University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/4082

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

APPLICATIONS OF STATISTICS IN THE SPECTRAL ANALYSIS OF TIME-VARYING

 SYSTEMS.January 1975.

Author : P.W.DAVALL

Phd. thesis submitted to the UNIVERSITY OF WARWICK. Department of Engineering.

ACKNO'NLEDGEMENTS

I am most sincerely grateful to Professor J. L. Douce, who wis most generous in his guidance, advice and encouragement throughout. my years as a student. I also wish to thank Dr. F. Sherratt for his collaboration in research on metal fatigue, Dr. J. Gill for his help in research on human operator response, and Mr. A. Hulme for his never-ending patience with computer programming problems. Lastly, I am indebted to my wife for typing this thesis despite my poor handwriting.

This work was supported by a Science Research Council grant, computer facilities being provided by the Inter-University Institute of Engineering Control.

SUMMARY

Recent advances in the theory of evolutionary spectral anal\%sis of time-varying systems has led to a resurgence in the populiarity of frequency domain analysis techniques. Policies for adaptive control of time-varying systems based on state-space and Liaponov techniques require an accurate measurement of the system phase variables. Under inherently noisy conditions, access to the complote systern state i, seldom possible, and frequency domain analysis requiring onl, input/ output measurements has an obvious appeal. The sampling properties of short-term spectral estimates are of central importance both in system tracking and in choosing suitable control policies.

Goodman (1957) developed some of the sampling properties associated with spectral estimates of complex bivariate Gaussian processes. Akaike (1962-66) extended Goodman's results to multi input/output linear systems with Gaussian input forcing functions. Both these authors considered the case where the data sequences were stationary.

This thesis reviews and extends the research of these tiwo authors with respect to single input/output linear syitems.

It is shown that the sampling distributions associated with spectral estimates of stationary open-loop systems are approximately valid for a restricted class of non-stationary systems. Two examples of non-stationary systems are investigated and an adaptive control technique using input compensation in the frequency domain is developed on a hydraulic fatique loading rig. It is shown that statistical tests developed earlier can successfully identify system
variations when estimates are measured in a noisy environment.
The sampling distributions associated with spectral estimates of closed-loop systems are developed and the rosult; are applied to the modelling and tracking of the human operator response in a tracking task situation, for various input signals.

With regard to future research, it remains to extend the results for closed-loop systems to the time-varying multi input/output case. In its full complexity this problem remains intractable, but by considering uncorrelated Gaussian inputs it, reduces to determining the distributions associated with multi-variate complex Gaussian sequences.

CONTENTS

TITLEPAMic
Chapter 1 • . . . INTRODUCTION 1
Chapter $2 \cdot$ • • SPECTRAL ANALYSIS OF OPEN-LCOF jr OIEM' \hbar
2.1) Introduction 10
2.2) Choice of sampling parameters 12
2.3) Bias errors 13
2.4) Sampling errors associated with :-
i) Auto-spectral estimates. 20
ii) Cross-spectral estimates 22
iii) Frequency Kesponse estimates 25
iv) Noise spectrum estimates 28
2.5) Stationarity test for Cpen-loop 31
2.6) Extension to time varying situation 34
2.7) Statistics of overlapped time segments 48
2.8) Simulation results 56
2.9) Applications 68
Chapter 3 . . . $\operatorname{SPECTRAL}$ ANALYSIS CE CLOSED-LCOP SYGTEM 3.73
3.1) Introduction 76
3.2) Sampling errors associated with :-
i) Cross-spectral estimates 80
ii) Overall closed-loop response 84
3.3) Stationarity testing 85
3.4) Distribution of Forward-path frequency
response estimates. 87
3.5) Distribution of Feedback-path frequency
response estimates 99
3.6) Simulation results 99
3.7) Noise estimates in closed-loop sustems 107
3.8) Conclusions 111
Chapter 4 • • . SPECTRAL ANALYSİ OF SJEECH 113
4.1) Introduction 115
4.2) Speech analysis and voice pitch detection. 117
4.3) Statistical testing of speech 120
4.4) Categorisation of vowel phonemes 127
4.5) Example of phonemic recognition 137
4.6) Application to compressed speech 147
4.7) Conclusions 149
Chapter 5. . . APPLICATIONS TO FATIGUE ANALYSIS 158
5.1) Introduction 160
5.2) Generation of signals with specified statistics 160
5.3) Fatigue rig control. 174
5.4) Detection of fatigue cracks in Aluminium and Steel rods 1.37
5.5) Appendices 197
Chapter 6 • • . APPLICATIONS TO HUMAN OPERATCR TRACK ING TASKS- A CCMPARISCH OF AUDIO NND VISUAL DISPLAYS 208
6.1) Introduction 209
(́.2) Comparison of Human Ciperator's performance using audio and visual displays. 211
6.3) Justification of assumption of stationarity • 215
6.4) Investigation of transients in the

Operator's frequency response with step
changes in the frequency charactoristics of
the input signal. 222
6.5) Some extensions to two-dimensional and multi-dimensional displays..........
6.6) Conclusions 239
6.7) Appendix. 244

Chapter 7 • • •CCNCLUSIONS \& "CME JUGGEJTION: FCR FITURE RESEARCH • 7 .

APPENDIXCCMPUTER FRCORAM I IGTINGS. 281

CHAPTER 1

INIRODUCTION

Spectral techniques have been widely used in the analysis of stochastic processes. However, due to physical limitations regarding data acquisition, all such estimates are subject to random and bias errors accountable to short-term estimation in a noisy environment. To reduce these errors, estimates are usually averaged over a period of time: this requires the data to be stationary. Strict stationarity is seldom realised and hence averaging over time can produce bias errors. In 1965, Priestley introduced the concept of evolutionary spectral analysis and further work by Tong (1972) has developed this concept to include bivariate oscillatory processes. The physical interpretation is preserved in that we now consider energy distributions in the frequency domain which are local in nature. In estimating such distributions, we are confronted by what has heen termed the frequency/time domain uncertainty principle. It is impossible to estimate the frequency content of a signal exactly from a finite time record of a random process. There is a trade-off between frequency resolution and record duration. In stationary situations it is often possible to choose the record length so that bias errors due to finite frequency resolution are acceptable. By averaging over many such record lengths, the random error may then be reduced. In time-varying situations, the physical nature of the variation often determines the record length regardless of the frequency content of the signal. Estimates can no longer be smoothed over time to reduce random error. Thus, even though estimates may be unbiased, it may be
impossible to detect small variations in time, due to the underlying distribution associated with the random error. fiven when changes are detected, they are only significant in the statistical sense if the probability of obtaining such variations is unlikely given the parent distribution.

Adaptive stochastic control based on noisy system estimates is a relatively recent area of research. Criteria for optimal control can only be stated in the expected sense and of ten stability cannot be guaranteed. Current research has favoured the use of State-space methods using Liaponov functions to give stability. Recent extensions of spectral analysis to time-varying systems may lead to a resurgence in the use of frequency domain techniques. Clearly a knowledge of the sampling distributions associated with short-tem spectral estimates is a prerequisite.

In the study of the distributions of short-term spectral estimates, much attention has been given to bivariate Gaussian processes. The reason for this is threefold. Firstly, the distributions derived from bivariate complex Gaussian systems can be determined analytically, using well-known statistical function theory, and yield reasonably simple results. Secondly, short-term Fourier estimates obtained from random non-Gaussian sequences are themselves of ten approximately Gaussian: this result may be predicted using the central-limit theorem. Thirdly, the resulting variance terms are often conservative in nature, the true distribution being more compact about the mean value.

In Chapter 2 some previous results of Goodman and Akaike are rephrased in terms of the parameters of an open-loop linear system
subject to noise. Some extensions to the results of these authors are derived and a simple stationarity test is included for estimates of the frequency response function. A brief consideration of the timevarying case shows that the distributions derived for stationary systems may be simply modified (by introducing time-varying mean and variance terms) to include slowly-varying processes, without serious loss of accuracy.

In Chapter 3 attention is drawn to the closed-loop stationary situation where there is noise both in the forward and feedback paths. The distributions associated with estimates of the forward loop frequency response and feedback loop frequency response functions are derived, and simulation results are presented. It is shown that the distribution of open-loop frequency response estimates is a particular case of the closed-loop distribution. An extension of the open-loop stationarity test to test for overall stationarity in the closed-loop case is included.

A major criticism of distribution theory as presented for shortterm spectral estimation is that it is seldom used for more than a theoretical consideration of errors. As has been mentioned however the distribution of spectral estimates plays a central role in determining time-varying characteristics. Chapters 4, 5 and 6 examine three practical applications of some of the results of Chapters 2 and 3. The subjects chosen are research topics in their own right. Chapters 4 and 5 give examples of two forms of time-varying open-loop systems, while Chapter 6 examines a time-dependent closed-loop situation.

In Chapter 4 we consider the identification of step changes in open-loop system parameters with specific reference to speech. Each
phoneme is considered as an approximately stationary event with step changes at the boundaries. Such an assumption can only be partially justified, but it is shown that the vowel phonemes can be successfully identified using a throat microphone to access the input to the vocal tract and a crystal microphone to monitor the speech output. Application of statistical sectioning of speech to the production of compressed speech is included to show that the techniques can be extended to non-vowel sounds.

In Chapter 5 we consider the problem of identifying small parameter variations in a noisy environment. The identification of the onset of fatigue cracking in steel and aluminium rods is a good example of such a process. It is well known that little visible change in response can be detected during fatigue, and current methods of crack detection involve halting the test and removing the specimen. In addition to the identification of fatigue, it is shown how short-term spectral estimation can be used to control a potentially time-varying system, using input compensation techniques. The method is applied to the control of a servo-hydraulic fatigue rig. Lastly, a method of producing signals with specified statistics is presented. The three topics together represent a unified approach to fatigue testing, taking into consideration the generation of the loading signal, the control of the fatigue rig, and the identification of the onset of failure.

Chapters 4 and 5 are concerned with open-loop systems. In
Chapter 6 we consider the human operator in a tracking task environment as an example of a closed-loop time-varying system.

It is shown how a stationary linear model of the operator for stationary input dynamics can be justified in terms of the distributions derived in Chapter 3. Variations in the model parameters for step changes in the input dynamics are tracked and by use of a stationarity test for closed-loop systems, it is shown that these variations are due to actual changes in the operator's mode of response, rather than short-term measurement errors. Comparisons are made for different forms of audio and visual displays. Appendix A to Chapter 6 reports some preliminary findings on the comparison of displays.

CHAPTER 2.
SPECTRAL ANALYSIS OF CPEN-LOOP SYSTEMS

LIST OF SYMBOLS USED

$N(w)$		the Fourier transform of $n(t)$
N		the number of independent samples per time block. Used
		as a parameter in the discrete transform.
f_{5}	:	the sampling frequency for $x(t), y(t)$
I	8	$\left(=N / f_{s}\right)$: block time period, or in the continuous
		case, period of measurement over which spectral
		estimates are to be calculated.
$L(t)$	8	a weighting function by which $x(t), y(t)$ are mult-
		iplied before the Fourier transform is carried out.
L (u)	2	the Fourier transform of $L(t)$
L(i)	:	the $i^{\text {th }}$ weight by which $x_{t}(i), y_{t}(i)$ must be
		multiplied before estimating their discrete Fourier
		transform ($0 \leqslant \mathrm{i} \leqslant \mathrm{N}-1$)
w_{0}	:	the effective bandwidth of the filter $L(u)$, when $L(t)$
		is just the rectangular window over a period T,
		$w_{0}=2 \pi / T$
$\hat{x}\left(k w_{0}\right)$:	the complex Fourier coefficient of $L(i) . x_{t}(i)$
		($\mathrm{i}=1, N$) at frequency $k w_{0}, 0 \leqslant k \leqslant N / 2$.
$\hat{Y}\left(k w_{0}\right)$:	the complex Fourier coefficient of $L(i) . y_{t}(i)$
		at frequency kw_{0}
$\hat{N}\left(k w_{0}\right)$:	the complex Fourier coefficient of L(i). $n_{t}(i)$
\hat{A}	:	the estimate of a variable A obtained over an interval
		$t \in T$
$\overline{\text { A }}$:	the average value of A taken over L independent
		estimates \hat{A}.
$\hat{\phi}_{x x}\left(k w_{0}\right)$:	$\left(=\hat{x}\left(k w_{0}\right)^{*} \hat{x}\left(k w_{0}\right)\right), * \text { denotes complex conjugate. }$

The estimate of the power in $\phi_{x x}(w)$ over a frequency range $k w_{0} \pm w_{0} / 2$. Note that to dotain the estimate of the power spectral density function, $\hat{\phi}_{x x}\left(k w_{0}\right)$ must be normalised by the factor $1 / w_{0}$, the bandwidth of $L(u)$. Similar relationships describe $\hat{\phi}_{x y}\left(k w_{0}\right), \hat{\phi}_{y y}\left(k w_{0}\right), \hat{\phi}_{n n}\left(k w_{0}\right)$.
$N\left(\mu, \sigma^{2}\right)$
: half the power in $\phi_{x x}(t, w)$ over the frequency band $w_{1} \pm w_{0} / 2$. The dependence of $S x^{2}$ upon w_{1} is omitted and the dependence on t is dropped in the stationary case.
: the best obtainable estimate of $\phi_{n n}\left(k w_{0}\right)$ the noise spectrum, allowing for the fact that the noise is measured indirectly. $\hat{\phi}_{n n}\left(k w_{0}\right)$ is the estimate of the noise spectrum obtained if we can measure the noise source directly.
: Gaussian distribution with mean μ and varinace σ^{2}
: half the power in $\phi_{n n}(t, w)$ over the frequency band $w_{1} \pm w_{0} / 2$
: half the power in $\phi_{y y}(t, w)$ over the frequency band $w_{1}+w_{0} / 2$ imaginary part of A real part of A, A complex
: the probability distribution associated with a variable A
: the conditional probabiltiy distribution of a variable

A given B

$f_{A}(w) \quad:$ characteristic function of $P_{A}(A)$
$\mu \mathrm{A}$
8 mean value of A

1) INTRODUCTION

This chapter outlines spectral techniques used in the analysis of linear open-loop systems (see Figure 1). It is shown that error analysis results as determined when the system is stationary are also approximately applicable to certain time-varying cases. Section 2 defines the system parameters and briefly describes time domain windowing, time domain smoothing and frequency smoothing. Section 3 investigates the bias terms encountered in short-term spectral estimates (for stationary systems) and shows that by a suitable choice of sampling frequency and frequency resolution, these terms can be suppressed, leaving random error as the major source of inaccuracy. Random errors are discussed in Sections 4, 5 and 7.

Fourier techniques have been used in time-varying situations for speech analysis (see references, Chapter 2, and Chapter 4) and in the analysis of non-stationary spacecraft vibration data (reference 24). Page (1950) first introduced the concept of instantaneous power spectra and since then Priestley, Tong and Subba-Rao have extended the classical Wiener-Kolmogorov theory to include non-stationary bivariate oscillatory systems. Section 6 shows how under restricted conditions the classical error analysis for complex bivariate Gaussian systems can be extended to include non-stationary data. The Gaussian case is chosen for two reasons: firstly the distribution of any variable formed from a linear transformation involving N independent variables will tend to the Gaussian distribution for large N. Thus the discrete Fourier coefficients formed from a linear transformation of N time sample points will be approximately
normally distributed. Secondly, frequency domain techniques are of ten used for system identification when the system input signals are band-limited white noise. Under these conditions the distribution of short-term discrete Fourier coefficients of the system input and output will be approximately Gaussian even when the original signals were non-Gaussian. A typical example is studied in Section 8.

The technique of overlapping time blocks to obtain better tracking characteristics has been used for speech analysis. The advantage of this form of analysis is that it presents better interpolation of the system parameters between adjacent block time periods. Section 7 develops some statistics for overlapped auto-spectral estimates. Lastly, Section 8 presents simulation results verifying some of the statistics derived in Sections 4,5 and 7. An example of a time-varying second-order system is studied and it is shown that under restricted conditions the coherency between input and output is approximately time-invariant. This result justifies the application of the error analysis results to time-varying systems in Chapters 4 and 5 and demonstrates that some simple extensions of stationary error analysis to the time-varying situation are not unreasonable.

2(i) CHOICE OF PARAMETERS IN THE ANALYSIS OF LINEAR OPEN-LOOP SYSTEMS

FIGURE 1: SHOWS THE OPEN-LOOP SYSTEM CONFIGURATION

In Figure $1 x(t), n(t)$ are uncorrelated Gaussian random processes where the variable t may be considered as time. For the cases examined in this chapter $x(t)$ and $n(t)$ are considered real variables but they may be complex.

$$
\begin{aligned}
& p(x(t))=N\left(0, \sigma x^{2}\right) \\
& p(n(t))=N\left(0, \sigma n^{2}\right)
\end{aligned}
$$

when the processes $x(t), n(t)$ are 'stationary'
$E(x(t), x(t-\tau))=C x x(\tau)$
$E(n(t), n(t-\tau))=C n n(\tau)$
where Cxx (τ), Cnn (τ) are not functions of t. ($E \equiv$ expectation operator).

In short-term spectral analysis we are concerned with a realisation of $x(t), y(t)$ (the two signals available) over a period $t_{1} \leqslant t \leqslant t_{2}$. This realisation may take the form of continuous measurement or sampling at discrete intervals in t. Section 3 derives the expected
values for stationary systems from continuous measurement over t. The translation of results obtained to the discrete case is in general straightforward. Section 4 discusses random errors encountered in sampled data systems, as in practice the discrete fast Fourier transform is used to form spectral estimates of $\phi_{x x}(w), \quad \phi_{x y}(w)$ etc. Section 6 reverts to the continuous case to encompass the time-varying situation. Thus in general results are presented in whichever domain provides the simplest form and the domain in which the results might most commonly be applied.

The system $h(\tau)$ is a continuous function in τ such that $|h(\tau)|<\infty$ and tends to zero as $\tau \rightarrow \infty$. Also $h(\tau)=0$ for $\tau<0$ and is not a function of $x(t), n(t), y(t)$. The Fourier transforms of $x(t), h(\tau)$ are given by:

$$
\begin{aligned}
& X(w)=\int_{-\infty}^{\infty} x(t) \cdot \exp (-j w t) d t \cdots \cdot \cdot \cdot 1 \\
& H(w)=\int_{-\infty}^{\infty} h(\tau) \cdot \exp (-j w \tau) d \tau \cdots \cdot \cdot \cdot 2.2
\end{aligned}
$$

where $X(w), H(w)$ are in general complex functions in w (w is equated with frequency). In general $|X(w)|,|H(w)| \rightarrow 0$ as $|w| \rightarrow \infty$. For $y(t)$ to remain finite we let:

$$
\int_{w-\partial}^{w+\partial}|H(w)| d w<\infty, \forall \partial>0
$$

$$
\text { Similar transform expressions can be written for } N(w), Y(w)
$$

with identical conditions imposed on the finite magnitudes of these as funtions in w.

Short-term estimates of $\hat{X}(w), \hat{Y}(w)$ over the interval $t_{1} \leqslant t \leqslant t_{2}$ $\left(t_{2}-t_{1}=T, t=0\right.$ at $\left(t_{1}+t_{2} / 2\right)$ will in general be biased due to

* (Eqn 2.1 is only defined if the integral of $|x(t)|^{2}$ is finite. In practise this is true as we consider a finite time interval)
finite frequency resolution ($w_{0} \simeq \frac{2 \pi}{T}$) and contain random errors due to short-term cross-correlation between $x(t)$ and $n(t)$. In the case where $x(t), y(t)$ are sampled on the time interval T at a frequency $\mathrm{f}_{\mathrm{s}}(=\mathrm{N} / \mathrm{T})$ the Fourier transforms $\hat{X}(\mathrm{w}), \hat{Y}(w)$ become discrete Fourier series of the forms
$\hat{x}\left(k w_{0}\right)=\sum_{i=0}^{N-1} L(i) \cdot x_{t}(i) \cdot \exp \left(j \frac{w_{0} k i}{N}\right)$
where $\quad \sum_{i=0}^{N-1}|L(i)|=1$ (the time domain window),
$\hat{X}\left((N / 2+k) \cdot w_{0}\right)=\hat{X^{*}}\left((N / 2-k) \cdot w_{0}\right)$

$$
\text { for } k=0,1,2 \ldots \ldots / 2-1
$$

and $I(\hat{X}(0))=I\left(\hat{X}\left(\hat{N} \cdot w_{0} / 2\right)\right)=0$

* denotes the complex conjugate.

Thus for short-term estimates, when $x(t), y(t)$ are continuous functions in t, we choose T, the measurement period; B_{T}, the frequency resolution; and the shape of the filter with bandwidth B_{T}. In the sampled data case we choose f_{s}, the sampling frequency; N, the number of samples per block; $L(i)$, the time domain weighting function; and the desired smoothing of estimates in the frequency domain to reduce random errors. We note that $T=N / f_{s}$ and there is an equivalence between B_{T} and the filter shape in the continuous case, and the choice of $L(i)$ and the frequency domain smoothing in the discrete case. In general the choices are made to satisfy the following criteria: I : sufficiently long such that $1 / T$, the frequency resolution, is substantially narrower than any spectral peak encountered in $X(w), Y(w)$. This ensures that bias errors are reduced.
$\mathrm{f}_{\mathrm{S}}: \quad$ this must be chosen such that $\mathrm{f}_{\mathrm{s}}>2$. fmax, where fmax is chosen such that components in $X(w), Y(w)$ above this frequency can be neglected.

L(i), (i=0,N-1) and frequency domain smoothing : these are chosen to optimise the filter characteristics in terms of side-band leakage and effective bandwidth without introducing unwanted bias in the final estimate. The form taken by any frequency smoothing is also dependent on the initial choice of T.

2(ii) DATA SMOOTHING IN THE FREQUENC! AND IIME DOMAINS
a) Time Domain Windows

The short-term estimate $\hat{X}(w)$ obtained from a realisation of $x(t)$, $t \in T$, can be viewed as the Fourier transform of a process $x(t), L(t)$ where $L(t)=0$ for $t\left\langle t_{1}, t\right\rangle t_{2}$. Letting $t_{1}=-T / 2, t_{2}=T / 2$, we choose $L(t)$ such thats

$$
\int_{-T / 2}^{T / 2}|L(t)| d t=1 \text { and }|L(t)|<\infty, \forall t
$$

Typical examples of such windows are the rectangular window $(L(t)=1 / T, t \in T)$, the triangular window decaying to zero as $|t| \rightarrow T / 2$, the Hanning and Hamming cosine bell windows. Each window $L(t)$ has associated with it a frequency window $L(u)$:

$$
\hat{x}(w)=x(w-u)^{*} L(u) \quad \text {. } 2.3
$$

where * denotes convolution.
Ideally $L(u)$ should be rectangular with no sidebands and zero phase shift $\forall u$. For $L(u)$ to be real, $L(t)$ must be an even function in t (this is not necessarily a restriction, but convoluting $X(w)$ with a complex function leads to a complicated relationship between
$X(w)$ and $\hat{X}(w)$. For $L(u)$ to be exactly rectangular the function $L(t)$ is non-zero $\boldsymbol{\infty} t$ becomes large (in fact $L(t)$ is of the form $\sin \alpha t / \alpha t$ and I must be large to achieve an approximately rectangular window.) Thus all time weighting functions compromise between the time period T becoming large and the frequency window $L(u)$ containing significant sidebands. In general, $L(u)$ is chosen so that sidebands are minimised while the bandwidth of the central peak about ($u=0$) is sufficiently narrow not to introduce bias errors in $\hat{X}(w)$ due to narrow peaks in $\phi_{x x}(w)$; and similarly for $\hat{Y}(w)$. In many real-time estimation problems the presence of noise in the output $y(t)$ is a far more serious restriction limiting the accuracy of estimates of $H(w)$ than errors due to sideband leakage in the frequency window $L(u)$. Wellstead (1971) and Blackman and Tukey (1959) have described the advantages of different time data windows in detail.

The effective bandwidth of the rectangular window, w_{0}, is $2 \pi / T$. If the Hanning window is used, the bandwidth $L(u)$ increases as the proportion of time data 'Hanned' increases. In the discrete case where estimates of $\hat{X}\left(k w_{0}\right), \hat{Y}\left(k w_{0}\right)$ are evaluated at frequency intervals of $2 \pi / \mathrm{r}$, Tukey has shown that adjacent estimates are essentially independent when $L(i)$ is the rectangular window (i.e. $L(i)=1 / N$), but that these points become correlated when a Hanning window is used. The error analysis in Sections 3 and 4 assumes the use of a rectangular data window.
b) Frequency Domain Smoothing

When $x(t)$ and $y(t)$ are sampled data sequences, blocks of N sample points are used to find $\hat{X}\left(k w_{0}\right), \hat{Y}\left(k w_{0}\right), 0 \leqslant k \leqslant N / 2$. To reduce random errors, the spectral estimates are computed from many such
blocks. The usual parameters of interest are:

$$
\begin{aligned}
& \bar{\phi}_{x x}\left(k w_{0}\right)=\frac{1}{L} \sum_{i=1}^{L} \hat{\phi}_{x x}^{i}\left(k w_{0}\right)=\frac{1}{L} \sum_{i=1}^{L} \hat{x}_{i}^{*}\left(k w_{0}\right) \cdot \hat{x}_{i}\left(k w_{0}\right) \cdot .2 .4(a) \\
& \bar{\phi}_{y Y}\left(k w_{0}\right)=\frac{1}{L} \sum_{i=1}^{L} \hat{\phi_{y y}}\left(k w_{0}\right) \\
& \bar{\phi}_{x y}\left(k w_{0}\right)=\frac{1}{L} \sum_{i=1}^{L} \hat{x}_{i}\left(k w_{0}\right) \hat{y}_{i}\left(k w_{0}\right) \ldots2 .4(c) \\
& \bar{H}\left(k w_{0}\right)=\bar{\phi}_{x y}\left(k w_{0}\right) / \bar{\phi}_{x x}\left(k w_{0}\right) \quad \ldots \\
& \overline{\mathrm{C}}_{x y}{ }^{2}\left(k w_{0}\right)=\frac{\left|\bar{\phi}_{x y}^{2}\left(k w_{0}\right)\right|}{\bar{\phi}_{x x}\left(k w_{0}\right) \cdot \bar{\phi}_{y y}\left(k w_{0}\right)} \\
& \text { for } w_{0}=2 \pi / T, \quad 0 \leqslant k \leqslant N / 2 \text {. } \quad(* \text { denotes the complex conjugate })
\end{aligned}
$$

Occasional other parameters used are estimates of the noise spectrum, $\bar{\phi} \hat{n n}$, and estimates of the signal-to-noise ratio. Note that these estimates must be normalised by a factor l / w_{0} to obtain the spectral density functions.

Statistical accuracy is increased as L becomes large. This is termed smoothing the spectral estimates in time. An alternative is to let T (and hence N) become large - typically L times as long to achieve similar accuracy - and then to smooth the resulting spectral estimates over neighbouring frequency points. This method has the advantage of interpolating the spectral estimates over frequency without recourse to function fitting. However, the two methods are approximately identical as a means of gaining stat-
istical accuracy. The method of time-domain smoothing is perhaps computationally simpler as it is dealing with smaller blocks of data. Physical limitations on core-size available are often the limiting criteria for the computer programmer.

3) BIAS ERRORS FOR STATIONARY SYSTEMS

Let the short-term Fourier transform of $x(t)$ be denoted by: $\hat{X}_{t_{0}}(w)=\int_{-\infty}^{\infty} L_{t_{0}}(t) \cdot x(t) \exp (-j w t) d t$
where $L_{t_{0}}(t)=1 / T, \quad\left|t-t_{0}\right| \leqslant T / 2$
and $L_{t_{0}}(t)=0, \quad\left|t-t_{0}\right|>T / 2$

To find the expected value of the spectral estimates we take the mean over all t_{0}. Normalizing by the bandwidth, B_{T}, of $L(u)$ to obtain the 'density' function:

$$
\hat{\phi}_{x x}(w)=\frac{\hat{x}\left({ }_{w}^{*}\right) \cdot \hat{x}(w)}{B T}
$$

Taking the expected value over all t :

$$
E\left(\hat{\phi}_{x x}(w)\right)=\frac{1}{B_{T}} \int_{-\infty}^{\infty}|L(u)|^{2} \cdot X^{*}(w-u)^{\prime} \cdot X(w-u) d u \ldots 2.5
$$

Expanding $X(w-u)$ as a truncated Taylor series about $X(w)$ and ignoring terms in u^{3} and highers
$X(w-u) \simeq X(w)-u \cdot \frac{\partial X(w)}{\partial w}+\frac{u^{2}}{2} \cdot \frac{\partial^{2} X(w)}{\partial w^{2}}$
Substituting in equation 2.5:
$E\left(\hat{\phi}_{x x}(w)\right) \simeq \frac{1}{B T} \int_{-\infty}^{\infty} \phi_{x x}(w) .|L(u)|^{2} d u$
$+\frac{1}{B r} \int_{-\infty}^{\infty} \frac{\partial^{2} \phi_{x x}(w)}{\partial w^{2}} \cdot u^{2} \cdot|L(u)|^{2} \cdot d u+\left(\right.$ higher order terms in $\left.u^{4}\right)$.

Terms involving $u .|L(u)|^{2}$ integrate to zero as $|L(u)|$ is an even function in u. When $L(t)=1 / T$ for $\left|t-t_{0}\right| \leqslant T / 2$:

$$
L(u)=\sin \left(\frac{U T}{2}\right) /\left(\frac{U T}{2}\right)
$$

and $\int_{-\infty}^{\infty}|L(u)|^{2} \cdot d u=\frac{2 \pi}{T}=B_{T}$
the characteristic width of the filter $L(u)$ specified by the half power points. Also:

$$
\int_{-\infty}^{\infty} u^{2} \cdot|L(u)|^{2} \cdot d u=\frac{8 \pi}{T^{3}}=\frac{B I^{3}}{\pi{ }^{2}}
$$

Thus substituting back in equation 2.6:
$E\left(\hat{\phi}_{x x}(w)\right) \simeq \phi_{x x}(w)+\frac{B_{T}^{2}}{\pi^{2}} \cdot \frac{\partial^{2} \phi_{x x}(w)}{\partial w^{2}} \cdots2 .7$

The bias term is a function of $\mathrm{B}_{\mathrm{T}}{ }^{2}$. As the filter bandwidth of $L(u) \rightarrow 0$, bias $\left(\hat{\phi}_{x x}(w)\right) \rightarrow 0$ as a function of $B_{T}{ }^{2}$. Note that the result of equation 2.7 compares withs
$E\left(\hat{\phi}_{x x}(w)\right)=\phi_{x x}(w)+\frac{B_{T}{ }^{2}}{24} \cdot \frac{\partial^{2} \phi_{x x}(w)}{\partial w^{2}} \quad \ldots .2 .8$
as quoted by Bendat and Piersol when $L(u)$ is the ideal rectangular bandpass filter. This would indicate that the choice of time data window does not greatly affect the bias term.

Following a similar process we now derive the bias in the output spectrum density, $\hat{\phi}_{y y}(w)$, in terms of the input spectrum, the system, and the noise spectrum. Again considering a time function $y(t)$ multiplied by a rectangular window function $L(t)$ (where $L(t)$ is defined as before)
$E\left(\hat{\phi}_{y y}(w)\right)=\int_{-\infty}^{\infty}|L(u)|^{2} \cdot \phi_{y y}(w-u) d u$
$\phi_{Y y}(w-u)$ is expanded as a Taylor series about w and a bias term similar to that for $\hat{\phi}_{x x}(w)$ is obtained:
$E\left(\hat{\phi}_{y y}(w)\right)=\phi_{y Y}(w)+\frac{B_{T}{ }^{2}}{\pi^{2}} \cdot \frac{\partial^{2} \phi_{y y}(w)}{\partial w^{2}} \ldots . .2 .9$
where $\phi_{y y}(w)=\left|H^{2}(w)\right| \cdot \phi_{x x}(w)+\phi_{n n}(w)$
(the terms involving $\phi_{x n}(w)=0$ as $x(t)$ and $n(t)$ are uncorrelated)
Lastly we are interested in the expected value of the crossspectrum density, $\hat{\phi}_{x y}(w)$ 。 Again approximating $\phi_{x y}(w-u)$ by a three-term Taylor series expansion:
$E\left(\hat{\phi}_{x y}(w)\right)=\phi_{X Y}(w)+\frac{B_{T}{ }^{2}}{\pi^{2}} \cdot \frac{\partial^{2} \phi_{X y}(w)}{\partial w^{2}} \ldots . .2 .10$
where $\phi_{X Y}(w)=H(w) \cdot \phi_{X X}(w)$
In the derivations of the expected values of $\hat{\phi}_{y y}(w), \quad \hat{\phi}_{x y}(w)$, it has been assumed that T is sufficiently long for the transient effects of the filter to be negligible. (That is, $h(\tau) \rightarrow 0$ for $\tau \leqslant \varepsilon . T, \varepsilon \ll 1)$ In practice I can be chosen so that the bias terms involving $\mathrm{B}_{\mathrm{T}}{ }^{2}$ are minimal。 Under these conditions more serious sources of error are random errors due to short-term sampling.

4) RANDOM ERRORS

4(i) DISTRIBUTION OF AUTO-SPECTRAL ESTIMATES

The previous section studied the case where $x(t), y(t)$ are continuous random variables over a period $t_{1} \rightarrow t_{2}$ such that $t_{2}-t_{1}=T$. As the analysis programs implemented use a discrete Fourier transform algorithm taking blocks of sampled data, this section and Section 4 develop the statistics of stationary open-loop linear systems in terms of the discrete transform.
$\hat{x}\left(k w_{0}\right)=\frac{1}{N} \sum_{i=0}^{N-1} x_{t}(i) . \exp \left(-j \frac{2 \pi k i}{N}\right)$
$0 \leqslant k \leqslant N / 2$.
where $w_{0}=\frac{2 \pi}{T}, \quad T=N / f_{s}$
$\hat{Y}\left(k w_{0}\right)$ is defined in a similar way.

Let each $x_{t}(i)$ be a sample from a parent population with a probability distribution function given bys

$$
p(x(t))=N\left(0, \sigma x^{2}\right)
$$

where $x(t)$ is band-limited white noise with zero mean and variance $\sigma_{x}{ }^{2}$. The restriction to zero mean only affects the D.C. component.

Again a similar condition is applied to $n_{t}(i)$ and $y_{t}(i)$. Goodman (1957) has shown that:
$p\left(\hat{X}\left(k w_{0}\right)\right) \underset{\text { complex }}{=}\left(0, s x^{2}\right)$

where $S x^{2}, S n^{2}$ are the half powers in $x(t), n(t)$ respectively in the frequency band $k w_{0} \pm w_{0} / 2$. The total power over the frequency band $k w_{0} \pm w_{0} / 2$ is divided equally between the real and imaginary Fourier coefficients at frequency kw_{0}. Thus the variance term for $\hat{R x}, \hat{I x}$ is given by $\frac{\phi_{x x}\left(k w_{0}\right) \cdot w_{0}}{2}$ and for $\hat{R n}$, In by $\frac{\phi_{n n}\left(k w_{0}\right) \cdot w_{0}}{2}$

It is assumed that bias errors have been reduced to negligible proportions by a suitable choice of T.

The dependence on frequency is now assumed except in cases of ambiguity. The sampling distributions are presented for a particular frequency $k w_{0}$. For the discrete transforma

$$
\hat{\phi}_{x x}=\left(\hat{R} x^{2}+\hat{I} x^{2}\right)
$$

where $\hat{R} x$ and \hat{I}_{x} are the independent real and imaginary parts of $\hat{x}\left(k w_{0}\right)$. Thus, referring to equation 2.11, $\hat{\phi}_{x x}$ is Chi-square distributed with 2 degrees of freedom where:
$\operatorname{VAR}\left(\hat{\phi}_{x x}\right) \simeq 2 S x^{2}, E\left(\hat{\phi}_{x x}\right)=2 S x^{2}$
If L such independent estimates are used to form $\bar{\phi}_{\mathrm{Xx}}$, the average value, then:

$$
\begin{aligned}
& p\left(\bar{\phi}_{x x}\right)=\frac{(L)^{L} \cdot\left(\bar{\phi}_{x x}\right)^{L-1} \cdot \exp \cdot\left(-L \cdot \bar{\phi}_{x x} / 2 S x^{2}\right)}{2^{L} \cdot S_{x}^{2 L} \cdot \Gamma(L)} \cdot \ldots \\
& \operatorname{VAR}\left(\bar{\phi}_{x x}\right) \simeq 2 S x^{2} / L, E\left(\bar{\phi}_{x x}\right) \simeq 2 \cdot S_{x}^{2}, \Gamma(L)=(L-1)!
\end{aligned}
$$ The distribution of the output auto-spectrum $\bar{\phi}_{\mathrm{yy}}$ is likewise Chisquare distributed with 2 L degrees of freedom. Note that to obtain a power spectrum density function, $\bar{\phi}_{\mathrm{xx}}$ must be normalised to the resolution bandwidth w_{0}.

4 (ii) DISTRIBUTION OF CROSS-SPECTRAL ESTIMATES, $\bar{\phi}_{\mathrm{xy}}$

The cross-spectrum function is given as:

$$
\hat{\phi}_{x y}=\hat{X}^{*} \cdot \hat{Y} \quad \cdots \cdot2 .14
$$

For linear systems H, when the output is contaminated by a noise term N, we find that:

$$
\hat{Y} \simeq H . \hat{X}+\hat{N} \text {. } 2.15
$$

The relationship again assumes T to be much longer than the transient response time of the filter H. Substituting for Y in the equation 2.14:

$$
\hat{\phi}_{x y} \simeq H \cdot \hat{\phi}_{x x}+\hat{\phi}_{x n} \ldots . \cdot . \cdot . \cdot . \cdot 2.16
$$

where in the short term $\hat{\phi}_{x n}$ is non-zero. When there is no noise in the system $\left(S n^{2}=0\right)$ the distribution of $\hat{\phi}_{x y}$ is just a constant times a Chi-square as $\hat{\phi}_{x x}$ is Chi-square distributed with 2 degrees of freedom. However for $\mathrm{Sn}^{2} \neq 0$:
$\hat{R} x y=\hat{R} x\left(R_{H} \hat{R} x+\hat{R}_{n}\right)+\hat{I}_{x}\left(R_{H} \hat{I}_{x}-\hat{I}_{n}\right) \ldots2 .17(a)$
$\hat{I}_{x y}=\hat{R} x\left(I_{H} \hat{R} x+\hat{I}_{n}\right)+\hat{I}_{x}\left(I_{H} \hat{I}_{x}-\hat{R}_{n}\right) \ldots2 .17(b)$
Both $\hat{R} x y$ and $\hat{I}_{x y}$ are distributed in a similar manner about $R_{H} \cdot \phi_{X X}$ and $I_{H} \cdot \phi_{X_{X}}$ respectively. Thus a unified approach is given by studying the distribution of
$\hat{z}=\hat{X}_{R}\left(H \hat{X}_{R}+\hat{N}_{R}\right)+\hat{X}_{I}\left(H \hat{X}_{I}-\hat{N}_{I}\right)$
with $\bar{z}=\sum_{i=1}^{L} \hat{z}_{i} / H . S x^{2}$
Letting $H=R_{H}$, I_{H} in equation 2.18, we obtain expressions for $R x y$ and $\mathrm{I}_{x y}$ respectively. \bar{z} is not normalised by the factor L to find the mean values. This is a trivial step. In equation $2.18, X_{R}$, $\hat{N}_{R}, \hat{X}_{I}, \hat{N}_{I}$ are mutually independent and each estimate \hat{z}_{i} is independent of \hat{z}_{j} for $i \neq j$. Considering the distributions of two variables $\hat{X}_{R}\left(H \cdot \hat{X}_{R}+\hat{N}_{R}\right)$ and $\hat{X}_{I}\left(H \cdot \hat{X}_{I}+\hat{N}_{I}\right)$ it is seen that they are independent with identical distributions. Let:

$$
\begin{aligned}
& \hat{S}=H \hat{X}_{R}+\hat{N}_{R} \\
& \hat{t}=\hat{x}_{R} / H \cdot S x^{2}
\end{aligned}
$$

and $\hat{v}=\hat{t} \cdot \hat{S}$
\hat{V} is a function of two variables so:
$p_{V}(\hat{V})=\int_{-\infty}^{\infty} \frac{1}{|\hat{t}|} \cdot p_{t}(\hat{t}) \cdot p_{s}(\hat{v} / \hat{t}: \hat{t}) d t \ldots 2.19$
where $\operatorname{pt}_{t}(\hat{t})=N\left(0,1 / H \cdot S x^{2}\right)$
and $p_{s}(\hat{s}: \hat{t})=N\left(H . S x^{2} \cdot \hat{t}, S n^{2}\right)$
$\mathrm{Sn}^{2}=$ noise variance at frequency $\mathrm{kw} w_{0}$.
Substituting for $p_{t}(\hat{t})$ and $p_{S}(\hat{s}): \hat{t}$ in equation 2.19 and integrating:

$$
\begin{aligned}
p_{V}(\hat{V})=\frac{H \cdot S x}{S n} & \cdot \exp \left(H^{2} \cdot S x^{2} \cdot \hat{V} / S n^{2}\right) \\
& \cdot K_{0}\left\{\frac{H \cdot S x}{S n} \cdot|\hat{V}| \cdot\left(1+\frac{H^{2} S x^{2}}{S n^{2}}\right)^{\frac{1}{2}}\right\} \quad \cdot 2.20
\end{aligned}
$$

where $K \nu(x)$ is the modified Bessel function of order ν and \hat{V} is
considered positive in the sense of H positive.
Each \hat{z} (equation 2.18) is the sum of two independent variables whose distribution is given by equation 2.20. Thus \bar{z} is the sum of 2 L such variables. Taking the Fourier transform of equation 2.20, the characteristic function $f_{V}(w)$ is given by:
$f_{V}(w)=\alpha /\left(\alpha^{2} \cdot\left(1+\alpha^{2}\right)-\left(\alpha^{2}-j w\right)^{2}\right)^{\frac{1}{2}} \ldots 2.21$ where $\alpha=\frac{H_{H} S x}{S n}$. The characteristic function of $p_{z}(\bar{z})$ is thus given by:
$f z(w)=\alpha^{2 L} /\left(\alpha^{2} .\left(1+\alpha^{2}\right)-\left(\alpha^{2}-j w\right)^{2}\right)^{L} \ldots .2 .22$
Taking the inverse transform:
$p_{z} \cdot(\bar{z})=\frac{\alpha^{2 L} \cdot|\bar{z}| L_{-\frac{1}{2}} \cdot \exp \left(\alpha^{2} \cdot \bar{z}\right)}{\sqrt{ } \pi \cdot \Gamma(L) \cdot\left(2 \alpha \cdot\left(1+\alpha^{2}\right)^{\frac{1}{2}}\right)^{L-\frac{1}{2}}} \cdot K_{L-\frac{1}{2}}\left(\alpha\left(1+\alpha^{2}\right)^{\frac{1}{2}} \cdot|\bar{z}|\right)$
in the range $-\infty \leqslant \bar{z} \leqslant \infty$
where $\Gamma(\mathrm{L})=$ Gamma integral $=(\mathrm{L}-1)$!
Now reverting to $\bar{R}_{x y}$ and $\bar{I}_{x y}$ we find, letting $H=R_{H}$;

$$
\bar{z}=L_{0} \cdot \bar{R}_{x y} / R_{x y}
$$

and letting $H=I_{H}$:

$$
\bar{z}=\mathrm{L} \cdot \bar{I}_{x y} / I_{x y}
$$

where Ry and Ixy are the expected values of the real and imaginary
parts of $\phi_{x y}$. Taking the first and second moments of equation 2.23: $\mu_{z}=\sum_{i=0}^{L-1} \frac{\alpha^{2 L}(L-1+i)!(L+1-i)!(L-1)}{2^{L+1}(L-1)!i!D^{L+i}}$.

$$
\frac{\left(D+\alpha^{2}\right)^{L+1-i}+\left(D-\alpha^{2}\right)^{L+1-i}}{\left(D^{2}-\alpha^{4}\right)^{L+2-i}}
$$

and

$$
\begin{aligned}
& \operatorname{VaR}(\bar{z})=\sum_{i=0}^{L-1} \frac{\frac{2}{}_{2 L}^{(L-1+i)}!(L+1-i)!(L-i)}{2^{L+1}(L-1)!i!D^{L+i}} . \\
& \frac{\left(D+\alpha^{2}\right)^{L+2-i}+\left(D-\alpha^{2}\right)^{L+2-i}}{\left(D^{2}-\alpha^{4}\right)^{L+2-i}}-\mu_{z}^{2} \\
& \text {. 2.24(b) }
\end{aligned}
$$

where $D=\alpha\left(1+\alpha^{2}\right)^{\frac{1}{2}}$.
Although the expressions for the mean and variance as given above are cumbersome it is easily shown that if $\alpha \gg 1$ then:

$$
\mu_{z} \rightarrow 2 \mathrm{~L} \quad \text { and } \operatorname{VAR}(\bar{z}) \rightarrow 4 \mathrm{~L}
$$

The result is that expected of a Chi-square distribution with 2 L degrees of freedom. α becomes large as Sn^{2} (the noise variance) tends to zero. In the limit equation 2.23 collapses to a Chi-square distribution as expected.

4(iii) DISTRIBUTION OF FREQUENCY RESPONSE ESTIMATES, \bar{H}

In the absence of noise, and for short memory systems, the frequency response can in theory be estimated extremely accurately. In practice the accuracy of short-term estimates is limited by transient effects associated with the initial conditions. The use of a suitable time data window can minimise the effects of these
transients at the expense of loss of frequency resolution. In general the noise term is finite leading to non-zero short-term correlation errors between the input signal and the noise.

Goodman (1957) and Akaike (1965) have derived the distribution associated with frequency response estimates of bivariate complex Gaussian systems. An outline of the general approach is given here, rephrasing the distribution parameters in terms of those encountered in open-loop systems (Figure 1). This procedure is useful in that some interim results lead to a simple stationarity test for openloop systems and some fundamental relationships are introduced which are used extensively in the next chapter on closed-loop systems.

$$
\bar{H}=\bar{\phi}_{x y} / \bar{\phi}_{x x} \simeq H+\bar{\phi}_{x n} / \bar{\phi}_{x x} \ldots \cdot .25
$$

where again $\hat{Y} \simeq H . \hat{X}+\hat{N}$. Defining the error in \bar{H}_{z} $\bar{E}_{H}=\bar{\phi}_{x n} / \bar{\phi}_{x x}=\bar{M}_{E} \cdot \exp \left(j \theta_{E}\right) \quad \ldots . .2 .26$
where $\bar{\phi}_{x x}=\bar{M}_{x}^{2}, \bar{\phi}_{x n}=\frac{1}{L} \sum_{i=1}^{L} \hat{M}_{x} \hat{M}_{n} \cdot \exp \left(j\left(\hat{\theta}_{n}-\hat{\theta}_{x}\right)\right)$
Now: $\begin{aligned} p(\hat{M} x, \hat{\theta} x)= & \frac{\hat{M} x \cdot \exp \left(-\hat{M} x^{2} / 2 . S x^{2}\right)}{2 \pi \cdot S_{x}{ }^{2}} \\ & \ldots \ldots \ldots .0 \leqslant M x \leqslant \infty\end{aligned}$

$$
p\left(\hat{\theta}_{x}\right)=1 / 2 \pi \quad, \quad 0 \leqslant \theta x \leqslant 2 \pi
$$

and similarly for $p\left(\hat{M}, \hat{\theta_{n}}\right)$ substituting $S n^{2}$ for $S x^{2}$. The above distribution is a transformation of the jointly normal distribution of $\hat{R} x, \hat{I} x$ to $\hat{M} x$, $\hat{\theta} x$ using:

$$
\hat{M x}=\sqrt{ }\left(\hat{R}^{2}+\hat{I} x^{2}\right) \quad, \quad \hat{\theta} x=\tan ^{-1}(\hat{I} x / \hat{R x})
$$

$$
\text { We now consider the distribution of } \hat{M} \times n . \exp (j \hat{\theta} \times n) \text { given } \hat{M} \times .
$$ From the definition of $\hat{\phi}_{x n}$ above:

$$
\hat{M} \times n=\hat{M} \times \cdot \hat{M}_{n}, \hat{\theta}_{x n}=\hat{\theta}_{n}-\hat{\theta}_{x}
$$

The Jacobian of the transformation is given bys

$$
J(\hat{M} \times n, \hat{\theta} \times n)=\left|\begin{array}{cc}
\frac{\partial \hat{M} \times n}{\partial M n} & \frac{\partial \hat{M} \times n}{\partial \theta n} \\
\frac{\partial \hat{\theta} \times n}{\partial M n} & \frac{\partial \hat{\theta} \times n}{\partial \theta x}
\end{array}\right|=\hat{M} x
$$

and $p(\hat{M} x n, \hat{\theta} x n: \hat{M} x)=\int_{0}^{2 \pi} \frac{p_{M n, \theta n}\left(\frac{\hat{M}_{x n}}{\hat{M} x},(\hat{\theta} x n+\hat{\theta} x): \hat{M}_{x}\right) d \hat{\theta}_{x}}{J\left(\hat{M}_{x n}, \hat{\theta}_{x n}\right)}$
Integrating with respect to θx :
$p(\hat{M} \times n, \hat{\theta} \times n: \hat{M} x)=\frac{\hat{M} \times n \cdot \exp \left(-\hat{M} \times n^{2} / 2 \cdot S n^{2} \cdot \hat{M} x^{2}\right)}{2 \pi \cdot S n \cdot \hat{M}_{x}{ }^{2}}$
Thus by specifying just the magnitude of \hat{X} and not the phase, $\hat{\phi} \times n$ is a jointly normally distributed variable with independent real and imaginary parts. On averaging $\bar{\phi}_{x y}, \bar{\phi}_{x x}$ over L independent estimates the distribution of $\bar{\phi}_{\mathrm{xn}}$ is given by: $p\left(\bar{M}_{x n}, \bar{\theta}_{x n}: \bar{\phi}_{x x}\right)=\frac{L \cdot \bar{M}_{x n} \cdot \exp \left(-\bar{M}_{x n}{ }^{2} \cdot L / 2 \cdot \mathrm{Sn}^{2} \cdot \bar{\phi}_{x x}\right)}{2 \pi \cdot \mathrm{Sn}^{2} \cdot \bar{\phi}_{x x}}$ but $\overline{\mathrm{E}}_{\mathrm{H}}=\bar{\phi}_{\mathrm{xn}} / \bar{\phi}_{\mathrm{xx}}$. So:

$$
p\left(\bar{M}_{E}, \bar{\theta}_{E}: \bar{\phi}_{x x}\right)=\frac{L \cdot \bar{\phi}_{x x} \cdot \bar{M}_{E} \cdot \exp \left(-\bar{M}_{E}^{2} \cdot \overline{\phi x x} \cdot L / 2 \cdot \mathrm{nn}^{2}\right)}{2 \pi \cdot S n^{2}}
$$

This is the conditional distribution of errors in $\overline{\mathrm{H}}$ given the input spectrum $\bar{\phi}_{x x}$. This is just the bivariate Gaussian distribution with zero mean and variance ($\mathrm{Sn}{ }^{2} / \mathrm{L} . \bar{\phi}_{\mathrm{xx}}$).

$$
p\left(\bar{E}_{H}\right)=p\left(\bar{M}_{E}, \bar{\theta}_{E}\right)=\int_{0}^{\infty} p\left(\bar{M}_{E}, \bar{\theta}_{E}: \bar{\phi}_{x x}\right) \cdot p\left(\bar{\phi}_{x x}\right) d \bar{\phi}_{x x}
$$ where $p\left(\phi_{\mathrm{xx}}\right)$ is the Chi-square distribution with 2 L degrees of freedom. Performing the integrations

$$
P\left(M_{E}, \quad \theta_{E}\right)=\frac{L \cdot S x \cdot M_{E}}{\operatorname{Sn} \pi\left(1+\frac{S x^{2}}{S n^{2}} \cdot M_{E}^{2}\right)^{L+1}} \quad \cdots2 .28
$$

Equation 2.28 shows that the error in the frequency response estimate is approximately independent of the system H. The variance of the estimate is a function of the ratio $S x^{2}$ (the input signal power) to Sn^{2} (the noise power) and L , the number of independent estimates used. The distribution as presented differs from that of Jenkins and Akaike (see references 4,3) in that it is not a function of the sampled coherency estimate between input and output.

Thus the distribution of a variable $\overline{\mathrm{SN}}$ (estimates of $\mathrm{Sx}^{2} / \mathrm{Sn}^{2}$) is investigated in preference to that of coherency as this ratio has a more direct bearing on the variance of the frequency response estimate.

4(iv) NOISE IN OPEN-LOOP SYSTEMS

A conventional method of gaining information on the accuracy of the frequency response estimate is to calculate the coherency between $x(t)$ and $y(t)$.

$$
C x y^{2}=\frac{|\phi x y|^{2}}{\phi x x \cdot \phi y y}
$$

Again substituting for \hat{Y} in terms of H, \hat{X} and \hat{N} :

$$
\operatorname{Cxy}^{2}=\frac{1}{1+\frac{\phi_{n n}}{|H|^{2} \cdot \phi_{x x}}} \quad \text { in the range } 0 \leqslant C_{x y}{ }^{2} \leqslant 1
$$

However, when investigating the accuracy of \bar{H}, we wish to know the value of $S N\left(=\phi_{x x} / \phi_{n n}\right)$. The coherency function does not give this.

The best obtainable estimate of $\phi_{n n}$ is given bys

$$
\bar{\phi}_{\hat{n} \hat{n}}^{\prime}=\bar{\phi}_{y y}-\left|\bar{H}^{2}\right|^{2} \bar{\phi}_{x x} \ldots \ldots 2.29
$$

(\hat{n} denotes the best estimate of n).
Substituting for Y in equation 2.29:

$$
\bar{\phi}_{n n}^{\wedge \hat{n}} \simeq \bar{\phi}_{n n}-\frac{\left.\bar{\phi}_{\mathrm{xn}}\right|^{2}}{\bar{\phi}_{\mathrm{xx}}} \cdots \cdots \cdot \cdots \cdot \cdot \cdot 2.30
$$

Adopting Akaike's $\left.{ }^{\mid r e f} 6\right\rangle$ distribution for sampled coherency to the case when the two signals are uncorrelated
$P_{C x n}\left(\bar{C}_{x n}\right)=2(L-1) \cdot \bar{C}_{x n} .\left(1-\bar{C}_{x n}{ }^{2}\right)^{L-2} \cdots2 .31$ where $\overline{\mathrm{C}}_{\mathrm{Xn}}$ is defined in the same manner as $\overline{\mathrm{C}}_{\mathrm{xy}}$ 。 ($\mathrm{L}=$ no. of blocks)

The coherency estimate between the input signal and the noise is independent of the input and noise auto-spectral estimates. The variance term in $\stackrel{p}{\mathrm{p}} \mathrm{eqn} .2 .31$ is a function of L only. Simulation results estimating the joint probability distribution $p\left(\bar{C}_{x n}, \bar{\phi} x x, \bar{\phi} n n\right)$ show that

$$
p\left(\bar{C}_{x n}, \bar{\phi}_{x x}, \bar{\phi}_{n n}\right)=p\left(\bar{C}_{x n}\right) \cdot p\left(\bar{\phi}_{x x}\right) \cdot p\left(\bar{\phi}_{n n}\right)
$$

when $x(t)$ and $n(t)$ are Gaussian and uncorrelated. Thus equation 2.31 can be used directly to find $p\left(\left|\bar{\phi}_{x n}\right|{ }^{2} ; \bar{\phi}_{x x}, \bar{\phi}_{n n}\right)$. Substituting for $\bar{C}_{x n}$ in terms of $\bar{\phi}_{x x}, \bar{\phi}_{n n}$ and $\bar{\phi}_{x n}$ and performing the variable transformation:

$$
p\left(\left|\bar{\phi}_{x n}\right|^{2}: \bar{\phi}_{x x}, \bar{\phi}_{n n}\right)=\frac{(L-1) \cdot\left(\bar{\phi}_{x x} \cdot \bar{\phi}_{n n}-\left|\bar{\phi}_{x n}\right|^{2}\right)^{L-2}}{\left(\bar{\phi}_{x x} \cdot \bar{\phi}_{n n}\right)^{L-1}}
$$

The distribution of a variable $\bar{z}(=|\bar{\phi} x n| 2 / \bar{\phi} x x)$ is
obtained from equation 2.32.
$p\left(\bar{z}: \bar{\phi}_{x x}, \bar{\phi}_{n n}\right)=\frac{(L-1) \cdot\left(\bar{\phi}_{n n}-\bar{z}^{L-2}\right.}{\bar{\phi} n n}$

$$
\text { in the range } 0 \leqslant \bar{z} \leqslant \bar{\phi} n n
$$

From equation 2.30 the best obtainable estimate of $\bar{\phi} n n$ is given bya

$$
\bar{\phi} \hat{n n}=\bar{\phi} n n-\bar{z}
$$

Furthermore, both $\bar{\phi} n n$ and \bar{z} are independent of $\bar{\phi} \times x$. The distribution of $\bar{\phi} \hat{n} n$ is thus given by s
$p(\bar{\phi} \hat{n} \hat{n})=\int_{0}^{\infty} p_{\phi_{\hat{n} n}}\left(\bar{\phi}_{n n n}+\bar{z}\right) \cdot p\left(\bar{z}, \bar{\phi}_{n n}\right) \cdot d \bar{z}$
Substituting the Chi-square distribution with 2 L degrees of freedom for $p\left(\bar{\phi}_{n n}\right)$ and integrating:

This is just the Chi-square distribution with $2 \mathrm{~L}-2$ degrees of freedom. Thus if $L=1, \bar{\phi}_{n n}$ is constrained to be zero. The best estimate of Sn^{2} is given by a

$$
\hat{S}^{2}=\frac{L}{2(L-1)} \cdot \bar{\phi}_{n \hat{n}}^{\hat{\wedge}}
$$

and the signal-to-noise ratio estimate is given by;

$$
\overline{S N}=(L-1) . \bar{\phi}_{x x} / L . \bar{\phi}_{n n} \ldots \ldots .35
$$

As $\bar{\phi} x x$ and $\bar{\phi} n n$ are independent the distribution of $\overline{S N}$ is given by
$p(\overline{S N})=\int_{0}^{\infty} \bar{\phi}_{x x} p_{\bar{\phi}_{x x}}\left(\bar{\phi}_{x x}\right) \cdot p_{\phi_{n n}}\left(\frac{\left.(L-1) \cdot \bar{\phi}_{x x}\right)}{L \cdot \overline{S N}} \cdot d \bar{\phi}_{x x}\right.$
Substituting for the respective distributions and integrating: $p(\overline{S N})=\frac{\left[\frac{L}{L-1}\right]^{L} \cdot \Gamma(2 L-1) \cdot \overline{S N}}{\frac{S x^{2}}{S_{n}{ }^{2}} \cdot \Gamma(L-1) \cdot\left[1+\frac{L S n^{2} \cdot \overline{S N}}{(L-1) \cdot S_{x}^{2}}\right]^{2 L-1}} \cdot \cdots \cdot 2.36$
in the range $0 \leqslant \overline{S N} \leqslant \infty$ and for $L \geqslant 2$.
The variable $F=\overline{S N} \cdot \frac{L}{(L-1)} \cdot \frac{S^{2}}{S_{x^{2}}^{2}} \quad$ is 'Fisher' distributed with

2L, 2L-2 degrees of freedom. The expressions for the mean and variance
of equation 2.34 are easily found from those of the Fisher distribution.
The SN value is not intended as a replacement for coherency, but rather as a supplementary estimate. Its usefulness is that il gives direct information on the likely variance of the frequency response estimate.

5) STATIONARITY TESTING OF OPEN-LCOP SYSTEM:S

Previous authors (Priestley, Tong, Bendat and Piersol) have suggested non-parametric tests for the stationarity of bivariate complex systems. The test put forward here has the advantage of simplicity.

Considering Figure 1 we are interested in variations of three parameters, the input spectrum $\Phi \times x$, the system H, and the noise spectrum Φ nn.

Ideally, we would like to test each independently. This is not possible, as it demands prior knowledge of at least one of these parameters, which in general is not available.

Auto-spectral estimates are most easily tested by forming a new variable, $F=\bar{\phi}_{x x}^{l} / \bar{\phi}_{x x}^{2}$ (where $\bar{\phi}_{x x}^{l}$ and $\bar{\phi}_{x x}^{2}$ arn two independent estimates) with F Fisher distributed with $2 \mathrm{~L}_{1}, 2 \mathrm{~L}_{2}$ degrees of freedom. This test has been discussed in detail by Bendat and Piersol and is not pursued here.

A test for changes in H can be derived using equation 2.27. This distribution gives the conditional probability of obtaining an error \bar{E}_{H} given an estimate of the input spectrum. Thus variations in the input are allowed for by using the best estinate, $\bar{\Phi} \times x$, as a parameter in the distribution.

Consider two independent frequency response estimates \bar{H}_{1}, \bar{H}_{2} taken over $\mathrm{L}_{1}, \mathrm{~L}_{2}$ independent sets of time data respectively. Let E_{1}, E_{2} be the errors in \bar{H}_{1}, \bar{H}_{2}. Then:

$$
p\left(E_{1}: \bar{\phi}_{x x}^{l}\right)=\underset{\text { complex }}{N}\left(0,{S n_{1}}_{2}^{N} L_{1} \cdot \bar{\phi}_{x x}^{l}\right)
$$

and:

$$
p\left(E_{2}: \bar{\phi}_{x x}^{2}\right)=\underset{\text { complex }}{N}\left(0, \mathrm{Sn}_{2}^{2} / \bar{\phi}_{x x \cdot}^{2} L_{2}\right)
$$

Let $\bar{D}=\bar{H}_{1}-\bar{H}_{2}=\left(H_{1}-H_{2}\right)+\left(E_{1}-E_{2}\right)$
Then:
$p\left(\bar{D}: \bar{\phi}_{x x}^{1}, \quad \bar{\phi}_{x x}^{2}\right)=\underset{\text { complex }}{N}\left(H_{1}-H_{2},\left[\frac{\mathrm{Sn}_{1}^{2}}{L_{1} \cdot \bar{\phi}_{x x}^{\prime}}+\frac{\mathrm{Sn}_{2}^{2}}{L_{2} \cdot \bar{\phi}_{x x}^{2}}\right]\right) . .2 .37$
Assuming the system to be stationary, $\mathrm{H}_{1}=\mathrm{H}_{2}$, and the distribution of \bar{D} is the bivariate normal distribution with independent real and imaginary coefficients. Thus $|\overline{\mathrm{D}}|^{2}$ is Chi-square distributed with 2 degrees of freedom and variances

$$
\operatorname{VAR}\left(\bar{D}^{2}\right)=\left[\frac{\mathrm{Sn}_{1}^{2}}{\mathrm{~L}_{1} \cdot \bar{\phi}_{\mathrm{x} x}^{1}}+\frac{\mathrm{Sn}_{2}^{2}}{\mathrm{~L}_{2} \cdot \bar{\phi}_{\mathrm{xx}}^{2}}\right] \cdots \cdot 2.38
$$

If the noise source is known to be stationary the best estimate of Sn^{2} can be used instead of $\mathrm{Sn}_{1}{ }^{2}, \mathrm{Sn}_{2}{ }^{2}$. This is given by:

$$
\hat{S n}^{2} \simeq \frac{L_{1} \cdot \bar{\phi} \hat{n} \hat{n}+L_{2} \cdot \bar{\phi}_{\hat{n} \hat{n}}^{2}}{2\left(L_{1}+L_{2}-1\right)}
$$

Substituting for $\mathrm{Sn}_{1}^{2}, \mathrm{Sn}_{2}^{2}$ in equation 2.38:

$$
\widehat{\operatorname{VAR}\left(\overline{D N}_{1}^{2}\right)} \simeq \frac{\left(L_{1} \cdot \bar{\phi} \hat{n} \hat{n}+L_{2} \cdot \bar{\phi}_{\hat{n} \hat{n}}^{2}\right)}{2\left(L_{1}+L_{2}-1\right)} \cdot\left[\frac{1}{L_{1} \cdot \bar{\phi}_{x x}^{1}}+\frac{1}{L_{2} \cdot \bar{\phi}_{x x}^{2}}\right]
$$

However in general when the noise is known to be time-varying:

人 denotes the best obtainable estimate of $\operatorname{VAR}\left(\bar{D}^{2}\right)$. This approximation becomes better as L_{1}, L_{2} become large. The test is only valid for $L_{1}, L_{2} \geqslant 2$ as estimates of $\hat{\phi} \hat{n} \hat{n}=0$ for $L=1$.

By relating the noise spectrum estimate to the error in the frequency response it is found thats

$$
\bar{\phi} \hat{n} \hat{n}=\bar{\phi}_{n n}-\left|E_{H}\right|^{2} \bar{\phi}_{x x}
$$

Hence:

$$
\overline{S N}=\frac{(L-1)}{L} \cdot\left[\frac{1}{\frac{\bar{\phi}_{n n}}{\bar{\phi}_{\mathrm{xx}}}-\left|\mathrm{E}_{\mathrm{H}}\right|^{2}}\right]
$$

If $\left|E_{H}\right|^{2}$ is only slightly less than $\bar{\phi}_{n n} / \bar{\phi}_{x x}$, then $\overline{S N}$ will tend to overestimate $S N$, and $\operatorname{VAR}\left(\bar{D}^{2}\right)$ will tend to underestimate the true variance. This tendency is allowed for by the normalisation factor in equation 2.40 of ($L-1$) / L。 However when L is small there is a greater chance of seriously underestimating the variance of \bar{D}^{2} and hence predicting that a change has occurred in H. In many instances we are interested in detecting changes in H over a wide frequency band. The variable si $\left\{=\bar{D}_{i}{ }^{2} / \widehat{\operatorname{VAR}}\left(\bar{D}_{i}{ }^{2}\right)\right\}$ is approximately Chi-square distributed with unit variance: i denotes the $i^{\text {th }}$ frequency point. As adjacent frequency points are approximately independent the variable \bar{S} given by :
will be Chi-square distributed with $2 M$ degrees of freedom, where $M=\left(I_{2}-I_{1}+1\right)$. Thus the stationarity confidence interval
satisfied by $\overline{\mathrm{S}}$ is given by:

$$
p\left(x^{2},\left\{x^{2} \leqslant \bar{s}\right\}\right)=\int_{0}^{\bar{s}} p_{2 M}\left(x^{2}\right) d x^{2} \ldots . . .2 .42
$$

The system may be considered stationary over the frequency range $I_{1} w_{0} \leqslant w \leqslant I_{2} w_{0}$ if this confidence level is less than some preset level α_{0} Typically α might be chosen as 0.95 . Chapters 4 and 5 make use of this test for identifying changes in the speech waveform and the onset of fatigue cracking respectively.

The distributions developed are for stationary systems. To justify their use in time-varying situations we now investigate some properties of short-term Fourier transforms when applied to time-varying systems.
6) SOME EXTENSIONS OF FOURIER TECHNIQUES TO TIME-VARYING SIGNALS

With reference to Figure 1 , let $\phi x x(w), \phi n n(w)$ and $H(w)$ all be functions of time. In particular we limit ourselves to considering functions which vary slowly over some finite period T. For meaningful results I must be sufficiently long so that any short-term Fourier analysis of $x(t), y(t)$ for $t \in T$ does not lead to undue bias errors in estimates of $\phi_{x x}(w), \phi_{y y}(w)$ etc, due to insufficient frequency resolution. Thus by slowly varying we mean with respect to the process $x(t), y(t), t \in T$ 。

In the interval $t \in T$ let $\phi_{x x}(t, w), H(t, w)$ be continuous and differentiable functions of time and frequency such that

$$
|F(t, w)|<\infty \quad \forall t \in T
$$

$$
\frac{\partial^{\alpha} F(t, w)}{\partial_{w}^{\alpha}} \text { is continuous for finite } \alpha
$$

where $F(t, w)$ is either of the functions $\phi x x(t, w), H(t, w)$. Consideration of an additional noise term $\phi_{n n}(t, w)$ at the output of the system is not necessary for developing the Fourier relationships between $y(t)$ and $x(t)$. We need only show that a time-dependent frequency response can be defined in the interval $t \in T$ using short-term Fourier transform techniques. Let:

$$
H(t, \tau)=\int_{-\infty}^{\infty} H(t, u) \cdot \exp (j u t) \quad d u \ldots23
$$

such that a) $|H(t, \tau)|<\infty \quad t \in T$ and $\forall \tau$
b) $\quad|H(t, \tau)| \simeq 0$ for $\tau>\quad \tau \max \quad t \in T$.
c) $\quad|H(t, \tau)|=0$ for $\tau \leqslant 0$

Let the input signal $x(t)$ be the output from a time-dependent generator function:

$$
x(t)=\int_{-\infty}^{\infty} x_{t}(\Omega) . \exp (+j \Omega t) d \Omega \quad \ldots . \cdot . \cdot 2.44
$$

Writing the time-dependent convolution equation relating the input $x(t)$ to the output $y(t)$ we obtains

$$
y(t)=\int_{0}^{\tau} H(t, \tau) \cdot x(t-\tau) d \tau \quad \text { ••••••••2.45 }
$$

Substituting for $H(t, \tau), x(t-\tau)$:

$$
\begin{array}{r}
y(t)=\int_{0}^{\tau \max } \int_{-\infty}^{\infty} H(t, u) \cdot \exp (+j u \tau) d u \cdot \int_{-\infty}^{\infty} X(t-\tau)(\Omega) . \exp (+j \Omega(t-\tau)) d \Omega \\
d \tau \ldots2 .46
\end{array}
$$

Let $Y_{T}(w)$ be the Fourier transform of $y(t), t \in T$. We assume
$y(t), x(t)$ are continuous processes over a short time record T. Arbitrarily, we let T be centred about $\mathrm{t}=0$. Taking the Fourier transform of equation 2.46:
$Y_{T}(w)=\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{0}^{\tau \max } \iint_{-\infty}^{\infty} H(t, u) \cdot X_{(t-\eta)}(\Omega) \cdot \exp (j(u-\Omega) \tau)$.
$. \exp (j(\Omega-w) t) . d u d \Omega d \tau d t$. . . . 2.47
In the interval T let $H(t, u)$ be closely approximated by a truncated Taylor series expansion about $t=0$. We first consider the case when $X(t, \Omega) \equiv X(\Omega)$, that is, stationary input.
$H(t, u) \simeq H_{0}(u)+\left.t \cdot \frac{\partial H(t, u)}{\partial t}\right|_{t=0}+\left.\frac{t^{2}}{2} \cdot \frac{\partial^{2} H(t, u)}{\partial t^{2}}\right|_{t=0}$
(+ higher order terms in t^{3} which are small.) 2.48 Substituting for $H(t, u)$ in equation 2.47:
$Y_{T}(w) \simeq \frac{1}{T} \int-T / 2 \iint_{0}^{\tau \max } \iint_{-\infty}^{\infty}\left\{H_{0}(u)+\frac{\partial H_{0}(u) . t}{\partial \tau}\right.$
$\left.+\frac{\partial^{2} H_{0}(w)}{\partial \tau^{2}} \cdot \frac{t^{2}}{2}\right\} \cdot X(\Omega) \cdot \exp (j(u-\Omega) \tau) \cdot \exp (j(\Omega-w) t) \cdot$
. $d u d \Omega d \tau d t$ 2.49

The limits of the integral with respect to τ may be extended to $\pm \infty$, remembering $H(t, \tau)=0$ for $\tau \leqslant 0, \tau \geqslant$ tmax. Thus integrating with respect to τ :
$Y_{T}(w)=\frac{1}{T} \iint_{-T / 2}^{T / 2} \iint_{-\infty}^{\infty}\left\{H_{0}(u)+t \cdot \frac{\partial H_{0}(u)}{\partial t}+\frac{t^{2}}{2} \cdot \frac{\partial^{2} H_{0}(\Omega)}{\partial t^{2}}\right\} X(\Omega)$
$\delta_{0}(u-\Omega) \cdot \exp (j(\Omega-w) t) \cdot d u d \Omega d t$. 2.50
where δ_{0} is the dirac delta function at $u-\Omega=0$. The extension
of the limits of integration in τ to \pm_{∞} is not straightforward when $X(\Omega)$ is also a function of t. Integrating equation 2.50 with respect to u :
$Y_{T}(w)=\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{-\infty}^{\infty}\left\{H_{0}(\Omega)+t \cdot \frac{\partial H_{0}(\Omega)}{\partial t}+\frac{t^{2}}{2} \cdot \frac{\left.\partial^{2} H_{0}(\Omega)\right\}}{\partial t^{2}}\right.$.

$$
x(\Omega) . \exp (+j(\Omega-w) t) . d \Omega d t \quad \text {. } 2.51
$$

We split this integral into two constituent parts, the main part and a bias term. Considering the main parta

$$
A=\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{-\infty}^{\infty} H_{0}(\Omega) \cdot X(\Omega) \cdot \exp (+j(\Omega-w) t) \cdot d \Omega d t \cdot \cdot 2.52
$$

Integrating with respect to t we obtain the classical relationship between $Y_{T}(w)$ and $X(w)$ for stationary systems modified over the interval I by a data window $\mathrm{L}(\mathrm{t})$ of the form:

$$
\begin{aligned}
& L(t)=\frac{1}{T},|t| \leqslant T / 2 \\
& L(t)=0,|t|>T / 2 \quad \text { Thus: } \\
& A=\int_{-\infty}^{\infty} H_{0}(\Omega) X(\Omega) \cdot \frac{\sin \frac{(\Omega-w) T}{2}}{\left(\frac{(\Omega-w) T}{2}\right)} d \Omega \quad2 .53
\end{aligned}
$$

The use of, for example, a Hanning window for $L(t)$ will result in a correspondingly different window in equation 2.53 and may be advantageous in reducing the bias terms given by:

$$
\begin{gathered}
\left.B=\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{-\infty}^{\infty} t \cdot \frac{\partial H_{0}(\Omega)}{\partial t}+\frac{t^{2}}{2} \cdot \frac{\left.\partial^{2} H_{0}(\Omega)\right\}}{\partial t^{2}}\right\}(\Omega) \cdot \exp (j(\Omega-w) t) \cdot \\
d \Omega d t \quad \cdots \cdot \cdot . . .2 .54
\end{gathered}
$$

We now investigate the behaviour of B in the limit $T \rightarrow 0$. Considering the term involving $\frac{\partial H_{0}(\Omega)}{\partial t}:$
$I_{1}=\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{-\infty}^{\infty} t \cdot \exp (j(\Omega-w) t) \cdot \frac{\partial H_{0}(\Omega)}{\partial t} \cdot X(\Omega) \cdot d \Omega d t . \operatorname{d.55(a)}$
Integrating by parts with respect to t s

$$
I_{1}=\int_{-\infty}^{\infty} \frac{\partial H_{0}(\Omega)}{\partial t} \cdot x(\Omega) \cdot\left(j \cdot \frac{2 \cdot \sin \frac{(\Omega-w) T}{2}}{T \cdot(\Omega-w)^{2}}-j \cdot \frac{\frac{(\Omega-w) I}{2}}{(\Omega-w)}\right) \cdot d \Omega \cdot 2.55(b)
$$

Letting $T \rightarrow 0$ and expanding the sine and cosine terms in a power series:

$$
\begin{align*}
I_{l^{\prime} / \mathrm{T}} & \simeq 0 \\
\rightarrow 0 & \frac{\partial H_{0}(\Omega)}{\partial t} \cdot X(\Omega) \cdot\left(-j \cdot \frac{(\Omega-w) T^{2}}{24}\right) \cdot d \Omega \\
-0 \text { as a function in } T^{2} & \text {...... }
\end{align*}
$$

Investigating the bounds of I_{1} as a function of T :

$$
\begin{aligned}
\left|I_{1}\right| & \leqslant \frac{1}{T} \int_{-T / 2}^{T / 2} \int_{-\infty}^{\infty}\left|\frac{\partial H_{0}(\Omega)}{\partial t}\right| \cdot|X(\Omega)| \cdot|t| \cdot d t \quad d \Omega \ldots 2.57 \\
& =\frac{T}{4} \int_{-\infty}^{\infty}\left|\frac{\partial H_{0}(\Omega)}{\partial t}\right| \cdot|X(\Omega)| \cdot d \Omega \ldots .2 .58
\end{aligned}
$$

Tong and Priestley have considered the time-varying case when $X(t, \Omega)$, $H(t, \Omega)$ can be represented in the form:

$$
\begin{aligned}
X(t, \Omega) & =\int_{-\infty}^{\infty} x(s, \Omega) \exp (j s t) d s \ldots \cdot \operatorname{CM} 2.59 \\
\text { and } H(t, u) & =\int_{-\infty}^{\infty} H(z, u) \exp (j z t) d z \ldots 2.60
\end{aligned}
$$

where $|X(s, \Omega)| \simeq 0$ for $|s|>\operatorname{Smax}$ and

$$
|H(z, u)| \simeq 0 \text { for }|z|>Z \max \text { such that } S \max , Z \max
$$

are $\ll \Omega_{\max , U \max . ~}$ max,Umax are defined in a similar manner to Smax and Zmax.

If $H(t, \Omega)$ belongs to this class of oscillatory functions then we can derive maximum values for $\frac{\partial H_{0}(\Omega)}{\partial t}$ in terms of Zmax.

$$
\frac{\partial H_{0}(\Omega)}{\partial t}=\int_{-Z \max }^{Z \max }-j \cdot z \cdot H(z, \Omega) \cdot d z \quad \cdots \cdot \cdot \cdot 2.61
$$

Using this relationship in equation 2.58 and integrating with respect to $\Omega 8$

$$
\left|I_{1}\right| \leqslant \frac{T}{4} \cdot\left|H_{0}(\Omega)\right|_{\max } \cdot_{\Omega} \quad \sigma x \cdot Z \max ^{2} \cdots \cdot \cdot \cdot \cdot 2.62(a)
$$

If the system is slowly varying with respect to $x(t)$ we can choose T such that $Z \max \ll 2 \pi / T$, that is $Z \max =\alpha / T$ such that $\alpha \ll 1$. The strict inequality of equation $2.62(a)$ is more realistically represented by $:$

$$
\left|I_{1}\right| \leqslant \frac{I}{2}\left|\frac{\partial H_{0}(\Omega)}{\partial t}\right| \cdot w_{0} \cdot|X(\Omega)| \cdot . \cdot \cdot \cdot \cdot 2.62(b)
$$

where $\left.\frac{\left|\frac{\partial H_{0}(\Omega)}{\partial t}\right|}{} \right\rvert\,$ and $|X(\Omega)|$ are taken as the maximum values in the frequency range $w-w_{0} \leqslant \Omega \leqslant w+w_{0}$. On considering equation $2.55(b)$ it can be seen that $X(\Omega), \frac{\partial H_{0}(\Omega)}{\partial t}$ are in fact viewed through a bandpass filter with an effective bandwidth less than $\underset{T}{4 \pi}\left(2 w_{0}\right)$ about w. The frequency response of this filter is however a complex function in $(\Omega-w)$ and no longer of the simple $\sin \alpha / \alpha$ form of part A. (equation 2.53) .

Considering terms involving $\frac{\partial^{2} \mathrm{H}_{0}(\Omega)}{\partial t^{2}}$ from equation 2.54: $I_{2}=\frac{1}{T} \int_{-T / 2}^{T / 2} \frac{t^{2}}{2} \cdot \frac{\partial^{2} H_{0}(\Omega)}{\partial t^{2}} \cdot X(\Omega) \cdot \exp (j(\Omega-w) t) . d \Omega d t \cdot 2.63$ Integrating with respect to t :
$I_{2}=\int_{-\infty}^{\infty} \frac{\partial^{2} H_{0}(\Omega)}{\partial t^{2}} \cdot X(\Omega) \cdot\left\{\frac{T \sin \frac{(\Omega-w) T}{2}}{4(\Omega-w)}+\frac{\cos \frac{(\Omega-w) T}{2}}{(\Omega-w)^{2}}-\frac{2 \sin \frac{(\Omega-w) T}{2}}{T(\Omega-w)^{3}}\right\} d \Omega$ 2.64

Expanding the sine and cosine terms as a power series and taking the limit as $T \rightarrow 0$:
$I_{1 \mathrm{im}} \simeq 0 \int_{-\infty}^{\infty} \frac{\partial^{2} H_{0}(\Omega)}{\partial t^{2}} \cdot X(\Omega) .\left\{\frac{I^{2}}{24}-\frac{(\Omega \Omega-w)^{2} I^{4}}{192}\right\} . d \Omega . .2 .65(a)$ which again goes to zero as a function of T^{2}. Also $\left|I_{2}\right|$ is bounded by:

$$
\begin{aligned}
\left|I_{2}\right| & \leqslant \frac{1}{\mathrm{~T}} \int_{-T / 2}^{\mathrm{T} / 2} \int_{-\infty}^{\infty}\left|\frac{t^{2}}{2}\right| \cdot\left|\frac{\partial^{2} \mathrm{H}_{0}(\Omega)}{\partial t^{2}}\right| \cdot|X(\Omega)| \cdot d t \mathrm{~d} \Omega \\
& =\frac{T^{2}}{24} \int_{-\infty}^{\infty}\left|\frac{\partial^{2} H 0(\Omega)}{\partial t^{2}}\right| \cdot|X(\Omega)| \cdot d \Omega \quad . \cdot \cdot \cdot \cdot \cdot .2 .65(b)
\end{aligned}
$$

If $H(t, u)$ is restricted to the class of oscillatory functions,
we find that:

$$
\left|I_{2}\right| \leqslant \frac{T^{2}}{24} \cdot \sigma_{x} \cdot\left|H_{0}(\Omega)\right| \underset{\max _{\Omega}}{ } \frac{\mathrm{Zmax}^{3}}{3} \cdot \cdot \cdot \cdot .2 .66
$$

Again on considering equation 2.64 the function $X(\Omega) \cdot \frac{\partial H_{0}(\Omega)}{\partial t^{2}}$
is viewed through a complex bandpass filter with centre frequency w and bandwidth < $2 w_{0}$. Thus the bound on $\left|I_{2}\right|$ is perhaps more accurately given by:

$$
\left|I_{2}\right| \leqslant \frac{T^{2}}{12} \cdot\left|\frac{\partial^{2} H_{0}(\Omega)}{\partial t^{2}}\right| \quad \cdot w_{0} \cdot|x(\Omega)| \cdots \cdot \cdot \cdot \cdot 2.67
$$

where $\frac{\partial^{2} H_{0}(\Omega)}{\partial t^{2}}$ and $\mathrm{X}(\Omega)$ are taken as the maximum values in the
frequency range $w-w_{0}<\Omega<w+w_{0}$.

$$
\text { Now if }\left|H(t, u)-H_{0}(u)\right|<\varepsilon \text { for } t \in T \text { and the Taylor }
$$ series expansion of $H(t, u)$ is a good representation over the interval T then:

$$
|\varepsilon| \simeq \frac{T}{2} \cdot\left|\frac{\partial H_{0}(u)}{\partial t}\right|+\frac{T^{2}}{8} \cdot\left|\frac{\partial H_{0}(u)}{\partial t^{2}}\right| \ldots . .68
$$

and on substituting $B=I_{1}+I_{2}$ we see: $Y_{T}(w) \simeq H_{0}(\Omega) \cdot X(\Omega) * L(\Omega-w)+I_{1}+I_{2}, *$ denotes convolution where $L(\Omega \sim w)$ is the bandpass filter found from the Fourier transform of $L(t)$, and $I_{1}+I_{2}$ are approximately bounded by:

$$
\left|I_{1}+I_{2}\right| \underset{\text { approx }}{\leqslant}|\varepsilon| \cdot|X(\Omega)|_{\substack{\max \\ w-w_{0} \leqslant \Omega \leqslant w+w_{0}}}^{w_{0}} \quad . \cdot .2 .69
$$

This is arrived at by rewriting the expressions for $\left|I_{1}\right|$ and $\left|I_{2}\right|$ as given by equations 2.62 and 2.67 in terms of $|\varepsilon|$ as given by equation 2.68. It must be emphasised that linking the bounds on the bias term, B, to changes in the frequency response over the interval T in this manner is intended to show only the logical links and is not intended as a mathematical proof. For oscillatory systems, Tong has shown the relationship indicated by equation 2.69 to be valid. We have shown that as $T \rightarrow 0$ the relationship between $Y_{T}(w)$ and $X(w)$ approaches that of the stationary case with a residual term which is a function of T^{2}. Further we have indicated that the residual term is bounded $b y$ the magnitude of changes in $H(t, u)$ over the interval T in the region of $u=w$.

We now extend the analysis to include a time-varying input $x(t, \Omega)$. In the interval $t \in T$ let $X(t, \Omega)$ be approximated by a truncated Taylor series expansion about $T=0$.
$x(t, \Omega) \simeq X_{0}(\Omega)+\left.t \cdot \frac{\partial x(t, \Omega)}{\partial t}\right|_{t=0}+\left.\frac{t^{2}}{2} \cdot \frac{\partial^{2} X(t, \Omega)}{\partial t^{2}}\right|_{t=0}$
(+ higher order terms which can be neglected.)
Rewriting equation 2.49 we gets

$$
\begin{aligned}
& \because_{T}(j w)=\frac{1}{T} \int_{-T / 2}^{T / 2} 0 \int_{0}^{\max } 0 \int_{\infty}^{\infty}\left\{H_{0}(u)+\frac{\left.\partial H_{0}\right)(u)}{\partial t} \cdot t+\frac{\partial^{2} B_{0}(v)}{\partial t^{2}} \cdot \frac{t^{2}}{2}\right\} \\
& \quad\left\{X_{0}(\Omega)+(t-\tau) \cdot \frac{\partial x(0, \Omega)}{\partial t}+(t-\tau)^{2} \cdot \frac{\partial^{2} \times(0, \Omega)}{\partial t^{2}}\right\} .
\end{aligned}
$$

$. \exp (j(u-\Omega) \tau), \exp (j(\Omega-w) t), d u d \Omega d \tau d t . . .2 .70$ We have already show that terms involving $H(t, u)$ and $X_{0}(\Omega)$. involve a bias term $\mathrm{B}\left(=I_{1}+I_{2}\right)$ which tends to zero as $T \rightarrow 0$. If we restrict $X(t, \Omega)$ to be slowly varying over the interval $t \in T$ we may neglect terns involvirg $\frac{\partial f_{0}(11)}{i t} \cdot \frac{\partial x_{0}(\Omega)}{\partial t}$ and higher as
these will in general be an order of magnitude smaller than terms like $H_{0}(u) \cdot \frac{\partial X_{Q}(\Omega)}{\partial t}$. We note in passing that these seconci order terms tend to zero as $T=0$ as they always involve functions in t^{n} for $n \geqslant 1$.

Thus we are chiefly concerned with bias terms already investigated for the stationary case (I_{1}, I_{2}) plus terms involving $H_{0}(u) \cdot \frac{\partial X_{0}(\Omega)}{\partial t}$ and $H_{0}(u) \cdot \frac{\partial^{2} x(0, \Omega)}{\partial t^{2}}$. Taking the first: $I_{3}=\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{0}^{\tau \max } \iint_{\infty}^{\infty} H_{0}(u) \cdot(t-\tau) \cdot \frac{\partial \times O(\Omega)}{\partial t} \cdot \exp (j(u-\Omega) \tau)$. . $\exp (j(\Omega-w) t) \cdot d u d \Omega d \tau d t$.............. 2.71 Splitting this up into two integrals:

$$
\begin{aligned}
I_{3}= & \frac{1}{T} \int_{-T / 2}^{T / 2} \int_{0}^{\tau \max } \iint_{-\infty}^{\infty}\left[\left\{H_{0}(u) \cdot \frac{\partial X_{0}(\Omega)}{\partial t} \cdot \exp (j(u-\Omega) \tau) .\right.\right. \\
& \cdot \exp (j(\Omega-w) t)\} \cdot t-\left\{H_{0}(u) \cdot \frac{\partial X_{0}(\Omega)}{\partial t} \cdot \exp (j(u-\Omega) \tau) \cdot\right. \\
& \cdot \exp (j(\Omega-w) t)\} \cdot \tau] \quad \partial u \partial \Omega \partial \tau \partial t \quad \cdot \cdot \cdot \cdot \cdot \cdot .2 .72
\end{aligned}
$$

Note that when $X(\Omega)$ is time-varying the expansion of $X_{t-\tau}(\Omega)$ is only strictly applicable when $|t-\tau| \leqslant T / 2$. If the filter impulse response dies to zero for $|\tau| \ll T$ we may only integrate with respect to τ in the limits $|\tau|<\tau \max$. In general we are only interested in the possible bounds of I_{3} so:

$$
\begin{aligned}
& \left.\left|I_{3}\right| \leqslant \frac{1}{T} \int_{-T / 2}^{T / 2} \int_{0}^{\tau \max } \iint_{-\infty}^{\infty}\left|H_{0}(u)\right| \cdot\left|\frac{\partial X_{0}(\Omega)}{\partial t}\right| d t \right\rvert\, . \partial u \partial \Omega \partial \tau \partial t \\
& +\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{0}^{\tau \max } \iint_{-\infty}^{\infty}\left|H_{0}(u)\right| \cdot \frac{\left|\partial x_{0}(\Omega)\right|}{\partial t} \cdot|\tau| \cdot \partial u \partial \Omega \partial \tau \partial t \\
& =\frac{\tau \max \cdot T}{4} \iint_{-\infty}^{\infty}\left|H_{0}(u)\right| \cdot d u \cdot\left|\frac{\partial X_{0}(\Omega)}{\partial t}\right| \cdot \partial \Omega \\
& +\frac{\tau \max ^{2}}{2} \iint_{-\infty}^{\infty}\left|H_{0}(u)\right| \cdot d u \cdot\left|\frac{\partial X_{0}(\Omega)}{\partial t}\right| \cdot d \Omega
\end{aligned}
$$

In the limit as $T \rightarrow 0 \quad\left|\mathrm{I}_{3}\right| \rightarrow 0$ iff the restriction $\tau \max \ll \mathrm{T}$ is complied with. Clearly for physically realisable systems which in general display phase characteristics (i.e. not just pure gain systems) this is not reasonable. However in general we will choose T >> τ max and the second term may be neglected. Letting:

$$
\sigma_{H_{O}}=\int_{-\infty}^{\infty}\left|H_{0}(u)\right| \cdot d u<\infty
$$

and again defining $X(t, \Omega)$ to belong to the class of slowly varying oscillatory functions such thats

$$
\begin{gathered}
x(t, \Omega)=\int_{-\operatorname{Smax}}^{\operatorname{Smax}} x(s, \Omega) . \exp (j s t) . d s \quad \ldots . \text { then: } \\
\left|I_{3}\right| \leqslant \frac{\max I}{4} \cdot \sigma_{H_{0}} \cdot \sigma x_{0} \cdot \frac{S \max ^{2}}{2} \quad \text {......... } 2.73
\end{gathered}
$$

where we try to choose T so that $\operatorname{Smax} \ll \frac{2 \pi}{T}$ and $\frac{2 \pi}{T}<$ bandwidth
of narrowest peak in $H(t, u), X(t, \Omega)$ for $t \in T$ 。

Lastly we look at terms involving $H_{0}(u) \cdot \frac{\partial^{2} x_{0}(\Omega)}{\partial t^{2}}$ in equation 2.70:

$$
\begin{array}{r}
I_{4}=\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{0}^{\tau \max } \iint_{-\infty}^{\infty} H_{0}(u) \cdot \frac{\partial^{2} x_{0}(\Omega)}{\partial t^{2}} \cdot(t-\tau)^{2} \cdot \exp (j(u-\Omega) \tau) . \\
. \exp (j(\Omega-w) t) \cdot d u d \Omega d \tau d t \cdot \cdot \cdot 2.74
\end{array}
$$

$$
\left|I_{4}\right| \leqslant \frac{1}{T} \int_{-T / 2}^{T / 2} \int_{0}^{\tau \max } \iint_{-\infty}^{\infty}\left|H_{0}(u)\right|\left|\frac{\partial^{2} X_{0}(\Omega)}{\partial t^{2}}\right| \cdot(t-\tau)^{2} \cdot d u d \Omega d \tau d t \cdot 2.75
$$

Integrating with respect to t and τ we find:

$$
\begin{aligned}
\left|I_{4}\right| \leqslant \iint_{-\infty}^{\infty}\left|H_{0}(u)\right| \cdot\left|\frac{\partial^{2} x_{0}(\Omega)}{\partial t^{2}}\right| & \cdot d u d \Omega . \\
& \cdot\left\{\frac{T^{2} \tau_{\max }}{12}-\frac{I \tau_{\max }^{2}}{4}+\frac{\tau_{\max }{ }^{3}}{3}\right\} \cdots 2.76(\mathrm{a})
\end{aligned}
$$

Again if $\tau \max \ll \mathrm{I}$ we can neglect terms in $\tau_{m a x}{ }^{2}, ~ \tau \max { }^{3}$ and obtainı

$$
\left|I_{4}\right| \leqslant \frac{T^{2} \max }{12} \cdot \quad \sigma_{H_{0}} \cdot \sigma x_{0} \frac{S_{\max }^{3}}{3} \cdots \cdot \cdot \cdot \cdot 2.76(b)
$$

This term is generally $<\left|I_{3}\right|$ if $\operatorname{Smax} \ll \frac{2 \pi}{T_{0}}$
We have now shown that when both the input signal characteristics and the system are time-varying we may estimate a time-dependent frequency response between $x(t), y(t)$ in the interval $t \in T$, which approximates the value $H_{0}{ }^{\mathrm{T}}$ (jw) obtained if the system were stationary. The time variations introduce bias and variance terms whose bounded absolute values are given by equations 2.62, 2.66, 2.73 and 2.76. Equations 2.73 and 2.76 involve τ max, the effective period of influence of $H(t, \tau)$. This is in general much less than T and hence the bias due to these terms may be an order of magnitude less than the terms given by equations 2.62 and 2.66. Thus:
$Y_{T}(w) \simeq \int_{-\infty}^{\infty} H_{0}(\Omega) \cdot X_{0}(\Omega) \cdot L(\Omega-w) \cdot d \Omega \pm\left(\left|I_{1}\right|+\left|I_{2}\right|\right) \cdot . \cdot 2.77$
where $\left|I_{1}\right|+-\left|I_{2}\right|$ are approximately bounded by $\varepsilon .\left|X_{T}(w)\right|$, $\left\{\varepsilon=\left|H(t, u)-H_{0}(u)\right|, t \in T\right\}$ where ε is taken as the modulus of the maximum change in $H(t, u)$ in the frequency range $w-w_{0} \leqslant \Omega \leqslant w+w_{0}$. w_{0} is the effective bandwidth of the frequency filter $L(u)$ and $X_{T}(w)$ is the short-term Fourier transform of $x(t)$ on the interval $t \in T$. Reverting to the sampled data case when we calculate the discrete transforms of $\hat{X}\left(K w_{0}\right), \hat{Y}\left(K w_{0}\right)$ we note that:

1) $x_{t}(i), y_{t}(i)$ are normally-distributed variables with zero means and time-dependent variance terms.
2) When the systems $X(t, \Omega)$ and $H(t, u)$ are slowly varying with respect to $x(t), y(t)$, then it is often possible to choose T such that:

$$
\begin{aligned}
\operatorname{VAR}\left(\hat{X}_{\mathrm{T}}\left(K w_{0}\right)\right) & \simeq S x_{0}^{2} \quad \text { and } \\
\operatorname{VAR}\left(\hat{Y}_{T}\left(K w_{0}\right)\right) & \simeq\left\{\left|H_{0}\left(k w_{0}\right)\right|^{2} \cdot S x_{0}^{2}+S n_{0}^{2}\right\} \\
& \text { for } 0 \leqslant K \leqslant N / 2 .
\end{aligned}
$$

where $\phi n n(t, w)$ is an additive Gaussian noise term at the output of the system. $S n_{0}{ }^{2}, S x_{0}{ }^{2}$ are the powers in $x(t)$, $n(t)$ respectively in the frequency band $K w_{0} \pm w_{0} / 2$, evaluated at time $t=0$.

When the complete system is stationary adjacent frequency points are approximately independent when a rectangular 'do-nothing' time window is used. For slowly-varying oscillatory systems this independence is maintained. Consider:

$$
x(t)=\int_{-\operatorname{Smax}}^{\operatorname{Smax}} x(s, t) \cdot \exp (+j s t) d s
$$

Taking the Fourier transforms

$$
\begin{align*}
x(w) & =\int_{-\infty}^{\infty} \int_{-\operatorname{Smax}}^{\operatorname{Smax}} x(s, t) . \exp (-j(w-s) t) . d s d t \\
& =\int_{-\operatorname{Smax}}^{\operatorname{Smax}} x(s, w-s) . d s \quad \ldots
\end{align*}
$$

FIGURE 2. Illustrates the convolution integral given by eqn. 2.73 for a real function X.

In the interval T centred about $t=0, X_{T}(w)$ is given by $\hat{x}_{\mathrm{T}}\left(K w_{0}\right)=\int_{-\infty}^{\infty} x(w-u) \cdot L(u) \cdot d u$ where $X(w)$ is given by equation 2.78 and $L(u)=\sin \left(\frac{U T}{2}\right) /\left(\frac{U T}{2}\right) \cdot$ To track time changes in $\phi x x(t, w)$ accurately $w_{0}(-2 \pi / T) \gg$ Smax. Under these conditions the blurring of $X(w)$ with components in $x(w \pm s),(s \leqslant S m a x)$ will be of secondary importance to the components introduced by the finite bandwidth of L(u). More exactly,
$X\left(K w_{0}+w_{0} / 2\right)$ contains components in X from neighbouring frequencies \pm Smax with Smax $\ll w_{0}$. Thus $\hat{X}\left(K w_{0}\right)$ will only have marginal components in common with $\hat{X}\left((K-1) \cdot w_{0}\right)$ and $\hat{X}\left((K+1) \cdot w_{0}\right)$ and the independence of adjacent frequency points is still approximately maintained. If T is chosen so that $S \max =\frac{(2 \pi)}{T}$ then adjacent frequency points become correlated as is the case if a Hanning time data window is used. Indeed time changes in $\phi x x(w)$ can be regarded as a modulation of a stationary process.

$$
\text { Similarly if } H(t, u) \text { is an oscillatory process: }
$$

$Y(w)=\int_{-\infty}^{\infty} y(t) \cdot \exp (-j w t) \cdot d t$
where $y(t)=\int_{-\infty}^{\infty} \int_{-Z \max }^{Z \max } H(z, \tau) \cdot \int_{-S \max }^{\operatorname{Smax}} x(s, t-\tau) . \exp (j z t)$.

$$
. \exp (j s(t-\tau)) d \tau d z d s
$$

$$
\text { Hence: } \begin{gathered}
Y(w)=\iint_{-\infty}^{\infty} \int_{-Z \max }^{Z \max } \int_{-S \max }^{S \max } H(z, \tau) \cdot X(s, t-\tau) \cdot \exp (j z t) . \\
. \exp (j s(t-\tau)) \quad . \exp (-j w t) \cdot d \tau d z d s d t
\end{gathered}
$$

Letting $V=t-T$ and substituting for $t s$

$$
\begin{aligned}
& Y(w)=\iint_{-\infty}^{\infty} \int_{-S \max }^{S \max } \int_{-Z \max }^{Z \max } H(z, \tau) . X(s, v) . \exp (-j(w-z-s) v) . \\
& . \exp (-j(w-z) \tau) . d \tau d s d z d v \\
& =\int_{-\operatorname{Smax}}^{\operatorname{Smax}} \int_{-Z \max }^{Z \max } H(z, w-z) x(w-z-s) d s d z \ldots . . .2 .79
\end{aligned}
$$

$Y(w)$ contains components of $X(\Omega)$ in the range $w-Z \max -S m a x<\Omega<w+Z \max +$ Smax. Again by choosing T such that $\frac{2 \pi}{T} \gg(Z \max +S m a x)$, adjacent frequency points in $\hat{Y}\left(K w_{0}\right)$ remain approximately independent. The approximation is not as good as that for $\hat{X}\left(K w_{0}\right)$ as further frequency spreading has
occurred due to time variations in the system.
We have shown that for slowly varying functions, $\phi x x(t, \Omega)$, $H(t, u)$ where T can be chosen so that bias terms may be disregarded, a simple extension of stationary random error analysis, letting variance terms be time-dependent, is not unreasonable. The extension is valid for any system whose variations in time are continuous over an interval T, permitting a Taylor series approximation to the function about $t=0, t \in T$. When the system parameters are slowly varying oscillatory functions, we have shown that adjacent discrete frequency estimates $\hat{X}\left(K w_{0}\right), \hat{Y}\left(K w_{0}\right)$ remain approximately independent if Smax, $Z \max <\frac{2 \pi}{\mathrm{~T}}$. This independence is lost as $\mathrm{S}_{\mathrm{max}}$, Zmax get larger (Smax and Zmax are defined as before).
7) SOME STATISTICS OF SPECTRAL EST IMATES OBTAINED FROM OVERLAPPING TIME SEGMENTS

To track time-varying systems it is sometimes useful to obtain spectral estimates from overlapping time segments. This leads to:
a) Better system tracking for a fixed frequency resolution.
b) When the data contains information on the transient response of the system, the beginning and end points can be more accurately determined (e.g. Whittle: analysis of transient effects in jet engine noise).

We develop the joint distribution of 2 auto-spectral estimates $\hat{\phi} x x(w), \quad \hat{\phi} y y(w)$ obtained from short-term records of $x(t), y(t)$ respectively, and then show how this distribution can be applied to overlapped spectral estimates obtained from the same signal $x(t)$.

Let $x(t), n(t)$ again be Gaussian band-limited white noise procenses; $y(t)$ is the output of a linear system whose input is $x(t)$. The output is contaminated by noise $n(t)$. ($n(t)$ and $x(t)$ are uncorrelated). As in Sections 3 and 4 we compute the input and output auto-spectral estimates as the average of L independent estimates obtained from L blocks of N sample points. If the system frequency response is denoted by H :

$$
\bar{\phi} y y \simeq|H|^{2} \cdot \bar{\phi} x x+2 R L\left(H^{*} \cdot \overline{\phi x n}\right)+\bar{\phi} n n . . .2 .80
$$

* denotes the complex conjugate (frequency w is omitted).

Rewriting equation 2.80 in terms of the real and imaginary coefficients of \hat{X}, \hat{N} we find:

$$
\begin{align*}
\bar{\phi}_{y y}= & \frac{1}{L} \sum_{i=1}^{L}\left(R_{H}^{2}+I_{H}{ }^{2}\right) \cdot\left({\hat{R_{x}}}^{2}+{\hat{I_{x}}}^{2}\right)+{\hat{R_{n}}}^{2}+{\hat{I_{n}^{i}}}^{2}+ \\
& 2 \cdot R_{H}\left(\hat{R}_{x}^{i} \cdot \hat{R}_{n}^{i}+\hat{I_{x}} \cdot \hat{I}_{n}^{i}\right)-2 \cdot I_{H}\left(\hat{R}_{x}^{i} \cdot \hat{I}_{n}^{i}-\hat{I_{x}} \cdot \hat{R}_{n}^{i}\right) \cdots
\end{align*}
$$

Rearranging:

$$
\begin{align*}
\bar{\phi}_{y y} \simeq & \frac{1}{\mathrm{~L}} \sum_{i=1}^{\mathrm{L}} \hat{R}_{n}^{2}+2 \cdot \hat{R}_{n} \cdot \hat{\delta}_{l}^{i}+\hat{I}_{n}^{i^{2}}+2 \cdot \hat{\mathrm{I}}_{n}^{\mathrm{i}} \cdot \hat{\delta}_{2}^{i} \\
& +\left(\hat{R}_{H}^{2}+\hat{I}_{H}^{2}\right) \cdot\left(\hat{R}_{x}^{i^{2}}+\hat{\mathrm{I}}_{x}^{i^{2}}\right) \cdots \cdot \cdot
\end{align*}
$$

where $\hat{\delta}_{l}^{i}=R_{H} \cdot \hat{R}_{x}^{i}+I_{H} \cdot \hat{I}_{x}^{i}, \hat{\delta}_{2}^{i}=R_{H} \cdot \hat{I}_{x}^{i}-I_{H} \cdot \hat{R}_{x}^{i}$ and $\left(\hat{\delta}_{1}^{i^{2}}+\hat{\delta}_{2}^{2}\right)=\left(|H|^{2} \cdot \bar{\phi}_{\mathrm{Xx}}^{\mathrm{i}}\right)$

We now define 2 new variables:

$$
\hat{Z}_{R}^{i}=\hat{R}_{n}^{i^{2}}+2 \hat{R}_{n}^{i} \cdot \hat{\delta}_{l}^{i}, \hat{Z}_{I}^{i}=\hat{I}_{n}^{2}+2 \hat{I}_{n}^{i} \cdot \hat{\delta}_{2}^{i}
$$

With $\hat{\delta}_{1}^{i} \hat{\delta}_{2}^{i}$ fixed, \hat{Z}_{R}^{i} and \hat{Z}_{I}^{i} are not dependent on $\hat{R}_{x}^{i}, \hat{I}_{x}^{i}$ as $n(t)$ and $x(t)$ are uncorrelated. The distribution of $\hat{R}_{n}^{i}, \hat{I}_{n}^{i}$ is given by:

$$
p\left(\hat{R}_{n}^{i}, \hat{I}_{n}^{i}\right)={\underset{\text { complex }}{N}}_{N}\left(0, s_{n}{ }^{2}\right)
$$

with $\hat{R} n$, \hat{I} independent. Thus performing the variable transformation to find the conditioned distribution of ${\hat{Z_{R}}}_{R}^{i}$ given $\hat{\delta}_{1}^{i}$ we find: $p\left(\hat{Z}_{R}^{i}: \hat{\delta}_{1}^{i}\right)=\frac{\exp \left(-\left(\hat{\delta}_{1}^{i} \cdot v_{R}^{i}\right) / 2 \cdot S^{2}\right) \cdot \cosh \left(\hat{\delta}_{1}^{i} / V_{R}^{i} / n^{2}\right)}{\sqrt{ } 2 \pi \cdot S_{n} \cdot \sqrt{ } V_{R}^{i}} \cdot \cdot 2.83$ where $V_{R}^{i}=\hat{\delta}_{1}^{i 2}+\hat{z}_{R}^{i}$

A similar transformation gives the conditional distribution of $\hat{Z}_{\mathrm{I}}^{\mathrm{i}}$ given $\hat{\delta}_{2}^{\mathrm{i}}$. However, the spectrum estimate $\bar{\phi}_{y y}$ is now given by s

$$
\bar{\phi}_{y y}=\frac{1}{L} \sum_{i=1}^{L}\left(\hat{z}_{R}^{i}+\hat{\delta}_{1}^{i 2}+\hat{z}_{I}^{i}+\hat{\delta}_{2}^{i 2}\right) \ldots \cdot . \cdot 2.84
$$

Forming 2 more variables V_{R}^{i}, V_{I}^{i} given by:

$$
v_{R}^{i}=\hat{z}_{R}^{i}+\hat{\delta}_{1}^{i 2}, v_{I}^{i}=\hat{z}_{I}^{i}+\hat{\delta}_{2}^{i^{2}}
$$

we find:

$$
p\left(v_{R}^{i}: \hat{\delta}_{1}^{i}\right)=\frac{\exp \left(-\left(\hat{\delta_{1}^{i 2}}+v_{R}^{i}\right) / 2 S^{2}\right) \cdot \cosh \left(\hat{\delta}_{1}^{i} \cdot V_{R}^{i} / S^{2}\right) \cdot 2.85}{\sqrt{2} \pi \cdot S n \cdot \sqrt{R}}
$$

and similarly for $\mathrm{V}_{\mathrm{I}}^{\mathrm{i}}$ replacing $\hat{\delta}_{1}^{i}$ by $\hat{\delta}_{2}^{i}$ in equation 2.85. Taking the Fourier transform of equation 2.85 to give the characteristic function of $p\left(V_{R}^{i}: \hat{\delta i}\right)$ we find:

$$
f_{V_{R}}(w)=\frac{k_{1} \cdot \exp \left\{\frac{\nu_{1}^{2}}{4 \cdot(\mu+j w)}\right\}}{(\mu+j w)^{\frac{1}{2}}}
$$

where $K_{1}=\frac{\exp \left(-\hat{\delta}_{1}^{i^{2}} / 2 \cdot S^{2}\right)}{\sqrt{2 \pi} \cdot S n}, \quad v_{1}=\frac{\hat{\delta}^{i}}{S n^{2}} \quad, \mu=\frac{1}{2 \cdot S_{n}^{2}}$
and again taking the Fourier transform of $p\left(V_{I}^{i}: \hat{\delta}_{2}^{i}\right)$ we obtain:
$f_{V_{I}}(w)=\frac{K_{2} \cdot \exp \left\{\frac{v_{2}^{2}}{4 .(\mu+j w)}\right\}}{(\mu+j w)^{\frac{1}{2}}}$
The variables V_{R}^{i}, V_{I}^{i} are independent if $\hat{\delta}_{1}^{i}$ and $\hat{\delta}_{2}^{i}$ remain fixed. Also:
$\hat{\phi} \stackrel{i}{y} y=v_{R}^{i}+v_{I}^{i}$
Thus the characteristic function of $p\left(\hat{\phi_{y y}}: \hat{\delta_{1}^{i}}, \hat{\delta_{1}^{i}}\right)$ is given by s $f_{\wedge_{\text {fy }}}(w)=f_{V_{R}}(w) \cdot f_{V_{I}}(w)$
and in general when ($L . \bar{\phi}_{y y}$) is the sum of L independent estimates, $\hat{\phi} \mathrm{i} y$, the characteristic function of $p\left(L . \bar{\phi}_{y y}: \hat{\delta}_{1}^{i}, \hat{\delta}_{2}^{i}\{i=1, L\}\right)$ is given by:

Substituting equations 2.86 and 2.87 for $f_{V i \underset{R}{i}}(w)$ and $f_{V_{i}^{i}}(w)$ respectively and remembering that ${\hat{\delta_{1}^{i}}}^{2}+\hat{\delta}_{2}^{2}=|H|^{2} \cdot \hat{\phi} \dot{x}$ we find:
$\mathrm{f}_{\mathrm{L} \cdot \bar{\phi}_{\mathrm{yy}}}(\mathrm{w})=\frac{\exp \left(-\left(|\mathrm{H}|^{2} \cdot \bar{\phi}_{\mathrm{xx}} \cdot \mathrm{L}\right) / 2 \cdot \mathrm{Sn}^{2}\right) \cdot \mathrm{L} \cdot\left(\bar{\phi}_{\mathrm{yy}}\right)^{\frac{\mathrm{L}-1}{2}}}{2 \cdot \mathrm{Sn}^{2} \cdot\left(|\mathrm{H}|^{2} \cdot \bar{\phi}_{\mathrm{Xx}}\right) \frac{\mathrm{L}-1}{2}}$

$$
\cdot I_{L-1}\left\{\frac{\mathrm{~L} \cdot|\mathrm{H}|}{\mathrm{Sn}^{2}} \cdot \sqrt{\left(\bar{\phi}_{\mathrm{yy}} \cdot \bar{\phi}_{\mathrm{xx}}\right)}\right\}
$$

Taking the inverse transform of equation 2.90 (see reference 14) and normalising by the factor $1 / L$ to find $p\left(\bar{\phi}_{y y}: \bar{\phi}_{x x}\right)$:

$$
\begin{align*}
& p\left(\bar{\phi}_{y y}: \bar{\phi}_{x x}\right)=\frac{L \cdot \bar{\phi}_{y y}(L-1) / 2 \exp \left(-|H|^{2} \cdot L\left(\bar{\phi}_{x x}+\bar{\phi}_{y y}\right) / 2 S n^{2}\right)}{2 \cdot S n^{2} \cdot\left(|H|^{2} \cdot \bar{\phi}_{x x}\right)^{L-1 / 2}} \\
& ._{L-1}\left\{\frac{L_{0}|H| \cdot \bar{\phi}_{y y} \cdot \bar{\phi}_{x x}}{S n^{2}}\right\}
\end{align*}
$$

We could equally well have written equation 2.91 in terms of the coherency between $x(t)$ and $y(t)$. Substituting:

$$
\mathrm{Cxy}^{2}=\frac{1}{\left\{1+\frac{S_{n}^{2}}{|H|^{2} \cdot S x^{2}}\right\}}
$$

and letting $S y^{2}=|H|^{2} \cdot S x^{2}+S n^{2}$ we obtains

$$
\begin{aligned}
& p\left(\bar{\phi}_{y y}: \bar{\phi}_{x x}\right)=\frac{L \cdot \bar{\phi}_{y y}(\mathrm{~L}-1) / 2 \exp \left(-|H|^{2} \cdot L \cdot\left(\bar{\phi}_{x x}+\bar{\phi}_{y y}\right) / 2 S y^{2}\left(1-C_{x y}{ }^{2}\right)\right)}{2 \cdot S y^{2} \cdot\left(1-C x y^{2}\right) \cdot\left(|H|^{2} \cdot \bar{\phi}_{x x}\right)^{L-1 / 2}}
\end{aligned}
$$

where I_{L-1} is the modified Bessel function of order (L-1).
In the general case the conditional distribution of the output spectrum in terms of the input spectrum estimate is not easily applied in practice as it requires prior knowledge of $|\mathrm{H}|$ and Sn^{2} (i.e. the system gain and the noise variance). However, when $y(t)$ is no longer the output of a linear system but just a delayed version of $x(t)$, equation 2.92 reduces to manageable form.

Consider the following situation:

FIGURE 3. $x_{1}(t)$ and $x_{2}(t)$ are short-term realisations of $x(t)$ on
the interval $0 \leqslant t \leqslant T, T-p \leqslant t \leqslant 2 T-p$ respectively. We wish to find the correlation between $x_{1}(t)$ and $x_{2}(t)$ where the 2 time records are overlapped by an amount p, ($p \leqslant T$). Let $x(t)$ be Gaussian band-limited white noise.

We could equally well have considered the two concurrent time data records given bys

$$
\begin{aligned}
& x_{1}(t) \text { and } x_{2}(t) \\
& \text { are augmented }
\end{aligned}
$$

$$
\text { TIME } O \quad T-P \quad T, \quad 2 T-P \text { r } \quad T \quad \text { by zeros }
$$

Calculating the short-term correlation functions for $x^{\prime}(t), y^{\prime}(t)$ we find:
a) For $\tau>0$
$C x^{\prime} x^{\prime}(\tau)=\frac{1}{2 T-p-\tau} \cdot \iint_{0}^{2 T-p-\tau} x^{\prime}(t) . x^{\prime}(t-\tau) d t$
$=\frac{1}{2 T-p-\tau} \cdot \int_{0}^{T-\tau} x(t) \cdot x(t-\tau) d t$
$C y^{\prime} y^{\prime}(\tau)=\frac{1}{2 T-p-\tau} \cdot \int_{T-p}^{2 T-p-\tau} x(t) . x(t-\tau) d t$
and:
$\operatorname{Cx}^{\prime} y^{\prime}(\tau)=\frac{1}{2 T-p-\tau} \cdot \int_{T-p-\tau}^{T} x(t) . x(t+\tau) d t$
But $C x^{\prime} x^{\prime}(\tau), C y y^{\prime}(\tau)$ and $C x^{\prime} y^{\prime}(\tau)$ are biased estimates of $C x_{1} x_{1}(\tau)$, $C x_{2} x_{2}(\tau)$ and $C x_{1} x_{2}(\tau)$. The bias factor, introduced by augmenting $x_{1}(t)$ and $x_{2}(t)$ with zerosis given by

$$
B=\frac{2 T-p-\tau}{(T-\tau)}
$$

Taking the expected values of $\mathrm{Cx}^{\prime} \mathrm{x}^{\prime}(\tau), \mathrm{Cy}^{\prime} y^{\prime}(\tau)$ and $\mathrm{Cx} \mathrm{y}^{\prime}(\tau)$ over an ensemble of similar processes we find:

$$
\begin{align*}
& E\left(C x^{\prime} x^{\prime}(\tau)\right)=\frac{T-\tau}{2 T-p-\tau} \quad C x x(\tau) \ldots2 .93 \\
& E\left(C y y^{\prime}(\tau)\right)=\frac{T-\tau}{2 T-p-\tau} \text { • } \operatorname{Cxx}(\tau)
\end{align*}
$$

and $E\left(C x^{\prime} y^{\prime}(\tau)\right)=\frac{(p+\tau)}{2 T-p-\tau} \cdot C_{x x}(\tau)$
Normalising by the bias factor B shown above we find:

$$
\begin{aligned}
& E\left(\operatorname{Cx}_{1} x_{1}(\tau)\right)=E\left(\operatorname{Cx}_{2} x_{2}(\tau)\right)=\operatorname{Cxx}(\tau) \\
& E\left(\operatorname{Cx}_{1} x_{2}(\tau)\right)=\frac{p+\tau}{T-\tau} \cdot \operatorname{Cxx}(\tau)
\end{aligned}
$$

if $\mathrm{x}(\mathrm{t})$ is a stationary process.
Performing the same steps for negative τ we find the expected values of $\mathrm{Cx}_{1} \mathrm{x}_{1}(\tau), \mathrm{Cx}_{2} \mathrm{x}_{2}(\tau)$ are as shown above for τ positive, whiles

$$
E\left(C x_{1} x_{2}(\tau)\right)=\frac{p-|\tau|}{T-|\tau|} \cdot C x x(\tau) \text { for } \tau \leqslant 0 . \cdot . \cdot 2.96
$$

Taking the Fourier transforms of equations 2.93 to 2.96 and recalling that if $x(t)$ is a white noise Gaussian process then $\operatorname{Cxx}(\tau)=0$ for $|\tau| \ll T_{2}$

$$
\begin{aligned}
& E\left(\phi x_{1} x_{1}(w)\right) \simeq \phi_{x x}(w) \\
& 2.97 \\
& E\left(\phi x_{2} x_{2}(w)\right) \simeq \phi_{x x}(w) \quad \text {. } 2.98 \\
& E\left(\phi_{x_{1} x_{2}}(w)\right) \simeq \frac{p}{T} \cdot \phi_{x x}(w)+j \frac{\partial \phi_{x x}(w)}{\partial w} \text {........ } 2.99
\end{aligned}
$$

Strictly speaking, $E\left(\phi x_{1} x_{2}(w)\right.$ should include a factor $\exp (-j w(T-P))$ to account for the shifting of $x_{2}(t)$ with respect to $x_{1}(t)$ in $y^{\prime}(t)$. However as we are only interested in the magnitude of $\phi_{x_{1}} x_{2}(w)$ to find the coherency between $x_{1}(t)$ and $x_{2}(t)$ this factor may be omitted. Recalling that the coherency is given by the ratio:

$$
\overline{\mathrm{C}}_{\mathrm{x}_{1} \mathrm{x}_{2}}{ }^{2}=\frac{\left|\bar{\phi}_{x_{1} x_{2}}\right|^{2}}{\bar{\phi}_{x_{1} x_{1}} \cdot \bar{\phi}_{x_{2} x_{2}}}
$$

where ${ }^{-}$denotes the mean value. We note that

$$
E\left(\bar{C} x_{1} x_{2}{ }^{2}\right) \neq E\left(\frac{\left|\bar{\phi}_{x_{1} x_{2}}\right|^{2}}{\bar{\phi}_{x_{1} x_{1}} \cdot \bar{\phi}_{x_{2} x_{2}}}\right)
$$

but is given by the ratio of the expected values of each of the terms individually.

Thus substituting equations $2.97,2.98$ and 2.99 we find:

$$
\mathrm{Cx}_{1} \mathrm{x}_{2}{ }^{2}=\frac{\mathrm{p}^{2}}{\mathrm{~T}^{2}}+\frac{1}{\mathrm{~T}^{2}} \cdot \frac{(\partial \phi \mathrm{xx}(\mathrm{w}) / \partial \mathrm{w})^{2}}{\phi_{\mathrm{xx}(\mathrm{w})}{ }^{2}} \cdot . \cdot 2.100
$$

If $x(t)$ is a white noise process then $\partial \phi_{x x}(w) / \partial w=0$ and the coherency is given by the ratio P / T. On substituting P^{2} / T^{2} for Coy ${ }^{2}$, $S x^{2}$ for $S y^{2}$ and 1 for $|H|$ in equation 2.92 we obtain the conditional distribution of $\phi_{x_{2}} x_{2}$ given $\phi_{x_{1}} x_{1}$ assuming the system to be stationary. When $x(t)$ is not a band-limited white noise process, the coherency between $x_{1}(t)$ and $x_{2}(t)$ is greater than P / T and the variance of the distribution given by equation 2.92 decreases. Considering $x(t)$ as a white noise Gaussian signal gives a conservative estimate for the distribution of $\phi_{x_{2}} x_{2}$ given $\phi_{x_{1}} x_{1}$.
8) SIMULATION RESULTS

Many of the results presented in this chapter serve as a resume of previous work. The statistical distributions associated with autospectral and frequency response estimates are well known and are not verified here. Likewise a study of bias errors is unnecessary. Cf more interest are the distributions associated with cross-spectral estimates and signal-to-noise (SN) estimates. These two distributions are verified and some typical comparisons of predicted and measured distributions are presented.

- Section 2.7 develops the joint distribution of two auto-spectral estimates obtained from overlapping data blocks. This relationship is verified experimentally and the results presented.

Time variations in the system response or input signal characteristics are show (Section 2.6) to introduce additional error
terms in the spectral estimates. It is shown that if the system is slowly varying over a measurement interval, T, then these additional terms are of secondary importance compared with errors due to short-term sampling.

In this section a time-varying second-order system with light damping is considered. It is shown that the system response is approximately unbiased (with coherency between input and output remaining approximately constant) if the period of oscillation of w_{0}, the natural frequency of the system, is much greater than the data block interval, T. As the period of oscillation, w_{0}, decreases with respect to T, the coherency in the frequency band about w_{0} decreases.

It is well known that when $x(t)$ is a Gaussian random variable with zero mean, the distribution of short-term Fourier coefficients obtained from sampling $x(t)$ on the interval T is just the bivariate Gausian distribution with variance $5 x^{2}$ and independent real and imaginary terms. A reason for studying the Gaussian distribution is that even when $x(t)$ is non-Gaussian the distribution of $\hat{X}\left(K w_{0}\right)$ ($0 \leqslant K \leqslant N / 2$) will still be approximately normal for large N. This is demonstrated for the case where:

$$
\begin{aligned}
& p(x(t))=\frac{1}{2}, \quad|x(t)| \leqslant 1 \\
& p(x(t))=0, \quad|x(t)|>1
\end{aligned}
$$

and $\quad \phi x x(w) \simeq 0.03, \quad 0 \leqslant w \leqslant 62.8$ rads $/ \mathrm{sec}$.
This signal was generated using the method outlined in Chapter 5 of this thesis. $x(t)$ was sampled 50 times per second and Fourier transformed using block sizes of 16,32 and 64. The distribution of $\hat{X}_{N}\left(K w_{0}\right) / \sqrt{ } w_{0}$ was computed for $K=3$ and $N=16,32,64$ over 1000 independent estimates. Figure 4 shows the distribution of the real part of $\hat{X}_{N}\left(3 w_{0}\right) / \sqrt{w_{0}}$ for the three block sizes :-

FIGURE 4: Shows the measured distributions of $\hat{R} x / \sqrt{ } w_{0}$ for $N=16$, 32 and 64. $w_{0}=2 \pi f_{s} / \mathrm{N}$

Normalisation by the factor $1 / \checkmark w_{0}$, the frequency resolution, ensures that estimates of the power spectrum density function obtained for the 3 block sizes are consistent. It can be seen that as N increases, the distribution of $\hat{R} x / \sqrt{ } w_{0}$ tends towards the Gaussian distribution with zero mean and variance $\simeq 0.015$ as expected. The distributions of the imaginary terms were in all cases similar to those shown above.

To reduce computing time the discrete Fourier coefficients \hat{X}, \hat{N} were formed by taking 4 independent samples of a white noise Gaussian process $\zeta(\mathrm{t})$. Thus, referring to Figure l:

$$
\begin{aligned}
& \hat{X}=x_{1}+j x_{2} \\
& \hat{N}=\left(x_{3}+j x_{4}\right) \cdot \alpha
\end{aligned}
$$

where $X_{1} \ldots X_{4}$ are 4 independent samples of $\zeta(t)$ and \hat{X}, \hat{N} are the discrete Fourier coefficients of $x(t), n(t)$ at some general frequency $\left(K w_{0}\right)$, as measured on an interval T. Using this method for forming \hat{X}, \hat{N}, the signal-to-noise ratio can be controlled by varying α. The distributions of the various spectral estimates can be measured accurately without resorting to long computer simulations involving the use of an F.F.T. algorithm on many blocks of data.

Simulation results were compared with the predicted results for:
a) The distributions of cross-spectra (L. $\phi_{x y}$) as given by equation 2.23

The Chi-square distribution does not predict a finite probability of obtaining negative estimates of $\bar{\phi} x y$. When the ratio $S x / S_{n}$ is large the discrepancy between the measured distribution and that predicted by a Chi-square distribution is less marked.

FIGURE 5: Shows the distribution of ($L . \bar{R} x y / R_{H} S x^{2}$) for $L=5, R_{H}=1.0$

$$
S x^{2}=S n^{2}=1.0
$$

a) As predicted by equation 2.23 (-----)
b) As predicted by a classical Chi-square distribution with

2 L degrees of freedom (———)
c) As measured from simulation results (.......-)

b) The distribution of estimates of the signal-to-noise ratio $\overline{\mathrm{SN}}$ as given by equation 2.36

FIGURE 6: Shows the distribution of estimates of $S N$ as predicted by equation 2.36 (-) and as measured from simulation data (---)
a) For $S N=0.1$
b) For $\mathrm{SN}=1.0$
c) For $\mathrm{SN}=10.0$

c) The coherency between overlapped data sequences $x_{1}(t), x_{2}(t)$

A band-limited white noise Gaussian signal $x(t)$ was sampled at a sufficiently high frequency to avoid aliasing. Groups of two sample records $x_{t}(i), y_{t}(i),(i=0,127)$ were collected where the record $y_{t}(i)$ was an overlapped record of $x(t)$. The coherency function between $x_{t}(i)$ and $y_{t}(i)$ was calculated using 30 independent sets of samples $\left(x_{t}(i), y_{t}(i)\right)$ to calculate $\bar{\phi}_{x x}, \bar{\phi}_{x y}, \bar{\phi}_{y y}$. The experiment was repeated for different degrees of overlap p in the range $0 \leqslant p \leqslant T$. Figure 7 shows the variation in $\bar{C} x y$ as a function of the overlap P / T

FIGURE 7 Shows the relationship between the coherency and the degree of overlap of two sample records of a signal $x(t)$

The results would indicate that the predicted result given by equation 2.100 tends to underestimate the true coherency. This might be due to $\phi_{x x}(w)$ having a cut-off less than half the sampling frequency. Under these conditions the auto-correlation function of $x(t)$ is no longer a dirac-delta pulse at $\tau=0$ but has finite width in τ. Thus under these conditions adjacent time sample points become correlated and the coherency between overlapped data sequences increases.

d) System tracking results for a second-order system

A second-order system with light damping was simulated on an analog computer such that the natural frequency w_{0} could be varied in time:

$$
H(w)=\frac{1}{-\frac{w^{2}}{w_{0}^{2}}+j \frac{2 \zeta}{w_{0}} w+1}
$$

with $\zeta \simeq 0.1$ and $100 \leqslant \mathrm{w}_{0} \leqslant 600 \mathrm{rads} / \mathrm{sec}$. The resonant frequency of the system is given by:

$$
w_{R}=w_{0} \sqrt{ }\left\{1-2 \zeta^{2\}} \simeq w_{0} \text { for small } \zeta\right.
$$

The system input was band-limited white noise with a cut-off at $1200 \mathrm{rads} / \mathrm{sec}$. The input $x(t)$ and output $y(t)$ were sampled in blocks of 512 points at a frequency, f_{s}, of 500 Hz . Thus the frequency resolution was approximately 1 Hz and the block time period, T , was l second. The spectral estimates $\bar{\phi}_{x x}, \bar{\phi}_{x y}, \bar{\phi}_{y y}$, were s.moothed in the frequency domain over 10 neighbouring points using a triangular data window.

Figures $8-11$ show some system tracking results for various variations of w_{0} in time. When the time variations in w_{0} are slow over the block interval I (Figure 9) the coherency between input and output is approximately the same as in the stationary case (Figure 8). However, when the period of oscillation of w_{0} approaches 2T (twice the block period) the coherency decreases in the frequency band around the resonant frequency (Figure 10). Also, the half-power bandwidth of the system is seriously overestimated. When the variations of w_{0} in time are random, (Figure ll) the system is accurately tracked as long as the system is slowly changing with respect to the block period T.

The approximate invariance of coherency for slowly varying systems would indicate that we are justified in applying stationary error analysis results to time-varying systems, letting the variance terms ($S x^{2}, S n^{2}$ etc.) be functions of time as well as frequency.

- 64 -

9) APPL ICATIONS

Chapters 4 and 5 consider two time-varying situations . The analysis of speech (Chapter 4) gives an example of the application of spectral analysis to a system whose variations in time may be considered step-like (for instance at the beginning and end of voiced speech sections and at the boundary between two phonemes) or of a slowly varying nature (as sometimes found in long vowel sounds.) It is shown that individual vowels can often be identified using spectral techniques. By testing for stationarity the speech waveform is approximately segmented into stationary sections. The spectral estimates from these sections can be compared with known vowel responses and identified within specified levels of confidence. In another application it is shown how compressed speech may be improved in quality using statistical test results to determine which portions of the speech waveform should be retained and which can be discarded.

Chapter 5 investigates some applications of spectral techniques to fatigue rig control and identification of the onset of fatigue cracking. In controlling the loading pattern on a test specimen the response of the rig and of the specimen must be considered. Assuming that the specimen is not loaded beyond its elastic limit, the response is approximately linear. As cracks are formed, the response of the specimen changes. To maintain the required loading pattern, the controller must adapt to these changes and to possible drift in the rig's servo-hydraulic components.

The identification of the onset of cracking necessitates the use of statistical tests which are approximately insensitive to outside random disturbances. The change in the frequency response
of the specimen may be less than 5% over the first 90% of fatigue life. Short-term estimates of the frequency response are subject to random errors, and in testing for stationarity, allowance must be made for variations due to a noisy environment.

REFERENCES

1 GOODMAN, N. R.: 'On the joint estimation of the spectra, cospectrum and quadrature spectrum of a two-dimensional stationary Gaussian process'. Phd. Thesis, Princeton Univ. (1957)

2 TONG, H: 'Some problems in the spectral analysis of bivariate nonstationary stochastic processes'. Phd. Thesis, Univ. of Manchester, (1972)

JENKINS, G. M. \& WATTS, D. G.: 'Spectral analysis'. Holden Day San Fransisco (1968)

AKAIKE, H.: ' On the statistical estimation of the frequency response function of a system having multiple input'. Ann. Inst. Stat. Maths. Vol. 17, pp. 185-210 (1965)

AKAIKE, H. \& YAMAMMOUCHI, Y.: 'On the statistical estimation of frequency response functions' Ann. Inst. Stat. Maths. Vol. 14, No. 1, pp. 23-56 (1962) BLACKMAN, R. B. \& TUKEY, J. W.: 'The measurement of power spectra'. Dover Publications Inc. New York (1958) stationary processes'. Jnl. Royal Stat. Soc. (B) Vol. 29, pp. 570-585 (1967)

ADRABBO, N. A. \& PRIESTLEY, M. B.: 'Filtering non-stationary signals'. Jnl. Royal Stat. Soc. (B) Vol 31 pp. 150-9 (1969) PRIESTLEY, M. B.: 'Evolutionary spectra and non-stationary processes'. Jnl. Royal Stat. Soc. (B) Vol. 27 pp. 204-37 (1965)

PRIESTLEY, M. B. \& SUBBA-RAO, T.: 'A test for non-stationarity
of time series'. Jnl. Royal Stat. Soc. (B) Vol. 31, pp. 140-9 (1969)

PRIESTLEY, M. B.: 'Design relations for non-stationary processes'. Jnl. Royal Stat. Soc. (B) Vo. 28 pp. 228-40 (1966)

SUBBA-RAO, T.: 'The fitting of non-stationary time series models with time-dependent parameters'. Jnl. Royal Stat. Soc. (B) Vol. 32, pp. 312-22 (1970)

TUKEY, J: 'One degree of freedom for non-additivity'. Biometrics Vol. 5, pp. 232-42 (1949)

CRAMER, H.s 'On some classes of non-stationary processes'. Proc. 4th Berkeley Symposium on Math. Stat. \& Prob. Vol. 2, pp. 57-8, Univ. of California Press (1960)

JENK INS, G. M.: 'Cross-spectral analysis and the estimation of linear open-loop transfer functions.' Symposium on Time Series Analysis, pp. 267-78 (Ed. M. Rosenblatt) J. Wiley (1963)

KOLMOGOROV, A.: Stationary sequences in Hilbert space'. Bull. Maths. Univ. of Moscow, Vol. 2 No. 6 (1941)

WHITTLE, P.: 'Prediction and regulation'. English Univ. Press (1963)

WIENER, N.: 'Generalised harmonic analysis'. Act. Math. Vol. 55, p. 117

BENDAT, J. S. \& PIERSOL, A. G.: 'Random data: analysis \& measurement procedures'. Wiley Interscience (1972) PAPOULIS, A.: 'Probability, random variables and stochastic processes'. McGraw Hill Book Co. New York (1965) WATSON, G. N.: 'A treatise on the theory of Bessel functions'.

GRADSTEYN, I. S. \& RHYZIK, I. M.: 'Tables of integrals series and products'. Academic Press Inc. (1965)

WELLSTEAD, P. E.: 'Real time spectral analysis'. Phd. Thesis, Univ. of Warwick (1971)

PIERSOL, A. G.: 'Spectral analysis of non-stationary spacecraft vibration data'. N.A.S.A. Washington D.C. NASA CR-341 (Dec. 1965)

DURRANI, T. S. \& NIGHTINGALE, J. M.: 'Probability distributions for discrete Fourier spectra'. Proc. I.E.E. Vol. 120, No. 2 pp. 299-311 (Feb. 1973)

CHAPTER 3
SPECTRAL ANALYSIS OF CLOSED-LOOP SYSTEMS

LIST OF SYMBOLS USED

$x(t)$: Gaussian system input with zero mean and variance σx^{2}
$y(t)$: system output. Gaussian with zero mean and variance σy^{2}
$n(t)$: the noise in the forward loop section. Gaussian with zero mean and variance σn^{2}. Uncorrelated with $x(t)$ or $r(t)$
$r(t)$: the noise introduced in the feedback loop. Gaussian with zero mean and variance σr^{2}. Uncorrelated with $x(t)$ or $n(t)$
$z(t)$: the feedback signal
$e(t)$	$\mathbf{z}=\mathrm{x}(\mathrm{t})-\mathrm{z}(\mathrm{t})$
T	: block time period
$\mathrm{f}_{\text {S }}$: sampling frequency
w_{0}	: frequency resolution $\frac{(2 \pi)}{T}$ radians $/ \mathrm{sec}$.
N	: block size (number of samples)
$x\left(K w_{0}\right)$: discrete Fourier coefficient at frequency Kw_{0} $(0 \leqslant K \leqslant N / 2)$ obtained from the transformation of a block of N samples of $x(t)$
$Y\left(K w_{0}\right)$: discrete Fourier coefficient of $y(t)$
$E\left(K w_{0}\right)$: discrete Fourier coefficient of e(t)
$\hat{Z}\left(\mathrm{~K} w_{0}\right)$: discrete Fourier coefficient of $z(t)$

$N\left(K w_{0}\right)$: discrete Fourier coefficient of $n(t)$. (Not directly accessible from sampling $x(t), c(t)$ etc.)
$R\left(K w_{0}\right)$: discrete Fourier coefficient of $r(t)$ (Again, not directly accessible from sampling $x(t), e(t)$)
$\bar{\phi} x x\left(K w_{0}\right)$: estimate of the power spectrum of $x(t)$ at frequency $\left(K w_{0}\right)$ taken as the average value of L independent estimates
$\bar{\phi}_{\mathrm{Yy}}\left(\mathrm{K} w_{0}\right)$: mean estimate of the power spectrum of $y(t)$
$\bar{\phi} e e\left(K w_{0}\right)$: mean estimate of the power spectrum of $e(t)$
$\bar{\phi} \operatorname{rr}\left(K w_{0}\right)$	mean estimate of the power spectrum of $r(t)$ obtained by sampling $r(t)$ alone. (Not usually accessible)
$\bar{\phi} \hat{r} \hat{r}\left(\mathrm{~K} w_{0}\right)$: best obtainable estimate of the power spectrum of $r(t)$ through sampling $x(t), e(t), y(t), z(t)$
$\bar{\phi} n n\left(K w_{0}\right)$	```: mean estimate of the power spectrum of n(t), obtained by sampling n(t) directly```
$\bar{\phi} \hat{n} \hat{n}\left(\mathrm{~K} w_{0}\right)$: best obtainable estimate of the power spectrum of $n(t)$
$\bar{\phi} z z\left(K w_{0}\right)$: mean estimate of the power spectrum of $z(t)$
$\bar{\phi} x y\left(K w_{0}\right)$: cross-spectrum estimate between $x(t)$ and $y(t)$
$\bar{\phi} \times \mathrm{e}\left(\mathrm{K} w_{0}\right)$: cross-spectrum estimate between $x(t)$ and $e(t)$
$\bar{\phi} x z\left(K w_{0}\right)$: cross-spectrum estimate between $x(t)$ and $z(t)$
$\bar{\phi} \times r\left(K w_{0}\right)$: mean estimate of the cross-spectrum between $x(t)$ and $r(t)$. As L becomes large, $\bar{\phi} \times r$ goes to zero as $x(t)$ and $r(t)$ are uncorrelated.
$\bar{\phi} \times n\left(k w_{0}\right)$: mean estimate of the cross-spectrum between $x(t)$ and $n(t)$
$\bar{G}\left(\mathrm{~K} w_{0}\right)$: mean estimate of the forward-loop frequency response at frequency $\left(\mathrm{Kw}_{0}\right)$

$\overline{\mathrm{H}}\left(\mathrm{K} \mathrm{w}_{0}\right)$: mean estimate of the feedback-loop frequency response
A	: true value of A (may be complex)
\hat{A}	single estimate of A
$\overline{\text { A }}$: estimate of A obtained as the mean of L independent estimates
$M_{\text {A }}$	1 magnitude of $A\{=\|A\|\}$
$\theta_{\text {A }}$	8 angle the vector $\overline{0 \rightarrow A}$ makes with the real axis in the complex plane. Thus $A=M_{A} \exp \left(j 。 \theta_{A}\right)$
R_{A}	: real part of A
$\mathrm{I}_{\text {A }}$	2 imaginary part of A
$p(\bar{A})$	8 amplitude probability distribution of \bar{A}
$p(\bar{A}: \bar{B})$: conditional amplitude probability distribution of \bar{A} given \bar{B}
$p(\bar{A}, \bar{B})$: joint distribution of \bar{A} and \bar{B}
L	8 the number of independent estimates used to find $\bar{\phi} x x, \bar{\phi} x y$ etc.
$S x^{2}\left(K w_{0}\right)$: half-power of $x(t)$ in the bandwidth $\left(K-\frac{1}{2}\right) w_{0} \leqslant w \leqslant\left(K+\frac{1}{2}\right) w_{0}$
$S r^{2}\left(K w_{0}\right)$	2 half-power of $r(t)$ in the bandwidth (K-1) $w_{0} \leqslant w \leqslant\left(K+\frac{1}{2}\right) w_{0}$
$S^{2}\left(\mathrm{~K} w_{0}\right)$: half-power of $n(t)$ in the bandwidth $\left(K-\frac{1}{2}\right) w_{0} \leqslant w \leqslant\left(K+\frac{1}{2}\right) w_{0}$
σA^{2}	: variance of variable A
${ }^{\prime}{ }_{\text {A }}$: mean value of A
$N\left(\mu, \sigma^{2}\right)$: Gaussian distribution with mean μ and variance σ^{2}

1) INTRODUCTION

In Chapter 2 (Section 3) it was shown that bias errors due to finite frequency resolution could be reduced by choosing a longer block period, T. Goodman and Akaike have investigated the statistical distributions associated with functions of bivariate complex Gaussian sequences and their results can be applied directly to short-term spectral estimates of linear open-loop systems. In many cases it is found that 'random' errors due to finite observation time are a more serious concern than inherent bias errors.

A similar study of closed-loop systems involves distributions associated with tri-variate complex Gaussian sequences and as far as the author is aware, little or no research has been published in this area. Wellstead (1971) suggested a possible approach approximating the distributions associated with closed-loop frequency response estimates by a complex transformation of the open-loop distributions. This was found to give satisfactory results when the noise in the feedback loop was negligible (see Figure 1). This is to be expected, as the system essentially reverts to the bivariate complex situation under these conditions.

To derive the sampling distributions of short-term spectral estimates of closed-loop systems under conditions when $r(t)$ cannot be neglected, it is sufficient to consider the distributions of estimates of $G(w), H(w)$ and best estimates of the noise spectra $\phi n n(w)$ and $\phi r(w)$. All other distributions, for instance those associated with estimates of $\phi x y(w), \phi x z(w), \phi x e(w)$ and the overall closed-loop gain, can be derived from a suitable transformation of distributions encountered in the open-loop case.

FIGURE 1 Shows the closed-loop system configuration where $H(w)$ and $G(w)$ are linear. It is assumed that any 3 of $x(t)$, $e(t)$, $y(t), z(t)$ can be measured directly

2) RANDOM ERRORS IN CLOSED-LOOP ESTIMATES (extension of open-loop distributions)

It is assumed (figure 1) that the output, $y(t)$, and any two of $x(t), z(t)$ and $e(t)$ can be sampled and hence the $4^{\text {th }}$ variable calculated. As in Chapter 2, it is assumed that the block period, T , and the sampling frequency, f_{s}, have been suitably chosen so that aliasing, and bias errors due to finite frequency resolution, can be neglected. The sampling distributions are derived assuming a rectangular data window is used on the sampled versions of $x(t), y(t)$ etc. If a Hanning or a similar window is used, then adjacent discrete Fourier coefficients $\hat{X}\left(K w_{0}\right), \hat{x}\left((K-1) w_{0}\right), \hat{X}\left((K+1) w_{0}\right)$ become correlated and the number of degrees of freedom associated with spectral estimates
obtained using frequency smoothing is correspondingly reduced.
If the block period, T, is chosen such that the impulse response functions $g(\tau), h(\tau)$ are effectively zero for some $\tau>\tau$ max where $\tau \max \ll \mathrm{T}$ then the following relationships approximately hold:

$$
\begin{align*}
& \hat{Y} \quad \simeq \frac{G(\hat{X}+\hat{R})+\hat{N}}{(1+H G)} \\
& =G \hat{E}+\hat{N} \text {. } 3.1 \\
& \hat{Z} \simeq \frac{G \cdot H \cdot \hat{X}+H \cdot \hat{N}+\hat{R}}{(1+H G)} \\
& =H \cdot \hat{Y}+\hat{R} \\
& =\hat{X}-\hat{Z}
\end{align*}
$$

where $\hat{X}, \hat{Y}, \hat{E}$ etc. are the complex discrete Fourier coefficients at some general frequency $K w_{0}\left(w_{0}=\frac{2 \pi}{T}\right),(0 \leqslant K \leqslant N / 2)$, obtained by transforming blocks of N samples of $x(t), y(t), e(t)$. The discrete transform algorithm is given in Chapter 2. The dependence on frequency w is henceforth assumed except in cases of ambiguity.

In general we are interested in estimates of:
$\bar{\phi} x e=\frac{1}{L} \sum_{i=1}^{L} \hat{\phi}_{\hat{x} e}^{i}=\frac{1}{L} \sum_{i=1}^{L} \hat{x}_{i}^{*} \hat{E}_{i} \ldots3 .4$ $\bar{\phi}_{x y}=\frac{1}{L} \sum_{i=1}^{L} \hat{\phi}_{x y}^{\dot{1}}=\frac{1}{L} \sum_{i=1}^{L} \hat{X}_{i}{ }^{*} \hat{Y}_{i} \ldots . . .3 .5$ $\bar{\phi}_{x z}=\frac{1}{L} \sum_{i=1}^{L} \hat{\phi}_{x z}^{i}=\frac{1}{L} \sum_{i=1}^{L} \hat{X}_{i}^{*} \hat{z}_{i} \ldots \ldots .6$ $[\bar{G} \overline{(1+H G)}]=\bar{\phi} x y / \bar{\phi} x x \quad$ (Overallfreauency response). .3 .7 $\overline{\mathrm{G}}=\bar{\phi} x y / \bar{\phi} x \mathrm{e}$ (Forward loop frequency response) 3.8 $\bar{H}=\bar{\phi} x z / \bar{\phi} x y$ (Feedback loop frequency response) 3.9 $\bar{\phi} \hat{n} \hat{n}=\bar{\phi} y y+|\bar{G}|^{2} \overline{\phi e e}-2 R L\{\bar{G} \cdot \bar{\phi} y e\}$

$$
\bar{\phi} \hat{\mathrm{r}} \hat{\mathrm{r}}=\bar{\phi}_{z z}+|\overline{\mathrm{H}}|^{2} . \bar{\phi} y y-2 \mathrm{RL} .\left\{\overline{\mathrm{H}} . \bar{\phi}_{z y}\right\} \text {. } 3.11
$$

plus estimates of the auto-spectra of $x(t), y(t), e(t)$ and $z(t)$ defined in a similar manner to $\bar{\phi} x x$ in Chapter 2. The mean values may be found as an average over L successive time blocks or over L adjacent frequency points, as in the open-loop case. The distributions of \hat{X}_{i}, \hat{N}_{i} and \hat{R}_{i} are given by s

$$
\begin{align*}
& \mathrm{p}_{\mathrm{R}}\left(\hat{R_{i}}\right)=\underset{\text { complex }}{\mathrm{N}}\left(0, \mathrm{Sr}^{2}\right)
\end{align*}
$$

These distributions are arrived at by the same argument used by Tukey for the open-loop case. Again, the real and imaginary coefficient are approximately independent. In addition \hat{X}_{i}, \hat{N}_{i} and \hat{R}_{i} are all mutually independent.

The power in $x(t)$ over the frequency band $K w_{0} \pm w_{0} / 2$ ($0 \leqslant K \leqslant N / 2$) is evenly distributed between the real and imaginary coefficients of $\hat{X}\left(K w_{0}\right)$. Thus the variance term $S x^{2}$ is equivalent to half the power in this bandwidth. $S x^{2}$ is dependent on the centre frequency $K w_{0}$. A similar relationship holds for Sn^{2} and Sr^{2}. To obtain estimates of the power spectrum density functions equations 3.4 to 3.6 and 3.10 , 3.11 must be normalised by the factor l / w_{0} as in the open-loop case.

If the relationships indicated by equations 3.1 to 3.3 are substituted in equations 3.4 to 3.9 , the spectral estimates can be rewritten in terms of the independent inputs, \hat{X}, \hat{N}, and \hat{R} and the system frequency parameters, G, H.

$$
\begin{aligned}
& \bar{\phi} x y \simeq \frac{G . \bar{\phi} x x+G . \bar{\phi} x r+\bar{\phi} x n}{\left(1+H_{0} G\right)} \quad \text {........ } 3.15 \\
& \bar{\phi}_{x e} \simeq \frac{\bar{\phi}_{x x}-\bar{\phi}_{x r}-H_{0} \bar{\phi}_{x n}}{\left(1+H_{. G}\right)} \quad \cdots \cdot3 .16
\end{aligned}
$$

$$
\begin{aligned}
& [\overline{\bar{G}} \overline{1+H . G})] \frac{G}{1+H . G}+\frac{G . \bar{\phi} x r+\bar{\phi} x n}{(1+H . G) \frac{\phi x x}{\phi}} \ldots . . .3 .18 \\
& \bar{G} \simeq G+(1+H . G) \bar{\phi} \times n \quad \text {. } 3.19 \\
& \bar{\phi} x x-\bar{\phi} x r-H . \bar{\phi} x n \\
& \bar{H} \quad \mathrm{H}+(1+\mathrm{H} \cdot \mathrm{G}) \bar{\phi} \times r \\
& G \bar{\phi}_{x x}+\bar{\phi}_{x n}+G \bar{\phi}_{x r} \\
& \text { The noise estimates } \bar{\phi} \hat{n} \hat{n} \text { and } \bar{\phi} \hat{r} \hat{r} \text { are considered at a later stage }
\end{aligned}
$$ in this chapter.

Letting the cross-spectral terms involving X, N and R go to zero in equations 3.15 to 3.20 , the expected values of the paraneters (found by letting L tend to ∞) are given. We now investigate the sampling distributions associated with equations 3.15 to 3.18
i) Sampling distributions associated with $\bar{\phi} x y, \bar{\phi} x e$ and $\bar{\phi} \times z$

The distributions of the cross-spectral terms are obtained by an extension of the theory developed for the cross-spectrum, $\bar{\phi} x y$, in the open-loop case. We consider the distribution associated with $\bar{\phi} x z$ and quote similar results for $\bar{\phi} x e$ and $\bar{\phi}_{x y}$ 。

Equation 3.17 can be rewritten in the forms
$\bar{\phi} x z \simeq\left[\frac{G . H}{(1+G . H)}\right] \cdot\left\{\bar{\phi}_{x x}+\frac{\bar{\phi}_{x n}}{G}+\frac{\Phi_{x r}}{G . H}\right\}$
In deriving the distribution of the error in the open-loop frequency response it was shown (see equation 2.27) that:

$$
p(\bar{M} \times n, \bar{\theta} \times n: \bar{\phi} x x)=\frac{L \cdot \bar{M} \times n \cdot \exp \left(-\bar{M}_{x n}{ }^{2} \cdot L / 2 \cdot S_{n}^{2} \cdot \Phi_{x x}\right)}{2 \pi \cdot S^{2} \cdot \bar{\phi} x x} \cdot 3.22
$$

where L is the number of independent estimates used to find the mean value $\bar{\phi} x x$ and:

$$
\bar{\phi} \times n=\bar{M} \times n . \exp (j \bar{\theta} \times n)
$$

The distribution of the term $\bar{\phi} x n / G$ in equation 3.21 is given by a complex transformation of equation 3.22. Defining a new variables

$$
A=\bar{\phi} \times n / G
$$

the distribution of A is given by:

$$
p\left(M_{A}, \theta_{A}: \bar{\phi} x x\right)=L \cdot|G|^{2} \cdot M_{A} \cdot \exp \left(-M_{A}^{2} \cdot L \cdot|G|^{2} / 2 \cdot \operatorname{Sn}^{2} \cdot \bar{\phi} x x\right)
$$

$$
2 \pi \cdot \mathrm{sn}^{2} \cdot \bar{\phi} x x
$$3.23

Similarly the distribution of a variable B defined as:

$$
B=\bar{\phi} \times r /\{G
$$

is given by:

$$
p\left(M_{B}, \theta B: \bar{\phi}_{x x}\right)=\frac{L \cdot|G|^{2} \cdot|H|^{2} \cdot M_{B} \cdot \exp \left(-L \cdot M_{B}^{2} \cdot|G|^{2} \cdot|H|^{2} / 2 \cdot S^{2} \cdot \bar{\phi} x x\right)}{2 . \pi \cdot S_{r}^{2} \cdot \bar{\phi}_{x x} \cdot \cdots \cdot \cdots \cdot \cdots 3.24}
$$

The distributions given by equations 3.23 and 3.24 are bivariate Gaussian distributions with independent ordinates. Further, as $r(t)$ and $n(t)$ are uncorrelated, the variables A and B are independent if $\bar{\phi} x x$ is fixed. Thus the variable $C(=A+B)$ is also jointly normal with zero mean and variance:
$\operatorname{VAR}(C)=\sigma_{c}{ }^{2}=\frac{\bar{\phi} x x}{L}\left\{\frac{S r^{2}}{|G|^{2} \cdot|H|^{2}}+\frac{S n^{2}}{|G|^{2}}\right\}$ \qquad
Relating the cross-spectrum $\bar{\phi} \times z$ to C using equation 3.21 :
$\bar{\phi}_{x z}=\frac{G . H}{(1+G \cdot H)} \cdot\left\{\bar{\phi}_{x x}+C\right\} \cdots \cdots \cdot \cdots \cdot \cdots \cdot 26$

The distribution of $\bar{\phi} \times z$ is obtained by a complex transformation of the distribution of ($\bar{\phi} \times x+C$). Letting:

$$
D=\bar{\phi} x x+C
$$

the distribution of D is given bys
$p(D)=\int_{0}^{\infty} p_{c}((D-\bar{\phi} x x): \bar{\phi} x x) \cdot p(\bar{\phi} x x) \cdot d \bar{\phi}_{x x}$
where $p_{C}(C: \bar{\phi} x)$ is the bivariate Gaussian distribution with zero mean and variance $\sigma_{c}{ }^{2}$ (equation 3.25) and $\bar{\phi}_{x x}$ is Chi-square distributed with 2 L degrees of freedom. Integrating with respect to $\bar{\phi}_{x x}$ (reference 2) $p\left(M_{D}, \theta_{D}\right)=\frac{L^{(L+1)} \cdot M_{D}^{L} \cdot \exp \left(L \cdot M_{D} \cdot \cos \theta_{D} / \sigma^{2}\right)}{2 \cdot \pi \cdot \sigma^{2} \cdot S x^{L+1} \cdot P(L)}$.

$$
\frac{K_{L-1}\left\{\frac{L \cdot M D \cdot\left(S x^{2}+\sigma^{2}\right)^{\frac{1}{2}}}{\sigma^{2} \cdot S x}\right\}}{\left(S x^{2}+\sigma^{2}\right)^{\frac{L-1}{2}}}
$$

where

$$
\Gamma(\mathrm{L})=(\mathrm{L}-1)!
$$

$$
K \nu(x)=\text { Modified Bessel function of order } \nu
$$

$$
\sigma^{2}=\frac{S x^{2}}{L} \cdot\left(\frac{S r^{2}}{|G|^{2} \cdot|H|^{2}}+\frac{S n^{2}}{|G|^{2}}\right)
$$

This distribution is similar in form to the distributions associated with cross-spectral estimates in Chapter 2 (see equation 2.23). Indeed, equation 3.27 can be adapted directly to give the joint distribution of the real and imaginary coefficients of $\bar{\phi} x y$ in the openloop case. To obtain the distribution of $\bar{\phi} \times z$ from equation 3.27 we must perform the complex transformation T given by:

$$
T=\frac{G . H}{(1+G . H)}
$$

The Jacobian of this transformation is given by
$J\left(M_{D}, \theta_{D}\right)=\left|\begin{array}{ll}\frac{\partial \bar{M}_{x z}}{\partial M_{D}} & \frac{\partial \bar{M}_{x z}}{\partial \theta D} \\ \frac{\partial \bar{\theta} x z}{\partial M_{D}} & \frac{\partial \bar{\theta}_{x z}}{\partial \theta_{D}}\end{array}\right|=\left|\begin{array}{ll}M_{T} & 0 \\ 0 & 1\end{array}\right|=M_{T}$
Thus:
$p(\bar{M} \times z, \bar{\theta} \times z)=\frac{p_{M_{D}} \theta_{D}\left(\bar{M}_{x z} / M_{T}, \bar{\theta} \times z-\theta_{T}\right)}{J\left(M_{D}, \theta_{D}\right)}$
. 3.28

Figure 2 shows typical equal probability contours of the distribution given by equation 3.28 .

FIGURE 2: Shows the general form taken by equal probability contours of the distribution of $\bar{\phi} \times z$

The distributions associated with $\bar{\phi} x e$ and $\bar{\phi} x y$ may be arrived at in a similar manner.

The distribution of $\bar{\phi} x e$ is given by letting:
$\sigma^{2}=\frac{S x^{2}}{L} \cdot\left\{S r^{2}+|H|^{2} \cdot S n^{2}\right\}$
in equation 3.27 and defining the transformation T bys

$$
T=1 /(1+H \cdot G)
$$

The distribution of $\bar{\phi} x y$ is obtained by letting:

$$
\sigma^{2}=\frac{S x^{2}}{L} \cdot\left\{{S r^{2}}^{2}+\operatorname{Sn}^{2} /|G|^{2}\right\}
$$

. . . . defining T as $G /(1+H . G)$.

ii) Sampling distribution of overall closed-loop gain estimates

The error in the closed-loop gain estimate found from equation
3.18 is approximately given by:

$$
\bar{\varepsilon}=\frac{G \cdot \bar{\phi} x r+\bar{\phi} \times n}{(1+H G) \cdot \bar{\phi} x x}
$$

Using the same arguments as in the previous section, the conditional distribution, given $\bar{\phi} x x$, of a variable:

$$
\mathrm{f}=\frac{\mathrm{G}_{\cdot} \bar{\phi} \times r+\bar{\phi} \times \|}{(1+\mathrm{H} \cdot \mathrm{G})}
$$

is given by:
 where $M_{T}^{2}=|1+G H|^{2}$.

This is a similar situation to the open-loop case except that the effective noise variance as seen at the output $y(t)$ is given by:

$$
\sigma n^{2}=\frac{|G|^{2} \cdot S r^{2}+S n^{2}}{M_{T}^{2}}
$$

in the closed loop case. The error in the closed-loop gain is given by $\bar{\varepsilon}=f / \bar{\phi} x x$. The distribution of $\bar{\varepsilon}$ is given by equation 2.28
in Chapter 2 with on ${ }^{2}$ above replacing $S n^{2}$.

3) STATIONARITY TESTING OF CLOSED-LOOP SISTEMS

Complete stationarity testing of the closed-loop system involves independent testing of five parameters. The sampling of three 'loop' signals gives only three effective degrees of freedom. Thus as in the open-loop case it is not possible to test one parameter alone holding the rest as measured constants.

In the open-loop case, the stationarity test (equation 2.37) requires prior knowledge of the noise variance. This is approximated by a 'best estimate'. The same approach can be employed in the closed-loop case except that two tests are now required for complete stationarity of G and H. If both or either of the tests fail it is not possible to tell (in statistical terms) which of the frequency response functions (G or H) has changed. This must be resolved by reference to the particular physical situation.

Let $\phi_{x y}^{1}, \phi_{x x}^{1}, \phi_{x z}^{1}$ and $\phi_{x y}^{2}, \phi_{x x}^{2}, \phi_{x z}^{2}$ be two sets of independent estimates, averaged over L_{1}, L_{2} blocks respectively. Lets

$$
\begin{aligned}
& I=\frac{\overline{\phi x y}}{\bar{\phi} x x}=\frac{G}{(1+G \cdot H)}+\bar{\varepsilon} \cdots \cdots \cdot \cdots 3.31 \\
& S=\frac{\bar{\phi} x z}{\bar{\phi} x x}=\frac{G . H}{(1+G \cdot H)}+\bar{\delta} \cdots \cdot 3.32
\end{aligned}
$$

The conditional distributions of $\bar{\varepsilon}$ and $\bar{\delta}$ given $\bar{\phi} x x$ are Gaussian with zero mean and independent real and imaginary coefficients:
$p(\bar{\varepsilon}: \bar{\phi} x x)={\underset{\text { complex }}{ }}_{N}\left(0, \frac{1}{L \cdot \bar{\phi} x x} \cdot \frac{|G|^{2} \cdot \mathrm{Sr}^{2}+\mathrm{Sn}^{2}}{|1+H G|^{2}}\right) \cdot .3 .33$
and:
$p(\bar{\delta}: \bar{\phi} x x)=\mathrm{N}_{\text {complex }}\left(0, \frac{1}{\mathrm{~L} \cdot \bar{\phi}_{\mathrm{xx}}} \cdot \frac{\left.\perp \mathrm{H}\right|^{2} \cdot \mathrm{Sn}^{2}+\mathrm{Sr}^{2}}{1+\left.\mathrm{HG}\right|^{2}}\right) \cdot .3 .34$

It is worth noting that the variance of the error in the overall frequency response estimate, T, is dependent upon the system parameters G and H. In the open-loop case, the variance is a function of the ratio $\mathrm{Sn}^{2} / 5 \mathrm{x}^{2}$, and does not depend on the system response.

The variance terms in equations 3.33 and 3.34 are approximated by substituting best estimates as seen at the output Y, and in the feedback loop Z. The derivation of these terms is identical to that followed in Chapter 2 (equations 2.29 to 2,36). It can be shown thats

$$
\begin{aligned}
& \hat{\sigma}_{\varepsilon}{ }^{2} \simeq \frac{\left(\bar{\phi} y y-|T|^{2} \cdot \bar{\phi} x x\right)}{2 \cdot(L-1) \cdot \bar{\phi}_{\mathrm{Xx}}} \\
& \hat{\sigma}_{\delta}{ }^{2}=\frac{\left(\bar{\phi}_{\mathrm{zz}}-|\mathrm{S}|^{2} \cdot \bar{\phi}_{\mathrm{Xx}}\right)}{2:(\mathrm{L}-1) \cdot \bar{\phi}_{\mathrm{xx}}} \cdots \cdots \cdots \cdot \cdots \cdot 36
\end{aligned}
$$

If the product G.H is constant for the two periods of estimation, then:

$$
\begin{gathered}
\mathrm{T}_{1}-\mathrm{T}_{2}=\varepsilon_{1}-\varepsilon_{2}=\mathrm{f} \\
p\left(\mathrm{f}: \phi_{\mathrm{xx}}^{1}, \phi_{\mathrm{xx}}^{2}\right) \simeq \underset{\mathrm{complex}}{\mathrm{~N}}\left(0,\left\{\hat{\sigma}_{\varepsilon}{ }^{2}+\hat{\sigma}_{\varepsilon 2}^{2}\right\}\right) \quad \text { and: }
\end{gathered}
$$

Similarly if the ratio G / H is constant for the two periods of estimation then:

$$
S_{1}-S_{2}=\delta_{1}-\delta_{2}=9 \quad \text { and }:
$$

$p\left(g: \phi_{x x}^{l}, \quad \phi_{x x}^{2}\right) \simeq \underset{\text { complex }}{N}\left(0,\left\{\hat{\sigma}_{\delta}{ }^{2}+\hat{\sigma}_{\delta}^{2}{ }^{2}\right\}\right) \ldots 3.38$ By squaring f and g and normalising their respective variances we obtain variables that are approximately Chi-square distributed with 2 degrees of freedom and unit variance. As in the open-loop case, the approximation is improved if we consider the stationarity over a wide frequency band. In general, if we wish to test stationarity over M adjacent frequency points, then the variables:
$\bar{f}=\sum_{i=1}^{M}\left|f_{i}\right|^{2} /{\sigma_{f_{i}}}^{2} \cdots \cdots \cdots 3.39(a)$
and:
$\left.\left.\overline{\mathrm{g}}=\sum_{\mathrm{i}=1}^{\mathrm{M}}\left|\mathrm{g}_{\mathrm{i}}\right|^{2} / \sigma_{g_{i}}{ }^{2} \ldots \ldots3 .39\right) \mathrm{b}\right)$
are Chi-square distributed with 2 M degrees of freedom. Knowledge of the particular situation may preclude variations in G and H such that the product, $G H$, or the ratio, G / H, are liable to remain constant. In such circumstances it is only necessary to test one variable. Some applications to human operator tracking tasks are presented in Chapter 6.

4) SAMPLING DISTRIBUTIONS ASSOCIATED WITH FORWARD-LOOP GAIN ESTIMATES

(extension to tri-variate complex Gaussian systems)

The distributions developed so far for closed-loop systems are extensions of open-loop results. However the sampling distributions of \bar{G} and \bar{H} cannot be obtained by transformation of open-loop results. The distribution associated with estimates of \bar{G} (equations $3.8,3.19$) is derived in this section. The distribution of estimates of the feedback loop gain, \bar{H}, can be found by following an identical procedure (Section 5). From equation 3.19, the error in estimates of G is approximately given by:

$$
E g=\frac{(\underline{1}+H \cdot G) \cdot \bar{\phi} \times n}{\bar{\phi} \times x-\bar{\phi} \times r-H \bar{\phi} \times n}
$$

If equation 3.40 is rearranged:

$$
E g=\frac{1+H \cdot G}{Z-H}
$$

$$
\text { -•••••••• } 3.41(a)
$$

$$
\begin{equation*}
\text { where } Z=\frac{\bar{\phi}_{x x}-\bar{\phi}_{x r}}{\bar{\phi} x n} \tag{b}
\end{equation*}
$$

We derive the distribution of Z and then consider the complex transformation described by equation $3.41(a)$.

Derivation of sampling distribution of Z

This involves finding the distribution of $\bar{\phi}_{x n}$ given $\bar{\phi}_{x x}$ and the distribution of $U(=\bar{\phi} x x-\bar{\phi} x r)$ given $\bar{\phi} x x . A s n(t)$ and $r(t)$ are independent it can be seen that U and $\bar{\phi} \times n$ are independent if $\bar{\phi}_{x x}$ is kept constant. Knowing the distributions of U and $\bar{\phi} x n$, the distribution of the ratio $U / \bar{\phi} \times n$ is derived, maintaining $\bar{\phi} x x$ as a constant. Finally the dependence on $\bar{\phi} \times x$ is dropped by integrating for all $\bar{\phi} x$.

In previous derivations, the terms $\bar{\phi} x x, \bar{\phi} x n$ and $\bar{\phi} x r$ have been the mean values obtained from L independent estimates. To avoid complicated scale factors we now consider $\bar{\phi}_{\mathrm{xx}}, \bar{\phi} \mathrm{xn}$ etc. to be the sum of L independent estimates. As Z involves the ratio of two estimates the factor L is lost and the final distribution is the same as that obtained by considering $\bar{\phi} x x, \bar{\phi} x n$ and $\bar{\phi} x r$ as mean values.

Fron equation 3.22:
$p\left(\bar{M}_{x n}, \bar{\theta}_{x n: \bar{\phi} x x)}=\frac{\bar{M}_{x n} \exp \left(-\bar{M}_{x n^{2} / 2 \cdot s_{n}^{2} \cdot \bar{\phi} x x}\right)}{2 \pi \cdot \mathrm{Sn}^{2} \cdot \bar{\phi}_{x x}} \quad \cdots \cdot .32(a)\right.$
and similarly:

$$
\mathrm{p}\left(\bar{M}_{x r}, \bar{\theta}_{\mathrm{xr}}: \bar{\phi}_{\mathrm{xx}}\right)=\frac{\bar{M}_{x r} \cdot \exp \left(-\bar{M}_{x r^{2}} / 2 \cdot \mathrm{Sr}^{2} \cdot \bar{\phi}_{x x}\right)}{2 \pi \cdot \mathrm{Sr}^{2} \cdot \bar{\phi}_{x x}} \cdot \cdot \cdot 3.42(\mathrm{~b})
$$

However, $U=\bar{\phi}_{x x}-\bar{\phi} x r$. Performing the complex transformation to obtain the distribution of U :

$$
p(M u, \theta u: \bar{\phi} x x)=\frac{p\left(\bar{M}_{x r}, \bar{\theta}_{x r}: \bar{\phi}_{x x}\right)}{J\left(\bar{M}_{x r}, \bar{\theta}_{x r}\right)} \quad \ldots \ldots .43
$$

where $\quad J\left(\bar{M}_{\times r}, \bar{\theta} \times r\right)=\left|\begin{array}{ll}\frac{\partial M u}{} & \frac{\partial M u}{\partial \bar{\theta}_{x r}} \\ \partial \bar{M}_{x r} & \\ \frac{\partial \theta u}{\partial \bar{M}_{x r}} & \frac{\partial \theta u}{\partial \bar{\theta}_{x r}}\end{array}\right|$ $=\quad \frac{1}{\mathrm{Mu}}$ and $\bar{M} \times r$ and $\bar{\theta} \times r$ are replaced in terms of $M u, \theta u$ and $\bar{\phi} x x$. Making the substitution:
$p(M u, \theta u: \bar{\phi} x x)=\frac{M u}{2 \pi \cdot S r^{2} \cdot \bar{\phi}_{x x}} \cdot \exp \left\{\frac{-(\bar{\phi} x x-M u \cdot \cos \theta u)^{2}-(M u \cdot \sin \theta u)^{2}}{2 \cdot \operatorname{Sr}^{2} \cdot \bar{\phi}_{x x}}\right\}$

As $\bar{\phi} x n$ and U are independent if $\bar{\phi} x x$ is fixed, the joint distribution of $\bar{\phi} \times n$ and U is given by a
$p(M u, \theta u, \bar{M} x n, \bar{\theta} x n: \bar{\phi} x x)=p\left(M u, \theta u: \bar{\phi}_{x x}\right){ }_{\mathrm{H}}, p\left(\bar{M} x n, \bar{\theta}_{x n}: \bar{\phi}_{x x}\right)$. . 3.45 We now find the distribution of $M z, \theta_{z}$ given $\bar{\phi} x$. It can be seen that $M z=M u / \bar{M} \times n, \theta_{z}=\theta u-\bar{\theta}_{x n}$

The distribution of $M u$, M xn, θz, given $\bar{\phi} x x$ is found by substituting for θu in terms of θz and $\bar{\theta} x n$, and integrating over the complete range of $\bar{\theta} \times n,(0 \leqslant \bar{\theta} x n \leqslant 2 \pi)$:
$p(\bar{M} \times n, M u, \theta z: \bar{\phi} x x)=\int_{0}^{2 \pi} p\left(\bar{M} x n, M u, \bar{\theta} x n,\left\{\theta z+\bar{\theta}_{x n}\right\}: \bar{\phi} x x\right)$. - $\left|\frac{\partial \theta z}{\partial \bar{\theta} \times n}\right|$. $d \bar{\theta} x n$
where $\theta u=\theta_{z}+\bar{\theta}_{\mathbf{x n}}$. Making the appropriate substitutions from equations $3.42(a)$ and 3.44 it is found that:
$p(\bar{M} \times n, M u, \theta z: \bar{\phi} x x)=K \cdot \int_{0}^{2 \pi} \exp \frac{\left(M u \cos \left(\bar{\theta}_{x n}+\theta_{z}\right) d \bar{\theta} \times n\right.}{S_{r}{ }^{2}}$
where the coefficient K includes all terms not involving $\bar{\theta} \times n$.
$K=\frac{\bar{M} x n \cdot M u}{4 \pi^{2} \cdot S_{n}^{2} \cdot S_{r}^{2} \cdot \bar{\phi}_{x x}^{2}} \exp \left\{-\left\{\frac{\bar{\phi}_{x x}}{2 \cdot S r^{2}}+\frac{i u^{2}}{2 \Delta r^{2} \cdot \bar{\phi}_{x x}}+\frac{\bar{M}_{x n}^{2}}{2{S n^{2}}^{2} \bar{\phi}_{x x}}\right\}\right\}$

Integrating using standard integrals (reference 3) :

$$
p(\bar{M} \times n, M u, \forall z: \bar{\phi} x x)=2 . \pi \cdot K . I_{0}\left(M u / S r^{2}\right) \ldots .3_{0} 46
$$

where $I_{0}(x)=$ Modified Bessel function of order zero.
The above procedure is repeated to find $p(M z, \theta z: \bar{\phi} x x)$
$p(M z, \theta z: \bar{\phi} x x)=\int_{0}^{\infty} \bar{M}_{x n} \cdot p\left(\bar{M} x n, M z \cdot \bar{M} x n, \theta z: \bar{\phi}_{x x}\right) \cdot d \bar{M}_{x n}$
where $M u$ is replaced in terms of $M z$ and $\bar{M} \times n$. This integral is of the forms

$$
\begin{aligned}
p(M z, \theta z: \bar{\phi} x x)= & K_{1} \int_{0}^{\infty} \bar{M}_{x n^{3}}^{3} \cdot \exp \left(-\alpha \cdot \bar{M} x n^{2}\right) . \\
& . I_{0}(\beta \cdot \bar{M} x n) . d \bar{M} x n \quad \ldots3 .47
\end{aligned}
$$

where from equation 3.46 we find

$$
\begin{aligned}
\mathrm{K}_{1} & =\frac{\mathrm{Mz} \cdot \exp \cdot \frac{\left(-\bar{\phi}_{\mathrm{xx}} / 2 \cdot \mathrm{Sr}^{2}\right)}{2}}{2} \\
\alpha & =\frac{1}{2 \cdot \pi \cdot \bar{\phi}_{\mathrm{xx}}} \cdot\left[\frac{1}{\mathrm{Sn}^{2}}+\frac{\mathrm{Sr}^{2}}{\mathrm{Sr}^{2}}\right]
\end{aligned}
$$

and $\beta=\frac{\mathrm{Mz}}{{ }^{2}}$
Integrating with respect to $\bar{M} \times n$ (using standard integral formulae, reference 4):
$p\left(M z, \theta z: \bar{\phi}_{x x}\right)=\frac{K_{1}}{2 \alpha^{2}} \cdot \exp \left(\beta^{2} / 4 . \alpha\right) \cdot L_{1}\left(-\beta^{2} / 4 . \alpha\right) \cdot \circ \cdot 3.48$
where $L_{N}(x)=$ Laguerre polynomial of order N and $L_{1}(x)=(1-x)$ Dropping the dependence on $\bar{\phi} x x$ the distribution of $M z, \theta z$ alone is given by:

$$
p(M z, \theta z)=\int_{0}^{\infty} p(M z, \theta z: \bar{\phi} x x) \cdot p(\bar{\phi} x x) d \bar{\phi} x x \quad \cdots \cdot \cdot 3.49
$$

Substituting for K_{1}, α and β in equation 3.48 and letting $p\left(\bar{\phi}_{\mathbf{x x}}\right)$ equal the Chi-square distribution with 2 L degrees of freedom and varrance $5 x^{2}$ we find:
$p\left(M_{z}, \theta_{z}\right)=\int_{0}^{\infty} K_{2} \cdot \bar{\phi}_{x x}^{L-1} \cdot \exp (-\lambda \bar{\phi} x x) \cdot(1+\delta \cdot \bar{\phi} x x) \cdot d \bar{\phi} x x \cdot 3.50$ where λ can be shown to be greater than zero for all values of $5 x^{2}$, $\mathrm{Sr}^{2}, \mathrm{Sn}^{2}$ 。 Integrating by parts
$p(M z, \theta z)=K_{2} \cdot \frac{\Gamma(L)}{\lambda^{L}}+\delta_{0} \frac{\Gamma(L+1)}{\lambda^{L+1}}$
where $\Gamma(L)=$ Gamma Integral $=(L-1)!$ and the coefficients are found to be:

$$
\begin{aligned}
\mathrm{K}_{2} & \left.=\frac{\mathrm{Mz} \cdot \mathrm{Sr}^{2}}{2^{\mathrm{L}} \cdot \mathrm{Sn}^{2} \cdot \pi \cdot \mathrm{Sx}^{2 \mathrm{~L}} \cdot \Gamma(\mathrm{~L}) \cdot\left\{\frac{\mathrm{Sr}^{2}}{\mathrm{Sn}^{2}}+\mathrm{Mz}\right.}{ }^{2}\right\} \\
\delta & =\frac{\mathrm{Mz}^{2}}{2 . \mathrm{Sr}}{ }^{2} \cdot\left(\mathrm{Sr}^{2} / \mathrm{Sn}^{2}\right)+\mathrm{Mz}^{2} \\
\text { and } \lambda & =\frac{1}{2 . \mathrm{Sr}^{2}}\left[1-\frac{\mathrm{Mz}^{2}}{\left(\mathrm{Sr}^{2} / \mathrm{Sn}^{2}\right)+M z^{2}}\right]+\frac{1}{2 . S x^{2}}
\end{aligned}
$$

Substituting for K_{2}, λ and δ in equation 3.51 and rearranging:

$$
\mathrm{p}(M z, \theta z)=\frac{M z \cdot S r^{2} \cdot S n^{2}}{\pi \cdot\left\{S r^{2}+S n^{2} \cdot M z^{2}\right\}^{2} \cdot\left\{1+\frac{S x^{2}}{\frac{S r^{2}+S n^{2} \cdot M z}{2}}\right\}^{L}}
$$

$$
\left[1+\frac{L \cdot \mathrm{Mz}^{2}}{\mathrm{Sr}^{2} \cdot\left\{\frac{\mathrm{Sr}^{2}}{\mathrm{Sn}^{2}}+\mathrm{Mz}^{2}\right\} \cdot\left\{\frac{1}{\mathrm{Sx}^{2}}+\frac{1}{\mathrm{Sr}^{2}+\mathrm{Sn}^{2} \cdot \mathrm{Mz}^{2}}\right\}}\right]
$$

The distribution of z as given by equation 3.52 is of a complicated form. However, the following properties of $p(M z, \theta z)$ can be found:

1) If $M z=0$ or $M z=\infty$ then $p(M z, \theta z)$ is zero (as expected).
2) Equal probability contours in z describe circles about the origin i.e. $p(M z, \theta z)$ is essentially only a function of the absolute distance from the origin ($M z$).
3) Taking a cross-section of $p(M z, \theta z)$ along the real axis it is found that $p(M z, \theta z)$ takes the form of a double hump. (See Figure 3 below).

FIGURE 3: Shows a typical cross-section of $p(M z, \theta z)$ taken along the

real-axis of z.

The value of Zmax is a function of $\mathrm{Sx}^{2}, \mathrm{Sn}^{2}, \mathrm{Sr}^{2}$ and L . Varying each parameter in turn, keeping the remaining terms constant, it is found that:
i) If $S x^{2}$ is increased then $Z \max$ increases
ii) If Sn^{2} is increased then Z max decreases

2
iii) If Sr^{2} is increased then Zmax decreases

However Zmax is more sensitive to changes in Sn^{2}.
iv) If L is increased then $Z m a x$ increases. As $L \rightarrow \infty p(M z, \theta z)$ \rightarrow dirac delta function at $M z=\infty$
4) If the noise in the feedback loop is zero (i.e. $\mathrm{Sr}^{2}=0$) then equation 3.52 resembles the distribution of the openloop frequency response error. Remembering for the open-loop case thats

$$
\bar{E}_{g}=\frac{\bar{\phi}_{\mathrm{xn}}}{\bar{\phi}_{\mathrm{xx}}}=\frac{1}{z} \quad(\text { if } \bar{\phi} \times r=0)
$$

It can be shown thats

$$
p(\bar{E} g)=\left.p(1 / z)\right|_{S r^{2}=0, H=0 .}
$$

Thus the open-loop frequency response distribution is a particular case of the closed-loop distribution with the feedback noise (Sr^{2}) and the feedback gain (H) set to zero.

To obtain the distribution of the forward-loop gain estimate we must make the complex transformation given by equation 3.4l(a). By applying this transformation to a distribution of the form shown in Figure 3 insight is gained on the nature of errors in the forward-loop frequency response estimate. The transformation is given by: $E g=\frac{T}{z-H} \quad$ where $T=1+H . G$

The distribution of Eg is found from the distributions of z by
$p\left(M_{E}, \theta_{E}\right)=\frac{p(M z, \theta z)}{J(M z, \theta z)}$
where: $J(M z, \theta z)=\left|\begin{array}{ll}\frac{\partial M E}{\partial M z} & \frac{\partial M E}{\partial \theta z} \\ \frac{\partial \theta E}{\partial M z} & \frac{\partial \theta E}{\partial \theta z}\end{array}\right|$
and Mz, θ_{z} are rephrased in terms of M_{E}, θ_{E}.

This transformation is most easily derived in two stages. First we consider the transformations

$$
\begin{aligned}
& w=z-H \quad \text { Under this transformation: } \\
& M w=M_{z}^{2}+M_{H}^{2}-2 M z \cdot M_{H} \cdot \cos \left(\theta_{z}-\theta_{H}\right) \\
& \theta w=\tan -1\left\{\begin{array}{l}
\left.\frac{M_{z} \cdot \sin \theta z-M_{H} \cdot \sin \theta_{H}}{M z \cdot \cos \theta z-M_{H} \cdot \cos \theta_{H}}\right\}
\end{array}\right.
\end{aligned}
$$

The Jacobian of this transformation is given by s
$J(M z, \theta z)=\left|\begin{array}{ll}\frac{\partial M w}{\partial M z} & \frac{\partial M w}{\partial \theta z} \\ \frac{\partial \theta w}{\partial M z} & \frac{\partial \theta w}{\partial \theta z}\end{array}\right|$

Evaluating the partial differentials:

$$
\begin{aligned}
& \frac{\partial M w}{\partial M z}=\left\{M_{z-M_{H}} \cdot \cos \left(\theta z-\theta_{H}\right\}\right. \\
& \left\{M_{z}^{2}+M_{H}^{2}-2 M z_{0} M_{H} \cdot \cos \left(\theta z-\theta_{H}\right)\right\}^{\frac{1}{2}} \\
& \frac{\partial M_{w}}{\partial \theta_{z}}=M z, M_{H} \cdot \sin \left(\theta_{z}-\theta_{H}\right) \\
& \left\{M_{z}^{2}+M_{H}^{2}-2, M z_{0} M_{H} \cdot \cos \left(\theta z-\theta_{H}\right)\right\} \\
& \frac{\partial \theta_{\mathrm{w}}}{\partial \mathrm{Mz}=-M_{\mathrm{H}}, \sin \left(\theta_{z}-\theta_{H}\right)} \\
& \left\{M z^{2}+M_{H}^{2}-2 \cdot M z \cdot M_{H} \cdot \cos \left(\theta z-\theta_{H}\right)\right\} \\
& =\left\{M z^{2}-M z_{,} M_{H}, \cos \left(\theta_{z}-\theta_{H}\right)\right\} \\
& \frac{\partial \theta_{\mathrm{w}}}{\partial \theta_{z}} \\
& \left\{M z^{2}+M_{H}{ }^{2}-2 \cdot M z, M_{H} \cos \left(\theta z-\theta_{H}\right)\right\}
\end{aligned}
$$

$J(M z, \theta z)=\frac{\left(M z^{3}-2 \cdot M z^{2} \cdot M_{H} \cdot \cos \left(\theta z-\theta_{H}\right)+M z \cdot M_{H}^{2}\right)}{\left\{M_{z}^{2}+M_{H}^{2}-2 \cdot M z \cdot M_{H} \cdot \cos \left(\theta z-\theta_{H}\right)\right\}} \cdot \operatorname{lo.54(a)}$
and lastly Mz and θ_{z} are rephrased in terms of $\mathrm{Mw}, \theta_{\mathrm{w}}$ using the relationships.
$M z=\left\{M w^{2}-M_{H}^{2}+2 \cdot M w \cdot M_{H} \cdot \cos \left(\theta_{w}-\theta_{H}\right)\right\}^{\frac{1}{2}} \cdots \cdots 3.54(b)$
$\theta z=\tan ^{-1}\left(\frac{M w \cdot \sin \theta w+M_{H} \cdot \sin \theta_{H}}{M w \cdot \cos \theta w+M_{H} \cdot \cos \theta_{H}}\right)$
Equations 3.54 (a, b, c) can be used directly to obtain the distribution of $M w, \theta w$ by substituting appropriately using $p(M w, \theta w)=\frac{p(M z, \theta z)}{J(M z, \theta z)}$

Lastly the error term Eg is given bys

$$
M_{E} \cdot \exp (j \theta E)=\frac{M_{T} \cdot \exp }{M_{w} \cdot \exp }(j \theta T)
$$

and

$$
p\left(M_{E}, \theta_{E}\right) \quad=\frac{p(M w, \theta w)}{J(M w, \theta w)}
$$

where $M_{w}=\frac{M_{T}}{M_{E}}, \quad \theta_{W}=\theta_{T}-\theta_{E}$ and:
$J(M w, \theta w)=\left|\begin{array}{ll}\frac{\partial M_{E}}{\partial M_{w}} & \frac{\partial M_{E}}{\partial \theta_{w}} \\ \frac{\partial \theta_{E}}{\partial M_{w}} & \frac{\partial \theta_{E}}{\partial \theta_{w}}\end{array}\right|=\frac{M_{T}}{M w^{2}}=\frac{M_{E}^{2}}{M_{T}}$
So $\left.p\left(M_{E}, \theta_{E}\right)=\frac{M_{T}}{M_{E}{ }^{2}} \cdot{ }^{p} M w, ~_{M_{w}} \underset{M_{E}}{\left(M_{T}\right.},\left(\theta_{T}-\theta_{E}\right)\right) \quad .3 .56$
Direct substitution to yield an explicit form for the distribtuion of Eg is cumbersome and not very enlightening. It is simpler to consider the transformation of circles centred about the origin in the z-plane to the E-plane. There are three conditions to consider (see Figure 4)

FIGURE 4 : Shows circles in the Z-plane mapped into t'e Fg -plane. The origin denotes zero error in estimates of G. The circles are labelled with the ratio $\mathrm{Mz} / \mathrm{Mh}$.

$$
\begin{aligned}
& 0=-(1+H G) / H=1 /(1,-j l) \\
& \text { If } \mathrm{Mz}=\infty \text { then } \mathrm{Eg}=0 . \\
& \text { If } \mathrm{Mz}=0 \text { then } \mathrm{Eg}=-(1+\mathrm{HG}) / \mathrm{H}
\end{aligned}
$$

1) Circles in the z-plane of radius $\mathrm{Mz}_{\mathrm{z}}<\mathrm{MH}_{\mathrm{H}}$

These map to circles in the E-plane with the interior of circles in the z-plane mapping to the interior of circles in the E-plane. As $\mathrm{Mz} \rightarrow 0$ these circles are centred about $-(1+\mathrm{H} . \mathrm{G}) / \mathrm{H}$.
2) Circles in the z-plane of radius $M_{z}=M_{H}$

This circle maps to a straight line in the E-plane bisecting the line joining $-(1+H . G) / H$ and the origin at right angles.
3) Circles in the z-plane of radius $M_{z}>M_{H}$

These map to circles in the E-plane with the interior of circles in the z-plane mapping to the exterior of circles in the E-plane. As $M_{z \rightarrow}$ othe circles in the E-plane become centred about the origin. Figure 4 shows an example of this transformation for the case where;

$$
H /\left(1+H . G_{0}\right)=(1-j 1)
$$

The circles are marked by the ratio $\mathrm{Mz}_{\mathrm{L}} / \mathrm{M}_{\mathrm{H}}$. The circles enclosing the origin map interior to exterior, those enclosing the point - (1 + H.G) / H map interior to interior.

When the distribution of z is of the form indicated by Figure 3 with a maximum occurring at $Z \max$ there are three cases to considers 1) $Z \max \ll M_{H}$ (under very noisy conditions or in the presence of a large gain in the feedback loop). Under these conditions it is highly likely to obtain estimates centred around the region marked 'A' in Figure 4. This means the estimates are highly biased, with an approximate mean of:

$$
\mu_{G}=G-\frac{1+H_{0} G}{H}=-\frac{1}{H}
$$

remembering that obtaining an estimate at the origin of E corresponds to estimating the forward-loop gain (G) exactly.
2) $2 \max \simeq M_{H}$ (noise in the system is reduced from case 1 but still considerable.) This represents an intermediate stage, under which it is just as likely to obtain estimates to the right of the straight line (area ' B^{\prime}) as to the left (área ' C '). It is also possible under these conditions to find that the distribution of E exhibits a 'hole' centred about the point - (l + HG) / H i.e. it is highly unlikely to find estimates in the immediate vicinity of the point H. This phenomenon is indeed shown to exist in simulation results presented in Section 6.
3) $Z \max \gg M_{H}$ (this is the desired case when noise in the system is minimal or L is sufficiently large). Under these conditions it is highly likely to obtain estimates centred around the origin in the region marked ' D ' in Figure 4. The approximate mean of estimates \bar{G} is given bys

$$
\mu_{G} \simeq G
$$

By considering the transformation given by equation 3.4l(a) in conjuntion with the distribution of z given by equation 3.52 , it is possible to construct approximate confidence intervals for estimates of G if $Z m a x$ (Figure 3) is much greater than the absolute magnitude of the feedback gain. If from equation 3.52 we are α percent confident that values of z lie outside a circle radius M_{α}, then we are α percent confident that estimates of G lie within the transformed circle, radius $M \alpha$, in the E-plane. This technique is used in Chapter 6 to assess models of the human operator response in tracking tasks.

5) DISTRIBUTION OF FEEDBACK FREQUENCY RESPONSE ESTIMATES

The sampling distribution associated with estimates of H is essentially identical to that of the forward-path estimate. Only the alterations required are noted in this section. From equation 3.20 the error in estimates of H is given by s

$$
\bar{E}_{H}=\frac{(1+H \cdot G) \bar{\phi}_{x r}}{G \bar{\phi}_{x x}+\bar{\phi}_{x n-G} \bar{\phi}_{x r}} \quad \cdots \cdot \cdots \cdot \cdot \cdot 3.57
$$

Rearranging to a form shown by equation 3.41:

$$
\bar{E}_{H}=\frac{1+G \cdot H}{G} \cdot\left\{\frac{1}{z-1}\right\}
$$

where now: $z=(\bar{\phi} x x+\bar{\phi} x n / G)=\underline{U} \cdot$. (U defined for equn.3.43) $\bar{\phi} \times r \quad \bar{\phi}_{x r}$

As is expected the roles of $\bar{\phi} x n$ and $\bar{\phi} x r$ are reversed from those in the previous section.

By inspection the distribution of z is given by equation 3.52 replacing:

1) Sn^{2} by Sr^{2} and
2) Sr^{2} by $\mathrm{Sn} 2 /|\mathrm{G}|^{2}$

If G is large then the effect of noise in the forward path on the accuracy of estimates of H is neglibible and the distribution of $1 / z$ is approximated by equation 2.28 (the distribution of errors in the open-loop frequency response estimate.)
6) SIMULATION RESULTS

The distribution of errors in the forward-loop frequency responge was found from simulation tests for an extensive range of system parameters. As in the open-loop simulation tests the Fourier
coefficients X, R and N are assumed Gaussian with zero mean and variance $\mathrm{Sx}^{2}, \mathrm{Sr}^{2}$, Sn^{2} respectively. Thus, to find the distribution of errors in the closed-loop system it is sufficient to form each of the above by taking two independent samples of a Gaussian white noise process as the real and imaginary coefficients and then multiply by the desired scale factor to obtain the correct variance. The loopsignals, \hat{Y}, \hat{E} and \hat{Z} can be formed from a combination of $\hat{X}, \hat{R}, \hat{N}$ and the specified system frequency response gains G, H. The degrees of freedom, L, can be varied by taking average estimates of $\bar{\phi}_{x x}, \bar{\phi}_{x y}$ over L independent realisations of \hat{X}, \hat{N} and \hat{R}.

The amplitude probability distributions of \bar{G} were calculated from ten thousand individual estimates. The complex-plane was divided into a 25×25 matrix of squares centred on the true value of G; the square resolution being chosen to suit each particular case. The number of occurrences of estimates of G within each square was recorded and constant probability contours were constructed. These were compared with expected results from equation 3.56 found by numerically integrating the probability distribution over each square and normalising to the total count of ten thousand estimates.

In total twenty-two tests were tried and good correlation was found in each case. Of these twenty-two, the three variations described in Section 5 are displayed. Figures 5, 6 and 7 show results obtained:

> i) Under very noisy conditions $(Z \max \ll|H|)$
> ii) Under less noisy conditions (Zmax $\simeq|H|)$
> iii) With a high signal-to-noise ratio (Zmax $\gg|H|$)

Lastly, Figures 8 and 9 show that the distributions as predicted are a good approximation for two different systems under similar input and noise conditions.

These results would indicate that the distribution of errors in forward-loop and feedback-loop frequency response estimates in the presence of noise both in the forward and feedback path is described by equation 3.56. This analysis has assumed that bias errors due to finite frequency resolution may be neglected.

FIGTRE 5: Shows constant probability contours in the Eg-plane as measured from simulation tests (-), and as predicted by transformation and integration of equation 3.52. (---). Contours are plotted from experiments involving 10000 independent estimates of the forward-loop frequency response,G.

As the noise variance $\mathrm{S}_{\mathrm{n}}{ }^{2}$ increases relative to $\mathrm{Sx}{ }^{2}$ the variance of estimates of G deoreases. However the values are centred around $-(1+H G) / H$. This corresponds to estimating $G=-1 / H$, or an infinite olosed-loop gain.

SYSTEM PARAMETERS. : $P=-(1+H G) / H, H=(10, j 0), G=(1, j 0)$

$$
s_{x}^{2}=0.28, s_{n}^{2}=0.4, s_{r}^{2}=0.14, L=3 .
$$

FIGURE 6 : Shows constant probability contours in Eg-plane,
a) As found from simulation tests (-)
b) As predicted (---).

As the noise variance decreases relative to $s_{x}{ }^{2}$, the variance of estimates increases. The mean of the distribution moves away from the $-(1+H G) / \mathrm{H}$ point towards the origin. Onder certain conditions the probability of obtaining estimates in the neighbourhood of $-(1+H G) / H$ is small and the constant probability contours bend round this point.

SYSTEM PARAMETERS. : $P=-(1+H G) / H, H=(10, j 0), G=(1, j 0)$,

$$
S_{x}^{2}=0.28, S_{n}^{2}=0.05, S_{r}^{2}=0.14, L=3
$$

FIGURE 1 Shows constant probability contours in the Eg-plane when the signal to noise ratio is large. Under these oonditions estimates are oentred about the origin.

The variance of estimates of G now deoreases as the noise variance $S_{n}{ }^{2}$ deoreases.

SYSTEM PARAMISTKRS :

$$
\begin{aligned}
& H=(10, j 0), G=(1, j 0), L=3 \\
& S_{x}^{2}=0.28, \mathrm{~S}_{\mathrm{n}}{ }^{2}=0.005, \mathrm{~S}_{\mathrm{r}}{ }^{2}=0.14
\end{aligned}
$$

FIGURE 8 : Shows close agreement between measured probability levels (——) and predicted probability levels (-..-) for estimates of the open-loop frequency response, G. The high probability contours are centred about the point $-(1+H G) / H$ indicating a low signal to noise ratio.

SYSTKM PARAMETKRS : $\quad P=-(1+H G) / H, H=(7.14,+j 7.14)$
$G=(1, j 0), L=5, S_{x}^{2}=0.28, S_{n}^{2}=1.12, S_{r}^{2}=0.14$

FIGURE 9: Shows constant probability contours in the Eg-plane under the same noise conditions as in FIGURE 8 , but for a different system. Again their is olose agreement between measured and predicted results.

In figures 5-9 the complex plane was divided into a 25×25 matrix of squares and the number of oocurrences in each square recorded.The total number of estimates taken was 10000. The predicted oocurrence in each square was found by integrating the distribution of G over an interval in the Z-plane (eqn. 3.52) corresponding to the mapped square in the eg-plane. The total probability was normalised to the total number of estimates. SYSTEM PARAMETERS : $\quad P=-(1+H G) / H, H=(10, j 0), L=5$

$$
G=(0.707,-j 0.707), S_{x}^{2}=0.28, S_{n}^{2}=1.12, s_{r}^{2}=0.14
$$

7) NOISE ESTIMATES IN CLOSED -LOOP SYSTEMS

In the open-loop system it was shown that estimates of the noise spectrum were Chi-square distributed with 2 L - 2 degrees of freedom. In closed-loop systems, estimates of the forward path noise, $\bar{\phi} \hat{n} n$, and the feedback noise, $\bar{\phi} \hat{r} \hat{r}$ are shown to be approximately Chi-square distributed with 2L-2 degrees of freedom when the signal-to-noise ratio is large, but the approximation becomes worse as the signal-to-noise ratio decreases.

From equations 3.10 and 3.11 it can be shown thats

$$
\bar{\phi} \hat{n} \hat{n} \simeq \bar{\phi}_{n n}-\left|\overline{E_{g}}\right|^{2} . \bar{\phi}_{\mathrm{ee}} \text {. } 3.58
$$

and $\bar{\phi} \hat{r} \hat{r} \simeq \bar{\phi}_{r r}-\left|\overline{E n}^{2}\right|^{2} \bar{\phi}_{y y}$. 3.59
where $\overline{\mathrm{E}} \mathrm{g}$ and $\overline{\mathrm{E}} \mathrm{h}$ are the errors in estimates of G and H respectively.
As the number of estimates L taken to find the average values $\bar{\phi} e e, \bar{\phi}_{y y} e t c$. tends to infinity, $\bar{E} g$ and $\bar{E} h$ go to zero and the estimates of the noise spectra tend to their true values. When the ratios $S x^{2} / \mathrm{Sn}^{2}$ and $\mathrm{Sx} \mathrm{x}^{2} / \mathrm{Sr}^{2}$ are large then the terms $\left|\bar{E}_{\mathrm{g}}\right|^{2}$. $\overline{\text { Deee }}$ and $|\bar{E} h|^{2}$. $\bar{\phi} y y$ are almost independent of the noise signals $n(t)$ and $r(t)$ and can be shown to be Chi-square distributed with 2 degrees of freedom. Thus as $\bar{\phi} n n$ and $\bar{\phi} r r$ are Chi-square distributed with 2L degrees of freedom, the best estimates of these are approximately Chi-square distributed with 2L-2 degrees of freedom. Figure 10 would indicate that this is indeed the case. As the signal-to-noise ratios decrease, the terms. $|\bar{E} h|^{2}$. $\bar{\phi} y$ and $|\bar{E} g|^{2}$. Dee become highly correlated with the noise terms. Under these conditions the noise spectra estimates tend to underestimate the true values. If the noise term, $n(t)$, dominates the error signal $e(t)$, then:
$\bar{\phi}_{\mathrm{ee}} \simeq\left|\frac{H}{1+H \cdot G}\right|^{2} . \bar{\phi}_{n n} \ldots3 .60$
and the error in estimates of G was shown in Section 5 to be \simeq

- ($1+$ H.G) / H.

Thus the term $|\overline{\mathrm{E}}|^{2}$. $\bar{\phi}$ ee in equation 3.58 is of the same order of magnitude as $\bar{\phi} n n$ and the best estimate of the noise spectrum severely underestimates the true value. A similar argument applies to estimates of the auto-spectrum of the noise in the feedback loop. The distribution of noise spectra estimates under these conditions is shown in Figure 11.

For most cases of system identification, it is necessary to choose L so that the variance of system estimates is reduced to acceptable levels. Under these conditions, estimates of the noise spectra are approximately Chi-square distributed with 2L-2 degrees of freedom.
FIGURE 10: Shows the amplitude distribution of estimates of the Noise
the noise signal.
noise signal.
$H=(1, j 0)$
$G=(1,-j 1)$
$L=4$
$S x^{2}=10$
$S n^{2}=2$
$S r^{2}=1$
$\mu 1=16.0$
$\mu 2=12.0$
$=10000$
$\stackrel{-}{2}$

8) CONCLUSIONS

The results of this chapter extend the 'random' error analysis of short-term spectral estimates to include closed-loop systems with noise both in the forward and feedback paths.

Initial results for the distribution of cross-spectral estimates and estimates of the overall frequency response involve a fairly straightforward extension of results found in Chapter 2. The distribution of estimates of the forward path gain and feedback gain, however, require an approach involving distributions of tri-variate complex Gaussian sequences. The resulting distributions show clearly that, unlike the open-loop case, estimates of G and H can be severely biased under noisy conditions, if L, the degrees of freedom, is chosen too small. This fact is not apparent from an initial consideration of equations 3.19 and 3.20 .

The distribution has been derived for a linear Gaussian system where the noise inputs are uncorrelated with each other and with the input. Using similar arguments to those in Chapter 2, it is expected that the distributions are a good approximation even when $x(t), n(t)$ and $r(t)$ are non-Gaussian.

In Chapter 6 the response of a human operator performing a tracking task in closed-loop mode is examined. It is shown, using the stationarity tests given by equations 3.39 (a, b) and the theoretical distribution of estimates as given by equation 3.56 , that his mode of response depends on the frequency content of the input signal.

REFERENCES

1 WELLSTEAD, P. E.: 'Real time spectral analysis'. Phd. thesis, Univ。 of Warwick (1971)

2 GRADSTEYN, I. S. \& RHYSIK, I. M.: 'Tables of integrals series \& products'. No. 9, p. 340. Academic Press (1965)

3 As above : No. 3937, p. 488.
4 As above : No. 10, p. 718.
5 TONG, H: 'Some problems in the spectral analysis of bivariate non-stationary Gaussian processes'. Phd. thesis, Univ. of Manchester, Chapter 5 (1972)

6 BENDAT, J. S. \& PIERSOL, A.G.: 'Measurement and analysis of random data'. Wiley Interscience (1972)

7 PAPOULIS, A.: 'Probability random variables and stochastic processes'. McGraw Hill (1965)

CRAMER, H.: 'Mathematical methods of statistics'. Princeton Univ. Press (1946)

CHAPTER 4.

SPECTRAL ANALYSIS OF SPEECH

LIST OF SYMBOLS USED
$x(t) \quad:$ output signal from the throat microphone after amplification and filtering

2 output signal from the crystal microphone held in front of the mouth after amplification and filtering
$n(t) \quad:$ a combination of external noise picked $u p$ by the crystal microphone and all sounds not generated by the vocal chords or from the larynx

2 short-term Fourier transform of $x(t)$
: short-term Fourier transform of $y(t)$
: smoothed short-term estimate of the power spectrum of $x(t)$
$\bar{\phi}_{y y}(w) \quad: \quad$ smoothed short-term estimate of the power spectrum of $y(t)$
: best obtainable smoothed estimate of the power spectrum of $n(t) \quad\left(=\bar{\phi}_{y y}-|\bar{H}|^{2} \cdot \bar{\phi}_{x x}\right)$
$\bar{H}(w) \quad: \quad$ estimate of the frequency response between $x(t)$, $y(t)$. Is equivalent to the best obtainable estimate of the vocal tract frequency response as the two filter/amplifier networks modifying the outputs from the throat and crystal microphones have identical dynamic characteristics
$\bar{C}_{x y}(w) \quad: \quad$ a short-term estimate of the coherency between
f_{s}
T
N
w
Ω
$P_{a, b}(\lambda)$
$x(t)$ and $y(t)$
: sampling frequency
: time taken to fill a block of N samples
: block size (number of time samples)
: angular frequency (radians/sec)
: frequency normalised in terms of the voice pitch fundamental frequency
: the Fisher distribution with a, b degrees of freedom and argument λ such that $0 \leqslant \lambda \leqslant \infty$

1) INTRODUCTION

Estimation of the vocal tract transfer function, and spectral analysis of the speech waveform using Fourier techniques (references 1-20) have been subjects for research for many years. In general, the phonetic content of speech is difficult to recover for three reasons:
a) Individual phonemics are often badly enunciated or missed completely
b) Different accents change the phonetic characteristics
c) Many phonemic sounds are themselves slowly transient and not stationary phenomena, thence it is difficult to identify the phonemic boundaries.

This chapter makes use of results obtained in Chapter 2, and shows how these results can be used in the time-varying case to identify both slow changes where two phonemic sounds merge and sharp step-like changes.

The speech measurement system is shown in Figure 1. A throat microphone is placed on a level with the 'voice box.' This ensures that the pick-up is obtained from the vocal chords while feedback from the jaw and small bone structure of the throat is minimised. As the throat microphone is placed higher on the throat the waveform is more contaminated by this bone feedback. The mouth crystal microphone is held 12 inches from the mouth and suitably masked to avoid distortion due to breathing. The mouth-to-microphone distance and the inclination angle are maintained constant to avoid phase changes in the measured frequency response. Figure 2 shows the schematic block diagram for speech analysis.

FIGURE 1: Shows the speech analysis hardware components plus the basic software operations.

FIGURE 2 Shows the block schematic of the speech analysis system

The frequency response estimate is not a direct measure of the vocal tract, as the input does not access the glottal pulse waveform direct. Any feedback loops in the system are essentially time-invariant in nature. The sounds generated at the mouth do not all originate from the throat, only voiced sounds. Hence in certain cases, the specification of a frequency response is impossible from the measured input/output signals. Thus any phonemic identification system must rely on more than the measured frequency response alone. In the most general case, a phoneme may be defined by any sub-group of 4 functions: input/output auto-spectra, noise spectrum and frequency response.

Changes in voice amplitude and voice pitch (used mainly to convey emotional responses in speech) introduce changes in the speech waveform which can be independent of phonemic changes. Thus any system of analysis must normalise to the signal variance and to the voice pitch.

Section 2 details the normalisation methods used and the choice of parameters for the frequency response analysis. Section 3 outlines the statistical tests used to identify phonemic constants, while Sections 4 and 5 give results obtained in identifying certain phonemes. Lastly Section 6 outlines an application of phonemic identification to the compiling of compressed speech. The results obtained are recorded on a cassette (supplied with this thesis) and a statistical survey of 'merit' based on this tape is presented.

2) SPEECH ANA LYSIS AND VOICE PITCH DETECTION

a) Choice of short-term Fourier analysis parameters

1) Voiced speech

Sampling frequency : 10 kHz
Block size (N) : 256 points

Block period $(T)=25$ msecs
Frequency resolution $=40 \mathrm{~Hz}$
Smoothed over 4 frequency points.
Typically voiced speech sections are seldom shorter than 100 msecs and individual phonemes are of ten held this long. Exceptions might be the short' i 'as in sit or the short' u 'as in cut.
ii) Unvoiced speech

Frequency resolution is less essential for unvoiced speech, but the duration of short transients such as K, T, P, may be $\leqslant 10$ msecs. Thus Fourier parameters were chosen as follows:

Sampling frequency (Fs)	$: 20 \mathrm{kHz}$
Block size (N)	$: 256$ points
Block duration	$=10 \mathrm{msecs}$
Frequency resolution	$=80 \mathrm{~Hz}$

Smoothed over 10 frequency points.
The speech signal was sampled at 20 kHz . During unvoiced speech, the data blocks were loaded with every time sample obtained; during voiced speech every other time data point was taken. The choice of voiced/ unvoiced was made from an analysis of the variance of the throat microphone signal over 20 sample points. The threshold trip level was somewhat arbitrary and was set to suit the individual. Under normal speech conditions (i.e. no shouting or whispering) this form of voice detection was found adequate. Thus each phoneme has a voiced/unvoiced characteristic as an initial identifier.

The identification procedures for voiced speech require the spectral estimates to be normalised both in terms of signal variance and voice pitch. Normalising to the signal variance is straightforward; normalising to the voice
pitch is more complicated.
Previous spectral techniques for obtaining the voice pitch have utilized the cepstrum (reference 2l). This is defined as 'the modulus of the Fourier transform of the logarithm of the normalised speech output auto-spectrum.' Typical results obtained from this analysis are shown in Figure 3, the horizontal scale being in a quasi-time domain, the voice pitch being $l / \uparrow \mathrm{Hz}$. Figure 3 shows the cepstrum results for the spoken vowel' ${ }^{-1}$ (as in Kāte) This form of analysis is costly in computer time and somewhat clumsy.

FIGURE 3: Shows a tyoical series of cepstrum results as obtained during voiced speech.

The alternative as used here is more simple and reliable. Figure 4 shows a typical output spectrum as obtained from the throat microphone.

FIGURE 4 :
Shows a typical auto-spectral estimate obtained from the throat microphone during voiced speech.

It is found that the first five maxima are always easily discernable in spoken speech, regardless of the vowel sound uttered. The computer program records the frequency of the fifth maximum and divides accordingly to find the voice pitch. This involves the computer in typically less than 30 compare-and-branch steps compared to at least $N \log N(N=128)$ complex multiplications, using an F.F.T. algorithm, to find the cepstrum. The result is also less dependent on the high frequency content of the input spectrum. All vowel phonemes are tabulated and identified as a function of the voice pitch frequency rather than just frequency. This makes the phonemic patterns as far as is possible independent of context and intonation. Whether the patterns are also speaker-dependent was not thoroughly tested. For one female, one male tested the results were inconclusive. It is extremely unlikely that the results are independent of accent.

3) STATISTICAL TESTING OF SPEECH

Considering the schematic block diagram of Figure 2 the feedback loop is considered of secondary importance. Thus the system is treated
as open-loop. The statistical test employed is dependent on the voiced/ unvoiced decision.

i) Voiced speech

Four parameters are tested, the input auto-spectrum, the output auto-spectrum, the best estimate of the noise auto-spectrum and the frequency response. The auto-spectra of successive blocks are normalised to their measured total power and smoothed over 4 frequency points in the Ω domain (see end of next paragraph).

Successive block estimates are compared with previous blocks for stationarity. The process is $2-l e v e l$. The first level compares adjacent blocks while the second level compares blocks one block removed. The first level is sensitive to sudden step changes while the second level gives an indication of slower transients within phonemic sounds. (e.g. the vowel ' \bar{a} ' ends as an $\overline{\mathrm{ee}}$ in many contexts). This two-tier system was envisaged as a possible means of building a degree of sophistication into the analysis system for possible later developments in the pattern recognition side. The concept of frequency was dropped in favour of normalisation to the voice pitch. Thus frequency ω in Hz is replaced by Ω in terms of the voice pitch. Smoothing is conducted in the Ω domain.

An F-test with 8,8 degrees of freedom was used to test the stationarity of the auto-spectral estimates.

$$
\left\{\mathrm{F}=\phi_{1}(\Omega) / \phi_{2}(\Omega) \text { where } \phi_{1}(\Omega) \text { and } \phi_{2}(\Omega)\right. \text { are the estimates to }
$$

be tested at frequency Ω such that $F \geqslant 1.0\}$

$$
P_{F}=\int_{F}^{\infty} P_{8,8}(\lambda) d \lambda \quad \ldots \ldots . . .4 .1
$$

where $P_{F}=$ Probability of $\lambda \geqslant F$ given ϕ_{1} and ϕ_{2} are samples from a stationary process. Therefore the probability that a change has occurred is given by $\left(1-P_{F}\right)$. However, if $F=1$ (the expected value in this case for stationary
systems) we wish the probability of change to equal zero. Thus equation 4.2 is used to give a mean stationarity confidence level: CONF $=\frac{200}{\Omega \max } \int_{0}^{\Omega \max } \int \begin{gathered}F(\Omega) \\ 1\end{gathered} \mathrm{P}_{8,8}(\lambda) \mathrm{d} \lambda \mathrm{d} \Omega, \ldots .4 .2$ where the constant term 200/ Ω max ensures CONF varies from $0-100 \%$. In the discrete case the integral in Ω is a normalised summation over the frequency band $0-\Omega \max$.

This test is used on the 3 auto-spectral estimates with the number of degrees of freedom in the test on the noise spectrum estimate reduced to 6,6 .

The stationarity test on the frequency response estimate is given by equation 2.42 in Chapter 2. Again a mean level over Ω is obtained. Thus 8 confidence figures (4 for adjacent blocks, 4 for estimates one block removed) are obtained per test. In many cases only a subset of these are used.
ii) Unvoiced speech

The test procedure is similar to that for voiced speech with the following differences:
a) The frequency range of interest extends up to 10 kHz . There is no normalisation to Ω.
b) The frequency response function and input spectra contain less information. In many cases consonants are formed at the front of the mouth. (e.g. $s, t, p, m, n, d, e t c$.$) The input$ spectrum is useful in detecting the gutteral consonants (e.g. k,g).

4) CATEGORISATION OF THE VOWEL PHONEMES

This section presents diagrams of spectra and frequency response functions for the common vowels. The vowel responses as shown are taken
as the mean values obtained for those vowels as they appeared in a variety of contexts. Table lists the distinguishing features of each of the vowels.

PHASE

VOWEL NAME : 乞
AS IN:- Hos

PI: ORE 5

$$
\begin{aligned}
& \text { VOWEL NAME: } \overline{0} \\
& \text { AS IN:- D } \overline{O T E}
\end{aligned}
$$

PHASE

 AS IN:- SOOT

PHASE

VOWEL NAME: Ar AS IN:- KITE

VOWEL NAME: Ā ASIN:- C气̃T

PHASE

$$
\begin{aligned}
& \text { VOWEL NAME: E } \\
& \text { AS IN:- SETT }
\end{aligned}
$$

$$
\text { IGURE } 11
$$

PHASE

VOWEL NAME: $\overline{\mathbf{E E}}$ ASIN:- FETT

PHASE

$$
\begin{aligned}
& \text { VOWEL NAME: } \bar{I} \\
& \text { AS IN:- B } \bar{I} K E
\end{aligned}
$$

PHASE

VOWEL NAME: 〕̄ AS IN:- SeT

EIGU只E 14

PHASE

$$
\begin{aligned}
& \text { VOWEL NAME: } \begin{array}{l}
\bigcup \\
\text { AS IN:- CUT }
\end{array} \text { CU. }
\end{aligned}
$$

FIGURE 15

TABLE 1: BRIEF CLASSIFICATION OF VOWEL PHONEMES

VOWEL	SPECTRUM	COMMENT
0	INPUT OUTPUT FREQ. RES.	lst \& 2nd formants present lst formant only, 2nd suppressed Zero suppressing top band of list formant
$\overline{0}$	INPUT OUTPUT FREQ. RES.	lst formant dominant (broad) lst formant \& minor 2nd \& 3rd formants Zero suppressing top band of list formant followed by 2 peak for 2nd \& 3rd formants
ॐ०	INPUT OUTPUT FREQ. RES.	Narrow lst formant followed by 2nd formant lst formant only Zero suppressing top band of lst formant
00	INPUT OUTPUT FREQ. RES.	4 formants present. 4 th is sometimes lost lst formant. Voice pitch is dominant High gain at voice pitch
$\overline{\text { A }}$	INPUT OUTPUT FREQ. RES.	lst three formants present Formants 1 through 4 present Unity initial gain followed by 3 peaks coinciding with 2nd, 3 rd and 4 th formants
A	$\begin{aligned} & \text { INPUT } \\ & \text { OUTPUT } \end{aligned}$	lst three formants present Low end of lst formant suppressed. Top half appears as a narrow peak. Followed by 2nd formant

VOWEL	SPECTRUM	COMMENT
A	FREQ. RES.	Zero at $3 \times$ voice pitch followed by 3 close peaks with middle peak dominant
$\stackrel{\rightharpoonup}{E}$	INPUT OUTPUT FREQ. RES.	lst three formants present 4 formants present Low gain at top end of lst formant followed by three evenly spread peaks
$\overline{E E}$	INPUT OUTPUT FREQ. RES.	lst and 3rd formants present as peaks lst formant shows at $1 \times$ voice pitch and $2 x$ voice pitch. Broad 'hump' on 4 th formant ($3 \& 4$ merged) High gain at voice pitch. Peak for 4 th formant
$\overline{\mathrm{I}}$	INPUT OUTPUT FREQ. RES.	lst three formants present Broad lst formant followed by 3rd \& 4th。 2nd formant merged with lst Peak for lst formant. 2 peaks for 3rd \& 4th formants. Zero for 2nd formant
$\stackrel{V}{I}$	INPUT OUTPUT FREQ. RES.	lst \& 2nd formants present Narrow lst formant at $2 \times$ voice pitch. Zero for 2nd formant. Slight rise over 3rd 84 th formants. Peak at $2 \times$ voice pitch. Followed by 2 zeros interspaced by a minor peak. Broad peak over 4th formant.

VOWEL	SPECTRUM	COMMENT
\bar{U}	INPUT	lst three formants present.
	OUTPUT	lst three formants present.
	FREQ. RES.	Peak at top end of lst formant followed
	by zero and 2 peaks on 2nd \& 3rd formants.	

The term formant has been used loosely in Table l. Briefly the formants describe the possible resonances generated by the vocal tract. However Table 1 in conjunction with the Figures 5-15 show that the individual short and long vowel sounds can be identified separately. Possible exceptions are \bar{U} and \bar{I}, \bar{A} and \bar{E}. These two pairs are difficult to distinguish using the present system. The response, as show, for each vowel was the mean of 20 separate utterances of the vowel in different contexts. Section 5 shows a brief example of identification of vowels in connected speech. However, no extensive tests were performed and the development of a detailed phonemic recognition scheme is beyond the scope of this chapter.
5) EXAMPLE OF IDENTIFICATION OF VOWEL PHONEMES WITHIN A COMPLEX CONNECTED UTTERANCE

Two examples are shown. In deriving the vowel responses in the previous section many more examples (20 per vowel) were tried but for space considerations cannot be presented here,
a) The connected utterance $\bar{a}, \bar{e}, \bar{i}, \overline{0}, \overline{00}$

This is a connected utterance of the long vowels. Figure $16(a, b, c)$ shows the input, output spectra-graphs and frequency response spectragraph respectively. Each block was compared with the vowel responses
shown in Section 4, using the stationarity tests from Section 3. The stationarity confidence levels for the input spectrum, output spectrum and frequency response, as found for adjacent blocks, were averaged to give a mean stationarity confidence interval. If this mean value was less than 20% (i.e. confidence of stationarity $\geqslant 80 \%$) then the vowel was regarded as positively identified. The $+\operatorname{sign}$ at the top of the diagrams shows a positive identification while a - sign indicates a failure. For the examples shown all the vowel sounds were correctly identified. In some of the examples used to specify the vowel responses the $\stackrel{\breve{i}}{ }$ and u, \breve{e} and \bar{a} were occasionally doubly defined under this process.

Figure 17 shows the variation of the 8 stationarity parameters over the same sequence of vowels. Slow changes in the \bar{a} and $\overline{00}$ are detected. These are not marked as phonetic changes but as transients within one phoneme. By comparing adjacent blocks these slow changes are missed.
b) The word SPITOON

A similar process was followed for the word SPITOON to identify the \bar{i} and $\overline{00}$. Figure 18 shows the time spectra-graphs while Figure 19 shows the variations in the 8 stationarity parameters. The silent ' N ' was not clearly detected. The 'S' and 'T' are easily identified from the spectra-graphs. These phonemes are defined entirely by the output spectrum alone.

16 b) IDENTIFICATION RESULTS

16 c) IDENTIFICATION RESULTS

FIGURE 17:
Shows the variations in the 8 stationarity confidence levels as found
by testing adjacent blocks (___) and blocks l block apart (. . . .)
17) IDENTIFICATION RESULTS

spitoon a) FREQUENCY RESPONSE

แᄄயのつuZu〉 IN

8 kHz
แ๙யดつแZu〉 IN
18 b) IDENTIFICATION RESULTS

FIGURE 19: Shows the variations in the 8 stationarity confidence levels

6) APPLICAIION TO COMPRESSED SPEECH

The process of speeding up speech to compress information content is used extensively in talking books for the blind and in numerous instances where fast information retrieval is needed. Traditionally the speech time waveform is segmented periodically and chunks are cut out without regard to their information content. Using this method, speech rates up to 400 words per minute can be understood. The method employed here used the stationarity tests for open-loop systems (see Chapter 2) to identify sections of approximate time invariance and segment accordingly. The stationary segments were spliced together. As the degree of compression increased the beginning and end sections of these stationary segments were dropped.

The method of testing for stationarity was different from that used in phoneme identification. The statistical tests were the same, but only adjacent frequency blocks were tested. The best estimate of the noise spectrum was not tested for stationarity. The spoken sections of speech were not normalised to the voice pitch and were analysed over a frequency range of $0-5 \mathrm{KHz}$. Unvoiced speech was analysed over a frequency range $0-10 \mathrm{KHz}$ and the complete speech waveform sampled at 20 KHz . The largest of the 3 stationarity parameters measured was taken as the stationarity confidence level for that block. A change was noted if this level was $>80 \%$ (i.e. 80% confident that a change has occured). The following sentence was compressed both periodically and using the stationarity testing for word rates varying from 120-400 w.p.m. $:$ "This is a speededup section of speech to test the principle of phonemic sectioning as opposed to random sectioning."

Forty people were asked to identify the sentence by listening
first to the 400 w.p.m. recording and then at successively slower speeds until they could repeat the sentence. The number of words picked out was recorded for each playback speed. They were then asked to decide whether the sentence was more comprehensible at 400 w.p.m. using phonemic or periodic sectioning. This last question is to a degree subjective, in that a person can be biased by his previous performance and by whether he was tested on the periodically compressed or phonemically compressed records. Table 2 shows the total number of words identified at each playback speed for the two types of speech compression. The tests would indicate a significant improvement in the information retrieval capabilities using phonemic compression (about 40 w.p.m.). The recording is of poor quality due to the automatic recording level monitor on the cassette recorder used. This means that machine noise dominates the initial section of each recording. However, all tests are affected equally. TABLE 2. SHOWS THE RESULTS OF COMPARISON TESTS ON PHONEMICALLY \& PERIODICALLY COMPRESSED SPEECH

SPEECH RATE IN W.P.M.	TOTAL NO. OF WORDS RECOGNI ZED	
	PHONEMICALLY COMPRESSED	PERRIODICALEY COMPRESSED
400	122	63
360	273	146
320	621	486
280	778	736
240	800	800
200	800	800
PREFERENCE VOTE	72	8

7) CONCLUSIONS

The use of a throat microphone to access the input signal to the speech system increases the information that can be obtained about phonemic content in the speech waveform. This is especially true for voiced speech. The vowel sounds can be classified and successfully identified for short connected speech segments. The recognition system makes no serious attempt to optimise the identification routine in terms identifying key characteristics for each phoneme. Clearly for voiced vowel sounds each vowel sound could be characterised by only a few salient features; a number less than ten would be suggested from an initial scan of the results presented. This might further improve identification results but was considered beyond the immediate scope of this chapter.

The results confirm that statistical tests developed for stationary open-loop systems can be applied to the time-varying case for a class of systems whose parameters are subject to 'step' changes. In this case the 'step' is considered the interface of two phonetic utterances.

However, time spectra-graphs of speech are extremely difficult to interpret even for trained operators. If the phonetic changes are indeed step-like, this is hard to understand. Consideration of the choice of analysis parameters such as sampling frequency and frequency resolution give some insight into this problem.

If we restrict ourselves to considering voiced speech then the physical limitations imposed suggest the following requirements:
a) The waveform generated from the 'voice box' is pulse-like with a fundamental frequency of around 100 Hz . Harmonics higher than 5 KHz are effectively filtered out by the vocal tract. It is reasonable to assume that each phoneme will be maintained for at least 2 cycles
of the voice generator (20 msecs) and that any changes in the vocal tract shape will not be registered for approximately a further 10 msecs. Sampling the voice signal at 10 KHz we require a block time period in the order of 30 msecs or a block size of 300 points.
b) The pulse-like nature of the output from the 'voice box' means that the speech spectrum will not be broad band but contain narrow peaks. To avoid undue bias in the results due to lack of frequency resolution adjacent peaks must remain separated. The peaks are spaced approximately 100 Hz apart, hence a frequency resolution of at least 50 Hz is required. The requirements of (a) and (b) are just met by choosing the block size N to be 256 points. However no margin is left for smoothing the results in time (intoducing bad tracking qualities) or in frequency (introducing bias errors). Clearly we must sacrifice one restriction to reduce random errors to an acceptable degree. In this chapter we have sacrificed frequency resolution by smoothing over adjacent frequency points. In general the speech spectra-graphs presented by different researchers have circumnavigated this dilemma in different ways and hence their results differ markedly. Even on allowing for frequency smoothing, random error will be sufficient to blur any step changes that may be present. This suggests that approaching the speech recognition problem by considering the statistics of the spectral estimates is essential.

Allowing for accurate measuremert of the spectral parameters a more serious source of error lies in the original assumption that each vowel sound is itself a stationary phenomenon. Examples such as \bar{a}, $\overline{\mathrm{i}}$ tend to end as an $\overline{\mathrm{ee}}$ and hence the recognition patterns used for these vowels will overlap with those used for $\overline{\mathrm{ee}}$. Voice pitch and context will also change the emphasis placed on a particular vowel
sound. This chapter normalises all vowel spectra to the voice pitch, but this does not allow for trends in voice pitch over the measurement interval. Similarly changes in overall loudness during the measurement interval will cause a further bias. Consider the following simplified example.

Let $X(t, w)$ be approximated over an interval $t \in T$ bys
$X(t, w)=G(t) \cdot X(w)=(1+\alpha t) X(w)$
Taking the short-term Fourier transform of $x(t)$ on the interval T_{8}
$x_{T}(u)=\frac{1}{T} \int_{-T / 2}^{T / 2} \int_{-\infty}^{\infty}(1+\alpha t) \cdot x(w) e^{+j w t} d w e^{-j u t} d t$
Performing the integration:

The first term in equation 4.3 is that expected if the system were stationary. The second term is due to the time-dependent overall gain of the system $G(t)$. This example is equivalent to changing the loudness of a phoneme in a simple manner during a short interval I of say 30 msecs. This represents only three to four cycles of the voice pitch fundamental and it is reasonable to assume $\alpha \mathrm{T} \ll 1$. Thus normalising each successive block to the sampled signal variance should account for errors due to change in loudness.

Changes in the voice pitch over individual time data blocks lead to more serious bias errors. Consider:

$$
x(t, w) \bumpeq x_{0}(w)+t_{0} d x_{0}(w) \quad+\frac{t^{2}}{2} \frac{d^{2} x_{0}(w)}{d t^{2}} \ldots . .44 .4
$$

- . - - in the short interval $t \in T$.

Taking the short-term Fourier transform of $x(t)$ on the interval T_{s} $X_{T}(u) \simeq \frac{1}{T} \int_{T / 2}^{T / 2} \int_{-\infty}^{\infty}\left\{X_{0}(w)+t \cdot \frac{d X_{0}(w)}{d t}+\frac{t^{2}}{2} \cdot \frac{d^{2} X_{0}(w)}{d t^{2}}\right\} \exp (+j w t) d w$

$$
\exp (-j u t) d t \text {. } 4.5
$$

Integrating with respect to ta

$$
X_{T}(u) \simeq \int_{-\infty}^{\infty} \frac{X_{0}(w) \sin \frac{(u-w) T}{2}}{\frac{(u-w) T}{2}} d w
$$

$$
+j \int_{-\infty}^{\infty} \frac{d x_{0}(w)}{d t}\left\{\frac{2 \sin \frac{(u-w) I}{2}}{T(u-w)^{2}}-\frac{\cos \frac{(u-w) I}{2}}{(u-w)}\right\} d w
$$

$$
+\int_{-\infty}^{\infty} \frac{d^{2} x_{0}(w)}{d t^{2}}\left\{\frac{T \sin \frac{(u-w) T}{2}}{4(u-w)}+\frac{\cos \frac{(u-w) T}{2}}{(u-w)^{2}}-\frac{2 \sin \frac{(u-w) T}{2}}{T(u-w)^{3}}\right\} d w
$$

The last two terms in equation 4.6 represent expected bias errors due to the time dependence of $X(w)$. The speech input waveform contains sharp peaks at harmonics of the voice pitch. A slow change in voice pitch can lead to a relatively rapid change in $\phi_{x x}(w)$ as illustrated in Figure 21.

For a small change in the voice pitch frequency from say w_{1} to w_{2} over a short interval T the power spectrum changes by amounts δ_{1} at w_{1} and δ_{2} at w_{2} which are large. For sharply peaked spectra with bandwidths less than $2\left|w_{1}-w_{2}\right|$ this change may be in the order of the original peak amplitude, A. Clearly under these circumstances terms involving $\frac{d X_{0}(w)}{d t}$ and $\frac{d^{2} x_{0}(w)}{d t^{2}}$ in equation 4.6 cannot be ignored.
to a large change in the voice spectrum at given frequencies

Typically in speech we find: $T \simeq 30 \mathrm{msecs}, w_{1} \simeq 100 \mathrm{~Hz}$, $w_{2} \simeq 110 \mathrm{~Hz}$ (= maximum change in interval T) and, as already discussed, the bandwidth of the peaks is less than 50 Hz . The maximum change expected in $\phi_{x x}(w)$ would be in the order of $A / 4$ in the interval T. Assuming $\frac{d^{2} X_{0}(w)}{d t^{2}}$ to be small, this would give:

$$
\left|\frac{d X_{0}(w)}{d t}\right|_{\max \forall w}^{\approx A / 4 T} \quad \begin{gathered}
\text { where } A=\sqrt{\phi_{x x}(w)} \text { at } t_{1}
\end{gathered}
$$

We have briefly discussed possible sources of error due to changes in the voice pitch and voice amplitude. A similar procedure can be followed for considering bias errors due to changes in the vocal tract response over individual block intervals. These changes are relatively slow over individual phonetic sounds and can often be neglected entirely as they usually mark the interface between two phonemes.

The feedback loop suggested in Figure l can be neglected if the
throat microphone is correctly positioned. The input spectra obtained for all the spoken vowels bear close resemblance to each other. This indicates that these spectra represent filtered versions of the 'voice box' output rather than filtered versions of the signal as picked up by the crystal microphone. However it must be emphasised that a major problem in speech analysis is gaining access to the input signal to the vocal tract.

Allowing for a perfect analysis technique it is still doubtful whether a flexible speech recognition system can be developed which is able to cope with long connected passages. The system here can identify sections of voiced speech and may be a useful tool for correcting or analysing speech defects (see references 15 and 20). Other applications to compressed speech would indicate some improvement in terms of intelligibility at the cost of simplicity and computing time. In terms of producing talking books for the blind the improvement in quality is perhaps hard to justify in terms of the extra cost involved. As a means of efficient communication over long distances the extra cost could well be justified.

REFERENCES

OPPENHEIM, A. Vo: 'Speech spectro-grams using the Fas t Fourier Transform'。I.E.E.E. Spectrum 7, No. 3, pp. 57-66 (1970) MIYAMOTO, E.: 'Intelligible artificial voice'. Japan Electrical Eng. No. 34, pp. 36-39 (1969)

3 FATTER, J. W. 8 'Continuous speech recognition \& synthesis'. National Aerospace Elec. Conf. pp. 435-440, (1970) BENINGHOF, W. J.: 'Investigation of an efficient representation of speech spectra for segmentation and classification of speech sounds'. I.E.E.E. Au-18, pp. 33-40, (March, 1970)

FANT, C. G. M.: 'Accoustic theory of speech production'. Mouton, The Hague (1960)
M.I.T. Press (1963)

LIEBERMAN, A. M. 8 'Perception of the speech code'. Psychological Review, Vol 74, No. 6 (Nov. 1967)

OPPENHEIM, A. V.: 'Homomorphic analysis of speech'. I.E.E.E. Trans Au-16, P. 221 (1968)

CARR, P. B. TRILL, D.: 'Long-term larynx excitation spectra'。 J. Accoust. Soc. Am. pp. 2033-4C 36, (1964)

HOLMES, J. N. 8 'An intestigation of the volume velocity waveform at the larynx during speech by means of an inverse filter'. Proc. of the speech communication seminar, Stockholm, Sweden (1962) LOBANOV, B. M.: 'More about the structure of the speech signal and the principles of its analysis '. I.E.E.E. Au-18 pp. 316-17 (March 1970)

HOLMES, J. N.: 'Speech synthesis'. Mills \& Boon (1972)
HERSCHER, M. B. \& COX, R. B.: 'A practical speech recognition system'。 Systems pp. 32-5 (March/April 1974)

ATAL, B. S.: 'Determination of the vocal tract shape directly from the speech wave'. Jnl. Accoust. Soc. Am. p. 65, 47 (1970) CRICHTON, R. G.\& FALLSIDE, F.: 'Linear prediction model of speech product -ion with applications to deaf speech training.' I.E.E. Proc. Vol 121 No. 8 pp. 865-72 (Aug. 1974)

FLANAGAN, J. L.s 'Speech analysis, synthesis and perception'. Springer Verlag, 2nd ed. (1972)

MAKHOUL, J. I. \& WOLF, J. J.: 'Linear prediction and the spectral analysis of speech'. Bolt Beranek \& Newnan Report p. 2304 (1972) ITAKURA, F.: 'Extraction of feature parameters of speech by statistical methods'. 8th symposium on speech information processing . R.I.E.C. Tohoku Univ. Japan (1971) ITAKURA, F. \& SAITO, S.: 'Digital filtering techniques for speech analysis'. British Accoust. Soc. I.O.P. 7th International Congress on Accoustics 27C1 (1971)
'Special section on speech analysing aids for the deaf'. I.E.E.E Trans. Au-20, pp. 2-41 (1972)

NOLL, A. M.: 'Short-term spectrum and cepstrum techniques for vocal pitch detection'. Jnl. Accoustic Soc. Am. 36, pp. 296-302 (1964) BOGNER, R. E.\& FLANAGAN, J. L.: 'Frequency multiplication of speech signals'. I.E.E.E. Trans. Au-17 p. 202

INDIRESAN, P. V.: 'Interrupted speech and the possibility of increasing communication efficiency'. Jnl. Acoust. Soc. Am. 35 (March 1963)

FAIRBANKS, G., EVERITT, W. L., JAEGER, R. S.: 'Method for time or frequency expansion of speech'. I.R.E. Trans. Au-2 pp. 7-11 (Jan. 1954)

VILLIG, F. ${ }^{\text {' An apparatus for speech compression and expansion and }}$ replaying visible speech records'. Jnl. Acoust. Soc. Am. 22, pp. 754-761

GILL, J. S., MORRIS, R. J., EDWARDS, M.G.: 'A helium speech compressor operating in the time-domain'. Paper for I.E.E. Conference 'Electronic Engineering in Ocean Technology' (1970) BEETLE, D. H., CHAPMAN, W. D.: 'Flexible analogue time compression of short utterances'. I.E.E.E. Trans Au-16 (1968)

FRASER, J. M., BULLOCK, D. B., LONG, N. G.: 'Overall characteristics of a T.A.S.I. system'. B.S.T.J. 41 (1962)

BOGNER, R. E.: 'Frequency division in speech bandwidth reduction'. I.E.E.E. Trans. COM-13 4 (Dec. 1965)

SCHROEDER, M. R.a 'Vocoders: Analysis and synthesis of speech'. Jnd. Accoust. Soc. Am. Vol 22 p. 162 onwards (1950)

SEVERWRIGHT, J. S., LOCKHART, G. B.: 'Digital speech transmission using interruption techniques'. Conference on Digital Processing of Signals in Communications, held at the University of Loughborough (1972).

CHAPTER 5.

APPLICATIONS TO FATIGUE ANALYSIS

LIST OF SYMBOLS USED

For signal generation section

$x(t) \quad:$ input signal to shift register
$y(t) \quad:$ summed output of shift register suitably weighted
$h(i), i=1, N:$ weighting function in order of decreasing magnitude $h_{k} \quad$: weighting function assigned to the $k^{\text {th }}$ stage of the shift register
$p(a) \quad$ desired amplitude probability function with amplitude (a)
$M(v) \quad:$ characteristic function of $p(a)$
$p^{\prime}(a) \quad:$ model amplitude distribution function
$M^{\prime}(v) \quad$: characteristic function of $p^{\prime}(a)$
Fc : clock frequency of shift register
$\lambda \quad:$ clock period of shift register $=1 / \mathrm{Fc}$
$\phi_{x}(f) \quad$: one-sided power spectrum density function of $x(t)$
$\phi_{y}(f) \quad$: one-sided power spectrum density function of $y(t)$
$H_{D}(f) \quad:$ desired power transfer function $=\phi_{D}(f) / \phi_{X}(f)$
$\phi_{D}(f) \quad:$ one-sided desired power spectrum
$H(f) \quad:$ model transfer function $=\phi_{\mathbf{y}}(\mathrm{f}) / \phi_{\mathbf{x}}(\mathrm{f})$
$\sigma^{2} \quad:$ signal variance of $\phi_{D}(f)$
$E(h) \quad$ e error function describing the accuracy of the model $H(f)$ to the desired $H_{D}(f)$

For Fatique Rig Control section
$x(t) \quad:$ original input loading signal before compensation
$x^{\prime}(t) \quad:$ compensated input loading signal as delivered to rig

$y(t)$: achieved loading signal
$\hat{H}_{E}(j w)$: short-term estimate of frequency response between x and y at frequency w
$H_{D}(j w)$	2 desired frequency response between x and y
$\hat{E}(j w)$	difference between desired and estimated frequency response between x and y
$\phi_{x x}(w)$: input auto spectrum of $x(t)$
$\phi_{x y}(j w)$: cross-spectrum between x and y
$\phi_{y y}(j w)$	z achieved auto-spectrum of $y(t)$
N	8 number of sample points in Fourier block
T	: update period of controller
K	: correction factor for compensator update
$C(j w)$	a compensator frequency response
Fs	: sampling frequency

1) INTRODUCTION

This chapter investigates three aspects of fatigue testing. Broadly these ares a) The generation of a loading signal whose characteristics can be specified by the user.
b) The control of the loading rig to ensure that demanded loads are actually achieved.
c) Statistical analysis of the test specimen's response to identify the onset of fatigue cracking.

In the first section it is shown how the weighted output of a pseudorandom noise generator (P.R.B.S.) can approximate desired amplitude probability and power spectrum characteristics simultaneously. Several examples' are given. The second section deals with control of fatigue loading rigs by a method of frequency compensation of the input loading signal so that the achieved load has the desired characteristics (in this case a timedelayed version of the original input) Section three makes use of stationarity tests developed in Chapter 2 for open-loop systems to identify changes in the measured frequency response of the test specimen. Some examples are given from test runs conducted on notched aluminium and steel rods subjected to random cantilever bending.

2(i) GENERATION OF SIGNALS WITH SPECIFIED STATISTICS

Much fatigue testing has assumed the loading time history to be Gaussian. Generation of Gaussian signals with a specified power spectrum is in general simple, as the response of any time invariant linear filter to a normallydistributed signal has a normal distribution. For other distributions it is difficult to satisfy constraints simultaneously on both the amplitude distribution and the frequency content. The basic difficulty arises since altering the amplitude distribution by passing the signal through a nonHinear device will modify the power spectrum, and passing the signal through
a linear network in general modifies the amplitude distribution. $(1,2)$
The technique introduced in this chapter utilises a sfift register supplied with a binary $(+1,-1)$ input signal which approximates to bandlimited white noise. The shift register itself may be used to generate a binary pseudo-random input signal by appropriate feedback. Outputs from a selected number of stages of the shift register are added together in a linear element, the contribution from each stage having an appropriate, weight. These weights can be determined so that, subject to certain limitations, the final signal has statistical properties approximating the required functions. This permits a very simple implementation.

The method finally selected generates the magnitudes of the weights so that the output signal has, as closely as possible, the specified amplitude probability function. The allocation of these weights in position along the shift register and the sign associated with each weight is then determined to approximate the required power spectrum. These two stages of the design are independent and discussed in turn. Figure 1 shows the block diagram of the proposed generator with the input sequence to the shift register generated by appropriate feedback.

2(ii) GENERATION OF SPECIFIED AMPLITUDE DISTRIBUTION
When $x(t)$ and its delayed versions are statistically independent, the amplitude distribution of $y(t)$ is the multiple convolution of the amplitude distributions of N square waves of magnitude $t^{\prime} i(i=1, N)$. This is approximated to the desired distribution by choosing the weights hi such that the model characteristic function of $y(t)$ given bya

$$
M^{\prime}(v)=\prod_{i=1}^{N}(\cos (h i . v)) \quad . . . \cdot . \cdot 5.1
$$

approximates the given characteristic function.

$$
M(v)=\int_{-A}^{+A} p(a) \cos \left(v_{.} a\right) d a \text {. } 5.2
$$

where $p(a)$ is the given amplitude probability distribution.
The position and sign of the weights along the shift register do not affect the amplitude probability distribution, only the resulting power spectrum of $y(t)$. The notation adopted here is that weights along the shift register are denoted hi for $i=1$, N, whilst the sequence of weights in order of decreasing magnitude are written $h(i)$, again for $i=1, N$.

The weights $h(j)$ are chosen in decreasing magnitude by selecting successive weights to give correspondence between the zeros of the given characteristic function and the zeros of the approximation for increasing v. Since the characteristic function of a zero-mean random square wave of amplitude $\pm h$ is a cosine function of v, with periodic zero crossings at $\mathrm{h} . \mathrm{v}=\pi / 2,3 \pi / 2,5 \pi / 2$ etc. any given characteristic function with periodic zero crossings can be approximated arbitrarily closely by a cosine product series (3) otherwise significant errors can arise regardless of the number of terms in the approximation.

As each zero not already modelled of the characteristic function is located, the order of the zero is also found. The function is modelled in the neighbourhood of the zero by $A(\cos (h(j) . v))^{k}$ where k is an integer
giving the number of weights with value $h(j)$, and A is a constant.
To assess the accuracy of the final approximation, the derived characteristic function $M^{\prime}(v)$ is smoothed by a Haming window of the form $\frac{1}{2}\left\{1+\cos \pi \mathrm{V} / \mathrm{Vmax}_{\mathrm{m}}\right\}$, where $V \max$ is the position of the last modelled zero, and the smoothed function transformed to give $\mathrm{p}^{\prime}(\mathrm{a})$, the model amplitude distribution.

A cost function:

$$
C=\int_{-A}^{+A}\left|p(a)-p^{\prime}(a)\right| d a \ldots 5.3
$$

is then computed to assess the accuracy of the model.
Experimentally values of C in the range 0.03 to 0.29 have been encountered, values greater than 0.05 corresponding to characteristic functions not possessing periodic zero crossings.

The range of application of this method to different amplitude probability distributions has not been fully investigated. In the form presented here only even functions can be modelled. However, by a process of discarding negative values or inverting them and then biasing the output with a D.C. value, the restriction to even-valued functions is removed. This process will not however retain the desired spectral characteristics. Successful modelling of the triangular, rectangular, normal and semicircular amplitude functions has been achieved, although the accuracy of the last did not match that of the first three. This poorer result was due to non-periodic cross-over points in the characteristic function of the semi-circular amplitude distribution. The amplitude function of a sinewave was also modelled, but with less success than the four mentioned above. This can be appreciated on observing the amplitude distribution of a sine-wave (see results section) which exhibits a sharp cut-off at ${ }_{-}{ }^{\prime}$, the amplitude of the sine-wave. This sharp cut-off is impossible to achieve by convoluting a series of square-wave amplitude distributions. Amplitude
distributions with smooth characteristics about some central amplitude are most suitable for modelling by this method.

2(iii) MODELLING OF POWER SPECTRA BY WEIGHTING AND ADDING THE N-OUTPUTS OF A PSEUDO-RANDOM BINARY NOISE GENERATOR

From the preceding section the magnitudes of the chosen number of weights can be determined. It remains to order these weights with appropriate signs to successive stages of the shift register, so that the final output $y(t)$ has a power spectrum as close as possible to the specified function. In the notation employed $h(i)$ has been determined for all i, but the values have not been allocated positions along the register nor given appropriate signs to specify hi.

The total power of $y(t)$ is already determined by its amplitude distribution so only the shape of the desired power spectrum need be specified. From a knowledge of $\phi_{D}(f)$ and the spectrum of the signal applied to the shift register $\phi_{x}(f)$, the desired power gain of the weighting network, $H_{D}(f)$ is given bys

$$
H_{D}(f)=\phi_{D}(f) / \phi_{x}(f) \cdots \cdots \cdot \cdots .4
$$

The power gain $H(f)$ of a weighting network hi, $i=1, N$, depends solely on the weights hi. A quadratic error function, $E(h)$ is chosen to describe the 'goodness' of the model $H(f)$.

$$
E(h)=\int_{0}^{\mathrm{Fc} / 2}\left|H_{D}(f)-H(f)\right|^{2} d f+K\left(\sum_{\substack{i=1 \\ 5}}^{N} h i^{2}-\sigma^{2}\right)^{2}
$$

The last part of this error function models the error in the total power present in the signal $y(t)$. The variable K is chosen to secure convergence in the Powell hillclimb routine when used. It ensures that any minima found in $E(h)$ are centred around the hyper-sphere of $\Sigma_{\mathrm{hi}}{ }^{2}=\sigma^{2}$.

The best obtainable power spectrum using N weights is given by the global minimum of the function $E(h)$ in N-dimensional space, and a hillclimb technique or a modified axis search as appropriate is used to find this minimum.

It is possible to attain any one of three objectives using the techniques described below. Firstly the best power spectrum model using an N -term weighting function can be found without respect to the amplitude distribution of $y(t)$; secondly the best power spectrum model with a specified amplitude distribution can be found; lastly a compromise solution embodying the weighted sum of both the previous criteria is available.

The desired power spectrum is only modelled at frequencies less than half the clock frequency of the shift register, Fc. By attenuating the desired spectrum at frequencies above $\mathrm{Fc} / 4$, the unwanted frequency components above $\mathrm{Fc} / 2$ can be significantly reduced. The higher frequency components are present because of the nature of $\phi_{x}(f)$ which is of the forms

$$
\phi_{x}(f)=\lambda \sin ^{2}(\pi f \lambda) /(\lambda \pi f)^{2} \text {....... } 5.6
$$

with maxima at $3 \mathrm{Fc} / 2,5 \mathrm{Fc} / 2$ etc. If the power transfer function has a zero at $\mathrm{Fc} / 2$, then it will also have zeros at $3 \mathrm{Fc} / 2,5 \mathrm{Fc} / 2$ etc. as will be shown.

From Figure l:

$$
y(t)=\sum_{i=1}^{N} \text { hi. } x(t-(i-1) \lambda) \ldots \ldots .
$$

Taking the Fourier transform of $y(t)$ and multiplying by the complex conjugate of the result we get $\phi_{y}(f)$, the power spectrum of $y(t)$, expressed in terms of $\phi_{x}(f)$.
$\phi_{y}(f)=\sum_{i=1}^{N} \sum_{k=1}^{N}$ hi.hk. $\exp (-j 2 . \pi .(i-k) \lambda) . \phi_{x}(f) \cdots . \operatorname{sic}$ From this, the power transfer function relating $\phi_{y}(f)$ to $\phi_{x}(f)$
can be defined.

$$
H(f)=\sum_{i=1}^{N} \sum_{k=1}^{N} \text { hi.hk. } \exp (-j 2 \pi f(i-k) \lambda) \quad5 .9
$$

$H(f)$ is periodic with period Fc .
By defining the desired power spectrum $\phi_{D}(f)$ of $y(t)$, the desired transfer function $H_{D}(f)$ is also uniquely defined.

$$
H_{D}(f)=\phi_{D}(f) .(\pi f \lambda)^{2} / \lambda \sin ^{2}(\pi \lambda f) \ldots
$$

Therefore if $\phi_{D}(f)$ has a zero at $\mathrm{Fc} / 2$, so will $H_{D}(f)$, and zeros will be introduced at $3 \mathrm{Fc} / 2,5 \mathrm{Fc} / 2$ etc. because of the periodicity of $H(f)$.

Many choices of error function describing the 'goodness' of fit of $H(f)$ are suitable. The one chosen (equation 5.5) is of the integral error squared form with an added term matching the total powers. Expanding equation 5.5:

$$
\begin{aligned}
E(h) & =\int_{0}^{F c / 2} H_{D}(f)^{2} d f+\int_{0}^{F c / 2} H(f)^{2} d f-2 \int_{0}^{F c / 2} H_{D}(f) \cdot H(f) d f \\
& +K\left(\sigma^{2}-\sum_{i=1}^{N} h i^{2}\right)^{2} \quad \ldots5 .11
\end{aligned}
$$

To perform this integration $H_{D}(f)$ is modelled over the desired frequency range ($0 \rightarrow \mathrm{Fc} / 2$) by a Fourier series with a sufficient number of terms to ensure reasonable accuracy in the model.

$$
H_{D}(f)=\sum_{i=0}^{p} A i \cos (2 \pi i f / F c) \cdots \cdot \cdots \cdot 12
$$

where: $A i=\frac{4}{F_{C}} \int_{0}^{F_{C} / 2} H_{D}(f) \cos \left(2 \pi i f / F_{C}\right) d f$
and: $\quad A_{0}={ }_{F_{C}}^{2} \int_{0}^{F c / 2} \quad H_{D}(f) d f$
P is chosen to give sufficient accuracy to the model.
The integration of equation 5.11 is lengthy but straightforward, and only the result is quoted here.

$$
\begin{aligned}
& E(h)=\sum_{i=1}^{P} A_{i}^{2} F c / 4+A_{0}^{2} F c / 2+\sum_{i=1}^{N} h i^{2} \sum_{j=1}^{N} h j^{2} F c / 2 \\
& +\sum_{i=1}^{N-1} T i^{2} F c-2 \sum_{i=1}^{N} h j^{2} \cdot A_{0} \cdot F c / 2+\sum_{k=1}^{N-1} A_{k} I_{k} F c / 2 \\
& +K\left(\sum_{i=1}^{N} h i^{2}-\sigma^{2}\right)^{2} \quad \cdots \cdot \cdots \cdot \cdot \cdot \cdots \cdot \cdots \cdot \cdots \cdot 5.13
\end{aligned}
$$

where: $T_{k}=\sum_{j=1}^{N-k} h j \cdot h_{j+k}$

Equation 5.13 can be differentiated with respect to each hi to give the gradient of the error function over the function space. This gradient and its derivative $\partial^{2} E(h) / \partial h i^{2}$ may be used in a Powell hill-climbing routine.

In determining the section of the N -space to be searched to find the global minimum, certain restrictions can be introduced to speed up the process. Considering the weighting function as depicted in Figure 1 and the resultant transfer function as given by equation 5.9, then reversing the weighting function or inverting it has no effect on $H(f)$. Furthermore, none of the $h(i)$'s will have magnitude greater than σ, the R.M.S. value of $y(t)$. So in N-dimensional space the following restrictions can be placed on the magnitudes of the $h(i)$.

$$
-\sigma \leqslant h i \leqslant \sigma \quad i=1, N
$$

$h_{1}>\left|h_{N}\right|$
The method adopted to find the global minimum in $E(h)$ depends on the nature of $E(h)$ and the value of N. When $E(h)$ is smooth with few secondary minima and N is relatively small the Powell hill-climb routine is suitable, otherwise the user must rely on a reasonably sophisticated axis search routine.

The Powell hill-climb process chosen finds the best model for an N-length weighting network. Several different starting-points are tried
and a variable step length algorithm steps in a chosen direction to the minimum point in this direction. The minimum is the new starting point for repeating the process in a non-parallel direction. This is repeated $N+1$ times, the $(N+1)^{\text {th }}$ direction being defined by the two points given by the initial starting point and the current minimum. The minimum in the $(N+1)^{\text {th }}$ direction is taken as the new starting point, and the process is repeated with the $j^{\text {th }}$ direction of the old iteration becoming the $(j-1)^{\text {th }}$ direction for the new iteration. When this process yields no new minimum, a local search is conducted to ensure the point found is indeed a minimum and not a point on a ridge, and the resultant hi values are taken as the optimum N-length weighting function modelling the desired transfer function. This gives the optimum weighting sequence when no regard is given to the constraints imposed due to meeting a specification on the amplitude distribution of $y(t)$. One method of constraining the amplitude distribution is to use the weights $h(i)$ found in 2(ii) and allocate these weights in correct sequence along the shift register such that the sum of the squared differences between the optimum weighting sequence and the ordered weights is a minimum. This condition reduces to fitting $h(1)$ to the largest ordinate, $h(2)$ to the next largest etc. with suitable signs attached (see Appendix A).

The restrictions on using this hill-climb procedure are two-fold. Firstly the hill-climb is only practical when N is fairly small (12 was found to be a reasonable maximum) and secondly the nature of the surface of $E(h)$ will determine the efficiency of the method. Lastly there is no guarantee that by fitting the global minimum by the desired weighting function found from Section $2(i i)$, the best model is obtained.

Therefore for large weighting functions ($N \geqslant 12$), an axis search was
used to find the best minimum. Computationally the axis search is much simpler, with no convergence problems, and a stepping vector that is preset.

The user specifies a starting point on the error function surface and the maximum and minimum step length to be taken. The program starts searching at maximum step-length in h_{1} until $h_{1}>\sigma$. At each point the weighting function as found in 2(ii) is fitted (as discussed above) and the error in the resultant modelled transfer function evaluated. The program then takes the point giving the minimum error found as the starting point for a search in h_{2}. This continues up to h_{N} and then back to h_{1}. If a complete search in all dimensions is made and no new minimum is found, then the step-length is decreased and the process continues. On reaching the preset minimum step-length the user can either reset the minimum step and continue, or print out the best fit found so far and start again from a different starting point.

The success of the axis search is less dependent on the nature of the function $E(h)$ but is inefficient in the number of iterations needed to find the minimum sufficiently accurately. However, the final result does give the best fitted order of the weights h_{i}, as found in Section 2(ii) without relying so heavily on assuming the best order is automatically found by fitting the weights to the global minimum in a least squares distance sense.

2(iv) RESULTS

This section gives some results achieved and the mode of operation of the computer programs.

Figure 2 shows the results obtained in modelling four amplitude probability functions. The cost function C is given by equation 5.3. Figures $2 a, 2 b$ (rectangular and triangular amplitude distributions respectively) are accurately modelled as their characteristic
functions exhibit periodic zero crossing. Figure $2 c$ is a reasonable approximation to a semi-circular distribution but the model is not as good as 2 a or 2 b . The characteristic function of 2 c has non-periodic zero crossings. Figure 2d shows the model of the amplitude distribution of a sine wave. This model does not obtain the sharp cut-off required. FIGURE 2: AMPLITUDE DISTRIBUTION MODELS
() = desired distribution (. . . . -) = modelled distribution
a) Rectangular Distribution
$\sigma^{2}=8.3125$ volts $^{2} \quad C=0.05$
b) Triangular Distribution
$\sigma^{2}=4.1875$ volts $^{2} \quad C=0.03$

c) Semi-circular Distribution

$$
\sigma^{2}=0.1587 \text { volts }^{2} \quad 2=0.12
$$

d) Sine-wave Amplitude Distribution

$$
\sigma^{2}=12.50 \text { volts }^{2} \quad C=0.29
$$

a <volts)

Table 1 shows the calculated weighting function for each type of amplitude distribution.

TABLE 1 (Weighting values are given in volts)

a) RECTANGULAR	NO. OF PTS	b) TRIaNGULAR	NO. OF PTS	c) CIRCULAR	NO. OF PTS	d) SINEWAVE	NO. OF PIS
2.50	1	1.25	2	0.326749	1	3.258587	1
1.25	1	0.625	2	0.178405	1	0.523237	1
0.625	1	0.3125	2	0.093895	1	0.230969	1
0.3125	1	0.15625	2	0.075940	1	0.125676	1
0.15625	1	0.078125	2	0.043034	1	0.0625	1
0.078125	1	0.03906	2	0.027911	1	0.052815	1
0.03906	1	0.01953	2	0.024470	1	0.036243	1
0.01953	1	0.00976	2	0.020650	1	0.029073	1
0.00976	1	0.00488	2	0.017861	1	0.018941	1
0.00488	1	0.00244	2	0.012710	1	0.016234	1
0.00244	1			0.011545	1	0.010549	1
0.00122	1			0.009625	1	0.008143	1
				0.008141	15	0.004753	1
						0.003041	1
						0.002031	5

The computer program was able to identify weighting function values accurately to six decimal places. However, for on-line use the shift-register generating procedure has an accuracy of approximately _ $1 m v$ in 10 volts due to round-off in digital to analogue conversion, so weights less than lmv were not computed. There is no theoretical restriction on the number of weights used: a maximum of fifty is
allowed in the present program.
The first three distributions (rectangular, triangular and semi-circular) were each modelled to three types of power spectra. Figure 3 shows the models obtained.

FIGURE 3: POWER SPECTRUM MODELS

KEY
——Desired power spectrum
....... : Model obtained with triangular distribution
........ : Model obtained with rectangular distribution
..-. Model obtained with semi-circular distribution
a) Rectangular Power Spectrum Model

b) Power Spectrum with 6dB/Octave Cut-off

c) Band Pass Spectrum

The ability to order a given series of weights along the shift register to approximately achieve the desired output power spectrum depends on the form taken by the impulse response of a filter, fed with band-limited white noise, whose output has the desired power characteristics. The shift register is acting as a digital filter. Good matching of the weights obtained in Section 2(i) to this impulse response will ensure a reasonable model of the output power spectrum.

One method of ordering the weights along the shift register is to recover the impulse response of a minimum phase linear network from the amplitude and slope characteristics of the desired output power spectrum, assuming the input to be white noise. The weights are then matched, (biggest to biggest as previously discussed) to this impulse response.

This method was not used here for two reasons:
a) The recovered impulse response is only one of a family of possible filters and may not give the best possible model.
b) The recovery process is computationally awkward and inaccurate when the desired spectrum is only specified up to some
maximum freauency $\mathrm{Fc} / 2$.
Details of the operating modes of computer programs developed for signal generation are listed in Appendix B at the end of this chapter.

3(i) FATIGUE RIG CONTROL

Although an input signal with the desired amplitude probability and power spectrum distributions may be generated and used to drive an electro-mechanical or servo-hydraulic loading system, the dynamics of the loading rig may severely alter the achieved loading pattern. This is particularly important at higher frequencies which can be attenuated due to the low-pass characteristics of the rig.

One method of achieving desired peaks in the signal is to drive the machine cycle by cycle using a constant velocity input and wait for the machine to catch up. A simple 'bang-bang' time domain controller for use on linear systems is proposed in Appendix C. However, in general, this form of control is undesirable from two aspects:
a) The power spectrum is modified.
b) The relative phases between frequency components are changed.

An alternative is to incorporate the rig as the forward-loop component in a closed-loop system, with a suitably designed controller in the feedback-loop. The performance of this type of system has the disadvantage of being input-dependent and subject to stability considerations.

A third, more appealing, method is to compensate for the effects of the rig dynamics by modifying the characteristics of the input signal. Two possible approaches make use of frequency response analysis or the adoption of a model reference system.

The second approach requires a mathematical approximation to the
rig transfer function to be made initially. The parameters of this mathematical model are then estimated and updated continuously using sampled data of the force delivered and force achieved time signals. The input driving function is then modified by the inverse of the modelled rig transfer function such that the signal demanded to signal achieved has a unity gain and zero phase frequency response. The disadvantages of this system ares
a) The initial mathematical model used is dependent on individual rig characteristics
b) The output signal may be a time-delayed version of the input, with no cost to the user. This is difficult to build into the model reference system as the choice of a suitable time delay is arbitrary.

The system adopted operates using a similar principle to that of model reference, except that the compensation required on the input demanded signal is calculated directly from the measured frequency response between input demanded and input achieved.

The demanded driver signal $x(t)$ may be generated internally by the computer or externally using a random signal generator. Ideally, $y(t)$ the output driving signal, should be a time-delayed version of $x(t)$; the time constant of the time delay being chosen such that the phase compensation introduced by the compensator is minimised. This ensures $y(t)$ has the demanded amplitude probability and power spectrum distributions.

The signals $x(t)$ and $y(t)$ are sampled at a frequency $f s$ such that the power in $x(t)$ above frequencies of $f s / 2$ is negligible. The samples are taken in blocks of $N\left(=2^{M}\right.$) points and Fourier transformed (using

FIGURE 4: SHOWS COMPUTER/RIG INTERFACE

FIGURE 5: SHOWS A TYPICAL RIG FREQUENCY RESPONSE COMPARING IT WITH THE DESIRED IDEAL FREQUENCY RESPONSE

a digital F.F.T. algorithm) to produce $N / 2+1$ complex Fourier coefficients at discrete frequency intervals Wo (wo $=\mathrm{fs} / \mathbb{N}$)

$$
\begin{aligned}
& \hat{Y}\left(K W_{0}\right)=\frac{1}{N} \sum_{I=0}^{N-1} Y t(I) e^{-j W_{0} I K} \cdots \cdot . . .5 .14(b)
\end{aligned}
$$

The auto-spectrum $\hat{\phi}_{x x}\left(K W_{0}\right)$ and cross-spectrum $\hat{\phi}_{x y}$ (KWo) are then calculated by

$$
\begin{aligned}
& \hat{\phi}_{x x}\left(K W_{0}\right)=\hat{X^{*}}\left(K W_{0}\right) . \hat{X}\left(K W_{0}\right) \quad5 .15(a)
\end{aligned}
$$

where * denotes the complex conjugate.
The estimated frequency response between $x(t)$ and $y(t)$ is then averaged over L such individual time blocks. The number of blocks, L , is chosen to give the desired update period T on the compensators

$$
\begin{aligned}
& \mathrm{T}=\mathrm{L} . \mathrm{N} / \mathrm{fs} \text { secs } \text {............. } 5.16 \\
& \hat{H}_{E}\left(K W_{0}\right)=\bar{\phi}_{x y}\left(K W_{0}\right) / \bar{\phi}_{x x}\left(K W_{0}\right) \cdots \quad 5.17
\end{aligned}
$$

for $0 \leqslant K \leqslant N 2 \quad$ where : -

$$
\begin{aligned}
& \bar{\phi}_{X Y}\left(K W_{0}\right)=\frac{1}{L} \sum_{\mathrm{I}=1}^{\mathrm{L}}{\hat{\phi_{X Y}}}_{\mathrm{I}}^{\mathrm{I}}(\mathrm{KWo}) \cdots \quad \text { 5.18(a) }
\end{aligned}
$$

The number of estimates, L, used to calculate $\hat{H}_{E}{ }^{T}$ ($j w$) is taken above as the time average of L independent estimates. As L increases the variance in $\bar{H}_{E}(j w)$ decreases at the expense of T, the update period, becoming large. This can be avoided by smoothing over adjacent frequency points instead of, or as well as, over time. Frequency smoothing can however introduce bias into estimates of $\bar{H}_{E}(j w)$ as well as decreasing the frequency resolution. For the fatigue rigs used in experiments presented
in this chapter, the frequency resolution was sufficient to allow significant frequency smoothing without introducing detrimental bias errors.

The compensator frequency characteristics are now calculated so that the error $E(j w)$ is decreased

$$
\operatorname{Cnew}(j w)=\operatorname{Cold}(j w)+K \frac{E(j w)}{H_{E}(j w)} \cdot \operatorname{Cold}(j w) \quad . \quad .5 .19
$$

$$
\text { where } \quad \begin{aligned}
& \text { Cnew }(j w)=\text { New compensator frequency response } \\
& \operatorname{Cold}(j w)=\text { Current compensator frequency response } \\
& E(j w)=\text { Current error }=H_{D}(j w)-H_{E}(j w)
\end{aligned}
$$

and K is some constant such that $0 \leqslant K \leqslant 1$.
The choice of K determines the ability of the compensator to correct itself in response to possible changes in the rig dynamics. When $K=1.0$ the compensator acts in a 'bang-bang' mode, such that the complete error is compensated in one step. When $K=0$ the compensator is non-responsive to the rig dynamics. The compensator is usually set to unity at the beginning of a run. The user has four parameters to adjusts
a) The choice of the sampling frequency is determined by the frequency content in the driving sigal $x(t)$. f_{s} must be greater than or equal to twice the maximum significant frequency component in $x(t)$.
b) The update period I is chosen such that there is sufficient time to calculate an accurate estimate of the frequency response $H_{E}{ }^{T}(j w)$. The accuracy of $\mathrm{H}_{\mathrm{E}}{ }^{\mathrm{T}}(\mathrm{jw})$ depends on the input signal to output noise ratio (i.e. noise introduced by the rig and measuring devices). As this ratio decreases, the accuracy decreases and I must increase to achieve a consistent estimate. For most rigs, noise is not a severe problem, but in situ testing may present noise problems. A method of choosing T automatically to ensure $H_{E}{ }^{T}(j w)$ lies within certain bounds of the true value with a given confidence level is a subject for further consideration.

The results of Chapter 2 give the theoretical basis for such a process.
c) The block size N. Together with the update period T this determines the number of independent estimates used in forming $H_{E}^{T}(j w)$. As N is increased, the frequency resolution is also increased. N must be chosen to give sufficient frequency resolution over the frequency range of interest.
d) The constant K in equation 5.19. The choice of K affects the choice of the previous two parameters. It is found that if K is set equal to l and frequency smoothing is in operation the system can go unstable under noisy conditions. This is due to errors at frequency f_{1} being propagated to adjacent frequencies by the frequency smoothing. The initial impetus is supplied by sampling errors in $H_{E}^{T}\left(j w_{1}\right)$. (These are due to short-term measurement under noisy conditions.) These errors are introduced into a neighbouring frequency f_{2} where perhaps there is no error initially. At the next update period the error at frequency f_{2} is transferred further along the line, the system corrects for a non-existent error, further compounding the error at f_{1}. This effect of frequency instability can be limited by smoothing only over frequency bands, with adjacent bands remaining independent. This has the effect of limiting the possible range of propagation of the instability and it was found for the rigs used that this was sufficient to ensure stability under most conditions (even with T very short).

With K equal to 1.0 the compensator acts in the form of a statistical sample and hold action with a 'bang-bang' error correction. As K decreases, the compensator response to changes in the rig driver dynamics is impaired. However, the control process can never go unstable through the choice of K (except in the form of frequency error propagation just mentioned.)

The variance in an (integral error) ${ }^{2}$ cost function over frequency given by:

$$
\operatorname{cosT}(T)=\int_{0}^{f s / 2}\left\{H_{D}^{T}(j w)-H_{E}^{T}(j w)\right\}^{2} d w
$$

is however increased by increasing K.
The limitations of this technique of compensatory driving are threefold:
a) Where the input power in the original signal $x(t)$ is small compared to the noise introduced in the system, the frequency response estimate is subject to large variance. Thus in regions of low inputpower, it may be advisable to have a 'do-nothing' compensator so that noise is not introduced by possible large errors in the estimated frequency response. This has little effect on the resulting time signal $y(t)$ as $x(t)$ contained minimal frequency components over these ranges anyway.
b) In trying to achieve overall unity gain there is a possibility of $x^{\prime}(t)$ (see Figure 4) exciting non-linearities in the rig driving system. These non-linearities usually take the form of amplifier saturation or distortion and hysteresis. In these cases there is little that can improve the situation as it is simply a case of overdriving the machine。
c) The low-pass characteristics of loading machines ensure that at high frequencies, whatever the demanded input, the output is negligible. By trying to counteract very low gains the user runs into the problems laid out in(b). Thus the overall frequency response can only be modified up to some frequency Fmax. The power spectrum $\phi_{x x}(f)$ must have dropped to negligible levels by this frequency for the compensatory system just
described to operate.
The process was implemented on a Rank Xerox Sigma 5 computer. It can, however, if written in suitable assembler code, be suited to a small 8 K word mini-computer with an appropriate interface.

3(ii) RESULTS

Two loading rigs were used to test the viability of the control scheme: a Derritron electro-magnetic vibrator and a larger servohydraulic rig.
a) RUN RESULTS USING A 3-PEAKED INPUT SPECTRUM WITH A GAUSSIAN AMPL ITUDE PROBABIL ITY FUNCTION

Steel and aluminium rods were subjected to cantilever bending (the set-up is shown in detail in the last part of this chapter), using an electro-magnetic vibrator as the loading rig. Figure 6 shows the rig frequency response before and after compensation. The compensated frequency response is show to be a pure time-delay in the frequency range $0-70 \mathrm{~Hz}$.

FIGURE 6: SHOWS a) Measured Rig Frequency Response without compensation (—)
b) Measured Rig Frequency Response with compensation (-- -)

Figures 7 and 8 show the effect of compensation on the achieved power spectrum and amplitude probability distribution.

FIGURE 7: SHOWS a) The demanded auto-spectrum (——)
b) The non-compensated auto-spectrum (\ldots. $)$

FIGURE 8: SHOWS THE AMPLITUDE PROBABILITY DISTRIBUTION OF
a) The desired input (-)
b) The achieved output without compensation (-----)
c) The achieved output with compensation (-. - -)

Figures 6, 7, and 8 show that for a 3 meaked input spectrum the power spectrum and amplitude probability functions are almost exactly restored using compensation. The change in the amplitude probability distribution is not in its shape but only in its variance. For the case next discussed, the change is more marked.
b) RUN RESULTS USING A 2-PEAKED INPUT-SPECTRUM WITH

RECTANGULAR AMPLITUDE PROBABILITY DISTRIBUTION

Similar tests as shown in the previous section were repeated for a different input signal. Figures 9 and 10 show that the power spectrum is again recovered but, more importantly perhaps, the rectangularity of the amplitude distribution is to a large degree restored.

FIGURE 9: SHOWS a) The demanded auto-spectrum (-_)
b) The non-compensated achieved auto-spectrum (- ---)
c) The compensated achieved auto-spectrum (- - - -)

FIGURE 10: SHOWS a) The original amplitude distribution as desired (\longrightarrow)
b) The achieved amplitude distribution without compensation (- - - -)
c) The achieved amplitude distribution with compensation (.-....)

Although the compensated amplitude distribution is approximately rectangular, there is still some residual rounding, as the frequency response of the loading rig was only modified up to 70 Hz .

Six tests (3 without compensation, 3 with) were performed with each form of spectral input. The results presented were consistently achieved for each mode of system input. The parameter values chosen for the compensation were as follows:

$$
\begin{aligned}
& \mathrm{K}=1.0 \text { (in equation } 3.6 \text {) } \\
& \mathrm{fs}=140 \mathrm{~Hz}=\text { sampling frequency } \\
& \mathrm{N}=512 \text { (block size) } \\
& \mathrm{T} \bumpeq 18 \text { seconds (update period) }
\end{aligned}
$$

Estimates were smoothed over 5 points in the frequency domain.
c) RECOVERY OF PEAK TROUGH DISTRIBUTION ON A SERVO-HYDRAULIC RIG Defining the properties of a loading signal in terms of its auto-spectrum and amplitude probability is inadequate for the fatigue engineer. An alternative is to characterise a signal by its peak-trough probability matrix. This is defined as the probability of obtaining a peak-trough pair of amplitudes A_{1}, A_{2} over the complete range $-\infty \leqslant A_{1}, A_{2} \leqslant+\infty$. The joint peak-trough probability matrix is thus an upper triangular matrix (it is meaningless to have a signal peak value less than its paired trough). A constant velocity signal with specified peak-trough characteristics was generated (11) on a G.E.C. 90/2 computer. This signal was fed through the compensation system onto a servo-hydraulic rig applying a cantilever bending moment to a bearing structure. The peak-troug matrices of the original signal (Figure 11), the uncompensated achieved signal (Figure 12) and the compensated achieved signal (Figure 13) were measured over a half-hour period using the Sigma 5 computer. Figure 13 shows that the original peak-trough matrix is almost completely recovered by using compensation, whereas without compensation, the large amplitude peak-trough pairs are not achieved. The rig frequency response is very similar to that depicted in Figure 6, and is not repeated. Appendix C outlines the type of signal generated by the G.E.C. 90/2 computer for attaining a peak-trough matrix and gives a simple time-domain method of controlling the servo-rig as an alternative to the compensation method described here.

PEAK AMPLITUDE

FIGusf. 11 :
Shows the Feak/rrough distribution of the original signal input.
 compensation.

FIGURE 13:
Shows the Peak/Trough distribution of the compensated loading signal.

The need for rig control depends on how accurately the engineer wishes to simulate loading time histories under laboratory conditions. When using a hydraulic servo-rig it is possible to dynamically tune the rig response to the particular task involved. However this has three drawbacks:
i) It is a lengthy procedure
ii) It does not take account of changes in the specimen's response during a test.
iii) On changing the specimen the rig must be retuned.

4(i) DETECTION OF FATIGUE CRACKING IN ALUMINIUM AND STEEL RODS
Forty fatigue tests, twenty on aluminium rods and twenty on steel, were performed, each specimen being tested to destruction. Figure 14
gives the specification for the rig and aluminium rod used. The mild steel rod was of the same dimensions.

Three input loading spectra were used, the two already shown in Figures 7 and 9 plus a third wide-band signal with a break point at 40 Hz and a cut-off of 6 dB /octave.

Six tests were performed with each loading spectrum on the aluminium and steel rods in turn. The results presented show a typical response for each of the 6 groups of tests. Lastly a series of four tests was conducted, two on steel rods and two on aluminium, with each of the rods pre-work-hardened.

The input force to resulting displacement frequency response function was continually estimated over 18 -second intervals throughout the specimen's fatigue life (typically 45-60 minutes for aluminium and 150-180 minutes for steel). A representative sample of the frequency response over the frequency range $0-70 \mathrm{~Hz}$ was taken at around 20% of fatigue life (when no fatigue cracks are present and work-hardening has ceased. This response was compared with estimates obtained over various stages in the specimen's life. Two cost functions were calculated:
a) The mean stationarity confidence interval satisfied over the frequency range $0-70 \mathrm{~Hz}$. (as described in Chapter 2, equation 2.42)
b) The integral error squared function given by: $\operatorname{COST}=\int_{0}^{70 \mathrm{~Hz}}\left\{\mathrm{H}_{1}(j w)-\mathrm{H}_{2}(\mathrm{jw})\right\}^{2} \mathrm{dw} \ldots .5 .20$ where H_{1} is the representative sample and H_{2} is the estimate being tested.

Figures 15-21 show the change in the confidence level, together with the cost function as a function of $\%$ sample life.

ALUMINIUM ROD

END

CLAMPED

STRESS CONCENTRATION POOD CROSS SECTION

$$
\text { FACTOR }=1.593
$$

FIGURE14: SHOWING LOADING CONFIGURATION ON ALUMINIUM ROD SUBJECTED TO CANTILEVER BENDING.

FIUURE 13: Shows the change in response of a iteel rod against \% fatigue life for the 1 -peaked loading spectrun.

FIGURE 20: Shows the change in response for a steel rod against \%-iatigue life for the 2- peaked loading spectrum.

FIGURE 21: jhows the change in response for an aluninium rod under broad-band loading when the rod has been pre-wonk-hardened.

The specimen's fatigue life divides into 3 regions: an initial region where work-hardening is in progress, an intermediate region where no fatigue cracks have yet started, and a final period where fatigue cracking is present and the sample is approaching failure. It is the identification of the final period which is of interest.

The stress concentration at the notch surface causes dislocations in the metal lattice structure to move in such a way as to relieve the stress. This movement of dislocations will only occur when the local stress is sufficient to overcome the pinning of dislocations at grain boundaries. The dislocations congregate at the notch surface, eventually forming a fatigue crack. The stress concentration at the tip of the fatigue crack
is higher than in surrounding areas, and hence once a fatigue crack has started, it is more likely that the crack will grow than that secondary cracking will appear. As the fatigue crack increases in depth, the mean stress level across the remaining non-affected crosssection of the notch will increase. Thus the deflection of the cantilever for a given loading will increase, changing the frequency response. Figure 22 shows that in general for the case described the change in the frequency response is more marked at higher frequencies. The prediction of fatigue cracking using this simplistic approach meets practical difficulties.

FIGURE 22: SHOWS THE MODULUS FREQUENCY RESPONSE FOR AN ALUMINIUM SPECIMEN SUBJECTED TO BROAD BAND LOADING
a) As measured between $25-30 \%$ sample life
b) As measured between $80-85 \%$ sample life

The rate of propagation of the fatigue crack and hence the rate of change in the frequency response, is a function both of the stress concentration at the tip of the crack and of the depth of the crack. As the crack depth increases, the stress concentration at the tip of the crack increases, and this in turn causes an increase in the rate of propagation of the crack. Complete failure occurs when this cycle becomes self-perpetuating within the time taken to sufficiently decrease the external loading.

The acceleration of cracking means that initial changes (from about 50-90\% sample life) are small compared with those encountered over the last 10% of life. Thus initial changes found using equation 4.1 are lost due to short-term random sampling errors. However, when combined with the stationarity confidence test the onset of cracking can be identified early on and quite consistently. An indication that changes are due to fatigue cracking and not due to drift in the loading and measuring circuit is demonstrated by the high degree of correlation between results presented here and those presented by Fisher (14) on similar specimens, using eddy current analysis to detect cracking.

Given three loading signals, each wi th similar R.M.S. values, the following effects can be noted:
a) The narrow band-spectra maintain high stress levels in the specimens for a greater proportion of f atigue life. Hence the rate of propagation of the crack is faster (in terms of $\%$ sample life) than that observed using broad band spectra.
b) The higher stress levels induced by the narrow band spectra might be expected to cause the onset of cracking earlier in the fatigue
life. This is not the case. The presence of high frequency loading cycles in the broad band spectrum causes initial cracking to occur at about 45% fatigue life for the tests run on the aluminium samples, while cracking occurs at about 55% fatigue life for narrow band input loading. This effect was less marked for the steel samples.
c) The stationarity test confidence level results are more sensitive to changes in the frequency response than the COST measure taken from equation 4.1. This is especially true when the coherency is near unity.

The results presented in this chapter show the application of Fourier techniques to fatigue rig control and the application of some statistical tests for identifying the onset of cracking under random loading conditions. The section showing a method of generating signals with specified statistics is an essential preliminary to an integrated computer-controlled fatigue testing system, and provided standard test signals for the tests conducted.
5) APPENDIX A

Consider the weighting function g_{1}. . . g_{N} found as the optimum model to the desired auto-spectrum. From modelling the amplitude distribution the weights $h_{1} \ldots . h_{N}$ are obtained. Let g_{l}. . . g_{N} and h_{1}. . . h_{N} be ordered according to their absolute magnitudes i.e. $h_{1} \geqslant h_{2} \geqslant h_{3}$ and $g_{1} \geqslant g_{2} \geqslant g_{3}$ etc.

Lemma
The best f it to g_{1} • . g_{N} in the least squares sense is detained by fitting the largest remaining weight in h to the largest remaining weight in g with the appropriate sign attached.

Proof
Consider the case of $N=2$.
To prove $\left(h_{1}-g_{1}\right)^{2}+\left(h_{2}-g_{2}\right)^{2} \leqslant\left(h_{2}-g_{1}\right)^{2}+\left(h_{1}-g_{2}\right)^{2}$
Expanding and cancelling terms in common:

$$
\begin{aligned}
& \quad h_{1} g_{1}-h_{2} g_{2} \leqslant-h_{2} g_{1}-h_{1} g_{2} \\
& \text { or } \quad h_{1} g_{1}+h_{2} g_{2} \geqslant h_{2} g_{1}+h_{1} g_{2} \\
& \text { or } \quad\left(h_{1}-h_{2}\right) \cdot\left(g_{1}-g_{2}\right) \geqslant 0
\end{aligned}
$$

But: $\operatorname{sign}\left(h_{1}\right)=\operatorname{sign}\left(g_{1}\right)$, and $h_{1} \geqslant h_{2}, g_{1} \geqslant g_{2}$
Q. E. D.

Extending to the case of $N=3$, we have to prove:

$$
\begin{array}{r}
\left(h_{1}-g_{1}\right)^{2}+\left(h_{2}-g_{2}\right)^{2}+\left(h_{3}-g_{3}\right)^{2} \leqslant\left(h_{2}-g_{1}\right)^{2}+\left(h_{1}-g_{2}\right)^{2}+\left(h_{3}-g_{3}\right)^{2} \\
\bullet \cdot(a) \\
\leqslant\left(h_{3}-g_{1}\right)^{2}+\left(h_{2}-g_{2}\right)^{2}+\left(h-g_{3}\right)^{2} \\
\bullet \cdot(b) \\
\leqslant\left(h_{1}-g_{1}\right)^{2}+\left(h_{3}-g_{2}\right)^{2}+\left(h_{2}-g_{3}\right)^{2} \\
\bullet \cdot \cdot(c)
\end{array}
$$

$$
\begin{array}{r}
\leqslant\left(h_{3}-g_{1}\right)^{2}+\left(h_{1}-g_{2}\right)^{2}+\left(h_{2}-g_{3}\right)^{2} \\
\bullet \cdot \cdot(d) \\
\leqslant\left(h_{2}-g_{1}\right)^{2}+\left(h_{3}-g_{2}\right)^{2}+\left(h_{1}-g_{3}\right)^{2} \\
\bullet \cdot \cdot(e)
\end{array}
$$

Using the proof for $N=2$: expression (a) is minimised by exchanging h_{1} and h_{2}. Expression (b) is minimised by exchanging h_{3} and h_{1}. Expression (c) is minimised by exchanging h_{2} and $h_{3^{*}}$ Expression (d) is first decreased by exchanging h_{3} and h_{1} and then minimised by exchanging h_{3} and h_{2}. A similar process can be followed on expression (e). Thus a proof for $N=2$ is sufficient for proving the case of $N=3$. By a process of inductive reasoning, the proof can be extended for all N .

APPENDIX B

PROGRAM DESCRIPTION OF USER RUN-TIME ACTIONS FOR AMPLITUDE PROBABILITY MODELLING

The program includes 9 possible actions; the sequence of operations is chosen by the user.

1) Calculation of characteristic function, $M(v)$, of required amplitude probability function. User specifies the initial value V_{0}, the final value V_{f}, and the number of points to be calculated in this interval。
2) Graphical display of current $M(v)$ and the latest model $M \cdot(v)$ on a V.D.U. screen.
3) Search for zero of $M(v)$ in a region specified by the user. The region is specified by use of cross-wires on a graphical display.
4) Calculation of the order of the zero found by 3 。
5) Print-out of weighting function.
6) Call to the cross-wires of the V.D.U. which can be used:
a) To specify point from which to look for a zero of $M(v)$.
b) To specify new limits for calculating $M(v)$ i.e. enlarging a section of a current plot.
7) Normalisation of $M(v)$ i.e. $M(v) / M(v)$. This tells the user the accuracy of the model over the range considered.
8) The inverse Fourier transform of a smoothed version of $M^{\prime}(v)$ together with a graphical display of the modelled amplitude probability function.
9) The integral |error| between the desired amplitude function and the model amplitude function.

APPENDIX C

This appendix develops a simple 'bang-bang' controller for achieving a specified peak-trough probability matrix. The input signal to the rig is of constant velocity form $+v$, where $v=d x / d t$ ($x=$ signal level) The controller is presented as an operating algorithm.
a) SET-UP PROCEDURE

The test rig is driven with a triangular input waveform, $x(t)$, of the specified slope \pm. The amplitude of this waveform is chosen such that $y(t)$, the achieved output, just achieves the desired slope \pm.

The turn-around amplitude of the output A_{0} is now recorded and stored (A_{0}). CONTROL AL :THW

1) (\quad d peak-trough pair (Pn, Tn)
2) $\quad I_{s}(P n-T n-1) \leqslant A_{0}$

Yes: Set Clevel $=\mathrm{Tn}-1+\frac{\mathrm{Pn}-\mathrm{Tn}-1}{2}$

No: \quad Set Clevel $=P n-A_{0}$
3) Sample output $y(t)$
4) Is $y(t) \leqslant C l e v e l$

Yes: Generate $x(t)$ with slope +v
No: Generate $x(t)$ with slope -v
5) If slope of $x(t)=+v$ go to 3
6) $\quad I s(P n-T n) \leqslant A_{0}$

Yes: \quad Set Clevel $=P n-\frac{P n-T n}{2}$

No: \quad Set Clevel $=\operatorname{In}+A_{0}$
7) Sample output $y(t)$
8) Is $y(t) \leqslant C l e v e l$

Yes: Generate $x(t)$ with slope -v
No: Gererate $x(t)$ with slope $+v$
9) If slope of $x(t)=-v$ go to 7
10) Go to 1

Where Pn , In are the current values of the peak-trough pair to be attained; Pn-1, $\mathrm{In}-1$ the past pair just attained. The generation of peak-trough values is described in the last section of reference 12. This algorithm only applies to systems that are approximately linear in their dynamic response. The algorithm is repetitious in its method of achieving peaks and then troughs. This would normally be included in one series of tests with signal inversion for changing from a peak search to a trough search.

The following gives a brief description

WEST, J. C., DOUCE, J. L. LEARY, B.G.: 'Frequency spectrum distortion of random signals in non-linear feedback systems'. Proc. I.E.E., 108, C 13, p. 259 (1961)

GUJAR, J. G. \& KAVANAGH, R. J.: 'Generation of random signals with specified probability density functions and power density spectra'. I.E.E.E. Transactions on Automatic Control, (Dec. 1968) pp. 716-20 LUCACS, E.: 'Characteristic functions'. Charles Griffin \& Co.Ltd (1960) GOLOMB, S.W.: 'Shift Register sequences'. Holden Day (1967) DOUCE, J. L.: 'An introduction to the Mathematics of servo-mechanisms'. English Univ. Press Ltd. (1963)

BLACKMAN, R. B. \& TUKEY, J. W. $:$ 'The measurement of power spectra'. Dover Publications (1958)

HAMMING, R. N.: 'Numerical methods for scienctists and engineers'. McGraw Hill (1962)

BEKEY, G. E.: 'System identification: an introduction and a survey'. Simulation Vol. 15 No. 4, Oct. (1970)

BARRETT, J. F. \& COALES, J. F.: 'An introduction to the analysis of non-linear control systems with random inputs'. Proc. I.E.E. 103 p. 190 (1955)

SWANSON, S. R.: 'Random load fatigue testing: a state of the art survey'. Materials Research and Standards, Vol. 8 No. 1,(April 1968) BENDAT, J. S. \& PIERSOL, A. G.: 'Random data analysis and measurement procedures'. Wiley Interscience(1972)

SHERRATT, F. \& DAVALL, P. W.: 'Advances in computer-controlled random load fatigue testing'. Univ. of Warwick Report (1974)

13 SHERRATT, F. \& FISHER, B.: "Statistical measurements on servohydraulic fatigue machines'. Univ. of Warwick Report(March 1971)

ITAGAKI, I. \& SHINOZUKA, M.: 'Application of Monte-Carlo technique to fatigue-failure analysis under random loading'. Probabilistic aspects of fatigue proceedings of the Symposium 1971, A.S.T.M.(1972) I.A.A. 13(3):A73-13236

21 DOUCE, J.L. \& DAVALL, P.W. : 'Generation of signals with specified statistics'. I.E.E. Proo. , Oot. 1973, pp. 1278-82. (Chapter 5, Section 2).

CHAPTER 6
APPI. ICATIONS IC HUMAN OPERATOR TRACKIN; TASK; - A COMPARISON
OF AUDIO AND VI:UUAI DISPLAYS

LIST OF SYMBOLS USED
$x(t) \quad: \quad$ band-limited Gaussian white noise with zero mean and variance σx^{2}. As the cut-off frequency is varied the variance is maintained constant
e(t) : the error signal presented to the operator via the visual or audio display. The operator is required to minimise this error
$z(t) \quad: \quad(=y(t))$ the operator's response to the error signal $e(t): e(t)=x(t)-z(t)$

The corresponding Fourier transforms of $x(t), y(t), e(t)$ and $z(t)$ are as defined in Chapter 3.
$G(j w):$ the forward-loop frequency response, incorporating the display, operator and joystick dynamics
$H(j w)$: the overall closed-loop frequency response relating the input $x(t)$ to the output $y(t) .(=G /(1+G))$.
$\phi n n \quad: \quad$ the power spectrum of that part of the output signal $y(t)$ which is not linearly related to the input $x(t)$
: frequency resolution ($=2 \pi / T$)
.
: block size for Fourier analysis
: block period
f_{s}
: samoling frequency

1) INTRODUCTION

Chapters 4 and 5 show two applications of the statistical results of Chapter ? in identifying time variations in open-loop linear systems. The results of Chapter 3 may be used to identify changes in the human operator describing function when performing tracking tasks, anci to obtain confidence levels for models of the operator's response. The task configuration is essentially a closedloop situation where the operator is presented with an error signal marking the difference between his output and the input signal to we tracked.

In this chapter the effect of the choice of error signal display on the operator's response is investigated. A comparison between various audio error displays and a visual display is made both in terms of the response to stationary input signals (i.e. fixed frequency content) and in terms of monitoring the change in the operator's response to a step change in the frequency bandwidth of the input signal. A five parameter linear model of the operator's response is proposed, and the model is justified using some of the statistical tests developed in Chapter 3.

Many models of the human operator response have been proposed. Briefly, these models fall into three categories: linear models (reference 1), sampled data models (reference 2) and non-linear models (reference 3). For a wide range of applications it has been shown that the linear iross-over model on lines proposed by Krendel and McRuer (1953) gives a good approximation to measured human operator describing functions. Exceptions are when the input signal to be tracked is of very low frequency content ($<0 . ? \mathrm{~Hz}$) under which
conditions the operator exhibits a threshold type non-linearity, and when the input signal contains high frequency components ($>1.5 \mathrm{~Hz}$) where the operator degenerates to a 'bang-bang' mode of control. Comparison of various forms of multi-dimensional visual and tactile displays has been attempted (references 5 to 7) and generally results have indicated that the human operator responds equally well to visual and tactile presentation of information. Similar studies of one type of audio display (reference 8) also indicate no appreciable loss of performance. Initial studies in this chapter contained in Appendix A would, however, indicate considerable down-grading of the human operator's response to audio stimuli in one-dimensional tracking tasks.

In designing an audio display to either complement or replace a visual display, it is necessary to ensure that the operator's performance is optimised, in terms of the display, for a wide range of operating conditions. In this chapter a method of comparing and modelling an operator's response for various audio and visual displays is proposed (Appendix A) and the operator's change in response for a step change in the dynamics of the input signal is investigated.

Section 2, together with the paper presented in Appendix A, outlines the experimental set-up and the types of audio and visual displays used. The operator describing function is modelled using a modified 5-parameter cross-over model, and a plausible physical interpretation of the results in terms of the model parameters is presented.

The assumption that the model used is a good representation of
the operator's response using audio displays and that his response is essentially stationary for fixed input dynamics is investigated in Section 3. It is assumed that the model describing function represents the true response of the operator and that deviations from this model during the test were due to short-term measurement inaccuracies due to noise in the system. This noise may be due to non-linearity in the response, uncontrolled movements of the force joystick and discretisation errors in the analogue-to-digital sampling. Using the statistical results of Chapter 3 for closed-loop systems, the goodness of fit of the model to measured results is found.

It is well known (references 9 to 12) that the human operator's mode of response depends on the dynamics of the plant to be controlled and on the frequency content of the signal to be tracked. The transient behaviour of the response to step changes in the plant dynamics has been investigated (reference 13) for visual displays. In Section 4 the transient behaviour of an operator's response to step changes in the dynamics of the input signal is investigated for the audio and visual displays used. The response stationarity and the applicability of the model during these periods of transient response are verified using the statistical results of Chapter 3.

Lastly, Section 5 outlines some problems involved in extending the analysis procedure to two-dimensional and multi-dimensional displays.
2) COMPARISON OF HUMAN OPERATOR'S PERFCRMANCE USING VISUAL AND

AUDIO DISPLAYS

The results of this section are fully discussed in Appendix A.

To avoid duplication, only the basic test procedure is outlined here, together with some further explanation of the phase response of the human operator at very low frequencies. Figure l shows the schematic block diagram for the closed-loop configuration.

Gaussian band-limited whíte noise input.

FIGURE 1: SHONS THE TEST CONFIGURATION FOR AN OPERATOR PERFORMING

A SINGLE AXIS TRACKING TASK

a) SUMMARY OF METHOD

The signals $x(t), e(t), y(t)$ and $z(t)$ were sampled every 0.2 seconds. Short-term Fourier estimates were obtained using a block size of 128 samples. Five input cut-off frequencies were used, $0.3,0.5,0.7,1.0$ and 1.5 Hz . Each test, at a fixed cut-off frequency, lasted 10 minutes; thus, approximately 25 blocks of 128 samples were collected for each input cut-off. The average response of the operator was calculated from the mean values of $\bar{\phi} x x, \bar{\phi} x e$ and $\bar{\phi} x y$ obtained over the 25 blocks. The frequency response estimates were calculated (dependence on frequency is assumed) by:
$\bar{G}=\bar{\phi} x y / \bar{\phi} x e=$ forward-loop gain
$\bar{H}=\bar{\phi} x y / \bar{\phi} x x=$ overall closed-loop gain
over the frequency range $0 \leqslant f \leqslant 2.5 \mathrm{~Hz}$. The frequency resolution $w_{0}=2.5 / 64 \mathrm{~Hz}$. or approximately 0.04 Hz . The response functions were modelled over a frequency range $0 \leqslant f \leqslant$ input cut-off; beyond this range the signal-to-noise ratio drops off and estimates become inaccurate. The block time period $T \simeq 25$ seconds. A best estimate of the noise spectrum for each input cut-off is given by:
$\bar{\phi} n n=\bar{\phi}_{y y}+|\bar{G}|_{0}^{2} \Phi_{e e}-2 R L\left(\bar{G} \Phi_{y e}\right) \quad6 .1$ It is assumed (see Chapter 3, Section 7) that $\bar{\phi} n$ is approximately Chi-square distributed with $2 \mathrm{~L}-2$ degrees of freedom, where $\mathrm{L}=25$. This assumption is justified by L being relatively large and the coherency between $x(t)$ and $y(t)$ being fairly high (>0.5 for all cases) within the frequency range $0 \leqslant f \leqslant$ input cut-off.

For a description of the model used and the method of fitting the model parameters to measured results, refer to Appendix A.
b) EXPLANATION OF LOW-FREQUENCY PHASE RESPONSE FOR THE MEASURED HUMAN OPERATOR DESCRIBING FUNCTION

In many cases it is found that the measured forward-loop response exhibits a phase 'droop' at low frequencies. It might be expected that the phase estimate would tend to zero phase shift. Consideration of the physical situation leads to a simple explanation of this phenomenon.

It is found that due to inherent reaction time delays the best the operator can hope to achieve is a time-delayed version of the input signal (This is true when the input signal is random. If the
operator is asked to track a deterministic signal such as a sine-wave then he is able to employ predictor methods to anticipate future response)

FIGURE 2 : SHOWS A TYP ICAL CLOSED-LOOP FREQUENCY RESPONSE WHERE WE CONSIDER THE CASE LETTING wO $\rightarrow 0$

On considering Figure 2 three situations can occur:
i) If the operator over-reacts and his closed-loop gain is greater than unity at low frequencies then the forward-loop phase shift, given by $\left(\theta_{2}-\theta_{1}\right)$, will tend to zero. This is often the case in tests with an input cut-off in the mid-frequency range (0.5 Hz to 0.7 Hz) where the operator will try to track the higher frequency variations with a corresponding tendency to over-react to lower frequency changes.
ii) If the operator has an overall unity gain at low frequencies then the forward-loop phase shift will tend to $-\pi / 2$. This is often
approximately the case when the input signal is slowly-varying and the operator has time to adjust his gain. Figure 9 in Appendix A is an example of such a case.
iii) If the overall gain is less than unity at low frequencies then the forward-loop phase shift will tend to $-\pi$. This occurrence is perhaps more likely to occur when the operator is controlling a complex plant and he is less certain of the action to be taken to reduce the error. The model as used can only predict a phase shift of $-\pi / 2$ at low frequencies unless the lag term with time constant T_{S} (Appendix A) is allowed to take the form of an integrator. It is considered in Appendix A that T_{S} represents a lag introduced by the operator to maintain stability when the input signal contains high frequency components. When controlling a plant with complex dynamics (typically of the form $l / P(j w)$, where $P(\cdot)$ is a polynomial in (jw)) the overall response can go unstable at much lower frequencies due to the phase shift introduced by the plant. Under these conditions, one method of regaining stability is to let T_{S} take on much larger values, hence bending the closed-loop response inside the -1 point.

3) JUST IFICATION CF ASSUMPTION OF STATICNARITY

The results presented in Appendix A assume the operator's
response to be stationary for a fixed input cut-off frequency. Figures 9 and 10 in Appendix A indicate that the model would appear to be a good representation of the measured response for low-frequency input cut-offs. The assumption is less certain at high-frequency cut-offs.

It is assumed that the modelled frequency response, $G_{M}(j w)$, is the true operator's response and that deviations from this value
are due to short-term estimation errors in a noisy environment. The noise variance at a given frequency $K w_{0}(0 \leqslant K \leqslant 64)$ is given by half the power in $n(t)$ in the frequency band $K w_{0} \pm w_{0} / 2$. Thus:

$$
S n^{2}\left(K w_{0}\right) \simeq \bar{\phi} n n\left(K w_{0}\right) / 2 \ldots \cdot 6.2
$$

where $\bar{\phi} n n\left(K w_{0}\right)$ is given by equation 6.l. For each block of data the operator's response $\hat{G}_{i}(1 \leqslant i \leqslant 25)$ is estimated. The estimates are smoothed over 5 adjacent frequency. points to reduce random errors.

The distribution of a variable:

where ($1 \leqslant \mathrm{i} \leqslant 25$), is given by equation 3.52 , where the noise variance Sn^{2} is found from equation 6.2 and the noise in the feedback loop is assumed negligible. The confidence interval satisfied by \hat{z}_{i} is found by integrating equation 3.52 over the range $0 \leqslant z \leqslant \hat{z}_{i}$ •

The mean confidence level satisfied by the $i^{\text {th }}$ estimate is found by taking the average over the frequency range $0 \leqslant f \leqslant$ fCUT-OFF. The lower this confidence level the greater the confidence placed on the model.
$\operatorname{CONF}_{i}=\frac{1}{K \max } \sum_{K=0}^{K \max } \int_{0}^{\hat{z_{i}}\left(K w_{0}\right)} p(z) . d z \quad \cdot 6.4$
where $p(z)$ is given by equation 3.52.
Each operator response was tested in this manner. The results for a single operator using the mark-space audio display are shown in Figure 3. Similar results for the same operator using the beat frequency audio display are presented in Figure 4. These two displays are chosen as being representative of the 'worst' and 'best' audio displays respectively. Figure 5 shows typical results obtained for

0.3 HZ CUT-OFP

FIGURT 3 : Shows variations in the confidence placed on the model found by comparing the model with measured response data using the Mark-space ratio audio display.

FIGURB 4 : Shows variations in the confidence placed on the model found by comparing the model with meesured respome date using the Beat-frequenoy audio display.

FIGURE 5: Shows variations in the confidence placed on the model found by comparing the model with measured response data using the Tingaldicplay
the visual display.

From Figure 3, it is doubtful whether the response using the mark-space audio display can be modelled above frequencies of 0.7 Hz . This is confirmed by the coherency results for high frequency tests using this display shown in Figure 4 of Appendix A.

For the beat frequency and visual diplays the response may be considered stationary for fixed input cut-off frequencies below 1.5 Hz .

The visual display response at 1.5 Hz is apparently stationary except for two short intervals where the confidence level increases significantly. On comparing the overall closed-loop responses calculated from the stationary and non-stationary segments (Figure 6) it would appear that the two levels correspond to two different modes of response. A similar effect can be seen in Figure 4 using the beat frequency display with the input cut-off frequency at 1.5 Hz . On comparing the overall closed-loop responses obtained from the stationary and non-stationary segments of this record, however, it was found that the high confidence levels indicated that the operator had ceased to respond almost completely. This drop-out phenomenon was fairly common using the 1.5 Hz cut-off signal for all the audio displays.

For the $0.3,0.5,0.7$ and 1.0 Hz input cut-off frequencies, the model was found to be satisfactory for all displays with the exception of the mark-space display at 1.0 Hz .

Further, the assumption of stationarity for fixed input signal dynamics was satisfied at the 0.8 level of significance for all tests with input cut-offs below 1.5 Hz .

4) INVESTIGAT ION OF TRANSIENTS IN THE OPERATOR'S FREQUENCY RESPONSE

FUNCTION WITH STEP CHANGES IN THE FREQUENCY CHARACTERISTICS OF THE INPUT SIGNAL
a) TEST FROCEDURE AND ANALYSIS

The operator was asked to track a band-limited Gaussian signal whose cut-off frequency underwent two step changes, $0.5 \mathrm{~Hz} \rightarrow 1.0 \mathrm{~Hz} \rightarrow$ 0.5 Hz . Each frequency cut-off was maintained for approximately three minutes: this period being considered sufficient for the operator to attain a steady state response. Fourier estimates of the input, $x(t)$, output, $y(t)$ and the error, $e(t)$ were obtained using a block size of 64 samples. The signal sampling frequency was set as before at 5 Hz . Thus the functions $\phi x x, \phi x y$ and $\phi x e$ were estimated every 12 seconds. To reduce random errors the estimates were smoothed over 5 frequency points. Ideally, the estimate update period should be less than 12 seconds; however, further reduction decreases the block size and hence decreases the frequency resolution to an unacceptable level. To offset this disarivantage, successive block estimates were overlapped by a factor of 0.5 (Figure 7).

IMPROVE TRACK ING QUALITIES IN EGTIMATES UF THE OPERATOR'S

Successive estimates of the overall gain, $\left(\bar{H}_{i}\left(k . w_{0}\right)=\right.$ $\bar{\phi}_{X y}^{i}\left(K w_{0}\right) / \bar{\phi}_{x x}^{i}\left(K w_{0}\right),(0 \leqslant K \leqslant 32)$ and for $\left.i=1,3,5 ..\right)$ were tested for stationarity, using the methods described in Chapter 3, Section 3(iii). For the particular situation described here it is sufficient to use a single test, as the feedback-loop dynamics are constrained to be stationary. An overall stationarity confidence level in the frequency range, $0 \leqslant f \leqslant f C U T-O F F$, was calculated for each adjacent block estimate \bar{H}_{i} using equation 3.37 , where the variance term is calculated from equation 3.35.

The operator's measured describing function was modelled, usin3 methods outlined in Appendix A, at each block interval (i $=1,2,3 \ldots$) and variations in the model parameters were recorded. The confidence placed in each model estimate was found using similar methods as described in the previous section. For this case, the noise variance is calculated for each block rather than over the entire record.
b) RESULTS

All the operators were tested using both the visual and audio displays. It was found that the model could be accepted at the 0.3
level of significance for all the tests except those using the markspace audio display. Fitting operator response models using this display and the 1.0 Hz input cut-off signal led to fluctuations in the model parameters which could more likely be assigned to severe non-linearity in the response.

The results for a single operator are presented in Figures 3-17. The variations in each model parameter are discussed in turn and discrepancies found with other operators are noted. VARIATIONS IN THE GAIN PARAMETER, K

As the input cut-off frequency increased from 0.5 Hz to 1.0 Hz the gain parameter decreased. For the visual display, a new stable level was found within two block periods of the change in input. For the audio displays a new stable level took longer to achieve. In the case of the mark-space ratio display no detectable change occurred.

For a step down in the input cut-off frequency the gain
increased again. A new stable value was found quickly using the visual display. It was found that the beat frequency audio display results closely matched the visual in this respect.

VARIATIONS IN TIME DELAY, 工

For an increase in the input cut-off frequency the time delay parameter decreased when the visual and beat frequenc: audio displays were used. In the case of the visual display, the parameter decreased abruptly and then returned to a higher level: this effect was not detected using the beat frequency displa\%. For the matching frequenc: and matching amplitude displays, it was occasionally noticed that the time delay increased. No significant change could be detected using the mark-space ratio display.

FIGURE 8 : Shows variations in the model parameters for a step change in the input signal cut-off frequency going from $0.5 \rightarrow 1.0 \mathrm{~Hz}$ using the visual display.

Time in block periods (origin $=$ point of input change) \rightarrow
FIGURE 9 : Shows variations in the model parameters for a step change in the input signal cut-off frequency going from $1.0 \rightarrow 0.5 \mathrm{~Hz}$ using the visual display.

Time in block perjods (origin $=$ point of input chango) \rightarrow

FIGURP 10: Shows variations in the model parameters for a step change in the input signal cut-off frequency going from $0.5 \rightarrow 1.0 \mathrm{~Hz}$ using the Mark-soace ratio audio display.

Time in block periods (origin $=$ point of input change) \rightarrow

FIGURE 11: Shows variations in the model parameters for a step change in the input signal cut-off frequency going from $1.0 \rightarrow 0.5 \mathrm{~Hz}$ using the Mark-space ratio audio display.

Time in block periods (origin $=$ point of input change) \rightarrow

FIGURE 12 : Shows variations in the molel parametels for a step change in the input signal cut-off frequency going from $0.5 \rightarrow 1.0 \mathrm{~Hz}$ using the Matching frequency audio disolay.

FIGURE 13: Shows variations in the model parameters for a step change in the input signal cut-off frequency going from $1.0 \rightarrow 0.5 \mathrm{~Hz}$ using the Matching frequency audio display.

Time in block pericds (origin := poirt of input change) \rightarrow

FIGURE 14 : Shows variations in the model parameters for a step change in the input signal cut-off frequency going from $0.5 \rightarrow 1.0 \mathrm{~Hz}$ using the Beat frequency audio display.

FIGURE 15 : Shows variations in the model parameters or a step change in the input signsl cut-off frequency going from $1.0 \rightarrow 0.5 \mathrm{~Hz}$ using the Beat frequency audio display.

Time in block periods (origin = point of input change) \rightarrow

IGIM 16 : Shows variations in the model parameters for a step change in the input signal cut-off frequency going from $0.5 \rightarrow 1.0 \mathrm{~Hz}$ using the Matohing Amplitude audio display.

Time in block periods (origin $=$ point of input change) \rightarrow -

PIGURE 17 : Shows variations in the model parameters for a step change in the input signal cut-off frequency going from $1.0 \rightarrow 0.5 \mathrm{~Hz}$ using the Matching Amplitude qudio display

For the visual and beat frequency displays, the decrease would indicate an awareness on the part of the operator that a more complex signal required greater attention. It is suggested that the increase in time-delay using the other audio displays indicated an inability to interpret the error signal. This effect has been noted by Elkind and Sprague (see reference 13).

As the input signal cut-off frequency decreased again the time delay slowly increased for the visual and beat frequency displays. The change is less rapid than the step down.

VARIATIONS IN THE INTEGRATOR TIME CONSTANT, C

No overall trends in this parameter could be detected. The type of change depended on the display used. For the visual mark-space ratio and beat frequency displays the value of C increased as the input cut-off frequency increased, although variations in the mark-space ratio test results make any conclusions using this display doubtful. For the matching frequency and matching amplitude displays, the reverse was found. As the input cut-off frequency increased, the value of C decreased.

VARIATIONS IN THE DERIVATIVE TIME CONSTANT, ID-

An increase in T_{D} indicates that the operator is using derivative control on the error signal. Little or no change could be detected in T_{D} using the audio displays. Using the visual display T_{D} decreased as the input cut-off frequency increased. As in the case of variations in the time delay parameter, the initial decrease was often partly recovered.

VARIATIONS IN THE LAG TIME CONSTANT, $\mathrm{I}_{\mathrm{S}}-$

No appreciable change in T_{S} could be found using the visual and beat frequency displays. For the frequency matching and amplitude matching displays, T_{S} decreased as the input cut-off frequency increased. This is consistent with the increase shown in the time-delay parameter, t, for these displays.

VARIATIONS IN THE STATIONARITY CONFIDENCE LEVEL

The operator's response was in all cases found to be approximately stationary before a change in the input signal had occurred. A marked increase in the stationarity confidence level was noted immediately following a change in the input. This increase in general returned to a lower level after 7 block periods and in many cases sooner.

The variations in model parameter values just described were consistently detected for four of the five operators tested. For the fifth operator, no conclusions could be drawn from the results using the matching frequency and beat frèquency displays. This is partly explained by the audio-gram shown in Appendix A, which shows a hearing loss in the mid-frequency band: however, it is unlikely that this discrepancy can be completely explained by this hearing loss.

[^0]A TNO-DIMENSIONAL DISPLAY

Unbiased estimates of the four forward-loop gain functions are given by:

$$
\begin{aligned}
\overline{\mathrm{G}}_{11}= & \bar{\phi}_{x_{1} y_{1}} / \bar{\phi}_{x_{1} e_{1}} \\
\overline{\mathrm{G}}_{22}= & \bar{\phi}_{x_{2} y_{2}} / \bar{\phi}_{x_{2} e_{2}} \\
\overline{\mathrm{G}}_{12}= & \bar{\phi}_{x_{2} y_{1}} \cdot \bar{\phi}_{x_{1 x_{1}}} \\
\bar{\phi}_{x_{1} e_{1}} & \bar{\phi}_{x_{2 x_{2}}} \\
\overline{\mathrm{G}}_{21}= & \bar{\phi}_{x_{1} y_{2}} \cdot \frac{\bar{\phi}_{x_{2 \times 2}}}{\bar{\phi}_{x_{2} e_{2}}}
\end{aligned}
$$

Stapleford et al (see reference 7) have shown that the crosscoupling terms $\bar{G}_{12}, \bar{G}_{21}$ are negligible for visual displays when there is no cross-coupling in the response dynamics. Thus four optimising parameters can be put forward to compare responses of audio and visual two-dimensional displays.

As in the one-dimensional case, G_{11} and G_{22} are optimal when the output tracks the input exactly, i.e. $G_{11}=G_{22}=1.0$ for all frequencies. Thus cost functions as proposed in Appendix A can be used to compare the responses obtained from different displays. Ideally, there should be no cross-coupling. Under these conditions, the outputs $y(t)$ and $y_{2}(t)$ become independent. A cost function marking departure from this ideal is given by:

$$
G_{F A C T}=\int_{0}^{F c}\left|\bar{G}_{12}\right| . d f
$$

The phase response is of secondary importance. A similar cost factor can be defined for G_{21}.

In the design of multi-dimensional audio displays, care must be taken to make the audio feedbacks in each dimension distinct from each other. For instance, the combination of frequency pitch to indicate errors in the Y -axis and amplitude to indicate errors in the X -axis would make detection of Y-error easier at large X-errors (large amplitudes). Further, a base reference of zero error is easily defined in the X-axis by modulating the amplitude in left or right ears, but not so easily defined in the Y-axis, where a reference tone is required. The resulting audio signal even in two dimensions is extremely complex.

A further complication in examining the response to two-dimensional displays is the possible introduction of non-linearities.

This applies even to the visual display where an operator is more likely to correct large errors in one axis and ignore errors in the other axis if they are relatively small.

Lastly, most displays in two dimensions have concentrated on a rectangular set of coordinates. It is highly conceivable that the choice of another reference frame (e.g. polar coordinates) might be more suitable for the design of audio displays. Indeed, it is simpler to design easily distinguishable audio feedback signals in a polar set of axes.

6) CONCLUSIONS

Section 2 and Appendix A outline a simple method of comparing one-dimensional displays. It was found that the cost functions give a reasonably objective appraisal of the performance of the displays tested, without recourse to a detailed analysis of the measured frequency response functions.

The plausibility of the model suggested by confidence level testing in Section 3, together with its physical interpretation, justify its use in explaining changes in the mode of response with change in the input signal dynamics.

The drop-out phenomenon exhibited in some of the audio tests for high frequency cut-off input signals would indicate an inability to interpret the audio display. Other changes in the response sometimes found in tests using the 1.5 Hz input signal cut-off indicate that the operator varied between two modes of response: a highly damped mode in which high frequency components in the error function are simply ignored (indicated in Figure 6(b)) and a resonant mode
(indicated by Figure 6(a)). The amounts of time spent in each mode would indicate that the former is easier to maintain.

By calculating the average values (i.e. for all five operators tested) of the model parameters for each type of test, it is possible to plot the change in the parameters as a function of the cut-off frequency of the input signal. Figure 19 shows a comparison of the model parameters for the visual display and what was considered to be the best audio display (Appendix A). The parameter variations shown can be considered as characteristic of the respective displays, although, as has been mentioned, each operator may vary quite considerably from this characteristic response. In comparing the characteristic responses (Figure 19) it can be seen that the use of signal derivative control, Ts, is more marked for the visual display and that stability is maintained for the audio display by the introduction of a lag time-constant T_{D}. This would indicate that less error signal information is retrieved by the operator using an audio display than using the visual display.

It is seen (Section 4) that not only is the operator's response down-graded using the audio displays but also that his reaction to changes in the frequency content of the input signal is in all cases less immediate than for the visual display and in some cases not detectable. The use of overlapped blocks of time samples to track variations in the response parameters gives a clearer picture of the parameter variations. The reduction in block size decreases the sampling interval and enhances tracking qualities at the expense of frequency resolution. It can be argued that the human operator can

GAIN PACTOR, K

TIME DETAY, T

INTEGRATOR CONSTANT, C

STABILITY LAG TIME-CONSTANT, T_{s}

FIGURE 19 Plots the average variations in the model parameters against the input signal cut-off frequency for :-
a) the visual display $(-)$ and
b) the best audio display as found in appendix A.
(ie. The Beat frequenoy audio display) (- -) The parameter values represent the average as obtained for the five operators tested.
nevertheless var; his dynamic response much faster than the time it takes to collect a block of data. The changes in the model parameters are then at best filtered versions of the true changes. However, it is significant that the response continues to alter for some considerable time after a step change in the input has occurred. This might be explained by the operator's adopting a trial and error mode of response adaptation, with the period between changes being fairly long.

Finally some problems in extending the analysis procedure to include comparison of two-dimensional audio and visual displays indicate a large area for future research. Assumptions of linearity need to be confirmed and displays based on different sets of coordinates must be compared. This requires an extension of the statistical theory to include two input/two output closed-loop systems.
7) APPENDIX A
(A paper published in Research Bulletin. 'A method
for the comparative evaluation of visual and auditory displays'.
P. W. Davall \& J. M. Gill. (October 1974))

SUMMARY

In reading and mobility aids for the blind it is desirable to design the display to optimise the man-machine interface. This paper describes a possible method for comparing various displays.

Five subjects used compensatory tracking with random input signals (five different cut-off frequencies) with five one-dimensional displays where the error is represented by:
(i) Visual : deflection
(ii) Auditory : mark-space ratio
(iii) Auditory : matching frequency
(iv) Auditory : beat frequency
(v) Auditory : amplitude matching

The significance of the coherency between the input signal and the subjects' output is discussed. The measured closed-loop frequency response is compared to that obtained from a modified form of crossover model. Finally two performance parameters are proposed for assessing the various displays.

1) INTRODUCTION

Research on the design of auditory displays has usually been motivated by the desire to provide non-visual displays for those who cannot use vision or to supplement a visual display particularly in aeronautical applications.

Pollack and Ficks (1954) studied multi-dimensional auditory displays in which each variable had only two states. They found that, in general, multiple stimulus encoding is a satisfactory procedure for increasing the information transmission rate associated with such displays. Mudd (1965) studied the relative effectiveness of frequency, intensity, duration and interaural difference dimensions of a puretone binary display. Frequency proved to be the most effective dimension for the purposes of cuing; intensity was the least effective.

Roffler and Butler (1968a) found that listeners could locate auditory stimuli accurately in the vertical plane when the stimulus was complex and included frequencies above 7 kHz . Roffler and Butler (1968b) then found that subjects tended to place the audio stimuli on a vertical scale in accordance with their respective pitch. Higherpitched sound were perceived as originating above lower-pitched sounds.

Vinje and Pitkin (1971) studied human operator dynamics for aural compensatory tracking using pitch of the tone to represent the magnitude of the tracking error. Error polarity was indicated, in the two-ear display, by switching the tone between ears as a function of error sign. For the one-ear display, error polarity was indicated by using modulated and unmodulated tones. The describing function and remnant data indicated that humans can control as well with aural cues as with visual cues for input signals with cut-off frequencies of 0.27 to 0.56 Hz .

A variety of two-dimensional auditory displays have been built; for instance, Black (1968) developed a display where the horizontal coordinate was represented by time delay and amplitude of the signal
and the vertical coordinate by frequency ($100-400 \mathrm{~Hz}$). Fish and Beschle (1973) also used frequency ($200-7000 \mathrm{~Hz}$) for representing the vertical position of the scan but interaural intensity differences (up to 40 dB) for the horizontal.

Phillips and Seligman (1974) developed a multi-dimensional auditory display in which frequency, amplitude and timbre are all utilized. Robinson (Gill, 1974) also developed a two-dimensional display, as a non-visual equivalent to the cathode ray oscilloscope, where the frequency of the signal depends on the vertical coordinate and time delay for the horizontal. However, there has been little systematic comparison of the various types of auditory displays even though Kramer (1962) mentioned the need for this over a decade ago.

This paper describes a method for comparing various displays and applies the technique to one visual and four auditory onedimensional displays. The technique can be extended to multidimensional displays.

2) EXPERIMENTAL METHOD AND ANALYSIS

The human operator was presented with an error signal, e(t), which was the difference between the input, $x(t)$, and the output, $y(t)$ (Figure 1). The output was measured from two strain gauges (making two arms of a bridge section) strapped across a stiff joystick. The choice of a force, as opposed to a position, joystick considerably reduces the response time delay introduced by the muscle motor action of the arm. The input, $x(t)$, was band-limited Gaussian white noise. Five bandwidths of $0.3,0.5,0.7,1.0$ and 1.5 Hz were used for each form of error signal presentation. The operator's task was

Figure l: Shows closed loop configuration for human operator tracking tests.

Figure 2: Shows the zero error state for mark space audio feedback error signal presentation.

Figure 3: Shows the Amplitude v Error function for left and right ears for the amplitude matching audio test.
to minimise the error.

2.1) ERROR SIGNAL PRESENTATION

(i) Visual feedback

A horizontal line on a cathode ray tube display moved vertically about a centre zero, the deflection being a function of the error signal. By pushing on the joystick the line was moved up the screen while pulling brings the line down. Full scale deflection was $\pm 10 \mathrm{~cm}$. in response to an error signal of ± 10 volts (0.5 kg per volt).

(ii) Mark-space audio feedback

The error signal was presented as short bursts of a single tone. Pulling the joystick reduced the duration of the pulses and increased the silent periods, while pushing reversed the effect. The fundamental clocking period for repeating the pulses was 0.15 seconds (Figure 2). The zero error state was defined as unity mark-space ratio between noise and silence.
(iii) Matching frequency feedback

A 1 kHz square-wave was fed to the left ear as a reference tone while a variable frequency square-wave of equal amplitude was fed to the right ear. The frequency of the variable signal was controlled by the joystick and could vary from zero to 3 kHz for full scale error deflection of -10 volts to +10 volts. Zero error was recorded when the two inputs were of matching frequency.

(iv) Beat frequency feedback

The signal inputs were the same as those described in (iii), except that both inputs were presented to both ears simultaneously. The effect is different from (iii) in that signals of three frequencies
can be heard. As well as the two fundamental frequencies, a beat frequency is present. This beat frequency decreases as the two fundamentals come closer together. The advantage of this form of frequency matching is that it does not require the operator to be tone sensitive.
(v) Amplitude matching feedback

A 1 kHz square-wave was presented to both ears. The amplitude presented to each ear, as a function of the error signal, is shown in Figure 3. The loudness of the tone presented in each ear was approximately a linear function of the error (the ear being a logarithmic device to a first approximation). Zero error was recorded when the amplitudes were matched.
2.2) ANALYSIS

$x(t)$:	signal input
$y(t)$:	system output
$e(t)$:	error signal, $x(t)-y(t)$
$\hat{X}_{i}(j w)$:	$i^{\text {th }}$ short-term Fourier estimator of $X(j w)$ at frequency w
$\bar{H}(j w)$:	frequency response estimate relating $X(j w)$ to $Y(j w)$
		at frequency w
$\bar{G}(j w)$:	open-loop frequency response estimate relating $E(j w)$
		to $Y(j w)$ at frequency w
$\bar{\phi} \times x(w)$:	estimate of the auto-spectrum of $x(t)$ at frequency w
$\bar{\phi} x y(j w)$:	estimate of the cross-spectrum between x and y at
		frequency w

$\overline{C^{2} x y}(w)$: squared coherency estimate between X and Y at frequency w

The signals $x(t), y(t)$ and $e(t)$ were sampled five times per second. Approximately ten-minute records were taken for each type of input signal ($0.3,0.5,0.7,1.0$ and 1.5 Hz cut-off frequencies).

The sample records were divided into blocks of N (128 in this case) points for Fourier analysis using a radix '2' fast Fourier algorithm (Blackman and Tukey (1958); Wellstead (197l)) producing $N / 2$ spectral coefficients over the frequency range $0 \rightarrow 2.5 \mathrm{~Hz}$. Approximately 25 short-term estimates of $E(j w), X(j w)$ and $Y(j w)$ were obtained for each input cut-off frequenc $\%$.

$$
\hat{X}_{i}(j w)=\frac{1}{N} \sum_{K=0}^{N-1} x_{t}^{i}(k) . \exp (-j w k) \quad \cdots \cdot \cdot \cdot \cdot 1
$$

where k denotes the $k^{\text {th }}$ time sample in the $i^{\text {th }}$ block and for $w=$ \{2. $\pi \cdot 0.039 . L\}, 0 \leqslant L \leqslant N / 2$ where 0.039 is the frequency resolution in Hz . Similar expressions are used to calculate $\hat{Y} i(j w)$ and $\hat{E} i(j w)$.

The overall closed-loop frequency response as estimated between $x(t)$ and $y(t)$ was calculated as follows:
$\bar{H}(j w)=\bar{\phi} x y(j w) / \bar{\phi} x x(j w) \quad$. . . . 2.2 and the human operator frequency response (open-loop) relating $e(t)$ and $y(t)$ is given by:
$\bar{G}(j w)=\bar{\phi} x y(j w) / \bar{\phi} x e(j w)$
where: 25
$\bar{\phi}_{x x}(j w)=\sum_{i=1} \hat{X}_{i}(j w) * \hat{X}_{i}(j w) \cdots2 .4$
$\bar{\phi} x y(j w)=\sum_{i=1}^{25} \hat{X}_{i}(j w) * \hat{Y}_{i}(j w) \cdots \cdot . . .2 .5$
$\bar{\phi} x e(j w)=\sum_{i=1}^{25} \hat{X}_{i}(j w) * \hat{E}_{i}(j w) \cdots \cdot \cdot \cdot . . .2 .6$ where * denotes the complex conjugate

MODELLING THE HUMAN OPERATOR RESPONSE

For each test mean estimates of $\bar{H}(j w)$ and $\bar{G}(j w)$ were obtained. These represented the average performance over each ten minute test. A linear model of the human operator, similar to the more complex cross-over models (Young (1969); Krendel, McRuer \& Graham (1966)) was used:
$G_{H}(j w)=\frac{K_{0} \exp (-j w \tau) \cdot\left(1+j w T_{D}\right)}{(c+j w)_{0}\left(1+j w T_{S}\right) \cdot\left(1+j w T_{L}\right)} \cdots \cdot \cdot \cdot \cdot \cdot \cdot 2.7$
where:
K : an arbitrary gain factor which can be varied over a large range by the operator
: human operator's response time delay
: a velocity lead response reacting to the rate of change in the error signal. The degree of velocity control exhibited is found to be dependent on the frequency content of the input
c
: a measure of the integral action of the operator. c is small when the operator is able to track slowlyvarying trends in the mean level of the error signal.
: a low-pass element modelling the operator's ability to disregard high frequency content in the error signal which may be due to his own reaction time delay acting in a closed-loop mode.
: a fixed low-pass element measuring the inability of the muscles to respond to frequency changes ($T_{L}=0.04$, cut-off about 4 Hz)

The parameters of interest are τ, (the reaction time delay), T_{D} (the operator's ability to react not only to the magnitude of the error but also to the manner in which it is changing) and c (a measure of the operator's ability to follow the mean level of the signal accurately). A Powell hill-climb routine (Fletcher and Powell, 1963) was implemented to model the responses obtained for $\bar{G}(j w)$ and $\bar{H}(j w)$ in each test in terms of the model described in equation 2.7. The fixed low-pass element T_{L} was chosen to achieve a cut-off at about 4 Hz while T_{S}, the stability factor, was only allowed to operate on high frequency cut-off tests. This is consistent with experience in that no stability problems were encountered in low frequency tests. Thus the Powell hill-climb routine was used to optimise the parameters $K, \mathcal{T}, \mathrm{~T}_{\mathrm{D}}$ and c . The gain factor K acts in choosing the magnitude of the human operator's open-loop characteristic response. The limits imposed on K are physical limitations and not of direct interest to his mode of response. The restrictions on the values assumed by τ, T_{D} and c were taken from previous results, and from trial and error. The following limits were chosen:

$$
\begin{aligned}
& 0.1 \leqslant K \leqslant 20 \\
& 0.1 \leqslant \tau \leqslant 0.6 \\
& 0.0 \leqslant c \leqslant 1.0 \\
& 0.0 \leqslant T_{D} \leqslant 4.0
\end{aligned}
$$

and where applicable:

$$
0.0 \leqslant T_{S} \leqslant 0.3
$$

RESPONSE EVALUATION

The concept of a measure of 'goodness' for a particular form of error signal presentation is subjective to a degree. However, for
specific tasks, such as continuous tracking and control tasks as presented here, two parameters may be considered to give a measure of the performance of one form of display against another.

The ideal operator response is achieved when $y(t)$ follows $x(t)$ exactly. Under these conditions the magnitude of the closed-loop frequency response is unity over all frequencies of interest. Deviations from this unity gain represent a loss. Thus a factor given by:
$G_{F A C T}=\frac{1}{F \max } \iint_{0}^{F \max }|\bar{H}(j w)-1.0| \ldots \mathrm{dw} \ldots 2.8$ gives a number by shich the gain response is characterised. Fmax is chosen as some maximum frequency of interest for which the display is to be used. Each operator's response can thus be characterised by a factor $G_{F A C T}$. The greater $G_{\text {FACT }}$, the greater the overall deviation from the ideal response.

The amplitude of the overall response does not completely characterise the response. Phase shifts in the response can also be detrimental to the performance of a particular form of error signal presentation. The ideal phase characteristics are again zero phase shift over all frequencies of interest. Thus a phase 'goodness' parameter is proposed:
$P_{F A C T}=\frac{1}{F \max } \int_{0}^{\mathrm{Fmax}}\left|\theta_{\mathrm{H}}(j w)\right| . d w \quad2 .9$
where $\theta_{H}(j w)$ is the phase shift, in radians, of the closed-loop response $\bar{H}(j w)$. Fmax is chosen as before.

Thus each operator's response to a particular form of error signal presentation is characterised by two 'goodness' parameters.

The display which minimises these two parameters can be judged to give the best response. However, for individual applications the weight placed on the amplitude factor as opposed to the phase factor is a matter of choice.

3) RESULTS AND DISCUSSION

In assessing the operator's performance, the coherency between the input and the operator's output presents a measure of the extent to which his output (at a given frequency) resulted as a direct response (albeit perhaps a wrong one) to the input. It is defined by: $C_{x y}^{2}(j w)=\frac{\left|\phi_{x y}^{2}(j w)\right|}{\phi x x(w) \cdot \phi y y(w)} \quad \cdots \cdot3 .1$ at frequency w where $0 \leqslant C_{x y}^{2} \leqslant 1$.

When the coherency equals one, the output can be defined exactly as a linear function of the input. When the coherency is zero, the output is uncorrelated with the input (indicating a lack of response or possible nonlinearities).

Figures 4 and 5 show the mean coherency squared results measured for two operators. The mean coherency was taken over the frequency range zero to cut-off for each test, and the results for each type of error signal presentation and for each input cut-off frequency are displayed. Figure 4 was typical of results obtained for four of the five operators tested. The visual test showed a high level of coherency over the complete range of inputs used. The spread being typically $0.6 \leqslant C_{x y}^{2} \leqslant 0.95$.

The results for the mark-space test (Al) show a low level of coherency on all tests. As the input cut-off frequency increases, the
operator is less able to track correctly and the coherency falls. Indeed, it is doubtful whether the very high frequency tests (1.0 and 1.5 Hz cut-off) can be tracked at all using the mark-space ratio feedback.

The matching frequency test (A2) shows an all-round improvement on the mark-space test, while beat frequency feedback (A3) is probably the best display used over the frequency ranges of interest. It must be noted that although amplitude matching (A4) performed well for low frequency inputs (slightly better even than A3), the operators found greater difficulty in matching amplitudes quickly than in matching frequencies.

Figure 5 shows the exception to the rule. For this operator the amplitude matching tests results were consistently better than either frequency test. This is possibly explained by the hearing defect shown in the operator's audiogram (Figure 6). However, the case is made that an audio display must be tailored to suit the individual.

CLOSED-LOCP FREQUENCY RESPONSE

Figure 7 shows the closed-loop frequency response results as measured at each input cut-off frequency for each type of error signal presentation. The results are shown for a single operator.

At low input cut-off frequencies the closed-loop gain response is approximately flat and approaching unity, while the phase response shows the phase shift slowly increasing with frequency. The ideal response is defined as unity gain over all frequencies with zero phase shift. As the input cut-off frequency increases, the gain response decreases sharply with unity gain only occurring at very low frequencies.

Figure 4: Shows the Mean Coherency level obtained for a single operator for each form of display and at each input cut-ots irequency (The mean level is taken over the trequency range O-cut off)

Figure 8: Shows the results obtained (for all 5 operators) for the Doppler motching audio teedback with an input cut-off frequency of 0.7 Hz .

FIGURE 5. Shows the Mean Coherency level obtained for a single operator tor each form of display and at each input cut-ofi frequency.
(The mean level is taken over the frequency range O-cut off)
Operator No. 2.
V - Visual
AI - Mark Space matching
A2-Matching Frequency
A3-Doppler matching Frequency
A4-Amplitude matching
' ${ }^{\prime}$ B' above Threshold

FIGURE 6. Shows the results of an audiometer tests on operator No. 2. $\left\{\begin{array}{l}\text { Left ear }--X \\ \text { Right ear }---O\end{array}\right\}$

Frequency Hz

Frequency Hz

Figure 7: Shows the measured Closed Loop Frequency Response at each input cut off frequency for each of the visual and audio errorsignal presentations. The results are shown for a single operator.
Visual (V)
Mark Space (AI)

Matching Frequency (A 2)
Doppler Matching (A3)
Amplitude Matching (4)

The rate of increase in phase shift is greater than expected by extrapolation of the low frequency results. Thus, in general, the operator changes his mode of operation as the input cut-off frequency increases. In some cases the inherent time delay in the operator's response leads to a resonant peak in the closed-loop response.

In measuring the operator's response, it must be recognised that his response will change as his concentration and skill vary. For this reason untrained operators were used to try to nullify any skill discrepancies in the results. Possibly a fairer test on which to base conclusions on the acceptability of any particular form of auditory display would be conducted with trained operators. However, the authors believe that initial reactions are as true a guide as any. There is no quantative way to allow for concentration lapses.

Figure 8 shows the range of results obtained for one particular test (beat audio error signal presentation with 0.7 Hz input cut-off frequency) for all five operators. The result for operator number 2 shows a resonant peak in the gain response at about 0.8 Hz while the phase shift at low frequencies tends to $-\pi / 2$ (unlike the other operators). This type of response occurs when the operator is overreacting to changes in the input signal and subsequently overcorrecting. Again the variations in the responses measured would tend to advocate the case for tailoring the audio display to the individual.

HUMAN OPERATOR MODELLING

The modei used (equation 2.7) has the advantage that the parameters can be given a physical interpretation. The Powell hillclimbing technique used to minimise a cost function between measured
and modelled response values found the global minimum in the cost function over the parameter N - vector space and within the boundary values chosen. The choice of boundary values for the parameters was based on previous values used and on experience, taking into account the physical limitations imposed by the human operator. The error function minimised was of the integral error squared form given by:

$$
\begin{aligned}
\operatorname{COST}= & \frac{\int_{0}^{\text {Fmax }}\left(H_{M E A S}(j w)-H_{M O D}(j w)\right)^{2} d w}{\int_{0}^{F \max }\left(H_{M E A S}(j w)\right)^{2} d w} \\
& +\frac{\int_{0}^{F \max }\left(G_{M E A S}(j w)-G_{M O D}(j w)\right)^{2} d w}{\int_{0}^{F \max }\left(G_{\text {MEAS }}(j w)\right)^{2} d w}
\end{aligned}
$$

where $H_{\text {MEAS }}(j w):$ measured closed-loop response
$H_{\text {MOD }}(j w):$ model closed-loop response
$G_{\text {MEAS }}(j w)$: measured open-loop response
$\mathrm{G}_{\text {MOD }}(j w):$ model open-loop response
and

$$
H_{M O D}(j w)=\frac{G_{M O D}(j w)}{1+G_{M O D}(j w)}
$$

This cost function and hill-climb process thus optimises the model parameters in terms of both open-loop and closed-loop measurements simultaneously. Figures 9 and 10 show typical results obtained from this modelling process for a visual test.

Table 1 lists the parameter values obtained from modelling the tests conducted on a single operator. A complete table for all five operators is not included for reasons of space. However, several points can be inferred from the result presented which are borne
out in the results obtained for the other operators. The human operator gain (K) is a function of the sensitivity of the joystick and of the particular test environment chosen. However, as the input cut-off frequency increases, the gain decreases. This is borne out by Table l for all the various forms of error signal presentation. It is also noticeable that the mark-space presentation (Al) displays the lowest overall gain figures, which is compatable with predictions made from the coherency results. The beat frequency presentation (A4) comes closest to the figures presented for the visual presentation; this again might be expected from the coherency results.

The lead factor (T_{D}) is a measure of the velocity control exerted by the operator; the larger the value of T_{D}, the greater the velocity control exerted (i.e. the more sensitive the response to rate of change in the error function).

The operator appears to maintain an approximately constant level of velocity control until, at high frequencies, he no longer responds to velocity but degenerates into a form of 'bang-bang' control. Under this last mode of operation it is purely the sign of the error that decides the controlling action. For some audio tests, notably the mark-space test, this degeneration into a form of 'bang-bang' control occurs at input cut-off frequencies as low as l Hz and possibly even lower.

The operator's time delay (τ) decreases as the input cut-off frequency increases (Figure 1l); this result is well known. However, a slight increase in time delay was found at the high frequencies for the audio tests. This might be explained by the fact that, at high
frequencies, signal interpretation becomes more complicated for the audio tests. This suggestion is only tentative, and further tests are required.

The lag constant $\left(T_{S}\right)$ is perhaps the most difficult to explain in physical terms. Due to the operator's time delay response, the closedloop response has a tendency to exhibit resonances at frequencies where the phase shift in the output leads to positive feedback. Thus the operator can find himself correcting high frequency components in the error signal which are not in fact present in the original input. All the operators tended to counteract this by ignoring, to a greater or lesser extent, high frequency changes in the error signal. The model, as given by equation 2.7 , allows for this in the form of a low-pass element with a time constant T_{S}. The greater T_{S}, the lower the break frequency for the low-pass element. All the tests display low values of T_{S} for the 0.3 Hz cut-off with T_{S} increasing for the 0.5 and 0.7 Hz cut-off frequencies. Beyond 0.7 Hz it depends on the test as to the degree of damping used. There appears to be a mode of operation for some of the audio tests in which the closed-loop resonance effect goes unnoticed and hence uncontrolled. This may be a function of the information being lost in the audio feedback at high frequencies. This is certainly true of the amplitude matching and beat frequency presentations.

Lastly, the integrator factor (c) attempts to measure the ability of the operator to track low frequency trends in the mean level of the signal. Surprisingly, the mark-space tests show up quite well in this respect, at low frequencies being similar to the visual response. However, the variations in this constant are more a function of the

Figure 9a: Shows the Measured and Modelled Frequency Response:-
OPEN LOOP
for a humon operator subjected to tracking a band limited
white noise input with O.3 HZ cut-off.
The error was presented visually.

Figure 10 b : Shows the Measured and Modelled Frequency Response:-
CLOSED LOOP
for human operator subjected to tracking a band limited
white noise input with 0.7 HZ cut-off.
The error wos presented visually.

Figure 10a: Shows the Measured and Modelled Frequency Response:-
OPEN LOOP
for a human operator subjected to tracking a band limited
white noise input with 0.7 HZ cut-ott.
The error was presented visually.

Figure 11: Shows the variation of 3 Model parameters with change in the input cut off Frequency for each form of Error signal presentation and for a single operator.
Visual
Mark Space

Matching Frequency -. -.
Doppler
Amplitude Matching - - - - - - - -
operator's long-term concentration and hence little can be said.
It must be emphasised that the discussion of changes in the model parameters is only applicable to these particular tests. Any firmer conclusions require a large number of subjects tested many times. However, the trends listed were consistently reproduced in tests conducted for a second time on a single operator and lend weight to the applicability of the model. The model cost function values listed in Table 1 give further reason for believing the model to be creditable.

DISPLAY PERFORMANCE ESTIMATES

Although a detailed study of the measured operator responses for various types of error presentation is instructive, it is too cumbersome a method for classifying particular forms of display. There are two ways of classifying an operator's response for a given input in terms of modulus gain response and phase response. Equation 2.8 defines a factor $G_{F A C T}$ which gives a measure of the mean square deviation from unity gain over the frequency range of interest, while equation 2.9 describes a similar factor $P_{F A C T}$ assessing the deviation of the phase response from a desired zero phase shift. These factors are listed in Table 1 for each test. The weight placed on GFACT as opposed to $P_{F A C T}$ depends on the type of task to be performed.

The ideal values are:

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{FACT}}=0.0 \\
& \mathrm{P}_{\mathrm{FACT}}=0.0
\end{aligned}
$$

It can be seen that the visual display comes top on both counts (see Table 1). The beat frequency test just has the edge on the amplitude matching test, followed by the frequency matching test.
TABLE 1 Shows Operator Model Paremeter Values Plus Frror Performance Figures for

The mark-space test comes out bottom. This ordering agrees substantially with the other results presented, and confirms that $G_{F A C T}$ and $P_{F A C T}$ would appear to give a reliable performance index. 4) CONCLUSIONS

The experiments show that the human operator's performance depends on the frequency content of the input. It would appear that for visual tracking tasks the operator can adapt his response to suit the input. However, it was found that his adaptability and hence his performance was impaired by audio presentation of the signal. Contrary to comments made by Vinje and Pitkin (1971), the human operator's response to the audio cues presented in these experiments was consistently inferior to visual. However, the audio presentations used here are different from those used by the above authors.

The linear model used to describe the operator's response fitted the measured response well for low frequency input tests. However, when the input signal contained high frequency components, the operator's response might be better described by the incorporation of a non-linear 'bang-bang' element in the model. For this reason the physical interpretation of the model parameters is still open to argument. The description presented here is, however, subjectively consistent with the experience of the subjects tested.

The presentation of a gain and phase cost function to measure the 'goodness' of the operator's response has the advantage of retaining information about phase response in its crudest form while retaining overall information on the modulus of the response. A simple presentation of error variance to input variance gives no
useful information about the nature of the response.
Finally, this paper serves as an introduction to a more thorough analysis of two- and three-dimensional audio displays as an alternative or in conjunction with visual displays. Extension to two-dimensional displays introduces cross-coupling effects, which, although not too serious for visual tracking tasks, could prove detrimental to performance for certain combinations of audio displays.

REFERENCES: APPENDIX A

BLACK, W. L.: 'An acoustic pattern presentation'. Research Bulletin, No. 16, pp. 93-132 (May, 1968)

BLACKMAN, R. B. \& TUKEY, J. W.: 'The measurement of power spectra'. Dover Publication (1958)

FISH, R. M. \& BESCHLE, R. G.: 'An auditory display capable of presenting two-dimensional shapes to the blind'. Research Bulletin, No. 26, pp. 5-13, (June, 1973)

FLETCHER, R. \& POWELL, M. J. D.: 'A rapidly convergent descent method for minimisation'. British Computer Jnl. Vol. 6, pp. 163-8 (1963)

GILL, J. M.: 'Auditory and tactual displays for sensory aids for the visually impaired'. Research Bulletin, No. 29, to be published

KRAMER, H. J.: 'Stimulus variables in auditory projective testing'. Research Bulletin, No. l pp. 33-40 (Jan. 1962)

KRENDEL, E. S. MCRUER, D. T. \& GRAHAM, D.: 'The analysis and synthesis of manual closed-loop control systems'. I.E.E.E.Int. Convention Rec. pp. 193-5 (1966)

MUDD, S. A.: 'Experimental evaluation of binary pure-tone auditory displays'. Jnl. of Applied Psychology, Vol. 49, No. 2, pp. 112-121 (1965)

PHILLIPS, J. A. \& SELIGMAN, P. M.: 'Two instruments for the blind engineer'. Research Bulletin, No. 27, pp. 197-216 (April, 1974)

POLLACK, I. \& FICKS, L.: 'Information of elementary multi-dimensional auditory displays'. Jnl. Acoustical Soc. Am. Vol. 26, No.2, pp. 155-8 (March, 1954)

ROFFLER, S. K. \& BUTLER, R. A.: 'Factors that influence the localization of sound in the vertical plane'. Jnl. Acoustical Soc. Am., Vol. 43, No. 6, pp. 1255-9 (1968)

ROFFLER, S. K. \& BUTLER, R. A.: 'Localization of tonal stimuli in the vertical plane'. Jnl. Acoustical Soc. Am., Vol. 43, No. 6, pp. 1260-6 (1968)

VINJE, E. W. \& PITKIN, E. T.: 'Human operator dynamics for aural compensatory tracking'. 7th Annual Conference on Manual Control, NASA SP-281, pp. 339-48 (June, 1971)

WELLSTEAD, P.E.: 'Aspects of real time spectral analysis'. Phd. Thesis, Univ. of Warwick (1971)

YOUNG, L. P.: 'On adaptive manual control'. I.E.E.E. MMS-10, pp. 292331, (Dec, 1969)

REFERENCES : CHAPTER 6

1 KRENDEL, E. S. \& MCRUER, D. T.: 'Dynamic response of human operators'. W.A.D.C. Tech. Report 57-509 (1958)

2 BEKEY, G. A.: 'The human operator as a sampled data system'. I.E.E.E. HFE-3 pp. 43-9 (1962)

3 'Final Report, human dynamics study'. Goodyear Aircraft Co. Akion Ohio Report GER-4750 (1962)

4 ELLKIND, J. I. \& DARLEY, D. L.: 'The normality of signals and describing function measurements of simple manual control systems'. I.E.E.E. HFE-4 pp. 52-60 (1963)

5 SEELEY, H. F. \& BLISS, J. C.: 'Compensatory tracking with visual and tictile displays'. I.E.E.E. HFE-7 pp. 84-90 (1966) HILL, J. W.: 'Describing function analysis of tracking performance using two tactile displays'. I.E.E.E. MMS-11 pp. 92-100 (1970)

7 STAPLEFORD, R. L., MCRUER, D. T. \& MAGDALENO, R. E.: 'Pilot describing function measurements in a multi-loop task'. I.E.E.E. HFE-8 pp. 113-128 (1967)

3 VINJE, E.W., PITKIN, E. T.: 'Human operator dynamics for aural compensatory tracking'. 7th Annual Conference on Manual Control NASA SP-281 pp. 339-48 (June, 1971)

9 SHERIDAN, T. B.: 'Human operators' time-varying transfer characteristics in the study of perception and fatigue'. Proc. Symposium on Recent Developments in Automatic Control pp. 161165 (1966)

SHERIDAN, T. B.: 'Time-variable dynamics of human operator systems'. Air force Cambridge Research Centre, Bedford, Mass., report No. AFCRC TN-60-196 (1960)
'Some conclusions from a special issue on revision of opinions by men and machine systems'. I.E.E.E. HFE-7 pp. 125-30 (1966) WIERENGA, R. D.: 'An evaluation of a pilot model based on Kalman filtering and optimal control'. I.E.E.E. MMS-10 pp. 108-23 (1969) ELKIND, J. I. \& SPRAGUE, L. T.: 'Transmission of information in simple manual control systems'. I.E.E.E. HFE-2 pp. 58-62 (1961) BEKEY, G. A. \& MEISSINGER, H. F.: 'Mathematical models of human operators in simple two-axis manual control systems'. I.E.E.E. HFE-6 pp. 42-53 (1965)

BEKEY, G. A. \& NEAL, C. B.: 'Identification of sampling intervals in sampled data models of the human operator'. I.E.E.E. MMS-9 pp. 138-42 (1968)

BLISS, J. C.: 'A provisional bibliography on tactile displays'. I.E.E.E. MMS-11 p. 101 (1970)

SKOLNICK, A.: 'Stability and performance of manual control systems'. I.E.E.E. HFE-7 pp. 115-124 (1966)

COSTELLO, R. G. \& HIGGINS, T. J.: 'An inclusive classified bibliography pertaining to modelling the human operator as an element in an automatic control system'. I.E.E.E. HFE-7 pp. 174-81 (1966)

DUEY, J.W. \& CHERNIKOFF, R.: 'The use of quickening in one coordinate of a two-dimensional tracking system'. I.E.E.E. HFE-1 pp. 21-25 (1960)

20 ROIG, R. W.: 'A comparison between human operator and optimum linear controller R.M.S. error performance'. I.E.E.E. HFE-3 pp. 18-22 (1962)

SEELEY, H. F. \& BLISS, J. C.: 'Compensatory tracking with visual and tactile displays'. I.E.E.E. HFE-7 pp. 84-90 (1966)

CHAPTER 7

CONCLUSIONS AND SOME SUGGESTIONS FOR FUTURE RESEARCH

The statistical aspects of short-term spectral estimation as developed in Chapters 2 and 3 are shown to have wide application in the analysis of open-loop and closed-loop time-varying systems.

The use of confidence interval and stationarity tests in determining the accuracy of projected mathematical models, and in monitoring the timevarying aspects of the system response, has led to some new developments in the fields of speech analysis, fatigue testing and display comparison in human operator tracking tasks.

In Chapter 2 the effect of noise in open-loop spectral estimation is examined in detail. The distribution of cross-spectral estimates is shown to differ markedly from the classical Chi-square approximation under noisy conditions. In particular, the finite probability of obtaining negative estimates is clearly demonstrated using the derived distribution.

From the distribution of frequency response estimates, a stationarity test which is essentially sensitive to variations in the system and not to variations in the input is suggested. This test is widely used in Chapters 4 and 5.

By considering the open-loop frequency response distribution, it is shown that the variance is a function of the signal-to-noise ratio of the system and not the system response. On this basis, the statistics of an estimate of the signal-to-noise ratio are derived. It is shown that the traditional coherency estimate does not give direct information on
the likely variance in the frequency response estimate.
A heuristic extension of stationary spectral analysis to include slowly-varying linear systems indicates that the statistical distributions derived for stationary systems can be modified to include slowly-varying oscillatory processes, if the bandwidth of oscillation is considerably less than the fundamental frequency resolution $2 \pi / T$ (where $T=$ block estimation period). Under these conditions, the variance terms for the distributions may be approximately replaced by their time-varying equivalents.

Lastly, a preliminary investigation of the joint distributions of overlapped estimates is undertaken. The distribution associated with auto-spectral estimates is derived. Future work should extend this to a complete investigation of overlapped cross-spectrum and frequency response estimates.

The analysis of speech (Chapter 4) and fatigue (Chapter 5) are chosen as two examples of time-varying situations where the nature of the time variation is markedly different.

In Chapter 3 the statistics of closed-loop spectral estimates are examined. Of major importance is the extension to tri-variate Gaussian systems. Little research has previously been conducted on the distributions associated with tri-variate complex systems.

The distribution of closed-loop cross-spectral estimates and estimates of the overall closed-loop frequency response are derived from complex transformations of the open-loop case. The derivation of the closed-loop overall frequency response distribution leads to a two-part stationarity test for closed-loop systems. This test can only
determine the joint stationarity of the forward and feedback path responses. In many cases this may be sufficient, but the development of stationarity tests which are sensitive to variations in individual closed-loop parameters would be preferable. A fundamental limitation to the development of such a series of stationarity tests is that the variance of estimates of the forward- and feedback-loop response is a function of the system being measured. This was not the case in the open-loop system.

In the open-loop case it is possible to use signal-to-noise ratio estimates to calculate the variance of frequency response estimates. In the closed-loop situation it is useful to estimate the forward and feedback path noise spectra. It is shown that the distributions associated with such estimates are approximately Chi-square with 2L - 2 degrees of freedom when the signal-to-noise ratios are large, but that this approximation is seriously misleading under noisy conditions. A preliminary investigation suggests that as the signal-to-noise ratio decreases, the number of degrees of freedom associated with the distribution also decreases. This conclusion is based on simulation results and needs theoretical confirmation.

The distributions are applicable to stationary systems : to fully justify their use in time-varying situations it must be shown that the relationships between input/output and feedback short-term Fourier estimates are similar to those encountered in stationary systems, with added bias and variance terms that may be effectively suppressed by a suitable choice of the estimation period T. Tong (1972) provided some plausible arguments justifying this assumption for the case of slowlyvarying oscillatory systems. However, an extension of the arguments
used in Chapter 2 is required.
Chapter 6 makes use of the results of Chapter 3 both to validate the proposed linear model of the operator's response and to test for response stationarity.

In Chapter 4 the use of a throat microphone to define a system input enables a reasonably simple phonemic recognition system to be implemented. The vowel phonemes can be consistently identified and preliminary results for some consonants indicate that the system can be extended. Improvements in compressed speech intelligibility using so-called 'phonemic compression' (essentially just compressing the stationary speech segments and deleting the non-stationary sections) would indicate that not only vowels but also consonant phonemics are retained.

It is to be noted that random errors due to short-term estimation make the reading of a speech spectragraph extremely difficult and in many cases impossible, even when the information is in fact present. Thus interpretation using statistical methods is essential. The stationarity test developed in Chapter 2 is shown to be sufficiently robust to detect changes in the vocal tract frequency response even in a very noisy environment.

In the long-term development of a connected speech recognition system, a more serious problem is the absence of complete phonemic information in the speech wave. On first listening to the compressed speech tape, the listener has great difficulty in picking out more than three or four words at 400 w.p.m. If the listener is familiar with the sentence before listening to the tape, he experiences little or no trouble in understanding it. This indicates the strong influence of
predictor-corrector methods used by the brain in deciphering spoken speech. If one is pre-conditioned to expect a limited range of utterances, then the brain reacts to cues rather than rely on exact interpretation. The requirement of intelligent interpretation is almost. impossible for a computer. Thus, in the view of the author, for the purposes of man-machine communication, it is more profitable to rely on a restricted set of code instructions.

Alternative applications of stationarity testing to transmission bit rate reductions in communications are more promising.

A contrasting time-varying situation is presented in the identification of fatigue cracking in aluminium and steel rods (Chapter 5). Here we are looking for slow trends in the response. If the input driver signal is sinousoidal, it is well known that there are small changes in the amplitude and phase of the response as cracking sets in. This effect cannot be detected visually under random load conditions. In Chapter 5 it is shown that changes do occur and can be detected using statistical testing techniques on the measured frequency response. These changes may be due to:
a) Deforming the specimen beyond the plastic limit
b) Fatigue cracking
c) Drift in the testing equipment
d) A slow change in the input load spectrum. By designing an input load compensation system to ensure the achieved load matches the original desired load both in terms of spectral and amplitude distribution characteristics, the effects of (a) and (d) above can be practically eliminated. Possible load saturation of the
fatigue rig driver due to changes in the specimen's response as cracking occurs can also be avoided. By monitoring the response of amplifiers and transducers in the circuit, errors due to drift can be allowed for. In many cases drift occurs in the D.C. and very low frequency range, and ignoring changes in these frequency components eliminates this as a major source of error . That the changes detected are not a function of the load signal characteristics is indicated by the consistent changes monitored under varied load conditions. In designing a load compensation system, the choice of analysis parameters to guarantee consistent results is based on the statistical considerations of Chapter 2.

Although much research on the dynamics of the human operator response in tracking task situations has been carried out , there has been little or no serious attempt to utilise the results in fields other than the aerospace industry. A major field of application is in the design of audio, tactile and visual aids for the handicapped. Currently such aids as sonic torches for the visually handicapped, audio C.R.T. displays, and many household gadgets have been manufactured without serious regard to the maximum effectiveness of these aids.

In Chapter 6 an attempt is made to outline a method of display comparison, both in terms of overall response characteristics and in terms of variations in the model parameters. A major facet of any display is the ability of the operator to respond to changes in the dynamics of the input signal to be tracked. In tracking transients in the model parameters for step changes in the input dynamics, care must be taken to ensure that the model is representative of the measured response, and that the transients are a function of the changes in the response mode of the
operator and not due to short-term sampling errors. The sampling distributions for closed-loop systems as developed in Chapter 3 provide confidence intervals for the model and enable the response stationarity to be monitored.

The physical justification of the linear model chosen is based on a combination of physical restrictions and the subjective appraisal of the operators used. From the model the phenomenon of increased phase lag at very low frequencies can be explained.

Contrary to previous results it is shown that audio displays are inferior to visual displays both in terms of overall response characteristics and in the ability of the operator to adapt his response to changes in the input dynamics. Non-linearities in the operator's response when tracking signals with high frequency components make it unreasonable to qualify his response in terms of the linear model parameters under these conditions. In the mid-frequency ranges his response is known to be approximately linear.

The experiments involved one-dimensional displays. Extension to two- and three-dimensional displays requires careful consideration of the statistics of multi-input, multi-output closed-loop systems. In its full complexity, this problem involves finding the distribution of frequency response estimates when the inputs are correlated and for multipath feedback. For the purposes of display analysis it is sufficient to consider the case where the inputs are uncorrelated and the feedback is single path. This is a major topic for future research.

LISTING OF MAJOR COMPUTER PRGGRAMS

1) SPECTRA 2

This program is written to be compatible with an integrated data analysis system implemented on a Rank Xerox Sigma 5 computer. Time data is taken from files held on magnetic tape. The program can calculate input/output and cross-spectra together with frequency response estimates for up to 2 input/output closed-loop systems (i.e. 8 time variables). Auto-spectral, cross-spectral and openloop frequency response estimates can be tested for stationarity using tests described in Chapter 2.
2) FATIGUE RIG CONTROL

Implementation of real time control of fatigue loading rig by input compensation.
3) HUMAN OPERATOR TRACKING TASK

This program samples the output from the force generator and generates the appropriate error signal for display on a C.R.T. scope or using audio display. The program is written for two-dimensional displays, but may be used for one-dimensional tests.

4) MODELLING OF HUMAN OPERATOR RESPCNSE

This program uses a Powell hill-climb routine to minimise the cost function between measured and modelled response. The measured response is read from paper tape. The model and the cost function are described in Chapter 6.

5) FAST FOURIER ALGORITHM

Performs discrete Fourier transform on an in-complex array
($N=2^{M}, M$ 9). The transform can perform either way. The output is ordered. Recorded transform times using Rank Xerox Sigma 5 computer are as follows:
i) 512 point transform 0.3 secs
ii) 256 point transform 0.12 secs
iii) 128 point transform 0.05 secs.
The program is written to be Fortran IV, Macro-Symbol compatible.

All programs are written in Extended Fortran IV where possible. Where speed of execution is essential, a Macro-Symbol code is used. Standard system sub-routines referenced in the program listings are given below.

1) BUFFERIN : inputs record from magnetic tape, disc or paper tape as specified
2) BUFFEROUT : outputs record of data to specified device
3) CHECK : checks for completion of data output to V.D.U. storage scope
4) CHOOSE : input routine from V.D.U. terminal : specifies jump action to be taken within program
5) CLOSEFIL : closes data file on magnetic tape
6) COCINIT : initialises V.D.U. terminal for data transfer
7) CWRITE : program for writing TEXT to V.D.U.
8) DISAB : disables real time interrupt. Interrupt level is specified by user.
9) ENAB : enables real time interrupt
10) ENDFILE : puts end-of-file marker on specified device
11) ERASE : erases V.D.U. screen
12) FETCH : fetch required file (specified by name) from designated source (e.g. magnetic tape, disc)
13) HOME : homes cursor on V.D.U. to top of page
14) LABEL : enables user to input text to label graphs on V.D.U. screen. Position specified by displayed cross-wires on screen.
15) MINPUT : inputs filed time sample data from magnetic tape
16) MOUTPUT : outputs data sample point to magnetic tape
17) OPENFIL : open data file on magnetic tape
18) RADCS : analogue to digital sampling routine
19) : RDAC digital to analogue sampling routine
20) RD, RDNC : reads character input from V.D.U. terminal. New-line command can be suppressed.
21) RELEASE : releases $O V$ file to restart program or continue on subsequent jobs
22) REWIND : rewinds specified I/C device
23) SKIPFILE : skips specified number of files on I/O device
24) TIMER : triggers specified real time interrupt at pre-determined rate
25) TPLOT : plots line on V.D.U. storage scope from current position to specified coordinates
26) TRIGR : triggers specified real time interrupt
27) WAIT : drops out of interrupt level. On next trigger to that level control is returned to the next statement after the WAIT call.
28) WT, WTNL : writes character string to V.D.U. terminal. Newline command may be suppressed.
SPECTRA
AUTHOR : P. W. DAVALL
LANGUAGE : FORTRAN IV/MACRO-SYMBOL
SUBRGUTINF MP

[^1]INITIALSSE COC AND GET INDEX ON TO TIME DATA FILES
CUMMUN /SETZ/INDEXO(90)
CALL COCINIT(2,1S)
CALL GETINDX(100,INDEXO)
CALL HUME
CALL ERASF.
REWIND IO1
C.HOESE $\triangle C T I O N$
B) ACCESS FUURIER FILE ALREADY CREATED ON T1.
CALL CHEGOSE(55,'(F) OURIER ANALYSIS,(P)LOT•(S)TATIONARITY TEST•(E)X ऽIT :! ', 1, 'F, P, S, E: ', ل) GU TO $(2,3,4,5) \mathrm{J}$
CALL RELEASE
CAI.L FFTFILE
CALL FFTPLOT
GH TO 1 TOL
GALL STAT
$\stackrel{\sim}{2}$

subreutine fftFile

WRITE INDEX BF TIME FILES ON TO TE V．D．U．
CALL HOME
$$
\text { 1,SヨרWVS } 10 \mathrm{ON}
$$
CHECK TAPE ON TI INITIALISED IN CORRECT FORMAT FOR FOURIER files． CALL TICHECK（IFLAG）
10
u u
uuu

1SIGN=-1
FHES=FSAMP/(N*ISKSAMP)
IF (ISKSAMP •LT• 1) ISKSAMP =1
IF (ISKSAMP - LT• 1) ISKSAMP=1
NBL \quad IK =NSAMP/(NHISKSAMP)
IF (NBLCK $\cdot L T \cdot 1$) NBLCK=1
ICHAN(7)=N
RCHAN(8$)=$ FRES
ICHAN(9) $=$ NHLCK
ICHAN(10) mNFPGS
$N 4=N / 4+1$
DO $4 \quad I=1$,

and output to feurier file on ti.
$$
[\because 1 \quad J=1, \text { NVAR }
$$
$$
\text { CO } 3 k=1, N
$$
CLGSE FPURIER FILE IUPDATE INDEX EN TI.
RETURN TO MP.
z
$\underset{\sim}{z}$
$\underset{\sim}{\sim}$
$\underset{\sim}{\sim}$
\sim
SUBREUTINF．FFTPLOT
CALCULATES ANO PLOTS REQUIRED SPECTRAL ESTIMATES OROM FOURIER
FILES AN TI．

[^2]FETCH TAPE INDEX ON TI．
CALL BUFFERIN（101，1，INDEX1，90，IST）
CHECK FOR CORRECT TAPE FORMAT．
CALL TICHECK（IFLAG）
IF（IFLAG •EQ． 1 ）RETURN
NFILES＝INDEX1（3）
CALL HOME
CALL ERASE

CALL WTNL（28，1 FILE NG EF BLECKう＇）
ソuひ

u000
DU $2 I=1$ ，NFILES
$N=5+1 * 2$
CALL WTSP（4）
CALL WT（8，INDEXI（N））
CALL WTSP（6）
CALL WT（8，INDEXI（N））
CALL WTSP（6）
CALL WTNL（INDEXI（ $00+1))$

FETCH REQUIRED FGURIER FILE ON TI．

CALL FFETI（NBLCK）
default values fer plet reutine
FPLOT＝0
IBLI＝1
SMO日TH＝1

DC SUPPRESSION＝FALSE
CARRIAGE RETURN CHARACTER LEAVES IBLI，IBL2，FPLOT，SMOOTH WITH previeus values

[^3]18Ld＊9与d）／（カモd＊टId
IF ANY OF 108 ARE ZERO THE CONST 1.0 IS ASSUMED．
CALL WTNL（14）1（1＊＊FUNCTIEN＊＊1）

N
～
uvo

uuuuu

$\mathrm{N}=\mathrm{ICHAN}(7)$
FRES＝RCHAN（8）
N2＝i」と
FMAX $=$ FRES＊（N2－1）

－－I7 $\mathrm{CI}=1.35 \mathrm{I}$
IF（ISET EQQ O）GO TO 4
DO $5 I=1$ ，ISET
CALL BUFFFRIN（101，1，RE，N，IST）
cortinue
INITIALISE REGISTERS CONTAINING SPECTRAL ESTIMATES TO ZERE
\[

$$
\begin{aligned}
& \text { DO } 10 I=1.1024 \\
& I M(I)=0.0 \\
& \text { RE(I)=0.0 } \\
& \text { ISET=IBLZ IBLI+1 }
\end{aligned}
$$
\]

0
ưu
calculate spectral average over iset blecks
DO $61=1,1 S E T$

SET UP FREQ RESOLUTION，MAX POSS．FREQ FOR PLOT，MAX NO OF PTS FOR PLET
CALL RUNL（2？，＇LAST BLOCK FUR PLOT＝1，IBL2）

INPUT FQUKIER DATA FOR ALL CHANNELS

DE $1 I I=1,1024$
$R E(I)=R E(Y) / I S E T$
$I M(I)=I M(I) / I S E T$
$+\cdots$
SET UP plot'ting parameters

CALL RONL(17,IDC SUPPRESSION? 1,I,IDC)

CALL RONL

CAL RDNL (17, IPAPER TAPE DUMP ? 1,I,IP)

IF (IV(J) , NE 9) $K=I V(J)$
PAPE (ご C$)=K$
IPAPE (11) =NPLAT
IPAPE (12)=ISET

PAPE(14)=FPLETH

CONTINUE
CALL HOME
D $12 \mathrm{I}=1,8$
9) IV(I) $=0$
IF (IV(I) .EQ.
output fungtien calciulated as title fer graph.
CALL WTSP(25)
CALL WT(15, 'FUNCTIEN=(PHHI,IV(1))
CALL WT(a, 1 HH',IV(?))
CALL WT(4,1*PHH1,IV(3))
CALL WT(2, 1 HH1, IV(4) (5))
CALL WT(2,1HHI,IV(6))
CALL WT(4,1*PHH1,IV(7))
CALL WT(2,1HH1, IV(8))
CALL WTNL(1,1)')
CALL WTSP(20)
 CALL WTIIG,'(ISTART BLOCK = 1,IBLI)
ALL WTNL.199, LAST BLECK = 1,IBLC) CALL WT(16,'FREQ IN UNITS OFI
CALL WT(3,1 1/1)
CALL WTNL $(8$, ICHAN(67))

CALCULATE REQUIRED AMPLITUDE AND PHASE•
$A M P L I T I M E=\operatorname{DUMP}(1-N 2)$, PHASE $=\operatorname{DUMP}(N 2+1-N)$

$$
\text { DO } 14 \mathrm{I}=1 \text {, NPL } \Theta 1
$$

$F 1=\operatorname{CMPLX}(F S 1(1), F S 1(I+N 2))$
$2=\operatorname{CMPLX}(F S 2(I), F S C(I+N 2))$
F3=CMPLX(FS3(I),FS3(I+N2))
$4=$ CMPLX(FS4(I),FS4(I+N2))
$F 1=(F 1 * F 2) /(F 3 * F 4)$
IF (I -NE. 1) FI=F1*(2.0**IDIM) OUMP(I) $=\operatorname{CABS}(F 1$
IF $(I \cdot E Q \cdot 1 \cdot A N D \cdot I D C \cdot E Q \cdot 8 Z E 8404040)$ CUMP(1)=0.0
DUMP $(I+N Z)=0 \cdot 0$
$I F(D U M P(P) \cdot G T \cdot 0.0) \operatorname{DUMP}(I+N Z)=A T A N Z(A I M A G(F 1), R E A L(F I))$
$V A R=V A R+D U M P(I)$
19. (I)dwna) II

IF (OUMP(T) LLT• PMIN) PMIN=DUMP(I)
call graph plotting reutine
CALL PLOTTERIFMAX,PMAX,PMIN,ILEG, DUMP,N,FPLOT,VAR,SMOOTHI
NFIIC
(NO) (NEW FUNCTION X; ' I IAC)
SUBRUUTINE FFA
FAST FAURIER ALGORITHP.

DIMENSION FCOS(129)
COMMEIN RE(1024),IM(1024),N,M,ISIGN,FCOS,FCTR,AR(8,512)
REAL IM
DeUble precision oneone
DATA ENEONE/9Z100000001/
N? $=\mathrm{N} / \mathrm{C}$
$N 4=N 2 / 2$
$N H=N 4+1$
NFIMN
$N C=O$
$N D=N B$
$N 2 J=N B$
DO $3 \quad J=1, M$
$N I=J 2$
N2J=N2J/2
$J 2=J 2+J 2$
$N Z J=-N 2 J$
De $2 I=1, N I$

transfer data te eutput register and ngrmalise if required. $I A R=0$
$I F(N B, E Q, O) \quad I A R=N$
$I F(I S I G N, G T, O) F C T R=1 \cdot O$
$D Q 5 I=I, N$
$J=I+I A R$
$R E(I)=R E(J) / F C T R$
$I M(I)=I M(J) / F C T R$
$R E T U R N$
$E N D$
SUBROUTINE FFFTI(NBLCK)
FETCHES FOURIER FILE ON TI WITH HEADER IN D.A•FORMAT.
OUTPUTS DETAILS OF FILE TO VOD.U. RETURNS WITH NO• OF FQURIER
BLUCKS IN NRLCK.
COMMON/HEADER/ICHAN(90)/SETI/INDEXI(90) DIMENSIEN RCHAN(90),NAME(2) EQUIVALENCE (RCHAN,ICHAN)
CALL RDNL (?8, 'WHICH FILE DO YOU REQUIRE: ', IBC,NAME)

$\stackrel{\sim}{\sim}$
 CALL WT(15, INE OF BLOCKS = IICHAN(9))
BROUTINE FFETI(NBLCK)
FETCHES FQURIER FILE ON TI WITH HEADER IN. D.A.FORMAT.
OUTPUTS DETAILS OF FILE TO VOD.U. RETURNS WITH NO. OF FOURIER
BLUCKS IN NBLCK.

0
0

\qquad J+1)

SCALE')
SUBROUTINE AVERAG(RAND, SMDAT,NPTS,SMEOTH)
SNOUTHS SPECTRAL ESTIMATES USING TRIANGULAR WINDOW. RAWD $=$ UNSMEOTHED DATA SMDAT $=$ SMOUTHED DATA SNGETH=REAL VALUED NO OF PTS FOR SMOUTHING DIMENSION RAWD(512),SMDAT(512) DG $1 \mathrm{I}=1$, NPTS SMDAT (I) =RAWD(I) IF (SMEOTH •LE. 2) RETURN
$N 2=N P T S / 2$
EXT=SMEATH/Z•O
$I E X T=E X T+0.1$
D日 $2 I=2, N$ a
SMDAT $(I)=0.0$
SMDAT $(I+N P)=0.0$
ST=I-IEXT
DM $3 \mathrm{~J}=$ IST, IFIN
IF (J •LT. 2 •eR. J•GT•N2) GO TO 3
$A C T=1 \cdot 0-I \Delta R S(I-J) / E X T$
FACT $=F A C T+A C T$
$\operatorname{SMDAT}(I+N 2)=\operatorname{SMDAT}(I+N 2)+A C T * R A W D(J+N 2)$
$\operatorname{CSNTINUE}$
$\operatorname{SMDAT}(I)=S M D A T(I) / F A C T$
$\operatorname{SMDAT}(I+N 2)=\operatorname{SMDAT}(I+N 2) / F A C T$
RETURN
END
SUBROUTINF PLgTtER(FMAX,PMAX,PMIN,ILEG,DLMP,N,FPLOT,VAR,SMOOTH)

> PLUT GRAPH QF REOUIRED SPECTRAL FUNCTION ON V.D.U. FMAX=MAX PHSS FREG FOR FLOT PMAX=MAX FN VALUE FMIN=MIN FN VALUE ILUG =INDICATOR FQR LQG PLET OUMP =ARRAY FOR PLUTTING N=BLOCK SIZE FPLQT = MAX FREQ OF PLOT $V A R=S I G M A ~ A M P L I T U D E ~$

DIMENSION DUMP(512)
NSMUETH=SMOOTH +0.1

calculate ne of pts te plet

draw axfs and label phase plet
CALL TPLET(0,640,500)
CALL TPLOT $-1,650,6001$
CALL TPLOT $-1,650,412)$
CALL TPLET(-1,640,412)
CALL TPLET $0,650,4121$ CALL TPLET(-1,650,238)

CALL TPLET(-1,640,238)
CALL TPLET(0,650,238)
CALL TPLET($=1,650,150$)

PLOT PHASE

GHOOSE REQUIRED TYPE OF AMPLITUNE PLO:

DO $2 I=1, N P L O T$

 CALL TPLOT $(0,760,310)$CAL!. WT(F)
CALL TPLOT $0,910,310)$
CALL WT(FPLOT)
CALL TPLOT $0,650,325)$
XINC $=350 \cdot \cap /(N P L U T-1)$ CALL WT $(4,1+1801)$
CALL TPLOT(0,600,407)
CALL WT (4,1+901) CALL TPLOT $0,600,3201$ CALL WT(4, TPLET $0,600,233)$ CALL WT $4,1-901$) CALL TPLOT $0,600,1451$ CALL WT (4, 1-1801) $F=F P L O T / 2,0$

1.0389

 TPLOT(O, 6OO,495)克 $\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$ $X=650 \cdot 0+(I-1) * X I N C$$Y=325 \cdot 0+175 \cdot 0 * D U M P(N 2+I) / 3 \cdot 1415926$ $Y=325 \cdot O+175 \cdot 0 * D U M P(N 2+I) / 3 \cdot 1415926$
$C A L L T P L O T(-1, X, Y)$
CALL TPLOT(O,150,70)
CALL WT(21, 'AMPLITUDE (DB) V FREQ')
XINC $500 \cdot 0 /(N P L O T-1)$
CALL TPLOT(0,100,550)
URAW AXES AND LABEL LIN AMPLITUDE PLOT

CALL	TPLET10,600,90
CALL	TPLET(-1,600,100)
CALL	TPL®T1-1,350,100)
CALL	TPLUT ($-1,350,901$
CALL	TPLeT10,350,100)
CALL	TPLET $=1,100,100)$
CALL	TPLET 1 -1,100,325)
CALL	TPLOT($=1,90,325)$
$P \pm P M A X / 2 \cdot 0$	
CALL	TPLET(0,1,325)
CALL	WT(P)
CAL'.	TPL日T(0,100,325)
CALL	TPLOT(*1,100,550)
CALL	TPLeT(-1,90,550)
CALL	TPLOT(0,1,550)
CALL	WT (PMAX)
CALL	TPLeT(0,150,575)
CALL	WT(16,'AMPLITUDE
CALL	TPLet(0,290,70)
CALL	WT(F)
CALL	TPLET(0,530,70)
CALL	WT(FPLOT)
CALL	TPLET $0,100,1001$
XINC=500.0/(NPLOT-1)	

DO $5 I=1$,NPLOT
 CALL TPLET(-1, $X, Y)$ GO TU 6

De 7 I=1,NPLET
$X=100 \cdot 0+(I=1) * X I N C$ $Y=100 \cdot 0+(\operatorname{DUMP}(I) / P M A X) * 450 \cdot 0$
$C A L L T P L O T(-1, X, Y)$ $Y=100 \cdot 0+(\operatorname{DUMP}(I) / P M A X) * 450 \cdot 0$
$C A L L T P L O T(-1, X, Y)$

TPLOT(0,650,100) CALL T(18, 1SI(GMA AMPLITUDE = , VAR) TFLET(0,650.80)
ALL WT(1h, IMAX AMPLITUDE $=1$,PMAX) ALL TPLET(0,650,60)

$$
\text { RES }=\text { FMAX } /(N C-1)
$$

$$
\begin{aligned}
& \text { CALL WT(11,1FREO RES } \\
& \text { CALL TPLOT(0,650,40) }
\end{aligned}
$$

$$
\text { CALL WT(11,'FREQ RES }=1, F R E S)
$$

CALL WT(4,1 PTSI)
טטט

SUGROUTINF WTSP（NSP）
WRITE SPACES ON V．D．U．

SUBROUTINE TICHECK（IFLAG）

8ZE3D9C1F2IRETU
－EG。
INDEX1（2）

NL
CALL WT(19, 'DEPENDANT VARIABLES')
UNITS')
NAME

SURRUUTiNE FILE FET(N)
FETCH pequired file on to, output header to vod.u•

SUBRUUTINF GETINDX(IU,INDEX)

SUBREUTINF STATEL

GET INDEX GN TAPE UNIT 1 .
CALL GUFFERIN(101,1, INDEX1,90, IST)
CALL TICHFCK(IFLAG)
IF (IFLAG EQQ 1$)$ RETURN
NFILESエINOFXI(3)
CALL HOME
CALL ERASE
GET REQUIRED FQURIER FILE

SET UP INITIAL SPECTRAL VALUES TO ZERO
DE $4 I=1,256$
PXXZ(I) $=0.0$
PYYZ(I) $=0.0$
PXYZ(I) $=$ CMPLX(0.0,0.0)
AOD UP NAV FOURIER BLOCKS TO FORM PXX,P
$\Rightarrow+000$

Che日Se channels fer system input δ GUTPUT.

CHOQSE
CALL FF
CALL FFET1(NBLCK)
CALL RDNL $26,15 Y S$
CALL RDNL $(26,1$ SYSTEM INPUT CHANNEL NO = 1, IN)
CALL RDNL $(27,1$ SYSTEM GUTPUT CHANNEL NO $=1$, IOUT)
N=ICHAN(7) $\mathrm{N}=I C H A N(7)$
$\mathrm{N} 2=\mathrm{N} / 2$
NCHAN=ICHAN(3)
CALL WTNL (13, 'BLECK SIZE = I, N)

CHOUSE SECTIUNS OF DATA FAF 2 ESTIMATES.
DECIDE FREQUENCY RANGE. OF INTEREST.
CALL WTNLI 24, 'ESTIMATE 1 SPECIFICATION')

CALL WTNL 124,1 ESTIMATE 2 SPECIFICATIEN')
CALL RDNL(14, 'START BL日CK = 1,IST2)
CALL RDNL192, END BPLCTRAL PT NO = 1,IPT1)
KDNL(4,1 TO 1,IPT2)
CALL RDNL 133,1 IS NOISE CENSIDERED STATIONARY ? I,J,ISTATI NSET = 1
NAV=IF1-IST1+1
ISET=IST1-1
CONTINUE
SKIP TO BFGINNING SECTION OF FOURIER DATA.
IF (ISET .EQ. O) GO TO 11
DO $2 I=1$, ISET

$C E N Y Y=0 \cdot 0$ $C O N N N=0.0$
SWAP BUFFERS IF NECESSARY

$$
\begin{aligned}
& 40 \\
& \circ
\end{aligned}
$$

SET UP DEGREES GF FREEDGM OF ESTIMATES.

DISPLAY CANFIDENCE INTERVAL.
CALL BUFFERIN(101:1,ICHAN,90:IST)
Che日se next actien.

GO TO 22
REWIND 101
RETURN
END
ㅇ
u
SUBROUTINF STATIEN(PXX, PYY,PXY,LI,L2,CH,CXX,CYY,CNN,ISTAT,ICALC) DIMENSION PXX(2),PYY(2),PXY(2),PNN(2),H(2) COMPLEX PXYOH
calculate neise autemspectral estimates
$\operatorname{PNN}(1)=P Y Y(1)-(C A B S(P X Y(1)) * * 2) / P X X(1)$
DO F-TEST ON PXX, PYY,PNN PUTTING CENFIDENCE RESULT IN CXX,CYY
CNN RESP.
V1=PXX(1)
CONTINUE
FINT=(VI*L1)/(V2*L2)
IF (L2•GT. 2) Ge TO 10
$A R=13 \cdot 0$
GU TO 11
$V A R=V A R /((1 L 2-1.0) * * 2) *(L 2-2.0))$
$V A R=S Q R T(V A R)$
FLIM=EX+3.0*VAR
IF (FINT ULT. FLIM) GO TO 12
$P F=100 \cdot 0$
GO $=9$
NSTEPS=91
IF (ILI + L2)
IF $(1 L 1+L 2)$ GT• 1000$)$ NSTEPS=183
STEP $=F I N T /(N S T E P S=1.0)$
$S . T E P=F I N T /(N S T E P S=1.0)$
$F=\cap .0$
טソ
uטu

Uu
$P=F \operatorname{PRGB}(F, L 1, L 2, C O E F F, L C, I C A L C) * S T E P / 3 \cdot 0$
ICALC $=1$
MULT $=2$
ICALC $=1$
MULT $=2$
DO $18 \mathrm{~K}=$
MULTEMULT*?
IF (MULT GGT. 4) MULT=2
IF (K •EQ. NSTEPS) MULT=1
$F=(K-1) * S T E P$
$P=P+F P R E B(F, L 1, L 2, C \theta E F F, L C, I C A L C) * M U L T * S T E P / 3 \cdot 0$

GO TE 1
$C N N=P F$
CNN=P
STORE PNN CONFIDENCE RESULT.
$L 1=L 1+1$
$L-2=L 2+1$
$\overline{C H}=100 \cdot 0$
IF IL1 •EQ. 1 - OR•LZ •EQ. 11 RETURN
Nyח13y
CALCULATE FXPECTED NOISE VARIANCE FOR ESTIMATES. DO STATIONARITY TEST UN H GIVEN FXXI,PXX2

IF (ISTAT .NE. 8ZE8404040) GO TO 20
$\operatorname{PNN}(1)=(\operatorname{PNN}(1) * L 1+\operatorname{PNN}(2) * L 2) /(L 1+L 2)$ $\operatorname{PNN}(1)=\operatorname{PNN}(1) *(L 1+L 2) /(L 1+L 2-1)$ PNN(2) $=$ PNN(1)

GO TO 21
$\operatorname{PNN}(1)=\operatorname{PNN}(1) * L 1 /(L 1-1)$
$\operatorname{PNN}(2)=\operatorname{PNN}(2) * L 2 /(L 2-1)$
$H(1)=P X Y(1) / P X X(1)$
$H(2)=P X Y(2) / P X X(2)$
$X 2=C A B S(H(1)-H(2)) * * 2$
$V A R=P N N(1) /(P X X(1) * L 1)+P N N(2) /(P X X(2) * L 2)$
$C H=1 \cdot 0-E X P((-X 2) /(2 \cdot 0 * V A R))$
$\mathrm{CH}=\mathrm{CH} * 100.0$
RETURN
~ $\vec{\sim}$
\cos
FUNCTIEN FPROB(F,LI,L2,COEFF,LC,ICALC)
IF (F.GT, 0.0) GO TO 1
IF (LI •EQ. 11 FPREB=FLOAT(L2)
$F I=F+1 \cdot 0$
$L I M I=L 1-1$
LIMT $T=L 1+L 2-1$
IF (ICALC.EQ. 1$)$ GO TO 3
IF (ICALC •EQ. 1) GO TO 3
$C O E F F=1 \cdot 0$
DQ $2 \mathrm{I}=\mathrm{L}$ 2, LIMTOT
IMTET COEFF=COEFF/R
IF (COEFF .LT. 1.OE60) GE TO 2
$J=A L O G 10(C O E F F)$
$C O E F F=C O E F F /(10.0 * * J)$
$L C=L C+J$
$C U E F F=A L O G 10(C E E F F)$
IF (F •EQ. O.O) RETURN
$R 1=A L \theta G 10(F 1) *(L I M T O T+1)$
-R1
PROB=10•0**(R+CUEFF+LC)
RETURN
FATIGUE RIG CONTROL
AUTHOR : P. N. DAVALL
LANGUAGE : FCRTRAN IV/MACRO-JYMBOL
subreutine ap

CEMMON /FRTG/FRIGI
COMMEN /SFT1/X(1024),Y(1024) ,XJW(256) ,XӨJW(256),YJW(256),PXY(256)。
CPXX(256)
COMMEIN
MEIG/SET2/TF(こ56),CUNT(256)
CUMMEN /SET3/ IREG,PRBS(24),
CUMMUN /SET3/ IREG,PRBS(24), NPRBS
COMHUN /SFT4/KPT, NMQD,KS,IUPEN,GAMF,N
COMMUN /SFT4/KPT, NMMD,KS,IUPEN,GAMP,NSMAETH,ICLOCK,NEST
COMIUN /SET5/CGST,FHASE,SIGMAX,NCNT,CORRECT,CSTMIN,ITRAP,NLIM
\&,COST1

CALL WTNLI 36: 'ANALOGUE BUTPUT $1=$ ©RIVANG FUNCT:Ójr;

IF (NPRBS EN. O) GE TO 30
CALL WTNL(30)'(1) INPUT WEIGHTING VALUES!)
CALL WTNLI23.1 NO WEIGHT') DO $2 I=1$, NPRBS
CAL
1, PRBS (NPRRS $+1-1)$
ALL RDNL (? 4 ,' AMPLIFIER GAIN FACTOF = ', GAMP)

CALL RDNL(47,'STATIONARITY TESTING INTERVAL (NO OF BLOCKS) (\quad (,NME
$\delta D)$
CALL RDNL $137,1 \%$ CORRECTION FACTOF FOR CONTROLLER = ', CORRECTI
gUtput run spacificatiens to line-printer.
WRITE(108.6)

INITIALISF REGISTERS

$$
\begin{aligned}
& \text { IWAIT }=0 \\
& \text { PHASE }=0.0 \\
& \text { CHST }=0.0 \\
& \text { COST } 1=0.0 \\
& \text { CGRRECT }=\text { CARRECT } / 100.0 \\
& \text { ITRAP }=0
\end{aligned}
$$

$$
\text { CSTMIN }=1 \cdot \text { OE } 6
$$

$$
N C N T=0
$$

$$
\begin{aligned}
& K P T=0 \\
& K S=1024
\end{aligned}
$$

$$
N=512
$$

$$
\begin{aligned}
& \text { ISIGN }=-1 \\
& \text { FCTR=N }
\end{aligned}
$$

$$
\begin{aligned}
& M=9 \\
& I S I G N=-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { FCTR=N } \\
& \text { ICL } \theta C K=I C L A C K * 2
\end{aligned}
$$

NEST=NLIM/NSMOUTH

$$
I+H 1 \text { OGWSN* } 1 S \text { SN=WITN }
$$

$$
\text { DO } 4 I=1,129
$$

$F \operatorname{Cos}(I) \pm \operatorname{Cos}(6 \cdot 2831853 *(I=1) / N)$
COEFFS. FOURIER INITIAL 38215

set initial controller values te unity gain.

$\stackrel{\circ}{-}$
SUBROUTINF FILEHEAD
OPEN FILE HEADER FGR DATA ANALYSIS TAPE.
CGMMEN /SFT4/KPT, NMOD,KS,IOPEN, GAMP,NSMOETH,ICLOCK,NEST DIMENSION RH(90)
EQUIVALENCE (RH,IH)
CALL HUME
CALL ERAS
IBC=-8

$\stackrel{n}{n}$
$H(6)=1$
$H(11)=8 Z C 6 C 4 C 5 D 4$
$H(12)=8 Z C 104 C 440$
$H(13)=8 Z F 506 D 3 E 3$
$H(14)=8 Z F 2404040$
$R(15)=100$
$H(17)=8 Z C E C 10707$
$H(18)=8 Z D 3 C 9 C 5 C 4$
$H(19)=I H(13)$
$H(20)=I H(14)$
$R H(21)=1.0$
$H(23)=820706 E 240$
$H(24)=8240404040$
$H(25)=I H(13)$
H(26) $=I H 114$
$R H(27)=1.0$
IH(65)=8ZE3C9D4C5
H(66)=8240404040
1H(67)=8204E2C5C3
$I H(68)=82 F 2404040$
RH(69) $=1$ CLACK/2•0
FUT IN REQIIRED COMMENTS FOR CURFENT RUN.
CALL RDNL(10, 'COMMENT: $1, I B C, I H(71))$
WRITE(10R,?) IH(1),IH(己)
ORMAT($10 x, 10 H * * * * * * * * * *)$
WRITE(108,1) (IH(I) II $=71,90)$
FQRMAT(1HO,20(A4))
CALL WTNL(12, θ OPENING FILE!)
ALL OPENFIL(IH)
RETURN
END
$\cup \cup$
SUBREUTINE RIGSAMP
SUBREUTINF GUTPUTS A DRIVING SIGNAL TO THE RIG \＆SAMPLES
THE RESULTING ACHIEVED LQAD \＆POSN．THIS MAY THEN BE RECORDED
ON MAGNETIC TAPE．
COMMON／FRIG／FRIGI
COMMON／SET1／X（1024），Y（1024），XJW（256），XOJW（256），YJW（256）PPXY（256） סPXX（256）
CUMIEN／SFT4／KPT，NMED，KS，IOPEN，GAMP，NSMEETH，ICLOCK，NEST
COMMEN／SETG／IWAIT
CGMMUN／SAMPARR／S，SA（4）
CUMMUN／SF．T8／XTT（1024）
COMMEN／SETG／IEXT，INHIBIT
COMPLEX XJW，XOJW，YJW，PXY
DIMENSION SV（5）
EJUIVALENCE（SV，S）
DATA TEND 16.01
DATA VO／0．01

OUTPUT REQUIRED LOADING SIGNAL．

CALL RDAC（1，X（KS））

STORE OEMANDED LEADING SIGNAL.

$S=X T T(K S)$

SAMPLE RIG GUTPUT SIGNALS．

CALL RADCS（NCHAN，SA，GAIN，ICHAN）
IF（SV（4）：LT．TEND）GO TU 1
VOUT＝0．0
CALL RDACI
CALL RDAC（1，VGUT）
CALL DISAB（2Z67）
IF（IOPEN．EQ．8ZE8404040）CALL CLESEFIL
STEP TEST TRIGGER END ACTION．
CALL TRIGR（2Z69）
RETURN
$I F(I E X T \cdot F Q \cdot 8 Z E 8404040) X T T(K S) \equiv S V(5) \approx F R I G I$
$S V(3) E X(K S)$
STORE ON MAG．TAPE
IF（IEPEN EQ．8ZE8404040）CALL MOUTPUT（SV）
$Y(K S)=S V(P)$
TEST FER SIGNAL GENERATOR \＆UPDATING REQUIRED．

TRIGGER FAURIER ANALYSIS OF OLD DATA δ UPDATE PROCEDURE.
CALL TRIGR(2268)
IF (KS •EQ. 1024$)$ KS $=0$
INCREMENT DATA LOADER/OUTPUT ARRAY PEINTER.
KSEKS+1
RETURN
END
u $u^{\text {nm u u }}$
subreutinf upuate
THIS SURRAUTINE CALCULATES THE RIG FREQ. RESPONSE OVER NMOD 日LECKS
$\triangle T H E N$ CORRFCTS THE COMPENSATOR ICONT' TG ACHIEVE AN OVERALL TIME DELAY
FREQ. RESPANSF. BETWEEN INPUT DEMANDEC AND OUTPUT ACHIEVED LOADING.

COMMEN/SFT2/TF (256), CUNT (256)
CUMMUN/SFT $4 / K P T, N M O D, K S, I Q P E N ~$
CUMMON /SFT5/COST,PHASE,SIGMAX,NCNT,CORRECT,CSTMIN,ITRAP,NLIM COUST1
CUMMEN /SFTG/IWAIT
CQMMQN /SETR/XTT(IO24)
CHMMUN/SFTG/IEXT,INHIBIT
REAL IM
CGMPLEX TF, CONT
CUMPLEX XJW;XGJW,YJW,PXY
CGMPLEX TRY,TFM
DIMENSION YF 512$), X F(512)$
EQUIVALENCE (YJW,YF),(XOJW,XF)
IWAIT=1
SET UP REDIIIRED POINTER FROM WHICH ANALYSIS IS TO TAKE PLACE.
$K P T=K P T+512$
$I F I K P T \cdot F Q, 10241 \quad K P T=0$
$I S I G N=-1$
FCTR=N
DA $1 \quad I=1,512$

$R E(I)=Y(K P T+I)$

FQURIER TRANSFERM PREVIQUS 512 SAMPLES OF Y(T), OUTPUT ERROR COST
FN. TG LINE PRINTER.
CALL FFA
$1+1 N J N=1 N J N$
IF (NCNT EFQ. 1) WRITE(108,40) CEST1
FORMAT (15X,F10.2)
IF INCNT ,FQ. 1) GO TO 8
CALCULATE PNPUT AUTE-SPECTRUM δ INPUT/OUTPUT CRESS=SPECTRUM.
DE $2 I=2$, NIIM
$D E Z I=2, N I L M$
$T R Y=C M P L X(R E(I), I M(I))$
$Y J W(I)=T R Y * X O J W_{i}(I)$
XOJW(I) $=\operatorname{CARS}(X O J W(I)) * * 2$
SMOPTH GVFR FREQUENCY AS REQUIRED.
$I A R=(I-1) * N S M O Q T H+1$
IF (NSMAETH •LT. 3) GO TO 8
DO $101 \mathrm{I}=1$, NEST
$R E(I)=0.0$
$\operatorname{RE}(512+I)=0 \cdot 0$
$\operatorname{IM}(I)=0.0$
$R E(I)=R E(I)+R E A L(Y J W(I A R+J))(Y W(I A R+J))$ $\operatorname{IM}(I)=I M(I)+R E A L(X O J W(I A R+J))$
RE(I)=RE(T)/NSMOOTH
$\operatorname{RE}(512+I)=R E(512+I) /$ NSMOETH
IM(I) $=$ IM(I)/NSMOOTH
CONTINUE
NSTUP=NESTM1
CO 102 I=1, NSTOP
0
u u
~
$\begin{array}{ll}0 & \overrightarrow{0} \\ -1 & -1\end{array}$

ISTART＝（I－1）＊NSMU日TH＋NSMEeTH／2＋1 DRY＝（RE（I＋1）－RE（I））／NSMO日TH DIY $=(\operatorname{RE}(513+I)-\operatorname{RE}(512+I)) /$ NSMO日TH ORX＝（IM（I＋1）－IM（I））／NSMOOTH DH $102 \mathrm{~J}=1$ ，NSMEOTH I $A K=(I S T A R T+J) * 2$ $Y F(I A R-1)=R E(I)+(J-1) * D R Y$ $Y F(I A R)=R F(512+I)+(J-1) * D I Y$ $X F(I A R-1)=I M(I)+(J-1) * D R X$ NC＝NSMUSTH／2＋1 ISTART $=($ NEST－1）＊NSMOETH + NSMEOTH／2 +1 DU $105 \mathrm{~J}=\mathrm{I}$ ，NO

$$
I A R=(I S T A R T+J) * 2
$$

102
 103

$$
Y F(I A R-1)=R E(N E S T)
$$

$$
\begin{aligned}
& \text { YF(IAR)=RE(512+NEST) } \\
& \text { TRY }
\end{aligned}
$$

TRY＝CMPLX（COS（ $(J-1) * P H A S E), S I N(1 J=1) * P H A S E))$ $Y J W(I S T A R T+J)=Y J W(I S T A R T+J) * T R Y$
$\stackrel{\cap}{\circ}$
average spectral estimates over time

$$
\begin{aligned}
& \text { DO } 3 \quad I=2, N L I M \\
& I M(I)=0.0
\end{aligned}
$$

IF（NCNT •EQ． 1 ）GO TO 3 $P X X(I)=P X X(I)+C A B S(X O J W(I))$ PXY（I）$=P X Y(I)+Y J W(I)$ TF（I）$=P X Y(I) / P X X(I)$ X日JW（I）$=$ CONJG（XJW（I）） $T F(1)=C M P L X(1.0,0.0)$ $I M(1)=0 \cdot 0$

$$
\text { IF (NCNT, EQ. 1) GO TO } 9
$$

LGADING FREQ. RESPUNSE δ DESIPED TIME DELAY FREQ. RESPENSE

CALCULATE BEST AVAILABLE TIME DELAY APPREXIMATIBN
ZERU SPECTRAL ESTIMATES
PHASE $=0.0$
DU $7 \mathrm{I}=1$, 256
IF (I •GT. NLIM) GO TO 50
IF =ATANZIAIMAGITFIITIREALTFII) PHI=PH1-6.2831854

DO 32 I=LIM,256
웅
uuvu
N
ưưu

TFM=CMPLX(COS($(I-1) * P H A S E), S I N((I-1) * P H A S E))$ $T F M=T F(I)+(T F H-T F(I)) * C O R R E C T$
 C日NT(I) =TFM*C日NT(I)/TF(I)
 COST $=0 \cdot O$ CONTINUE
 GENERATE RFQUIRED LOADING SIGNAL FOR NEXT BLOCK OF 512 SAMPLES.

IF (IEXT .NE. 8ZE8404040) GO TO 60
DU $61 I=1,512$
$R E(I)=X T T(K P T+I)$
GU TU 62
MUDIFY NEXT X(T) TG ALLOW FOR RIG DYNAMICS
TEST FUR SATURATION AND COUNTERACT BY REDUCING GAIN ON ALL FREQS.
IF (ABS(REII)) •GT. SIG) SIG=ABS(REII))
IF (SIG•LT. SIGMAX) GO TG 17

| -1 | 0 | |
| :--- | :--- | :--- | :--- |
| 0 | 0 | |

$0020 \quad I=1.256$
$X J W(I)=C M P L X(R E(I), I M(I))$
TRY=XJtir (I)*CONT(I)
RE(I) $=$ REAL(TRY)
$I M(I)=A I M A G(T R Y)$
RE(514-I)=RE(I)
$I M(514-I)=\operatorname{IM}(I)$
CONTINUE
SIGN=+1
CALL FFA
$S I G=0 \cdot 0$
DO $18 \quad I=1,512$
IF (I •EQ. 1$)$ GO TO 20
CALL RANDAM
DO $64 \quad I=1.512$
$X T T(K P T+I)=R E(I)$
CALL FFA
옹
∞
uUu
$\stackrel{\sim}{\infty} \cup \cup$
subreistinf randum
PRBS GENERATOR WITH MAX. 24 BIT REGISTER
GENERATES 512 RANDOM NOS. PUTS RESULTS IN RE(1-512)
COMMON RE(1024),IM(1024),N,MノISIGN,FCTR COMMON/SET3/IREG,PRBS(24),NPRBS

~

RE， 1
1
$2 S$
IREG

STW， 6
AI， 1
BDR： 2
STW， 9
RETURN
END
SUBRUUTINE ENDTEST
QUTPUT \＆PLOT THE SIGNAL \＆FREQUENCY RESPONSE CHARACTERISTICS AS
ACHIEVED AT END GF RUN

[^4]PLOT AXES

CALL TPLET(0,1000,300) CALL TPLET $=1,600,3001$ CALL TPLET (0,600,500) CALL TPLET(-1,600,100) CALL TPLET10,500,1001 CALL TPLET(-1,100,100) CALL TPLOT(-1,100,500) ICLOCK=ICI. $\mathrm{HCK} / 2$ FPLUT $=500.0 /$ I CLOCK
 $X I N C=400 \cdot n / 255 \cdot 0$

plot achieved overall freq. respense.

LABEL AXES

CALL TPLOT(0,420,75)
CALL WT(FPIUT)
CALL TPLET $0,600,300)$
OH $3 \mathrm{I}=1$, 256
XPLUT $=600 \cdot 0+(I-1) * X I N C$
$T H E T A=0.0$
IF (CABS(TF(I)) •GT• O.0) THETA=ATANZ(AIMAG(TF(I)) REAL(TF(I))) YPLET $=300 \cdot 0+$ THETA $* 200 \cdot 0 / 3 \cdot 14159$ CALL TPLOT(-1, XPLOT,YPLET) CALL TPLET (0,600,300)

PLET OPTIMUM TIME DELAY PHASE CHARACTERISTICS.
DO $5 \quad I=1,256$
XPLOTE600.0+XINC*(I-1)
THETA=PHASE*(I-1)

PLOT INPUT POWER SPECTRUM
De $4 I=1,256$
YPLET $=100,0+P X X(I) * 400 \cdot 0 / P X M A X$
CALL TPLET($-1, X P L O T, Y P L O T)$
CALL TPLOT $0,150,520)$
CALL WT(9,1AMPLITUDE')
CALL TPLPY(0,650,520)
CALL WT(11,1PHASE (DEG)')
gutput run data te v.d.u.
CALL TPLET(0,250,570)

CALL WT(33, CGNTRELLER UPDATE PERIOD(SECS) = ',SECS)
$J=A B S(6.2831854 /$ PHASE)
IF (PHASE .EQ. O.O) J=2 $2 * * 30$
TOEL=512•0/(FPLOT*J)
CALL WTNL(27, SYSTE
FACILITY FAR USER GRAPH LABELLING
RE-RUN FRAM BEGINNING.
CALL LABELI
RETURN
END
HUMAN OPERATOR
AUTHOR : P. W. DAVALL
LANGUAGE : FORTRAN IV/MACRO-SYMBOL
SUBRGUTINF INIT
THIS PROGRAM ORIVES A SPGT ON THE COR•T• DISPLAY \& MONITORS
A HUMAN OPFRATGRIS RESPONSE IN TRACKING THIS SPOT THE LIGHT
SPOT MUST BE KEPT IN THE CENTRE OF THE SCREEN FOR GOOD TRACKING
CHARACTERYSTICS.

> UIMENSIEN FXT(2),VOX(2),VOY(2),AR(8) INTEGER STGPIG/8ZOEO40005/ NSAMP $=1000000$

> CAL1,5 STAPIO
> CALL COCINTT(2,15) CALL HUME
INITIALISF \& CHECK ANALGGUE INPUT/OUTPUT PATCH IS CORRECT
CALL RUNL1925, IPATCH CHECKIOUTPUT 1 =XERRIBUTPUT 2 EYERRIINPUT 3 -
δX IUUTIINPIT 4 =YOUTIINPUT 5 ESTOP CONTROLIINPUT 6 EEXT XINIINPUT 7
$\delta=E X T$ YIN',I,J)
$I R P T=8 Z 40404040$
CALL HUME
$X I N=0 \cdot 0$
$Y I N=0.0$
PIE2 $=6 \cdot 2831854$
$T R=6.0 / 700.0$
DU $10 \quad I=1,2$
$V 甘 X(I)=0 \cdot 0$
$\operatorname{VBY}(I)=0 \cdot 0$
CALL ERASE
DECIDE MUDE OF DRIVER SIGNAL－
A）IRANDGM GENERATIQN OF
A）RANDGM GENERATIQN OF TRACKING SIGNAL．
CALL RUNL 150 ，＇TYPE 1 FOR PERIGDIC PT CHANGEI 2 FOR RANDOM MODE 1 ：

$$
\begin{aligned}
& \text { IF (ITYPE .EQ. } \\
& \AA \cdot T I M E \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \&.TIME) } \\
& \text { IF (ITYPE •EQ. } 1) \text { NEWNO=TIME/TR } \\
& \text { IF (ITYPE •EQ. } 11 \text { GU TO } 2 \\
& \text { ISET=69 } \\
& \text { SET UP FREO. BAND FER RANDQM TIM }
\end{aligned}
$$

CHANGE
FUR POINT
CONSTAN
）CALL RDNL 132 ，＇TIME
TYPE EQ．1）CALL RDNL（32，ITIME CENSTANT FUR POINT CHANGE

CHANGE

SET UP FREO• BAND FOR RANDEM TIME GENERATION OF SIGNAL•
CALL RANDAM（ISET，ISET，RAND）
CALL RDNL（22，＇LOW FREQ TIME CONST＝1，T1） $C A L L ~ R D N L(22,1 L O W ~ F R E Q ~ T I M E ~ C O N S T=1, T 1) ~$
$C A L L ~ R D N L(23,1 H I G H ~ F R E Q ~ T I M E ~ C O N S T=1, T 2) ~$ $T I M E=T 2+(T 1-T 2) * R A N D$

NEWNU＝TIME／TR
TEST IF RFPEAT OF PREVIUUS SIGNAL GENERATER CHARACTERISTICS IS REQUIRED． IF IIRPT •EQ．8ZE84040401 GO TO 101
gENERATE $X=$ SIGNAL CHARACTERISTICS
CALL GSET
CALL WTNL（28， $1 * * X-S I G N A L$ CHARACTERISTICS＊＊11
CALL GENERATGR（IFX，AMPX，PHASX，NX）
XINC＝PIE？／NX XINC＝PIE2／NX

> GENERATE Y®SIGNAL CHARACTERISTICS.
CALL WTNL $(28,1 * * Y-S I G N A L$ ．CHARACTERISTICS＊＊1）
CALL GENERATOR（IFY，AMPY，PHASY，NY）
YINC＝PIEZ／NY
ソuv Nuv
uטu

SAMPLE INTTIAL START POSN. \& SET UP TEST.
$40^{-\mathbf{0}}$
u
\cup uv
GPEN MAG TAPE FILE IN DATA ANALYSIS FBRMAT.

CALL RONL (27, 'DO YOU WANT TO GPEN FILE: ', I, IFILE)
IF (IFILE NE 8ZE8404040) GO TO 200
TEST WHETHER TEST IS $1 / 2$ DIMENSIENAL
QPEN FILE
CALL RDNL 147,1 TYPE $1=X$-SAMPLES $2=Y-S A M P L E S \quad 3=X A N D Y: 1$, NOU
START TEST
u0us $X A$ ND Y

$$
\begin{aligned}
& \text { O} \\
& \text { O } \\
& \text { Nu }
\end{aligned}
$$

CALL FILEHEAD(NSAMP)
$I==1$
START TEST
CALL RDNL
JSAMP $=0$
ICNT=0
CONTINUE CALL FILEHEAD(NSAMP)
$I==1$
START TEST
CALL RDNL $132,1(T E S T$ SET UP INDICATE TO PROCEEDI,I,ICONT)
JSAMP $=0$
ICNT $=0$
CONTINUE

DROP OUT OF INTERRUPT LEVEL TO SET SAMPLE TIME.
$I S T=0$
CALL CWRITE(2,0,0,1,IST,5Z20069)
CALL CHECKIZ,IMODE, ISTAT,IBC)
IF (IAND(ISTAT, 2) .NE• 2) GO TO 8
CALL WAIT
JSAMP=JSAMP+1
IF IJSAMP •LT
IF (JSAMP LT. NSAMP) GO TO 102

BUTPUT RUN DATA BN MAG TAPE．

0

1）SINEWAVE 2）SQUARE WAVE 3）SAW－TOOTH 4IFANDOM 5IEXTERNAL DRIVER． Ge TO（20，21，22，23，15），1FX $X P=R A N D O(A M P X, X I N)$
$X P=X P=X I N$
GO TO 15
$X I N=S I N E(\triangle M P X, F H A S X)$
GO TO 15
$X I N=S U U A R E(A M P X, P H A S X)$
GO TO 15

O $\quad \underset{\sim}{N} \quad \underset{\sim}{N} \quad N \xrightarrow[N]{N}$
$X I N=S A W(A M P X, P H A S X)$
GU TO $(24,25,26,27,5)$ IFY
YPGRANDO（AMPY，YIN）
$Y P=Y P-Y I N$
GO TO 7
YIN＝SINE（AMPY，PHASY）
GO Te 7
（AS＊Hd＇AdWV）Zyvficis＝NIA GO Te 7
Y $N=$ SAWI
YIN＝SAW（AMPY，PHASY）
IF（ITYPF EQQ 1）GO
ALL RANDAM（ISET，ISET，RAND）
IME $=T 2+(T 1-T 2) \neq R A N D$
CALL RANDAM（ISET，ISET，RAND）
TIME $=T 2+(T 1-T 2) * R A N D$
CALL RANDAM（ISET，ISET，RAND）
NEWNG＝TIMF／TR
$(I-8 N M \exists N) / d X=d X(I \cdot 0 j \cdot X J I)$ II
$(I-Q N M \exists N) / d \lambda=d \lambda\left(I \cdot 0 J^{\circ} \lambda y I\right) \neq I$
IF（IFX •EQ• 1）XIN＝XIN＋XP
IF（IFY •FB．1）YIN＝YIN＋YP
$\stackrel{n}{\sim}$
$\stackrel{\circ}{\sim}$
N
เ
ก 0
0

IF（IFX •FO．5，OR•IFY •EQ．5）CALL RADCS（2，EXT，10．0，6）
IF（IFX •ED．5）XIN＝EXT（1）．
IF（IFY •EQ．5）YIN＝EXT（2）
IF（IFX •FQ．5，•OR• IFY •EQ．5）CALL RADCS（2，EXT，10．0，6）
IF（IFX •ER．5）XIN＝EXT（1）．
IF（IFY •EQ．5）YIN＝EXT（2）
SAMPLE OPERATER RESPONSES
IF（XV GGT．50．0）GQ TO 1000
NOILJV d日मS y日y 1S31
CALL JOYSAMP（XV，YV） SAMPLE OPERATGR RESPONSES IF（NOUT，DQQ 2$) X V=X I N$
IF（NQUT．EQ． 1 ）$Y V=Y I N$

A P X NI STVNOIS \＆Ryyj J1VYヨN39
x CALL FBACKIVOX，VOY，FX，FY，XV，YV，XIN，YIN，XFBACK，YFBACKI
FMSロFY＊3．0／9．5＋4．0 CALL FBACKIVOX，VOY，FX，FY，XV，YV，XIN，YIN，XFBACK，YFBACKI
FMS $=F Y * 3 \cdot 0 / 9 \cdot 5+4.0$

OUTPUT ERROR SIGNALS TO C．R．T．
CALL RDAC（1，FX，2，FY，3，FMS）
1000 GALL ${ }^{\text {Ge }} 4$

SUBREUTINF FILEHEAD(NSAMP)
YHIS SUBRGUTINE SETS UP THE HEADER OF A DATA ANALYSIS FILE ON MAG
TAPE UNIT TERU

[^5]$I S T=I S T+6$
2.1

1,I)

CALL WTSP(10)
CALL
CALL
IBC
CALL
ISP $=$
$C A L L$
IBC $=$
$C A L L$
$I S P=$
$C A L L$
CALL RD(12,1(1COMMENT: 1,IBCのCHAN(71))
CALL RD(1),'(ICBMMENT : ', IBCOCHAN(71))
CALL WTNL(13,'日PENING FILE')
CALL WTSP(ISP)
CALL RONLIRCHA
CALL RONL(RCHAN(IST+5)) $I B C=-8$
SE
${ }_{4}^{\omega}$
00.0
HAN(69)/TR
IF (NSAMP .LT: 1) NSAMP=1
RCHAN(69)
CONSAMP T
CALL OPENFIL(CHAN)
z
$\underset{\sim}{\alpha}$
$\underset{x}{w}$
$\underset{x}{2}$
$\stackrel{9}{\circ}$
WRITES SPACES TO THE V.D.U.
IF (N - LE. O) RETURN
CALL WT(1,1, 1)

$\xrightarrow{\circ}$
ưu ưu
SUBROUTINF GENERAT日RIIF,AMP,PHASE,NPTSI
CHEUSE TRACKING SIGNAL CHARACTERISTICS AND INITIALISE ACCORDINGLY•

CH

SUBROUTINF FBACK(IEX,IEY,FX,FY,IX,IY,XIN,YIN,XFBACK,YFBACK)
GENERATES FEEDBACK \& ERRER SIGNALS USING SPECIFIED CONTROLLER IN FEEDBACK LOUP.
COMMON GAIN,DGAIN,PGAIN,PHASE REAL IUX,IOY,IX,IY
OIMENSION IUX(2),IOY(2)
1 OX(1) =I $4 \times(2)$
$\operatorname{IOY}(1)=I \operatorname{EY}(2)$
$X=I 0 X($ P) $) \neq$ PGAIN
$F Y=1 \theta Y(2) * P G A$
$D X=(1 \theta X(2)-10 X(1))$
OY=(IUY(2)-IOY(1))
$F Y=F Y+D Y * D G A I N$
$X F B A C K=F X$
$F X=(X I N-F X)$

SUBRUUTINF JOYSAMP(XV,YV)
SAMPLES QUTPUT FROM TRACKER JOYSTICK.

FUNCTIUN RANDG(A, XPAST)
IF (ABS (XPAST+FSTEP) •GT• 9.5) FSTEP=-FSTEP
RANDO =XPAST+FSTEP
END
MODELLING HUMAN
MODELLING
OPERATOR
OPERATOR RESPCNSE
AUTHOR : P. W. DAVALL
LANGUAGE : FORTRAN IV/MACRO-SYMBOL
SUBRAUTINF MP HIS PRUGRAM TAKES UPTO A 10 PARAMETER HLMAN UPERATGR MGDEL δ

CHMMEN/RFF/FREF(100)/LIMITS/XMAX(10),XMIN(10)/FLIMIT/NPTS,WRES CGMMON/HFIP/IEND
COMMUN/RFF1/FREF1(100)
CUMPLEX FREF
CUMPLEX FRFF1
DIMENSIEN X(10),E(10),RIN(200)
DIMENSIEN RINI(200)
EOUIVALENCE (RIN,FREF),(RINI,FREF1)
CALL COCIMIT(2,15)
INPUT RUN=TIME DATA
CALL DINPUT(N,NPTS,X,XMAX,XMIN,RIN,RINI,WRES,E,ESCALE,IPRINT,ICON, \&MAXITI
PERFERM HILLCLIMB
CALL VAO4AIX,E,N,F,ESCALE,IPRINT,ICON,MAXITI
DISPLAY FRFQ. RESPONSE MODEL RESULTS.

0

> COMMEIV/RFF/FREF (100)/FLIMIT/NPTS,WRES CGMMUN /FRACK/HT

> COIMMEN /NGRM/FNVAR
> CUMMON /REF1/FREF1(100)
> CGMPLEX FREF, GVAL,T1,Tて
> CHPLEX FREF,GVAL,T1,T2,T3,T4,TS
> COHPLEX FREF
> DIMENSION $\times(10)$, $\operatorname{HREF}(200)$
> $F=F / F$ IVAR
> RT
> call heme
> call ERASF.
output number ef parameters used in hillclimb + min error feund
gUTPUT MEDEL TYPE BEING DISPLAYED
CALL WTI26,'(DIMENSION OF HILLCLIM MINIMUM ERRER
IF (HT •ED. 1.O) CALL WTNLI18,11(
DRAW AXES
CALL TPLOT $(0,100,500)$
CALL TPLOT $-1,100,100)$
CALL TPLOT($=1,600,100)$
\circ

TPLET10,1000,300) TPLAT:1000.300)

WT(5, 1PHASE!)
TPLOT(0,150,525)
WT (9, IAMPLITUDE')
FREO $=(N P T S-1) * W R E S / 6.2831853$
TPLET(0,510,70) WT(FREQ)

CALL TPLET (0,910,270)
CALL WT(FRFQ) CALL
」
古
CALL
CALL
call
CALL
FREO $=($ NPTS-1)*WRES/6.2831853
CALL TPLET(0,510,70) CALL WT(FREQ) PMAX $=0.0$

DO $11=2, N P T S$
PREF=CABS(FREF(I))
IF (HT •ED, O.O) PREF=CABS(FREFI(I)) IF (PREF .GT• PMAX) PMAX=PREF FREQ=(I-1)*WRES
CALCuLATE MQDEL VALUE AT FREQUENCY IFREGI

> IF (PREF ONE: O.O) HREF (I +NPTS)=ATANZ(AIMAG(GVAL), REALIGVAL))
IF (PREF OT. PMAX) PMAX=PREF IF (PREF ©GT• PMAX) PMAX=PREF
CALL TPLOT(0,10,490)

HREF $(I+N P T S)=0.0$
CALL CENTRAL(GVAL,XPFREQ)
$G V A L=G V A L /(1 \cdot 0+H T * G V A L)$ $P R E F=C A B S(G V A L)$

HREF (I) =PRFF

DRAW MEDEL δ MEASURED CHARACTERISTICS
DO $2 I=2, N P T S$
PREF=CABS(FREF(I))
IF (HT $\quad E \cap, ~ C .0) ~ P R E F=C A B S(F R E F I(I)) ~$
$X P L=X I N C *(T-1)+96 \cdot 0$
$Y P L=400 \cdot 0 *$ FREF, PMAX $+94 \cdot 0$
CALL TPLET(O,XFL,YPL)
YPL $=400 \cdot 0$ HREF (I) /PMAX +94.0
YPL $=400.0$ सHREF(I) PMAX +94.0
CALL. TPLETIO,XPL,YPL)
CALL WT(1,101)
XINC=350•0/(NPTS-1)
CALL TPLET10,650,300)
Dis 3 I =2, NiPTS
$X P L=X I N C *(I-1)+646 \cdot 0$
$Y P L=H R E F(I+N P T S) * 150 \cdot 0 / 3 \cdot 1415927+294.0$
$C A L L T P L O T(O, X P L, Y P L)$
$C A L L ~ W T(1: 101)$
$P R E F=C A R S(F R E F(I))$
IF (HT.EA. O.0) PREF=CABS(FREFI(I))
PFF 0.01 PHASE=ATANZ(AIMAG(FREF(I)), IF (HT•EQ. O.O •AND. PREF •NE• O.0) PHASE=ATANZ(AIMAG(FREFI(I)), SHEAL(FREF(I)))
IF (HT•EQ. $0 \cdot 0$
$\delta R E A L(F R E F 1(I))$
YPL $=$ PHASE*150•0/3.1415927+294.0 CALL TPLOT(O,XPL,YPL) CALL WT(1,1X1)
CALL LABEL9
$I F(H T \cdot E Q \cdot 0.0) \quad I R T=1$
REPEAT FOR CLOSED-LOOP MEDEL
IF (IRT •NE • 1) GO TO 10

SUBRUUTINF DINPUT (N,NPTS,X,XMAX,XMIN,RIN,RINI,WRES,E,ESCALE, IPRINT ©, ICUN, MAXITI
THIS SUBRAUTI
THE MAX NG OF ITERATIONS IMAXIT'. THE MIN ERROR CHANGE IESCALE' BELOW
WHICH A NEW DIRECTION IN THE HILLCLIME IS ASSUMED. CBMMON/FRACK/HT/HEADER/HEAD COMMON/NARM/FNVAR
INTEGER HFAD(15)
DIMENSIGN X(10), E(10),XMAX(10),XMIN(10),RIN(200)
DIMENSION RINI(200)
EUUIVALENCE (HEAD,RHEAD)
EUUIVALENCE (HEAD,RHEAD)
CALL HOME
CALL ERASE
CALL RDNL(25, IUIMENSION OF HILLCLIMB=1,N)
IF (N.EQ. O) N=NSET
IF $(N$-EQ. 10$)$ GOTE 51
$L=N+1$
DU $101 \quad I=L, 10$
$X(I)=0 \cdot 0$
$X \operatorname{MAX}(I)=0.0$
$X M I N(I)=0.0$

ACCURACYII
MIN
$\stackrel{\times}{\text { a }}$

CALL RDM(IRC,
$F(I B C \cdot E T \cdot 0) X M A X(I)=R S E T$
ISKP=9-IBC.
1)
11

CONTINUE
CONTINUE
HEAD $(13)=0$
CALL HOME
CALL ERASE
J=-1
RSET=E(I)
IF (IBC•FR-O) E(I)=RSET
KSET=XMIN(I)
CALL RD(IRC.XMIN(I))
IF (IBC •ER. O) XMIN(I)=RSET
I SKP $=9-1 B C$
CALL WTIISKP,'
BC=8
1

CALL WTNL (16, 'PAPER TAPE INPUT') CALL BUFFFRIN(1,1,HEAD,15,IST) call wi(1p, 'file name: 11 CALL WTNL(RoHEAD(1)) NPTS=HEAD(11)
DA $54 \quad I=1$, NPTS

 WPES $=$ RHEAD $(14$
GAIAMUD $=0.0$
GAIWMUD=0.0
CALL BUFFFRIN(1,1,HEAD,15,IST)
DO $60 \mathrm{I}=1, \mathrm{NPTS}$
$J=I * 2-1$
CALL BUFFERIN(1,1,RINI(J),2,IST)
PHASE=RIN1(J+1)
RINI(J+1)=RINI(J)*SIN(PHASE)
RINI(J)=RIN1(J)*COS(PHASE)
w
z
z
\vdots
z
0
CALL RDNL $12,1:!1, I B C, J)$
CALL HOME
CALL ERASF.
LI
$\underset{\underset{\omega}{\alpha}}{\underset{\sim}{\alpha}}$
PRINT AFTER
CALL. RDNL 123, MMAX STEP SCALE FACTOR $=1, E S C A L E)$
KDNL $=$ PRINT AFTER EVERY ITERATION = 1,IPRINT)

1-ICONI
ION $=1$,

VAU4AD40
しヶOVヶ日もへ
己ヶのロヶ日シヘ
VAU4A043
$\rightarrow ヶ O \nabla ヶ 日 \forall \Lambda$
10
0
0
4
7
0
4
8
0
+
0
4
7
0
4
8
VAU4A047
VAU4A048 VAO4A049 VAO4A050 VAO4A051 VAU4A052 VAO4A053 VAU4A054 VAH4AOS5 VAO4A056 VAU4A057 ∞
0
0
0
4
0
8
8 n
0
0
0
4
0
0
4 0
0
0
4
4
0
4
7「90マカロマへ N
0
0
4
7
0
4
8

VAO4A063 $\rightarrow 90 \forall カ \cap \forall \wedge$ VAO4A065 VAU4A066 VAU4A067 VAO4A069 0
1
0
4
4
0
4 VAC4AO71

3H1 10 S 3n7ロ＾LN3甘8กう 3H1

* prepare search along iline

6 CONTINUE

* prepare search along iline

	± 10	
	\bigcirc	
$4 \lll \lll \lll \ll$	m	
	*	
ODS	D 0	ODODDD00』
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	48	
>>>>>>>>	\gg	$\ggg \ggg \ggg>$

* NO - RESTORE END-POINT

CONTINUE
DOMAG=1.
$W(N)=E S C A L E / A A A$
ILINE =N
GO TE 7
37 IXP=コJ
A 1
DG9 $99 \mathrm{I}=1, \mathrm{~N}$
$I X P=I X P+$
0

* YES - IS secand cenvergence CRITERION REQUIRED
* YES
* IS SECOND MINIMUM CEMPUTED
* NO - DISPLACE FIRST MINIMUM
(NEWLY-FGRMED DIRECTIEN)

* optignal print-out

* IS accuracy satisfied

(NEWLY-FERMED DIRECTIEN) IF (IPRINT-2) $53,50,50$
72 IF (IPRINT-2) $53,50,50$
53 GO TO (109,88),IND
C
109 IF $(A A A-0.1) 89,89,76$ CONTINUE
GUTO 72
$\begin{array}{ll}\infty \\ 0 & 0 \\ 0 & 0\end{array}$
$A A A=A B S(W(I X P) / E(I))$
ω
\cdots

89 GU TO (20.116),ICON
116 IND $=2$
Gg TO (100,101),INN $I N N=2$
DO $102 I=1, N$
$k=K+1$
$w(K)=x$
$W(K)=X(I)$

VAO4
VAU4A394
VAU4A395
VAU4A396
VAU4A397
VAU4A398
VAU4A39

VAU4A4U2
VAO4A403
VAU4A404 VAO4A405 0
0
0
4
4
\vdots
0
4
3 VAU4A407
$80+\forall+\theta \forall \Lambda$
90
0
4
4
9
4
4
4
Iエカマカコロへ
0 IカロカAマへ

VAO4A449
$1=$
35
${\underset{\sim}{2}}_{2}^{2}$
SUBROUTINF CALCFX（N，X，F）

TEST FOR PARAMETERS GOING OUTSIDE LIMITS．
FIND INTEGRAL ERRUR SQUARED BETWEEN MEASURED \＆MODELLED OPEN－LOEP FREQ RESPANSE＋CLUSED LCOP FREQ RESPONSE THE IDEA IS TB MINIMISE THE SUM OF THESE TWO $F=0 \cdot 0$ DO $2 I=2$ ，NPTS
CALL CENTREL（GVAL，X，W）
T1＝FREF1（1）－GVAL
$F=F+R E A L(T 1) * * 2+A \operatorname{IMAG}(T 1) * * 2$
$G V A L=G V A L /(1 \cdot O+H T * G V A L)$
$E=F R E F(I)-G V A L$
$F=F+R E A L(E) * * 2+A I M A G(E) * * 2$

RETURN
END
SUBROUTINE CENTROL（GVAL，X，W）
generate mgdel fn values fer human operator in open loep from $6 \times$ values

FAST FOURIER PROGRAM
AUTHOR : P. N. DAVALI.
LANGUAGE : FCRTRAN IV/MACRC-STMBOL
subreutine ffa

DIMENSION FCES(129)
COMMON RE(1024),IM(1024),N,M,ISIGN,FCOS,FCTR,AR(8,512) REAL IM
DOUBLE PRECISION ONEONE
DATA ONEONE/9Z100000001/
$N 2=N / 2$

transffr data te output register and normalise if required.
$A R=0$
IF (NB -EQ. O) IAR=N
IF (ISIGN.GT. O) FCTR=1.0 IF $5 I=1, N$
$D U I=1 \rho N$
$J=I+I A R$

$R E(I)=R E(J) / F C T R$
M(I)=IM(J)/FCTR

in

[^0]: 5) SOME EXTENSIONS TO TNO-DIMENSIONAL AND MULTI-DIMENSIONAL DISPLAYS

 In extending the analysis procedure to include two-dimensional displays, it is necessary to calculate four forward-loop frequency response functions. Figure 18 shows the block schematic for the analysis of a two-dimensional display.

[^1]: GMMMN GF RE(1024),IM(1024),N,M,ISIGN,FCES(129),FCTR IN THAT ORDER $E=R E A L$ DATA ARRAY
 $I M=$ IMAGJNARY DATA ARRAY
 $N=2 * * M$
 FOS F FOURIER WEIGHTING INDEX.
 SIGN = TRANSFGRM DIRECTION
 FCTR = NORMALISING FACTOR FOR FORWARD TRANSFORM.

[^2]: CGMMOH RE（1024），IM（1024），N，M，ISIG，FCES（129），FCTR，AR（8，512）／HEADER 8／ICHAN（90）／SET1／INDEX1（90）

 COMPLEX FVALUE（9），F1，F2，F3，F4
 REAL IM
 DIMENSIGN RCHAN（90），IV（8），DUMP（512），FT11512），FT2（512），FT3（512），
 \＆FT4（512），FSI（512），FS2（512），FS3（512），FS4（512）
 DIMENSION PAPE（20），IPAPE（20）
 EQUIVALENCE（PAPE，IPAPE）
 EQUIVALENCE（RCHAN，ICHAN），（FT1，RE（1）），（FT2，RE（513）），（FT3，IM（1））
 \＆T4，IM（513）），（FSI，AR（1）），（FS2，AR（513）），（FS3，AR（1025）），（FS4，AR（15
 $8)$

[^3]: $B L 2=N B L C K$
 BL1＝1
 $F P L O T=0.0$
 SMOETH＝1．0

[^4]: COMMUN／SFT1／X（1024），Y（1024），XJW（256），X日JW（256），YJW（256），PXY（256）， KPXX（256）

 COMMON／SFT $4 / K P T, N M O D, K S$ ，IOPEN，GAMP，NSMOETH，ICLECK，NEST
 COMMON／SFT $4 / K P T$ ，NMOD，KS，IOPEN，GAMP，NSMEETH，ICLOCK，NEST
 COMMGN／SET5／CEST，PHASE，SIGMAX，NCNT，CORRECT，CSTMIN，ITRAP，NLIM
 \＆，C以ST1
 COMPLEX TF，CONT
 CGMPLEX XJW，XOJW，YJW，PXY
 WRITE（10R，6）
 FURMAT（10X，14HTEST COMPLETED）
 CALL HUME
 CALL ERASE．
 CALL RONL $(10,1 * S T O P * \quad(: 1, J, K)$
 CALL ERASE
 TMAX $=0.0$
 PXMAX $=0.0$
 CALL RONL $(10,1 * S T O P * \quad(: 1, J, K)$
 CALL ERASE
 TMAX $=0.0$
 PXMAX $=0.0$
 DE $1 \quad I=1,256$
 IF（CABS（TF（I））•GT• TMAX）TMAX＝CABS（TF（I））
 IF（PXX（I）•GT• PXMAX）PXMAX＝PXX（I）

[^5]: COMMON /HFADER/CHAN
 DIMENSION RCHAN(90)
 INTEGER CHAN(90)
 CAL RDNL $145,1 D \theta$ YOU WANT TO USE THE PREVIOUS FILE AGAIN: I, I\&ISK CALL) RDNL (45, DO YOU WANT TO USE THE PREVIOUS FILE AGAIN• M IO ISK

 DO $11=1$,NBFO

