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Summary 

 

Field vegetable systems face challenges to maintain sustainable weed management, including 

a reduction in available herbicides and encouragement towards reduced tillage.  In a 9-year 

study, six herbicide products were compared, each at three rates, with a single product per 

plot, in a minimal cultivation system designed to exert maximum pressure for change in weed 

populations, to assess for predictable changes in these populations. Weed density and species 

number declined with increasing herbicide rate confirming that some species are able to 

survive reduced rates. Pre-emergence herbicides resulted in a larger number of species, 

greater species diversity and lower species dominance compared with post-emergence 

products. Species numbers increased over the first 6 years, with emergence periodicity 

coinciding with springtime soil disturbance. The number of species with ecological functional 

value increased in response to repeated use of single herbicide products. Observed species 

shifts illustrated a complex response to the combination of three separate drivers: changes in 

the dominant periodicity associated with tillage timing; a response to herbicide product and 

rate related to species susceptibility; and changes in community dynamics caused by 

variability in weather and the interaction with herbicide efficacy. Improved understanding of 

the effects on weed communities of the interactions between these drivers and the cropping 

system is essential in achieving a balance between sustainable weed management and the 

provision of ecological function across a range of cropping systems. 

 

Key-words: field vegetables, tolerance, population dynamics, seedbank, sub-lethal, tillage, 

species shifts, functional groups, phylogenetic traits, species composition, ecology 
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Introduction 

 

Weeds present both a limitation to efficient crop production and a benefit in the biodiversity 

they support, both directly and indirectly, in the agricultural landscape.  For many decades 

weed scientists have focussed on the removal of weeds from cultivated fields, but we now see 

a paradigm shift in the attitude to weed management as a result of studies that have 

implicated such intensification as being significant in the decline of many farmland species, 

both in the UK and more widely in Europe (Stoate et al., 2002).  Coincident with these 

concerns about the role of weeds in supporting biodiversity, weed control currently faces new 

challenges: the loss of many products following the EU pesticide review; environmental 

pressure to change soil management; and a shift in our climate, which will be accompanied 

by as yet unquantified changes in the response of the weed flora (Davis et al., 2005b).  The 

balance has never been so delicate between maintaining the production of crops to underpin 

farming livelihoods, and protecting and responding to the environmental drivers that pose 

significant challenges to weed management. 

 

Recent studies have shown that patterns of herbicide use in arable systems have 

changed significantly in the past 30 years, shifting towards a greater control of a wider 

spectrum of broad-leaved species (Marshall et al., 2001).  The implications are that the 

species now being increasingly efficiently controlled are also species known to support 

invertebrate taxa important to the diet of several important bird species now in decline 

(Gerowitt et al, 2003; Marshall et al., 2003), leaving a set of difficult to control species with 

low biodiversity value.  Several studies support this, reporting a significantly greater diversity 

of weed species both above-ground and in the seedbank in organic compared with 

conventional systems (Sutcliffe & Kay, 2000; Albrecht 2003).   

 

Long-term evidence of the implications of herbicide use on the biodiversity of field 

vegetable crops have not been a priority, because such crops occupy only a fraction of the 

area of arable crops so that their ecological impact is considered significantly smaller 

(Grundy et al., 2003).   In addition, there is little scope for relaxing weed management in 

these systems due to a low tolerance for weeds in terms of competition, quality issues, crop 

contamination and harvesting difficulties.  Consequently, pressure remains to maintain high 

levels of weed management.  However, the field vegetable industry has been hit hard by both 

the recent EU pesticide review (EU 91/414 – since the completion of this study propachlor 
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has been made unavailable, and other herbicide products have more limited applications) and 

the economic disincentive, of a small size of market, for the agrochemical industry to invest 

in the development of new products (Gillott, 2001; Grundy et al., 2003).  The fear is that in 

such minor crops a restricted range of products, combined with the current trend towards 

reduced application rates (frequently using a split-dose programme), may exacerbate shifts in 

the weed flora towards inherently tolerant species or the development of resistance (Gressel, 

1995).  Whether entered into voluntarily for environmental reasons or imposed through a lack 

of products, it is likely to be the more dominant and troublesome weed species that will 

benefit from reduced input systems (Barberi et al., 1998; Albrecht & Sommer, 1998; Squire 

et al., 2000).  Thus the reliance on a small and declining range of herbicides presents a 

considerable challenge to weed control in the field vegetable industry (Knott, 2002).    

 

In addition to the challenges posed by reductions in the rate and range of herbicides, 

both the timing and intensity of tillage operations can have a profound influence on the 

composition of the weed flora.  Soil management is increasingly shifting towards minimum 

tillage to protect vulnerable soils from erosion (Dorado & López-Fando., 2006).  This may 

result in a change in weed flora recruitment behaviour by modifying the emergence 

opportunities for species with restricted germination periodicity (Froud-Williams et al., 1983; 

Chauhan et al., 2006) or with particular dormancy requirements and seed size characteristics 

(McCloskey et al, 1996).  In arable systems there has also been a marked move towards 

winter, as opposed to spring cropping.  This change in the time of tillage prior to crop 

establishment has resulted in a reduction in accumulated species richness and a shift away 

from the spring-germinating species known to have greater value as a food resource for other 

trophic levels (Hald, 1999).    In contrast, field vegetable systems are inherently linked with 

spring cropping and are therefore biased towards a predominantly spring-germinating weed 

flora with a higher intrinsic biodiversity value. 

 

A key problem in weed management is to understand and be able to predict how 

groups of weed species are likely to respond to all of these different challenges and drivers 

(Lintel Smith et al., 1999).  This information could be used to improve the sustainability of 

management for crop production as well as maximising environmental benefits.  The primary 

aim of this study was to assess changes in the above-ground weed flora in response to the 

challenge of a loss of herbicide products available to the field vegetable industry within the 

context of a shift towards minimising tillage activities. 
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Materials and Methods 

 

Field trials 

The field trial was made at Kirton, Lincolnshire, UK over a 9-year period (1996-2004).  The 

site had a known flora and low presence of perennial weeds, having been used previously for 

field vegetable production and experimental work, receiving conventional herbicide 

applications during this time. The trial area was within an experimental farm, and 

immediately surrounded by grass headlands managed following standard farming practice. 

From 1996, the uncropped plots received annual applications of herbicide each spring 

following shallow seedbed preparation. Plots were 6 m long and two standard bed-widths (i.e. 

3.66 m) wide, with a boundary of 1 m between plots.  The experiment was arranged as a 

randomized complete block design with four blocks and 20 plots per block.  Treatments 

comprised an untreated control (two plots per block) plus six herbicides each applied at three 

rates.  The extra replication of the untreated (herbicide-free) control was to provide a robust 

base-line response against which each of the herbicide treatments could be compared, and to 

allow for any spatial variability in the background weed flora.  Blocks were arranged to follow 

previous divisions of land-use and be as compact as possible, so that all plots within a block 

contained similar background weed flora. 

 

To maximise the pressure for change, herbicide treatments were limited to a single 

application of a single product at the same rate each year.  In addition, experimental plots 

were subjected to only a single shallow cultivation (lightly power harrowed) in the spring of 

each year.  This was to minimise the diluting effect of the seedbank, and hence maximise the 

potential contribution made by the most recently shed seed from weeds that had either 

survived sub-lethal herbicide applications or had emerged after treatment. Each year the 

whole experimental area (including the control plots) was either mown or treated with a non-

residual contact herbicide (glyphosate) applied to control weeds that emerged before seedbed 

preparation in spring, with additional spot treatments of a systemic herbicide (clopyralid) 

applied to kill perennial weeds (particularly thistle). All plots received these treatments 

simultaneously, with the choice of treatment depending on over-winter weed growth (reflecting 

local grower practise).  The rationale for the perennial weed control was to prevent natural 
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succession occurring and hence the crowding out and masking of more subtle responses to the 

experimental treatments. 

 

The six selected herbicides were propachlor, pendimethalin and linuron (applied pre-

emergence) and ioxynil, bentazone and linuron (applied post-emergence). These herbicides 

were among the most widely used in field vegetable crops, and representative of a range of 

chemical groups with different modes of action. Each herbicide was applied at either 1/4, 1/2 

or full-recommended rate (Table 1), the reduced rates being included to reflect current 

practices and allow the assessment of the potential of reduced rates to select for resistant 

weed biotypes. The herbicides were applied in 400 l/ha water using an Oxford Precision 

Sprayer (OPS) with four nozzle (lurmark 02/F80) boom. The pre-emergence products were 

usually applied within 5 days of cultivation, whilst application of the post-emergence 

products varied according to the range of growth stages in the weeds present (Table 1 – later 

application reflected drier conditions).  Each plot received only one annual application of a 

given herbicide at a given rate, with no sequential applications so that pre-emergence and 

post emergence treatments were separated.  Although not current practise, this allowed the 

simple assessment of the individual effects of different herbicide products, timings and rates. 

 

Table 1 near here 

 

The overall treatment effects were assessed by recording the presence of weed species 

from two 25 cm x 25 cm quadrats, randomly placed on each plot at the start of each season 

and then fixed.  The quadrats were positioned away from plot edges to reduce possible edge 

effects and varied in position each year to prevent the same patch of ground being continually 

assessed.  Recordings were made on an approximately monthly basis through the growing 

season. Recordings from 1996 to 2001 were on the presence/absence of weed species.  In the 

final three years (2002-2004) detailed records of numbers of individual plants were made for 

each species present in the quadrat. 

 

Statistical analysis 

The weed species presence/absence data were summarised as the total number of species and 

the numbers of species from four emergence period types (Supplementary Table S1) present 

each year on each plot (combining observations across all assessments within a year).  Weed 

species were further classified according to various ecological traits (Supplementary Table 
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S1), including their importance to birds and invertebrates, and summarised in terms of overall 

ecological value, and occurrence and difficulty to control in typical field vegetable systems 

(including potatoes, spring cabbage, vining peas, dwarf beans, onions and carrots).  In 2002-

2004, the numbers of plants of each species were used to derive biodiversity and dominance 

indices (log series index α, Berger-Parker index – see Magurran (1983) for calculations) for 

each plot, using the late June/early July assessments in each year.  These two indices were 

chosen because they “combine ... the advantages of being simple to calculate, easy to 

interpret and statistically and ecologically sound” (Magurran, 1983).  Both also have a low 

sensitivity to sample size, a key consideration due to the potential variability in sample size 

caused by the sampling strategy.  Analysis of variance (ANOVA) was used to detect 

differences caused by the timing of herbicide application (pre-emergence or post-emergence), 

herbicide product, and herbicide application rate, for trends across years, and for the 

interactions between these treatment factors.  Analyses across years assumed a split-plot 

design, with year as a sub-plot factor and herbicide product/rate as a main-plot factor. 

Numbers of species present per plot were square-root transformed prior to analysis to satisfy 

the assumptions of homogeneity of variance. 

 

Principal Component Analysis (PCA) (Krzanowski, 2000) was applied to the species 

presence/absence data from all nine years to identify shifts in the weed flora composition 

both over time and caused by the different herbicide application timings, products and 

application rates.  Biplots (Krzanowski, 2000) were used to display the identified associations 

between treatment combinations and weed species.  Separate analyses considered shifts over 

time (years) and due to herbicide application timing, product and application rate. 

 

 

Results  

 

Overall species numbers 

The number of species changed significantly, from an initial average of five species in 1996 

to a maximum average of 10.5 in 2002 (Table 2; P<0.001), remaining stable from 2000 

onwards. Untreated control plots and those receiving reduced application rates supported 

more diverse floras (P<0.001, Fig. 1(b)).  There was a peak in 2002/2003 of almost 12 

species for reduced rate applications of some pre-emergence herbicides (data not shown), 

with a reduction for most treatments in 2003 (Fig. 1), probably caused by the dry conditions 
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inhibiting the germination and establishment of some species in this year.  Over the whole 

experiment, 24 different species were observed. 

 

Figure 1 near here 

Table 2 near here 

 

Pre-emergence herbicide plots (average 9-10 species) generally supported more 

species than post-emergence herbicide plots (average 8-9 species) (P<0.001, Fig 1(a)).  The 

untreated plots supported the most species, while among the herbicide treated plots, 

propachlor supported the most species and bentazone supported the fewest (Table 2).  

Linuron, applied as both pre- and post-emergence treatments, supported greater species 

numbers when applied pre-emergence (Fig 1(a)), indicating that the timing of application can 

be as important in determining the emerging flora as the choice of active ingredient.  There 

was little evidence for any interaction between herbicide product and application rate 

(P=0.538), though the combined effects of herbicide product and application rate on species 

numbers varied across years (P=0.011, data not shown) 

 

Biodiversity 

Ecological biodiversity indices formalised the analysis of shifts in the biodiversity of the 

natural flora as a result of the herbicide regimes.  The log series index α (indicating species 

richness) was higher for pre-emergence herbicides than for post-emergence herbicides 

(P<0.001, Table 3).  The reverse was true of the Berger-Parker index (indicating dominance) 

for which ioxynil and bentazone treated plots (both post–emergence) had high values 

(P<0.001, Table 3). The greatest species richness was seen in 2002 (P<0.001, Table 3) and 

the greatest dominance in 2003 (largely Poa annua L.) (P<0.001, Table 3).  Species richness 

increased with reduced application rate (P<0.001, Table 3) whilst species dominance 

decreased (P=0.095, Table 3). There was no evidence for any interaction between herbicide 

product and application rate for either biodiversity index (P=0.955 and 0.334 respectively, 

data not shown). 

 

Table 3 near here 

 

Changes in species profiles over time (relative presence and absence) 
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Groups of species with similar profiles over the course of the study were identified.  For 

example, Stellaria media (L.)  Vill. (species c) and Urtica urens L. (j) were present on almost 

100% of plots in 1996 and remained common until the drought of 2002 when they were 

almost entirely absent, recovering towards previous levels by 2004 (Fig. 2). Similarly, 

Sinapis arvensis L. (m), Thlaspi arvense L. (n) and Sonchus oleraceus L. (u) remained 

present in the flora following their first appearance in 1999 (S. arvensis, T. arvense) and 2000 

(S. oleraceus) (Fig. 2). 

 

Fig 2 near here 

 

Some species demonstrated more erratic behaviour.  Senecio vulgaris L. (s), a wind-

dispersed species, was initially uncommon but appeared in sizeable numbers in 1997 and 

2002.   This was possibly caused by chance invasions from surrounding vegetation rather 

than by the initial seedbank.  In contrast, species such as P. annua (x) showed smoother long-

term trends, steadily increasing in presence.  

 

Changes in emergence strategies over time 

Each of the species were classified as a) capable of emergence from spring through to the late 

summer and autumn (typically summer annuals), b) capable of emergence from the autumn 

through to the following spring (predominantly winter annuals), c) having a single 

pronounced period of emergence mainly in the spring and d) having a weakly defined period 

of emergence covering most of the year (generalists) (Supplementary Table S1).  As the 

numbers of species increased, new species tended to be specialists with a spring-summer 

emergence periodicity.  By 2004 generalists had declined significantly (P<0.001) in their 

proportional contribution to the flora whilst the spring-summer emerging species made a 

greater contribution than in 1996 (Fig. 3).  However there were no effects of herbicide 

timing, product or rate, or differences between treated and untreated plots. 

 

Fig 3 near here 

 

Changes in the species composition ecological value 

 There was little difference in the numbers of species present, classified by importance to bird 

diet, between the average of the herbicide treated plots and the untreated plots, with similar 

contributions from species with high, intermediate and minimal ecological value.  During the 
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study there was a significant increase for all treatments in the proportion of species of 

intermediate ecological value to birds, relating to the increase in the number of spring-

germinating species.  Pendimethalin treated plots supported the greatest proportions of 

species of either high or intermediate ecological value to birds, with bentazone treated plots 

supporting the least (data not shown). 

 

Almost two thirds of the species present during the study are of either high or 

intermediate ecological value to invertebrates, with a slight increase in the proportion of such 

species present over the first few years.  However, there was little difference in the 

distribution of the proportions of species across the three “insect ecological value” categories 

between the different herbicide treatments (data not shown). 

 

The proportion of species classified as being susceptible to herbicides (Supplementary 

Table S1) decreased significantly during the study for all treatments, and, conversely, the 

proportion of species classified as problematic in field vegetable systems increased during the 

study.  As anticipated, most species present during the study are classified as having a large 

persistent seedbank.  However in 2002, there was a fleeting appearance of several wind-

blown species with a less persistent seedbank, such as S. vulgaris (s) and Cirsium arvense 

(L.) Scop (t), and of species known to be tolerant of dry conditions (P. annua (x)) (Fig. 2h). 

 

Combining across these ecological traits, there is a general decline during the study in 

the proportion of species present that are of lower ecological value but are not problematic in 

field vegetable systems.  There is a corresponding increase in the proportion of species with a 

higher ecological value but which are considered more problematic. 

 

Long term seasonal responses dominate product differences 

A first PCA (Fig. 4) assessed trends in species composition across years and due to product 

timing (i.e. pre-emergence, post-emergence, no product).  Analysis of data for individual 

products and application rates across years gave similar patterns, but only combinations of 

product timing and year are shown here for clarity.  Treatment points (e.g. 1X) close to 

species vectors (e.g. s) indicate an association between the treatment and weed species.  

Importantly, changes in species composition are more strongly associated with season than 

with individual herbicide treatments, with a strong trend over time but with year 7 (2002) 

unusual. 
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Fig 4 near here 

 

Most species vectors are short (letters clustered at the origin) and are therefore not 

strongly associated with particular years/treatments.  Proximity of a species vector to a year 

indicates a strong positive correlation, suggesting a transient presence or an increase in 

intensity for the species in that year.  For example, species v (Tripleurospermum inodorum 

Schulz Bip.) and k (Raphanus raphanistrum L.) are strongly associated with year 7 (2002) 

(Fig. 4), but are present on most plots throughout the study (Fig. 2).  In contrast, U. urens (j) 

and S. media (c) are strongly negatively correlated with year 7 (2002).  Although present on 

most plots throughout the study (Fig. 2), these species were only found on 7 and 8 of the 80 

plots respectively in 2002.  Despite this limited presence in 2002, they were still present in 

sufficient numbers to remain amongst the dominant species on these plots.  This suggests a 

patchy spatial behaviour and highlights how the presence-absence data could be misleading 

without the detailed abundance data collected from 2002 onwards. Despite spot treatments 

aimed at controlling perennial weeds prior to seedbed preparation, two perennial species had 

a notable presence during the experiment. Rumex obtusifolius (h) was only seen in 2002, but 

on about 80% of plots (Fig. 2).  In contrast, C. arvense (t) was seen throughout the 

experiment, but in increasing numbers in the later years (Figs. 2 & 4). 

 

Clear seasonal differences were observed during the last three seasons.   In the 

absence of herbicides, S. media was particularly abundant in 2004 compared with 2002 and 

2003 (P<0.001), but the pattern on the herbicide treated plots was complex. Both linuron and 

ioxynil treated plots had greatest abundance of S. media in 2002, suggesting an interaction 

between herbicide efficacy and season.  Other species saw more consistent seasonal trends 

across treatments, such as V. arvensis, which significantly increased in abundance (P<0.001) 

and C. arvense, which significantly decreased in abundance (P<0.001) (Supplementary Table 

S2). 

 

Product differences dominate rate effects 

A second PCA assessed associations between individual products and weed species, for data 

combined across years (Fig. 5). A number of strong associations are indicated.  For example, 

T. arvense (n) and S. arvensis (m) showed a strong association with propachlor (2), to which 
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they both have resistance, as do many Brassicaceae. Similarly, Fumaria officinalis L. (a) and 

P. annua (x) are associated with linuron (1, 4) and ioxynil (5) respectively. 

 

Fig 5 near here 

 

There is a clear division between the application timings, with all pre-emergence 

products to the left, and all post-emergence products to the right (Fig. 5).  The detailed 

abundance data (Supplementary Table S2) provides a greater insight into how the individual 

species responded.  The most striking example was Chenopodium album L. (d), consistently 

more abundant following the pre-emergence application of linuron compared with the post-

emergence application (Supplementary Table S2). 

 

 

Discussion 

 

Modifying the flora through cultivation timing and intensity 

Land used for field vegetables is subjected to frequent soil disturbance events associated with 

seedbed preparation, sometimes with multiple sowings in a single year, and generalist, 

opportunistic species tend to do well in these frequently disturbed environments.  Conversely, 

continuous cropping systems, dominated by a specific cropping regime, will tend to be 

dominated by weeds that mimic the life-cycle of the crop (Cardina et al., 1998).  The 

reduction in tillage frequency in this study resulted in a steady increase in the total number of 

species observed (Sosnoskie et al., 2006), with the single springtime seedbed preparation 

favouring species having a major spring flush, coinciding with this disturbance, as also 

observed by Squire et al., (2000). 

 

The lack of variation in the seasonality of the species in the untreated and herbicide 

treated plots suggests that cultivation timing and frequency was the major driver behind 

changes, rather than any herbicide effect, probably explaining the increase in P. annua, as 

grass weeds have been frequently reported as being associated with reduced tillage regimes 

(Davis et al., 2005a).   Perennial species did not initially feature in significant numbers within 

the seedbank, probably because of the frequent soil disturbance associated with the land 

management prior to the start of the experiment.  The establishment of such species under the 
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reduced disturbance tillage regime (Froud-Williams et al., 1983; Tuesca et al., 2001) resulted 

in their appearance after about three years. 

 

Herbicides as management tools for determining species dominance 

As the experimental site had been subjected to many years of conventional intensive weed 

control, with multiple, diverse herbicide applications, it was not surprising that the single 

annual application of a single product provided opportunities for species numbers to increase.  

While several studies have reported that reduced weed management leads to an increase in 

species diversity (Albrecht, 2003), it can also amplify the presence of dominant and difficult 

to control species (Squire et al., 2000).  The increasing dominance of some species (e.g. P. 

annua on the bentazone and ioxynil treated plots) could be reasonably explained by the 

resistance of species to products, but results for other species were less easily explained based 

on known herbicide susceptibility.  Veronica persica Poiret had become the most frequent 

species by 2004, yet is known to be susceptible to all the products (moderately susceptible to 

bentazone) used in the study.  So susceptibility to an active ingredient could not be used in 

isolation to explain the observed dominance, maybe reflecting an adaptation in emergence 

timing for this generalist species. 

 

Propachlor treated plots had significantly greater species richness (P<0.001) and 

lower species dominance compared with the untreated control, suggesting that the selective 

nature of this product was removing dominant species from the flora and creating a gap for 

other species.  More generally, the earlier application times of the pre-emergence products (3-

7 weeks earlier than the post-emergence application times) allowed the exploitation of this 

period by species that germinated after herbicide efficacy had declined. Hence the application 

and timing of a specific herbicide can enhance the presence of a species by removing 

competitors (Supplementary Table S2), supporting the hypothesis that herbicides have the 

potential to modify the weed flora composition as a selective management tool (Pywell et al., 

1998). 

 

Reduced herbicide application rates provide opportunities for species to escape control 

The untreated plots, and those receiving the lower rates of all products, supported a more 

diverse flora than the full rate plots. The more diverse flora resulted from reduced rates being 

sub-lethal to seedlings from a wider range of species than when herbicides were applied at 

the full recommended rate.  Herbicide efficacy may also be more sensitive to the growth 
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stages of the weeds when applied at reduced rates (Sønderskov et al., 2006).  For pre-

emergence herbicides, reduced rates may remain effective for only a short time so that late-

emerging seedlings may survive.  These factors all lead to opportunities for a greater range of 

species to contribute to the flora.  Squire et al. (2000) reported such increases in abundance 

for less intensive regimes using reduced herbicide rates, with a stabilization of the number of 

species occurring between the third and sixth years, broadly reflecting our study.  Bostrom & 

Fogelfors (2001) demonstrated that reduced herbicide application rates increased the 

proportion of “difficult-to-control weeds”, as observed in this study.  However population 

variation means that early detection of small changes in response to herbicides is likely to be 

difficult (Collings et al., 2001).  Sub-lethal herbicide applications may also contribute to 

changes in the flora through subtle effects on the germination, competitive ability or 

fecundity of the progeny of treated maternal plants (Champion et al., 1998; Grundy et al., 

1995; Hald, 1999). The relative importance of these maternal effects is largely unknown and 

further information is required to assess the implications of reduced herbicide application 

rates on subsequent weed population shifts.  The relationships between application timing, 

herbicide rate and weed species/herbicide interactions are therefore likely to be complex 

(Andersson, 1996). 

 

Can the responses of species to specific herbicides be predicted? 

Active ingredients in herbicides are species specific, but weed species belonging to the same 

family or order may respond similarly to a particular product.  In this study several species 

showed strong associations with the product to which they are known to show resistance, 

appearing with higher frequency on plots treated with that product (Supplementary Table S1 

& Fig. 4).  Other studies have shown similarities between species from the same family in 

their susceptibility to particular herbicides (Bond, 1988). However, there are clearly 

anomalies within families and the relationships are complex, with species that belong to the 

same order sometimes behaving very differently.  The potential predictive capacity of the 

phylogenetic associations between weed species has not yet been seriously pursued.  

Screening studies of representative species from several clades against a wide range of 

herbicides would be required to assess the potential of a phylogenetic approach to predict the 

responses of species not included on product labels. 

 

Seasonal differences dominate annual variation in the weed flora 
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The observed weed flora represents the effects of a complex interaction of season, application 

rate, product and cropping system. The selective nature of the products and the pre- or post-

emergence application timing were thought to be the primary drivers of change in the weed 

flora.  However there also appeared to be strong seasonal impacts on herbicide effects 

(P<0.001) (Tables 2 & 3; Supplementary Table S2). 

 

Local meteorological records (data not shown) indicated that the period from autumn 

2001 to autumn 2002 (the 2002 growing season) was the driest of the 9 years studied (April 

and June were particularly dry), and that temperatures for the period January 2002 to June 

2002 were warmer than the 9-year average. The previous season (February 2001 to 

September 2001) had been wetter than comparable seasons on average.  This combination of 

conditions led to the reduced survival of species more suited to cooler or more humid 

conditions, or sensitive to drought (e.g. S. media and U. urens) (Bond et al., 2006), creating 

opportunities for species that can germinate in drier conditions (e.g. C. album) (Qasem, 

1993). Additionally, these warm spring conditions may not have provided sufficient winter 

chilling to break seed dormancy in species such as Polygonum aviculare L. (Batlla & 

Benech-Arnold, 2003), which were under-represented in 2002 (Fig. 2).  Thus understanding 

the ecological responses of weed species to meteorological factors can provide a valuable but 

coarse insight into the changes in floral composition in a given year, without the need for 

complex mathematical modelling. 

 

The interaction between meteorological conditions and herbicide efficacy is another 

important consideration (Riethmuller-Haage, 2006).  As well as tolerating the dry conditions 

of 2002, C. album was noticeably abundant on the plots treated with bentazone, reflecting the 

reduced efficacy of this product against this species in dry conditions (Taylor et al., 1980).  

Gaps in the control of species, created by interactions between herbicide choice and 

meteorological conditions, can lead to simple niche exploitation by other species present in 

the seedbank.  This is illustrated by the complementary occurrence patterns of C. album and 

P. annua, which tends to do less well in dry conditions (Mitich, 1998).  Species dominance is 

shifted in the wetter years of 2003 and 2004, where presumably the control efficacy of C. 

album by bentazone was improved and the bentazone-resistant species, P. annua, was able to 

re-occupy the niche (Supplementary Table S2). 

 

Broad patterns of response to management in terms of the ecological value of the flora 
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An emerging feature, emphasising the importance of improving our ecological understanding 

of weed management, is that certain cropping systems no longer require the removal of all 

weeds.  Some common weed species contribute to supporting biodiversity in the agri-

environment (Marshall et al., 2003) with the approach also benefiting the management of 

rarer species (Gibson et al., 2006).  This study clearly supports the generally held principles 

that a relaxation of weed control and a shift towards spring cultivation events will lead to a 

proliferation of a diverse and ecologically beneficial weed flora.  While current market forces 

and quality expectations in field vegetable systems limit such relaxation, the approaches used 

in this study demonstrate the applicability of these principles to other cropping systems with 

seedbanks containing spring-germinating, broad-leaved weeds.  Paradoxically, species 

providing the most beneficial ecological functions are often those most common and 

problematic to control within field vegetable systems.  Thus a good understanding of the 

community dynamics of weed populations is required for the identification of management 

regimes, such as sacrificial areas (Grundy et al., 2003), that are sustainable, economically 

feasible and deliver beneficial ecological functions. 

 

 To enable the assessment of the impacts of specific components of a weed 

management strategy, this study used a simplified version of the field vegetable cropping 

system into which the developed principles might be applied.  In practise, weed communities 

will be influenced by a range of other factors (Andreasen & Skovgaard, 2009), including crop 

rotation, crop type, and soil type and structure, with the presence of any crop increasing the 

competition for resources compared with our experimental system.  It is also unlikely that the 

same herbicide would be repeatedly and solely applied to the same field over a number of 

years, primarily because of variability in the crops being grown within a particular rotation, 

so that, in practise, the sequence of herbicides used over a number of years would prevent a 

strong propagation of weeds adapted to the management strategy for a particular crop.  This 

study therefore provides an insight into specific elements of a weed management strategy, but 

the results require considerable integration with these other factors to provide a clear 

understanding of these complex systems. 

 

Making sense of complexity: from data to models 

Despite the identification of patterns associated with the main drivers (herbicide 

susceptibility, application rate, application timing and tillage timing) of change, there are a 

number of inconsistencies when examining the data on a season by season basis, such that 
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any one of these drivers cannot be used in isolation to explain the observations.  This is a 

result of the multiple and complex interactions between the factors involved, including the 

weather (Swanton et al., 2006).  These interactions help to explain observed patterns, such as 

the proposed explanation for the shift in dominance between P. annua and C. album on the 

bentazone treated plots, but predicting future trends is more difficult.  A much broader study, 

involving both a wider range of meteorological conditions (both different field sites and 

different starting years), a greater diversity of initial weed flora compositions (different field 

sites), and different cropping factors would be needed to develop predictive models.  Even 

then, extreme scenarios may not be observed, limiting the capacity of such models to predict 

the causes of these events. 

 

Interactions between the major management factors and ecological responses to biotic 

factors, such as the degree of winter chilling available for dormancy breaking, or drought 

tolerance during the critical establishment phase, are responsible for much of the seasonal 

variability.  As these interactions are difficult to observe, a modelling approach is needed to 

understand the complexity of the system and predict responses with sufficient detail to be of 

practical value across a range of scenarios. Several researchers have questioned the 

practicality of constructing predictive models to describe weed community changes.  

Freckleton and Stephens (2009) proposed that short-term detailed responses of absolute 

numbers at a local scale may be difficult to predict with accuracy, largely because of the 

seasonal variation we highlight in this study.  However, they state that predictions of long-

term shifts in response to broad-scale patterns of management may be possible, helping to 

devise sustainable management strategies.  We suggest that while management approaches 

will predominantly affect the species traits needed for success under a particular regime, it is 

the biotic factors that will determine which species with these traits will dominate within a 

particular season. 

 

Conclusions 

 

This long-term study has provided unique insights into how the weed flora responds over 

time to different management and environmental pressures, which have much wider 

consequences.  This is largely because field vegetable systems, by their very nature, often 

occupy lighter, freely draining, soils known to support a higher floral diversity.  This, 

combined with predominantly spring cropping, results in a prevalence of species known for 
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their high ecological value in the agricultural landscape.  Thus whilst a “zero tolerance” for 

weeds may remain a primary aim for the field vegetable industry, the ecological responses 

observed in the weed flora in this study may be valuable on a wider generic level.  In this 

wider ecological context we have identified the management drivers that both pose the 

greatest threats in terms of their negative impacts and promotion of "difficulty to control" 

weed species in field vegetable systems, and support the greatest functional biodiversity in 

terms of services to bird and invertebrate communities. This study illustrates the potential to 

use a selective programme of herbicides and tillage to manage weeds within a cropping 

system, and to manipulate the long-term weed flora composition and dominance over time.  

There were three main conclusions from the study. Firstly, that pre-emergence products and 

reduced application rates consistently encouraged a greater species diversity compared with 

post-emergence products.  Secondly, that there was a seasonal increase in spring emerging 

species, coinciding with the timing of the main tillage operation.  And finally, that there was 

an increase in the number of species with a greater ecological functional value in response to 

the repeated use of a single product, spring tillage reduced input regime. Further 

interpretation of these data is needed, and the idea of management filters (Smith, 2006; 

Storkey, 2006) could provide a pragmatic approach to understanding weed community 

dynamics and identifying sustainable weed management strategies based on this study. 
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Figure legends 

 

Fig. 1 Changes in the mean numbers of species per plot over time: (a) comparisons of the 

untreated control with each of the herbicide products (responses averaged across application 

rates); (b) comparisons of the untreated control with each of the application rates (responses 

averaged across herbicide products).  Back-transformed means obtained from ANOVA of 

square-root transformed data (Table 2).  Untreated control = × (solid line), pre-emergence 

linuron = ○ (solid line), pre-emergence propachlor = ○ (dotted line), pre-emergence 

pendimethalin = ○ (dashed line), post-emergence linuron = ● (solid line), post-emergence 

ioxynil = ● (dotted line), post-emergence bentazone = ● (dashed line), full recommended rate 

= ▲ (solid line), half rate = ▲ (dotted line), quarter rate = ▲ (dashed line). 

 

Fig. 2 Frequency of occurrence of 24 weed species across the 80 experimental plots: (a) mean 

percentage occurrence across all nine seasons; (b) – (j) difference in percentage occurrence 

for each year (1996 – 2004 respectively) compared with the mean percentage occurrence 

across all nine seasons.  A zero value indicates no difference from the mean, a positive value 

indicates a greater occurrence of the species than the mean, and a negative value indicates a 

lesser occurrence.  Species codes are: a – Fumaria officinalis; b – Papaver  rhoeas; c – 

Stellaria media; d – Chenopodium album; e – Bilderdykia convolvulus; f – Polygonum 

lapathifolium; g – Polygonum aviculare; h – Rumex obtusifolius; i – Viola arvensis; j – 

Urtica urens; k – Raphanus raphanistrum; l – Capsella bursa-pastoris; m – Sinapsis 

arvensis; n – Thlaspi arvense; o – Sisymbrium officianale; p – Lamium purpureum; q – 

Veronica persica; r – Aethusa cynapium; s – Senecio vulgaris; t – Cirsium arvense; u – 

Sonchus oleraceus; v – Tripleurospermum inodorum; w – Elytrigia repens; x – Poa annu.  

An asterisk against a species code indicates that the species did not appear on any plots in 

that year. 

 

Fig. 3 Relative contributions to the weed flora of species with different emergence 

periodicities, as defined in Supplementary Table S1, for a) untreated and b) herbicide treated 

plots in the nine years of the study, where ■ = autumn-spring;  □ = spring only;  ■ = spring-

autumn; ■ = generalist. 

 

Fig. 4 Biplot displaying the associations between weed species and combinations of year and 

herbicide application timing, as given by the first two dimensions from a Principal 

Component Analysis of the weed species presence/absence data averaged across replicates, 

herbicide products and application rates.  Lower-case letters and associated vectors from the 

origin indicate the weed species loadings (codes as given in Figure 2 – key species are: c – S. 

media, d – C. album, f – P. lapathifolium, g – P. aviculare, h – R. obtusifolius, j – U. urens, k 

– R. raphanistrum, m – S. arvensis, n – T. arvense, s – S. vulgaris, t – C. arvense, u – S. 

oleraceus, v – T. inodorum).  Numbers and upper-case letters indicate the scores for 

combinations of year (1 = 1996, 2 = 1997, 3 = 1998, 4 = 1999, 5 = 2000, 6 = 2001, 7 = 2002, 

8 = 2003, 9 = 2004) and herbicide application timing (X = pre-emergence, Y = post-

emergence, Z = untreated control).  Arrow indicates the general trend from the first year to 

the last year of the study. 

 

Fig. 5 Biplot displaying the associations between weed species and combinations of herbicide 

product and application rate, as given by the first two dimensions from a Principal 

Component Analysis of the weed species presence/absence data averaged across years.  

Lower-case letters and associated vectors form the origin indicate the weed species loadings 

(codes as given in Figure 2 – key species are: a – F. officinalis, f – P. lapathifolium, g – P. 
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aviculare, l – C. bursa-pastoris, m – S. arvensis, n – T. arvense, p – L. purpureum, q – V. 

persica, s – S. vulgaris, t – C. arvense, u – S. oleraceus, x – P. annua).  Numbers and upper-

case letters indicate the scores for combinations of herbicide product (1 = pre-emergence 

linuron, 2 = pre-emergence propachlor, 3 = pre-emergence pendimethalin, 4 = post-

emergence linuron, 5 = post-emergence ioxynil, 6 = post-emergence bentazone) and 

herbicide application rate (F = full recommended rate, H = half rate, Q = quarter rate). 
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Table 1 Details of herbicide products, application rates and application dates for each year from 1996 to 2004.  All pre-emergence products were applied on 

the same date in any given year, similarly all post-emergence products were applied on the same date in a given year.  Pre-emergence products generally 

applied 5 days after cultivation, whilst post-emergence products applied according to the manufacturers recommended weed growth stage (generally the 2 

true leaf stage). 

 

Herbicide product Rate of active 

ingredient applied 

(l/ha in 400 l/ha) 

Experimental season 

 Full  Half Quart

er 

1996 1997 1998 1999 2000 2001 2002 2003 2004 

          

Pre-emergence products           

Linuron (as Linuron Fl 

(Ashlade), 480 g/l/) 
1.70 0.85 0.43 27/4/1996 1/5/1997 13/5/1998 30/4/1999 9/5/2000 30/5/2001 17/5/2002 15/5/2003 26/5/2004 

Propachlor (as Ramrod Flo, 

480 g/l) 
9.00 4.50 2.25 27/4/1996 1/5/1997 13/5/1998 30/4/1999 9/5/2000 30/5/2001 17/5/2002 15/5/2003 26/5/2004 

Pendimethalin (as Sovereign 

400, 400 g/l) 
3.30 1.65 0.83 27/4/1996 1/5/1997 13/5/1998 30/4/1999 9/5/2000 30/5/2001 17/5/2002 15/5/2003 26/5/2004 

             

Post-emergence products           

Linuron (as Linuron Fl 

(Aslade), 480 g/l) 
1.70 0.85 0.43 6/6/1996 23/5/1997 17/6/1998 10/6/1999 30/6/2000 2/7/2001 29/6/2002 29/5/2003 16/6/2004 

Ioxynil (as Totril, 225 g/l) 2.80 1.40 0.70 1/5/1997 23/5/1997 17/6/1998 10/6/1999 30/6/2000 2/7/2001 29/6/2002 29/5/2003 16/6/2004 

Bentazone (as Basagran 480 

g/l) 
3.00 1.50 0.75 1/5/1997 23/5/1997 17/6/1998 10/6/1999 30/6/2000 2/7/2001 29/6/2002 29/5/2003 16/6/2004 
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Table 2 Mean numbers of species per plot for each year overall, and for each herbicide product and application rate in each year.  Square root transformed 

means shown in parentheses alongside back-transformed means.  All SEDs are based on 488 d.f. 

 

Year 
Treatment 1996 1997 1998 1999 2000 2001 2002 2003 2004 

                   

Overall 4.84 (2.28) 9.24 (3.10) 8.56 (2.99) 8.37 (2.96) 10.43 (3.29) 10.50 (3.30) 10.47 (3.29) 9.49 (3.14) 9.41 (3.13) 

                   

Untreated Control 5.81 (2.49) 10.11 (3.24) 8.72 (3.02) 9.22 (3.10) 11.97 (3.51) 10.86 (3.35) 10.60 (3.31) 11.24 (3.41) 10.34 (3.27) 

                   

Herbicide:  

Pre-emergence 

Linuron 5.22 (2.37) 8.19 (2.93) 7.98 (2.89) 9.11 (3.08) 9.79 (3.19) 10.96 (3.37) 10.95 (3.37) 9.16 (3.09) 9.81 (3.19) 

Propachlor 4.43 (2.19) 9.72 (3.18) 8.39 (2.96) 8.51 (2.98) 11.26 (3.41) 10.20 (3.25) 11.36 (3.43) 11.81 (3.49) 10.54 (3.30) 

Pendimethalin 5.50 (2.42) 9.02 (3.07) 8.59 (3.00) 9.12 (3.08) 11.64 (3.47) 10.54 (3.30) 10.52 (3.30) 10.66 (3.32) 9.60 (3.16) 

Post-emergence 

Linuron 4.97 (2.31) 9.20 (3.10) 8.72 (3.02) 7.88 (2.87) 9.41 (3.13) 11.14 (3.39) 9.56 (3.15) 8.04 (2.90) 7.25 (2.76) 

Ioxynil 3.69 (2.02) 9.63 (3.16) 9.20 (3.09) 7.03 (2.72) 10.36 (3.28) 11.06 (3.38) 10.79 (3.34) 8.50 (2.98) 10.06 (3.23) 

Bentazone 4.70 (2.25) 9.15 (3.09) 8.39 (2.96) 8.12 (2.92) 9.26 (3.10) 8.97 (3.06) 9.62 (3.16) 7.97 (2.89) 8.81 (3.03) 

                   

Application Rate 

Full Rate 3.90 (2.07) 8.69 (3.01) 8.46 (2.97) 7.93 (2.88) 9.70 (3.17) 10.39 (3.28) 10.00 (3.22) 8.68 (3.01) 8.66 (3.01) 

Half Rate 5.01 (2.32) 9.51 (3.14) 8.55 (2.99) 8.08 (2.91) 10.32 (3.27) 10.07 (3.23) 10.63 (3.32) 9.51 (3.14) 9.51 (3.14) 

Quarter Rate 5.35 (2.39) 9.25 (3.10) 8.61 (3.00) 8.84 (3.04) 10.79 (3.34) 10.95 (3.37) 10.73 (3.33) 9.75 (3.18) 9.78 (3.19) 

 

SEDs 

 For comparing overall means between Years = 0.036 

 For comparing means for the Untreated Control between Years = 0.113 

 For comparing means for each Herbicide between Years = 0.092 

 For comparing means for each Application Rate between Years = 0.065 

 

 For comparing means for two Herbicides within a Year = 0.094 

 For comparing means for the Untreated Control and a Herbicide within a Year = 0.105 

 For comparing means for two Application Rates within a Year = 0.067 

 For comparing means for the Untreated Control and an Application Rate within a Year = 0.094



27 

 

Table 3 Mean diversity (Log series index α) and dominance (Berger-Parker) indices for each 

year overall, for each herbicide product, for each herbicide application rate and for each 

product and rate in each year.  Indices calculated from the late June or early July assessments 

in 2002, 2003 and 2004 only. 

 

  Log series index α  Berger-Parker index 

Year  2002 2003 2004 Overall  2002 2003 2004 Overall 

Treatment           

           

Overall  2.71 1.90 1.80 2.14  0.439 0.590 0.508 0.513 

           

Untreated Control  2.83 2.06 2.15 2.35  0.398 0.409 0.382 0.396 

           

Pre-emergence Herbicides 

Linuron  2.64 1.82 1.67 2.04  0.405 0.529 0.530 0.488 

Propachlor  2.98 3.19 2.11 2.76  0.384 0.377 0.383 0.381 

Pendimethalin  2.61 1.84 2.00 2.15  0.434 0.508 0.506 0.483 

Post-emergence Herbicides 

Linuron  2.92 1.49 1.25 1.88  0.368 0.606 0.675 0.549 

Ioxynil  2.90 1.49 1.96 2.12  0.436 0.860 0.539 0.612 

Bentazone  2.15 1.46 1.58 1.73  0.638 0.785 0.497 0.640 

           

Application Rate 

Full Rate  2.67 1.78 1.57 2.01  0.467 0.689 0.587 0.581 

Half Rate  2.59 2.04 1.77 2.13  0.459 0.601 0.500 0.520 

Quarter Rate  2.84 1.83 1.94 2.20  0.407 0.542 0.477 0.475 

 

SEDs for analysis of: Log series  

index α 

Berger-

Parker index 

For comparing overall means (58 d.f.)   

 for two Herbicides  0.127 0.0332 

 for the Untreated Control and a Herbicide 0.142 0.0371 

 for two Application Rates 0.090 0.0235 

 for the Untreated Control and an Application Rate 0.127 0.0332 

   

For comparing means between Years (121 d.f.)   

 overall 0.078 0.0165 

 for the Untreated Control 0.245 0.0520 

 for each Herbicide  0.200 0.0425 

 for each Application Rate 0.142 0.0300 

   

For comparing means within a Year (121 d.f.)   

 for two Herbicides  0.207 0.0480 

 for the Untreated Control and a Herbicide  0.231 0.0537 

 for two Application Rates 0.146 0.0340 

 for the Untreated Control and an Application Rate 0.207 0.0480 



28 

 

 

 
 

 

Fig. 1 Changes in the mean numbers of species per plot over time: (a) comparisons of 

the untreated control with each of the herbicide products (responses averaged across 

application rates); (b) comparisons of the untreated control with each of the 

application rates (responses averaged across herbicide products).  Back-transformed 

means obtained from ANOVA of square-root transformed data (Table 2).  Untreated 

control = × (solid line), pre-emergence linuron = ○ (solid line), pre-emergence 

propachlor = ○ (dotted line), pre-emergence pendimethalin = ○ (dashed line), post-

emergence linuron = ● (solid line), post-emergence ioxynil = ● (dotted line), post-

emergence bentazone = ● (dashed line), full recommended rate = ▲ (solid line), half 

rate = ▲ (dotted line), quarter rate = ▲ (dashed line). 
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Fig. 2 Frequency of occurrence of 24 weed species across the 80 experimental plots: 

(a) mean percentage occurrence across all nine seasons; (b) – (j) difference in 

percentage occurrence for each year (1996 – 2004 respectively) compared with the 

mean percentage occurrence across all nine seasons.  A zero value indicates no 

difference from the mean, a positive value indicates a greater occurrence of the 

species than the mean, and a negative value indicates a lesser occurrence.  Species 

codes are: a – Fumaria officinalis; b – Papaver  rhoeas; c – Stellaria media; d – 

Chenopodium album; e – Bilderdykia convolvulus; f – Polygonum lapathifolium; g – 

Polygonum aviculare; h – Rumex obtusifolius; i – Viola arvensis; j – Urtica urens; k – 

Raphanus raphanistrum; l – Capsella bursa-pastoris; m – Sinapsis arvensis; n – 

Thlaspi arvense; o – Sisymbrium officianale; p – Lamium purpureum; q – Veronica 

persica; r – Aethusa cynapium; s – Senecio vulgaris; t – Cirsium arvense; u – Sonchus 

oleraceus; v – Tripleurospermum inodorum; w – Elytrigia repens; x – Poa annu.  An 

asterisk against a species code indicates that the species did not appear on any plots in 

that year. 
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Fig. 3 Relative contributions to the weed flora of species with different emergence 

periodicities, as defined in Supplementary Table S1, for a) untreated and b) herbicide 

treated plots in the nine years of the study, where: black = autumn-spring; white = 

spring only; dark grey = spring-autumn; light gray = generalist. 
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First Principal Component (38.1% of variance)
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Fig. 4 Biplot displaying the associations between weed species and combinations of 

year and herbicide application timing, as given by the first two dimensions from a 

Principal Component Analysis of the weed species presence/absence data averaged 

across replicates, herbicide products and application rates.  Lower-case letters and 

associated vectors from the origin indicate the weed species loadings (codes as given 

in Figure 2 – key species are: c – S. media, d – C. album, f – P. lapathifolium, g – P. 

aviculare, h – R. obtusifolius, j – U. urens, k – R. raphanistrum, m – S. arvensis, n – 

T. arvense, s – S. vulgaris, t – C. arvense, u – S. oleraceus, v – T. inodorum).  

Numbers and upper-case letters indicate the scores for combinations of year (1 = 

1996, 2 = 1997, 3 = 1998, 4 = 1999, 5 = 2000, 6 = 2001, 7 = 2002, 8 = 2003, 9 = 

2004) and herbicide application timing (X = pre-emergence, Y = post-emergence, Z = 

untreated control).  Arrow indicates the general trend from the first year to the last 

year of the study. 
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First Principal Component (44.6% of variance)
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Fig. 5 Biplot displaying the associations between weed species and combinations of 

herbicide product and application rate, as given by the first two dimensions from a 

Principal Component Analysis of the weed species presence/absence data averaged 

across years.  Lower-case letters and associated vectors from the origin indicate the 

weed species loadings (codes as given in Figure 2 – key species are: a – F. officinalis, 

f – P. lapathifolium, g – P. aviculare, l – C. bursa-pastoris, m – S. arvensis, n – T. 

arvense, p – L. purpureum, q – V. persica, s – S. vulgaris, t – C. arvense, u – S. 

oleraceus, x – P. annua).  Numbers and upper-case letters indicate the scores for 

combinations of herbicide product (1 = pre-emergence linuron, 2 = pre-emergence 

propachlor, 3 = pre-emergence pendimethalin, 4 = post-emergence linuron, 5 = post-

emergence ioxynil, 6 = post-emergence bentazone) and herbicide application rate (F = 

full recommended rate, H = half rate, Q = quarter rate). 

 


