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Abstract  

This paper evaluates the seismic structural and non-structural performance of self-

centering and conventional structural systems combined with supplemental viscous 

dampers. For this purpose, a parametric study on the seismic response of highly damped 

single-degree-of-freedom systems with self-centering flag-shaped or bilinear elastoplastic 

hysteresis is conducted. Statistical response results are used to evaluate and quantify the 

effects of supplemental viscous damping, strength ratio and period of vibration on 

seismic peak displacements, residual displacements and peak total accelerations. Among 

other findings, it is shown that decreasing the strength of nonlinear systems effectively 

decreases total accelerations, while added damping increases total accelerations and 

generally decreases residual displacements. Interestingly, this work shows that in some 

instances added damping may result in increased residual displacements of bilinear 

elastoplastic systems. Simple design cases demonstrate how these findings can be 

considered when designing highly damped structures to reduce structural and non-

structural damage. 
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1. Introduction 

An important requirement of performance-based seismic design is the 

simultaneous control of structural and non-structural damage [1]. Structural damage 

measures are related to story drifts, residual drifts and inelastic deformations. Non-

structural damage measures are related to story drifts, total floor accelerations and floor 

response spectra. Earthquake reconnaissance reports highlight that injuries, fatalities and 

economical losses related to failure of non-structural components far exceed those related 

to structural failures [2]. Explicit consideration of non-structural damage becomes vital in 

the design of critical facilities such as hospitals carrying acceleration-sensitive medical 

equipment which should remain functional in the aftermath of earthquakes [3]. 

 Conventional seismic-resistant structural systems, such as steel moment resisting 

frames (MRFs) or concentrically braced frames (CBFs), are currently designed to 

experience significant inelastic deformations under the design seismic action [4]. 

Significant inelastic deformations result in damage and residual drifts, and hence, in 

economic losses such as repair costs, costly downtime during which the building is 

repaired and cannot be used or occupied, and, perhaps, building demolition due to the 

complications associated with straightening large residual drifts [5]. In addition, 

conventional seismic-resistant systems cannot provide harmonization of structural and 

non-structural damage since reduction of drifts or deformations and reduction of total 

floor accelerations are competing objectives, i.e., adding stiffness and strength to the 

structure decreases drifts and inelastic deformation demands but increases total 

accelerations [6].  
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  Residual drift is an important index for deciding whether to repair a damaged 

structure versus to demolish it. McCormick et al. [7] reported that repairing damaged 

structures which had experienced residual story drifts greater than 0.5% after the 

Hyogoken-Nanbu earthquake was no financially viable. MacRae and Kawashima [8] 

studied residual displacements of inelastic single-degree-of-freedom (SDOF) systems and 

illustrated their significant dependence on the post-yield stiffness ratio. Christopoulos et 

al. [9] studied residual displacements of five SDOF systems using different hysteretic 

rules and showed that residual displacements decrease with an increasing post-yield 

stiffness ratio. An extensive study by Ruiz-Garcia and Miranda [10] showed that residual 

displacements are more sensitive to changes in local site conditions, earthquake 

magnitude, distance to the source range and hysteretic behavior than peak displacements. 

Pampanin et al. [11] studied the seismic response of multi-degree-of-freedom (MDOF) 

systems and highlighted a significant sensitivity of residual drifts to the hysteretic rule, 

post-yield stiffness ratio and global plastic mechanism. Recently, Pettinga et al. [12] 

examined the effect of stiffness, strength and mass eccentricity on residual displacements 

of one story buildings and suggested that a proper inclusion of orthogonal elements close 

to the building plan perimeter can result in reduced differences in permanent drifts across 

the building plan. 

 Rate-dependent passive dampers (viscous, viscoelastic, elastomeric; referred to 

herein as passive dampers) have been extensively used in seismic-resistant design and 

retrofit [13]. Lin and Chopra [14] studied highly damped elastic SDOF systems and 

showed that supplemental viscous damping is more effective in reducing displacements 

than total accelerations. Ramirez et. al. [15] studied inelastic SDOF systems for a wide 
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range of periods of vibration and showed that added damping has no significant effect on 

the relation between peak elastic and peak inelastic displacements and also, confirmed the 

technical basis of FEMA 450 [16] to allow a 25% reduction in the minimum design base 

shear of damped buildings. Pavlou and Constantinou [17] showed that inelastic steel 

MRFs with passive dampers designed to achieve similar drifts with conventional MRFs 

experience lower total floor accelerations than conventional MRFs. Lee et al. [18] 

designed steel MRFs with elastomeric dampers and showed that design criteria that allow 

some inelastic behavior, but limit drift to 1.5% under the design earthquake lead to the 

most effective damper design. Vargas and Bruneau [19] studied the effect of 

supplemental viscous damping on the seismic response of inelastic SDOF structural 

systems with metallic dampers for three periods of vibration. Their results showed that 

viscous dampers increase total accelerations of systems whose original frame still 

behaves inelastically under strong earthquakes. A recent paper showed that retrofitting a 

building with viscous dampers improves both structural and non-structural fragilities 

[20]. Occhiuzzi analyzed different examples of frames with passive dampers found in 

literature and showed that values of the 1
st
 modal damping ratio higher than 20% seem to 

trade off a minor reduction of interstorey drifts with a significant increase of total floor 

accelerations [21]. Compressed elastomer dampers with viscoelastic behavior under small 

amplitudes of deformation and friction behavior under large amplitudes of deformation 

were designed and tested by Karavasilis et al. [22-23]. When combined with flexible steel 

MRFs of reduced strength, these dampers were found capable of significantly reducing 

drifts and inelastic deformations without increasing total floor accelerations.  
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 Recent research developed self-centering (SC) steel MRFs with post-tensioned 

(PT) connections [24]. SC steel MRFs have the potential to eliminate inelastic 

deformations and residual drifts under strong earthquakes as the result of a softening 

force-drift behavior due to separations (gap openings) developed in beam-to-column 

connections; re-centering capability due to elastic pre-tensioning elements (e.g., high 

strength steel tendons) providing clamping forces to connect beam and columns; and 

energy dissipation capacity due to energy dissipation elements (EDs) which are activated 

when gaps open. The parallel combination of tendons and EDs results in self-centering 

flag-shaped hysteresis. SC steel MRFs experience drift and total accelerations similar to 

those of conventional steel MRFs of the same strength and stiffness, i.e., they have 

conventional seismic performance in terms of non-structural damage. A recent work 

developed self-centering energy-dissipative braces which eliminate residual drifts and 

provide story drifts lower and total floor accelerations similar to those achieved with 

buckling restrained braces (BRBs) [25]. Christopoulos et al. [26] showed that self-

centering SDOF systems can match the response of elastoplastic SDOF systems in terms 

of ductility by using physically achievable energy dissipation and post-yielding stiffness. 

The same work found self-centering systems of high post-yield stiffness ratio to 

experience higher total accelerations than elastoplastic systems. Seo and Sause [27] 

showed that self-centering systems develop greater ductility demands than conventional 

systems when the lateral strength and post-yield stiffness ratio are the same. They also 

found that ductility demands can significantly decrease by increasing the energy 

dissipation capacity and the post-yield stiffness ratio of self-centering systems. Recently, 

Kam et al. [28] showed that a parallel combination of self-centering systems of sufficient 
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hysteretic energy dissipation capacity with viscous dampers can achieve superior 

performance compared to other structural systems, especially when the peak viscous 

damper force is controlled by implementing a friction slipping element in series with the 

viscous damper.   

 Seismic design for harmonization of structural and non-structural damage has 

been the topic of few recent works. A new concept of weakening the main lateral load 

resisting system along with using passive dampers has been proposed [29] and validated 

with frames employing concrete rocking columns [30]. Recent works proposed design 

procedures for optimal location and capacities of added passive dampers and weakening 

structures based on optimal control theory [31 and references therein].  

 The literature survey shows that more work is needed to evaluate the structural 

and non-structural performance of highly damped conventional and self-centering 

structural systems. In particular, the increase in total accelerations of conventional 

yielding and self-centering systems due to added damping [19, 28-29] should be 

quantified. A detailed evaluation of the effect of added damping on residual 

displacements of conventional yielding systems is missing. The decrease in total 

accelerations due to strength reductions should be evaluated [29-30]. Moreover, a 

comparison of the response of highly damped conventional and self-centering systems is 

needed.  

 This paper aims to address the aforementioned research needs as well as to 

independently verify the findings of earlier investigations. For this purpose, a parametric 

study on the seismic response of highly damped single-degree-of-freedom (SDOF) 

systems with self-centering flag-shaped or bilinear elastoplastic hysteresis was 
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conducted. Statistical response results were used to evaluate the effects of supplemental 

viscous damping, strength ratio and period of vibration on seismic peak displacements, 

residual displacements and peak total accelerations. Simple design cases demonstrate 

how the aforementioned effects can be considered when designing highly damped 

structures to reduce structural and non-structural damage. 

 It is emphasized that the results and conclusions presented in this paper are based 

on the response of SDOF systems and cannot be directly extended to MDOF buildings. It 

has been shown that the distributions of peak story drifts, peak residual story drifts and 

peak total floor accelerations along the building height depend on the fundamental period 

of vibration, number of stories and level of inelastic deformation [32- 33]. 

 

2.  Methodology 

2.1 Simplified nonlinear structural systems with viscous dampers 

Fluid viscous dampers dissipate energy by forcing incompressible fluids to flow 

through orifices and provide a damping force output, Df , equal to  

)sgn( dddD uucf 


                                                                                                           (1) 

where cd is the damping constant; α is the velocity exponent that usually takes values 

between 0.15 and 1.0 for seismic applications and characterizes damper nonlinearity; 

du is the velocity across the damper; and sgn is the signum function [13].  

 Dampers are placed between successive floors of a building by using supporting 

braces which are designed to be stiff enough so that story drift produces damper 

deformation rather than brace deformation [22-23]. Lin and Chopra [14] showed that 

brace flexibility has negligible effect on the peak responses of elastic systems for 
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practical applications where braces are designed to have stiffness more than 5 times 

larger than the story stiffness (e.g., design cases of steel MRFs with dampers in [22-23]). 

In addition, the same work showed that damper nonlinearity has negligible effect on peak 

responses of elastic systems. Based on these observations, this work adopts the simplest 

case of linear viscous dampers (i.e., α=1) supported by rigid braces to evaluate the effect 

of supplemental viscous damping on structural response.  

 The governing equation of motion of a nonlinear SDOF system equipped with 

supplemental linear viscous dampers (supported by rigid braces) under earthquake 

loading is 

gRd umfuccum   )(                                                                                               (2) 

where m is the mass of the system; c is the inherent damping coefficient; fR is the 

nonlinear restoring force of the system; uuu   and , are the displacement, velocity and 

acceleration of the system; and gu is the ground acceleration. The nonlinear restoring 

force fR depends on the hysteretic rule of the structural system. Eq. (2) can be also written 

in the form 

 
   
m

tftucc
ta Rd

t




)(
                                                                                              (3) 

where guuat
   is the total acceleration of the system.  

In the case of elastic structures, added damping cd decreases displacements, 

velocities and total accelerations [6, 14]. Experience has shown that it is impossible to 

avoid yielding in steel frames equipped with dampers under strong earthquakes (i.e., 

seismic intensities equal or higher than the design earthquake) for a reasonable size and 

cost of added dampers and steel structural members [13, 18, 22-23]. Inelastic systems 
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with zero post yielding stiffness impose a limit on the restoring force fR; equal to their 

yield strength fy. Eq. (3) shows that at of inelastic structures decreases by decreasing fy 

yet increases by increasing supplemental damping cd. For mildly inelastic structures, this 

increase may not be large since the peaks of the damper force would still be out of phase 

with the peaks of the restoring force fR (note that the peaks of the damper force are 

always out of phase with the peaks of the restoring force for elastic systems).   

 

2.2 SDOF system parameters  

This study used SDOF systems with periods of vibration, T, equal to 39 discrete 

values ranging from 0.1 to 1.0 s. with a step of 0.05 s, and ranging from 1.0 to 3.0 s. with 

a step of 0.1 s. This period range covers the fundamental periods of vibration of steel 

frames with different heights and lateral load resisting systems (MRFs and CBFs).  

 The inherent viscous damping ratio was set equal to 5%. The added viscous 

damping ratio ξd was considered equal to 10, 20 and 30% and hence, the total viscous 

damping ratio ξt is equal to 15%, 25% and 35%, respectively. These damping values 

cover the majority of damping ratios used in design cases of frames with viscous dampers 

encountered in literature [21].  

Two hysteretic behaviors are considered, namely the bilinear elastoplastic (BEP) 

and the self-centering (SC) flag-shaped hysteresis (Fig. 1). The BEP hysteresis aims to 

describe the approximate global hysteretic behavior of steel MRFs with fully rigid 

connections or steel CBFs using BRBs. BRBs exhibit a stable BEP hysteretic behavior. 

Steel MRFs exhibit stiffness and strength deterioration under large cyclic inelastic drift 

demands. However, steel MRFs with dampers are designed to experience drifts 
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significantly lower than those associated with possible stiffness and strength deterioration 

in the plastic hinge regions. As shown in Fig. 1 (left), the bilinear rule can be fully 

characterized by the yield strength fy, the elastic stiffness ke and the post-yield stiffness 

ration p.  

 The SC hysteresis aims to resemble the approximate global hysteretic behavior of 

post-tensioned steel MRFs [24] or steel CBFs [25]. These systems are known to exhibit 

flag-shaped hysteretic behavior without stiffness or strength deterioration under large 

drifts. As shown in Fig. 1 (right), the SC hysteresis can be fully characterized by the yield 

strength fy, the elastic stiffness ke, the post-yield stiffness ratio p and the relative 

hysteretic energy dissipation ratio, βΕ, provided by added yielding or friction-based EDs 

[24-25]. The βΕ can range from 0 to 50% for systems that maintain self-centering 

capability. The extreme cases of βΕ=0.0 and βΕ=1.0 represent the bilinear elastic and the 

bilinear elastoplastic hysteretic rules, respectively.  

 The yield strength, fy, of the SDOF systems for a given ground motion, gm, was 

determined by 





R

gmTmS
f a

y

)%,5,( 
                                                                                                  (4) 

where Sa(T,ξ=5%, gm) is the spectral pseudo-acceleration of the ground motion, gm, for 

5% damping (referred to herein as spectral acceleration) and Rμ is the ratio of the required 

elastic strength for 5% damping to the yield strength (referred to herein as strength ratio). 

The SDOF system force-displacement behavior can be established through an 

approximate idealization of the global base shear force-drift behavior of the building [4, 

34] and hence, the strength ratio Rμ reflects the ductility-based portion of the response 

modification factor R (or q [4]) used in seismic codes [34]. A detailed evaluation of 
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methods using SDOF systems (and the strength ratio Rμ) to estimate seismic demands in 

building structures can be found in FEMA440 document [35]. Rμ was considered equal to 

2, 4, 6 and 8 in order to cover a wide range of strengths of nonlinear SDOF systems 

representing the global base shear force-drift behavior of steel frames. 

The yield strength fy of the highly damped SDOF systems is determined according 

to Eq. (4), i.e., from the 5% damped response spectrum and not from the response 

spectrum with additional damping. Therefore, the fy of a highly damped SDOF system for 

a given Rμ and ground motion gm is the same regardless of the additional damping ratio. 

In that way, the effect of different values of the added damping ratio on the response of a 

system with specific strength and period of vibration can be isolated and studied.  

The fy can be also written as 

d

a

d

ta
y

RB

gmTmS

R

gmTmS
f

,,

)%,5,(),,(








                                                                      (5) 

where B= Sa (T,ξ =5%, gm) /Sa (T,ξ = ξt , gm) is the damping reduction factor [11] and 

Rμ,d is the ratio of the required elastic strength to the yield strength with reference to the 

highly damped spectrum of the ground motion gm.  

Eqs. (4) and (5) show that Rμ,d =Rμ/B. The simplified B factor, recommended by 

FEMA [16], takes values equal to 1.35 for ξt equal to 15%, 1.65 for ξt equal to 25% and 

1.95 for ξt equal to 35%, provided that the system has a period of vibration within the 

constant velocity spectral region [15]. Therefore, the Rμ,d values associated with Rμ=8 are 

approximately equal to 5.92, 4.56 and 4.08, and the Rμ,d values associated with Rμ=2 are 

approximately equal to 1.48, 1.14 and 1.02, for ξt equal to 15%, 25% and 35%, 

respectively. Different Rμ ratios represent either a given structure under different seismic 

hazard levels or different structures under a given seismic hazard level. Hence, systems 
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with Rμ,d equal to 5.92=8(Rμ)/1.35(B) represent highly damped structures expected to 

experience significant damage (global ductility μ=Rμ,d=5.92 based on the equal 

displacement rule), while systems with Rμ,d equal to 1.02=2(Rμ)/1.95(B) represent highly 

damped structures likely to respond elastically under an unscaled ground motion 

represented by its spectral acceleration value Sa used in Eq. (4). Based on the designs of 

steel MRFs with dampers presented in [22-23], Rμ,d ratios close to 2.5 represent design 

cases where dampers are used to achieve conventional performance (i.e., story drifts 

equal to 2% under the design earthquake), while Rμ,d ratios lower than 1.7 represent 

design cases where dampers are used to achieve higher performance (i.e., story drifts 

lower than 1.5% under the design earthquake).  

 The SC system requires an additional parameter to specify its hysteretic energy 

dissipation capacity; the relative hysteretic energy dissipation ratio βΕ.. Although the full 

range of βΕ values (i.e., 0 to 100%) is possible [36], practical βΕ values are within the 

range of 25 to 50% in order to maintain self-centering capability [24-25].  βΕ values equal 

to 25% and 50% were considered in this investigation.  

 A post-yield stiffness ratio p equal to 2% was assumed for both SC and BEP 

systems in order to effectively compare the response of these systems. The p value of SC 

systems typically ranges from 5 to 10% [24, 25]. It is emphasized that p can significantly 

affect the response of SC and BEP systems (discussion in Section 1). However, the p 

value is not expected to change the effect of added damping on the response of SC and 

BEP systems. The properties of the SDOF systems examined are summarized in Table 1.  

 

2.3 Ground motions  
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A set of 22 recorded far-field ground motion pairs (total of 44 recordings) 

developed by the Applied Technology Council (ATC) Project 63 [37] were used for 

nonlinear dynamic history analyses. These ground motions were recorded during 8 

California earthquakes and 6 earthquakes from five other countries. The magnitudes of 

these earthquakes are within a range of 6.5 to 7.6. All ground motions were recorded on 

stiff soil and do not exhibit pulse-type near-fault characteristics. Fig. 2 plots the 5% 

acceleration response spectra of the ground motions along with their geometric mean 

spectrum. The ground motions were not scaled, but instead the strength fy of the system 

was scaled to produce specific values of the Rμ ratio according to Eq. (4).  

 

2.4 Response quantities  

The main response quantities of interest are (1) the maximum (peak) displacement 

mu ; (2) the residual displacement ru ; and (3) the maximum (peak) total acceleration mta , . 

The peak displacement and total acceleration are obtained as the maximum of the 

absolute values of their time histories while residual displacement is obtained as the 

absolute of the last value of the displacement time history.  

The Newmark average acceleration method along with Newton-Raphson 

iterations [6] was used to integrate the nonlinear equation of motion. The integration time 

step was selected equal to 0.0005 s. since it has been shown that a particularly small 

integration time step is needed to accurately predict accelerations [38, 39]. Smaller time 

steps led to practically same response results. Each dynamic analysis was executed well 

beyond the actual earthquake time to allow for damped free vibration decay and correct 

residual displacement calculation.   
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This work first investigates the effect of the strength ratio Rμ on the peak response 

of 5% damped systems. Then, the effect of supplemental damping on the peak response 

quantity, x, is evaluated by presenting the ratio x(T,Rμ,ξ=ξt)/x(T,Rμ,ξ=5%). Finally, a 

direct comparison of the peak response of highly damped BEP and SC systems is also 

provided. 

 Structural response shows significant scatter due to ground motion variability and 

hence, a statistical evaluation is used to identify trends. Assuming that the response to a 

set of ground motions follows the lognormal distribution, the geometric mean (or referred 

to herein as the median) of the response quantity x (or the ratio of x) is used to represent 

the central tendency of the response.  

  

3. Nonlinear seismic response results  

3.1 Effect of strength ratio on 5% damped systems 

The peak total acceleration, mta , , and peak displacement, mu , of 5% damped BEP 

and SC systems are calculated and normalized with respect to the corresponding peak 

responses of the elastic system (Rμ=1) having the same period of vibration. The residual 

displacement of BEP systems is also calculated and normalized with respect to the peak 

displacement of the elastic system. The median of the normalized responses to the ground 

motion set is calculated and shown in Figs. 3 and 4.  

 Fig. 3(a) shows that the normalized mta , of BEP systems can be effectively 

decreased by increasing Rμ. This effect is more significant for systems with low Rμ 

values. For example, increasing Rμ of systems with T=1 s. from 2 to 4 (50% decrease in 

strength for a given ground motion) results in 45% decrease in mta , , while increasing Rμ 
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from 4 to 8 (50% decrease in strength for a given ground motion) results in 39% decrease 

in mta , . For a given Rμ and for T>0.3 s., the normalized mta ,  is approximately constant and 

period independent. For very short period systems, mta , increases as period decreases and 

eventually approaches the peak ground acceleration as T tends to zero [6].  

 Fig. 3(b) shows that the normalized mu  of BEP systems tends toward infinity as T 

decreases and toward unity for T longer than 0.5 s. regardless of the Rμ value. The results 

confirm the well-known equal displacement rule (i.e., um(Rμ)=um(Rμ=1)) for long period 

systems as well as the strong dependence of mu  on the strength ratio for short period 

systems [6].  

Fig. 3(c) shows that the normalized ru  of BEP systems is approximately constant 

regardless of the Rμ value in the long period region and increases in the short period 

region. These results are consistent with the findings by previous researchers for systems 

with nonzero positive post-yielding stiffness [10]. 

  Fig. 4 displays the influence of the strength ratio on the median of the normalized 

peak response of 5% damped SC systems with βΕ=25% or 50%. Figs. 4 (a) and (c) show 

that the normalized mta ,  of SC systems with βΕ=25% exhibit almost identical trends with 

those of SC systems with βΕ=50%. A close examination of Fig. 4(b) reveals that the 

normalized mu  of SC systems with βΕ=25% and Rμ≥4 is above unity over the entire 

period region. This indicates that the equal-displacement rule would be unconservative 

for these systems. A comparison of Figs. 4(b), 4(d) and 3(b) indicates that SC systems 

yield larger mu  than those of BEP systems, a finding which is consistent with the results 
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of previous works [26-27]. The ru of self-centering systems was not studied since SC 

systems oscillate around the origin and result in zero residual displacement. 

 

3.2 Highly damped bilinear elastoplastic systems 

In order to investigate the influence of supplemental viscous damping on the peak 

response of BEP systems, the peak responses of highly damped BEP systems are 

normalized with respect to the corresponding peak responses of 5% damped BEP systems 

having the same period of vibration and Rμ factor. The median of the normalized 

responses to the ground motion set is calculated and presented in the following figures.  

Fig. 5 shows the normalized mta ,  of highly damped BEP systems for different Rμ 

and ξt values. Fig. 5(a) shows that the normalized mta , of BEP systems with Rμ=2 is 

almost unity over the entire period region regardless of the ξt value. An increase in ξt 

tends to slightly decrease the normalized mta ,  for T <1.0 s., while this trend is reversed 

for T>1.0 s. The results indicate that added damping has no influence on mta , of systems 

with low strength ratio (Rμ=2). This can be explained since highly damped systems with 

Rμ=2 remain mildly inelastic (i.e., they have approximate Rμ,d values equal to 1.48, 1.14 

and 1.02 for ξt = 15%, 25% and 35%, respectively; refer to Section 2.2) and therefore, the 

peaks of the damping force fD are generally out of phase with the peaks of the restoring 

force fR (see Eq. (3)). Figs. 5 (b)-(d) show that the normalized mta , of BEP systems with 

Rμ≥4 increases as ξt increases, with the exception of very short period systems. This 

increase becomes more pronounced for systems with longer period and larger Rμ. For 

example, by increasing ξt from 5% to 25%, the mta ,  increases by 60% for Rμ=4 and 
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T=1.0 s.; 90% for Rμ=4 and T=3.0 s.; 95% for Rμ=8 and T=1.0 s.; and, 150% for Rμ=8 

and T=3.0 s. These increases are not surprising since the behavior of highly damped 

systems with Rμ≥4 is fully inelastic and the phase difference between the peaks of the 

damping force fD and the peaks of the restoring fR is small (see Eq.(3)). The mta ,  of very 

short period systems approaches the peak ground acceleration as T tends to zero and is 

not influenced by added damping. 

 Fig. 6 displays the normalized mu of highly damped BEP systems for different Rμ 

and ξt values. Fig. 6 reveals that the normalized mu  is always less than unity, decreases 

with increasing damping, and is relatively constant for almost the entire period region. 

The mu reductions due to added damping are more pronounced for short period systems. 

A comparison between Figs. 6 (a) and (d) reveals that for a given ξt, the median of the 

normalized mu  of systems with low Rμ has similar values with the normalized mu  of 

systems with high Rμ. This indicates that the effect of added damping to reduce mu  is 

independent of the strength ratio of the system and further suggests that the damping 

modification factor derived from linear elastic systems (e.g., B factor in FEMA [16]) can 

be also used for estimating the peak displacement response of highly damped inelastic 

systems.  

 Fig.7 shows the normalized ru of BEP systems for different Rμ and ξt values. Fig. 

7(a) shows that, except for short period systems, BEP systems with Rμ=2 and ξt ≥ 25% 

have zero normalized ru (i.e., zero residual displacement) since they remain nearly elastic 

(i.e., the approximate Rμ,d factors of these systems are less than 1.1). Figs. 7 (b)-(d) show 

that, in general, the normalized ru  decreases with increasing ξt. The difference in the 
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normalized ru for different ξt becomes less obvious for systems with large Rμ values. 

Therefore, adding damping is less effective in reducing residual displacements of systems 

with high strength ratio. Interestingly, this work uncovers that added damping may 

increase ru  for particular systems (e.g., the normalized ur is larger than unity for Rμ=4, 

T=1.8 s. and ξt=15%).  

 

3.3 Highly damped self-centering systems 

Fig. 8 displays the median of the mta ,  of highly damped SC systems normalized 

with respect to the mta , of 5% damped SC systems for different Rμ and ξt values. In 

comparison with Fig. 5, the trend of the normalized mta ,  for highly damped SC systems is 

very similar to that observed in highly damped BEP systems. The similarity in the trends 

is also observed between SC systems with different E values. As a result, conclusions 

similar to those for BEP systems can be made for SC systems.   

 Fig. 9 shows the median of the mu  of highly damped SC systems normalized with 

respect to the mu  of the 5% damped SC system for different Rμ and ξt values. Compared 

to the highly damped BEP systems shown in Fig. 6, similar trends in the relationship 

between mu  and added damping are observed. As a result, conclusions similar to those 

for BEP systems can be made for SC systems. Additionally, it is shown that βΕ has little 

influence on the relation between added damping and mu . 

 

3.4 Comparison of highly damped bilinear elastoplastic and self-centering systems 
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Figs. 6 to 9 show that added damping has similar effects on the peak responses of 

BEP systems and SC systems of the same period and strength ratio. However, a better 

insight into the seismic behavior of these systems can be gained by a direct comparison of 

their peak responses. The median of the ratios of the peak responses of highly damped SC 

systems to the corresponding responses of highly damped BEP systems having the same 

T, ξt, and Rμ has been calculated and presented in the following figures. 

Fig. 10 displays the median of the ratio of mu  of highly damped SC systems with 

E =50% to the mu of highly damped BEP systems for different Rμ and ξt values. The ratio 

is typically larger than unity for Rμ≥4 and T<1.0 s., and, approaches unity as T increases. 

Therefore, BEP and SC systems have comparable displacements for T>1.0 s. Increasing 

damping slightly decreases the ratio of mu between SC and BEP systems. This indicates 

that added damping is slightly more effective in reducing the peak displacements of SC 

systems rather than the peak displacements of BEP systems. Fig. 10(a) shows that SC and 

BEP systems experience identical displacements for all values of damping when Rμ=2. 

Highly damped systems with Rμ=2 remain mildly inelastic and therefore, the hysteretic 

behavior (SC or BEP) has no effect on peak displacement response.  

Fig. 11 displays the median of the ratio of mta , of highly damped SC systems with 

E =50% to the mta , of highly damped BEP systems for different Rμ and ξt values. The 

ratio is larger than unity in the short period region and slightly larger than unity in the 

long period region, indicating that mta , of highly damped SC systems are larger than that 

of highly damped BEP systems. Increasing damping decreases the ratio of mta , between 

SC and BEP systems. This indicates that added damping affects more the peak total 
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accelerations of SC systems rather than those of BEP systems. Fig. 11(a) shows that SC 

and BEP systems experience identical peak total accelerations for all values of damping 

when Rμ=2. 

 

4. Design for high-seismic structural and non-structural performance  

This section demonstrates how the results presented in Section 3 can be 

considered when designing highly damped structures to achieve structural and non-

structural damage reductions. The discussion is based on the equivalent nonlinear SDOF 

representations of four 2-story conventional steel MRFs presented in Karavasilis et al. 

[22-23].  

 Table 2 provides information about the four steel MRFs. MRF100 is a 

conventional steel MRF that satisfies the strength and drift criteria of the IBC 2003 [34]. 

MRF75, MRF50 and MRF25 are MRFs designed for base shears equal to 0.75Vd, 0.50Vd 

and 0.25Vd, where Vd is the design base shear of the MRF100. Table 2 includes the 

fundamental period of vibration T1, the base shear coefficient V/W (V is the base shear 

strength from pushover analysis and W is the seismic weight), the design spectral 

acceleration Sa at period T1, the strength ratio Rμ, the peak displacement um, the residual 

displacement ur and the peak total acceleration mta , . The spectral acceleration, Sa, was 

obtained from the 5% damped design response spectrum with parameters SDS=1.0g, 

SD1=0.6g, T0=0.12 s. and Ts=0.6 s. [34]. The Rμ factor was determined as 

W

V
g

S

V

mS
R aa



                                                                                                             (7) 
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The peak displacement was calculated on the basis of the equal displacement rule, i.e., 

um=(T/2π)
2
Sa. With the Rμ and um known, the ur was obtained from Fig. 3(c), while 

mta , was obtained from Fig. 3(a) based on the fairly accurate assumption that the peak 

total acceleration for Rμ=1 is equal to the spectral acceleration for 5% damping, i.e., 

mta , (Rμ=1,ξ=5%) Sa(ξ=5%) [6].  

Linear viscous dampers are installed in the MRFs to achieve 25% total damping 

ratio at the fundamental period of vibration. With the total damping ratio known, the peak 

total acceleration, peak displacement and residual displacement of the highly damped 

frames (denoted as DMRF100, 75, 50 and 25) are determined from Figs. 5, 6, and 7, 

respectively. Table 3 provides the peak displacement, residual displacement and peak 

total acceleration of the highly damped MRFs normalized with the corresponding 

response quantities of the conventional MRF100 without dampers. 

 DMRF100 provides the highest displacement reduction, and also eliminates 

residual displacement. However, DMRF100 experiences peak total accelerations similar 

to those of the MRF100. DMRF25 provides the highest total acceleration reduction but 

experiences displacements similar to those of MRF100. DMRF75 and DMRF50 are 

design cases with the potential to achieve a simultaneous reduction of structural (drift, 

residual drift) and non-structural (drift, total acceleration) damage. These design cases 

illustrate that structural and non-structural performances of buildings with rate-dependent 

dampers significantly depend on the mechanical properties (strength ratio and period) of 

the initial frame design. In addition, the results presented in Figs. 3-11 along with the 

simple design cases of this section shed more light on important outcomes of previous 

works evaluating the structural and non-structural seismic performance of highly damped 
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frames with different strengths, periods of vibration and total damping ratios (e.g., [17, 

20-23]).   

 

5. Summary and conclusions  

The purpose of this paper was to address various research needs relevant to the 

structural and non-structural seismic behavior of conventional and self-centering systems 

equipped with viscous dampers. For this purpose, a parametric study on the seismic 

response of highly damped single-degree-of-freedom systems with self-centering (SC) 

flag-shaped or bilinear elastoplastic (BEP) hysteresis was conducted. Statistical response 

results were used to evaluate the effects of supplemental viscous damping , strength ratio 

Rμ defined with reference to the 5% damped spectrum, and, period of vibration on 

seismic peak displacements, residual displacements and peak total accelerations. 

 The effect of the strength ratio on the peak responses of 5% damped SC and BEP 

systems was investigated. The results confirmed findings of previous works relevant to 

peak displacements and residual displacements. In addition, the following conclusions 

were drawn: 

1. Peak total accelerations can be effectively reduced by increasing the strength ratio 

(decreasing the strength for a given ground motion) of yielding systems. This effect is 

practically independent of the period of vibration except for very short period systems.  

2. Peak total acceleration reduction due to strength ratio increase is more significant for 

systems with initial low values of the strength ratio. For example, increasing Rμ of 

systems with T=1 s. from 2 to 4 and from 4 to 8 (50% decrease in strength for a given 

ground motion) results in 45% and 39% decrease in total acceleration, respectively. 



Karavasilis TL, Seo C-Y 

23 

The effect of supplemental viscous damping on the peak response of SC and BEP 

systems was evaluated. The results confirmed findings of previous works relevant to peak 

displacements. In addition, the following conclusions were drawn: 

3. Adding damping to systems with low strength ratio (Rμ=2) does not influence peak 

total accelerations.  

4. The peak total acceleration of systems with Rμ≥4 increases when added damping 

increases.  

5. The increase in total acceleration due to added damping becomes more pronounced for 

systems with a longer period and larger Rμ values. For example, by increasing the 

viscous damping ratio from 5% to 25%, peak total acceleration increases by 60% for 

Rμ=4 and T=1.0 s.; 90% for Rμ=4 and T=3.0 s.; 95% for Rμ=8 and T=1.0 s.; and, 

150% for Rμ=8 and T=3.0 s. 

6. The relative hysteretic energy dissipation ratio has no influence on the relation 

between added damping and peak displacement of SC systems.  

7. In general, added damping decreases residual displacements of BEP systems. This 

effect is less pronounced for systems with high strength ratio values.  

8. In some instances, added damping may result in increased residual displacements. 

 A direct comparison between the peak responses of highly damped BEP and highly 

damped SC systems was also conducted and the following conclusions were drawn: 

9. The two systems experience identical peak total accelerations for all values of 

damping when Rμ=2. 

10. Added damping affects more the peak total accelerations of SC systems rather than 

those of BEP systems.  
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11. Added damping is slightly more effective in reducing the peak displacements of SC 

systems rather than the peak displacements of BEP systems. 

Simple design cases of a conventional 2-story steel MRF and 2-story steel MRFs 

equipped with linear viscous dampers providing a total damping ratio equal to 25% at the 

fundamental period of vibration were presented. The results of the parametric study on 

single-degree-of-freedom systems were used to evaluate the peak responses of the steel 

MRFs and the following conclusions were drawn: 

12. The structural and non-structural performance of buildings with rate-dependent 

dampers significantly depends on the mechanical properties (strength ratio and 

period of vibration) of the initial frame design.  

13. Highly damped steel MRFs with strength within the range of 50 to 75% of the 

strength of conventional steel MRFs are able to simultaneously reduce peak drifts, 

residual drifts and peak total accelerations.  

 Interpretation of the aforementioned conclusions needs to be made on the basis of 

the assumptions for the structural models and ground motions used in this paper.  
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TABLES 

 

Table 1: SDOF system parameters and selected values 

 

T (s.) Rμ ξ(%) ξt(%) p (%) βΕ (%)
* 

0.1 to 3.0  2, 4, 6, 8 5 15, 25, 35 2 25, 50 

*
Only for self-centering systems 

 

Table 2: Properties and global response (equivalent SDOF) of steel MRFs designed in 

[16] 

 

Frame T1 (s.) V/W Sa (g) Rμ um (m) ur (m) mta ,  (g) 

MRF100 1.08 0.27 0.56 2.06 0.16 0.04 0.33 

MRF75 1.26 0.20 0.48 2.38 0.19 0.05 0.25 

MRF50 1.48 0.14 0.41 2.90 0.22 0.06 0.17 

MRF25 1.83 0.09 0.33 3.64 0.27 0.07 0.11 

 

Table 3: Properties and global response (equivalent SDOF) of highly damped steel 

MRFs having 25% damping ratio at the fundamental period of vibration 

  

Frame um/um,MRF100 ur/ur,MRF100 mta , / mta , ,MRF100 

DMRF100 0.61 0.00 1.00 

DMRF75 0.71 0.12 0.82 

DMRF50 0.84 0.34 0.65 

DMRF25 1.03 0.68 0.47 
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FIGURES  

 

 

 

 

 

 

 

Figure 1: Hysteretic behavior of bilinear elastoplastic, BEP, (left) and self-centering, SC, 

flag-shaped (right) systems  

 

 

 

 

 

 

 

 

 

Figure 2: Individual 5% damped acceleration response spectra (light lines) and geometric 

mean response spectrum (heavy line) of the ground motions considered in this study 
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Figure 3: Influence of strength ratio Rμ on: (a) peak total acceleration mta , ; (b) peak 

displacement um; and (c) residual displacement ur of 5% damped bilinear elastoplastic 

systems.  
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Figure 4: Influence of strength ratio Rμ on peak total acceleration mta ,  and peak 

displacement um of 5% damped self-centering systems with relative hysteretic energy 

dissipation ratio βΕ equal to 25% and 50%.  
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Figure 5: Influence of total viscous damping ratio ξt on peak total acceleration mta , of 

bilinear elastoplastic systems with different strength ratios Rμ 
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Figure 6: Influence of total viscous damping ratio ξt on peak displacement um of bilinear 

elastoplastic systems with different strength ratios Rμ 
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Figure 7: Influence of total viscous damping ratio ξt on residual displacement ur of 

bilinear elastoplastic systems with different strength ratios Rμ 
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Figure 8: Influence of total viscous damping ratio ξt on peak total acceleration mta ,  of 

self-centering systems with relative hysteretic energy dissipation ratio βΕ equal to 25% or 

50% and different strength ratios Rμ 
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Figure 9: Influence of total viscous damping ratio ξt on peak displacement um of self-

centering systems with relative hysteretic energy dissipation ratio βΕ equal to 25% or 50% 

and different strength ratios Rμ 
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Figure 10: Influence of total viscous damping ratio ξt on the ratio of peak displacements 

of self-centering systems with βE=50% to peak displacements of bilinear elastoplastic 

systems for different strength ratios Rμ. 
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Figure 11: Influence of total viscous damping ratio ξt on the ratio of peak total 

accelerations of self-centering systems with βE=50% to peak total accelerations of 

bilinear elastoplastic systems for different strength ratios Rμ. 
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