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a b s t r a c t

The calorimeter, range detector and active target elements of the T2K near detectors rely on the

Hamamatsu Photonics Multi-Pixel Photon Counters (MPPCs) to detect scintillation light produced by

charged particles. Detailed measurements of the MPPC gain, afterpulsing, crosstalk, dark noise, and

photon detection efficiency for low light levels are reported. In order to account for the impact of the

MPPC behavior on T2K physics observables, a simulation program has been developed based on these

measurements. The simulation is used to predict the energy resolution of the detector.

Crown Copyright & 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

The Tokai to Kamioka (T2K) project [1] is a second-generation
long-baseline neutrino oscillation experiment that uses a high
intensity off-axis neutrino beam produced by the 30 GeV proton
beam at the Japan Proton Accelerator Research Complex (J-PARC).
The first phase of the T2K experiment pursues two main goals: a
sensitive measurement of y13, and determination of the para-
meters sin22y23 and Dm2

23 to better accuracy than any previous
experiment.

To reach these physics goals, precise knowledge of the neutrino
beam flux and spectrum, and the neutrino interaction cross-sections
is required. To perform the required measurements, the near
detector complex (ND280 [2]) was built at a distance of 280 m from
011 Published by Elsevier B.V. All

x: þ1 604 222 1074.

iversity of Oxford, Clarendon
the hadron production target. The complex has two detectors (Fig. 1):
an on-axis detector (neutrino beam monitor), and an off-axis
neutrino detector located along the line between the average pion
decay point and the Super-Kamiokande detector, at 2.51 relative to
the proton beam direction. The on-axis detector (INGRID) consists of
7þ7 identical modules, arranged to form a ‘‘cross’’ configuration, and
two ‘‘diagonal’’ modules positioned off the cross axes. The off-axis
detector includes a magnet, previously used in the UA1 and NOMAD
experiments, operated with a magnetic field of up to 0.2 T; a Pi-Zero
detector (POD); a tracking detector that includes time projection
chambers (TPCs) and fine grained scintillator detectors (FGDs); an
electromagnetic calorimeter (ECAL); and a side muon range detector
(SMRD).

The ND280 detector extensively uses scintillator detectors and
embedded wavelength-shifting (WLS) fibers, with light detection
from the fibers by photosensors that must operate in a magnetic
field and fit in limited space inside the magnet.

After studying several candidate photosensors, a multi-pixel
avalanche photodiode operating in the limited Geiger multiplication
rights reserved.
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Fig. 1. Schematic view of (a) the T2K ND280 near detector complex consisting of the on-axis neutrino beam monitor (the ‘‘cross’’ configuration of cubical black modules on

the two lower levels) and off-axis near neutrino detector on the top level, and (b) an exploded view of the off-axis near neutrino detector.

Fig. 2. Photographs of an MPPC with a sensitive area of 1.3�1.3 mm2: magnified

face view (left) with 667 pixels in a 26�26 array (9 pixels in the corner are

occupied by an electrode); the ceramic package of this MPPC (right).

A. Vacheret et al. / Nuclear Instruments and Methods in Physics Research A 656 (2011) 69–8370
mode was selected as the photosensor. These novel devices are
compact, well matched to the spectral emission of WLS fibers, and
insensitive to magnetic fields. Detailed information about such
devices and basic principles of operation can be found in a number
of papers [3–8] and references therein.

The operational parameters required for these photosensors
were similar for all ND280 subdetectors and can be summarized
as follows: an active area diameter of � 1 mm2, photon detection
efficiency for green light Z20%, a gain of ð0:521:0Þ � 106, more
than 400 pixels, and a single photoelectron dark rate r1 MHz. The
pulse width should be less than 100 ns to match the spill structure
of the J-PARC proton beam. For calibration and control purposes it
was very desirable to obtain well-separated single electron peaks in
the amplitude spectra for dark noise and low light levels.

After an R&D study period of three years by numerous groups,
the Hamamatsu Multi-Pixel Photon Counter (MPPC) was chosen
as the photosensor for ND280. A description of this type of device
and its basic parameters can be found in Ref. [9]. A customized
667-pixel MPPC with a sensitive area of 1.3�1.3 mm2 was
developed for T2K [10]. It is based on the Hamamatsu commercial
device S10362-11-050C with 400 pixels and 1�1 mm2 sensitive
area. The sensitive area was increased to provide better accep-
tance of light from 1 mm diameter Y11 Kuraray fibers. In total,
about 60,000 MPPCs were produced for T2K. The sensor is shown
in Fig. 2.

In this paper, we present the results of measurements and
simulations of the main parameters of Hamamatsu MPPCs devel-
oped for the T2K experiment, expanding upon the results given in
Ref. [11]. Complementary results investigating the performances
of the very similar 1�1 mm2 MPPC can be found in Ref. [12].
We emphasize the operational parameters of these devices most
critical for successful operation and calibration of the T2K ND280
detectors: gain, dark rate, crosstalk, afterpulses and photon detection
efficiency. This paper complements the results reported in Ref.
[13], which focused on assessing the gross features of a large
number of MPPCs. In this paper, dedicated setups were built to
measure each process, which enabled more in-depth measure-
ments than in Ref. [13] but in general these setups did not allow
testing of a large number of MPPCs.
2. MPPC response

2.1. Operating principles

A Multi-Pixel Photon Counter consists of an array of avalanche
photodiodes operating in Geiger mode. When operating in Geiger
mode the diode is reverse-biased beyond the electrical break-
down voltage, which will be denoted VBD throughout this docu-
ment. Above VBD, the electric field in the diode depletion region is
sufficiently large for free carriers to produce additional carriers by
impact ionization, resulting in a self-sustaining avalanche. In
practice irreversible damage would eventually occur unless the
avalanche is quenched. In MPPCs, quenching is achieved by using
a large resistor in series with the diode. The current produced by
the avalanche creates a voltage drop across the resistor (Rquench),
which stops the avalanche when the voltage across the diode
reaches VBD. The overvoltage, denoted DV , is the difference between
the operating voltage of the device and the breakdown voltage VBD.
The charge produced in an avalanche is hence the diode capacitance
times DV . The above statement assumes that, given sub-nanosecond
avalanche buildup time, the charge transferred through the quench-
ing resistor during an avalanche is negligible with respect to the
charge accumulated over the junction.

In Geiger mode, the amount of charge produced in an ava-
lanche is independent of the number of charge carriers generated
within the depletion region. Hence, it is not possible to measure
the light intensity by measuring the total charge produced in a
single avalanche. MPPCs achieve photon counting capability by
segmenting the detection area in an array of individual diode
pixels. The amount of light hitting the device is sampled by
counting the number of pixels that produce avalanches, which
leads to a saturation effect when a large amount of light hits the
sensor. However, the focus of this paper is the MPPC response to
low light levels, where the probability that multiple photons hit
the same pixel at the same time is small.

The T2K MPPC is an array of 26�26 pixels, each of which
measures 50� 50 mm2, on a common nþþ-type silicon substrate
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[14]. Nine pixels in one corner have been replaced by a lead,
reducing the total number of pixels to 667. The quenching
resistors are polysilicon resistors. The Hamamatsu specifications
sheet [9] states that the fill factor, i.e. the fraction of the device
area that is active, is 61.5%. The breakdown voltage is about 70 V.
When devices are purchased from Hamamatsu, rather than
providing the breakdown voltage for each device, the voltage
necessary to achieve a gain of 7.5�105 at 25 1C is provided.

2.2. Electrical properties

The total resistance and capacitance of an MPPC were mea-
sured using a picoammeter and capacitance–voltage (CV) analy-
zer, respectively. I–V and C–V plots are shown in Fig. 3. The MPPC
capacitance was measured with a Keithley 590 CV analyzer. The
capacitance drops rapidly with voltage down to �20 V, which
presumably corresponds to the full depletion of the device. The
capacitance of the MPPC was found to follow a linear relationship
when the supply voltage is less than �20 V: CMPPC ¼ aVþb with
a¼0.043670.0003 pF/V and b¼64.2770.01 pF. At �70 V, the
capacitance is then 61.2270.02 pF. The Hamamatsu specification
document for T2K’s MPPCs states that the terminal capacitance
is 60 pF, which is consistent with 61.28 pF obtained at �70 V
operating voltage. In the remainder of this paper, the minus sign
will be omitted when discussing operating voltage. Using 60 pF
total capacitance and neglecting parasitic capacitance yields a
pixel capacitance of Cpix¼90.0 fF.

The current was measured with a Keithley 617 programmable
electrometer at 23 1C. A linear fit for a forward bias voltage larger
than 0.6 V yields a slope of Rquench=ð667 pixelsÞ ¼ 225 O. From this
we determine the average quenching resistor value for this device to
be Rquench ¼ 150 kO; for a set of thirty five sensors this parameter
was distributed in the range 1482154 kO. The current starts to
increase dramatically at about �69 V bias voltage, which signals the
beginning of the Geiger-mode region. The turnover is, however, not
sharp and determining the breakdown voltage from the I–V curve
requires using a function accounting for the transition from the
linear to Geiger-mode regime, which was not attempted in this
paper. The current increase slows down between �70 V and �71 V.
Above �71 V, the current increases again very rapidly entering
some sort of runaway mode, where avalanches trigger new ava-
lanches continuously due to correlated noise, which will be
described later on. Typically, MPPCs are operated at an overvoltage
smaller than 2 V, corresponding to �71 V in this case. Hence, the
current going through the device is less than 1 mA.
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Fig. 3. I–V and C–V plots for an MPPC.
2.3. Recovery time

When an avalanche occurs in a pixel, the bias voltage across the
diode drops down to the breakdown voltage. The diode voltage
recovers to the nominal operating voltage with a time constant that
is nominally given by the product of the pixel capacitance and the
quenching resistor. Using the values of Rquench and Cpixel reported in
the previous section, the recovery time constant is t¼ 13:4 ns. The
overvoltage on the pixel at time t after the avalanche can then be
written as: DVðtÞ ¼DVð0Þð1�e�t=tÞ, where DVð0Þ is the nominal
overvoltage. We will see in the following section that the MPPC
behavior is almost entirely driven by the overvoltage. Lower over-
voltage implies a lower probability of triggering an avalanche. It also
implies a lower MPPC gain, hence an avalanche occurring while the
pixel is recovering will yield a lower charge.

The pixel voltage recovers to its nominal value by pumping
charge from neighboring pixels and from the external electronics
circuit. The typical equivalent circuit of silicon photomultiplier was
introduced in Ref. [15]. The capacitance of one pixel (90 fF) is small
compared to the total capacitance of the MPPC (60 pF). Hence the
voltage drop induced by the avalanche in one pixel on all the other
pixels is very small. However, the neighboring pixels effectively
act as a bypass capacitor and the external circuit must eventually
recharge the whole MPPC. The time constant introduced by the
external circuit may be much longer than the pixel RC time constant
and should be considered when investigating the response of the
MPPC to large light pulses, or when the repetition rate of avalanches
is high. Since here we focus on characterizing the MPPC response to
low light levels (o100 photoelectrons), the impact of the external
electronics on the recovery time can be neglected.

2.4. Photosensor gain

The MPPC gain is defined as the charge produced in a single
pixel avalanche, expressed in electron charge units. Single ava-
lanches are typically created by a single carrier (unit charge) and
can be triggered either by a photon or by thermal noise. Fig. 4
demonstrates excellent separation between the charges resulting
from different number of photoelectrons. The gain is measured
using a Multi-Channel Analyzer (MCA), by taking an amplitude
spectrum and calculating the distance between the pedestal peak
and the single photoelectron peak. Using other peaks provides
consistent results. Conversion from the MCA output in digital
counts to units of charge is achieved by calibrating the electronics
with a known input charge. The calibration system was designed
to mock up the MPPC current source, by sending a square wave
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Fig. 5. MPPC gain vs. supply (bias) voltage at different temperatures (sensor serial

number TA8120).
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of the overvoltage DV at different temperatures.
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into a 22 pF and adjusting the fall time with a set of resistors and
capacitors to match the MPPC 13.4 ns RC time constant. The accuracy
of the absolute gain measurement (i.e. the charge corresponding to a
single avalanche) is affected mainly by the accuracy of the charge
injection calibration. A description of the setup used for gain and
subsequent dark rate measurement is given in Ref. [16].

Fig. 5 shows the gain as a function of operating voltage for
various temperatures. The curves are fit by linear functions
according to gain, G¼ CpixðV�VBDÞ, where Cpix denotes the single
pixel capacitance, V the operating voltage, and VBD the breakdown
voltage, which is measured by extrapolating the gain curves down
to the point of zero gain. We note that the The curves exhibit a
slightly quadratic dependence, but a linear fit gives a reasonable
estimate of VBD and will be used throughout this paper. [We note
that the voltage dependence of CMPPC reported in Section 2.2
would cause the gain to have a quadratic dependence but this effect
is smaller than the quadratic dependence we observe.] Since VBD

increases linearly by 5274 mV/1C, the gain decreases proportio-
nately as the temperature increases at fixed operating voltage.
However, the temperature variations within the T2K ND280 experi-
ment are small enough that this effect can be calibrated out and
does not require active compensation.

The overvoltage (DV) is calculated by subtracting the break-
down voltage from the operating voltage. Fig. 6 shows the single
avalanche charge as a function of DV . The fact that the curves lie
on top of each other shows that the temperature dependence of
the gain is dominated by the temperature dependence of VBD. The
slopes of the curves are consistent with the 90 fF pixel capaci-
tance estimated from the direct measurement, to within the
equipment calibration accuracy. While it is not obvious in Fig. 6
due to the size of the symbols, individual fit of gain at each
temperature shows a statistically significant 0.1% increase of the
capacitance per degree at constant overvoltage, which can be
attributed to a change in the permittivity of the silicon [17].

Fig. 4 shows that, unlike photomultiplier tubes, the MPPC gain
fluctuations are significantly smaller than the charge from a single
photoelectron avalanche. The gain fluctuations are, however, not
negligible. The spectrum presented in Fig. 4 can be fit by a series of
Gaussian distributions, with the m parameter for each Gaussian
representing the mean charge in the peak and s its width due to
gain fluctuations and electronics noise. The gain fluctuation
parameter sðiÞ of the ith peak is well described by the equation:

sðiÞ2 ¼ s2
pedþ i � s2

Gain ð1Þ

where sped is the width of the pedestal, which is entirely due to
the electronics noise, and sGain accounts for the gain fluctuations.
Measurements of sGain show that it increases slightly with over-
voltage. However, the achievable photoelectron resolution is related
to gain fluctuation relative to the measured gain, G, so in Fig. 7 we
show the ratio

sGain

G
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1Þ2�s2

ped

q
G

ð2Þ

as a function of overvoltage, where sped is the pedestal width and
sð1Þ is the width of the single avalanche peak.
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The 20 1C data can be parameterized by the following func-
tion: sGain=G¼ 0:064 �DV�0:73. The quality of the fit is good but
we have no physical justification for this particular form. There
appears to be a slight temperature variation, with the fluctuations
being larger at higher temperatures.

2.5. Dark noise

Dark noise in Geiger-mode avalanche photodiodes is caused
mainly by charge carriers generated thermally within the deple-
tion region, which then enter the Geiger multiplication area and
trigger avalanches. Any avalanche can, in turn, initiate secondary
avalanches through afterpulsing and crosstalk. Thus, the dark
noise consists of single pixel avalanche pulses, along with larger
amplitude pulses generated by optical crosstalk, afterpulsing, and
accidental pile-up from independent pixels. The last effect is
negligibly small at dark rates below 1 MHz, assuming a short
integration time at the MPPC output. Optical crosstalk and after-
pulsing are discussed in the next sections.

Since most subsystems of our experiment acquire data as
charge spectra within an integration gate associated with the
beam crossing time, the relevant dark noise metric is the fraction
of these gates populated by one or more dark pulses. The true rate
of avalanches initiated by a single charge carrier can be obtained
from a Poisson distribution,2 using the following formula:

RDN ¼�ln
n0

N

� �
=Dt ð3Þ

where n0 stands for the number of events with no counts, N for
the total number of events, and Dt for the gate time. The measure-
ments presented here used 160 ns gates triggered at a constant rate
of 20 kHz.

Fig. 8 shows that the dark rate increases linearly with over-
voltage in the range of 0.5–1.6 V. Above 1.6 V the points deviate
upwards from the linear fit, which we attribute to an effect of
afterpulsing. The temperature dependence is exponential and is
2 Statistic associated with triggered elements in the MPPC is inherently

binomial. However, given small number of triggered cells with respect to the

total number of pixels, a Poisson distribution gives an excellent and convenient

approximate.
shown in Fig. 9. The data for each sensor has been fit with a
function of the form given in

RDNðDV ,TÞ ¼ A � ðDV�V0Þ �
T

298

� �3=2

� e�ððE=2kTÞ�E=2k�298Þ ð4Þ

where T is absolute temperature. In this formula A represents the
ratio of dark rate to overvoltage at T¼298 K (25 1C) (in kHz/V). V0

is an offset of breakdown voltage calculated from the dark rate
with respect to that obtained from the gain measurements, and E

the band gap energy. The offset is statistically significant. It suggests
non-linear behaviour of the dark noise rate at low overvoltage. The
fit range was restricted to DV r1:6 V and RDNr5 MHz, in order to
avoid the effect of afterpulsing and rate limitations of the equipment.

The parametrization given in Eq. (4) has been obtained under
following assumptions:
1.
 A non-degenerate semiconductor model was used.

2.
 Thermally generated charge carriers are a result of trap-

assisted (i.e. involving an R-G center3) generation processes.

3.
 Given high reverse bias, the device operates in the so called

‘R-G depletion region’ steady state, i.e. no free charge carriers
are available within the depletion region.
4.
 The trap energy level is close to the middle of the silicon’s
bandgap.
5.
 Only processes occurring within the volume of the depletion
region are taken into account. Surface generation/recombina-
tion is neglected.

Using such model, one can easily explain significant sensor-to-sensor
variations of the dark rate by: (a) differences in the concentrations of
traps (R-G centers) and (b) differences in dopant concentrations,
hence different junction volumes. Mean value of the observed
bandgap energy for the five measured sensors (Table 1) is 1.1367
0.0102 eV, which is within the range of values widely reported for
silicon. Furthermore, reasonable w2=n values and an average p-value
of 46.8% do not provide enough evidence to reject the parame-
trization given by Eq. (4) at a statistically significant level, which
is why we assumed that it can be used to approximate data from
our measurements.
3 Recombination-Generation center.



Table 1

Fit parameters for the dependence of the dark rate on DV and temperature. Eq. (4)

was used with the fit range restricted to DV r1:6 V and RDN r5 MHz. A is the dark

rate to overvoltage ratio at T¼298 K (25 1C). V0 is the difference between the

breakdown voltage calculated from gain and dark noise. E is the band gap energy.

Sensor no. A (kHz/V) V0 (mV) E (eV) w2=n

TA8744 92675.8 14975.9 1.12370.0032 1.23

TA8160 55574.0 16976.4 1.14670.0042 1.04

TA8120 55373.3 15975.5 1.14670.0032 0.87

TA8092 61573.3 15874.9 1.13370.0030 0.76

TA9314 77775.2 15176.2 1.13070.0032 1.12

Mean 1.13670.0102
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The dark noise rate varies significantly between MPPCs as
reported in Ref. [13]. A 20% variation in the dark noise rate
was found at 20 1C and DV ¼ 1 V when calculating the variation
as the root mean square (RMS) over the mean for the 17,686
tested MPPCs.

2.6. Afterpulsing

2.6.1. Correlated noise

Correlated noise is a general label for avalanches that are
triggered by other avalanches. There are two known types of
correlated noise: crosstalk and afterpulsing, both of which will be
described and characterized in details in the next two sub-
sections. In general, whenever an avalanche occurs there is a
chance that it triggers one or more additional avalanches, either
in neighboring pixels or in the same pixel at a later time. As
mentioned earlier, the dark noise rate was estimated by counting
the number of time no avalanches were detected within a gate.
Indeed, the average number of avalanches detected within the
gate is not a good estimator of the dark noise rate because some
avalanches may have occurred due to correlated noise. Hence, in
the presence of correlated noise, the measured average number of
avalanches will exceed the expectation from Poisson statistics.
Conversely, the measured number of events having one avalanche
within the gate will be lower than the expectation. This fact can
be used to get an estimate of the correlated noise.

The data used for measuring dark noise presented in the previous
section can also be used to get an estimate of the correlated noise.
From the dark noise rate measurement one can predict the fraction
of events that should have one avalanche in the absence of
correlated noise. The correlated event probability PCN is the prob-
ability that one avalanche triggers at least one additional avalanche.
The presence of this correlated noise term modifies the calculation
of the number of events with one avalanche within the gate, N1, as
follows:

N1

Ntot
¼ e�RDNDtRDNDtð1�PCNÞ ð5Þ

where Ntot is the total number of events recorded, RDN is the dark
noise rate, and Dt is the gate width (160 ns). The correlated event
probability is calculated by inverting this equation to obtain PCN as
a function of the measured quantities N1 and RDN (already shown
in Fig. 8). PCN is shown in Fig. 10 at different overvoltages and
temperatures.

The temperature dependence is strikingly small. The data can
be fitted by a quadratic function: PCN ¼ kDV2 with k¼9.470.1%.
The quadratic fit is good until DV 41:6 V, which is also approxi-
mately the overvoltage at which the measured dark noise rate no
longer behaves linearly. As explained earlier, at sufficiently large
overvoltage the method used to estimate dark noise becomes
compromised by afterpulse avalanches that stem from dark noise
avalanches prior to the integration gate. Hence, it is likely that the
failure of the fit results from the dark noise rate being incorrectly
inferred when DV is greater than about 1.6 V.

2.6.2. Measuring afterpulsing

Afterpulsing is understood as being caused by the trapping of
charge carriers created during an avalanche. The trapped carriers
eventually get released and trigger an avalanche within the same
pixel as the original avalanche, but delayed in time. Afterpulsing
may be partially suppressed by the fact that the pixel voltage
recovers in about 45 ns (a 13.4 ns time constant) as described in
Section 2.3. If a carrier is released while the pixel voltage has not
reached the nominal voltage, then the charge produced in the
avalanche will be lower than for nominal avalanches. For a self-
consistent description of the data, it is best to factorize recovery and
afterpulsing phenomena, i.e. to measure the number of afterpulse
avalanches per original avalanche regardless of the pixel voltage at
the time of the afterpulse avalanche. Because there may be different
types of traps in the silicon, there is no reason to assume that after-
pulsing should follow a single exponential decay. In fact previous
measurements on a similar MPPC [18] have shown that afterpulsing
exhibits two time constants.

Two methods were used to measure afterpulsing. The methods
complement each other since they effectively probe different
afterpulsing time constants. Both rely on the fact that afterpulse
avalanches are correlated in time with their parent avalanche.

The first method is based on the analysis of waveforms described
in Ref. [18]. The waveforms were fit with a superposition of single
avalanche response functions that allow separating pulses occurring
within a few nanoseconds of one another. The probability of an
avalanche occurring at time t after another avalanche can be para-
meterized as

PðtÞ ¼ 1�

Z t

0
PAPðxÞ dx

� �
� PDNðtÞþ 1�

Z t

0
PDNðxÞ dx

� �
� PAPðtÞ ð6Þ

where PAP and PDN are the afterpulsing and dark noise probabilities.
[We note that the formula in Ref. [18] is incorrect and should be
replaced by this one.] Afterpulsing can be parameterized using two
parameters: nAP, the number of afterpulse avalanches created per
original avalanche, and t, the time constant of the exponential dis-
tribution governing the afterpulse generation. A drawback of this
method is that the likelihood of uncorrelated dark signals (with a
rate of 500–1000 MHz) in the waveform limits the sensitivity to
afterpulsing time constants of less than about 100 ns. However, this
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method is well suited for measuring small time constants (o50 ns)
as the pulse finding techniques allow detecting pulses separated by
a few nanoseconds.

The second method is based on counting the number of ava-
lanches with a scaler after introducing a controlled deadtime
following each detected avalanche. The width of the analog pulse
resulting from the convolution of the MPPC and amplifier response
was such that the minimum deadtime that could be set was 26 ns.
This minimum gate width means that this method is sensitive only
to afterpulsing time constants of greater than about 50 ns. However,
in contrast to first method, the counting technique overcomes the
dark noise background limitation when measuring long time con-
stants by taking very high statistics data. The deadtime dependent
rate can be fit by a function that includes the contribution of dark
noise and afterpulsing. In the absence of afterpulsing, the measured
rate RðDtÞ for a given deadtime Dt is RDN=ð1þRDNDtÞ. Afterpulsing
produces avalanches that will increase the rate as long as they occur
after the deadtime. To first order (i.e. assuming that one avalanche
creates at most one additional detectable afterpulse avalanche and
ignoring afterpulse avalanches created by previous afterpulse ava-
lanches) the measured rate can then be calculated from:

RðDtÞ ¼ R=ð1þRDtÞ ð7Þ

with (assuming two afterpulsing time constants)

R¼ RDN=ð1�nAP0e�Dt=t0�nAP1e�Dt=tl Þ ð8Þ
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square, circle, triangle, diamond) at 25 1C.
where RDN is the dark noise rate, nAPi (i¼0,1) is the average number
of afterpulse avalanches per original avalanche, and ti (i¼0,1) the
afterpulsing decay time constant.

Fig. 11 shows the afterpulse parameters for four different
MPPCs measured at 25 1C using the waveform analysis technique.
The probability is calculated from the number of afterpulse
avalanches per original avalanche distributed as 1�e�nAP and so
is the probability that an avalanche generates at least one after-
pulse avalanche. The exponential time constants were found to be
tshort ¼ 17:672:1 ns and tlong ¼ 71:478:3 ns. The probabilities of
‘‘long’’ and ‘‘short’’ afterpulses are almost equal. The total prob-
ability of afterpulses is about 0.16 per initial avalanche at
DV ¼ 1:4 V. The number of afterpulses per avalanche as a function
of overvoltage can be fit by a simple quadratic function: nAP

ðDVÞ ¼ K � DV2, with Kshort ¼ 0:040070:001ðstatÞ70:005ðsysÞV�2

and Klong ¼ 0:0402ðstatÞ70:00170:005ðsysÞV�2. The dominant
systematic error arises from the inability to detect pulses less
than 2 ns after the first avalanche.

Fig. 12 shows the rate measured as a function of deadtime
from 26 ns to 1 ms at an overvoltage of 1.4 V at 25 1C. The fit to the
data is excellent with an average w2 of 74.8 for 95 degrees of
freedom. The fit parameters for the data from the MPPC shown in
Fig. 12 yield t0 ¼ 5775 ns, nAP0 ¼ 0:10770:005, t1 ¼ 287749 ns,
and nAP1 ¼ 0:04370:006. Repeating this test over 35 different
MPPCs yield the following averages: t0 ¼ 52ð8Þ ns, nAP0 ¼ 0:105
ð0:009Þ, t1 ¼ 315ð84Þ ns and nAP1 ¼ 0:066ð0:01Þ, with the standard
deviations indicated in parentheses.
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Since the two measurement methods are sensitive to different
afterpulsing time constant ranges it is not surprising they yield
different results. It is possible to reconcile both methods by fitting
the variable deadtime data for all MPPCs with three different
afterpulsing time constants, two of them being fixed: t0 ¼ 17 ns
and t1 ¼ 70 ns. The third time constant is a free parameter in the
fit. Excellent fits are again obtained with an average w2 of 72.52
for 95 degrees of freedom, which is slightly better than the fit
with just two time constants. The parameters averaged over the 35
MPPCs are nAP0 ¼ 0:058ð0:03Þ, nAP1 ¼ 0:090ð0:008Þ, nAP3 ¼ 0:056
ð0:009Þ, and t3 ¼ 373ð55Þ ns, with the standard deviation among
MPPCs in parentheses. The expectation from the waveform analy-
sis at 1.4 V is nAPshort ¼ 0:078 and nAPlong ¼ 0:082. The introduction
of this third (373 ns) time constant into the fitting function used
for the waveform analysis at the level suggested by the variable
deadtime analysis does not worsen the agreement with the data
significantly and so is an acceptable additional parameter in a
range not accessible to the method. Both analyses are also quali-
tatively consistent with the simple correlated noise analysis pre-
sented in the previous section, which predicts a total contribution
of 0.184 for crosstalk and afterpulsing at DV ¼ 1:4 V.

The temperature dependence of afterpulsing was measured with
the waveform technique for a couple of MPPCs at constant DV

within a range of 13–25 1C as shown in Fig. 13. The amplitude of the
‘‘long’’ component of the afterpulsing rate is insensitive to tempera-
ture within measurement accuracy, the slope of the straight line fit
being statistically consistent with zero. On the other hand, the
amplitude of the ‘‘short’’ component decreases as the temperature
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Fig. 15. MPPC detection efficiency across several MPPC pixels. The dashed line is

the expected profile from the convolution of a Gaussian beam spot with s¼ 5 mm

and square 50 mm pixels.

Fig. 16. Measured crosstalk probabilities for nine beam positions inside an MPPC

pixel at DV ¼ 1:335 V. (Left) a corner pixel with the corner located on the bottom

left; (center) a side pixel with the side boundary to the left of the pixel and (right)

a pixel inside the MPPC array. The thick black line denotes the limit of the

pixel array.

A. Vacheret et al. / Nuclear Instruments and Methods in Physics Research A 656 (2011) 69–83 77
increases with a coefficient of 2.0–2.5%/1C. The short and long time
constants decrease with increasing temperature from 21 and 90 ns
at 13 1C to 17 and 70 ns at 25 1C, respectively. In the MPPC simula-
tion code, the temperature dependence of the 17 and 70 ns time
constants is implemented, while the 370 ns time constant will be
assumed to be constant since no temperature dependent data are
available to quantify the variation. The measured time constants and
their temperature dependence are consistent with Ref. [19].

2.7. Optical crosstalk

2.7.1. Crosstalk measurement

Optical crosstalk is believed to occur when optical photons
produced in an avalanche propagate to neighboring pixels where
they produce photoelectrons [20]. The result is that two or more
pixels can be fired almost simultaneously (i.e. on a timescale of
� 1 ns). The photon emission probability has been measured to
be on the order of 1–5�10�5 photons per carrier crossing the
junction [21,22], the absorption length for photons that are
most effective in propagating the avalanches is typically 1 mm.
Although the total crosstalk fraction is small, it is expected to
vary with overvoltage and a detailed study is necessary to fully
characterize local variations of the crosstalk phenomenon. Mea-
surements of crosstalk variations within the pixel array as a
function of voltage were performed using optical microscopy and
waveform analysis.

2.7.2. Optical microscopy

Crosstalk probabilities were measured using the apparatus
shown schematically in Fig. 14. A nanoLED [23] light source
system was used to produce a pulse width of 1 ns FWHM from
an integrated 463 nm LED. This was coupled to an optical fiber
that terminated in a microscope lens such that the light beam is
focused onto the MPPC face. The MPPC was mounted on an X–Y

stage so that the beam spot could be translated across the MPPC
pixel array with one micron position resolution. The MPPC signal
was digitized with a 1 GHz sampling rate during a 1 ms period
using a Tektronix TDS 380 oscilloscope. The light pulse intensity
was measured to be between 10–20 photons at the exit point of
the fiber.

It was assumed that the amplitude of the avalanche signal
observed is not dependent on the number of photons injected into
a pixel if the photons all originate from the same LED pulse.
Therefore, each LED flash creates a 1 p.e. signal as long as the
beam spot is well-centered within a pixel. The trigger efficiency
Fig. 14. Schematic of the optical microscopy apparatus used to measure MPPC

crosstalk within a pixel.
was measured as the beam was scanned across several pixels to
estimate the profile of the photon beam. The profile measured
over 150 mm is shown in Fig. 15 and is consistent with a Gaussian
beam spread of 5 mm. The sensitive area is in good agreement
with the value of 61.5% specified in the Hamamatsu catalog [9].
The non-zero baseline when X coordinate is less than �10 mm is
due to dark noise (0.1 avalanche for 1 ms integration time). This
figure demonstrates that when the LED shines in the center of a
pixel no light reaches neighbouring pixels.

2.7.3. Crosstalk study using waveform analysis

Waveforms were recorded for nine beam positions inside each
of three pixels chosen for their specific position within the array,
namely: a corner pixel, a side pixel and a pixel inside the MPPC
array away from the edges. These pixels are surrounded by 3,
5 and 8 pixels, respectively, each of which may generate crosstalk
signals. Crosstalk probabilities were calculated for individual
photoelectron pulses selected to be within 8 ns after the LED
trigger pulse. The total crosstalk probability is given by

Pct ¼ 1�
Nð1 peÞ

Ntot
ð9Þ

where N(1 pe) is the number of single 1 p.e. pulses and Ntot is the
number of all LED pulses. The total crosstalk signal is defined as
the observation of Z2 p:e: pulses within the 8 ns time window,
while individual crosstalk probabilities were extracted by select-
ing pulse heights corresponding to 2, 3 and 4 p.e. Data was taken
for overvoltage DV ¼ 1:335 V and T¼24 1C; results for all three
pixels are presented in Fig. 16. For all three pixels the crosstalk
measured shows a clear dependence with position of the beam
spot, suggesting that the crosstalk probability is correlated with
where the photon is absorbed in the pixel. A similar analysis was
applied to MPPC dark count data in a time window 500 ns before
the LED triggers. The crosstalk was measured to be 971% and no
correlation with beam spot location was found.

Fig. 17 presents measurements of crosstalk probabilities as a
function of overvoltage at T¼24 1C for the same three pixels.



Fig. 17. Crosstalk value vs. overvoltage for three pixels shown in Fig. 16. Pct is crosstalk probability, Pct¼1 is the probability of only one pixel fired in addition to the initial

pixel, etc.

Fig. 18. Total crosstalk probabilities for all three pixels (corner, side and in-array).

Data is shown as a solid circle, a solid black line indicates the best quadratic fit

from Fig. 17. Simulated probabilities are shown as open circles and a dashed line.
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Based on the position variation results, a correction factor is applied
to correct the crosstalk probability to a probability averaged over
the entire pixel. All probabilities were found to agree with a DV2

dependence except for the corner pixels where the total probability
plateaus at high overvoltage (above 1.3 V). This plateau is due to
some peculiar behaviors of the corner pixels, which cannot be
explained by geometrical considerations. Variations of the total
crosstalk probability between pixels is qualitatively consistent with
the hypothesis of a point source generation of optical photons in the
pixel. The result of the crosstalk simulation is shown in Fig. 18 and
agrees with the data for a nearest neighbor crosstalk hypothesis.
This model is included in the simulation described in Section 3.

2.8. Photon detection efficiency

The photon detection efficiency (PDE) of a multi-pixel ava-
lanche photodiode operated in a limited Geiger mode is a product
of three factors:

PDE¼ QEðlÞ � eGeiger � epixel ð10Þ

where QEðlÞ is the wavelength dependent quantum efficiency,
eGeiger is the probability to initiate the Geiger discharge by a
carrier, and geometric acceptance epixel is the fraction of the total
photodiode area occupied by the photosensitive area of the pixels.

For an MPPC, quantum efficiency can be defined as the prob-
ability for an incident photon to generate an electron–hole pair in a
region in which carriers can produce an avalanche. The layer
structure in an MPPC is optimized to have the highest probability
for a visible photon to be absorbed in the depletion layer. For
comparison, an APD with a similar layer structure to that of the
MPPC developed by Hamamatsu for the CERN CMS experiment [24]
has a measured quantum efficiency of more than 80% at 500 nm, so
a similar value may be expected for the MPPC.

It is reasonable to assume that the device is fully depleted
above breakdown voltage implying that the quantum efficiency
has reached a maximum that depends only on wavelength and
possibly incident angle. Hence, the overvoltage is expected to
affect just one parameter in the expression, namely eGeiger. The
breakdown probability depends on the impact ionization coeffi-
cients (for electrons and holes), which are strong functions of
electric field. Simulation and measurements [25] show that eGeiger

behaves as the exponentially saturating function emaxð1�e�kDV Þ if
breakdown is triggered by electrons. Breakdown initiated by
holes leads to a linear dependence on DV .

The geometrical factor epixel is solely determined by the MPPC
topology. Our measurements indicate epixel ¼ 64%, which is con-
sistent with the Hamamatsu specification of 62% for sensors with
50 mm pixels.

2.8.1. PDE measurement-pulsed LED method

For the PDE measurements we used an approach discussed in
Ref. [26]. The PDE is measured using pulsed LED light with a
narrow emission spectrum. The number of photons per LED flash
is collimated to be within the MPPC sensitive area and reduced to
an intensity that can fire only 2–5 pixels on average. The number
of photons per LED pulse NgðlÞ can be measured using a calibrated
photodetector, i.e. one with known spectral and single electron
responses.

The PDE can be calculated from the recorded MPPC pulse
height distribution (see Fig. 4) by assuming a Poisson distribution
of the number of photons in an LED pulse. The mean value Npe of
the number of photons recorded per LED pulse can be determined
from the probability P(0) of the pedestal (0 p.e.) events by
Npe ¼�ln Pð0Þ. Npe calculated this way is independent of after-
pulsing and crosstalk. Knowing the number of photons incident
on the MPPC, NgðlÞ, one can calculate PDEðlÞ ¼Npe=NgðlÞ.

The dependence of PDE on bias voltage was measured using a
fast green emitting LED operating in a pulsed mode. The emission
spectrum of this LED was measured to be very close to that of a
Y11 WLS fiber. The peak value is centered around 515 nm, and it
has FWHM of 40 nm.



Fig. 19. Schematic diagram of the setup for the PDE measurements.
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The MPPC was illuminated with LED flashes through a 0.5 mm
collimator (the distance between the LED and the collimator was
20 cm, and with about 1 mm between the collimator and the MPPC).
A neutral density filter reduces the light intensity on the MPPC face
to the level of 10–15 photons. The signal from the MPPC was
amplified with a fast transimpedance amplifier and digitized with a
Picoscope 5203 digital oscilloscope (250 MHz bandwidth, 1 GHz
sampling rate). The signal integration time was 150 ns. A schematic
diagram of the setup is shown in Fig. 19.

The PDE measurements were done in a temperature stabilized
dark box (DTo0:1 1C). The number of photons in the LED flash was
measured using a calibrated Hamamatsu photomultiplier R7899
(QE¼15.7% at 515 nm). The photoelectron collection efficiency for
the 5-mm diameter central part of the photocathode is more than
95%, the PMT excess noise factor is 1.15. The LED amplitude spec-
trum measured for one of the tested MPPCs is shown in Fig. 4 at
DV ¼ 1:5 V and 20 1C.

The average number of photoelectrons in the LED signal was
calculated by counting the number of pedestal events as discussed
in Section 2.5. To correct for dark pulses that occurred randomly
inside the 150 ns integration gate, the dark rate was measured
during the same gate width but 300 ns earlier relative to the LED
pulse. The stability of the LED pulse intensity was monitored and
found to be better than 73% during the measurements.
MPPC PDE as a function of overvoltage is shown in Fig. 20 for
three temperatures. The PDE depends almost linearly on DV

within the DV range of 1.0–1.6 V with slope of 1.5% per 100 mV.
For a fixed overvoltage there is no observable dependence on
temperature.

Fig. 21 shows the measured PDE for four additional MPPCs at
20 1C. All show essentially the same performance with the PDE in the
range 29–32% for green light at a typical operating overvoltage of
1.4 V. The measurement accuracy of the PDE is estimated to be about
10%. The largest contribution to this uncertainty is the normalization
error, which is dominated by the error in the PMT spectral calibration
(5–7%) followed by the uncertainty in the p.e. collection efficiency in
the PMT (5%).

2.8.2. PDE measurement relative to an optical power meter

The PDE has also been measured independently using a 473 nm
LED pulser developed as a calibration source for the ANTARES
experiment [27] and with a 463 nm NanoLED pulser. The experi-
mental setup is similar to that shown in Fig. 19. The MPPC signal
was amplified with a gain of 40 and then sampled by a LeCroy
WaveRunner 6100 oscilloscope (1 GHz bandwidth, 10 GSample
per sec) within a 200 ns gate. The temperature was held stable to
0.1 1C by means of a thermally coupled metallic plate.

Calibration of the number of photons incident on the MPPC was
performed using a Newport 1835-C Optical power meter with an
818 series 1 cm2 photodiode sensor. The power meter converts an
optical signal of specific wavelength into the optical power equiva-
lent. The number of photons per flash can be calculated as follows:

Ng ¼
PW � l

FHz � hc
� A ð11Þ

where PW is the measured optical power (in Watts) at wavelength l
(463 or 473 nm), FHz is the LED pulse rate (13 kHz), h is Planck’s
constant and A is an acceptance factor. Acceptance A is the ratio of
intensity of LED light incident on the MPPC sensitive area to the
intensity incident on the power meter sensor. The value of A is
evaluated by performing a position scan of the LED light intensity
profile.

The power meter calibration accuracy and the estimated accep-
tance factor are the dominant contributors to the uncertainties in
the PDE measurement. As discussed in Section 2.8.1, the number of
detected photoelectrons was obtained from the number of pedestal
events in signal and assuming a Poisson distribution. The PDE values
are free of afterpulsing and crosstalk contributions and were



Fig. 22. MPPC PDE as a function of wavelength at DV ¼ 1:2 and 1.5 V at 25 1C. Also

shown is the spectral plot from the Hamamatsu catalogue, which uses data not

corrected for crosstalk and afterpulsing (blue line); the dashed line is the

Hamamatsu plot scaled-down using knowledge of the correlated noise contribu-

tion from our measurements. The green curve shows the Y11(150) Kuraray fiber

emission spectrum (arbitrary units) for a fiber length of 150 cm (from Kuraray

spec). LED and Y11 fiber points were measured at DV ¼ 1:3 V. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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corrected for dark rate. The PDE was found to be 31% for the 463 nm
LED and 29% for the 473 nm LED at DV ¼ 1:3 V, which is in good
agreement with the MPPC spectral sensitivity shown in Fig. 22 and
discussed in the next section.

2.8.3. Spectral sensitivity

A spectrophotometer calibrated with a PIN-diode [26] was used to
measure the spectral sensitivity of the MPPC. The spectrophotometer
light intensity was reduced until the maximum MPPC current was
only � 30% greater than the dark current to avoid non-linearity
effects caused by the limited number of pixels. Comparing the MPPC
current with the calibrated PIN-diode photocurrent we obtain the
relative spectral sensitivity.

To achieve an absolute scale, the measured relative spectral
response is scaled to the reference PDE points obtained with LED
light at three wavelengths: 410, 460 and 515 nm measured at
1.2 V overvoltage. The scaling factor at other overvoltage values
was found to be constant at these wavelengths up to about
1.4 V—the PDE spectral sensitivity shape is appreciably different
above this, as was noted in Ref. [25]. The MPPC PDE dependence
on the wavelength of the detected light along with the emission
spectrum of the WLS Y11 Kuraray fiber are shown in Fig. 22. The
MPPC peak sensitivity is in the blue light region, around 450 nm.

Since the spectrum of light incident on the MPPC in the ND280
detectors is determined by the Y11 fiber emission spectrum and
the wavelength-dependent attenuation in the fiber, a PDE mea-
surement was performed by exciting a Y11 fiber with a 405 nm
LED [28]. The blue light source was arranged so that only re-
emitted green light could reach the photosensor after propagating
through 40 cm of the fiber. The fiber was coupled directly to the
MPPC with the same design of optical connector used in the
ND280 ECAL and P0D subsystems. At DV ¼ 1:3 V, the PDE was
measured to be 21%, which is significantly lower than the 28%
measured at the same overvoltage with light incident directly
onto the MPPC. The lower value may be due to light loss at the
interface between the coupler and the Y11 fiber.

Fig. 22 also shows the MPPC spectral sensitivity measured by
Hamamatsu for a commercial MPPC S10362-11-050 device at
25 1C. These data, taken from the Hamamatsu catalog, are not
corrected for crosstalk and afterpulsing. The method Hamamatsu
used is basically the photocurrent method described above but
with a monochromator to select the incident light wavelength.
The number of incident photons is derived from a calibrated
photodiode response and the number of detected photoelectrons is
obtained by dividing the MPPC current by its gain and the charge on
an electron and assuming a Poisson distribution of the number of
photons per single flash. We have corrected the Hamamatsu result
by scaling down the PDE values by 0.663. This scaling factor was
chosen to fit the sensitivity curve at the points measured with LEDs;
the renormalized Hamamatsu spectral plot shape is consistent with
our results within measurement accuracy.
3. MPPC simulation

A Monte Carlo simulation of the MPPC was written in Cþþ to
simultaneously handle all the processes described earlier. Similar
models have been developed by other groups, being either
analytical [29] or partially analytical [30]. Our simulation can be
split into two main components—a set of models defining device
behavior, and a procedural framework to initialize the model
using input parameters, control the simulation and output the
results. The framework will be discussed briefly first.

3.1. Simulation framework

The simulation is based on a list of potential triggers (incident
photons, thermally generated carriers and crosstalk/afterpulses),
which are processed in time order. The only state variables of the
MPPC are the voltages across each pixel; the evolution of these
voltages between triggers is handled by a recovery model. On
initialization, a list of incident photons is given to the simulation
as input, and thermal noise is generated at the appropriate rate
DCR(Vnom) for a nominal operating bias voltage and temperature.
These two sources form the initial list of potential triggers.

Each potential trigger is then processed in the following steps:
1.
 The voltages on all pixels are updated from their state after the
previous trigger, using the recovery model and the elapsed
time since the last processed trigger.
2.
 It is determined whether the pixel fires. The probability is
equal to PDE(Vpix) for photons and DCR(Vpix)/DCR(Vnom) for
dark noise, to account for the lower DCR for a pixel with
depleted voltage, relative to the nominal DCR used to generate
the noise triggers.
3.
 If the pixel fires, a trigger is added to the list of output signals
and its voltage is set to zero; the charge of the generated
avalanche depends on the voltage of the fired pixel and it is
smeared by a Gaussian resolution function. The afterpulse/
crosstalk models determine whether further noise is gener-
ated, and, if applicable, the additional noise is inserted into the
list of potential hits, in correct time order.

The reinsertion of correlated noise resulting from an initial
trigger allows higher-order noise cascades to be dealt with in a
simple and natural way. The final output is a list of avalanches
with times and charges, which can then be processed by code
appropriate to a specific readout circuit.

3.2. Physics models

The simulation relies on accurate models for the various
effects present in the sensor. The characterization measurements
described above have been used to determine appropriate models
to use, and to tune model parameters.



Fig. 23. Comparison of data to Monte Carlo at low light level for a range of

overvoltages. The photon numbers shown are the number incident on the face of

the MPPC. The histograms on the right show the same data as on the left, but with

a bin width equal to the fitted peak separation in the data.
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The dark rate is parameterized as a linear function of bias
voltage—the parameters for this function must be measured
separately for each sensor since large variations between devices
are observed. The PDE is modeled with a quadratic fit to the data
in Fig. 20; variation with wavelength is not included. The mean
number of short- and long-lived trapped carriers for afterpulsing,
and the lifetime of the trapped states, are taken from the results
of the waveform analysis method in Section 2.6. The crosstalk
model is based on the data and the model described in Section
2.7. The data shown in Fig. 18 are well-described by a simple
nearest-neighbor model that assumes crosstalk occurs only in the
four nearest-neighbor pixels to the primary pixel. Crosstalk pulses
are generated according to the probability measured from dark
noise. The location of the crosstalk pulse is then chosen randomly
among the four neighboring pixels. The pulse is discarded if it falls
outside the MPPC active area.

The recovery model used is specific to the ND280 Trip-t-based
electronics (TFB board [31]), it assumes recharging of the fired
MPPC pixels from capacitances elsewhere in the readout electro-
nics for each channel. Recovery does not significantly affect
response at low light levels, however, so it will not be discussed
in further detail.

3.3. Comparison with data

The simulation output has been compared to data taken using
the ND280 Trip-t electronics and a fast-pulsed LED, with a gate
length of 540 ns and the photosensor at a temperature of 22 1C.
An adjustable lens was used to alter the intensity of light incident
on the sensor. All the parameters used for the simulation were
taken from the characterization measurements, but some tuning
was required to reflect sensor-specific parameters, electronics
effects and light-level uncertainties. The linear fit parameters for
the sensor dark noise curve were measured and used in the
simulation. Since an absolute calibration of the incident light level
was not available, the mean incident photon number was calcu-
lated for 1.33 V overvoltage using the method described in
Section 2.8.1. The absolute PDE in the simulation is therefore
not tested by this comparison, but errors in the parametrization
of PDE as a function of voltage will be evident. Finally, the spread
in total event charge due to electronics noise, and the spread
in avalanche gains, were determined from the measured peak
widths at a low light level and 1.33 V overvoltage, and added to
the simulation.

Histograms of integrated output charge are shown in Fig. 23,
for data and simulation. Very good agreement is seen between the
data and MC for a range of light levels and overvoltages. Some
small discrepancies between data and MC are seen in the integer-
binned histograms; however, these histograms depend on the
exact peak positions, which must be determined in the data by
fitting. They also depend sensitively on the exact shapes of the
peaks, since for large peak widths, each integer bin contains some
events which have migrated from neighboring peaks. No signifi-
cant systematic difference is observed between data and MC.

3.4. Energy resolution

In most cases, the energy resolution of scintillator detectors is
dominated by the photon counting statistics when the number
of photoelectrons is low (less than about 100). However, the
photosensor and electronics can impact the energy resolution in
two ways: (1) constant noise background due to dark noise and
electronics noise and (2) fluctuation in the charge detected per
photoelectron. The energy resolution can be calculated fairly
accurately in the case where the MPPC charge is integrated over
a time window Dt as shown for example in Ref. [29]. Ignoring the
MPPC saturation effect, the standard deviation of the number of
avalanches can be written as

s2
NAv
¼NAvþNAvs2

Gþs
2
elþRDNDt ð12Þ

where NAv is the number of pixel avalanches, sG is the gain
fluctuation parameter, sel is the electronics noise integrated over
Dt, and RDN is the dark noise rate. NAv is related to the number of
photoelectrons at low light level by NAv ¼NPEð1þNCNÞ, where NCN

the number of correlated noise avalanches per avalanche. This
latter formula is an approximation as it does not account for
gain recovery and correlated noise avalanche created by other
correlated noise avalanches. However, the MC simulation inclu-
des both effects. Some conclusions can be drawn from this
formula: (1) the integration gate (Dt) should be chosen so that
NAvbRDNDt in order to ensure that dark noise does not contri-
bute to the resolution and (2) the gain fluctuations do not
contribute to the resolution significantly since sG is only about
10%. This last conclusion highlights a significant difference
between MPPCs and PMTs or standard Avalanche Photodiodes
(APDs), whose main contribution to the energy resolution arises
from gain fluctuations.

The simulated energy resolution is shown in Fig. 24 as a
function of overvoltage with and without correlated noise (cross-
talk and afterpulse). A gate of 540 ns was used to integrate the
charge. The light flash occurred 60 ns after the beginning of the
gate and the photons were produced according to an exponential
with a 7 ns time constant. The number of incident photons was
set to 100 to match the average number of avalanches triggered
by a minimum ionizing particle in T2K near detectors, which
ranges between 20 and 35 avalanches. Without correlated noise
the energy resolution would improve with increasing DV because
of the increasing photodetection efficiency. The improvement is



Fig. 24. Simulated energy resolution as a function of overvoltage for a typical MIP

signal of about 25 avalanches. The confounding effects include crosstalk, dark

noise and afterpulses. The curve without these effects includes only the variation

of the MPPC efficiency with overvoltage.

Fig. 25. Excess Noise Factor as a function of overvoltage.
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expected to become marginal at large overvoltage as the PDE
starts to saturate. In practice, when correlated noise is included
the energy resolution reaches a minimum at DV ¼ 1:8 V. Beyond
1.8 V, correlated-noise-induced fluctuations worsen the energy
resolution. Due to dynamic range constraints, in the T2K ND280
the MPPCs are operated at no more than DV ¼ 1:33 V.

The detector energy resolution is dominated by the photon
counting statistics when DV is less than about 1.5 V; above 1.5 V
correlated noise contributes significantly. For photomultiplier
tubes and APDs, the contributions of gain fluctuations and correlated
noise to the energy resolution are often assessed by calculating the
excess noise factor (ENF). This better quantifies the contribution of
the photosensor and the electronics system to the resolution by
dividing out the fluctuations introduced by the photon counting
statistics:

ENF ¼ s2
NAv
=NPE: ð13Þ

We note that our ENF definition includes more sources of noise
(dark noise, electronics noise) than the standard ENF defined for
PMTs and APDs. However, the comparison is nevertheless relevant
because, as discussed earlier the contributions of dark noise and
electronics noise to the energy resolution are usually negligible.
The dependence of the excess noise factor with overvoltage is
shown in Fig. 25. The ENF increases with increasing overvoltage
following the increase of crosstalk and afterpulsing, which add
additional avalanches in a stochastic manner. The ENF reaches
2 at a value of DV of about 1.5 V. The MPPC ENF is nevertheless
significantly smaller than for APDs, whose ENF is always larger than
2 [32]. Overall, the MPPC contribution to the energy resolution is
small for minimum ionizing particles that typically yield between 20
and 40 avalanches on average, even for T2K sub-detectors operating
at DV ¼ 1:33 V.
4. Conclusion

The T2K experiment ND280 complex of detectors uses a 667-
pixel MPPC developed by Hamamatsu Photonics specifically for
this experiment. It has a sensitive area of 1.3�1.3 mm2 and a
pixel size of 50� 50 mm2; the sensitive area is larger than those
available previously and relaxes the mechanical tolerances required
for coupling to the WLS fibers used extensively in the experiment.
We have performed detailed investigation of these devices and have
developed an accurate model of the MPPC response to low light
levels (where saturation effects can be neglected).

MPPCs biased at the recommended Hamamatsu overvoltage
(1.33 V) at T¼25 1C are characterized by the following para-
meters: photodetection efficiency of 28% when illuminated with
light at the peak of the Y11 fiber emission spectrum (515 nm); a
typical gain of 7.5�105; the average dark rate is 700 kHz but can
approach 1 MHz; the crosstalk and afterpulse probability are
estimated to be 9–12% and 14–16%, respectively, with a combined
total of 20–25%; and the recovery time constant of a single pixel is
13.4 ns. We note that the photodetection efficiency reported by
Hamamatsu photonics in Ref. [9] is overestimated by about 40%
because of the measurement technique includes correlated noise.
With such parameters, the device achieve the desired 20% energy
resolution for minimum ionizing particles, which yield on average
between 20 and 40 avalanches in the various components of the T2K
near detector. Furthermore, about 40,000 MPPCs were operated in
the T2K neutrino beam in 2009–2010 and no significant reliability
issues were experienced.

Modeling the MPPC response by parameterizing dark noise,
afterpulses, photodetection efficiency, crosstalk and gain variation
enables us to account for the contribution of the photosensor to the
overall detector response accurately. The MPPC saturation effect
should also be fully described by our simulations, but confirmation of
this awaits additional controlled measurements for final validation.
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