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Vector fitting approximation of a cylinder nonreflecting boundary kernel

K. Bavelis and C. Mias

To employ the modal nonreflecting boundary condition (MNRBC) in cylindrical coordinates in the

finite element time domain (FETD) method, a time domain kernel expression must be found that it

is the inverse Laplace transform (ILT) of a known frequency domain function. The inverse Laplace

transformation is achieved using a methodology based on the partial fraction expansion of the

frequency domain function. However, to date, no FETD results have been published based on this

MNRBC methodology. A simpler implementation of the methodology based on vector fitting (VF)

is proposed. Using the VF approach, FETD-MNRBC results of plane wave scattering from a

cylinder are presented for the first time.

Introduction: The modal nonreflecting boundary condition (MNRBC), in cylindrical coordinates, is

a well established boundary condition in the two-dimensional (2D) finite element frequency domain

(FEFD) method simulations [1]. This boundary condition is based on the fact that the scattered field

on a circular (fictitious) boundary surrounding a cylinder of arbitrary cross-section can be expressed

in terms of summation of modal functions, of integer modal orders n, which are products of Hankel

functions or modified Bessel functions and azimuthal function terms, see for example [2]. The time

domain version of this boundary condition has not been employed in finite element time domain

(FETD) method simulations although the general methodology for developing a time domain

MNRBC has been presented by Alpert et al [3]. The methodology relies on finding, for each order

n, the time domain expression of a cylinder nonreflecting boundary kernel. This requires that for

each order n the inverse Laplace transform (ILT) of a known function that appears in the MNRBC

in the frequency domain is found. This is achieved by expressing the frequency domain function as

a summation of partial fractions which via the ILT are expressed as a summation of exponential



terms in the time domain. Because of the complexity involved in implementing the partial fraction

expansion in [3] and the fact that only a limited number of partial fraction coefficients that

correspond to a few cylinder kernel modal orders (n =1,2,3,4) were presented in [3], an alternative

simpler approach of implementing the partial fraction expansion based on vector fitting (VF) is

proposed using the publicly available software VECTFIT [4]. This VF approach may have a greater

appeal among engineers. Through computations, it is demonstrated that the VF results are of

comparable accuracy to those of Alpert et al [3]. In addition, FETD-MNRBC results, based on VF,

are presented for the first time.

The VF approach: To demonstrate the proposed VF partial fraction expansion approach and its

accuracy, the Laplace transform expression Qn(s) of the time domain cylinder nonreflecting

boundary kernel qn(t), used by Alpert et al (eq. 2.13 in [3]), is employed
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where Kn is the modified Bessel function of the second kind and nth order. The derivative K´n of Kn

is with respect to the argument s/c where s is the Laplace domain variable,  is the radius of the

fictitious circular nonreflecting boundary ( > 0), c is the speed of light in the medium surrounding

the cylinder (c > 0), assumed here to be free space. From the scaling properties of the Laplace

transform it is sufficient to expand the following expression in terms of partial functions
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In (2), the derivative K´n of Kn is now with respect to the argument s. Once the ILT of Un(s) is

found, denoted as un(t), then the ILT of (1) can be obtained, for any  and c, as follows
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The last expression in (2) is obtained using the identities of modified Bessel functions in [5] and it

is the expression employed in VF with s = j. In general, VF approximately expresses Un(s) in (2)

in the following form
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where the parameters dn, hn, rm,n (pole coefficient) and am,n (pole location) are computed by

VECTFIT (version 1). The subscript ‘app’ indicates an approximation. To enable VECTFIT to

produce the desirable results, the asymptotic value of Un(s) as s  0 is required. From [5], the small

argument approximation of Un(s) is
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where () is the Gamma function [5]. Furthermore, computing dn and hn is optional in VECTFIT

and therefore knowledge of the large argument approximation of Un(s) is beneficial. In this case,

Un(s)  0 as s , hence, dn = hn = 0 . Therefore, after applying ILT to the partial fraction

expansion in (4) one obtains the following approximate time domain expression for un(t),
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A benefit from employing such a summation in a FETD-MNRBC formulation is that it will allow

the convolution that appears in the boundary integral term of the formulation to be computed in a

fast manner using a recursive approach as shown in [6] for 2D planar periodic structures.

Numerical Results: The input parameters used in VECTFIT were: (a) 4000 frequency samples;

(b) a frequency range of 0  f  fmax with fmax = 4 Hz; (c) iter = 20 iterations; and (d) asympflag = 1

(as dn = hn = 0). Table 1 lists the computed partial fraction parameters, rm,n and am,n . Their values

are truncated to six decimal places. For n and M the values tabulated in [3] are used. Figure 1

shows plots of the function Un(s = j2f) versus frequency f based on: (a) the exact equation (2);



(b) the partial fraction approximation of the VF using the parameters in table 1 (without truncation);

and (c) the partial fraction approximation of Alpert et al using the tabulated parameters in [3]. The

absolute error value 10log10|en(s = j2f)| versus frequency f is also shown in figure 1 for both

approximations, where
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The figure indicates that both approximations are of comparable accuracy and that

10log10|en| < 50 dB for n = 1,2,3,4.

The VF accuracy enabled us to obtain, for the first time, FETD-MNRBC results (figure 2) based on

the proposed VF approach. The plot in figure 2 shows the bistatic scattering width (2-D/), as

defined in [7], of a perfectly electrically conducting triangular cylinder. The cylinder is surrounded

by free space. The FETD-MNRBC results are compared with the integral equation formulation

results presented in [2].

Conclusion: A VF approximation of a cylinder nonreflecting boundary kernel is proposed and

validated. FETD-MNRBC results, based on this VF approximation, are presented for the first time.
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Figure and Table Captions

Figure 1

Caption:

Plots of |Un(s = j2f)| and 10log10|en(s = j2f)| versus frequency f for n = 1,2,3,4 .

Figure 2

Caption:

Bistatic scattering width, 10log10(2-D/), of a triangular cylinder. x1 = 1.0, x2 = 0.707,
y1 = 0.707 and y2 = y1. For simplicity,  = 1 m . The incident plane wave, with the electric field
vector in the z-direction, is propagating in the negative x-direction. Surface  represents the finite
element region and  represents the circular boundary on which the MNRBC is applied.

Table 1

Caption:

VF computed parameters
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Table 1

Pole coefficients Pole locations
n M

Real Imaginary Real Imaginary

-6.125650  10-3 0 -3.465994  100 0

-5.259487  10-2 0 -1.904945  100 0

-1.381366  10-1 0 -1.091376  100 0

-1.326909  10-1 0 -6.548468  10-1 0

-3.918820  10-2 0 -3.765733  10-1 0

-5.643938  10-3 0 -1.921838  10-1 0

-5.779033  10-4 0 -8.671415  10-2 0

-3.945792 10-5 0 -3.308866  10-2 0

1 9

-1.182999  10-6 0 -8.940158  10-3 0

2.087022  10-4 0 -2.352687  10-1 0

1.883591  10-2 0 -6.004027  10-1 0

9.779644  10-1 0 -1.585323  100 0

2.405753  10-2 0 -3.281031  100 0

-1.448034  100 1.672191  10-1 -1.261094  100 4.080800  10-1

2 6

-1.448034  100 -1.672191  10-1 -1.261094  100 -4.080800  10-1

-1.096578  10-2 0 -9.316772  10-1 0

-7.920391  10-1 0 -1.852993  100 0

-1.997077  10-1 0 -3.049055  100 0

-1.686141  100 1.291524  100 -1.680029  100 1.307535  100

3 5

-1.686141  100 -1.291524  100 -1.680029  100 -1.307535  100

3.742610  10-1 0 -1.975139  100 0

-2.148009  100 1.917512  100 -2.813927  100 4.063061  10-1

-2.148009  100 -1.917512  100 -2.813927  100 -4.063061  10-1

-1.976622  100 2.208657  100 -1.978586  100 2.204506  100

4 5

-1.976622  100 -2.208657  100 -1.978586  100 -2.204506  100


