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The nonlinear transformation of an external noisy signal by an array of non-interacting elements
with internal noise is considered. The array simulates a neuronal system that processes spike
trains. It is shown that increasing the number of array elements entails significant extending of
the stochastic synchronization region and improvement of the signal-to-noise ratio (SNR). The
effects are demonstrated for arrays of triggers, overdamped bistable oscillators and Fitzhugh-Nagumo
systems. The interrelation between SNR improvement and the efficiency of information processing
is discussed.
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I. INTRODUCTION

The interplay between noise and the nonlinearity of
a system can produce nontrivial effects that lead to en-
hancement of the system response. A remarkable exam-
ple of this is signal processing by a threshold element,
when any sub-threshold signals cannot be detected with-
out an additional noise component, and by tuning noise
intensity one is able to optimize the detection. This ex-
ample is a manifestation of a more general phenomenon
called stochastic resonance (SR) [1, 2]. Initially, the es-
sential ingredients providing SR effect have included a
bistable system, a periodic signal and white noise [3, 4],
but later they were significantly extended [1, 2], and it
has been shown that for a wide range of situations, noise
is able to optimize the system response.

Unflagging interest in SR can be explained by the vari-
ety of possible combinations of system nonlinearity, sig-
nal and noise properties. Another important factor is
the relevance of SR to biological processes, especially
to neuroscience [5], where fluctuations persist from the
molecular level (e.g. ion channels) to networks. This fac-
tor induces the study of information transformation via
complex networks of elements with external and inter-
nal noise sources [5]. It has been shown that a network
(or an array of elements) enhances significantly the sys-
tem response in comparison with a single element [6–9].
The conclusion is valid for a variety of array configura-
tions with or without coupling of elements, with different
types of local and global couplings. In the neuroscience
context, a parallel array of nonlinear elements with a
summing center attracts a lot of attention [10–14]. It
has been shown that internal noise in such a parallel ar-
ray leads to the optimization of information transmis-
sion in a wide range of noise intensity. This optimization
can be explained by noise-induced linearization of the
nonlinear responses of individual elements [14, 15] and,
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consequently, the array response can be described in the
framework of linear response theory [15].

In this contribution we consider a nonlinear regime
of a parallel array with summing and nonlinear end ele-
ments. The array encodes an input signal into a sequence
of switching events (spikes) [16], and the informational
component of the input signal has the same structure as
the output of the array. The nonlinear regime in the sys-
tem is realized when the amplitude of the signal is large
enough. Within the nonlinear regime, many different ef-
fects, for example, the generation of higher harmonics
[17], can be observed. We concentrate our attention on
stochastic synchronization [19] and signal-to-noise-ratio
(SNR) improvement [20, 21].

The effect of stochastic synchronization is an impor-
tant one from the signal processing point of view. Syn-
chronization occurs when noise-induced switchings be-
tween system’s states follow the phase of the external
signal, and it is observed in the range of noise intensity
[18, 19, 22–25]. In [26], it has been shown that switch-
ing synchronization can be realized for a random spike
train, i.e noise induces switching for each spike. An ex-
perimental study of stochastic synchronization in a bio-
logical system has been done in [27]. This phenomenon
is important for understanding signal processing in the
neuronal system, since it specifies the conditions when
noise induces a regime of complete (optimal) information
transmission by spikes, and it is observed simultaneously
over a wide range of noise amplitude.

In [18] an extensive analysis of stochastic synchroniza-
tion in an array of threshold elements in the limit of a
weak signal has been presented. The transformation of
the signal with a finite input SNR by an array with ele-
ments perturbed by independent noise sources was ana-
lyzed using linear response theory. The finite input SNR
means that the external signal consists of informational
and noise components, whereas internal noise sources do
not relate to the external noise. It is shown [18] that in
the case of infinite input SNR (informational component
only), synchronization can be observed for an arbitrary
intensity of internal noise by increasing the number of
array elements. In turn, the finite input SNR leads to
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a limitation on the maximal intensity of internal noise,
and starting with a certain value of input SNR (inten-
sity of the noise component) the synchronization does
not occur. The main result of work [18] consists of the
following. A large number of uncoupled elements per-
turbed by independent noise sources tends to “remove”
the nonlinearity of each element, and the independence
of noise sources “removes” output noise during summing.
As a result, with increasing the number of elements, the
array’s response tends to be linear and noise-free, i.e.
it repeats the shape of the input signal. Consequently,
synchronization between input and output signals is ob-
served. In the present paper the regime is fundamentally
nonlinear, so for a large amplitude of input signal the de-
scribed linearization does not occur, but the synchroniza-
tion can still take place since a larger signal modulates
strongly noise-induced switchings, for example, reaching
the threshold of the excitable element is possible for a
specific range of signal phase only (see [19, 24, 25, 28] for
details).

SNR improving (gain) was observed experimentally in
a number of systems [20, 21, 29] and corresponding theo-
retical support of the experimental results has also been
provided later[30]. The gain means that the output value
of SNR exceeds the input value [30]. In [21, 31], SNR
gain in connection with switching statistics has been dis-
cussed. Recently, Cubero et al [32] have numerically
shown that an array of coupled nonlinear elements is able
to increase significantly SNR gain in comparison with a
linear array1. Note that the presence of SNR gain is
usually interpreted as an enhancement of signal trans-
mission, so we further discuss the interrelation between
SNR gain and the efficiency of signal processing.

The configuration of the considered array is shown in
Fig. 1. The main difference from previously discussed
configurations [10–14, 18] is the presence of the last (end)
nonlinear element, TS , following after a summing center∑

. The nonlinear element TS is characterized by the
same nonlinearity as the base element, Ti. This modifica-
tion leads to the configuration used for neuronal networks
in the visual system [5] and corresponds to the cascade
model of the neuron [33]. In this case input informa-
tion is encoded by the output spike train (a sequence of
switchings), but not by the shape of the input signal [10–
13]. In previous investigations [10–14, 18], arrays of both
bistable and excitable elements have been considered. In
fact, both types of elements are used as a base element of
neuronal networks [5, 34]. Therefore, we consider both
of them in order to analyze the role of the base element’s
dynamics. In Sec. II we investigate arrays of two bistable
units: Schmitt triggers and bistable overdamped oscilla-
tors. An array of excitable elements is discussed in Sec.
III. The conclusions drawn are summarized in Sec. IV.

1 We have to note that some previous reported results of SNR gain
in arrays raised some questions (see comment [31] for details).

Technical details of numerical simulations are presented
in the Appendix.

II. BISTABLE ARRAY

Let us, first, consider the Schmitt trigger as a base ele-
ment. The trigger is the simplest non-dynamical bistable
system with a pure two-state dynamics defined by its hys-
teresis loop. In the case of a symmetric loop, the trigger’s
dynamics is described by the following equation:

U(t) = U0 sgn(∆U − F (t)), (1)

F (t) = Fi(t) + ξc(t) + ξi(t);

here F (t) is an input signal; “sgn” is the sign function;
∆U = |∆U |sgn[U(t)] are the trigger’s thresholds; the
output value U(t) is equal to either positive or negative
U0, i.e. U(t) = ±U0, and it is controlled by the signal
F (t), i.e. if F (t) > |∆U |, the trigger is in its upper state
+U0, and if F (t) < −|∆U |, then it is in the state −U0.

The input signal F (t) consists of three components.
The informational component Fi(t) is a periodic sequence
of rectangular pulses with frequency f = 1/T (or an-
gular frequency Ω = 2π/T ) and amplitude A: Fi(t) =
(−1)m(t)A, where m(t) = ⌊2t/T ⌋, ⌊x⌋ = max{n ∈ Z|n ≤
x} is the floor function of x. The amplitudeA is compara-
ble with, but less than, the threshold value, i.e. the infor-
mational component is a sub-threshold one and cannot
be detected without some additional components. The
second component is common noise ξc(t), superimposed
on pulses Fi(t). The third component is internal additive
noise ξi(t) acting independently in each element. Note
that a 3-component input was used in [18], whereas in
most cases [10–14, 32], the common noise, ξc(t), is not
considered. Both noises are modeled as twice low-pass
filtered Gaussian white noise η(t) (see [35] for details)
with identical cut-off frequencies, 1/τ = 100, for both
filters:

ξ̈ +
2

τ
ξ̇ +

1

τ2
ξ =

√
2D

τ
η(t). (2)

The intensities of the white noise sources are Dc for com-
mon noise andD for the internal noise sources. IfDc ̸= 0,
then a signal with a finite SNR acts on each element.

The sum of trigger outputs S(t) =
∑N

i U i(t) acts on
trigger Ts, which in turn produces the output of the con-
sidered array Uout. Our aim is to consider the array
performance as a function of the intensity D of inter-
nal noise. To this aim, two measures are discussed: The
mean switching rate (MSR), ⟨f⟩, (or angular frequency
⟨ω⟩ = 2π⟨f⟩) and SNR, R. The MSR is calculated as the
mean number of switchings during the calculation time.
Alternatively, one can use a signal processing measure
like the receiver operating characteristic [8, 36] or the
total error, as applied in neuroscience [37] (see below).
Since we consider the regime of synchronization in the
system with two symmetric thresholds, the use of MSR
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FIG. 1: The configuration of the considered array of elements.

is sufficient to characterize a signal transmission via the
bistable array.
The SNR is defined by analogy with the conventional

definition, used for a harmonic signal in a noisy linear
system, as the common logarithm of the ratio between
the weight of the δ-peak, Si, in the power spectrum at
the pulse repetition frequency Ω, to the intensity of the
noisy background, Sn, at the same frequency [30]:

R = 10 log10
Si(Ω)

Sn(Ω)
(3)

and it is measured units of decibels (dB). The definition
is based on the fact [30, 31, 38, 39] that the output of a
periodically forced system is a superposition of periodic
and noisy components.
Let us consider the dynamics of the array in the ab-

sence of common noise ξc(t), i.e. Dc = 0. The population
dynamics of the single element ni

±(t) are defined by the
probability that i-element is in one of the states +U0 or
−U0. The rate equations for populations n±(t) have the
forms [40, 41]

ṅ+ = −r−n+ + r+n− (4)

ṅ− = −r+n− + r−n+,

where r±(t) are the threshold crossing rates. For the
trigger, the rates are [35]:

r±(t) =
1

2πτ
exp

(
− [±|∆U | − Fi(t)]

2τ

D

)
. (5)

Note that using expression (5) has provided good corre-
spondence between theoretical and experimental results
(see [25] for details). In Ref. [30], it has been demon-
strated that in the case of periodic pulses, the long-time
solution of (4) has the form:

n+(t) = −1

2
+

Fi(t)∆r

2A

[
1 + ∆r

e−γ(t−m(t)T/2)

1 + e−γT/2

]
, (6)

where γ = r+(0) + r−(0), ∆r = [r−(0) − r+(0)]/γ. Ex-
pression (6) specifies a periodic function, i.e. n+(t) =

n+(t + T ) for any t. In the regime when the switch-
ing rate is comparable with the frequency f , the last
term in the brackets is practically constant, and the
time dependence of the population coincides with the in-
put signal Fi(t), i.e. it is a rectangular shape function
with some maximal nmax

+ and minimal values nmin
+ (note

that nmax
+ = 1 − nmin

− and nmin
+ = 1 − nmax

− ). In the
synchronization regime, nmax

± is close to the unit value,

whereas nmin
± is close to zero: nmax

± > 1 − ϵ, nmin
± < ϵ,

maxt r±(t) > f , ϵ ≪ 1. In other words, the difference
∆nm = nmax

± − nmin
± > 1− 2ϵ is close to the unit value.

The input of the end element Ts is the sum of outputs

S(t) =
∑N

i U i(t), and S(t) is a random discrete-value
variable distributed accordingly to the time-dependent
Bernoulli law:

P [S(t)] = CN
j nj

+(t) [1− n+(t)]
N−j , (7)

where j = 0.5(S − N) and j = 0, 1, 2 . . . N , CN
j =

N !/(j!(N−j)!) are binomial coefficients, and n+(t) is the
time dependent population of i-element. The discrete-
value signal S(t) can be approximated by a continuous
signal with a normal distribution [42], which is defined
by a time dependent mean value µ(t) = N [2n+(t) − 1]
and a variance σ2(t) = 2Nn+(t)[1−n+(t)]. Dynamics of
the mean value µ(t) is determined by the population dy-
namics n+(t) and consequently it is a periodic function of
time and repeats the shape of n+(t). So, in the synchro-
nization regime µ(t) is a rectangular shape function with
some maximal and minimal values ±µm and a very nar-
row switching region in the case maxt r±(t) > f . If µm is
larger than the threshold |∆U | and it is larger than 4σ,
then the input of Ts is supra-threshold and the switching
process is a practically deterministic one and controlled
by Fi(t), i.e. ⟨ω⟩ = Ω. It means that the regime of
synchronization is realized. The condition µ = 4σ can
be considered as the right hand (in respect to maximal
noise intensity) synchronization boundary and leads to
the following relation for the populations n± to observe
synchronization:

∆nm = nmax
± − nmin

± >

√
1

N + 1
. (8)

In other words, synchronization can be observed for any
arbitrary small difference between populations by in-
creasing the number of array elements. It means that
by using the array we are able to extend the synchro-
nization region in the noise intensity domain up to any
arbitrary value.

The presence of common noise ξc(t) leads to an addi-
tional (in respect of Fi(t)) noise-induced correlation of
switchings of array elements. Consequently, the last ex-
pression and the conclusion should be modified, but, at
least, the effect of the enhancement of the synchroniza-
tion region should still exist. Results of numerical simula-
tions of the triggers array are presented in Fig. 2 for two
different combinations of signal amplitude A and noise
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FIG. 2: (Color online) Results of simulations for array of
Schmitt triggers. Angular MSR ⟨ω⟩ (a and c) and SNR R (b
and d) are shown as functions of internal noise intensity D.
The parameters are Ω = 0.01, τ = 1/100, U0 = 1,|∆U | = 0.1
for all simulations. Figures (a) and (b) correspond to the
parameters values: A = 0.06 and Dc = 0.00001; figures (c)
and (d) correspond to A = 0.025 and Dc = 0.000007. In
figures (a) and (c) markers ▽ (blue lines), � (green lines)
and ⃝ (red lines) correspond to an array of N = 1, N = 50
and N = 500 elements respectively. Input SNRs are shown by
dashed (magenta) lines (without internal noise, D = 0) and
by solid (black) lines (with internal noise, D ̸= 0) in figures
(b) and (d). Output SNRs of array are shown by different
markers in figures (b) and (d).

intensity Dc. The extension of the synchronization re-
gion is clearly demonstrated by increasing the number of
elements. The output SNR, R, can exceed both the in-
put SNR of the array [dashed lines in Fig. 2 (b) and (d)],
when internal noise is not taken into account, D = 0, and
the input SNR of an individual element [solid lines in Fig.
2 (b) and (d)], when internal noise is taken into consid-
eration, D ̸= 0. This SNR gain is a non-trivial nonlinear
effect, since by tuning internal noise only, one is able to
improve the SNR of an external noisy signal. Note that
the recently reported SNR gain by Cubero et al [32] has
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FIG. 3: (Color online) Angular MSRs are shown as func-
tions of internal noise intensity D for different values of com-
mon noise intensity: Line 1 (red) Dc = 0 , line 2 (green)
Dc = 0.00001, line 3 (blue) Dc = 0.00002. The dashed lines
correspond to theoretical curves, calculated using expression
(9). Figures (a) and (b) correspond to an array with N = 500
and N = 50 respectively. Other parameters are specified in
the caption of Fig. 2.

been demonstrated when noise in the external signal is
absent, i.e. without common noise Dc = 0.

It is clear (Fig. 2) that there is no direct relation be-
tween the synchronization and SNR gain, since the gain
is observed when there is no synchronization (⟨ω⟩ ̸= Ω).
So it is problematic to use SNR as an indicator of the
efficiency of information transmission by spike trains.

The role of common noise is illustrated in Fig.3. The
noise leads to a decrease in the synchronization region.
Note, that for Dc = 0 the right hand boundary of the
synchronization region can be estimated by calculation
of the MSR using the following expression:

⟨ω⟩ = Ω+ 2πγ/4

[
1−∆r2

(
1− 4

tanh(γT/4)

γT

)]
, (9)

where γ = r+(0) + r−(0), ∆r = [r−(0) − r+(0)]/γ and
the crossing rates are defined by the expressions:

r±(0) =
1

2πτ
exp

(
− [±|∆U | − µ(0)]2τ

σ2(0)

)
; (10)

where µ(0) = N [2n+(0) − 1] and σ2(0) = 2Nn+(0)[1 −
n+(0)], and depend on the number N of array elements.
The expression (9) is valid only for ⟨ω⟩ ≥ Ω; the first
term in (9) reflects the fact that µ(0) > ∆U , whereas the
second term is identical to the expression (70) derived
in [40]. The correspondence between numerical results
and curves defined by (9) becomes visible with increas-
ing N , since the error of approximation of the Bernoulli
distribution (7) by the continuous normal distribution
decreases.

Now let us demonstrate that the effect of synchroniza-
tion enhancement is observed for arrays with another ba-
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FIG. 4: (Color online) Results of simulations for an array of
overdamped bistable oscillators. Angular MSR ⟨ω⟩ (a) and
SNR R (b) are shown as functions of internal noise intensity
D. The parameters are Ω = 0.01, τ = 1/100, A = 0.2 and
Dc = 0.02. Markers ▽ (blue lines) and ⃝ (red lines) corre-
spond to an array of N = 1 and N = 50 elements respectively.
In figure (b) input SNRs are shown by the dashed (magenta)
line (without internal noise, D = 0) and the solid (black)
line (with internal noise, D ̸= 0); output SNRs are shown by
markers.

sic element. In Fig. 4, the simulation results for bistable
overdamped oscillators are shown. In this case, the out-
put x(t) of each element of the array is defined by the
following equation:

ẋ− x+ x3 = F (t). (11)

The summing element was modified in comparison with
the trigger case by using the limitation of amplitude
of signal which acts on the end element: S(t) =

tanh[π
∑N

i U i(t)], U i = xi(t). To model both internal
ξi(t) and common ξc(t) noise sources, color noise ξ(t) was
used with correlation time τ = 1/100:

ξ̇ +
1

τ
ξ =

√
2D

τ
η(t), (12)

where η(t) is white Gaussian noise. Results (Fig.4)
demonstrate both synchronization enhancement and
SNR gain in the array of bistable oscillators.

III. EXCITABLE ARRAY

Finally, we checked the presence of effects in an ar-
ray of excitable elements that have been modeled by the
Fitzhugh Nagumo (FHN) system. The output U i = u(t)
of each excitable element obeys the equation:

u̇ = u− u3

3
− v

v̇ = ϵ[u+ a− F (t)], (13)

where u and v represent the membrane potential and
slow recovery of a neuron respectively; ϵ ≪ 1 and a are
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FIG. 5: (Color online) Results of simulations for FHN sys-
tems. Angular MSR ⟨ω⟩ (a), SNR R (b) and the total error
Q (c) are shown as functions of internal noise intensity D.
The parameters are Ω = 0.001, τ = 1/100, ϵ = 0.001, a = 1.1,
A = 0.05 andDc = 0.002, N = 50. The solid (black) lines cor-
respond to the output of one element. Markers correspond to
an array (N=50) with different values of u0: ♢ (magenta lines)
u0 = 20, � (green lines) u0 = 27.5, ⃝ (red lines) u0 = 40,
and ▽ (blue lines) u0 = 45. In figure (b) input SNRs are
shown by the dashed (magenta) line (without internal noise,
D = 0) and by markers × (black line) (with internal noise,
D ̸= 0).

parameters. Noise sources ξc(t) and ξ(t) correspond to
color noise (12) with τ = 1/100. The input information
signal Fi(t) is modified to be close to the output of the
FHN system. Fi(t) is a sequence of pulses with period
T , amplitude A (Fi(t) is varying between 0 and −A)
and pulse ratio 7 (for an array of triggers and bistable
oscillators the pulse ratio is equal to 2). The summing
element produces the output signal in the form

S(t) = −0.1

[
tanh

(
π

N∑
i=1

U i(t) + u0

)
+ 1

]
,

where U i(t) = ui(t). The signal S(t) is limited to the
range [0:-0.2] similar to the signal Fi(t). The parameter
u0 defines the zero level of the sum of the output sig-
nals. Such a configuration with the summing element

∑
having the limitation of an output amplitude and vari-
able mean level reflects the dynamics of the membrane
potential of neurons [33].

Since the stationary state of the FHN system (13) cor-
responds to u = −a, then the u0 = −aN/2 defines a
symmetrical output signal S(t). The signal S(t) acts on
the end element TS modeled by the FHN system too. The
threshold value of signal amplitude is A ≈ 0.1 for given
T = 2000π. Results of the simulations for N = 50 and
different values of parameter u0 are presented in Fig.5.
Note that the array of FHN systems differs from the trig-
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gers and bistable oscillators considered above since the
FHN system has only one threshold.
In general, the results (Fig. 5) support the conclusion

derived from the analysis of triggers and bistable oscil-
lators arrays. However, some differences can be seen.
Firstly, the synchronization regime does not occur in one
element, whereas an array is able to induce synchroniza-
tion. Secondly, parameter u0 changes significantly the
behavior of MSR ⟨ω⟩ and it is difficult to estimate the ef-
ficiency of signal processing by using MSR only, because
of the presence of only one threshold. Therefore the total
error Q for pulse detection [37] was also calculated:

Q = Pm +
Pf

n
, (14)

where Pm = 1−Pc/n is the fraction of missed pulses, Pc

is the number of correctly detected pulses and n is the
total number of pulses; Pf is the number of false positive
events, i.e. incorrectly detected pulses. We consider that
the pulse is being correctly detected if it follows an input
spike. We used the time interval 2∆T (here ∆T is the
pulse duration of signal Fi(t)) after the beginning of the
input pulse as the time interval of correct detection.
The total error Q for different values of u0 is shown

in Fig. 5 (c). The use of an array can provide error-free
signal transmission, and parameter u0 is an additional
one that can be used for transmission optimization. For
example, if an array is able to estimate the intensity D
of internal noises, then by changing u0 the synchroniza-
tion region can be significantly increased [one can start
with u0 = 45 and switch to u0 = 27.5 for D > 0.1, see
Fig. 5 (c)].

IV. CONCLUSIONS

Summarizing, it has been demonstrated that the non-
linear regime of signal transformation can be optimized
for signal processing. Extension of the synchronization
region by increasing the size of bistable systems array
(triggers and bistable oscillators) has been observed. Ar-
ray inducing synchronization in the case of excitable sys-
tems has been demonstrated. It has been shown the-
oretically that in the absence of common noise, i.e. a
noise-free input signal, that the synchronization region
can be arbitrarily extended by increasing the number of
bistable elements. The synchronization region decreases
with an increase of the intensity of common noise. Also,
array induced SNR gain has been demonstrated. For all
considered cases the output value of R exceeds its input
value in a certain range of internal noise intensity. It has
been shown that the presence of the gain does not un-
ambiguously mean an optimal signal transmission. The
analysis has revealed some differences between bistable
and excitable dynamics and showed evidence that the
use of an array leads to a significant decrease of error
transmission in comparison with a single system. Let us

stress that all results were obtained for an array of uncou-
pled elements. It is reasonable to expect the extension
of the results to arrays with couplings between elements,
although differences might also appear.

V. ACKNOWLEDGMENTS

The author thankfully acknowledges L. Schimansky-
Geier for fruitful, continuing collaboration and encour-
agement with the most valuable discussions. The author
thanks N. Khovanova, A. McCafferty and R. Haley for
critical reading of the manuscript, and referees for use-
ful comments and the suggestion to provide details of
numerical simulations. The research was supported by
the Engineering and Physical Sciences Research Council
(UK) and partially by Alexander-von-Humboldt Founda-
tion.

APPENDIX A

For completeness, here we provide details of numerical
simulations of the Langevin equations (2), (11), (12) and
(13), and calculations of spectra and MSR ⟨ω⟩.

The equations were presented in the normal form as a
set of one-dimensional differential equations:

ẋi = Zi(x) + σiηi(t), (A1)

where x(t) is the vector of dynamical variables, Zi rep-
resent the deterministic parts of the equations, ηi(t) is
a white noise source with ⟨η(t)⟩ = 0 and ⟨η(t)η(s)⟩ =
δ(t−s), and σi is noise amplitude. In the numerical sim-
ulations the Heun integration scheme was used as follows
[43]:

x̃i(tj+1) = xi(tj) + hZi(x(tj)) + σi

√
hGi(tj)

(A2)

xi(tj+1) = xi(tj) +
h

2
[Zi(x(tj)) + Zi(x̃(tj+1))] +

σi

√
hGi(tj),

where h is the time step, tj+1 = tj + h, and Gi(tj) are
the Gaussian (normal) random numbers with zero mean
and unit dispersion (if σi was equal to zero then the cor-
responding stochastic term was excluded from the equa-
tion). The Box-Muller algorithm [44] was used to gen-
erate Gi(tj). An independent random number generator
with an independent initialization was used for each noise
source ηi(t). The time step was chosen as h = T/2n,
where T is the period of the pulses sequence and n is
an integer number. The following values of n were used:
n = 17 for bistable arrays of triggers and overdamped
bistable oscillators, and n = 21 for an array of FHN sys-
tems.

The difference scheme used for equation (1) is given by

U(tj+1) = U0 sgn [|∆U | sgn[Uout(tj)]− F (tj)] . (A3)
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The power spectrum P (ω) was calculated by the
periodogram method with a rectangular time win-
dow, and signal amplitude spectrum X(ω) was calcu-
lated by the base-2 fast Fourier transform: P (ωj) =

( 1
N )
∑N

k=1 X
2
k(ωj), where N = 200 is the number of pe-

riodograms. Each periodogram was calculated from ran-
dom initial conditions after skipping a relaxation time.
The length of the periodogram was equal to L = 65536
points and the time sampling interval was ∆t = 2mh,
where m is an integer (m = 6 for arrays of triggers and
bistable overdamped oscillators and m = 10 for array of
FHN systems). These chooses of the sampling interval ∆t
and time step h = T/2n provide the absence of the leak-
age effect for a periodic signal of frequency Ω = 2π/T ,
i.e. one frequency bin ∆ω contains all the power of signal
harmonics ω = lΩ, where l = 1, 2 . . .. To avoid alias-
ing, a low-frequency linear filter with cut-off frequency
α = π/(2∆t) was used of the form:

ẋf = −αxf + αx. (A4)

The filter output xf (t) was used for the spectrum calcula-
tion, whereas x(t) corresponds to the considered signals.
These can be the output of an array unit U i(t), the out-
put of array Uout(t), or the input signal Fi(t)+ξc(t)+ξi(t)
with or Fi(t) + ξc(t) without internal noise.
As follows from [38, 39], the output signals U i(t) and

Uout(t) consist of periodic and noisy components. The
periodic component corresponds to the informational sig-
nal Fi(t) and contains discrete constituents P (kΩ) =
Skδ(ω − kΩ), where k is an integer number, i.e. it con-
tains harmonics of frequency Ω. The spectrum calcula-
tion methos described above defines the weight of δ-peak
on the frequency Ω as Si(Ω) = P (Ω).
Following [1, 2, 30] the noise component Sn(Ω) was es-

timated using the power spectrum P (Ω) in the following
way

Sn(Ω) = ∆ω
1

2m

 j=i+l∑
j=i−l,j ̸=i

P (ωj)

 , (A5)

where ∆ω = 2π/(L∆t) is the frequency resolution in the
numerically calculated power spectrum P (ωj); ωi = Ω
and l = 6 defines a bandwidth to approximate the noise
background at signal frequency Ω.

Note that the input R allows verification of the results
of numerical simulations, since the input R for a periodic
sequence of rectangular pulses Fi(t) can be calculated
directly as

R = 10 log10
A2

2(Dc +D)∆ω
. (A6)

For the parameters given above the error of SNR calcu-
lations is less than 1 dB, i.e. it is comparable with size
of the markers in the figures.

For the calculation of MSR ⟨ω⟩, time intervals ∆tj =
tj − tj−1 between two successive transitions from the
given state to another state (for bistable arrays) and be-
tween two successive spikes (for an excitable array) were
determined in parallel to periodogram calculations. To
determine the transition moment tj the output x(t) of the
bistable oscillator (11) was additionally filtered by a sym-
metrical trigger with thresholds ∆U = ±0.5 to produce a
dichotomous (two-state) signal xd(t) confined to the val-
ues ±|xm| only, where xm = 1. Similar filtering was used
for the output u(t) of the FHN system. MSR was deter-

mined as ⟨ω⟩ = 2π/⟨∆t⟩, where ⟨∆t⟩ = ( 1
M )
∑M

j=1 ∆tj
and M is the number of transitions (spikes) during the
simulation time. The simulation time was always larger
than 5000 periods T of the information component Fi(t).
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