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Abstract 

    An alternative and efficient procedure to estimate the maximum inelastic roof 

displacement and the maximum inelastic interstorey drift ratio along the height of regular 

multi-storey steel MRF subjected to pulse-like ground motions is proposed. The method and 

the normalized response quantities emerge from formal dimensional analysis which makes 

use of the distinct time scale and length scale that characterize the most energetic component 

of the ground shaking. Such time and length scales emerge naturally from the distinguishable 

pulses which dominate a wide class of strong earthquake records and can be formally 

extracted with validated mathematical models published in literature. The proposed method is 

liberated from the maximum displacement of the elastic single-degree-of-freedom structure 

since the self similar master curve which results from dimensional analysis involves solely 

the shear strength and yield roof displacement of the inelastic multi-degree-of-freedom 

system in association with the duration and acceleration amplitude of the dominant pulse. The 

estimated inelastic response quantities are in superior agreement with the results from 

nonlinear time history analysis than any inelastic response estimation published previously.  
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INTRODUCTION 

The increasing number of recordings in the near-source area has provided strong evidence 

that their ground velocity and acceleration time-histories may exhibit coherent pulses, 

capable of imposing high drift demands in building structures (Bertero et al. 1978, Hall et al 

1995). 

    Research on inelastic seismic response in the near-source has mainly focused on single-

degree-of-freedom (SDOF) systems. The early works of Veletsos and Newmark (1960), 

Veletsos et al. (1965) and subsequent studies by Chopra and Chintanapakdee (2003, 2004) 

confirmed that the equal-displacement rule is valid under near-fault (pulse-type) ground 

motions. Mavroeidis et al. (2004) concluded that the Newmark-Hall (1969) design equations 

are applicable to near-fault ground motions, provided that the period axis of the inelastic 

spectrum is normalized with the duration, Tp, of the predominant pulse of the ground motion. 

The unique advantages of normalizing the response with a time scale and a length scale of the 

excitation was first proposed by Makris and co-workers (2004a, 2004b, 2006) who showed 

using dimensional analysis (Barenblatt 1996, Langhaar 1951) that the inelastic response 

curves assume similar shapes for different values of the normalized yield displacement and 

concluded using the concept of self similarity that a single inelastic response curve can offer 

the maximum inelastic displacement of the structure given the pulse period and amplitude of 

the ground shaking. Recently, Mylonakis and Voyagaki (2006) developed closed form 

solutions for elastic-perfectly plastic SDOF systems subjected to simple waveforms and 

confirmed that the use of the strength reduction factor, R, complicates the results since 

parameter R is inherently rooted in the elastic response.  

     A handful of studies have investigated the response of multi-degree-of-freedom (MDOF) 

systems to near-fault ground motions. Initially Bertero et al (1978) and subsequently Hall et 

al. (1995) concluded that the demands imposed on structures located in the near-source area 
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could far exceed the capacity of flexible high-rise buildings. Alavi and Krawinkler (2004) 

used the ratio of the base shear coefficient over the amplitude of the pulse of the ground 

motion for expressing the strength of the structure and demonstrated that structures with 

fundamental periods longer than the period of the pulse of the ground motion respond very 

differently from structures with a shorter period. Recently, Kalkan and Kunnath (2006) 

showed that motions with forward directivity excite higher modes, while motions with fling-

step displacement tend to accentuate first-mode behavior. All the aforementioned studies 

concluded that the current near-fault seismic design practice (ATC 1996), i.e., the constant 

amplification of the design response spectrum, is facing challenges that remain to be 

addressed.  

    Current design guidelines (ATC 1996, FEMA273 1997, FEMA356 2000, FEMA440 2004, 

Eurocode 8 2004) for estimating maximum deformations of buildings adopt the equivalent 

SDOF systems by using the results of a pushover analysis of the corresponding MDOF 

system. The maximum inelastic displacement of the SDOF system is calculated either with 

the displacement coefficient method (FEMA273 1997) or the equivalent linearization (ATC 

1996) method. The translation of the maximum SDOF displacement to the maximum roof 

displacement, ur,max, of the MDOF is then achieved by using appropriate conversion factors 

which are based, either on statistical analysis of a large number of nonlinear time history 

analyses (FEMA273 1997), or on the concept of the constant deformed shape of the structure 

during the seismic excitation (EC8 2004). The study by Chopra and Goel (2002) showed that 

the above-mentioned first-mode approach may yield poor estimates on the maximum 

interstorey drifts along the height of the building, and therefore a multi-mode inelastic static 

procedure is needed to better estimate the inelastic interstorey drifts of building structures.  

    Current seismic codes, such as the EC8 (2004), calculate the maximum interstorey drifts 

by relying entirely on the equal-displacement rule; while assuming that the maximum 
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interstorey drift profile remains constant during the seismic excitation. According to the 

results presented in (Alavi and Krawinkler 2004) these assumptions depart from reality in the 

case of buildings subjected to pulse-like ground motions. Studies from Miranda (1999) and 

Miranda and Reyes (2002) estimate the maximum interstorey drift ratio (IDRmax: difference 

in successive floor displacements normalized with the storey height) along the height of the 

frame via correlation studies with the maximum roof drift, while, recent work of Akkar et al. 

(2005) presents correlation studies between ur,max and IDRmax in the near-source but with 

emphasis on elastic and not on inelastic buildings.  

    In this paper, the response of SDOF systems with period of vibration in the range of 

interest with respect to the fundamental period of vibration of steel MRF is first examined. 

Based on formal dimensional analysis, a self-similar (master) curve that offers the peak 

inelastic SDOF displacement normalized to the energetic length scale of the predominant 

pulse of the earthquake ground motion (a measure of the persistence of the excitation to 

generate inelastic response) is derived and yields favorable estimates when compared with 

the estimates offered by the inelastic deformation ratio method available in the literature.  

    The premise that the maximum inelastic roof displacement of a multi-storey steel MRF can 

be estimated from the maximum inelastic displacement of an equivalent SDOF system is next 

evaluated.  It is shown that the combination of the error due to the SDOF representation of 

the real MDOF structure together with the error due to the approximate equation used to 

predict the peak response of the SDOF system may lead to appreciable overestimated values 

of the peak inelastic roof displacement.  

    The aforementioned overestimated values of the peak inelastic roof displacement 

motivated the exploration of an alternative and more efficient way for estimating the peak 

values of global and local inelastic deformation demands in regular multi-storey steel 

moment-resisting frames (MRF) under pulse-like ground motions. More specifically, the 
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paper proposes simple formulae which offer a) on the basis of dimensional analysis, the peak 

inelastic roof displacement, ur,max, in association with the yield roof displacement, ur,y, the 

base shear strength, Vy, the total mass of the real MDOF frame together with the amplitude 

and duration of distinguishable acceleration pulses of the excitation and b) the relation 

between ur,max and IDRmax, associated with the number of stories, ns, and the beam-to-column 

stiffness ratio, ρ, of the frame.  

     

KINEMATIC CHARACTERISTICS OF PULSE-TYPE GROUND MOTIONS USED IN 

THIS STUDY 

The relative simple form, yet destructive potential of near source ground motions has 

motivated the development of various closed form expressions which approximate their 

kinematic characteristics. The early work of Veletsos et al. (1965) was followed by the 

papers of Hall et al. (1995), Heaton et al. (1995), Makris (1997), Makris and Chang (2000), 

Alavi and Krawinkler (2004) and more recently by the paper of Mavroeidis and 

Papageorgiou (2003). Physically realizable pulses can adequately describe the impulsive 

character of near-fault ground motions both qualitatively and quantitatively by usually 

adopting two input parameters, which are either the acceleration amplitude, ap, and duration, 

Tp, or the velocity amplitude, vp, and duration, Tp (Makris 1997). The more sophisticated 

model of Mavroeidis and Papageorgiou (2003) is described by the following analytical 

function of the ground velocity  
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where Α and fp (=1/Tp) are the amplitude and frequency of the pulse, v is the phase between 

the half-cycles of the pulse, γ is a parameter which controls the number of zero-crossings of 
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the signal and to is a parameter that controls the time at which the amplitude of the signal 

occurs. Recently, Vassiliou and Makris (2009, 2010) have developed a mathematically 

formal, objective and easily reproducible procedure to estimate the parameters of the 

Mavroeidis and Papageorgiou (2003) using wavelet analysis. The pulse duration of this 

model was found to be strongly correlated with the moment magnitude, Mw, of the event,  

wp 5.09.2log MT   (2) 

Alternative equations to Equation (2) are known to the literature (Okamoto 1984).     

    Figure 1 plots 17 pulse-like ground motions used in the nonlinear time-history analyses of 

this study. The moment magnitude, Mw, closest distance to the causative fault, D, peak 

ground acceleration, PGA, peak ground velocity, PGV and peak ground displacement, PGD, 

of the 17 ground motions are presented in Table 1, together with the pulse period Tp, the 

velocity amplitude vp and the acceleration amplitude ap (=2π·vp/Tp) used in the model of 

Mavroeidis and Papageorgiou (2003) which produces the mathematical approximations 

plotted with heavy lines in Figure 1. 

 

ESTIMATION OF THE PEAK INELASTIC SDOF DISPLACEMNT: 

 A COMPARISON BETWEEN INELASTIC DEFORMATION RATIO AND 

DIMENSIONAL RESPONSE ANALYSIS 

The comparison is based on an ensemble of 3400 inelastic responses resulted from the 17 

pulse-like ground motions of Table 1 that excited 200 elastic perfectly-plastic SDOF systems 

with pre-yielding periods of vibration in the range of values 0.5 to 3 sec (50 equally spaced 

values) and yield strengths which correspond to four values (2, 4, 6 and 8) of the strength 

reduction factor, R. The study focuses on systems with periods of vibration between 0.5 and 3 

sec since this is the range of interest with respect to the fundamental period of vibration of 

code-dictated steel MRF.  
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    The inelastic deformation ratio, CR, defined as the ratio of maximum displacements of 

inelastic and corresponding (of the same period) linear systems, can be obtained from 

published R-μ-Τ relations (Vidic et al. 1994, Miranda and Bertero 1994) or by directly using 

the results of statistical analysis (Ruiz-Garcia and Miranda 2003, Chopra and Chintanapakdee 

2004). The recommendations of FEMA440 (2004) adopt the relation of Ruiz-Garcia and 

Miranda (2003) for the inelastic deformation ratio, i.e. 
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where a takes the values 130, 90 and 60 for NEHRP site classes B, C and D, respectively. 

According to FEMA440 (2004), Eq.(3) may not be applicable for near-fault ground motions. 

Chopra and Chintanapakdee (2004) proposed inelastic deformation ratios which were found 

to be generally applicable to a wide range of conditions, except for soft-soil sites, and even 

for a large ensemble of near-fault motions. The aforementioned inelastic deformation ratio 

for the elastic-perfectly-plastic SDOF system is described by the following equation 
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where Tc is a corner period of the elastic response spectrum; calculated by employing the 

iterative algorithm of Riddell and Newmark (1979). Figure 2 presents a graphical comparison 

of the exact (computed) inelastic deformation ratios with those obtained with the aid of 

Equation (3) and Equation (4). Equation (4) fits better the response databank than Equation 

(3) since it takes into account the frequency content of the ground motion by employing the 

ratio T/Tc. It is though evident that as the strength reduction factor increases, both Equation 

(3) and Equation (4) offer unconservative estimates.  

    In view of this challenge this paper adopts the dimensional response analysis technique 

(Makris and co-workers 2004a, 2004b, 2006), and proposes the following design master 
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curve for estimating the maximum dimensionless inelastic displacement П1=uinelωp
2
/ap of 

elastic-perfectly-plastic SDOF systems 

srqp 231 )(   (5) 

where p, q, r and s are constants to be determined on the basis of regression analysis on the 

data of an available response databank and Π1, Π2 and Π3 are the dimensionless variables: 
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where ωp=2π/Τp and ap=ωp·vp are the cyclic frequency and the amplitude of the distinct 

predominant acceleration pulse of the near-fault pulse-like earthquake ground motion.  

    The Levenberg-Marquardt algorithm (MATLAB 1997) was adopted for nonlinear 

regression analysis of the response databank (3400 points) presented herein, leading to the 

following explicit form of Equation (5):  

13.0

2

14.0

31 )61.292.0(   (9) 

    Figure 3 portrays schematically the approximation of the whole response databank with the 

proposed Equation (9). This figure bears out the interesting mild dependence of the inelastic 

displacement to the normalized strength and also illustrates that most of the SDOF systems of 

interest have yield strengths associated with Π2 values lower than 1.0. While the proposed 

curve originates from a best fit, it systematically overestimates the displacements at larger 

values of Π2. The early work of Makris and Psychogios (2006) presented the response 

analysis of SDOF systems which idealized three frames well known in the literature with 

corresponding normalized strengths within the range 0.0≤ Π2≤4.0. Given the smaller number 



Karavasilis et al. 2009 

9 

of data points, concluded to a variation of Equation (9), Π1=(-0.46+2.4 Π3) Π2
-0.57

, where the 

structure of the equation is the same (Equation (5)) yet the parameters p, q, r and s are 

different.  

    Figure 4 compares the statistical distributions of the ratio uinel,app/ uinel,exact offered by the 

inelastic deformation ratio method (Equation (4)) and the dimensional response analysis 

technique (Equation (9)). As the strength reduction factor increases, the self-similar (master) 

curve from the dimensional analysis provides better estimates than the inelastic deformation 

ratio method since the distributions are sharper and narrower. Only for the lowest value of the 

strength reduction factor (R=2), the inelastic deformation ratio method offers superior results 

to the dimensional analysis method. Both the ratio CR and the dimensional master curve 

underestimate the exact maximum inelastic displacement as the strength of the system 

decreases. The most important observation for both the inelastic deformation ratio method 

and the dimensional analysis method is that the estimate of maximum inelastic displacement 

of the associated SDOF systems due to individual ground motions may be alarmingly small 

(say equal to 20% of the true displacement) or exceedingly large (say 400% of the true 

displacement).  

 

SDOF-SYSTEM ESTIMATE OF THE PEAK INELASTIC ROOF DISPLACEMENT OF 

STEEL MRF  

According to the displacement modification method presented in FEMA440 (2004), the 

maximum inelastic roof displacement of a building structure may be estimated on the basis of 

a pushover analysis in the form of a plot of base shear, V, versus roof displacement, ur. By 

assuming the normalization of modes with Φrj=1 (element of eigenvector at roof level=1), the 

yield strength, Fy, the yield displacement, uy, and the mass, m, of the equivalent SDOF system 

are readily available. Then, the period, T, and the strength reduction factor, R, are obtained 
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and thus, the maximum inelastic displacement of the equivalent SDOF system, uinel, can be 

easily derived from the inelastic deformation ratio (Equation (4)). To this end, the maximum 

inelastic roof displacement of the building, ur,max, may be obtained as 

inelmaxr, uu   (10) 

    The inelastic response databank of a large collection of steel MRF (that is described later 

in the paper) is used to evaluate the accuracy of the above SDOF-system estimate of the peak 

inelastic roof displacement. Figure 5 (left) shows the statistical distribution of the ratio 

ur,max,app/ur,max,exact but for values of the R factor of the equivalent SDOF system larger than 2. 

ur,max,app is obtained with Equation (10) together with Equation (4), while ur,max,exact is the 

exact value from nonlinear dynamic analysis. A significant overestimation (median value 

equal to 1.5) of the exact peak roof displacement is observed. Chopra et al. (2003) 

investigated the premise of the SDOF-estimate of the peak roof displacement by determining 

the responses of both the MDOF and the corresponding equivalent SDOF system rigorously 

by nonlinear dynamic analyses and concluded that the first-mode SDOF system 

overestimates the roof displacement as the ductility demand increases. The same conclusion 

was also derived by Tjhin et al. (2005). Figure 5 (right) shows the statistical distribution of 

the ratio ur,max,app/ ur,max,exact obtained with Equation (10) together with Equation (9) derived 

from dimensional analysis but for values of the R factor of the equivalent SDOF system 

larger than 2. The median value of this ratio is equal to 1.25, while the coefficient of variation 

is equal to 0.4. Figure 5 (left and right) reveal that for individual ground motions, the 

combination of the error due to the SDOF representation of the real MDOF structure 

(Equation (10)) together with the error due to the approximate equation used to predict the 

peak response of the SDOF system (Equation (4) or Equation (9)) may lead to exceedingly 

large values (say 400% larger than the true ones) of the peak inelastic roof displacement.  
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    In view of these challenges this paper proceeds with application of the dimensional 

analysis method on the response of MDOF structures without any reduction of the problem to 

the SDOF system. 

 

REGULAR PLANE STEEL MOMENT RESISTING FRAMES, SEISMIC ANALYSES 

AND RESPONSE DATABANK  

Design and structural characteristics 

The study is based on 2-dimensional frames with storey heights and bay widths equal to 3 m 

and 5 m, respectively. It should be pointed out that a bay width from 4 to 6 m is the usual 

case in European practice but quite low compared to that of the American practice. The 

frames have the following geometrical characteristics: number of stories, ns, with values 3, 6, 

9, 12, 15 and 20 and number of bays, nb, with values only 3 and 6.  

    The frames are designed in accordance with the structural Eurocodes EC3 (1993) and EC8 

(2004) by using the software SAP2000 (2005). The yield stress of the material is set equal to 

235 MPa, while gravity load on the beams is assumed equal to 27.5 kN/m (dead and live 

loads of the floors). The expected earthquake ground motion is defined by the design 

spectrum of the EC8 (2004) with peak ground acceleration, PGA, equal to 0.4g and soil class 

B. The design process of the frames resulted in optimum cross-sections of the columns which 

satisfy both the requirements for strength/stiffness (EC3 2003) and the capacity design rule 

(EC8 2004). For each of the frames, the column cross-sections were subsequently increased 

two times in order to obtain three different values of the beam-to-column stiffness ratio, ρ, 

defined as (Akkar et al. 2005) 





c

b

lI

lI

)/(

)/(
  (11) 
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where I and l are the moment of inertia and length of the steel member (column c or beam b), 

respectively. The parameter ρ varies along the height of the frames and therefore, its nominal 

value was calculated for the storey closest to the mid-height of each of the frames.  

    The design of the frames led to a flexible family of frames, while, a stiff family of frames 

were directly obtained by keeping the strength and stiffness constant while reducing the mass. 

Moreover, in order to cover even conservative design cases, for both the stiff and flexible 

frames three values of the yield strength of the material, i.e., S235 (considered in the design 

procedure described in the above paragraphs), S275 and S355, were considered. The 

aforementioned process led to 6 (number of stories) * 2 (number of bays) * 3 (beam-to-

column stiffness ratio) * 2 (fundamental period of vibration) * 3 (strength of material) = 216 

frames. 

    Data of the frames, including values for ns, nb, ρ, beam and column cross-sections and 

fundamental periods of vibration (flexible and stiff), are presented in Table 2. In that table, 

expressions of the form, e.g., 260-360(1-4) + 240-330(5-6) mean that the first four stories 

have columns with HEB260 cross-sections (Androic et al. 2000)  and beams with IPE360 

cross-sections, whereas the next two higher stories have columns with HEB240 cross-

sections and beams with IPE330 cross-sections.  

Modelling for nonlinear static and dynamic analysis 

The software DRAIN-2DX (Prakash et al. 1993) was used for performing nonlinear static or 

dynamic analyses. The analytical models of the frames were centreline representations in 

which inelastic behaviour was modelled by means of bilinear (hysteretic) point plastic hinges 

with 3% hardening (Gupta and Krawinkler 1999). Therefore, the modelling is more 

representative of steel frames with an overall response that is not significantly influenced by 

the deformations of panel zones and connections. In addition, diaphragm action was assumed 

at every floor due to the presence of the slab, P-delta effects were also taken into account, 
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while Rayleigh damping corresponding to 3% of critical damping at the first two modes was 

adopted. 

Structural characteristics based on nonlinear static (pushover) analysis 

    For each of the 216 frames described herein, a first-mode inelastic static (pushover) 

analysis has been performed. The base shear coefficient, Vy/W (Vy: base shear yield strength, 

W: seismically effective weight), and yield roof displacement, ur,y, of the frames were 

calculated on the basis of a bilinear idealization of the pushover curve (FEMA440 2004) and 

are presented in Table 3. Figure 6 plots the base shear coefficient versus the number of stories 

of the frames and shows that as the number of stories increases, the base shear coefficient 

decreases. 

Seismic analyses and response databank  

    The family of the frames described in this Section was subjected to the ensemble of the 17 

pulse-like ground motions of Table 1. The results of the 216 (frames) * 17 (accelerograms) = 

3672 nonlinear time history analyses were post-processed in order to create a response 

databank with the response quantities of interest, i.e., the maximum roof displacement and 

the maximum interstorey drift ratio along the height of the frame.  

    The response of a frame to a particular ground motion may be elastic or inelastic. Since 

this study focuses on the inelastic seismic response of steel MRFs, the results associated with 

the elastic response of the frames were deleted from the response databank. Of the 3672 

analyses, 443 were found to be elastic and are mainly offered by the 3-storey stiff frames 

since these frames have large values of the base shear coefficient (Figure 6).   

 

THE PROPOSED PROCEDURE FOR ESTIMATING INELASTIC DRIFT DEMANDS IN 

STEEL MRF 

Estimation of the maximum inelastic roof displacement 
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By analyzing the MDOF inelastic response databank described in the previous Section in 

association with the use of dimensional analysis introduced earlier, it is possible to derive a 

single design master curve which directly involves the mechanical properties (base shear 

yield strength Vy and yield roof displacement ur,y) of the actual MDOF structure. The 

dimensionless parameters are defined as  
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where m is the mass of the frame.  

    Figure 7 plots the computed peak inelastic roof displacements from 3229 nonlinear time 

history analyses in terms of the dimensionless П products given by Equations (12), (13) and 

(14). Figure 7 reveals remarkable order where a relative narrow band of data exhibits mild 

decrease as dimensionless strength П2=Vy/map increases. Most importantly the dimensionless 

graph of Figure 7 uncovers that near the low value of the dimensionless strength, 

П2=Vy/map=0.3, the dimensionless roof displacement exhibits a well-defined concentration of 

lower values (valley) and subsequently exhibits a well-defined concentration of peak values 

when the dimensionless strength reaches the vale of П2=Vy/map=0.7. Assuming an 

acceleration amplitude for a strong earthquake, ap=0.5g, the concentration at low values of 

the roof displacement happens at 

15.05.03.0
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The discussion offered in the previous paragraph along with Equation (15) indicate why 

buildings with relative low strength Vy/W=0.15 perform well (low displacement demands) 

even when excited by strong ground motions. Even more important is the result that by 
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doubling the strength П2=Vy/map=0.6 (=>Vy/W=0.30 with ap=0.5g) the inelastic displacement 

demand may increase up to 70%. This counterintuitive result has been known to several 

researchers (Priestley et al. 2001 among others), nevertheless the dimensional analysis 

method adopted in this paper and Figure 8 demonstrates it in a decisive manner.  

    After having established this well-defined concentration of low values of roof 

displacements at П2=0.3, the overall trend of the peak inelastic roof displacement is 

approximated again with Equation (5) (the dimensionless terms defined by Equations (12), 

(13) and (14)) which for the nonlinear response of the 216 MDOF frames, nonlinear 

regression analysis produced the following approximation  

24.0

2

17.0

31 )7.41.3(   (16) 

Equation (16) offers a ratio ur,max,app/ ur,max,exact with median value equal to 0.92 and 

coefficient of variation equal to 0.19 (Figure 8); a significantly better estimation than the 

estimations obtained in Figure 5 of the paper with the aid of the equivalent SDOF system. 

Since Equation (16) approximates the overall trend of the peak inelastic roof displacements, 

captures neither the concentration of low displacements at П2=0.3 nor the concentration of 

high displacements at П2=0.7.  

     Figure 7 also shows that the Π2 values obtained by using the base shear strength and the 

mass of the real MDOF steel frames are substantially different than those corresponding to 

the SDOF system and shown previously in Figure 3. This partially explains the different 

coefficients appearing in Equation (9) and Equation (16).  

Estimation of the maximum interstorey drift ratio along the height of the frame 

An accepted way for estimating the maximum interstorey drift ratio along the height of the 

frame (IDRmax) is via correlation studies with the maximum roof drift ur,max/H (Karavasilis et 

al. 2007). By analysing the response databank described in this paper, the ratio β= 

(ur,max/Η)/IDRmax was found to be strongly dependent on the number of stories. A dependence 
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on the parameters ρ was also identified and thus, nonlinear regression analysis produced the 

following approximation 

17.045.0

s )1(18.00.1   n  (17) 

The above-mentioned relation is simple and satisfies the physical constraint β=1 for ns=1. 

With the maximum roof displacement known (ur,max,exact), Equation (17) offers a ratio 

IDRmax,app/IDRmax,exact with a median value equal to 1.0 and coefficient of variation equal to 

0.11 (Figure 9 left). The dependence of the ration β on the level of inelastic deformation 

expressed through the ductility factor (ur,max/ ur,y) was also examined; yet poor correlation 

was identified (correlation coefficient lower than 0.15). This means that the effect of the 

number of stories on the ratio between the peak roof displacement and the peak interstorey 

drift ratio is significantly larger than the effect of the drift concentrations as the structure 

moves further in the inelastic range of the response.  

    While the described statistics for predicting the IDRmax for a known maximum roof 

displacement (ur,max,exact) are extremely encouraging, it is of significant interest to calculate 

the error introduced in the prediction of the IDRmax by combining the uncertainties of both 

Equations (17) and (16). For a given base shear strength and yield roof displacement, i.e., 

given the approximate maximum roof displacement (ur,max,app), Equation (17) offers a ratio 

IDRmax,app/IDRmax,exact with a median value equal to 1.0 and coefficient of variation equal to 

0.35 (Figure 9 right). 

 

EXAMPLE ON THE APPLICATION OF THE PROPOSED METHOD 

Assume that we are interested in estimating the inelastic deformation demands of a 6 storey 

regular steel MRF with storey height equal to 3 m, parameter ρ equal to 0.47, base shear 

strength equal to 0.24W and yield roof displacement equal to 0.125 m when subjected to the 

Pacoima dam recording (υp=1.15 m/sec and Tp=1.47 sec) from the 1971 San Fernando 
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earthquake, the Rinaldi recording (υp=1.42 m/sec and Tp=1.25 sec) from the 1994 Northridge 

earthquake and the OTE recording (υp=0.45 m/sec and Tp=0.71 sec) offered by the 1995 

Aigion earthquake. The acceleration amplitude of the pulse of the Pacoima dam recording is 

equal to ap = (2*3.14/1.47)*1.15 = 0.5g, while the same calculation gives an acceleration 

amplitude     ap=0.73g for the Rinaldi recording and ap=0.41g for the Aigion recording.  

    The following calculations refer to the Pacoima dam recording, while for the Rinaldi and 

Aigion recordings, the final results (drift estimations) are only discussed.   

Makris and Psychogios (2006) 

By assuming an inverted triangular mode shape, the participation factor of the frame is 

Γ=1.38 and the effective modal mass coefficient is a=0.83 and therefore, the mechanical 

properties of the SDOF approximation of the frame are Fy/W=0.24/0.83=0.29 and 

uy=0.125/1.38=0.091 m. With the above values the dimensionless parameter Π2 (Equation 

(7)) is calculated equal to 0.58, while the dimensionless parameter Π3 (Equation (8)) is 

calculated equal to 0.34. Substitution of these values into Equation (13) of Makris and 

Psychogios (2006) gives a value of the dimensionless parameter Π1 equal to 1.93 and 

therefore, a value of the peak SDOF displacement equal to 0.52 m. The peak roof 

displacement is then obtained as ur,max= Γ*0.52 = 1.38*0.52=0.72 m. The work of Makris and 

Psychogios does not offer tools for estimating the maximum interstorey drift ratio.  

Proposed Equation (9) 

The proposed Equation (9) can be used instead of Equation (13) of Makris and Psychogios 

(2006). Substitution of Π2=0.58 and Π3=0.34 into Equation (9) gives a value of the 

dimensionless parameter Π1 equal to 1.42 and therefore, a value of the peak SDOF 

displacement equal to 0.384 m. The peak roof displacement is then obtained as ur,max= 

Γ*0.384 = 1.38*0.384=0.53 m.  
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Proposed procedure for estimating the peak inelastic roof displacement and the peak 

inelastic interstorey drif ratio along the height of the frame 

The proposed procedure does not rely on the SDOF representation of the real MDOF steel 

frame. Equation (13) gives the dimensionless parameter Π2 equal to 0.48, while Equation (14) 

gives the dimensionless parameter Π3 equal to 0.46. Substitution of these values into 

Equation (16) gives a value of the dimensionless parameter Π1 equal to 1.215 and therefore, a 

value of the peak roof displacement equal to 0.33 m. 

    Equation (17) provides a value of the parameter β equal to 0.7 and therefore, the maximum 

interstorey drift ratio along the height of the frame is equal to 0.33/(6*3*0.7) = 2.6%.  

Inelastic deformation ratio 

The period of the equivalent SDOF system is T=2π(muy/Fy)
0.5

=2π(uy/(0.29g))
0.5

=1.12 sec and 

the corresponding cyclic frequency ω=2π/T=5.61 rad/sec. The ordinate of the pseudo-

acceleration spectrum for a period equal to 1.12 sec is Sa=14.5 m/sec
2
 and therefore, the 

maximum displacement of the elastic SDOF system of the same period is equal to 

Sd=14.5/5.61
2
=0.461 m. The associated strength reduction factor can be easily obtained as 

R=Sd/uy=0.461/0.091=5.06. With the strength reduction factor and the period of the inelastic 

SDOF system known, Equation (3) (Ruiz-Garcia and Miranda 2003) provide the inelastic 

deformation ratio CR=1.05 (a value of CR=1.0 denotes that the equal displacement rule is 

valid) and therefore, the peak inelastic displacement is uinel= CRSd=0.484 m. The peak roof 

displacement is then obtained as ur,max= Γ*0.484 =1.38*0.4844=0.67 m. Based on the same 

calculations, Equation (4) (Chopra and Chintanapakdee 2004) provide the inelastic 

deformation ratio CR=1.022 which finally leads to a peak roof displacement ur,max=0.65 m.  

Nonlinear dynamic analysis     

Figure 10 (top) presents the peak floor displacement and interstorey drift profiles of the frame 

under the Pacoima dam, Rinaldi and Aigion recordings, and reveals that the distribution of 
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inelastic deformation demands departs from the assumption of the first-mode dominated 

response, while different profiles are noted for the three ground motions. Figure 10 (bottom) 

compares the estimations of the peak roof displacement with the exact peak roof 

displacements from nonlinear dynamic analysis and reveals the clear advantage of the 

proposed procedure over all the other inelastic estimations.          

    The maximum interstorey drift ratio under the Pacoima dam recording was calculated with 

the aid of Equation (16) equal to 2.6%. The same equation provides for the Rinaldi recording 

an IDR=3.0% and for the Aigion recording an IDR=1.12%. These values are close to the 

values obtained from nonlinear dynamic analyses (Figure 10 top-right).   

 

CONCLUSIONS 

In this paper, the response of SDOF systems with period of vibration in the range of interest 

with respect to the fundamental period of vibration of steel MRF was first examined. Based 

on formal dimensional analysis, a self-similar (master) curve that offers the peak SDOF 

displacement in association with the pulse and period of the earthquake ground motion was 

derived. A comparison of the peak SDOF displacement estimates offered by the proposed 

self-similar curve with the estimates offered by the inelastic deformation ratio method yields 

favorable results for dimensional analysis.  

    The premise that the maximum inelastic roof displacement of a multi-storey steel MRF can 

be estimated from the maximum inelastic displacement of an equivalent SDOF system was 

next evaluated. It was shown that the combination of the error due to the SDOF 

representation of the real MDOF structure together with the error due to the approximate 

equation used to predict the peak response of the SDOF system may lead to appreciable 

overestimated values of the peak inelastic roof displacement.  
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    The aforementioned overestimated values of the peak inelastic roof displacement 

motivated the development of a new method for estimating peak global and local inelastic 

deformation demands in building structures under pulse-like earthquake ground motions. The 

proposed method results from dimensional analysis and involves solely the shear strength and 

yield roof displacement of the inelastic multi-degree-of-freedom system in association with 

the duration and acceleration amplitude of the dominant pulse of the excitation. The 

estimated inelastic response quantities are in superior agreement with the results from 

nonlinear time history analysis than any inelastic estimation published previously.  

    Interpretation of the above conclusions needs to be made in the context of the structural 

models and ground motions considered in the paper.  
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CAPTION OF FIGURES 

 

Figure 1: Ground velocity time histories of 17 recorded pulse-like ground motions (light 

lines) together with the mathematical approximation of the predominant pulse (heavy lines) 

proposed by Mavroeidis and Papageorgiou (2004) 

Figure 2: Comparison of the computed (light lines) and the approximate (heavy lines) 

inelastic deformation ratios of elastic-perfectly-plastic SDOF systems proposed by Ruiz-

Garcia and Miranda (2003) (left) and Chopra and Chintanapakdee (2004) (right).  

Figure 3: Dimensional maximum inelastic displacements (points) of SDOF systems 

(П1=uinelωp
2
/ap) and the proposed master curve (solid line) 

Figure 4: Distribution of the ratio uinel,app/uinel,exact. uinel,app is computed with the inelastic 

deformation ratio (Equation (4) (left) and the dimensional response analysis (Equation (9)) 

(right).  

Figure 5: SDOF-system estimate of the peak inelastic roof displacement; distribution of the 

ratio ur,app/ur,exact. ur,app is computed with Equation (10) together with the inelastic deformation 

ratio (Equation (4)) (left) and with Equation (10) together with the dimensional response 

analysis (Equation (9)) (right). The values of the R factor of the equivalent SDOF system are 

R>2.  

Figure 6: Base shear coefficient vs. number of stories of the frames considered in this study.  

Figure 7: Dimensionless maximum inelastic roof displacements, Π1=ur,maxωp
2
/ap, of a large 

collection of MDOF frames when subjected to 17 strong ground motions together with the 

proposed single master curve. At the value of dimensionless strength Π2=Vy/map=0.3 the 

peak inelastic roof displacements exhibit a remarkable concentration at relative low values 

Figure 8: Distribution of the ratio ur,app/ur,exact. ur,app is computed with the dimensional 

response analysis (Equation (16)).  
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Figure 9: Distributions of the ratio IDRmax,app/IDRmax. IDRmax,app is computed with the 

proposed relation (Equation (17)) by assuming the ur,max known (left) and the ur,max unknown 

and calculated with the dimensional response analysis (Equation (16)) (right). 

Figure 10: Six storey steel MRF (Vy/w = 0.24 and ur,y =0.125 m) subjected to the 1971 

Pacoima dam (CA), 1994 Rinaldi (CA) and 1996 Aigion (Greece) recordings: Top: 

Maximum displacement and interstorey drift profiles; Bottom: Comparison of the peak roof 

displacement estimates with the proposed equations and with others published in the past, 

together with the results from nonlinear dynamic analysis. 
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Table 1: Data pertinent to the pulse-like ground motions considered in this study 

Event Station Mw D (Km) PGA (m/sec2) PGV (m/sec) PGD (m) Tp (sec) ap (m/sec2) vp (m/sec) 

Parkfield 
1966//06/27 

 

CO2 6.20 0.1 4.67 0.75 0.23 2.00 1.88 0.60 

San Fernando 
1971/02/09 

 

PCD 6.55 3.0 12.66 1.20 0.31 1.47 4.91 1.15 

Gazli 
1976/05/17 

 

KAR 6.80 3.0 6.41 0.60 0.33 4.20 0.67 0.45 

Bucharest 
1977/03/04 

 

BRI 7.27 190.0 2.00 0.75 0.21 2.13 1.83 0.62 

Tabas 
1978/09/16 

 

TAB 7.11 1.2 8.30 1.22 0.88 5.26 1.24 1.04 

Coyote Lake 
1979/08/06 

 

GA6 5.63 1.2 4.36 0.48 0.09 1.00 3.01 0.48 

Imperial Valley 
1979/10/15 

 

E04 6.50 6.0 3.49 0.78 0.59 4.44 1.00 0.71 

Imperial Valley 

1979/10/15 

 

EO5 6.50 2.7 3.68 0.92 0.62 4.44 1.19 0.84 

Imperial Valley 

1979/10/15 

 

EO6 6.50 0.3 4.34 1.12 0.67 3.85 1.57 0.96 

Imperial Valley 

1979/10/15 

 

EO7 6.50 1.8 4.53 1.09 0.46 3.64 1.36 0.79 

Imperial Valley 

1979/10/15 

 

EMO 6.50 1.2 3.71 1.15 0.40 2.94 1.67 0.78 

Morgan Hill 

1984/04/24 

 

HAL 6.15 2.0 3.08 0.40 0.07 0.87 2.74 0.38 

N.Palm Springs 

1986/07/08 

 

NPS 6.09 4.0 6.57 0.74 0.12 1.25 3.01 0.60 

Loma Prieta 

1989/10/18 

 

LGP 6.90 3.0 6.34 1.02 0.37 3.23 1.17 0.60 

Loma Prieta 

1989/10/18 

 

STG 6.90 8.3 3.58 0.56 0.30 3.70 0.80 0.47 

Erzincan 

1992/03/13 

 

ERZ 6.63 2.0 4.75 0.95 0.30 2.44 1.73 0.67 

Northridge 

1994/01/17 

RRS 6.70 5.2 8.70 1.73 0.32 1.25 7.13 1.42 
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Table 2: Data pertinent to the design structural characteristics of the frames considered in 

this study 

ns nb ρ Columns: (HEB) & Beams: (IPE) 
T (sec) 

Flexible 

T (sec) 

Stiff 

3 3 0.47 240-330(1-3) 0.73 0.53 

3 3 0.36 260-330(1-3) 0.69 0.50 

3 3 0.28 280-330(1-3) 0.65 0.47 

3 6 0.54 240-330(1-3) 0.75 0.54 

3 6 0.41 260-330(1-3) 0.70 0.51 

3 6 0.31 280-330(1-3) 0.66 0.48 

6 3 0.38 280-360(1-4)+260-330(5-6) 1.22 0.89 

6 3 0.29 300-360(1-4)+280-330(5-6) 1.17 0.85 

6 3 0.24 320-360(1-4)+300-330(5-6) 1.13 0.82 

6 6 0.43 280-360(1-4)+260-330(5-6) 1.25 0.90 

6 6 0.33 300-360(1-4)+280-330(5-6) 1.19 0.86 

6 6 0.27 320-360(1-4)+300-330(5-6) 1.15 0.83 

9 3 0.28 340-360(1)+340-400(2-5)+320-360(6-7)+300-330(8-9) 1.55 1.13 

9 3 0.24 360-360(1)+360-400(2-5)+340-360(6-7)+320-330(8-9) 1.52 1.10 

9 3 0.18 400-360(1)+400-400(2-5)+360-360(6-7)+340-330(8-9) 1.46 1.10 

9 6 0.32 340-360(1)+340-400(2-5)+320-360(6-7)+300-330(8-9) 1.57 1.14 

9 6 0.28 360-360(1)+360-400(2-5)+340-360(6-7)+320-330(8-9) 1.53 1.12 

9 6 0.21 400-360(1)+400-400(2-5)+360-360(6-7)+340-330(8-9) 1.47 1.07 

12 3 0.24 400-360(1)+400-400(2-3)+400-450(4-5)+360-400(6-7)+340-400(8-9)+340-

360(10)+340-330(11-12) 

1.90 1.40 

12 3 0.26 450-360(1)+450-400(2-3)+450-450(4-5)+400-450(6-7)+360-400(8-9)+360-

360(10)+360-330(11-12) 

1.78 1.31 

12 3 0.19 500-360(1)+500-400(2-3)+500-450(4-5)+450-450(6-7)+400-400(8-9)+400-

360(10-11)+400-330(12) 

1.72 1.26 

12 6 0.28 400-360(1)+400-400(2-3)+400-450(4-5)+360-400(6-7)+340-400(8-9)+340-

360(10)+340-330(11-12) 

1.90 1.39 

12 6 0.30 450-360(1)+450-400(2-3)+450-450(4-5)+400-450(6-7)+360-400(8-9)+360-

360(10)+360-330(11-12) 

1.78 1.31 

12 6 0.22 500-360(1)+500-400(2-3)+500-450(4-5)+450-450(6-7)+400-400(8-9)+400-

360(10-11)+400-330(12) 

1.72 1.26 

15 3 0.13 500-300(1)+500-400(2-3)+500-450(4-5)+450-400(6-7)+400-400(8-12)+400-

360(13-14)+400-330(15) 

2.29 1.68 

15 3 0.10 550-300(1)+550-400(2-3)+550-450(4-5)+500-400(6-7)+450-400(8-12)+450-

360(13-14)+450-330(15) 

2.22 1.63 

15 3 0.11 600-300(1)+600-400(2-3)+600-450(4-5)+550-450(6-7)+500-450(8-9)+500-

400(10-12)+500-360(13-14)+500-330(15) 

2.10 1.53 

15 6 0.15 500-300(1)+500-400(2-3)+500-450(4-5)+450-400(6-7)+400-400(8-12)+400-

360(13-14)+400-330(15) 

2.30 1.66 

15 6 0.11 550-300(1)+550-400(2-3)+550-450(4-5)+500-400(6-7)+450-400(8-12)+450-

360(13-14)+450-330(15) 

2.21 1.62 

15 6 0.13 600-300(1)+600-400(2-3)+600-450(4-5)+550-450(6-7)+500-450(8-9)+500-

400(10-12)+500-360(13-14)+500-330(15) 

2.10 1.52 

20 3 0.11 600-300(1)+600-400(2-3)+600-450(4-5)+550-450(6-10)+500-450(11-13)+500-

400(14-16)+450-400(17)+450-360(18-19)+450-330(20) 

2.82 2.10 

20 3 0.09 650-300(1)+650-400(2-3)+650-450(4-5)+600-450(6-10)+550-450(11-13)+550-

400(14-16)+500-400(17)+500-360(18-19)+500-330(20) 

2.76 2.00 

20 3 0.07 700-300(1)+700-360(2)+700-400(3)+700-450(4-5)+650-450(6-10)+600-450(11-

13)+600-400(14-16)+550-400(17)+550-360(18-19)+550-330(20) 

2.73 2.00 

20 6 0.13 600-300(1)+600-400(2-3)+600-450(4-5)+550-450(6-10)+500-450(11-13)+500-

400(14-16)+450-400(17)+450-360(18-19)+450-330(20) 

2.75 2.00 

20 6 0.10 650-300(1)+650-400(2-3)+650-450(4-5)+600-450(6-10)+550-450(11-13)+550-

400(14-16)+500-400(17)+500-360(18-19)+500-330(20) 

2.70 1.98 

20 6 0.08 700-300(1)+700-360(2)+700-400(3)+700-450(4-5)+650-450(6-10)+600-450(11-

13)+600-400(14-16)+550-400(17)+550-360(18-19)+550-330(20) 

2.67 1.97 
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Table 3: Data pertinent to the structural characteristics of the frames considered in this study 

as seen through the results of a first-mode nonlinear static (pushover) analysis 

Geometrical 

characteristics 

S235  S275 S355 

ns nb ρ 
Vy/W  

(flex) 

Vy/W  

(stiff) 

uy 

(m) 

Vy/W  

(flex) 

Vy/W  

(stiff) 

uy 

(m) 

Vy/W  

(flex) 

Vy/W  

(stiff) 

uy 

(m) 

3 3 0.47 0.40 0.76 0.084 0.47 0.89 0.098 0.61 1.15 0.127 

3 3 0.36 0.46 0.87 0.080 0.54 1.02 0.094 0.70 1.32 0.121 

3 3 0.28 0.51 0.96 0.080 0.60 1.12 0.094 0.77 1.45 0.121 

3 6 0.54 0.38 0.72 0.081 0.45 0.84 0.095 0.58 1.09 0.122 

3 6 0.41 0.44 0.83 0.081 0.52 0.98 0.095 0.67 1.26 0.122 

3 6 0.31 0.46 0.87 0.075 0.54 1.02 0.088 0.70 1.32 0.113 

6 3 0.38 0.22 0.41 0.140 0.26 0.48 0.164 0.33 0.63 0.211 

6 3 0.29 0.24 0.45 0.125 0.28 0.53 0.146 0.36 0.68 0.189 

6 3 0.24 0.25 0.47 0.125 0.29 0.55 0.146 0.38 0.71 0.189 

6 6 0.43 0.21 0.40 0.140 0.25 0.46 0.164 0.32 0.60 0.211 

6 6 0.33 0.23 0.43 0.138 0.27 0.51 0.161 0.35 0.65 0.208 

6 6 0.27 0.24 0.45 0.138 0.28 0.53 0.161 0.36 0.68 0.208 

9 3 0.28 0.18 0.33 0.180 0.21 0.39 0.211 0.27 0.50 0.272 

9 3 0.24 0.18 0.33 0.175 0.21 0.39 0.205 0.27 0.50 0.264 

9 3 0.18 0.19 0.35 0.175 0.22 0.41 0.205 0.29 0.53 0.264 

9 6 0.32 0.17 0.31 0.175 0.20 0.36 0.205 0.25 0.47 0.264 

9 6 0.28 0.18 0.33 0.175 0.21 0.39 0.205 0.27 0.50 0.264 

9 6 0.21 0.18 0.34 0.175 0.21 0.40 0.205 0.28 0.52 0.264 

12 3 0.24 0.15 0.27 0.225 0.17 0.32 0.263 0.22 0.41 0.340 

12 3 0.26 0.16 0.29 0.225 0.18 0.34 0.263 0.24 0.44 0.340 

12 3 0.19 0.17 0.31 0.225 0.19 0.36 0.263 0.25 0.46 0.340 

12 6 0.28 0.13 0.25 0.215 0.16 0.29 0.252 0.20 0.38 0.325 

12 6 0.30 0.15 0.27 0.215 0.17 0.32 0.252 0.22 0.41 0.325 

12 6 0.22 0.15 0.29 0.215 0.18 0.34 0.252 0.23 0.43 0.325 

15 3 0.13 0.11 0.21 0.265 0.13 0.24 0.310 0.17 0.31 0.400 

15 3 0.10 0.12 0.21 0.265 0.14 0.25 0.310 0.18 0.32 0.400 

15 3 0.11 0.13 0.24 0.265 0.16 0.29 0.310 0.20 0.37 0.400 

15 6 0.15 0.11 0.20 0.250 0.13 0.23 0.293 0.16 0.30 0.378 

15 6 0.11 0.11 0.21 0.250 0.13 0.24 0.293 0.17 0.31 0.378 

15 6 0.13 0.12 0.23 0.230 0.14 0.27 0.269 0.19 0.34 0.347 

20 3 0.11 0.09 0.16 0.325 0.10 0.19 0.380 0.14 0.25 0.491 

20 3 0.09 0.09 0.17 0.325 0.11 0.20 0.380 0.14 0.26 0.491 

20 3 0.07 0.10 0.17 0.325 0.11 0.20 0.380 0.14 0.26 0.491 

20 6 0.13 0.09 0.16 0.285 0.10 0.19 0.334 0.13 0.24 0.431 

20 6 0.10 0.09 0.16 0.290 0.10 0.19 0.339 0.14 0.25 0.438 

20 6 0.08 0.09 0.17 0.275 0.11 0.19 0.322 0.14 0.25 0.415 
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