounded by

h(|Λ|(ρ− s))
h(|Λ|(ρ−ρc))

6 εκ(C |Λ|ρ)2κ, (4.22)

which is valid provided |Λ|ε> 1. Then

J+ 6 εκ(C |Λ|ρ)2κEµΛ(1s>ρc+ερ), (4.23)

and it goes to zero by Eq. (4.14).

4.2 No macroscopic occupation below the critical density

For ρ < ρc, the support of the Dirac measure to which the measures µΛ converge lies outside of the
interval [0,ρ], and the above argument fails. In its place, we use the formula

Prob(n0 > j) =
1

Y (N)

∑

n∈NΛ,N
n0 > j

∏

k∈Λ∗
e−nkε(k) hnk

=
Y (N − j, j)

Y (N)
, (4.24)
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where

Y (m, j) =
∑

n∈NΛ,m

hn0+ j

hn0

∏

k∈Λ∗
e−nkε(k) hnk

. (4.25)

We apply summation by parts E( f (X )) = f (0) +
∑N

j=1

�

f ( j)− f ( j − 1)
�

P(X > j) to the function

e−λn0/N , and we find

E(e−λn0/N ) = 1+
(1− eλ/N )

Y (N)

N
∑

j=1

e−λ j/N Y (N − j, j)

= 1+
e−λ (1− eλ/N )

Y (N)

N−1
∑

j=0

eλ j/N Y ( j, N − j).

(4.26)

For the last equality, we used a change of summation index j→ N − j.

Proposition 4.5. Suppose that ρ 6 ρc. In the thermodynamic limit |Λ|, N →∞,

Prob( n0

N
> δ)→ 0.

for all δ > 0.

Proof. By (4.26),

|E(e
λn0
N )− 1|6

const

N







(1−ε)N
∑

j=0

Y ( j, N − j)
Y (N)

+
N−1
∑

j=(1−ε)N

Y ( j, N − j)
Y (N)






. (4.27)

From (4.24) it is obvious that Y ( j,N− j)
Y (N) 6 1, as it is equal to Prob(n0 > N − j). Thus the second term

above, along with the prefactor 1/N , is bounded by constε. For the first term, we use the inequality

sup
r

hr+ j

hr
6 C0(1+ j)2κ (4.28)

for some constant C0; this follows from (4.1) and (4.2). Then, Y (N , j)6 Y (N)C0(1+ j)2κ, and

b(1−ε)Nc
∑

j=0

Y ( j, N − j)
Y (N)

6 C0

b(1−ε)Nc
∑

j=0

Y ( j)
Y (N)

(N − j+ 1)2κ (4.29)

Now
Y ( j)
Y (N)

= e−|Λ|(qΛ( j/|Λ|)−qΛ(ρ)) , (4.30)

where qΛ(ρ) = −
1
|Λ| log Y (|Λ|ρ) is the finite volume free energy associated with the partition func-

tion Y . It was shown in [4], under conditions on the coefficients α j that are more general than
the present ones, that qΛ converges uniformly on compact intervals to a convex function q, and
that ρ 7→ q(ρ) is strictly decreasing for ρ < ρc. Thus for each ε > 0 there is bε > 0 such that
qΛ( j/|Λ|)− qΛ(ρ)> bε for all |Λ| large enough, and all j 6 (1− ε)N . So

b(1−ε)Nc
∑

j=0

Y ( j, N − j)
Y (N)

6 C0 e−bε|Λ|
b(1−ε)Nc
∑

j=0

(N − j+ 1)2κ 6 C0 e−bεN/ρ N2κ+1, (4.31)

which converges to zero as N →∞. Since ε was arbitrary, we have shown that E(eλn0/N )→ 1 for
all λ > 0, which implies the claim.
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4.3 Occupation of nonzero modes

We now turn to the modes k 6= 0. Recall the bound C(s) for the ration of hn in Eq. (4.2).

Lemma 4.6. For 0< σ < 1, k ∈ Λ∗, and j > 0, we have

Prob(nk > j)6 C( 1
σ
)2 e− j(1−σ)ε(k) .

Proof. Using (4.2), we have

Prob(nk > j) =
1

Y (N)

∑

n∈NΛ,N
nk > j

∏

k′∈Λ∗
e−nk′ε(k

′) hnk′

=
1

Y (N)

∑

n∈NΛ,N−(1−σ) j
nk > σ j

e− j(1−σ)ε(k) hnk+(1−σ) j

hnk

∏

k′∈Λ∗
e−nk′ε(k

′) hnk′

6
C(1/σ)
Y (N)

e− j(1−σ)ε(k)
∑

n∈NΛ,N−(1−σ) j
nk > σ j

∏

k′∈Λ∗
e−nk′ε(k

′) hnk′
.

(4.32)

We indeed estimated
hnk+(1−σ) j

hnk
6 C(1−σ

σ
) 6 C(1/σ). Since ε(k) > ε(0) = 0, we get an upper bound

by replacing the constraint nk > σ j by n0 > σ j. Then

Prob(nk > j)6
C(1/σ)
Y (N)

e− j(1−σ)ε(k)
∑

n∈NΛ,N−(1−σ) j
n0 > σ j

∏

k′∈Λ∗
e−nk′ε(k

′) hnk′

=
C(1/σ)
Y (N)

e− j(1−σ)ε(k)
∑

n∈NΛ,N
n0 > j

hn0−(1−σ) j

hn0

∏

k′∈Λ∗
e−nk′ε(k

′) hnk′

6
C(1/σ)2

Y (N)
e− j(1−σ)ε(k)

∑

n∈NΛ,N
n0 > j

∏

k′∈Λ∗
e−nk′ε(k

′) hnk′

6 C(1/σ)2 e− j(1−σ)ε(k) .

(4.33)

We now define three sets of occupation numbers, each of which will be shown to have measure close
to one. Let ν̃ = max(0, 1− ρc

ρ
); we will prove in the next section that ν̃ = ν , but we do not know

this yet. The sets are

Aε =
�

n ∈ NΛ,N :
�

�

n0

N
− ν̃
�

�< ε
	

Bε,δ =
�

n ∈ NΛ,N :
∑

0<‖k‖<δ

nk < εN
	

Cε,δ,M =
n

n ∈ NΛ,N :
∑

k∈Λ∗,‖k‖> δ
nk > M

nk < εN
o

.

(4.34)
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Proposition 4.7. For any ρ > 0, we have in the thermodynamic limit N , |Λ| →∞:

(a) For any ε > 0, Prob(Aε)→ 1.

(b) For any ε > 0, there exists δ > 0 such that lim infProb(Bε,δ)> 1− ε.

(c) For any ε,δ > 0 there exists M > 0 such that lim infProb(Cε,δ,M )> 1− ε.

Proof. The claim (a) immediately follows from Propositions 4.4 and 4.5. For (b), we use Lemma 4.6
with σ = 1/2 to get

E(nk) =
∑

i > 1

Prob(nk > i)6 C(2)2
∑

i > 1

e−ε(k)i/2 =
C(2)2

eε(k)/2 − 1
. (4.35)

For every δ > 0 we get, by Markov’s inequality,

Prob(Bc
ε,δ)6

C(2)2

εN

∑

0<‖k‖<δ

1

eε(k)/2 − 1
N→∞−→

C(2)2

ερ

∫

‖k‖<δ

dk

eε(k)/2 − 1
. (4.36)

By the assumption ε(k)> a‖k‖η with η < d, the integral is finite, and thus δ can be chosen so small
that limsup Prob(Bc

ε,δ)< ε.

For (c), we define F(n) =
∑

k∈Λ∗,‖k‖> δ nk1{nk > M}. Note that Prob(Cc
ε,δ,M ) = Prob(F > εN). Now

E(F/N) =
1

N

∑

k∈Λ∗,‖k‖> δ

E(nk1nk > M )

=
1

N

∑

k∈Λ∗,‖k‖> δ

�

MProb(nk > M) +
∑

j>M

Prob(nk > j)
�

,
(4.37)

where the last equality is summation by parts. By Lemma 4.6,

∑

j>M

Prob(nk > j)6 C(2)2
∞
∑

j=M+1

e− jε(k)/2 = C(2)2 e−Mε(k)/2 1

eε(k)/2 − 1
. (4.38)

Define c(δ) = inf‖k‖> δ ε(k). Note that c(δ) > 0 for all δ > 0 follows from the properties of ε(k)
stated below (2.6). Then,

E(F/N)6 C(2)2M e−Mc(δ)/4 1

N

∑

k∈Λ∗,‖k‖> δ

e−Mε(k)/4
�

1+
1

M(eε(k)/2 − 1)

�

. (4.39)

The sum above, along with the factor 1/N , converges to a Riemann integral which is finite thanks
to our conditions on ε(k). Therefore lim sup E(F/N) 6 C1M e−Mc(δ)/4 , and Markov’s inequality
implies that limsup Prob(Cc

ε,δ,M )6
M
ε

e−Mc(δ)/4 . Choosing M large enough for given ε,δ proves the
claim.
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5 Cycle lengths of spatial permutations

We now prove the claims of Theorems 2.1 and 2.2, starting with the fraction ν of points in infinite
cycles. We denote by Probn(π) the probability of a permutation π ∈ Sn in the nonspatial model with
cycle weights. That is,

Probn(π) =
1

hnn!

∏

j > 1

e−α j r j(π) (5.1)

with hn the normalization defined in (3.9). We also write En for the corresponding expectation. We
keep the notation Prob, E for probability and expectation with respect to the spatial model.

Recall that we defined ν̃ =max(0, 1− ρc

ρ
).

Proposition 5.1. Under the assumptions of Theorems 2.1 or 2.2, we have ν = ν̃ .

Proof. We use the Fourier modes decomposition of Section 3. Recall that π = (πk), r jk = r j(πk),
and r j =

∑

k r jk. We have, for fixed K > 1,

E
� 1

N

∑

i:`(i)>K

`(i)
�

= E
� 1

N

∑

j>K

jr j

�

= E
� 1

N

∑

j>K

jr j0

�

+ E
� 1

N

∑

0<‖k‖<δ

∑

j>K

jr jk

�

+ E
� 1

N

∑

‖k‖> δ

∑

j>K

jr jk

�

. (5.2)

The first term of the right-hand side is equal to

E
� 1

N

∑

j>K

jr j0

�

=
∑

n > 0

n

N
Prob(n0 = n)En

�1

n

∑

j>K

jr j

�

. (5.3)

It follows from Proposition 4.7 (a) that n0

N
→ ν̃ in probability as |Λ|, N →∞. In addition, we have

En

�1

n

∑

j>K

jr j

�

= Probn(`1 > K), (5.4)

where `1 is the length of the cycle that contains the index 1. It was shown in [16, 6] that the latter
converges to 1 as n→∞. We have thus proved that, for any finite K ,

lim
|Λ|,N→∞

E
� 1

N

∑

j>K

jr j0

�

= ν̃ . (5.5)

The second term in the right-hand side of (5.2) is less than E( 1
N

∑

0<‖k‖<δ nk) and this is as small as
we want by choosing δ small, see Proposition 4.7 (b). The last term is less than

E
� 1

N

∑

‖k‖> δ

nk1nk>K

�

.

For any δ > 0, this can be made small by choosing K large, see Proposition 4.7 (c). This shows that
both νK and ν̄K converge to ν̃ as K →∞.
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The next step is to prove that the distribution of cycle lengths of nonspatial weighted random per-
mutations is asymptotically equal to Poisson-Dirichlet.

Proposition 5.2. Assume that α j → α as in Theorem 2.1. Then, under the probability measure (5.1),

�`(1)

n
, . . . ,

`(m)

n

�

⇒ PD(e−α ).

Proof. Let us order the cycles of a permutation π according to some rule, such as their smallest
element. That is, the first cycle is the one that contains the index 1; the second cycle is the one that
contains the smallest element that is not already in the first cycle; and so on... Let `1,`2, . . . be the
cycle lengths with respect to this order. We prove that

�`1

n
,
`2

n− `1
, . . . ,

`m

n− `1− · · · − `m−1

�

converges (in distribution) to i.i.d. beta random variables with parameters (1, e−α ). It then im-
mediately follows that ( `1

n
, . . . , `m

n
) converges to GEM(e−α ), and that ( `

(1)

n
, . . . , `

(m)

n
) converges to

PD(e−α ). We proceed by induction on m. The case m= 1 is just the law for `1

n
, whose convergence

to the beta random variable was proved in [16, 6]. For m > 1, let

A=
n

(c1, . . . , cm) ∈ {1, . . . , n}m : c1

n
6 a1, . . . , cm

n−c1−···−cm−1
6 am

o

. (5.6)

Then

Probn

�

� `1

n
, . . . , `m+1

n−`1−···−`m

�

∈ A× [0, am+1]
�

=
∑

(c1,...,cm)∈A

Probn

�

`1 = c1, . . . ,`m = cm

�

Probn

�

`m+1

n−`1−···−`m
6 am+1

�

�`1 = c1, . . . ,`m = cm

�

. (5.7)

It is not hard to check that

Probn

�

`m+1

n−`1−···−`m
6 am+1

�

�`1 = c1, . . . ,`m = cm

�

= Probn−c1−···−cm

�

`1

n−c1−···−cm
6 am+1

�

. (5.8)

In addition, any element (c1, . . . , cm) in A satisfies

n− c1− · · · − cm > n
m
∏

i=1

(1− ai). (5.9)

It follows that (5.8) converges in probability to the beta measure of [0, am+1] uniformly in c1, . . . , cm.
Then (5.7) converges to a product of beta measures of the set ×m−1

i=1 [0, ai] by the induction hypoth-
esis.

Finally, we relate the distribution of long cycles of the spatial model to that of nonspatial random
permutations. Let

A= [a1, b1]× · · · × [am, bm]⊂ (0, 1)m. (5.10)

1190



Proposition 5.3. If ν > 0, we have for any m > 1,

lim
|Λ|,N→∞

Prob
��`(1)

νN
, . . . ,

`(m)

νN

�

∈ A
�

= lim
n→∞

Probn

��`(1)

n
, . . . ,

`(m)

n

�

∈ A
�

.

Proof. Let us write `(1)k for the length of the longest cycle of the permutation πk corresponding to
k ∈ Λ∗. We clearly have

Prob
�

sup
k 6=0

`
(1)
k

N
> ε
�

6 Prob
�

sup
k 6=0

nk

N
> ε
�

. (5.11)

It follows from Proposition 4.7 (b) and (c) that the right-hand side vanishes in the limit |Λ|, N →∞.
The zero Fourier mode is consequently the only one that matters, i.e.

lim
|Λ|,N→∞

Prob
��`(1)

νN
, . . . ,

`(m)

νN

�

∈ A
�

= lim
|Λ|,N→∞

Prob
��`

(1)
0

νN
, . . . ,

`
(m)
0

νN

�

∈ A
�

= lim
|Λ|,N→∞

Prob
��`

(1)
0

n0
, . . . ,

`
(m)
0

n0

�

∈ A
�

. (5.12)

The last identity follows from Proposition 4.7 (a). Since n0 →∞ as |Λ|, N →∞, the last term con-
verges to the asymptotic joint probability of the m largest cycles in nonspatial random permutations
with cycle weights.

Theorem 2.1 clearly follows from Propositions 5.1, 5.2, and 5.3. Theorem 2.2 follows from Proposi-
tions 5.1 and 5.3, and from the fact that `1

n
⇒ 1 for random permutations with cycle weights of the

form e−α j = j−γ with γ > 0, see [6]. Notice that Proposition 5.3 is trivial here for m > 2, as both
sides of the identity converge to zero.
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