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Modeling the evolution of natural cliffs subject to weathering:
1. Limit analysis approach
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[1] Retrogressive landsliding evolution of natural slopes subjected to weathering has been
modeled by assuming Mohr‐Coulomb material behavior and by using an analytical
method. The case of weathering‐limited slope conditions, with complete erosion of the
accumulated debris, has been modeled. The limit analysis upper‐bound method is used
to study slope instability induced by a homogeneous decrease of material strength in
space and time. The only assumption required in the model concerns the degree of
weathering within the slope, and for this we assumed and tested different weathering laws.
By means of this method, the evolution of cliffs subject to strong weathering conditions
(weathering‐limited conditions) was predicted. The discrete succession of failures
taking place was modeled taking into account the geometry assumed by slopes as a
consequence of previous mass movements. The results have been compared with
published data from long‐term slope monitoring and show a good match between
experimental observations and analytical predictions. The retrogressive evolution of
the slope occurs with decreasing size of the unstable blocks, following a logarithmic
volume‐frequency relationship. A nonlinear relationship is found between mass flux and
average slope gradient. A set of normalized solutions is presented both by nomograms
and tables for different values of slope angle, cohesion, and internal friction angle.

Citation: Utili, S., and G. B. Crosta (2011), Modeling the evolution of natural cliffs subject to weathering: 1. Limit analysis
approach, J. Geophys. Res., 116, F01016, doi:10.1029/2009JF001557.

1. Introduction

[2] Slope evolution has been described through different
approaches based on direct observations and assumptions
concerning the volume of sediment released from uphill and
passing through a specific length of the profile. On this
basis, transport laws have been proposed and implemented
in landscape evolution models of the process‐response type.
Transport‐limited and weathering‐limited conditions [Kirkby,
1971] have been considered. In the first case, the transport
processes have a complete availability of material and,
consequently, their intensity and spatial distribution control
slope evolution. Conditions of this type can be associated
with slopes where landslides play a relevant role in debris
supply. On the other hand, weathering‐limited (or detachment‐
limited) conditions are those where a limited amount of
material is made available for full activation of transport
processes by various mechanisms (e.g., physical and chem-
ical weathering).
[3] Among the proposed models, some of them are not

directly linked to time and others explicitly include the
effect of time. The earliest efforts [Fisher, 1866; Lehmann,

1933; Bakker and Le Heux, 1946, 1952] were mainly
focused on the evolution of vertical or constant angle cliffs
associated (or not) with the development of a talus slope.
Subsequently, diffusion equation concepts have been applied
to hillslope erosion modeling [Scheidegger, 1961; Culling,
1963; Ahnert, 1970a, 1970b, 1970c; Kirkby, 1971; Carson
and Kirkby, 1972; Nash, 1980a, 1980b; Pierce and Colman,
1986; Fernandes and Dietrich, 1997; Pelletier et al., 2006]
considering the action of one or more quasi‐continuous pro-
cesses (e.g., creep, washing, rain splash, shallow landsliding,
and mass movements) [Nash, 1980a, 1980b; Colman and
Watson, 1983; Hanks et al., 1984; Andrews and Bucknam,
1987; Anderson and Humphrey, 1989; Howard, 1994; Roering
et al., 1999, 2001a, 2001b;Martin and Church, 1997, 2004].
[4] In all these cases the general slope evolution is con-

trolled by assumptions concerning debris accumulation, the
bulking of the material, the geometry of the failing blocks, the
coefficient of diffusivity, the weathering and crest regression
rate, the linear and nonlinear dependency of sediment flux on
slope gradient. Furthermore, no mechanical properties are
considered in such models with the exception of a few studies
[e.g., Andrews and Bucknam, 1987].
[5] The aim of this study is to present an analytical solu-

tion able to demonstrate the physical and mechanical link
between observations and material behavior. The approach is
developed for a weathering‐limited slope condition where
landslide material is carried away from the slope toe, leaving
it completely exposed. The slopes studied are all steeper
than the internal friction angle characteristic of the forming
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material. Landsliding is considered as deep seated unlike the
usual approaches typically involving shallow failures [Martin
and Church, 1997; Martin, 2000]. This difference partially
implies that the analyzed phenomena can be considered as
episodic [Koons, 1989; Willgoose et al., 1991; Chase, 1992;
Kooi and Beaumont, 1994] with respect to shallow land-
sliding which is often considered as continuous. Neverthe-
less, discrete or quasi‐continuous landsliding events could
occur while continuous processes act. As a consequence,
in these cases the transport law and the slope erosion can be
more complicated than are usually considered. Until now,
only very basic models have been used to analyze slope
evolution by landsliding. Empirical and semiempirical meth-
ods have been adopted to support geomorphic transport laws
for such a class of processes, and this manuscript attempts to
contribute to this aspect.
[6] The limit analysis approach is applied for a range of

values of slope inclination and of the material strength
parameters (cohesion and internal friction angle), describing
the behavior of a homogeneous material under uniformly
distributed weathering. Eventually, the changes in sediment
flux with time are examined together with the dependence
on average slope gradient.

2. Behavior of Geomaterials

[7] In general, it can be said that slope failure is controlled
either by a decrease in the strength of the material or by
an increase in the forces acting. For the problem analyzed
in this paper, a decrease in strength is assumed to be
the controlling factor. As a consequence, it is relevant to
discuss some aspects of the strength of geomaterials and
their degradation
[8] In Figure 1a, the failure envelopes obtained from tests

on a granitic rock subject to various degrees of weathering
are shown [Kimmance, 1988]. The failure loci are well
approximated by straight lines which are characterized by
the intercept with the ordinate axis (i.e., cohesion) and their
inclination (i.e., friction angle). From Figure 1 it is apparent
that weathering causes a reduction mainly of cohesion and
to a much lesser extent of the friction angle. The same
considerations apply for hard soils like the cemented sand
shown in Figure 1b [Wang and Leung, 2008]. In this case,
the failure envelopes have been achieved from triaxial tests
run for different contents of cement. This type of geoma-
terial is prone to the occurrence of chemical reactions which
progressively dissolve the cement bonds holding together the
sandy/silty grains. This reduces the amount of cement, which
can be uniquely related to a known degree of weathering,
varying from zero for the initially cemented material to 100%
for completely debonded grains.
[9] Similar considerations apply to many materials as

shown by Leroueil and Vaughan [1990] for a large variety of
overconsolidated clays and structured soils. This experimental
evidence justifies, as a first approximation, the assumption
that weathering causes mainly a decrease of cohesion, and to a
much lesser extent of the friction angle. In the paper, first the
case of a cohesion‐only decrease is tackled (see Figure 1c),
then a refined modeling for the case of both cohesion and
friction decrease is undertaken (see Figure 1d). In both cases,
slopes are assumed to be homogeneous. This assumption
represents an oversimplification of reality, since weathering

has a greater effect on material close to the exposed surface
than on material well within the slope. As a matter of fact,
from the scanty experimental data available [Yokota and
Iwamatsu, 2000; Hachinohe et al., 2000], it can be inferred
that soil strength varies between the exposed slope fore-
front, where it is minimal, up to an internal weathering
propagation front, to remain constant within inner slope
regions (see Figure 2). Unfortunately, such a spatial variation
cannot be taken into account easily by an analytical approach,
as the limit analysis method requires very complex calcula-
tions already for the case of uniform weathering. The assump-
tion of uniform weathering, although unrealistic, allows quick
generation of tables and charts of results (see auxiliary
material) which give a first rough estimate of the evolution
of a slope.1 This could be investigated by a more refined but
time‐consuming model (e.g., the discrete element method
(DEM)) capable of taking into account the spatial variation of
weathering intensity [see Utili and Crosta, 2011; Utili and
Nova, 2008]. Moreover, the critical values of c, f achieved
for each landslide event can be thought as a spatial average
of the local c, f values varying within the slope.

3. Limit Analysis Upper‐Bound Predictions

3.1. Introduction

[10] The limit analysis upper‐bound method has been
adopted in this analysis to study the profiles assumed by a
slope with uniform c (cohesion) and f (internal friction
angle) distributions and subject to spatially uniform degra-
dation. Upper bounds on the collapse values associated with
a series of successive profiles have been determined. Each
subsequent landslide is assumed to be characterized by a
rigid rotational mechanism (see Figure 3a) with energy
being dissipated along the failure surface between a sliding
rigid block and the remaining material at rest.
[11] The limit analysis method assumes the validity of the

normality rule, that is, associated plastic flow, which does
not hold true for either rocks or clayey soils. Nevertheless, it
is known [Radenkovic, 1961] that an upper‐bound value of
the safety factor, calculated by assuming the validity of the
normality rule, is also an upper bound for a material with the
same strength parameters but a dilation angle (Y) less than
friction angle (nonassociated flow rule). Concerning the
failure criterion, it is assumed that the normal and shear
stresses along the slip surface obey the Mohr‐Coulomb
criterion (see Figure 1). This is the most used criterion for
slope stability problems in cohesive soils.
[12] It is worth pointing out that from a theoretical point

of view, the most critical surface is not given by a single
rotating block mechanism. For instance, if multiple rotation
mechanisms are adopted, the upper‐bound solution obtained
is slightly lower, but this improvement is negligible to our
aim. For instance, Bekaert [1995] found a mere 1.0%
increase on the maximum height of a vertical cut in a Tresca
material (f = 0), by considering a multiple rotation mech-
anism made up of n log spiral shaped rigid blocks instead
of a single one. Furthermore, the numerical lower‐bound
results obtained by Lyamin and Sloan [2002] are only 1.8%

1Auxiliary materials are available in the HTML. doi:10.1029/
2009JF001557.
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less than the calculated upper bound for f = 0 analyses, and
the difference between lower and upper bounds is even
smaller when � > 0, as in the cases analyzed here. This very
small error in approximating the true collapse value is
negligible in comparison with much higher uncertainties in
relation to the in situ determination of f, c values and to the
weathering law. Therefore, for all practical purposes, the
values determined by the assumed single rotational mechan-
isms can be considered as accurate theoretical collapse values.
[13] Our analysis is based on the assumption, which does

not derive directly from limit analysis, that the velocity field
associated with the lowest‐limit load for a rotational
mechanism is a reasonable approximation of the actual field,
and its logarithmic spiral boundary is assumed to represent
the failure line forming in the deteriorating slope. But, the
kinematic method of limit analysis does not give any
information on the actual field of velocities or its relation to
the field considered. No conclusion can be drawn as whether
the failure line associated with the lowest‐limit load is
outside, inside, or somewhere else with respect to the true
line. An example of physically incorrect velocity field for a
cohesive material is demonstrated by Shield and Drucker
[1953], and for a frictional/cohesive material by Zhu and
Michalowski [2005], both dealing with square punch inden-
tation. Actually, it is not possible to rigorously quantify the
error introduced by this approximation since there is no
correlation between the known error on the limit load (i.e.,
how far the upper bound is from the true collapse load), and
the unknown error on the velocity field (i.e., how far the

velocity field of the rigid rotational mechanism associated
with the upper bound is from the real velocity field asso-
ciated with the true collapse load). In other words we cannot
quantify the extent to which the approximation on the

Figure 2. Hardness distributions obtained from the top of
the slope (solid circles) and the foot of the slope (open cir-
cles). In both cases a bilinear spatial variation of hardness
can be observed [after Yokota and Iwamatsu, 2000].

Figure 1. (a) Weathering of granite [after Kimmance, 1988], (b) failure loci of cemented sands for
different cement contents [after Wang and Leung, 2008], (c) failure criterion evolution in case of cohesion
only decrease, and (d) failure criterion evolution in case of both cohesion and friction decrease.
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assumed velocity field affects the estimate of the limit load
of the subsequent failure mechanisms. However, with regard
to the first landslide, recent plane strain finite element
analyses of homogeneous slopes by the shear strength
reduction technique assuming the validity of the normality
rule (Y = f), as postulated in limit analysis, show that the
shape of the failure line is a logarithmic spiral [Dawson
et al., 1999; Zheng et al., 2005].

[14] An alternative formulation to the limit analysis
upper‐bound method based on the limit equilibrium method,
which is in general more familiar to practitioners, could
be employed as well. In the work by Utili [2006], the limit
equilibrium formulation is presented in detail and it is
shown that the equilibrium of moments for the detaching
material together with the Mohr‐Coulomb failure criterion,
lead to the analytical functions of equations (3) and (4).

Figure 3. (a) First failure mechanism and (b) second failure mechanism. Gray lines are relative to the old
spiral (B‐C) whereas black lines to the new one (E‐C). Dashed lines indicate the initial slope profile
before first failure occurrence.
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In this paper, the limit analysis upper‐bound method has
been preferred since it provides rigorous upper‐bound values
as discussed above.
[15] As already pointed out, cliff weathering is likely to

cause a decrease of both friction angle and cohesion, with
cohesion being the parameter most affected by degrada-
tion. For the sake of clarity, first the case of only decreasing
cohesion will be illustrated in section 3.3 [see also Utili,
2005]; then the case of decreasing f and c will be intro-
duced in section 3.5. In the following, the calculations will
be illustrated for the case of a horizontal slope crest, a = 0
(see Figure 3), whereas the case of a nonhorizontal slope
crest, a ≠ 0 (see Figure A1), will be examined in the
Appendix only.
[16] Finally, it is also worth noting that the material

accumulated at the slope toe cannot be taken into account
in our model since the limit analysis method is not able to
give any information about the final geometry of the debris
accumulated after each landslide. Therefore, in this model,
it is assumed that the debris accumulating at the slope toe is
removed by atmospheric agents or fluvial or marine erosion,
before a new landslide develops. This condition is known in
the literature as a strong erosion condition and is typical of
weathering‐limited processes [Hutchinson, 1973]. The effect
of talus formation at the slope toe will be examined by DEM
modeling in the companion paper byUtili and Crosta [2011].

3.2. Limit Analysis Model

3.2.1. First Failure Mechanism
[17] According to the assumed failure mechanism, the

logarithmic spiral–shaped region D‐B‐C (Figure 3a) rigidly
rotates about a center of rotation P, as yet undefined, with
the material below the logarithmic spiral surface B‐C
remaining at rest. This mechanism is completely defined by
two variables, which in the literature are usually taken as
the maximum and minimum angles (x and y in Figure 3) of
the logarithmic spiral. The stability number, NS, defined as
NS = gH/c, is a convenient measure of the stability of a
homogeneous slope with height H, inclination b and soil of
unit weight g (soil weight per unit of volume), and strength
given by c and f. The analytical expression for the stability
number is obtained by calculating the rate of external work

( _W ext) done by the region of material slipping away and
by the dissipated energy ( _W dis) along the failure line, then
equating the two:

_Wext ¼ _Wdis: ð1Þ
In order to find the most critical mechanism among all the
kinematically admissible ones, the minimum value of the
function obtained by equation (1) must be taken, so that
the stability number is

NS ¼ minx;y f x; y; �; �ð Þ: ð2Þ

The full analytical expression of f(x, y, b, f) can be found in
the work by Chen [1975]. In our case, cohesion and friction
are uniformly decreasing with time throughout the slope
because of weathering, and the value at the occurrence of
the first landslide is sought. When this takes place, the factor
of safety is equal to 1 and the critical value of cohesion is
obtained from the inverse of the stability number:

c1 ¼ �H
1

minx1;y1 f x1; y1; �; �1ð Þ ¼
�H

N1
S

: ð3Þ

In equation (3) the superscript 1 indicates that the c, f
values refer to the occurrence of the first failure.
[18] Knowing the relationship between time (t), decrease

of strength (decrease of c, f), and initial strength (cini, fini),
it is possible to predict the time t1 of the occurrence of the
first failure. Weathering laws relating soil strength to time
will be introduced in section 3.4. In this section and in
section 3.3, the succession of failure mechanisms will be
determined assuming that c and f decrease over time
without assuming any weathering law. This can be intro-
duced subsequently to determine the times, ti, of occurrence
of each landslide of the sequence.
3.2.2. Second Failure Mechanism
[19] After the logarithmic spiral shaped region D‐B‐C has

slipped away, the slope profile is characterized by a loga-
rithmic spiral geometry (Figure 3b). Because of further
weathering, at a certain time t2, a second landslide occurs. In
this case the double logarithmic spiral shaped region B‐C‐E
will rigidly rotate about a center of rotation Pn, as yet unde-
fined, with the material below the logarithmic surface C‐E
remaining at rest (see Figure 3b). Proceeding as before, the
value of cohesion associated with the second failure is found:

c2 ¼ �H
1

minx2;y2 g x2; y2; �2; x1; y1; �1ð Þ ; ð4Þ

where x2, y2 are the angles defining the second log spiral
failure line (see Figure 3b); x1, y1 are the angles defining the
first log spiral failure line (i.e., the current slope profile
produced by the previous failure); and f2 is the current
friction angle of the slope, whereas f1 is the value of f at the
occurrence of the first slide. Details of the lengthy analytical
calculations leading to the g function are reported in
Appendix A2.
[20] So far, it has been implicitly assumed that the new

logarithmic spiral failure surface passes through the slope
toe (see Figure 3b). In fact, the failure surface passes below
the toe only for very low friction angles, f ≤ 5° [see Taylor,
1948; Michalowski, 2002], which are well below physically

Figure 4. Failure lines relative to the different mechanisms
considered.
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meaningful values for dry/drained conditions. This second
mechanism could pass above the slope toe since the current
slope profile is no longer straight. To take this possibility
into account, the spiral slope has been divided into a discrete
number of points (n) and each point has been assumed as
the toe of a slope whose height, hi, is lower than the over-
all height, H (Figure 4). Analyses with different values of
n were run; if n is chosen as n ≥ 2000 accurate results are

obtained for any value of f and b. The critical cohesion
values, ci, and angles, xi and yi, associated with the critical
log spiral, have been determined for all n slopes of different
height, hi, minimizing g = g (x2, y2, f2, x1, yi

1, f1) where the
parameter yi

1 assumes a different value associated with each
“subslope”. The most critical failure mechanism among the
n potential mechanisms is the one with the highest cohe-
sion value.
3.2.3. Successive Failure Mechanisms
[21] In order to determine the third failure surface, the

same procedure used to find the second one is adopted.
Equation (4) modifies into

ci ¼ �H
1

minxi ;yi g xi; yi; �i; xi�1; yi�1; �i�1ð Þ : ð5Þ

The obtained results have shown that the third failure
mechanism passes above the slope toe for any initial incli-
nation b of the slope with 90° ≥ b > f and a = 0.
[22] After the third failure, the slope geometry is charac-

terized by a boundary made of two logarithmic spirals (see
Figure 5). This makes it no longer possible to apply the
same procedure in order to determine the subsequent fourth

Figure 5. Slope profile after the third failure.

Figure 6. (a) Graphical representation of the reduction of c, f applied throughout the cliff. In order to
determine the values of c, f at failure, an iterative procedure is used each time. (b) Graphical represen-
tation of the algorithm used in Matlab to find c, f for each successive failure.
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failure. A slope profile made by two spiral pieces requires
four parameters for its complete description, and the cal-
culation of the external work done by the sliding soil mass
would require the calculation of the area and location of the
center of gravity of a region enclosed by three log spiral
pieces (i.e., two for the outer slope profile and one for the
failure surface). This makes the analytical equations involved
in the energy balance far more complicated. To find the
fourth mechanism, the potential failure lines have been
initially sought only above the point of intersection of the
two spirals making up the current slope profile (point F in
Figure 5), applying the procedure to ascertain the most
critical failure mechanism with respect to the upper‐spiral
profile only. Since in all the cases analyzed, the failure line

associated with the highest cohesion value was always
found to pass above the toe of the upper spiral, this implies
that the failure line does actually pass above point F.
[23] Applying this procedure, it is possible to determine as

many failure mechanisms as needed to follow the slope
evolution until full degradation of the soil strength is
reached. Strength degradation has been considered to end at
c = 0 in case of f = fconst; whereas in case of both c and f
decreasing, full degradation is reached at c = 0 and f = ffin

(final friction angle). A graphical representation of the two
scenarios of weathering is illustrated in Figure 6a where
straight lines represent the progressive decrease of
mechanical strength, and curved lines represent the loci of c,
f values for the first and second landslide obtained by

Figure 7. Slopes are initially vertical (solid line) and subject to uniform cohesion decrease. The subse-
quent profiles at times ti are shown by dashed log spiral lines. The final profile at tfin is given by a log
spiral piecewise solid curve. (a) Constant friction f = 40° and (b) constant friction f = 15°. The slope
height is normalized to 1.
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parametric analyses run for different values of c and f. The
intersections of the straight lines with the loci give the
values of c, f associated with the first two landslides for
the different weathering scenarios considered.

3.3. Pure Cohesion Decrease

[24] As a first approximation, as discussed above, it is
reasonable to assume that weathering only affects cohesion,
with f remaining constant. This hypothesis on weathering
can be visualized in the c/gH‐f plane shown in Figure 6 by
the path along the vertical straight line. Assuming that only
cohesion decreases, the friction angles used in the optimi-
zation processes for each mechanism are all the same,

therefore f = f1 = f2 = … = fm, with m being the last
mechanism considered; therefore g = g(xi, yi, xi−1, yi−1, f).
The condition c = 0 can only be rigorously reached after an
infinite number of mechanisms take place, but a finite
number m of mechanisms, so that cm ∼ 0, is enough to catch
the full evolution of the slope for practical purposes. The
number m of mechanisms considered depends on f: the
lower f is, the higher m needs to be.
[25] The full evolution of an initially vertical slope (b =

90°) is shown in Figure 7 for two different values of friction
angle: f = 40° and f = 15°. It is now necessary to look at the
final condition in order to assess if it is physically sound.
In the final state the material is purely frictional (f = const,
cm ∼ 0) and therefore the inclination of the local tangent to
any point along the final profile (solid line in Figure 7) must
be lower than f for the profile to be stable (i.e., a purely
frictional material cannot withstand slopes larger than the
friction angle). The final profile is made up of several seg-
ments of log spirals which in their upper parts (see Figure 7)
are characterized by a local inclination higher than f. Sev-
eral “secondary” processes (e.g., shallow landslides, creep,
etc.) must take place before the cohesion decreases to zero
where the local inclination of the profile is higher than f.
After some main failures have occurred, we expect that
“secondary” failures start. The first failure to occur lies
between points A and B (see Figure 7) for a value of
cohesion much lower than the values for which the first deep
failure mechanisms take place. With cohesion decreasing
further, a series of successive secondary shallow failures
take place. Fortunately, these small movements do not affect
the rate of retreat of the crest and it is reasonable to assume
that their only effect is to smooth the profile solely within
those regions where the local inclination is higher than f.
[26] In order to know if the profile for fully weathered

conditions, c→0, is globally stable the final profile (solid
line in Figure 7) has been approximated by a straight line
enveloping all the log spiral segments making the profile.
In this way the occurrence of secondary failures smoothing
the profile over its many kink points is taken into account.
The inclination of this line, l, is larger than f for friction
values larger than 22° (Figure 7a), and smaller than f for
friction values below 22° (Figure 7b).
[27] In case of l < f, the final profile is stable, and the log

spiral piecewise solid line represents the final profile except
for the occurrence of the secondary mechanisms discussed
above. As mentioned above, it is not possible to calculate
these mechanisms, but it is reasonable to suppose that
successive small failures will eventually make the slope
profile planar, as suggested by experimental observations
[Hutchinson, 1973].
[28] On the contrary, in case of l > f, this condition

cannot be the final one. In fact, a plane inclined at an angle
larger than f cannot be stable at c = 0. This result may be
explained through the procedure used to determine each
successive “primary” landslide. After each failure, the next
one is sought in the region to the right of the last log spiral
(between points E and F in Figure 5), disregarding the
possibility of failures below the last spiral (points C and D in
Figure 5). This choice is justified by the fact that the most
critical line found at the end of the optimization process was
always passing well above the toe of the last log spiral.
Nevertheless, after the occurrence of a certain number of

Figure 8. Initially vertical slope (solid line) subject to uni-
form cohesion decrease with f = 50°. Dashed lines represent
the subsequent log spiral landslide profiles. The straight
gray line envelopes the achieved log spiral piecewise slope
profile. The solid thick log spiral line (t7) refers to the sev-
enth mechanism. The subsequent mechanism (t8) is repre-
sented by a dash‐dotted log spiral line. The thin line
represents the friction angle f. The slope height is normal-
ized to 1.
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mechanisms, a deep seated mechanism involving the whole
slope profile, from the toe up to the crest, could occur for the
case of l > f (see Figure 8). To calculate this deep mech-
anism, the following steps have been taken.
[29] 1. The linear envelope to the piecewise log spiral

profile obtained for cm ∼ 0 (see Figure 8) is drawn. The
height of this new linear profile (0.9H in case of f = 50°) is
lower than the original slope height, H, since its lowest point
is located at the point where the envelope touches the first
log spiral failure line (point A in Figure 8).
[30] 2. The envelope line is assumed as the new slope

profile. Since its inclination l is larger than f, there must
exist a value of cohesion c1* > cm for which a failure occurs
(herein named failure 1*). This value has been determined

by applying equation (3) to determine the critical c value
and failure surface for a planar slope profile.
[31] 3. The value of cohesion c1* associated with the

occurrence of this mechanism is compared with the cohe-
sion values c1, c2, … cm of the series of log spiral mechan-
isms previously determined. The exact sequence of failures
will be given by c1, c2, … ci, c1* with c1* > ci+1.
[32] 4. When the cohesion becomes lower than c1*, the

slope profile is made by the single log spiral failure sur-
face associated with the mechanism determined in step 3.
Subsequent failures will depart from this profile. To look for
the next failure, equation (4) and the procedure described
in section 3.2.2 must be applied. The new failure is char-
acterized by a cohesion value c2* < c1* (see dashed line in
Figure 8).
[33] 5. Subsequent failures may be found by applying

the procedure described in section 3.2.3 until the cohesion
becomes negligible, cm* ∼ 0. Then, a new linear envelope
to the obtained piecewise log spiral slope profile may be
drawn. If the inclination l* of the envelope is close to the
friction angle, the procedure is stopped, otherwise all the
listed steps are repeated again, starting from step 1 as many
times as required.
[34] Note that in step 3 an approximation has been

introduced. In fact, in the calculation of the deep log spiral
failure mechanism (occurring at c = c1*) the slope profile is

Table 1. Values of Normalized Cohesion and Associated Crest
Retreat for an Initially Vertical Slope With f = 50°

Failure c/gH CR/H

1 0.094114 0.31201
2 0.035181 0.47837
3 0.018911 0.58549
4 0.01138 0.64988
5 0.006817 0.68838
6 0.004074 0.7114
7a 0.003084 0.75056

aThe seventh mechanism is relative to the black line in Figure 8a.

Table 2. Values of Normalized Cohesion and Associated Crest Retreat for Slopes With Initial Inclination b, Crest Inclination a, and
Friction Angle f

b = 90 b = 80 b = 70

� = 40 � = 30 � = 20 � = 40 � = 30 � = 20 � = 40 � = 30 � = 20

a = 5
Failure c/gH CR/H c/gH CR/H c/gH CR/H c/gH CR/H c/gH CR/H c/gH CR/H c/gH CR/H c/gH CR/H c/gH CR/H
1 0.121 0.415 0.151 0.524 0.183 0.651 0.0866 0.3131 0.116 0.427 0.150 0.563 0.05858 0.225 0.0877 0.339 0.122 0.484
2 0.0502 0.666 0.0680 0.868 0.0927 1.138 0.0392 0.5493 0.0569 0.766 0.0821 1.056 0.0307 0.410 0.0476 0.635 0.0724 0.962
3 0.0295 0.842 0.0439 1.140 0.0678 1.580 0.0265 0.7078 0.0412 1.021 0.0660 1.486 0.0206 0.533 0.0353 0.853 0.0624 1.369
4 0.0195 0.959 0.0322 1.338 0.0572 1.952 0.0175 0.8120 0.0301 1.206 0.0555 1.847 0.0137 0.615 0.0258 1.012 0.0524 1.709
5 0.0128 1.035 0.0234 1.482 0.0478 2.263 0.0115 0.8807 0.0219 1.341 0.0463 2.148 0.00899 0.668 0.0188 1.128 0.0438 1.994
6 0.00842 1.085 0.0170 1.586 0.0399 2.523 0.00757 0.9257 0.0160 1.440 0.0387 2.400 0.0059 0.704 0.0137 1.212 0.0366 2.232
7 0.00553 1.118 0.01235 1.662 0.0333 2.740 0.00497 0.9554 0.01160 1.511 0.0323 2.610 0.00387 0.727 0.00993 1.272 0.0305 2.431
8 0.00363 1.140 0.00897 1.717 0.0278 2.921 0.00327 0.9749 0.00842 1.563 0.0270 2.786 0.00254 0.742 0.00721 1.317 0.0255 2.596
9 0.00238 1.154 0.00652 1.757 0.0232 3.072 0.00215 0.9877 0.00612 1.600 0.0225 2.932 0.00167 0.752 0.00524 1.349 0.0213 2.735
10 0.00156 1.164 0.00473 1.786 0.0194 3.198 0.00141 0.9961 0.00444 1.627 0.0188 3.055 0.00109 0.759 0.0038 1.372 0.0178 2.850

a = 0
1 0.121 0.403 0.150 0.504 0.182 0.618 0.0861 0.302 0.115 0.407 0.148 0.529 0.0583 0.214 0.0871 0.320 0.120 0.449
2 0.0478 0.629 0.0641 0.807 0.0863 1.031 0.0376 0.518 0.0540 0.707 0.0767 0.949 0.0296 0.384 0.0452 0.585 0.0677 0.860
3 0.0274 0.785 0.0399 1.038 0.0601 1.392 0.0248 0.660 0.0378 0.926 0.0589 1.302 0.0195 0.496 0.0326 0.774 0.0559 1.195
4 0.0177 0.886 0.0283 1.202 0.0484 1.680 0.0160 0.751 0.0267 1.081 0.0471 1.583 0.0125 0.567 0.0230 0.907 0.0447 1.461
5 0.0113 0.950 0.0199 1.317 0.0385 1.910 0.0103 0.810 0.0188 1.189 0.0375 1.806 0.00804 0.613 0.0162 1.001 0.0356 1.674
6 0.00725 0.991 0.0139 1.398 0.0306 2.092 0.00658 0.847 0.0131 1.265 0.0298 1.984 0.00515 0.642 0.0113 1.067 0.0282 1.842
7 0.00464 1.018 0.00977 1.454 0.0243 2.237 0.00421 0.871 0.00922 1.319 0.0236 2.125 0.00329 0.661 0.00796 1.113 0.0224 1.976
8 0.00297 1.035 0.00685 1.494 0.0193 2.352 0.00270 0.887 0.00646 1.356 0.0188 2.237 0.00211 0.673 0.00558 1.145 0.0178 2.082
9 0.00190 1.046 0.00480 1.522 0.0153 2.443 0.00172 0.897 0.00453 1.382 0.0149 2.326 0.00135 0.681 0.00391 1.167 0.0141 2.166
10 0.00122 1.053 0.00337 1.541 0.0122 2.516 0.00110 0.903 0.00318 1.401 0.0118 2.396 0.00086 0.686 0.00274 1.183 0.0112 2.233

a = −5
1 0.120 0.395 0.149 0.489 0.180 0.594 0.0857 0.293 0.114 0.391 0.147 0.503 0.05806 0.206 0.0865 0.306 0.119 0.423
2 0.0457 0.600 0.0607 0.760 0.0807 0.952 0.0361 0.49338 0.0514 0.662 0.0721 0.870 0.0286 0.365 0.0432 0.547 0.0639 0.784
3 0.0255 0.740 0.0364 0.961 0.0537 1.253 0.0234 0.622 0.0349 0.855 0.0531 1.167 0.0185 0.467 0.0303 0.714 0.0508 1.068
4 0.0161 0.829 0.0251 1.099 0.0416 1.485 0.0148 0.704 0.0240 0.987 0.0408 1.395 0.0116 0.530 0.0207 0.828 0.0389 1.285
5 0.0101 0.884 0.0171 1.193 0.0317 1.662 0.0093 0.755 0.0163 1.076 0.0311 1.568 0.00726 0.570 0.0141 0.906 0.0296 1.450
6 0.00628 0.919 0.0116 1.257 0.0241 1.797 0.00577 0.786 0.0110 1.137 0.0237 1.700 0.00454 0.595 0.0096 0.959 0.0226 1.576
7 0.00393 0.940 0.00786 1.301 0.0184 1.899 0.00361 0.806 0.00749 1.178 0.0180 1.800 0.00283 0.611 0.00649 0.994 0.0171 1.672
8 0.00245 0.954 0.00533 1.330 0.0140 1.977 0.00225 0.819 0.00508 1.206 0.0136 1.876 0.00177 0.621 0.0044 1.019 0.0130 1.744
9 0.00153 0.962 0.00362 1.350 0.0106 2.036 0.00141 0.827 0.00345 1.225 0.0104 1.934 0.0011 0.627 0.00299 1.035 0.0099 1.799
10 0.00096 0.968 0.00246 1.364 0.0081 2.081 0.00088 0.831 0.00234 1.238 0.0079 1.978 0.00069 0.630 0.00203 1.046 0.0075 1.842
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assumed to be planar (the linear envelope constructed in
step 1), but the calculated log spiral failures from i+1 to m
do not take place in reality. Therefore the slope profile from
which the 1* failure has been calculated is not entirely a
plane: it should be approximated by a plane in its lower part
and a log spiral in its upper part (see the region enclosed by
the solid oval in Figure 8). But since the region delimited by
the log spiral is small in comparison with the rest of the
profile, the influence of this approximation on the calcula-
tion of the successive mechanisms can be neglected.
Moreover, it was found that for f < 40°, the linear envelope
obtained at cm ∼ 0 has an inclination l very close to f,
therefore it was not necessary to perform steps 2–5. In the
example considered here, f = 50°, the calculation was
stopped at the eighth mechanism, represented by a dash‐
dotted line in Figure 8 (see results in Table 1).
[35] In Table 2, some results obtained by implementing

the described procedure in Matlab are shown. The values of
cohesion normalized by the initial slope height and unit
weight, c/gH, and crest retreat normalized by the initial
height, CR/H, are listed for different f values; initial slope
inclinations, b; and crest inclinations, a. Figure 9 shows the
relationship obtained between cohesion and crest retreat.
From these results it emerges that the average inclination of
the final slope profile is strongly dependent on the
assumption of constant f, as it will be shown in section 3.5
where this hypothesis has been removed.

3.4. The Evolution of the Warden Point Cliff

3.4.1. Introduction
[36] In general, it is difficult to find accurate data relating

to the mode and times of evolution of a slope subjected to
successive and/or retrogressive failures. The chosen case
study concerns the evolution of a steep scarp at Warden
Point, Isle of Sheppey (Kent, England) [Hutchinson, 2001]
where a deep‐seated rotational slide occurred on 21

November 1971. This slide, in a 43 m high cliff, by the sea,
occurred in the London Clay formation, and left a steep rear
scarp about 15 m high, the degradation of which was
monitored for 902 days [Gostelow, 1974]. Since the lower
part of the slope is almost unaffected by weathering because
it is protected by the accumulated debris, the limit analysis
model has been applied to the upper part of the slope
(between points A and B in Figure 10). In this case the
hypothesis of complete removal of the debris after each
failure mechanism is fully verified.
3.4.2. Crest Retreat‐Weathering Relation
[37] Since the material friction angle is unknown, a back

analysis procedure is needed to determine it. In this case the
final crest retreat, CRfin/H = 0.71, is inferred from the
observed final profile (see Figure 10). The inclination of
the initial profile (b = 60.6°) was also inferred from Figure 10.
We assume that only the cohesion decreases because of
weathering. Our model was run for various values of f until
satisfactory agreement of the final slope profile (at c = 0)
was achieved with the observed one. A friction angle of f =
24.5° was obtained. A 5th degree polynomial function (see
Figure 11) was used to interpolate the values of cohesion at
failure obtained by the model. The initial value of cohesion
(c at t = 0) was taken as the y intercept of the polynomial
interpolating function in Figure 11.
3.4.3. Time‐Weathering Relation
[38] The experimental data show the evolution of the cliff

in terms of crest retreat versus time so it is necessary to
introduce a time scale in the limit analysis model. To this
end, four weathering laws (linear, parabolic, hyperbolic, and
exponential), all depending on two parameters, between
time and cohesion decrease have been introduced:

c ¼ K1tþ K2;

c ¼ K1

tþ K2
;

c ¼ K1 1� t

K2

� �2

;

c ¼ K1 exp � t

K2

� �
:

ð6Þ

In order to obtain crest retreat‐time relationships, the time‐
cohesion relationships of equation (6) were substituted into
the cohesion‐crest retreat relationship achieved by the limit
analysis model for f = 24.5°. One of the two parameters in
equation (6) was determined by imposing the initial condi-
tion of no retreat (CR = 0 at t = 0), while the other was
varied until the best fit of the crest retreat‐time experimental
data was obtained.
[39] Figure 12 shows the crest retreat‐time curves

obtained by substituting the selected time‐cohesion rela-
tionships (equation (5)) into the cohesion‐crest retreat rela-
tionship achieved by limit analysis. The hyperbolic law is
the one which makes the calculated solution fitting the
experimental curve satisfactorily.
[40] From a comparison of the failure lines (Figure 12b),

very good agreement between observed and predicted slope
profiles can be noted. The evolution of the monitored cliff
is characterized by a series of concave profiles taken at
specific times, and not just after the occurrence of a par-
ticular slope failure. A similar pattern was observed over

Table 3. Values of Normalized Cohesion and Friction Angle at
Failure for an Initially Vertical Slope for the Two Degradation
Paths Shown in inset of Figure 13a

Failure

Any cini cini = 0.136

c/gH � (deg) c/gH � (deg)

1 0.1572 27.50 0.1270 34.91
2 0.0690 27.50 0.0739 28.67
3 0.0440 27.50 0.0503 26.04
4 0.0321 27.50 0.0397 24.81
5 0.0232 27.50 0.0312 23.81
6 0.0167 27.50 0.0245 23.01
7 0.0120 27.50 0.0193 22.38
8 0.0087 27.50 0.0152 21.89
9 0.0063 27.50 0.0120 21.49
10 0.0045 27.50 0.0095 21.18
11 0.0032 27.50 0.0075 20.94
12 0.0023 27.50 0.0059 20.75
13 0.0017 27.50 0.0047 20.59
14 0.0012 27.50 0.0037 20.47
15 0.0009 27.50 0.0029 20.38
16 0.0006 27.50 0.0023 20.30
17 0.0005 27.50 0.0018 20.24
18 0.0003 27.50 0.0015 20.19
19 0.0002 27.50 0.0012 20.16
20 0.0002 27.50 0.0009 20.13

aIn the “any cini” category, constant friction fini = 27.5, whereas in the
“cini = 0.136” category fini = 35 and ffin = 20.
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19 years [Wallace, 1980] for the degradation of a 4.5 m high
normal fault scarp in morainic material in Montana.

3.5. Cohesion and Friction Decrease

[41] In this section, the limit analysis model is presented
to include the case of both cohesion and friction decreasing
over time. This hypothesis is visualized in the c/gH‐f plane
(Figure 6a) by an inclined straight line. The internal friction
angle decreases from an initial value, fini, to a final one, ffin

(Figure 1d) and the cohesion decreases from an initial value,
cini, to zero. Depending on fini, ffin and the initial cohesion
assumed, different kinds of slope evolution take place.
These three independent parameters (fini, ffin, cini) are
graphically represented by the location of point P(cini, fini)

and the inclination of the straight line in the c/gH‐f plane
(see Figure 6a). In Figure 6b, the algorithm implemented to
determine the critical c, f values for each failure is illus-
trated. Unlike the case of cohesion reduction at constant f,
an initial value of cohesion now needs to be specified at
the beginning of the analysis. In fact, given fini and ffin,
different values of cini would imply different inclinations of
the straight lines in Figure 6a, and therefore different
weathering paths. On the contrary, in the case of constant f,
the path in the c/gH‐f plane is along a vertical line, inde-
pendent of the value of cini.
[42] A couple of examples are proposed in this section in

order to illustrate the influence of the various parameters on
the slope evolution. In any case it is important to verify if a

Figure 9. Dimensionless normalized cohesion versus crest retreat (b = 90°). (a) Step‐like relation-
ship between cohesion and crest retreat obtained for f = 30°; circles represent values obtained by limit
analysis. (b) If the first two failures are excluded, the values of critical cohesion and crest retreat lie
on straight lines.
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simplified analysis, using a time averaged (i.e., constant) f,
produces results accurate enough so that the variation of f
over time can be modeled in a simpler way. In Figure 13, the
case of an initially vertical cliff characterized by fini = 35°
and ffin = 20° is compared with that of a cliff subject to
cohesion decrease only and characterized by a constant
friction angle f taken as: fave = (fini + ffin)/2. In the inset
of Figure 13, the two degradation paths are shown in the
c/gH‐f plane. As discussed in the previous paragraph, the
results obtained in the case of f varying over time depend
on the initial cohesion as well, that is, different initial values
of cohesion are associated with lines in the c/gH‐f plane
with different inclinations and therefore leading, in principle,
to different results in terms of slope evolution. Among the
infinite possible values of initial cohesion it was decided to
consider the value for which the initially vertical slope is
about to experience its first failure. This value has been

determined with an iterative procedure. This choice implies
that the degradation path chosen is the onewhere the variation
of f matters the most in terms of soil strength, so it is the
right case to evaluate the maximum influence that the var-
iation of f might have on the slope evolution. Looking at
Figure 14a, the higher the initial cohesion, the steeper the
straight line in the c/gH‐f plane becomes. As is shown in
Figure 14b, higher values of initial cohesion imply that the
series of failures occur for lower values of f (i.e., values of
f closer to ffin) and therefore the influence of the variation
of f becomes smaller.
[43] It can be observed (Figure 13) that a cliff subject to

f decreasing over time undergoes a final crest retreat sig-
nificantly larger than a cliff characterized by a constant
average friction angle. This observation leads to the con-
clusion that the variation of f cannot be neglected without
introducing a significant error. The difference amounts to

Figure 10. Observed profiles of the monitored rear scarp at Warden Point in a London Clay formation
during 902 days of degradation [after Hutchinson, 2001].

Figure 11. Normalized cohesion versus crest retreat predicted by the model: the values (circles) obtained
by limit analysis have been interpolated by a 5th polynomial degree.
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23%, demonstrating that for any degradation scenario involv-
ing a significant variation of f, this variation has to be modeled
explicitly. Finally, looking at the final profiles, the case of f
varying over time gives rise to a rather convex shape instead of
the linear one typical for the case of constant f (see Figure 13).
[44] Figure 14 shows a comparison between cliffs subject

to the same decrease of friction angle, but with different
initial values of cohesion. This analysis is useful to under-
stand the role played by the initial cohesion on cliff evolu-
tion. Three cases have been considered: a very high value
of initial cohesion (cini = 3.0 × gH), which for a slope with
H = 50 m and g = 20 kN/m3 would mean cini = 3000 kPa,
a medium value (cini = 0.3 × gH) and the lowest possible
value cini = 0.136 × gH. This last value has been determined
by iteration as the value for which a vertical cliff is at
impending failure. In Table 4, the values of c, f for each
successive failure are reported. The case of very high initial
cohesion gives rise to the longest crest retreats. This can be
explained by looking at the values of f for each failure
(Table 4); these are the lowest values in comparison with the
two other cases analyzed. This is in agreement with the
observations of section 3.2, where it emerged that the lower
the friction angle, the larger the crest retreat. The case of

minimum initial cohesion is associated with the smallest
crest retreats. So a clear trend emerges with higher cini

associated with larger crest retreats.
[45] Let us now consider envelopes to the final profiles.

In the case of very high initial cohesion, the envelope is a
straight line as in the case of constant f (see section 3.2). In
fact, in this case, the values of f at failure are almost constant
and close to 20°. Since the final inclination l is lower than
ffin, no more failures are expected and the achieved profile is
the final one. Instead, in case of an intermediate value for the
initial cohesion, the envelope is bilinear. Since the inclination
of the steeper part of the bilinear envelope is greater than the
final friction angle, this cannot be the final profile and further
global mechanisms, as shown in Figure 8, can be expected.
Unlike the case in Figure 8, here the profile in step 2 (see
section 3.2) is made up of two linear segments with different
inclinations rather than one, therefore the analytical formu-
lation becomes more complex, even though it is still feasible
(see the case a ≠ 0 in Appendix A). In the third case, cini =
0.136 × gH, the final envelope is composed of four linear
segments. The steepest part of the envelope is higher than the
final friction angle; therefore, further mechanisms starting
from the toe of the slope have to be expected. In this case,

Figure 12. Evolution of the Warden Point cliff: comparison between experimental data [after
Hutchinson, 2001] and model predictions for different laws of weathering over time. (a) Comparison
of the obtained crest retreat‐time relationships. (b) Comparison in terms of failure mechanisms.
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unfortunately, the model is unable to predict the evolution
since an analytical formulation for a slope profile made up of
more than two straight lines becomes prohibitive.

3.6. Transport Law

[46] Dietrich et al. [2003] define a geomorphic transport
law as a mathematical expression, derived from a physical
mechanism, of mass flux or erosion caused by processes
acting over geomorphically significant spatial and temporal
scales. To evaluate the mass flux over time, the volume of the
failing blocks must be computed. Considering a unit slope
width, the transported volume can be easily derived from the
areas of the detached material. By plotting the cumulative
frequency values for the area of the detached blocks on a
semilogarithmic plot, a linear relationship is found (see
Figure 15). This relationship fits the evolution of the com-
puted retrogressive phenomena except for the earliest fail-
ures. In fact, this relationship is valid for all the failures
after the first and/or the second. In general, the deviation
from the logarithmic relationship is minimal for high friction
angles and becomes progressively more significant for
smaller friction angles, involving progressively both the
first and second failures. This type of relationship is the
result of the initial inclination of the slope, the fact that the
failing blocks after the first to third failure present the same
shape, and the relative role played by friction and cohesion
in terms of the shear strength of the material (i.e., the cohe-
sive contribution to the material strength decreases after
each landslide).
[47] Figure 16a shows the relationship between the size

of the slope failures, in terms of normalized area (A/H2),
with respect to the normalized cohesion, which is also the
reciprocal of the stability number, for f values ranging from
15° to 40°. The plot shows that larger failures occur for
large values of c/gH which occur at the beginning of the
slope weathering process (when c has still high values),

after which progressively smaller volumes of material are
involved in the mass flux. This is true with the exception of
the first failure, since the detaching area can be smaller
than the one relative to the second failure, as in the case of
b = 70°. If the first failure is disregarded, the points in the
plot are well fitted by the following power relationship:

c
�
�H ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffi
A
�
H2

q
; ð7Þ

where the constant k1 varies with f. Therefore the square
root of the normalized area is proportional to the normal-
ized cohesion.
[48] The transport law can now be investigated by looking

at the relationship between the mass of the failing blocks
which is proportional to their cross‐sectional area, and the
average gradient of the evolving slope. The average gradient is
found by integrating the slope gradient along the entire profile:

save ¼
R L
0 f ′ Xð ÞdX

L
¼ f Lð Þ � f 0ð Þ

L
¼ H

L
; ð8Þ

where X is the abscissa coordinate, L the horizontal distance
between the slope crest and toe, and f = f(X) is the func-
tion expressing the slope profile in Cartesian coordinates
with the origin taken at the slope toe. In Figure 16b the rela-
tionship between mass flux (in terms of normalized detached
area) and average slope gradient is shown. Disregarding
the first failure, the data may be well fitted by either third
degree polynomials or allometric laws (see Figure 16). It is
important to note that the areas considered here are cross‐
sectional areas relative to the evolution of a single slope by a
sequence of retrogressive failures, rather than areas of land-
slides developing independently on different slopes, as in the
case of an evolving catchment. These areas give an indication
of the amount of mass transport over time along a specific
slope profile.

Figure 13. Slope evolution for an initially vertical cliff for two degradation paths: constant and variable
f. Inset is a representation of the degradation paths in the c/gH‐f plane (the dots represent the values of c,
f at failure as reported in Table 3). The vertical path is for the case of constant friction (fconst = 27.5); the
inclined path is for the case of variable friction (fini = 35, ffin = 20, cini = 0.136 × gH). The thin straight
line represents the inclination of f = 27.5.
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[49] The results are independent of time. In order to
investigate the time of evolution of retrogressive slopes it is
necessary to make an assumption in terms of the weathering/
alteration law. This information is very difficult to determine
since it would require the investigation of the complex
physical and chemical alteration processes taking place
within the slope [e.g., Heimsath et al., 1997; Anderson et al.,
2002;Marques et al., 2010;White and Brantley, 2003;White
et al., 2008, 2009]. Here we investigate simple alteration
laws, beyond those in equation (6) expressed in terms of
time‐cohesion decrease, c = c(t), and characterized by two
parameters only (see Figure 17):

c ¼ K1 1� K2tnð Þ;
c ¼ K1 1� K2 ln 1þ tð Þð Þ;
c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K1tþ K2
p

:
ð9Þ

The choice of the initial point in the c – time chart is clearly
arbitrary. It was decided to take the initial time as immedi-

ately after the first failure, therefore cini = c(t = 0) = c1 where
c1 is the value of cwhen the first failure occurs. This choice is
due to the fact that the initial conditions of natural slopes are
in general unknown, apart from rare cases such as the one
described in section 3.4, where the time of formation of the
initial slope is given by the occurrence of a landslide event.
Moreover the first failure needs to be discarded if we want to
use equation (7) to relate cohesion to mass flux. The same
final condition expressed in terms of a dimensionless time
(tfin = 1) has been assumed for all the c = c(t) relationships for
consistency. Note that from a physical point of view, the
condition of zero cohesion might never be reached; in this
case the final time would be given by the time the cohesion
has reached its ultimate residual value. The parameters of all
the relationships have been calibrated to satisfy both the
initial and final conditions. It is realistic to expect that the
decrease of soil strength is high at first, after which more
and more time is needed to develop full degradation since
particle/grain/crystal debonding can occur more rapidly than

Figure 14. Slope evolution for an initially vertical cliff for three different degradation paths all hav-
ing fini = 45, ffin = 20 but different values of initial cohesion: cini = 0.11 × gH, cini = 0.3 × gH, and
cini = 3.0 × gH. (a) Graphical representation of the degradation paths in the c/gH‐f plane. (b) Profiles
obtained for the three degradation paths considered; the gray straight lines underneath the log spirals
represent the linear envelopes. In the inset, the dots along the lines represent the f, c values, reported
in Table 4, at which failures take place.
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chemical/mineralogical transformation. Most of the consid-
ered c = c(t) relationships respect this physical principle with
the exception of the square root law (c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1tþ k2

p
). This last

relationship gives rise to a transport rate which is constant
on average.
[50] The decrease of the detached areas with time, accord-

ing to different weathering laws, is shown in Figure 18a. The
area of the unstable slices and the associated times of failure,
which are linked to the weathering rate, allow for the esti-

mation of a rate of mass production and transport from the
slope failures. The transport law for the case of the slope
evolution by retrogressive landsliding, under weathering‐
limited conditions, can be examined by analyzing the rela-
tionship between the cross‐sectional area of the failing blocks
and the average slope gradient. In Figure 18b, transport rates
for different weathering laws averaged over the time intervals
between successive landslide events are plotted.
[51] At this point we might wonder if the transport law

achieved might be related somehow to a diffusion model
[e.g., Kirkby, 1987, Scheidegger, 1961; Kirkby, 1971;
Carson and Kirkby, 1972; Nash, 1980a; Pierce and Colman,
1986; Andrews and Bucknam, 1987; Fernandes and
Dietrich, 1997; Roering et al., 1999; Martin and Church,
1997, 2004; Pelletier et al., 2006] and if it might be possi-
ble to define an equivalent coefficient of diffusivity for the
mass transported along the slope by the sequence of land-
slides taking place. The shape, gradient and curvature of the
profiles achieved by the linear or nonlinear diffusion (e.g.,
cubic, linear plus cubic, sliding) equations are completely
different from the ones generated through our model of the
slope evolution. This result suggests that the evolution of
slopes experiencing large landslides under weathering lim-
ited conditions cannot be satisfactorily modeled by diffusion,
advection nor reaction laws. On the other hand, unlike the
diffusion models, the evolution of the slope toe (i.e., area of
deposition) is not considered in the presented approach.
[52] Finally, it can be noted that all the relationships

obtained in this section are affected by the assumption of
constant f; if friction also decreases over time, all the derived
results will be changed. The transport law obtained would
depend on the decrease of the frictional strength component
as well. As shown in section 3.5, there is an infinite number
of possible degradation paths in the c, f plane, which depend

Table 4. Values of Normalized Cohesion and Friction Angle at
Failure for an Initially Vertical Slope for Different Initial Values
of Cohesiona

Failure

cini = 3.0 cini = 0.3 cini = 0.11

c/gH � (deg) c/gH � (deg) c/gH � (deg)

1 0.1754 21.86 0.1393 33.45 0.1081 44.64
2 0.0850 20.91 0.0753 27.68 0.0637 36.11
3 0.0588 20.63 0.0512 25.35 0.0439 31.63
4 0.0472 20.51 0.0405 24.26 0.0345 29.35
5 0.0375 20.40 0.0318 23.38 0.0271 27.42
6 0.0297 20.32 0.0250 22.68 0.0212 25.88
7 0.0236 20.25 0.0197 22.13 0.0166 24.62
8 0.0187 20.20 0.0155 21.70 0.0130 23.63
9 0.0148 20.16 0.0122 21.36 0.0103 22.85
10 0.0118 20.12 0.0097 21.09 0.0081 22.24
11 0.0093 20.10 0.0076 20.87 0.0064 21.76
12 0.0074 20.08 0.0060 20.70 0.0050 21.38
13 0.0059 20.06 0.0048 20.57 0.0040 21.08
14 0.0047 20.05 0.0038 20.46 0.0031 20.84
15 0.0037 20.04 0.0030 20.38 0.0025 20.65
16 0.0029 20.03 0.0024 20.31 0.0020 20.50
17 0.0023 20.02 0.0019 20.26 0.0016 20.38
18 0.0019 20.02 0.0015 20.21 0.0012 20.28
19 0.0015 20.01 0.0012 20.18 0.0010 20.21
20 0.0012 20.01 0.0009 20.15 0.0008 20.15

aCase shown in Figure 14.

Figure 15. Unstable block area versus cumulative frequency for cliffs with different initial inclinations
and internal friction angles. This cumulative frequency represents the number of landslides with area
larger than the value on the abscissa. A clear logarithmic relationship exists for failures successive to
the first and second ones.
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on the types of weathering processes and geomaterials con-
sidered (see Figure 6). Once the alteration laws of c and f
have been characterized by means of geotechnical laboratory
testing, it becomes possible to obtain the transport law for a
particular slope experiencing decrease of both c and f, fol-
lowing the procedure adopted for the case of constant f.

4. Discussion of Results

[53] Hillslope evolution, under weathering limited condi-
tions, has been modeled in this paper by the limit analysis
method, associating the evolution of slopes by successive
failures along log spiral slip surfaces to the degradation of
material strength properties. Degradation has been consid-
ered as homogeneous within the entire slope and effects
of spatial variability of weathering have been neglected.
In general, aggregate models mask the effect of single
events of different sizes. This can have little influence over
very long time periods, but for shorter time intervals or low
weathering rates, it can lead to strong underestimates in the
role of single events.
[54] The appeal of the limit analysis approach in compar-

ison with numerical modeling [see Utili and Crosta, 2011] is
that results are available in an analytical form for the whole
range of interest of the mechanical strength parameters (c, f),
initial slope inclination (b) and inclination of the slope crest
(a). A nomogram showing the evolution of slopes subject to
cohesion only decrease is shown (Figure 19) for different
values of the aforementioned parameters. In our analyses,
slopes are assumed homogeneous, hence the cohesion, fric-
tion angle and unit weight values to be used to calculate the
stability number, N = gH/c, should be taken as the spatial
average of the values of the different strata of the slope.
[55] Tables reporting material strength values and crest

retreat associated with each successive failure until the
attainment of a final stable condition have been presented
for various initial inclinations. A simultaneous decrease of
both friction and cohesion may also be considered in the

model. This method has been successfully used to model the
degradation of a real cliff under continuous basal removal
whose evolution over time was available. A very good
agreement between measured and predicted profiles is
obtained. The evolution is characterized by a series of
concave profiles that cannot be predicted with traditional
models available in the geomorphologic literature [e.g.,
Fisher, 1866; Bakker and Le Heux, 1946; Kirkby, 1971]
which predict a convex shape for cliffs subject to weather-
ing. These models in fact cannot explicitly take into account
the occurrence of a series of discrete mass movements
caused by the progressive weakening of material.
[56] In the case of more general conditions (no deposit

removal), the method can still be used to obtain a first rough
estimation of the expected evolution of the slope, and
rejuvenation of the slope profile by erosion of the slope toe

Figure 16. (a) Normalized area of landslide versus normalized cohesion relationship for an initial slope
gradient b = 70° and variable friction angles f from 15° to 40°. Data are fitted by a power law relationship
(square root). (b) Normalized area versus average slope. Data are fitted by allometric laws of the form:
save = k1+k2 × Ak3.

Figure 17. Relationships between normalized cohesion
and dimensionless time for the considered weathering laws.
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could be considered and included in the analysis as well.
Furthermore, the same approach has general validity for
cases characterized by a far‐field slope [e.g., Hanks and
Andrews, 1989]. The effect of a far‐field slope on the
limit analysis results is shown in Figure 19 and Table 2 for
different far‐field slope angles (a = −5°,a = 0°, a = 5°) and
various internal friction angles.
[57] Time dependency can be introduced in the model by

means of weathering rate relationships (e.g., linear, power law,
exponential), correlating the decrease of material strength with
time. As a consequence, slope evolution in time can be sim-
ulated and used to forecast crest retreat, and eventually the
volume of produced material to be eroded at the slope toe.
[58] The results can be interpreted in terms of a transport

law and demonstrate a strong nonlinear relationship between
mass flux, time and slope gradient. Nonlinearity is particu-
larly evident when the initial failures (first to the third) are
compared with the subsequent ones. This could be the result of

multiple controlling factors. First of all, it must be remem-
bered that all the analyses start with a straight slope. These
successively evolve, maintaining log spiral geometry for the
slope profile. Utili and Nova [2007] demonstrated that if we
compare a log spiral slope profile with a planar one, both
characterized by the same average slope, save = H/L, the log
spiral one is always more stable than the planar one. There-
fore, in case of a log spiral profile, for the same cohesion
value, a steeper inclination is required for a failure to occur.
[59] A logarithmic relationship has been found by plotting

cumulative frequency values for the area of unstable blocks.
Such a relationship seems to govern the evolution of a slope
by retrogressive landsliding, which implies dependency
between successive failures, except for the very early ones.
[60] In the model, the presence of pore water pressure is

not explicitly included, therefore failures are assumed to
occur in dry conditions. Clearly this may not be the case
in many instances, but it is also possible to include the

Figure 18. Results obtained according to the different weathering laws assumed. (a) Normalized areas of
failing blocks versus dimensionless time; (b) transport rate averaged over discrete time intervals versus
dimensionless time.

a                                                                                        b

Figure 19. Nomogram of normalized cohesion versus dimensionless crest retreat for constant f cliff
evolution. Each point refers to a different failure: (a) for different values of inclination of the upper slope
(far‐field slope) and initial slope front and (b) for different values of inclination of the upper slope (far‐
field slope) and various internal friction angles.
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presence of water for the simplest cases. To this end, it is
necessary to distinguish between two situations: a slope
crossed by a phreatic line, made by a layer of dry rock/soil
above the phreatic line with or without significant capillary
rise (giving rise to a layer of partially saturated soil just
above the phreatic line) and fully saturated rock/soil
underneath with static hydraulic conditions (no seepage);
and a slope subject to steady state (seepage) or transient
hydraulic conditions (consolidation) for instance caused by
intense rainfall. In the first case, there is no excess water
pressure; hence the results obtained by our analyses can still
be used running the analyses in terms of effective strengths
(c′, f′). Under the phreatic line, instead of the total unit
weight, g, the submerged unit weight, g′, would need to be
taken. The additional resistance due to capillary effects in
the layer of partially saturated soil may be taken into
account by increasing the cohesion, adding the effect of the
so‐called apparent cohesion which is linked to capillary
suction according to well established empirical relationships
[Fredlund and Rahardjo, 1993; Rao, 1996]. A spatial
average of the values of c′ and g′ would need to be taken
as input data in the analyses. The second case (seepage
or consolidation) is more complex, but if simplifying
assumptions about the hydraulic conditions are introduced,
the limit analysis upper‐bound approach can still be used.
However, additional terms in the energy balance need to be
introduced and an analytical closed form solution is no
longer available [see Viratjandr and Michalowski, 2006].
In this case, either a steady state or transient hydraulic
analysis is needed. However, these analyses would require
the availability of local data such as permeability and
hydraulic conditions at the slope boundaries and time
varying data such as intensity of rainfall precipitation and
evapotranspiration, which are not available over large time
spans. Therefore, at present, the complexity of the analyses
involved and the lack of experimental data make it an
impossible task to take into account the influence of seepage
and transient hydraulic conditions into the modeling of slope
evolution with the proposed approach.

5. Conclusions

[61] Hillslope evolution under different environmental
conditions results in different geometries. In this paper, a
model based on geomechanics to predict evolution of slopes
has been proposed. With this model it is possible to relate
the evolution of natural slopes by a sequence of rotational
sliding block failures to the degradation of material strength
properties. In the paper, it has been shown how mechanical
parameters and their weakening due to weathering affect
the slope profiles. The proposed analytical model based on
the limit analysis upper‐bound method performs well in the
determination of slope profiles for weathering‐limited con-
ditions, and predicts a strongly nonlinear relationship
between mass flux and slope gradient. It can be concluded
that with the proposed model it is possible, in principle, to
predict the evolution by successive failures of any cliff made
either of homogeneous dry rock or cohesive‐frictional soils,
knowing the strength degradation over time. The proposed
model considers strength within the slope to be homoge-
neous, which is certainly not true. But these uniform c, f
values can be thought of as spatial averages of varying c, f

values. To overcome some of these limitations and to have a
better understanding of the physical and mechanical pro-
cesses occurring during slope evolution, it is possible to
adopt numerical modeling techniques. This aspect is exam-
ined in the companion paper by Utili and Crosta [2011]
discussing the use of discrete element models to study
slope evolution by successive failures, including the effects
of deposition of failed material and heterogeneous weather-
ing distribution.

Appendix A

[62] This appendix presents the details of the calculations
and mathematical functions used in the limit analysis upper‐
bound method. We present the calculations for the simpler
case of a horizontal cliff crest, a = 0 (see Figure 3b). The
equations for the more general case of a ≠ 0 (see Figure A1)
are reported in the auxiliary material (see file main_phi_
variable_alfa.m).

A1. First Mechanism

[63] Starting with the first mechanism (see Figure 3a), the
value of cohesion at failure is given by

c ¼ �H
1

minx;y f x; y; �; �ð Þ ; ðA1Þ

where x, y are the angle identifying the log spiral wedge and
b is the initial slope inclination;

f x; y; �; �ð Þ

¼ exp 2 tan� y� xð Þ½ � � 1f g exp tan� y� xð Þ½ � sin y� sin xf g
2 tan� f1 � f2 � f3ð Þ

ðA2Þ
with

f1 x; y; �ð Þ

¼ exp 3 tan� y� xð Þ½ � 3 tan� cos yþ sin yð Þ � 3 tan� cos x� sin x

3 1þ 9 tan2 �ð Þ ;

ðA3Þ

f2 x; y; �; �ð Þ ¼ 1

6

sin x

sin�ð Þ2 � exp 2 tan� y� xð Þ½ � sin � þ yð Þð Þ2
n

þ 2 exp tan� y� xð Þ½ � cos � sin x sin � þ yð Þþ
� sin � þ xð Þð Þ2þ2 sin� cos x sin � þ xð Þ

o
; ðA4Þ

and

f3 x; y; �; �ð Þ ¼ 1

6
exp tan� y� xð Þ½ � sin � þ yð Þ

sin �ð Þ2
� exp 2 tan� y� xð Þ½ � sin y sin � þ yð Þ þ sin� cos y½ �þf
� 2 exp tan� y� xð Þ½ � sin x sin � þ yð Þþ
þ cos� sin xð Þ2g: ðA5Þ

A2. Second and Successive Mechanisms (Double Log
Spiral Wedges)

[64] The second and all the subsequent failures affect
a region bordered by two log spirals (see Figure 3b). Six
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geometrical relationships may be established among the
geometric variables ruling the shape of the two log spirals.
In the following, the log spiral of the current slope profile
and the log spiral of the failure line of the second (subse-
quent) mechanism will be denoted by the superscripts o
(old) and n (new), respectively. These relationships may be
easily derived by elementary geometric considerations:

rny ¼ rnx exp tan�n yn � xnð Þ½ �; ðA6Þ

H ¼ rnx exp tan�n yn � xnð Þ½ � sin yn � sin xnf g; ðA7Þ
Ln ¼ rnx � exp tan�n yn � xnð Þ½ � cos yn þ cos xnf g; ðA8Þ

roy ¼ rox exp tan�o yo � xoð Þ½ �; ðA9Þ

H ¼ rox exp tan�o yo � xoð Þ½ � sin yo � sin xof g; ðA10Þ

and

Lo ¼ rox � exp tan�o yo � xoð Þ½ � cos yo þ cos xof g; ðA11Þ

where two different values of friction appear, fn and fo,
since we are considering the case of both f and c decrease.
Therefore the value of friction at impending second (sub-
sequent) failure is lower than the value at the occurrence of
the first (previous) mechanism and so forth.
[65] Equation (4) is found by equating the external work

done by the region B‐C‐E slipping away making a rigid
rotation to the energy dissipated along the log spiral line E‐
C. The external work is calculated as the summation of
many contributions, each of them expressing the work due
to a different soil region. The rate of work done by the
double logarithmic spiral shaped region B‐C‐E, area An, is
obtained as the work done by the region Pn‐C‐E, area A1

n,
minus the work done by the regions Pn‐D‐E and Pn‐D‐C,

areas A2
n and A3

n, respectively, minus the work done by the
region B‐C‐D (see Figure 3b). The last one is expressed
again as the difference between the work done by region Po‐
B‐C, area A1

o, and the two triangular regions Po‐D‐B and Po‐
D‐C, areas A2

o and A3
n, respectively. Thus, the following

equation is obtained:

_Wext ¼ _Wn
1 � _Wn

2 � _Wn
3 � _Wo

1 � _Wo
2 � _Wo

3

� �
: ðA12Þ

For sake of clarity, first the calculation of _W 1
n, _W 2

n, _W 3
n will

be shown and then of _W 1
o, _W 2

o, _W 3
o In this case, the functions

depend only on xn, yn (parameters of the new spiral n) and
fn, the soil friction angle at the occurrence of the second
landslide. So considering a differential element of region A1

(see Figure A2), the rate of external work done by the soil
weight is given by

d _Wn
1 ¼ _un1 � dFn

1; ðA13Þ

where u1 is the displacement vector and dF1 = −gdA1k, with
k vertical unit vector. Calculations lead to

d _Wn
1 ¼ _un1

�� �� dFn
1

�� �� cos _un1dF
n
1

� �
¼ _!

XG1 � Xn
P

�� ��
cos _un1dF

n
1

� �� �dAn
1 � cos _un1dF

n
1

� �
¼ _!

2

3
rn cos �n

� �
�
1

2
rnð Þ2d�n

� �
:

ðA14Þ

After integrating over the entire area A1
n, the work becomes

_Wn
1 ¼ 1

3
_!�

Z yn

xn
rnð Þ3cos �nd�n

¼ 1

3
_!� rnx
� �3Z yn

xn
exp 3 tan�n �n � xnð Þ½ � cos �nd�n:

ðA15Þ

Figure A1. Second failure mechanism in case of a ≠ 0. Gray lines are relative to the old spiral (B‐C)
whereas black lines to the new one (E‐C). Dashed lines indicate the initial slope profile before first
failure occurrence.
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Integration by parts of the obtained expression leads to

_Wn
1 ¼ _!� rnx

� �3
f1 xn; yn; �nð Þ; ðA16Þ

with the expression of f1(x, y, f) given in equation (A3).
[66] Considering now the area A2

n, the rate of external
work done by A2

n is given by

_Wn
2 ¼ _un2 � Fn

2 ¼ _!
jXG2 � XPn j
cos _un2F

n
2

� � � �An
2 � cos _un2F

n
2

� �
¼ _!

1

3
2rnx cos x

n � Ln
� �	 


�
1

2
Lnrnx sin x

n

� �
;

ðA17Þ

and after some manipulations, using the geometrical rela-
tionships (A9) and (A10), it becomes

_Wn
2 ¼ _!� rnx

� �3
f2 xn; yn; �nð Þ; ðA18Þ

where f2(x
n,yn,fn) is identical to equation (A4) when b is

chosen equal to 90°. In this case the function simplifies to
become

f2 xn; yn; �nð Þ ¼ 1

6
sin xn � exp 2 tan�n yn � xnð Þ½ �f

� cos ynð Þ2þ cos xnð Þ2g:
ðA19Þ

Considering the area A3
n, the rate of external work done by

A3
n is given by

_Wn
3 ¼ _un3 � Fn

3 ¼ _!
jXG3 � XPn j
cos _un3F3

� � � �An
3 � cos _un3F

n
3

� �
¼ _!

2

3
rny cos y

n

� �
�
1

2
Hrny cos y

n

� �
;

ðA20Þ

and after some manipulations, it becomes

_Wn
3 ¼ _!� rnx

� �3
f3 xn; yn; �nð Þ; ðA21Þ

where f3(x
n,yn,fn) is identical to equation (A5) when b is

chosen equal to 90°. In this case the function simplifies to
become

f3 xn; yn; �nð Þ ¼ 1

3
exp 2 tan�n yn � xnð Þ½ � cos ynð Þ2

� exp tan�n yn � xnð Þ½ � sin yn þ sin xnf g:
ðA22Þ

Note that equations (A14), (A17), and (A20) may also
have been achieved by calculating the moment of the
considered soil regions, dA1

n, A2
n, A3

n around point Pn.
[67] In a similar way, the areas of regions A1

o, A2
o, and A3

o

may be achieved. Considering, at first, the region A1
o, whose

gravity center is G1, the rate of external work done by a
differential element is (see Figure A2)

d _Wo
1 ¼ _uo1 � dFo

1 ¼ _!
jXG1 � XPn j
cos _uo1dF

o
1

� � � �dAo
1 � cos _uo1dF

o
1

� �
¼ _!

2

3
ro cos �o � roy cos y

o þ rny cos y
n

� �
�
1

2
roð Þ2d�o

� �
;

ðA23Þ

where _u1
o is the displacement vector, dF1

o = −gdA1
ok, with k

vertical unit vector, and _! is the rate of angular displacement
of the infinitesimal element. Therefore, the external work for
the entire region becomes

_Wo
1 ¼ _!

1

3
� � 3

2
roy cos y

o þ 3

2
ry cos y

� �	

�
Z yo

xo
roð Þ2d�o þ

Z yo

xo
roð Þ3cos �od�o



;

ðA24Þ

and, after integration by parts,

_Wo
1 ¼ _!

1

3
� � 3

2
roy cos y

o þ 3

2
rny cos y

n

� �
rox
� �2 exp 2 tan�o yo � xoð Þð Þ � 1

2 tan�o
þ

	

þ rox
� �3exp 3 tan�o yo � xoð Þð Þ sin yo þ 3 tan�o cos yoð Þ � sin xo þ 3 tan�o cos xoð Þ

1þ 9 tan�oð Þ2


: ðA25Þ

Figure A2. Differential element of either region A1
o or A1

n.
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Substituting equations (A6), (A7), (A9), and (A10) into
equation (A25) leads to

and

rox
rnx

¼ exp tan�n yn � xnð Þ½ � sin yn � sin xn

exp tan�o yo � xoð Þ½ � sin yo � sin xo
: ðA27Þ

Considering now the region A2
o, whose gravity center is G2,

the rate of external work is given by

_Wo
2 ¼ _uo2 � Fo

2 ¼ _!
jXG2 � XPn j
cos _uo2F

o
2

� � � �Ao
2 � cos _uo2F

o
2

� �
¼ _! �roy cos y

o þ 1

3
2rox cos x

o � Lo
� �þ ry cos y

� �
�
1

2
Lorox sin x

o

� �
:

ðA28Þ
After some manipulations and substituting equations (A6),
(A7), (A9), and (A10), into equation (A28), the following
expression is obtained:

_Wo
2 ¼ _!� rnx

� �3
m2 xn; yn; �n; xo; yo; �oð Þ with

m2 ¼ 1

2

rox
rnx

� �2Lo

rox
sin xo

	
exp tan�n yn � xnð Þð Þ cos yn

þ 1

3

rox
rnx

2 cos xo � Lo

rox
� 3 exp tan�o yo � xoð Þð Þ cos yo

� �

ðA29Þ

and Lo/rx
o given in equation (A11).

[68] Considering now the region A3
o, whose gravity center

is G3, the rate of external work is given by

_Wo
3 ¼ _uo3 � Fo

3 ¼ _!
jXG3 � XPn j
cos _uo3F

o
3

� � � �Ao
3 � cos _uo3F

o
3

� �
¼ _! rny cos y

n � 1

3
roy cos y

o

� �
�
1

2
Hroy cos y

o

� �
:

ðA30Þ

After some manipulations and substituting equations (A7)
and (A10) into equation (A30), the following expression is
obtained:

_Wo
3 ¼ _!� rnx

� �3
m3 xn; yn; �n; xo; yo; �oð Þ with

m3 ¼ 1

2

rox
rnx

� �2

exp tan�o yo � xoð Þð Þ sin yo þ sin xo½ �

� exp tan�o yo�xoð Þð Þ cos yo �
�
exp tan�n yn�xnð Þð Þ cos ynþ

� 1

3

rox
rnx

exp tan�o yo � xoð Þð Þ cos yo½ �
�
: ðA31Þ

Note that equations (A23), (A28), and (A30) may also have
been achieved by calculating the moment of the considered
soil regions, dA1

o, A2
o, A3

o around point Pn.

[69] The last contribution to be calculated is the internal
work. All energy dissipation occurs along the logarithmic
spiral E‐C. The rate of energy dissipation along a differ-
ential element of the spiral is (see Figure A2)

d _Wd ¼ � _"þ � _�ð Þdl: ðA32Þ

According to the associated flow rule _" = − _� tan �n,
therefore substituting this expression into equation (A32)
leads to:

d _Wd ¼ �� _� tan�n þ � tan�n þ cð Þ _�½ � r
nd�n

cos�n

¼ c� _!rn cos�n � rnd�n

cos�n
¼ c _! rnð Þ2d�n:

ðA33Þ

Hence the total rate of energy dissipation is

_Wd ¼ _!c

Z yn

xn
rnð Þ2d�n; ðA34Þ

which after integration becomes

_Wd ¼ _!c rnx
� �2 exp 2 tan�n yn � xnð Þ½ � � 1

2 tan�n
: ðA35Þ

From equations (1) and (A12) it follows that

_Wn
1 � _Wn

2 � _Wn
3 � _Wo

1 þ _Wo
2 þ _Wo

3 ¼ _Wd : ðA36Þ

Now equations (A16), (A18), (A21), (A26), (A29), and
(A31) may be substituted into equation (A36). All the terms
in equation (A36) contain _! and (rx

n)2 which therefore may
be simplified. After rearranging, equation (A36) becomes

�rnx f1 � f2 � f3 � m1 þ m2 þ m3ð Þ ¼ c
exp tan�n yn � xnð Þ½ � � 1

2 tan�n
;

ðA37Þ

and then rearranging

c ¼ �H

g xn; yn; �n; xo; yo; �oð Þ with

g ¼ exp tan�n yn � xnð Þ½ � sin yn � sin xnf g exp 2 tan�n yn � xnð Þ½ � � 1f g
2 tan�n f1 � f2 � f3 � m1 þ m2 þ m3ð Þ :

ðA38Þ

_Wo
1 ¼ _!� rnx

� �3
m1 xn; yn; �n; xo; yo; �oð Þ with

m1 ¼ rox
rnx

� �2 exp tan� y� xð Þ½ � cos y exp 2 tan�o yo � xoð Þð Þ � 1ð Þ
4 tan�o

þ

þ rox
rnx

� �3
"
exp 3 tan�o yo � xoð Þð Þ sin yo þ 3 tan�o cos yoð Þ � sin xo þ 3 tan�o cos xoð Þ

3 1þ 9 tan�oð Þ2

 � þ

� exp tan�o yo � xoð Þ½ � cos yo exp 2 tan�o yo � xoð Þð Þ � 1ð Þ
4 tan�o

#
ðA26Þ
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The value of cohesion at failure is given by

c ¼ �H

minxn;yn g xn; yn; �n; xo; yo; �oð Þ ¼
�H

NS
: ðA39Þ

Note that the function g is a two variable function with the
values of the 4 parameters fn, xo, yo, fo known and constant;
therefore the domain involved in the search for the mini-
mum of the function is a 2‐D one. Initially the Matlab
command fminsearch was used to look for the minimum.
This algorithm works in some cases, but in some other cases
and most of the times in the more complex case of a ≠ 0 the
minimum achieved by the optimization algorithm might be
very far from the real one. This is due to the mathematical
structure of the function. In fact, the function is composed of
many products of transcendental expressions, for example,
exp(tanf(y − x)), with trigonometric functions, for example,
sin(x), which cause the function to oscillate between positive
and negative along several asymptotes. In more lay terms,
the function can be seen as made by several long and low
steep valleys transversally bordered by very steep ascents.
This makes the use of standard optimization algorithms
particularly difficult since an unlucky choice of the starting
point for the algorithm searching the minimum could lead to
a very inaccurate result especially in terms of location of
the minimum point (x, y) which governs the geometry of the
failure mechanism and therefore leading to the assumption
of a completely wrong failure line. Fortunately, the function
is available in an explicit form and depends only on two
variables; therefore in order to carry out a parametric anal-
ysis (see Figure 19 and Table 2) the minimum was calcu-
lated simply by evaluating the function over a sufficiently
fine grid of x, y points within a physically admissible
domain; then taking the positive lowest value among all the
evaluated points. See funI_evalnum, funM_evalnum, fu-
nIalfa_evalnum, funMalfa_evalnum, and funTalfa_evalnum
in the auxiliary material. Finally the formulas used for the
calculation of the areas of the detaching soil masses can be
found in the Matlab files reported in the auxiliary material
as well.

Notation

a inclination of the slope summit.
b initial inclination of a straight slope/

cliff.
g unit weight.
g′ submerged unit weight.
_� angular strain rate.
_" normal strain rate.
z scree inclination.

�, �° generic logarithmic spiral angle.
l inclination of the linear envelope.
r particle radii scaling factor for DEM

simulations.
s normal stress.
t shear stress.
� internal friction angle.
�m micromechanical friction angle.
Y dilation angle.

_! rotation rate.
a acceleration.
c cohesion.
cm micromechanical cohesion.
d bulking ratio.
h height of part of the slope.

k1, k2, k3, k4 constant coefficients.
l arc length as defined in Figure A2.

l1, l2 lengths.
l3, l4 lengths.

m mass.
n porosity.
r radius of curvature.
rx
n minimum radius of curvature of the log-
arithmic spiral of the current failure
mechanism.

rx
o minimum radius of curvature of the old
(previous failure) logarithmic spiral.

ry
n maximum radius of curvature of the
logarithmic spiral of the current failure
mechanism.

ry
o maximum radius of curvature of the old
(previous failure) logarithmic spiral.

s slope gradient.
t time.
tm micromechanical tensile strength.
u displacement vector.

v, vD, vk velocities.
xn minimum angle of the logarithmic spiral

of the current failure mechanism.
xo minimum angle of the old (previous

failure) logarithmic spiral.
yn maximum angle of the logarithmic spiral

of the current failure mechanism.
yo maximum angle of the old (previous

failure) logarithmic spiral.
A area.

An, A1
n, A2

n, A3
n,

Ao, A1
o, A2

o, A3
o
areas of the regions defined in Figure 3b.

C time scaling constant factor for DEM
simulations.

CR crest retreat.
D damage index.

Fn, F1
n, F2

n, F3
n,

Fo, F1
o, F2

o, F3
o
gravity forces acting on the correspond-
ing regions An, etc.

Fk generic force on a particle.
FN normal contact force between two

particles.
FS shear contact force between two

particles.
G gravity center.
H height of full slope.

Ln, Lo lengths defined in Figure 3b.
NS stability number.
X horizontal Cartesian coordinate; axes

origin at the initial slope toe.
Y vertical Cartesian coordinate; axes origin

at the initial slope toe.
W work.

_W n, _W 1
n, _W 2

n, _W 3
n,

_W o, _W 1
o, _W 2

o, _W 3
o
external work rates done by the corre-
sponding regions An, etc.
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