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SUMMARY 

This Thesis describes the development of an analysis for 

inelastic columns, with cross-sections composed of one or more 

materials, loaded with axial load and biaxial moments. The 

column can have both rotational and directional restraints at 

its ends. The analysis has been programmed for a computer and 

subsequently tested against published results for steel columns, 

reinforced concrete columns, and concrete-encased steel composite 

columns and shown to give good agreement. 

A test rig with an axial load capacity of 2MN and capable 

of testing full-scale columns of any practical length has been 

designed and built. Columns with elastic and elastic-plastic 

rotational restraints or, pin-ends or any combination can be 

tested and column end-moments of up to 50 kNm can be applied 

through the beams. One important feature of the test rig is sets 

of crossed knife-edges, which give both major and minor axis 

rotational freedom and thus allow accurate positioning of the 

axial load. 

Eight elastically restrained concrete-encased steel composite 

no-sway columns have been tested, three with biaxial restraints 

and loadings, using the rig. The results from the tests have 

been compared with predictions using the computer program and 

agreement between the observed and predicted results for ultimate 

loads, deflections, and end-moments is good. 



The behaviour of column lengths within rigid-Jointed no-sway 

frames with both plastically and elastically designed beams has 

been studied. For the case of a column with elastic restraints 

design proposals have been checked and shown to be conservative. 

When the beams are designed plastically it is recommended that a 

conservative approach should be adopted until further research 

has been carried out into this topic. 
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CHAPTER I. REVIEW OF RELEVANT RESEARCH AND DESIGN METHODS 

1.1 Introduction 

Analysis, testing and design methods for columns have involved 

much research over the last 200 years. The object of this chapter 

Is to report the major developments over this period under three 

major headings, 

1.2 General column behaviour 

1.3 Composite column behaviour 

1.4 Current design methods. 

Sections 1.2 and 1.3 include the major theoretical contributions 

and also deal with tests carried out and their influence on the 

then current design rules. Section 1.4 covers the most recent proposals 

for design in both the United Kingdom and abroad, and any tests 

used to verify these methods. 

1.2 General column behaviour 

The analysis of members under compression loading has developed 

a long way since Euler(1)(2) first proposed his analysis for the 

strength of elastic columns in the 18th century. However, Eulers 

formula was found to over-estimate the strength of short columns, 

the error increasing as columns became shorter. Lamarle established 

that the elastic limit was the limit of validity of Euler's formula. 

Considere(3) and Engesser(4), Independently of each other, solved 

the problem of errors in the load by generalizing the Euler 

formula. K3rm6n(5)performed a series of tests to show that Engesser's 

assumptions In his double modulus formula were correct. 
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Kärmän(5)(6) was the first to consider the buckling of 

eccentrically loaded columns as a stability problem and in 1908 

gave a complete and exact analysis for the problem. Westergaard 

and Osgood('), in 1928, used Kärm3n's analysis with the assumption 

of a part cosine deflected shape to analyse a series of eccentrically 

loaded columns. This assumption simplified Kärm. n's analysis without 

impairing the accuracy too much. They also investigated the effect 

of initial out-of-straightness on the behaviour of columns. 

Chwalla(8) used Kärman's analysis to investigate the stability 

of eccentrically loaded columns with various cross-sections, 

slenderness ratios and eccentricity. Jezek(9) showed that the 

use of a simplified bi-linear stress-strain curve for steel had 

little effect on the results of the analysis. Because of the 

immense amount of labour required to produce each solution for 

the inelastic behaviour of a column results existed only for a few 

special cases. 

Baker and Holder(10) carried out a series of theoretical 

studies for the Steel Structures Research Committee, (S. S. R. C. ), 

on the behaviour of restrained elastic stanchions. They were 

particularly interested in the distribution of moments at the 

stanchion-beam connection and so compared the moments obtained using 

linear elastic theory with those obtained from an elastic analysis 

including loss of stiffness due to axial load. Because they were 

producing working load methods and maximum permissible stresses 

were low, they found that values of N/NE, where N Is the axial 

load in the column and NE Is the Eu ier Ioad of the column, were very Iow and t 

hence the effect of reduced stiffness due to axial load on the 
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moments was very small. They therefore produced design charts, 

which also included the effects of initial curvature, based on 

moments and stresses determined using linear elastic theory. 

Following the theoretical work for the S. S. R. C. Baker and 

Roderick(h1) carried out two series of tests of model columns with 

elastic restraint and loading about the minor axis. The first 

series was on columns bent in uniform single curvature. The results 

showed that the choice of initial yield as a failure criterion by 

the S. S. R. C. was grossly conservative, that moment reversal could 

occur in slender columns, and that redistribution of moments occurred 

more rapidly with the spread of plasticity in the column. They also 

showed that in uniform single curvature bending the load producing 

collapse is not determined by the condition of the column at 

mid-height alone. Before collapse can occur the end sections 

must also be incapable of resisting further moment. 

In 1948(11) tests on columns in symmetric double-curvature 

were carried out on similar model columns. In these tests failure 

always occurred with "unwrapping" from double curvature into single 

curvature. As in the single curvature tests the results showed 

the failure criterion of the attainment of first yield to be grossly 

conservative. 

Both series of tests showed how little effect the beam loading 

had on the collapse axial load of the column. 

Horne, Roderick, and Heyman(il)developed the theory of 

restrained elattic-plastic columns including the effects of unloading 

and analysed some of the columns tested and concluded that the 

effect of ignoring unloading was not significant and lead to 

conservative results. 
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Roderick(Ii)developed an approximate analysis based on 

the assumption of the development of plastic hinges in the column, 

Fig. I. I. A discontinuity due to hinge rotation existed at the 

centre hinge but the other two hinges were assumed to have just 

formed and thus the column end rotation was equal to the beam 

rotation. The column lengths between hinges was assumed to remain 

elastic. The test results were analysed using this simplified 

theoretical method and good agreement was obtained. 

In 1956 Horne(12) produced his classification chart for 

biaxially loaded columns, Fig. 1.2, in which P indicates that the 

adjoining beams have plastic hinges at the beam-column joint, 0 

indicates pinned joints, and E indicates elastic restraint from the 

beams. He recognised that the PxEY case would give higher failure 

loads, even with small y axis beams, than the PxPy case but stated 

that, at that time, the. problem was intractable. 

He proposed a PxPy design method which took account of the 

possibility of flexural torsional buckling due to moments about 

the major axis. 

He later proposed(13)(14) a Px0y method which allowed the 

development of plastic hinges at the end of the column. As in 

his PXPy method account was taken of lateral instability. 

In 1960 research at Lehigh commenced with Galambos and Ketter(15) 

producing an analysis based on the numerical integration of the 

equilibrium equation using Newmark's(16) method. They analysed 

two cases, ß- +1 and ß-0, where B is the ratio of end 

moments and is equal to +1 for single curvature. Ketter(17) later 
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analysed ß  +0.5, and -1.0 but found some difficulty with 

the ß- -1.0 case since the calculation predicted a neutrally 

stable symmetrically deflected shape since these analyses did not 

allow for initial curvature although residual stresses were included. 

Rossow, Barney and Lee(18), 1967, investigated the effects 

of initial curvature on the buckling loads of columns again using 

a Newmark type integration method. 

The methods discussed up to this point had been used for 

the analysis of columns with simple stress-strain curves. The 

axial load, moment and curvature relationships had been expressed 

algebraically with recognition of three distinct phases in the 

spread of plasticity, Fig. 1.3. If more complex non-linear stress- 

strain relationships, strain-hardening and cross-sections of 

irregular shape or more than one material were to be analysed, 

then numerical methods would have to be used. 

Cranstonc19), 1966, proposed a method to obtain axial load, 

moment and curvature relationships which he subsequently used in 

his analysis for reinforced concrete columns. To obtain the 

relationship he made the following assumptions: - 

(a) moment is applied about an axis at right angles to an 

axis of symmetry, 

(b) plane sections remain plane 

(c) longitudinal stress at a point is a function only of 

longitudinal strain 

(d) stress-strain relationships are known for the materials 

in the cross-section 



6 

I 

and (e) strain reversal does not occur. 

The cross-section was divided into a number of elements in 

the plane normal to the applied bending moment. The stress on 

these elements was then assumed to be uniform over an element. 

A strain profile was assumed across the cross-section and hence 

the axial load and moment were calculated. If the axial load 

was close to the specified value then the proposed strain profile 

was correct; if not the profile was modified and the method 

repeated. Cranston produced results for a reinforced concrete tee 

section and gave proposals for extension of the method for the 

analysis of prestressed sections and biaxial bending. 

Cranston(20) used this routine within an analysis for 

uniaxially bent and restrained columns. The analysis estimated 

an initial deflected shape and then calculated moments, curvatures 

and deflections and checked equilibrium and compatability. If 

convergence was not achieved a new deflected shape was estimated 

and the analysis repeated. Elastic unloading was considered and 

special idealizations to speed up the analysis of symmetrical 

cases were used. The method was also applicable to the analysis of 

sway columns. 

Cranston(21), 1972, used this analysis to help in the development 

of the clauses for column design in the Code of Practice for 

Reinforced Concrete, CPI10(22). 

Harstead, Birnstlel and Lau(23), 1968, studied the behaviour of 

inelastic H columns under biaxial loading and produced a solution 
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based on a trial and correction method, using a second order method 

similar to the Newton-Raphson technique. 

They used a computer program to analyse a series of columns. 

The analysis was also used to check the results of tests carried 

out on pin-ended biaxially loaded columns. 

Vinnakota and Aoshima(24), 1974, have presented a method of 

analysis for the inelastic behaviour of rotationally restrained 

columns under biaxial loading. Account of residual strains in 

the cross-section and warping strains that result from the twisting 

of the section is included in the analysis. 

The deflected shape of the column was estimated and section 

properties and torsional loads calculated. Using these section 

properties and considering equilibrium, a new set of deflections 

were calculated. These were compared with the estimated deflections. 

If the required degree of convergence had not been achieved the 

routine is repeated using the new deflections. 

The analysis has been used to check experimental results of 

columns tested by Birnstiel(25) and Gent and Milner(26). 

Young(27)(28) 1971, used a method based on the correction of an 

initially estimated deflected shape by block relaxation for the 

analysis of axially loaded columns. For beam-columns, because 

of the lack of symmetry in the deflected shape, point relaxation 

was tried but found to converge only slowly. Therefore, to speed 

up the rate of convergence, the extrapolated Liebemann over- 

relaxation procedure was used. 
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You6g(29) also examined the moment-curvature relationships 
for hot rolled, doubly symmetric, i section column and beam shapes 

containing realistic residual stress patterns. He examined both 

major and minor axis uniaxial bending. 

in the column analysis Young considered two load paths, Fig. 1.4, 

and took account of elastic unloading of plastic sections when Using 

load path 2. It was shown that choice of load path 2 only had any 

effect if yield had taken place under the application of axial 

load only and that even then the effects were small. 

Young examined the effect of imperfections, both initial 

curvatures and residual stresses, on the failure loads of columns. 

He pointed out the importance of stocky columns in design and 

produced beam-column design charts. That charts, Fig. 1.5, which 

he called "beta" charts used the three parameters M, 
L 

and ß 
pc 

where M is the applied moment at the top of the column 

Mp is the reduced plastic moment under axial load 

L is the length of the column 

Lc is the critical length of an axially loaded column 

and ß is the ratio of the moments at the top and the 

bottom of the column, single curvature being +v e. 

The slenderness ratio and axial load have been absorbed into the 

single parameter L/Lc. Thus each point on a line of given ß 

represents an instability failure of a column for a given applied 

moment and axial load. He compared these charts with test results 

(30)(31) (32) 
from Lehigh and liege and showed that when lateral failure 
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was not allowed to occur, in the case of major axis applied 

moments, the charts gave good results. However If out of plane 

failure was allowed to occur then the charts were of little use. 

Because of this problem a design method was proposedC33) for 

the pin-ended biaxially loaded column. Young did not produce 

an analysis to check this design method but did check it against 

available experimental results. 

Young also proposed a method(34) for the design of 

elastically restrained columns using his "beta" charts with 

moment rotation curves. The method was based on the assumption 

that the deflected shape of the column can be represented by a 

part sine curve. For out-of-plane buckling Young used the criterion 

suggested by Gent(35) i. e. that a lower bound to the buckling load 

for I section columns will be given by the consideration of 

the minor axis stability of one flange. 

The effects of restraint have been studied by Gent(35) who 

tested models representing a typical heavily loaded no-sway 

universal column subjected to single curvature bending about its 

major axis and with elastic beams. The loading path chosen was 

to apply high end moments, equal at top and bottom, and then 

to apply axial load to failure. Gent showed that failure occurred 

either near the squash load or as a snap-through failure about 

the minor axis. Torsional buckling was shown to be of secondary 

importance In his tests of elastic-plastic columns restrained by 

elastic beams. He proposed that minor axis stability could be 

considered as a deterioration of stiffness and that a lower 

bound on the minor axis buckling load should be provided by the 
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elastic critical load of the tension flange alone. He showed 

this to be true with further model tests. 

Gent and Milner(26) extended the work to cover the case of 

biaxially loaded, elastically restrained columns. They showed 

the importance of the critical load of one flange for the biaxially 

loaded columns. They concluded that there Is no combination of 

bending and axial load under which the ultimate axial load 

capacity would be directly reduced by bending In accordance with 

the combined stress concept. They produced axial load slenderness 

curves for minor axis buckling of elastic-plastic columns with 

imperfections when the stability is controlled by one flange. 

1.3 Composite columns 

The problem of the analysis of concrete and steel composite 

columns has not received as much attention as that of bare steel 

columns. 

Bondale(36) carried out an extensive survey of work on 

composite columns prior to 1959 and therefore this review will 

only briefly mention work up to 1959. 

In 1912 Talbot and Lord(37) attempted to evaluate the effect 

of the various parameters in a series of 32 tests on axially loaded 

columns with a built up steel section, Fig. 1.6.10 bare steel 

columns were tested, 12 columns were tested with a concrete core 

inside, 3 were tested with concrete cover as well and the remainder 

were encased columns with diameter wire spirals at either 2" or 

I#" spacing. From the tests on the bare steel section a rule of 

the form 
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where A is the cross-sectional area of the column 

r is the radius of gyration of the steel core 

and a and 0 are constants 

was proposed. They suggested that for the cored columns and the 

spirally reinforced columns the effect of the concrete could be 

included by adding to the strength of the bare steel column an 

additional strength equal to 2/3 of the 6" cube strength multiplied 

by the area of concrete. For the unreinforced encased sections 

the concrete was found to only carry a stress equal to about 1/3 

of the 6" cube strength, due to premature spalling, and it was 

suggested that no allowance should be taken for the concrete in 

design. 

These tests together with further tests, carried out between 

1912 and 1936, by Mensch(38), Emperger(39), Burr(40 , Faber(41) 

and Stang Whittemore and Parson(42) all indicated an increase of 

strength of up to six times for encased columns over the bare 

columns. 

As a result of the above tests BS449: 1948(43) permitted partial 

account of the concrete encasement to be taken in design calculations. 

The permissible load, however, was not to exceed 150 per cent of the bare 

steel stanchion load. 

In 1956 Faber(4' proposed design formulae from the results 

of tests carried out by him. 

Rizk(45), 1957, tested a series of axially loaded columns, 
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8 were encased and 3 were bare steel. The results compared 

well with'the "law of addition". 

Rizk also studied eccentrically loaded columns in uniaxial 

and biaxial bending and proposed an iterative method for predicting 

failure. 

StevensO46; 1959, carried out a series of 35 tests on encased 

stanchions, in which the variables were slenderness ratio, 

reinforcement area and concrete strength. He used the "law of 

addition" to predict the strengths and concluded that this was 

safe. As a result of Stevens' work BS449: 1959(47) allowed the 

value of axial load to be increased to twice the value permitted 

on the bare steel section. 

Bondale(36) applied Westergaard and Osgood's(7) method to the 

analysis of composite columns. He used algebraic expressions for 

the calculation of moment - curvature-axial load relationships and 

assumed the deflected shape to be part of a cosine curve. He 

also tested eight encased columns with in-plane bending. 

Basu(48) extended Bondale's analysis for use on digital 

computers by replacing his algebraic moment curvature relationships 

with the iterative method as used by Cranston. (19) 

From Fig. 1.7 It can be shown that if the deflected shape 

of the column is given by 

y= ym cos [(2x/L)cos-1 (e/Ym)] (1.2) 

where y is the deflection measured from the line of action of the 

load 
e is the eccentricity of the load 

ym is the deflection of the centre of the column 
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x is the position of a point along the column measured 

from the centre of the column 

L Is the length of the column, 

then the curvature, at the centre due to bending is 

0  [(2/L) cos-1 (e/ym)]2 ym -0o (1.3) 

where 0o is The curvature due to initial out of straightness. 

The moment at the central section is 

M- Nym (1.4) 

where N is the axial load. 

From the moment curvature relationships the value of curvature 

corresponding to the moment can be obtained 

M Nym = F(+) (1.5) 

and thus ym = f(4) (1.6) 

The analysis involves the solution of equations (1.3) and 

C1.6) to give values of ym and 4 for a particular load N. 

Basu compared his analysis with exact solutions for universal 

columns, unreinforced elastic concrete (brittle) columns and with 

test results for composite columns. He concluded that this 

analysis gave good agreement with exact analyses and test results 

but that more tests were required. 

Basu and Hill(49) produced a more exact method of analysis 

based on the true equilibrium shape. This method had the 

advantage over the previous method of being able to handle all 

ratios of end eccentricity more accurately. A number of comparisons 
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with exact solutions were made. The previous part cosine curve 

solution was also checked and found to compare well. 

They concluded that the use of the straight line 

interaction formula as used in steel design for columns with 

equal end eccentricities: 

N N. e 
N 

a 
MU LT 

Where Na is the ultimate load under pure axial load 

and MULT is the ultimate moment when N-0, 

is not generally applicable to the failure load of composite 

columns. They showed it to be safe for medium and short columns; 

but it could be unsafe for slender columns. 

Basu and Somerville(SO) used these analyses to develop a 

design method for pin-ended composite columns; this method is mentioned 

in more detail in Section 1.4. 

Roderick and Rogers(s' proposed an analysis for columns in 

single curvature uniaxial bending. The main steps in the method 

are: - 
(I) Estimate deflections. 

(2) Calculate moments. 

(3) Calculate curvatures using moment-curvature relationships. 

(4) Calculate rotations, 0. 

(5) Calculate deflections, y. 

(6) Compare calculated and estimated deflections; if not 

within required degree of accuracy then use calculated deflections 

and repeat steps 2 to 6. 
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The moment-curvature relationships were obtained from a 

set of algebraic expressions. A bi-linear stress strain curve 

was used for steel and a tri-linear curve for concrete. 

Three small scale composite columns were tested and 

experimental and theoretical results compared. The results of 

the columns tested at the Building Research Station by Steven S(46) 

were also compared with the theory. Reasonable agreement between 

theory and test was noted. 

Shapies(52) proposed an analysis for uniaxial bending of 

composite columns in which an initial estimation of end rotation, 

E), was made. Equilibrium was then established at each node using 

an iterative process: 

(I) Calculate the moment, Mn, at the node ignoring secondary 

moments due to deflection of the node. 

(2) Obtain the curvature, 0 
n, at the node from the moment- 

curvature relationships. 

(3) Knowing 0 
n-l, 

On-1, yn-1 and 0 
n, 

0n and yn can 

be obtained. 

(4) Calculate the Moment Mn at the node including secondary 

effects (Nyn). 

(5) Repeat steps 2,3 and 4 until consecutive values of 

Y are within a stated tolerance. 

This process is carried out at each node until the last node 

is reached, at which overall convergence is also checked, in a 

no-sway case the deflection should be zero. If convergence is 

not obtained a new estimation of the initial rotation is made. 
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The analysis was extended to biaxial columns but an approximate 

failure criterion was used to determine the failure load due to 

lateral instability. 

Sharpies tested a series of model composite columns to obtain 

moment rotation curves which he compared with his analysis. 

Reasonable agreement was found. His tests and theory also pointed 

out the possibility of lateral Instability. 

Virdi and Dowling(53) tested nine columns in biaxial single 

curvature bending and proposed a method of analysis for biaxial 

bending of composite columns. The deflected shape of the column 

about each axis was assumed to be represented by a part osine curve. 

The test results were compared with the analysis and found to give 

reasonable agreement. The interaction formula proposed by Basu 

and Somerville was also checked and found to give good results 

for short columns and conservative results for more slender columns. 

The effects of residual stresses in the steel section in an 

encased section were also investigated and found to give a variation 

of ±3 per cent in the failure load compared to the failure load 

of stress-free sections. The use of initial out of straightness 

to represent all imperfections was investigated and it was found that 

an all-inclusive lack of straightness of 0.0006L2/D, where D Is 

the depth of the section, or residual stresses plus a lack of 

straightness of L/1000 gave results closest to the test results. 

Virdl(54) later proposed a more exact method for biaxial bending 
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based on the Newton-Raphson procedure. An initial estimation of the 

deflected shape was made. Internal moments, calculated from 

curvatures, and external moments, calculated considering equilibrium, 

were compared. If the convergence criterion w'as not satisfied then 

the deflected shape was modified. Results from the analysis were compared 

with results from the part cosine deflected shape analysis and with the 

test results and reasonable agreement was shown to exist. 

Virdi and Dowling(ss) extended this method to analyse 

restrained columns. They showed that the analysis gave reasonable 

agreement with tests carried out by Milner(56) on restrained bare 

steel columns. No restrained composite columns or columns loaded 

to give conditions other than symmetrical single curvature were 

analysed. 

1.4 Current design methods. 

1.4.1 Steel columns 

Most column design methods are based on strut curves of the 

form shown in Fig. 1.8 which relate the failure load, N. of an 

axially loaded pin-ended strut of given slenderness ratio, L/r, to 

the squash load, Nsq, of that cross-section. 

The strut curve used in BS449 : I959(47) is based on the Perry 

Robertson Formula. The non-dimensional quantity, n, which is a 

measure of the initial out-of-straightness, ym, at midheight, is 

defined as 
n'md (1.8) 

r2 
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where d is the distance from controid to the extreme fibro and 

r is the radius of gyration. The value of n used in BS449 : 

1959 is 0.3(L/I00r)2, which corresponds to a ym of about L/660 

for the minor axis of a typical universal column section, and was 

found by fitting curves to experimental results. This factor 

thus also allows for residual stresses. 

The revised BS449 Is likely to have a series of strut 

curves to allow for different steels and cross-sections. These 

are based on both theoretical work and experimental results. 

The present BS449 : 1959 uses an elastic interaction formula 

to check column designs: - 

ca 
+ 

abc #1. 
apc apbc 

(1.9) 

where va = calculated average axial compressive stress; 

vpc - allowable compressive stress in axially loaded 

struts; 

abc ° resultant compressive stress due to bending about 

both rectangular axes; 

apbc ' allowable compressive stress in bending. 

To obtain the moments and axial loads acting on a column the 

code has three classes of design: - 

I) Simple design - for nominally pin-Jointed frames In which beam 

loads are applied at an eccentricity of 100 mm from the face of 

the section or at the centre of the bearing, whichever is 

the greater. 
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2) Semi-rigid design - which permits a reduction of the maximum 

bending moment in beams suitably connected to their supports 

so as to provide a degree of direction fixity. 

3) Rigid design - which states that design should be carried out 

to accordance with accurate methods of elastic analysis. 

Since the last revision of BS449 in 1959 a number of design 

methods have been proposed. Two important ones are the JCR2(57) 

method and Wood's vanishing stiffness(5a)method. 

The JCR2 method is basically a design method for rigid jointed 

frames which allows plasticity In the beams but not in the columns. 

For braced frames a limited substitute frame is used, loaded as 

shown in Fig. 1.9, plastic hinges being assumed to occur in those 

beams which have both dead and live load. The ratio of elastic 

critical load to Euler load of the column is then found from 

charts, using the elastic stiffness of the non-plastic beams. 

The magnification of bending moment due to axial load is then found 

from Fig. 1.10. 

The criterion for collapse of the column is first yield of 

the extreme fibres. The total stress is found from 

ca abx + Eby + aic f ay (1.10) 

where a- direct stress due to axial load; 

abx ' bending stress about major axis neglecting 

instability effects; 

"by - bending stress about minor axis neglecting 

instability effects; 

cic = initial curvature stress; 

and m" magnification factor; 
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The initial curvature stress is to allow for initial imperfections 

In the column. 

This method was tested(59)#(60), and found to be conservative, 

In two full scale three storey frames. 

Following these tests Wood(50) proposed a method based on the 

deterioration of stiffness due to plasticity for the design of columns 

in no-sway frames. The method is based on the estimation of the 

remaining elastic core after application of moments and, hence, 

the calculation of the reduced critical load. 

If we have a column bent in single curvature about the major 

axis, Fig. 1.11, failure is likely to occur about the minor axis. 

Initially, assuming no plasticity, the failure load, Nf, is given by 

Nf = NE " Tr2EIY 

L2 
(1.1I) 

If the moment is increased, compression yielding occurs and the 

inertia, L., about the minor axis is reduced to say, RIY. The 

failure load is now 

N-- n2ERl 
FE -----Y 

L2 
(I"12) 

Wood has established formulae for R which include effects 

of initial imperfections and variation of the ratio of end moments. 

The effects of end restraints, in-plane failure and torsional 

instability are also included in the method. 

.. 1.4.2 Reinforced concrete columns 

CPII4 : 1957(61), in common with other codes for the design of 

reinforced concrete members, divides columns into short and slender 
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members. Short columns are defined as those in which instability 

effects can be ignored, and these columns are designed using elastic 

theory or the load factor method. 

Long columns are designed using elastic theory but with a 

reduction factor applied to the permissible stresses. The reduction 

factor is dependent on the effective length of the column. The code 

also gives approximate values for the estimation of this effective 

length. 

CPIIO : 1972(22) also considers columns as being either short 

or slender. Short columns are designed by use of a reduced squash 

load. Slender columns are designed using the additional moment 

concept. The additional moments are those caused by the lateral 

deformations of the column. The code gives formulae, derived by 

Cranston(21), for both major axis and minor axis additional moments 

which are to be added to the end moment. These formulae also include 

an allowance for long-term loading effects. Expressions are given 

in the code for the calculation of effective lengths. These are 

necessarily conservative because of the approximate nature of the 

calculation of relative stiffnesses of beams and columns. 

Having calculated the axial load and moments on the cross-section 

design is carried out using ultimate load theory. Biaxial bending is 

dealt with by the use of an interaction formula proposed by BreslerS62) 

Mxu 

(_'cin 

u 

"n , 1.0 (1.13) 
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where Mx and My are moments about the major and minor axis 

respectively; 

Mux is the maximum moment capacity assuming axial load N 

and bending about the major axis only; 

Muy is the maximum moment capacity assuming axial load 

N and bending about the minor axis only; 

N is the axial load; 

an is a factor dependent on the value of N/Nsq; 

and Nsq is the axial load capacity of the cross-section. 

If the method is used to design columns subjected to unequal 

end moments it will be unconservative to use the maximum of these 

as the end moment, especially when they are of opposite sign. 

This is because the method assumes maximum moment to occur at 

the centre of the column. The code therefore gives a formula 

which converts these unequal moments to an equivalent set of uniform 

single-curvature moments. 

The American Concrete Building Code(63) until 1971 used a reduction 

factor method similar to CPII4: 1957. In this method, loads and 

moments from an elastic analysis are divided by a factor R to 

give design moments and axial load, Fig. 1.12. 

The 1971 ACI code suggests that for the design of slender columns 

a second order analysis should be carried out. If this is not 

used then the moment magnifier method is used. This method, which 

is similar to the CPI10 method, estimates the maximum moment on the 

column, Fig. 1.13 , by multiplying the end moment by an magnification 

factor F. 
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The magnification factor is based on elastic'stability theory and 

is given by 
C 

m F (_Nu NCr >. (I. 14) 

where F Is a magnification factor; 

Cm is the equivalent moment factor; 

Nu is the required axial load capacity; 

and Ncr is the elastic critical load. 

The code gives recommendations for the value of flexural rigidity, 

El, to be taken in the calculation of Ncr. 

The method is based on elastic theory but has been extensively 

checked(64) against inelastic theory and experimental results. 

1.4.3 Composite columns 

The present BS449 : 1959(47) includes a method for the design 

of concrete encased steel columns known as the cased strut method. 

The method allows an increase of up to 100 per cent of the capacity 

of the steel column alone but restricts the amount of useful cover 

on the steel and the slenderness of the columns. The method uses 

the elastic interaction formula similar to that used for steel 

columns but replaces the axial stress term with axial loads. Bending 

is assumed to be taken on the steel section alone. 

Taylor(65) has made many improvements to the cased strut method 

for inclusion in the revised BS449. He has eased some of the 

limitations and has made the method more suitable for ultimate 

load design. 
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Basu and Somervllle(56) proposed a method of design for composite 

columns in 1969. The method was based on data from computer analyses. 

The interaction curve for a composite column is shown in 

Fig. 1.14. The method entails the approximate description of this 

curve by the parameters K1, K2 and K3. The value of K1 is obtained 

from a strut curve, and values for K2 and K3 have been formulated 

for various concrete contributions, a, ratios of ends moments 

and slenderness ratios. The concrete contribution a is given by 

Ac 
"cu (1.15) aN 

sq 

where Ac is the area of concrete in the cross-section; 

and cu is the maximum concrete stress. 

A modification for the effects of long term loading is also 

given. For biaxial bending a modified version of the Bresler(62) formula 

is used, 

I-1 (1.16) 
Nxy Nx Ny Nax 

where Nxy is the biaxial failure load; 

Nx is the uniaxial failure load with bending about 

major axis; 

N is the uniaxial failure load with bending about minr 
y 

axis; 

and Nax is the failure load under axial loading-constrained to 

fail about major axis. 
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Virdi(53) has checked this formula. against theoretical 

results for composite columns in biaxial bending and found it to 

be conservative. 

1.5 Conclusions 

1.5.1 Analyses 

The main short-coming of most of the methods of analysis 

proposed are that they are only applicable to columns loaded and 

constrained to fall about one axis. The biaxial methods proposed 

are limited, in general, to no-sway pin-ended columns loaded with 

biaxial end-moments and axial load. Of the analyses that include 

rotational restraints, that due to Virdi and Dowling(s5) has large 

error matrices and cannot analyse columns with sway. That due to 

Vinnakota and Aoshima(24) was for columns composed of one material 

and, because the method used for correction of the deflections 

is first order, could be expected to converge only slowly for 

composite columns. 

1.5.2 Tests 

Most recent work on composite columns has been on the 

development of suitable analysis and design methods for pin-ended 

columns and the tests that have been carried out have been to 

confirm this work. No tests on columns with unequal end-moments 

or tests on restrained composite columns have been reported. 

1.5.3 Design methods. 

Design methods for columns generally recognise two classes of 

columns, sway and no-sway. Most methods then further divide these 
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into short and slender. The design of short columns is usually 

simple often being based on a proportion of the squash load and 

neglecting stability effects. 

In a survey(64) carried out in the United States of America 

It was found that 90 per cent of reinforced concrete columns 

in no-sway frames and 40 per cent of columns in sway frames could 

be classified as short, that is L/D less than about 10 where 

L Is the effective length, and D the breadth of the section 

in the plane of buckling. If a similar study of concrete encased 

steel sections in frames were made it is reasonable to expect 

similar results. For steel columns however a smaller proportion 

would fall into the short category. 

Any design method for columns should therefore be capable 

of treating short columns in a simple yet economic way. 

For slender columns stability effects must be included, 

either by the use of additional moments or some form of 

stiffness reduction which can be related to the elastic critical 

load. 
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CHAPTER 2. THEORY FOR THE ANALYSIS OF BIAXIALLY RESTRAINED COLUMNS 

2.1 introduction 

In the last ton years a number of computer analyses have been 

proposed for biaxially loaded columns. These have been reviewed 

in Chapter I. Most of these analyses start with an initially 

estimated deflected shape and subsequently check and correct 

deflections. The analysis described in this chapter uses a 

technique of forward integration and has the advantage that at 

the end of each iteration the column is in equilibrium and thus, 

with a small correction, details of which are given In Section 

2.5. I, can be modified to suit any set of axes. 

In Appendix A2 and Appendix A3 two further methods of column 

analysis which have been tried are described. 

2.2 Moment-axial load-curvature relationships 

Before the analysis of a column can be carried out, relationships 

between moments, axial load, and curvatures are required. Because 

of the non-linearity of stress-strain curves and the make up of the 

cross-section, exact analytic solutions are not possible and more 

general numerical solutions have to be resorted to. 

2.2.1 Materials properties 

2.2.1.1 Concrete encased steel composite columns 

For the composite cross-sections the assumed stress strain 

curves are shown in Fig. 2.1. The concrete stress-strain curve is 

a polynomial of the form 

aEC 
(E i (2.1) 

ýu Eu 
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where a and cu are the stress and its maximum value respectively 

and c and Cu are the corresponding strains. The degree, n, of 

polynomial is taken as 4 and the values of the coefficients 

C1, C2, C3 and C4 are 2.41, -1.865,0.5 and -0.045. The values 

of these coefficients were obtained by Basu(48) from tests carried 

out by Barnard and Johnson(66). The value of Eu Is generally 

taken as 0.0025 and the crushing strain of concrete generally 

as 0.0035. 

The steel is assumed to have a bi-linear stress-strain 

relationship, with a yield stress aY and corresponding strain 

Cy. Strain-hardening has been ignored in the analyses described 

but could be easily included. 

2.2.1.2 Reinforced concrete columns 

For the analysis of reinforced concrete cross-sections, the 

curve adopted by Warner(67) has been used as shown in Fig. 2.2. 

The curve is given by 

23 ýy+ (3-2y)( )+ (Y - 2) (2.2) 
ueu 

where y is a constant, 
for 0, e 

'< 1.0 
u 

and 
I_ 2(. (L_)2 

_) 
(2.3) 

au I- 2y + (y2)2 

for I. 0 E; YZ 
u 
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of 
where  - Y2 

Cu 

and sf   maximum concrete strain. 

For the reinforcement a curve similar to that in Fig. 2.1 has been 

used. 

2.2.2 Method of solution 

Figure 2.3 shows a typical encased section in biaxial bending 

for which relationships are required between bending moment, M, 

axial load N, and curvature $; these will be referred to as 

M-N-0 data. 

For any given values of orientation of neutral axis, 0, depth 

of neutral axis, Zn and principal curvature 0 the cross section 

is divided into a grid of small elements. The strain profile for 

the cross-section has thus been described. The solution used is 

similar to that proposed by Sharples(52). 

The distance from the centroid of the (i, j)th element, zjj, 

to the neutral axis is given by 

Zij = Uli cos 0+ via sin 0 (2.4) 

where uij is the co-ordinate along the x axis and v1j is the 

co-ordinate along the y axis of the (i, j)th element, Fig. 2.3. 

Hence the strain, ciJ, on the (ij)th element is given by 

z 
sij X zn)(I -). (2.5) 

n 

Knowing the stress-strain curves for all elements the 

elemental stress, a, j, can be calculated 

aij = Etj x f(E) (2.6) 
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where f(E) is the relationship to convert strain to stress. 

Hence the elemental axial load, n13, and moments, (mx)ij and 

(my),,, can be calculated knowing the area, Aid, of the element. 

A, 

(mx)lj - n, j x U; j 

(my)Ij ` nij x viJ 

The cross-sI 

then calculated. 
I=m 

N-E 
Jul 

ection load, N. and moments, Mx and MY, are 

Jan 

J! 1 
niJ 

(2.7) 

MX' Nx- iEm JEn (mx)ij (2.8) 
i-1 J. 1 

-Nx 
B- IEm j"n (m )iJ 

y i=i J-i Y 

where m and n are the number of elements along the x and y 

axes respectively, B, the breadth and D the depth of the cross- 

section, Fig. 2.3. 

To obtain the values of curvature associated with particular 

values of moments M, y and axial load N Equations 2.4 to 

2.8 are used with the Newton-Raphson procedure. 

The load and moments on any cross-section in biaxial bending 

can be expressed as 
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N f( , zý, 9) 

Mx ffý, zn, 6) 

My - fCQ, zý, 8) 

Expanding Equation 2.9 and retaining linear terms gives 

N- N1 * 
IN a4 +Z 6Zn + 

ae de 

MX= Mxi + aMx aý +aMx aZn + 
am ae 

ao azn ae 

MY= My, + am y+ am Y- aZn + am so 
aq az n ae 

(2.9) 

(2.10) 

Where N1, Mxl and My1 are values corresponding to estimated 

values of 81, Zni and "I . 60,6Zn and ae are thus the 

corrections to be applied to give N1 Mx and My. 

Re-arranging equation 2.10 gives 

Where 

N-N 
11 I 6zn ' IEJ Mx -Mxl 

60 My-Myl 

[Eý aN aN aN 
To 'Z ae n 
am aM aM 

x x X 
a0 T z- n 
a am am 
ao az a0 

n 

Thus a better estimation of the variables 4, Zn and 6 is given by 

bl N- tv 
+ [EI' M-M 

nl X xi (2.11) 
M-M 

8lv vl 
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The computational procedur© Is to estimate values of 

81' Znl and pl and calculate the corresponding values 

N1, Mxl and Myi. These values are compared with the required 

values N. Mx and My and if not within the required tolerances 

the partial differentials in Equation 2.10 are calculated. The 

orientation of the neutral axis 0 is incremented to 01 + de 

and the corresponding values N2,1x2 and My2 are calculated. 

Similarly Zn1 and p1 are incremented in turn to Zn1 + dZn 

and 01 + d¢ and N3, Mx3 and My3, and N4, Mx4 and My4 

are calculated. Thus the differentials for the matrix E are 

given by 

3N 142-N1 aMx Mx2-Mx1 8mMY2-Myl 

Be de a9 dg ' Be d9 

3N N-N amx Mx3 - Mx1 My3 - Myl 

aZn 3dZ 1 aZ Z- Zn1 Be Zn3 -z 
nn n3 

aN N4 - N1 am 
t 

ML. - Mx1 
' 

am 
y 

My4 - Myl 

30 do 3ý 04 - +1 30 0a- 01 

The analysis is repeated with the new values of 0, Zn and 

e. 
When the required degree of convergence on to Mx, My and 

N has been achieved the curvatures, 0x and 0y about the x 

and y axes respectively, are calculated from 

Ox 0 sine 

y 
and 0 Cosa 
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2.3 Analysis using forward integration. 

The method of analysis is a forward integration technique 

with subsequent corrections using the second order Newton-Raphson 

procedure. The length of the column to be analysed is split into 

a number of elements so that with use of central differences the 

second order flexural differential equations can be solved step 

by step. To commence an analysis estimations have to be made of 

some starting values. 

The analysis will be described as applied to a uniaxially 

loaded pin-ended column before its application to the case of 

biaxially restrained columns is discussed. 

2.3.1 Assumptions 

The following assumptions are made in the analysis. 

(I) Plane sections remain plane 

(ii) Deflections are small and hence curvature can be 

2 
represented by -- 

where the x and y axes 
dx2 

are as Fig. 2.4. 

(iii) Stress-strain curves for steel and concrete are 

reversible. 

(iv) Shear stresses are small and do not affect deflections 

or yield of the materials. 

(v) Torsion is ignored. 

2.3.2 Uniaxial Analysis. 

Fig. 2.4a shows a column of length L split into elements each 

of length t and the scheme of differences used if the deflections at 
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nodes I, 2, .... i-1,1, are v1, v2, .... vi-1, vl .... etc. 

The external applied loads are as shown in Fig. 2.4b. 

If a value of deflection is assumed for node 2 then the 

moment at node 2 can be calculated using 

M2 0 M1 + Nv2 + Sit (2.12) 

where M Is the applied end moment 

Mi Is the moment at node i 

N is the axial load 

and Si is the shear applied at node 1. 

Given the moment and axial load, the curvature (d2y/dx2) 
2 

is 

found from the M -N-0 data. 

Using the finite difference expression for curvature, 

vl -2 v2 + v3 
21 

C2.13) 

then the deflection at node 3 is given by 

v3 2v2 - vl - t2(d2y (2.14) 
dx2 

2 

The process is repeated at each node in turn until vn, 

the deflection at the bottom end, has been calculated. The 

misclose in deflection, M, which is the difference between the 

calculated deflection, vn, and the required deflection, vreq, 

is found 

v-v (2.15) 
n req 
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In the case of a no-sway column then vreq is equal to 

zero. If the misciose Is not within the required tolerance the 

initial estimation of deflection at node 2 is altered to 

v2 + av2 and the procedure repeated to obtain new values of 

bottom end deflection, vn + 2vn, and the misciose M+ id 

The Newton-Raphson technique is then used to obtain a revised 

estimation of the deflection at node 2, vR2 0 such that 

VR2 "V-a, _? 
_ 

(2. I6) 

aM 

to be used in place of v2. 

The analysis is repeated until the required degree of 

convergence is obtained. 

The effect of initial lack of straightness is accounted for 

in the analysis by including an additional curvature term 
Nah 

tl( X2 is 

I. e. vn - 2vn_i - vn_2 - t2 C}+ (ý)i (2.17) 
ant' axe "'ic 2 

2.3.3 Extension of analysis to biaxially restrained sway 

and no-sway columns. 

It has been shown(68) that for pin-ended composite columns 

failure occurs in a predominantly flexural mode. Gent(26) has 

shown that the effect of torsion on elastically restrained H 

steel columns is of little importance. The analysis that follows 

therefore neglects torsion and also axial shortening although these 

can be easily included. 

The method is similar to that for pin-ended columns except 

that four end conditions have to be satisfied compared with the one 
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for the uniaxially loaded pin-ended column. The variables 

chosen are the two rotations and two sway displacements at the 

far end of the column. 

The main steps In the method, for given axial load and 

beam loadings, are 

(i) The column Is split Into a number of elements, each of 

length R. 

(2) The end rotations for both axes at the top and the bottom 

of the column 0 tx1' 0 tyl' 0 bxl and 0byl are estimated. 

The subscript I referring to analysts I. 

(3) Given the moment rotation characteristic for each restraining 

beam the applied end moments Mtx, Mty, Px and Mby are found. 

(4) The shear force and the relative displacement of the top 

and the bottom of the column are calculated. In the general case 

of a column with beams of shear stiffness sl and sn at the 

top and bottom of the column Fig. 2.5 , 

S. a Sn . 51 dl Sn an 

6 aal pan 

a S 1 1 
si sý 

Taking moments about the bottom of the column gives 

N(dl +6n) +S1L-M2-M1 
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Henco 6 
N+L 

+ 
is s 1n 

In the case of a no-sway column 

sl and sn + 

hence d-0 

and SN I 

L 

for a column with no shear restraint 

S1 ' Sn RO 

hence Si : Sn -0 

and 
d M` M 

N 

(2.18) 

Thus by using Equation 2.18 about each axis in turn the values 

of deflection required at node n, Un and Vn, and the shears, 

Sx and Sy, can be calculated. 

(5) The moment curvature routine is entered to find the curvatures 

"x and Oy at node I. 

(6) Using the finite-difference approximation for rotations, 

Fig. 2.4a, 

0= w2 - w1 (2.19) 

2R 

Where wi Is the deflection at node 1, and for curvatures, 

of w2 - 2w1 + W0 (2.20) 

R2 



49 

about each axis the deflections, u2 and v2 at node 2 are 

found. 

(7) The moments are then calculated at node 2, using Equation 

2.12, and then the curvatures are found from the M-N- 

routine. 

(8) The deflections at node 3, u3 and v3, are found, equation 

2.14, steps 7 and 8 are repeated for each node up to and including 

node n at the bottom. 

(9) The miscloses in deflection and rotation at node n are 

calculated, the subscript, p, being the number of the analysis. 

MIP unp - Un 
P 

p np - vnP 

p u(n-1)p u(n + 1)p - ebxp (2.21) 
2R 

_ M44p v(n-1)p - v(n 
+ 1)p -9 bYP 22. 

If p-I the four miscloses are compared with the allowable 

tolerances to check If the required degree of convergence has 

been obtained, if not the analysis is continued. 

(10) The end rotations are incremented in turn and steps 2-9 

repeated. 

Thus for analysis number 2, i. e. p-2, the end rotations are 

etx2 . etxl * d9tx 

ety2 
tyl 

0 bx2 , ebxl 
0 by2 . 0byl 
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and for analysis 3, I. e. p 3, 

etx3 '0 txl 

0ty3 0 
tyl 

0 bx3 
ebxl 

eby3 ebyl 

detyl 

For analysis 4, i. e. p-4, 

0bx4 a ebxl + debxl 

and for analysis 5, i. e. p=5, 

00 +de bys byi byl 

all other rotations being equal to those in analysis 1. 

(ii) Using a similar method to that used for the M-N-0 

relationships it is found that better estimates of the end 

rotations are given by 

etx etxl M1 

ety styl FA2 
ebx 

s ebx _ t 
fE7 1 
LJ M31 

l 
eb 8by1 M41 

Where 

CE] = a-ml ai aml AMI 
38tx a8ty aebx a9by 

3Fi 3M2 alp are 
aetx aefi, x 

Eby 

aM3 aM3 393 aW 
aetx aetY aebx aebY 

5 etx ty aebx aebu 

(2.22) 
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and 

aýi týT 2- ýT 1 apt M 'f 3 -ref 1 al'i *p' 4 -ßt11 a5- ýtT 1 
by by ' aetx d9tX ae dety Be dO a© d© 

r2 AT 2i 0-92 . ri2- TO 
.ä 

"a ._ aß'2 . M2 
. 

aetx detx aety dety aebx debx aeby dO by 

aM3 
w 

M32 - 131 3 h}3 
0 

M33 - M31 aM3 f4-1 aW33 .5-1 
aetx detx Be dety Be dO aeby dO by 

aha h14ý - hi41 a4- 114 
3-1a  

M4 -1aM-i 
aetX 

' aety dOty 30 bx 
' a0by dOby 

The analysis is then repeated using the new values of rotations. 

When convergence has been achieved the loads are increased and 

the analysis repeated. When convergence is unobtainable at a 

particular load level the increment of load is reduced and the 

analysis repeated. Thus any degree of accuracy for a failure 

load can be obtained. 

2.4 Verification of computer programs 

The verification of the computer programs has been carried out 

In two stages. 

2.4.1 Verification of the biaxial moment-thrust-curvature 

relationships and 

2.4.2 Verification of the column analysis program. 

2.4.1 The moment curvature relationships 

(48) 
These have been checked against results obtained by Basu 

for a concrete encased I section. Details of the cross-section 

are given in Fig. 2.6. The results are plotted on Fig. 2.7 and Fig. 2.8. 
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It can be seen that agreement Is extremely good. The 

relationships have also been tested for a reinforced concrete 

section against results obtained by Warner(67). Details are 

given In Fig. 2.9 and results plotted in Fig. 2.10, Fig. 2.11, 

Fig. 2.12 and Fig. 2.13. Again agreement is extremely good. 

2.4.2 The column analysis. 

The biaxial restraint analysis has been checked against a 

number of published results. 

2.4.2.1 Encased composite column in uniaxial bending. 

Basu and Hill(49) presented details of the analysis of a 

pin-ended composite column with minor axis bending. The column 

properties and the results of the present analysis are given in 

Fig. 2.14, from which it can be seen that the agreement between 

deflections is good. 

2.4.2.2. Encased composite in biaxial bending. 
---- 

Virdi(55) carried out theoretical analyses of the columns 

he tested. One column has been selected and the column properties 

and the results using the present analysis are given in Fig. 2.15, 

from which it can be seen that agreement is again very good. The 

analysis carried out by Virdl included residual stresses and, 

since the proposed analysis ignores these, it can be seen that they have 

little effect on the behaviour of this column. 

2.4.2.3 Bare steel column in biaxial single curvature bending. 

Birnstlel tested a number of columns in single curvature. 

The details and the experimental results and the results using 

the proposed analysis are shown in Fig. 2.16, also plotted are 
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results obtained by Vinnakota (24) 
using an analysis which Includes 

the effects of torsion. Agreement between analyses and test is 

good. 

2.4.2.4 Bare steel column in biaxial double curvature bending. 

This is similar to the problem in section 2.4.2 but the column 

is bent in double-curvature. Vinnakota has also analysed this 

column and gives reasons for the discrepancies between calculated 

and experimental deflections. The details of the specimens and 

the results are shown in Figs. 2.16 and 2.17. 

2.4.2.5 Steel column with elastic restraints. 

The column selected is one of those tested by Gent and Milner(26). 

The details of the test rig and specimens and the results of Column 

A4 are shown in Fig. 2.18. The calculated values of major and minor 

axis moments and deflections are also shown in Fig. 2.18, with the 

corresponding experimental values. It can be seen that agreement 

between experimental and computed results is reasonably good. The 

difference being probably due to the ignoring of strain hardening 

in the analysis and the possibility of initial curvature and slight 

eccentricity of loading giving beneficial effects in the tests. 

2.4.2.6 Elastically restrained column free to sway. 

Baker Horne and Heyman(11) give details of a series of tests 

of model columns in single and double no-sway bending. Wood(84) 

subsequently carried out a theoretical analysis of two of these 

columns with (a) no sway allowed and (b) sway allowed. Details of 

the column analysed using the proposed analysis are given in Fig. 

2.19. The analysis has been carried out in two stages 
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(a) an elastic computer analysis which has been compared with 

the theoretical results obtained using stability functions(85), 

Fig. 2.19 

(b) an elastic plastic analysis the results of which are compared 

with Wood's results. 

It can be seen from Fig. 2.19 that agreement between the 

theoretical predictions and the proposed analysis is extremely 

close. Slight discrepancies exist between Wood's results and 

the results from the proposed analysis. A possible reason for 

this is that the 

ratio 
Kc column stiffness 
EK total stiffness 

at the joint is equal to 0.11 using the given beam and column properties 

If, however, the effect of the stub-stanchion is Included the 

effective stiffness of the beam is reduced but the reduction is 

dependent on axial load, Equation A5.2 Appendix 5. Wood has 

allowed for this by making 
K=0.13 

approximately. This 

value has been used in the analysis. However the failure load is 

sensitive to the value of used, Fig. 2.19. 
EK 

2.5 Extension of analysis 

The method used for analysis is flexible enough to allow 

extensions for various other effects such as torsional effects, 

and axial shortening. Inclusion of these effects increases the 

size of the error natrix, Equation 2.22. 
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2.5.1 Production of moment rotation characteristics. 

Since each Iteration is a solution of a column analysis, such 

that Internal and external equilibrium are satisfied on each 

iteration, conversion of the results to a set of no-sway axes 

can be carried out. If a column in uniaxial bending Is considered, 

Fig. 2.20 with an end sway of S. then the forces can be resolved 

to new no-sway axis X-X. 

The axial load, NA, Is given by 

NA =N cos 
a2 

* S2 sin 
a2 

given by (2.23) 
LL 

and the shear, SAD is 

SA =S cos 
a? 

-N sin 
a2 

, 
(2.24) 

LL 

The moments remain the same. 

The rotation at end I becomes 

OA 91 - 
a2 (2.25) 
L 

The only load that can affect the analysis is the axial 

load N, since the curvature is a function of N and M. but 

If d2 /L Is small then cos 
a2 

iI and sin 
a? 0 
L 

and thus NA + N. 

Hence at the end of any iteration in the analysis the results 

of that iteration can be transferred to a set of no-sway axes, 

using Equations 2.23,2.24 and 2.25. 
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2.5.2 Dealing with symmetrical columns. 

When a column is loaded in uniform single curvature about 
bothaxes it is possible to take advantage of the symmetry of 

behaviour about the centre of the column. In a restrained column 

analysis this reduces the size of the error matrix from 4x4 

to 2x2 and approximately halves the number of entries into 

the moment-curvature relationships for the derivation of any 

term in the matrix. Thus this reduces the computer time required 

for any analysis to about 30% of the time-required by the full 

analysis. Additionally convergence can be speeded up due to the 

reduced size of the error matrix. 

The steps in the analysis are in general similar to those for 

the full analysis described in Section 2.3.3 and the list below 

discusses those which differ. 

(I) as previous. 

(2) Because of symmetry the top and bottom beams rotations 

about either axis will be equal in magnitude. 

(3) - (6) as previous. 

(7) Steps (6) and (7) are repeated for each node up to the 

centre node only, node I, Fig. 2.21, and the deflection at node 

I+I is calculated. 

(8) The errors are now considered as vii + i) - v(i - i) 

about each axis and would be equal to zero for full convergence. 

These errors are, however, checked against the required degree 

of convergence; if this is not achieved the analysis is continued. 
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(9) Steps (2) to (8) are repeated incrementing, in turn, 

the top major and minor axis end rotations. 

(10) A2x2 error matrix is constructed and solved to 

give better estimations of the two end rotations and the analysis 

is repeated until the required degree of convergence is obtained. 

2.6 Discussion of analysis. 

The advantages of the method of analysis described are 

(a) The use of small error matrices 

(b) That each iteration satisfies equilibrium. 

(c) The possibility of inclusion of torsion, axial shortening 

etc. 

Hutchings(69) has stated that sarge error matrices can 

cause problems because of ill-conditioning and hence difficulties 

in the solution of equation 2.22. 

The way in which any iteration can be transferred to an arbitrary 

set of axes has been discussed in Section 2.5.1 and can be seen to 

be an obvious advantage, for the preparation of design-charts, end 

moment-rotation relationships, etc., over methods which do not have 

all iterations in equilibrium. In methods dependent on an initially 

estimated deflected shape which is used to obtain curvatures 

equilibrium is only satisfied at the last iteration. In all of the 

previous iterations, of which six or more have been required, 

equilibrium does not exist and thus the results are of no use. 

The main disadvantage of the analysis is the fact that moment- 

curvature relationships are entered with two moments and the axial 
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load. It is felt, however, that the advantage of equilibrium outweighs 

this disadvantage. 

2.7 Convergence of analysis 

Generally convergence is rapid, one or two applications of the 

error equation 2.22 for either the moment-curvature relationships 

or the column analysis. Occasionally problems can arise in the 

moment-curvature relationships for steel sections when most of the 

cross-section is plastic but this can be overcome by additional 

elements in the cross-section. 

2.8 Accuracy of analysis. 

The accuracy to which the failure load, deflections, etc., 

are calculated using the proposed analysis are dependent on two 

factors: 

(I) The fineness of the mesh and the tolerances used in the 

calculation of the moment curvature relationships. 

(2) The number of elements into which the column is divided 

and the tolerances used in the analysis. 

Warner(67) and Sharples(52) have both investigated the first 

factor and their recommendations have been used in the choice of 

mesh and tolerances in the moment-curvature relationships. 

VirdiCSS)has discussed the division of the column length for 

pin-ended columns with applied end-moments and axial load. He 

concluded that for columns loaded in uniform single curvature 8 

elements gave a conservative estimation of the ultimate load to 

within 0.1% of the exact ultimate load. For columns loaded in 
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double curvature, however, he found that with 16 olements errors, 

on the unsafe side, of about 6% occurred and that 25 or more 

segments were required before errors of less than 1% existed. 

The case of a rotationally restrained column is now 

considered. The problem is more complex than that of the pin- 

ended column because the applied end moment is dependent, partly, 

on the deflected shape of the column 

1 . e. M- f(O) 

where M Is the end moment 

and 0 Is the end rotation of the column. 

If the restraint is elastic then 

M Mf - kO 

where Mf is the beam fixed end moment and k is a 

measure of the beam stiffness. 

If the column has initial imperfections in the form of 

a pre-deflected shape then even if no beam loads are applied 

end moments exist as the axial load increases. Equation 2.27 

then becomes 
M-k9 

We can now see that if the beam is very stiff, i. e. k -º -, 

(2.26) 

(2.27) 

then small changes in 0 give large moments, and hence accuracy 

of the calculated 0 needs to be considered. 

The finite difference approximation used for e Is 

derived in Appendix 4 and shows that an error of 
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'4 fohl _ 
5i fov, where fo111 and fov are the third and 37 

fifth derivates of the displacement function respectively, exists. 

The effect of this error can be reduced by two methods. 

(I) by the use of cycling; that is a value of 0 Is 

obtained using the normal expression and the corresponding 

moment is obtained from the beam moment-rotation relationships. 

This is used to calculate the deflections using the forward 

integration method until enough deflections have been calculated 

so that fohl can be found. 

A revised estimate of 0 Is made including the term 

-, t f0111 and compared with the previous value of A If the 
31 

required degree of accuracy has been attained the analysis is 

continued, 

or (2) the number of elements along the column is increased, 

e. g. doubling the number of elements will reduce the error term 
3i folil by a factor of 4. 

The computer analysis described here has used the second 

approach. 

To illustrate the accuracy of the method for a restrained 

column an investigation using a slender column with an initially 

deflected shape, loaded externally by axial load only, and with 

stiff elastic restraint, Fig. 2.22, was carried out. The results 

are given in Fig. 2.22. On first inspection the results do not 

appear to conform with Virdi's findings sinco the initial loading 
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is uniform single curvature one would expect the results for 

8 elements to be more accurate. However, as the load is increased, 

the column approaches a double curvature situation because the 

moments are restraining moments. 

Therefore in an analysis of a column with end restraints 

consideration has to be given to the final deflected shape 

when deciding on how many elements to use. In general, however, 

unless extremely large beam to column stiffness ratios exist 

the ratio of end moments will determine the number of elements to 

be used. 
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CHAPTER 3. THE BEHAVIOUR OF THE LIMITED SUBSTITUTE FRAME. 

3.1 Introduction. 

The object of this Chapter is that, before discussing the 

design of the test rig and test specimens, Chapter 4 and Chapter 5, 

a review is made of the behaviour of columns with elastic and 

elastic-plastic restraint. The method of 'beam-lines' has been 

used and an extension to enable elastic-plastic beams to be 

included is examined. Further discussion of the behaviour of 

restrained columns is included in Chapter 8. 

As discussed in Chapter I many design methods for columns 

within rigid-Jointed frames recommend the use of the limited 

substitute frame, Fig. 3.1, for the design of columns within 

no-sway frames. The fixed remote ends of the beams in the limited 

substitute frame have been chosen to avoid undue conservatism 

due to the interaction between beams and siabs170? in multi-storey 

buildings. A further simplification of the frame is to remove 

the upper and lower columns and, for design, to use half of the 

calculated beam stiffnesses(83) for the adjoining beams. 

This frame, Fig. 3.3(a) gives slightly lower failure loads, 

and will be used to examine the behaviour of limited substitute 

frames. 

3.2 Behaviour of isolated columns. 

The behaviour of the initially straight, axially loaded, 

elastic pin-ended column Is shown in Fig. 3.2. The failure load 

Nf is equal to the Euler load NE if deflections are small 
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I. 0. Nf . NE " 7r2EI (3.1) 

L2 

whoro E Is the Young's modulus of tho material 

I Is the second moment of area 

and L Is the length of the column. 

If the ands of the column aro fully restrained against 

rotation than the failure load is given by 

Nf 4 NE 4n2EI (3.2) 
L2 

Columns within rigid-Jointed frames have a degree of 

restraint between the two extremes of pinned and fixed and additionally 

have end moments applied due to beam loadings. 

3.3 Behaviour of rotationally restrained columns. 

In the frame of Fig. 3.3(a), which is loaded to give uniform 

single curvature bending, the value of M 
col, 

Fig. 3.4 the moment 

acting on the column, when N-0 can be calculated, e. g. by 

moment distribution. As the axial load is increased the stiffness 

of the column falls and hence the relative stiffness of beams and 

columns changes. The moment Mcol thus reduces. At the Euler 

load the stiffness of the column is zero and therefore Mco) must 

equal zero. Any additional load causes negative stiffness in the 

column and therefore Mcol . is required to reverse sign, Fig. 3.3(b), 

and stabilize the column, such that Mcoi tends to act as a 

restraining moment and stops the column from buckling, Fig. 3.4. 

At some value of axial load the total stiffness of the boam- 

column assemblage becomes equal to zero and any further Increase 

In axial load causes a total negative stiffness for the frame and 

hence collapse. 
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The problem becomes further complicated in practical 

columns because of the effects of non-linear stross-straln 

curves, plasticity and Initial Imperfections In the column. 

3.4 The use of beam-lines to investigate frame behaviour. 

A graphical method of investigating the behaviour of 

columns with non-linear moment-rotation charactoristics is that 

of superimposing beam-lines on the moment-rotation relationships. 

3.4.1 End-moment-end-rotation relationships. 

Before beam-lines can be used end-moment-end-rotation 

relationships for columns are required. For an elastic, 

Initially straight, strut loaded with terminal couples, M, 

and axial load, N, the end rotation, 0, is given by 

g 
ht V 

n%L 3.3 ý- ,Z ta 
AF-7) 

Thus for a given axial load, Na, 

Ni - CO 3.4 

Where C is a constant for the given axial load and 

is equal to 1 
r Na tan 2(ý 

a 
E 1� EI 

Equation 3.4 gives the moment rotation curves as shown on 

Fig. 3.5. 

If however plasticity and initial out-of-straightness aro 

Included, then the relationship between moment and rotation ceases 

to be linear and is of the form shown in Fig. 3.6. 



86 

3.4.2 Addition of beam-linos to ond-moment-and-rotation relations. 

On Fig. 3.7 the curves 1-5 ore the ond-moment-ond-rotation 

curves for a given column under increasing axial load P. The 

beam-line, ABCD, for an elastic beam, is based on the fact that 

the end-moment is the fixed end-moment, MF when the rotation 

is zero and decreases linearly when rotation is allowed. 

It can be seen that if the axial load is such as to give 

curve (I) then for this combination of beam and axial loads, 

the joint rotation is given by 91 and the column end moment 

by1.11 . 

Similarly for axial loads corresponding to curves (2) and (3) 

the manents are rotations can be obtained from Fig. 3.7. 

The point C on curve (4) gives the failure load since 

any further increase in axial load does not give an equilibrium 

position, e. g. curve (5). 

The column moment-rotation relationships can include the 

effects of initial imperfections, non-linear stress-strain 

relations, etc. 

3.5 Inclusion of elastic-plastic beams. 

If the beams are such that a plastic hinge develops at 

MP then this can be included by modifying the beam-lines, 

Fig. 3.8, by inclusion of lines EF and GH, assuming equal 

value of plastic moments for the development of positive and 

negative hinges. 
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3.6 Behaviour of the limited substitute frame. 

The rotational restraint offered by the beams In a 

rigidly jointed frame Is usually considered to be either 

(I) Elastic 

or (2) Elastic-plastic. 

Hence the effects of either of these types of restraint an the 

behaviour of columns will be analysed. To simplify the problem 

a symmetric limited substitute frame loaded to give uniform single- 

curvature bending in the column will be used. - 

3.6.1 Columns restrained by elastic beams. 

The end-moment-end-rotation relationships for a short 

column and the beam-line for an elastic rotational restraint are 

shown on rig. 3.9. Since failure occurs when beam line is 

tangential to the moment rotation curve, point F, the moment 

acting on the column at failure is still positive and therefore 

moment reversal has not occurred. 

If however a more slender column is used, Fig. 3.10, then 

moment reversal does occur and hence the elastic beams are 

applying restraining moments to the column. 

3.6.2 Columns restrained by elastic-plastic beams. 

Details of the forces acting on the column are shown in 

Fig. 3.11(b). As the axial load is increased the column 

moment h1 - told reduces and hence tid increases, Fig. 3.11(c). 

If beams are symmetric the maximum value Md can take is M and 

v 
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when Pddis equal to MPa hinge forms adjacont to the column in 

the lightly loaded beam and the moment acting on the column is 

zero . 

If the column is short the behaviour is similar to that of 

the short column with elastic beams and failure occurs before the r©stril 

Ing beam becomes plastic, Fig. 3.12. However for the slender column 

Fig. 3.13, before moment reversal can occur the restraining beam 

has developed a plastic hinge adjacent to the column and failure 

occurs at the load which gives the end-moment-end-rotation curve 

that passes through point F. 

3.6.3 Summary of falluro modus. 

It has been shown in Sections 3.6.1 and 3.6.2 that for 

symmetric frames with patterned loading collapse of the column t 

can occur 

(a) in frames with elastic restraint (Section 3.6.1) 

either (I) before moment reversal 

or (2) at or after moment reversal 

and' (b) in frames with elastic-plastic restraint (Section 3.6.2) 

either (I) before the lightly loaded beam develops a plastic 

hinge 

or (2) after the development of a hinge in the lightly 

loaded beam and thus at zero applied end moment on the column. 

3.7 Out-of-plane failure. 

Up to now only the in-plane failure of columns has been 

considered. However, in steel frames using standard rolled 

sections for the columns failure often occurs about the minor 

axis although heavy beam loads may be applied about the major 

axis. The reason for this is that the major axis Euler load 
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NEX Is usually about throe times as largo as the minor axis 

Eulor load NEY. Therefore to attain values of axial load near 

NEX rotational restraint has to be applied about the Y axis, 

using beams which are NOT allowed to become plastic. 

Design methods such as the Variable Stiffness Method(58) 

therefore allow plastic design of major axis beams and have 

plastic minor axis beams rigidly jointed to the column, PEEy. 

I 
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FIG. 3.8 INCLUSION OF PLASTIC HINGES IN BEAMS 
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FIG. 3.12 BEHAVIOUR OF SHORT ELASTIC-PLASTICALLY RESTRAINED COLUMN 
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FIG. 3.13 BEHAVIOUR OF SLENDER ELASTIC-PLASTICALLY RESTRAINED 
COLUMN 
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CHAPTER 4. THE TEST RIG 

4.1 Introduction 

Most experimental research(25)(46)(54) into the behaviour of 

columns has concentrated on isolated pin-ended columns under axial 

loads with uniaxial or biaxial bending. Recently Investigations 

(26)(69) have been more concerned with the effects of beam 

" restraint on the behaviour of bare steel columns and the complex 

interaction within frames(59)(60)(71). Most of the test rigs used 

have been capable of applying loads of up to only 500 kN and 

have usually been restricted to testing a maximum length of column 

of about 3.5 m. Therefore before tests on restrained composite 

columns could be carried out, a test rig with a larger axial 

load capacity and the capability of testing columns of any length 

was required. 

4.2 Choice of specimens 

In Chapter 3 use of the limited substitute frame for the 

design of columns was discussed. 

The frame chosen for testing comprises part of this frame, 

Fig. 4.1 except that the remotes ends of the beams are pinned, 

so that the behaviour of the column under investigation can be 

easily seen. For design, limited substitute frames are often 

used about both axes; hence the experimental frame can have beams 

about both axes. During testing the beams can remain either linear- 

elastic, or linear-elastic-plastic. The test columns were manufactured 

using standard rolled sections and a medium strength concrete mix, 

because of the difficulties involved in simulating residual stresses 

in the steel and obtaining concrete with comparable properties in 
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reduced scale tests. With a universal column section of the 

smallest size rolled and a medium strength concrete mix, a 

minimum axial load capacity of approximately 1.5 MN was roquirod. 

The size of the specimens and the ease with which instrumentation 

could be mounted determined that the tests should be carried out 

horizontally, Fig. 4.2. A description of the various elements of 

the rig now follows. 

4.3 Axial load system. 

The fundamental part of the test rig is the axial load system 

which is shown in Fig. 4.2 and schematically in Fig. 4.3. The 

system is loaded, Fig. 4.4, by a2 MN hydraulic Jack, with electric 

pump, through crossed knife edges, Fig. 4.5, which aro contained in 

a box to which the column and beams under test are bolted, Fig. 4.4. 

The axial load on the column is measured at the opposite end to the 

Jack, after passing through a second set of crossed knife edges, 

by a2 MN strain-gauged load cell. The forces from Jack and load 

cell are transferred to the tie-rods, Fig. 4.3, by stiff steel 

sandwich plates and grillages, Fig. 4.4. Either four or six 32 mm dia. 

Lee Mc-Call prestressing bars (characteristic load 800 kN each) 

are used, depending on the force to be resisted, Fig. 4.2. 

The fixed grillage, Fig. 4.3, Is bolted to the strong floor 

whilst the sliding grillage Is free to move along the axis of the 

column only, to take up strains within the bars. 

4.3.1 The crossed knife edges. 

The crossed knife edges, Fig. 4.5, are designed for working 

loads of up to 2 MN. They provide rotational freedom about both 
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major and minor axis, but do not give torsional freedom, as 

Proctor(68) has shown that torsional failure of composito sections 

is unlikely to occur and Gent(26) has shown that failures of 

restrained steel H columns are also unlikely to have a torsional 

component. Additionally, most columns within rigid frameworks 

can be considered to be torsionally fixed at their ends due to the 

rigidity of beams framing into the joint. 

Prior to the construction of these knife edges the maximum load 

applied through crossed knife edges was about 600 kN by Hutchings(69). 

Several models of the knife edges were made and tested before 

the manufacture of the full size set. The main problem was the 

choice of the thickness of the centre plate. 

The ideal solution for the knife edges would have been to 

have had the two centres of rotation coincident; however, it was 

found from the model tests that if the distance between the knives 

was too small, (less than 40 mm), then the centre plate split. 

A second problem was the choice of the area of contact of 

the knife edge on the centre plate. Ideally, the knives would 

have had line contact only. Initially, therefore the tips of the 

knife edges had only a 2.5 mm radius and sat in a 1200 groove 

with a 10 mm radius. Under test, however, it was found excessive 

local yielding occurred causing binding of the knife edges. 

In the full size set, therefore, the knives have a $0 mm 

radius at the tip and sit in a 1200 groove 5 mm deep with a 

10 mm radius, Fig. 4.5. The average bearing stress, at the knife 

edge tips, for the maximum working load, 2 'MN, is of the order of 
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400 N/mm2 although stresses near the centre of the knife will 

be higher. 

The plates and knives are all manufactured from grade EN32 

case-hardening steel with a yield stress of 500 N/mm2. The knives 

were case-hardened using the carburising process to a depth of 

approximately 0.5 mm. 

Each knife edge is bolted into its plate and the top and 

bottom plates are attached by keeper plates to the centre plate. 

The entire set of knife edges are bolted within the beam-column 

Joint boxes and the top plates are attached to either Jack or load 

cell. 

4.3.2 Column-beam boxes. 

One of the problems that is often encountered in tests on 

restrained columns if the "sub-stanchion" ©ffect. The stub-stanchions 

are the column lengths often used for loading, Fig. 4.6, which 

modify the effective stiffness of the restraining beams as shown 

in Appendix A5. The ideal solution, to avoid translation of the 

beam-column joint, is to have the axial load applied at the intersection 

of the beam and column centre-lines. 

Hutchings(69)solved this problem by column-beam boxes in which 

to place the knife edges and this method has been used in this 

test rig. A small stub-stanchion effect does still exist due to the 

offset centres of rotation in the crossed knife edges; however, 

this is small compared to the lengths of columns tested, the 

stub length being ± 20 min, less than ± 2% of the shortest column 

length. 
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One of the boxes is shown in Fig. 4.4. The major and minor 

axis beams and the column under test are bolted to the machined 

faces of these boxes. The boxes have been designed to act as 

rigid extensions to the beams and columns and thus the working stresses 

due to transfer of the bending moments from beam to column have 

been kept below approximately a quarter of the yield stress. 

4.4 Beam restraint and loading system. 

If the behaviour of columns with the limited substitute 

frame of Fig. 3.1 is to be investigated experimentally It is 

useful to simplify the frame further. 

In the case of a column with linear elastic beams carrying 

loads of wl and w2, and with stiffnesses Kl and K2 

repsectively, Fig. 4.7(a), the two beams can be replaced with an 

equivalent single beam of stiffness K1 + K2 with load w2 - w1. 

If, however, the loading wl is Increased to cause a plastic 

mechanism in the beam, Fig. 4.7(b), then it will contribute no 

stiffness to the system and the equivalent single beam will have 

stiffness K2 and load w2 - w1. Thus the limited frame is 

simplified to that shown in Fig. 4.1. 

The requirements of the beam loading and restraint system 

are that they provide 

I) a method of application of a beam load or end-moment 

equivalent to a set of given beam loadings which may be from two 

elastic beams or one elastic and one plastic beam, Fig. 4.7. 

2) the ability to measure the applied moment on the column 

which can, with elastic restraint, change sign. 
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and 3) the ability to provide elastic or ©tastic-plastic 

restraint to the column. 

The application of the beam loading is accomplished by using 

an equivalent fixed end-moment which is applied by deflecting the 

and of the beam, Fig. 4.8, by d. Knowing the flexural rigidity of 

the beam, EI/L, the fixed end-moment, HIS , can be calculated. 
L2 

This moment obviously remains constant as long as the deflection 

of end B relative to A is kept constant, although the actual 

end-moments on column and beam will be dependent upon the stiffness 

of the column and beam also. 

The size of the moment is measured by determining the reaction, 

R. at the end B of the beam, Fig. 4.8. 

The major axis beam deflections are applied by means of a 

threaded rod and nut arrangement, Fig. 4.9. The beam is deflected 

by tightening the nut "A", Fig. 4.10, against the rigid reaction 

block. If elastic restraint is required and moment reversal is 

expected the nuts "A" and "B" are locked either side of the 

reaction block, Fig. 4.10. If it is required, as in a symmetric 

frame with elastic and plastic beams, that the moments should not 

change sign then nut "8" Is not used and hence elastic-plastic 

behaviour is simulated. 

0 

Axial shortening of the column during a test is measured using 

displacement transducers. This of course affects the beam deflections 

which can be adjusted if necessary. 

The reactions in the links are measured using strain-gauged 
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tension-compression load cells. 

The arrangement for application of the minor-axis loads is 

shown schematically in Fig. 4.11. The two beams aro connected by 

a link which contains a turnbuckle to deflect the minor axis beams, 

and a tension-compression load cell to measure the force in the 

link. At present there is no capability, about the minor axis, 

of simulating elastic-plastic beams simply. 

Because the two major axis beam loading systems are Independent 

of each other, either or both can be moved along the beam to give 

various beam stiffness ratios. They can also be loaded to give any 

required moment ratio. It is also easy to change the sections 

used for the beams. 

The minor axis loading system is such that at the present time 

only symmetric single curvature loading is applied. Variations of 

stiffness ratio can be accommodated by using beams of differing 

section and moment ratios by moving the point of application of the 

load. It is envisaged that minor axis restraint should remain elastic. 

4.5 Geometry of deformations. 

A problem of major importance in any column testing rig is the 

introduction of the requisite degrees of freedom whilst maintaining 

the overall stability of the rig. The section that now follows 

discusses the geometry of the deformations following the application 

of moments and explains the choice of suitable bearings. 

Initially, the contres of rotation of the end of the column 

about both major and minor axes are assumed to be coincident. One 
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contra of rotation is the origin for x, y and z axes, Fig. 4.12, 

with corresponding displacement u, v and w, and rotations 8x, 

0y and 0Z respectively; this origin is taken to be at tho fixed 

end of the test rig, Fig. 4.3. 

The knife edges have been designed to cater for rotations 

8y and A2 however, the torsional rotation of the column, 

ex, is not allowed. No translations are allowed. 

At the other and of the column a centre of rotation exists 

at the second set of knife edges; the same rotational degrees of 

freedom are allowed and in addition translation along the x axis 

is available to cater for axial shortening of the column. 

If the major axis beams are deflected at end I by ul Fig. 4.13 

because no translation is allowd at the origin an additional 

displacement vl occurs, and also a rotation O. The corresponding 

rotation at the end of the minor axis beam point 2, Fig. 4.13, 

is 8z1 . 

The effects of the application of a displacement to minor 

axis beam whilst maintaining the major axis beam displacement, Fig. 

4.14, is now considered. If the displacement is u2 then, because 

of bending and translation of the beam, a displacement w2 occurs 

and additionally a rotation Aye of the major axis beam, Fig. 4.14. 

The rotations of the major and minor axis are now Oz, and 0 
ye. 

Thus the degrees of freedom required at the ends of the 

beams are: - 
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Bearing I translations x, y 

rotations 0' ©y 

Bearing 2 translations z, x 

rotations ©Z, 0y 

The problem is further complicated because at the beam- 

column boxes each of the two beams rotates about a different point 

due to the arrangement of the knife edges, Section 4.3.2. This 

Is equivalent to the two beams having axes that are offset from 

each other, Fig. 4.15. Consider the effects on the minor axis 

knife edge and bearing I due to the application of a minor axis 

displacement. If the minor axis rotation is °y2 and the stub 

stanchion length is R then the points 0 and B move relative to 

each other Ley2 Point 0, however, is fixed in the z direction 

and therefore point B must be able to move. Application of a 

displacement, ul, to the major axis beam will cause a displacement 

of vB along the y axis at the point B. 

Because the two minor axis beams are Interconnected and 

different values of y displacement can occur at each end, 

freedom is also required for a0x displacement at the ends of 

the beams. 

Therefore for the bearings the following degrees of freedom 

are required 
Bearing I. x, y. 

Bearing 2. 

0Z, 0y. 

x, Y. Z. 

©Z. 0 
X. 

ay0 
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0 

Knife edges 
"Fixed end" y, z. 

9y, ©z. 
"Free end" x, y, z 

8y, ©z. 

4.6 Overall stability of rig and specimens. 

The schematic drawing of the rig, Fig. 4.16, shows the axial 

load system to be a pin-Jointed frame and hence any small movement 

such as that shown will cause instability of the cig; if moments 

are taken about Ma clockwise out of balance moment of SL exists, 

which makes the rig unstable. It is therefore necessary to provide 

restraints, at each end, to movements caused by the shear forces 

S. The rig is therefore stabilised in the horizontal plane by 

fitting the grillage at end A within slides, Fig. 4.17. 

A similar problem exists in the vertical plane but is not so 

critical because any instability moment must first overcome the 

moment due to the self weight of the test rig and specimen. However 

in the vertical plane the end A is stabilised by slides and rollers, 

Fig. 4.17. 

The only mode of instability likely to occur on the specimen 

is due to the application of unequal end moments causing shear forces 

at the ends of the columns. These are resisted by long pin-ended 

links connected to the strong floor and capable of taking axial 

tension or compression only, Fig. 4.2. They are partly hidden by 

the major axis beams in Fig. 4.2. 



4.7 Instrumentation. 

The instrumentation provided is for 

t) Deflection measurement 

and 2) Load measurement. 

The frame used to carry the deflection measuring equipment 

is shown in Fig. 4.2. The frame is mounted in such a way as to 

give deflection measurements of the column relative to the axis 

through the longitudinal centreline of the column under test. 

Consider Fig. 4.18, with the axes x, y and z as shown 

and the origin at the centre of rotation of end 13, the fixed grillage 

end, Fig. 4.18. The instrumentation frame is mounted so that it 

remains in the same relative position to the x axis throughout 

a test, and that no displacements are allowed along the y and z 

axes. The frame must however be capable of following the x axis 

movement at end A; thus sliding bearings are provided at end A of 

the instrumentation frame. 

Small displacements of the fixed grillage are followed by 

mounting the frame onto the grillage. At the free end the frame 

is also mounted on the grillage. Theoretically the griIlages 

should not rotate, and thus Ox, 8y and 0z are zero, however 

small changes are likely to take place and are catered for in the 

bearings. To allow differential rotations of ex and 0z at the 

two grillages the instrumentation frame was made torsionally flexible, 

by using very little cross-bracing, and spherical bearings were used. 

The spherical bearings are easily capable of allowing 0y rotations. 
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The arrangement of bearings is shown In Fig. 4.19. 

Thus the measurements taken using this frame systom aro 

relative to the initial shape of the columns under test, assuming 

no translation of the load coil, jack, knife edges and boxes 

relative to the griliages takes place. 

All deflections were measured using linear voltage displacoment 

transducers of various stroke lengths, dependent on expected 

movements and required accuracy. End-rotations of the column were 

also calculated from measurements from these displacement transducers. 

The axial load was measured using a 2MN strain-gauged load 

cell. The beam loads were measured using tension-compression 

links with capacities, of 20 kN, 45 kN and 100 kN. 

Readings from strain gauges, displacement transducers and load 

cells were recorded using a Solartron-Schlumborger data-logger 

and PDPII 8K computer. Software was written for the computer in 

BASAC language to give an output of strains, loads, deflections and 

end-rotations. Data was also output on to punched paper tape for 

subsequent analysis on the University Computer. 
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FIG. 4.1 FRAME USED FOR TESTS 
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FIG. 4.2 GENERAL VIEW OF BIAXIAL COLUMN TESTING RIG 



115 

"Sliding" grillage 
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FIG. 4.3 SCHEMATIC REPRESENTATION OF TEST RIG. 
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FIG. 4.6 THE "STUB STANCHION" EFFECT IN COLUMN TESTING 
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(a) Elastic beams 

(b) Elastic and plastic beams 

FIG. 4.7 EQUIVALENT FRAMES 
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FIG. 4.11 MINOR AXIS LOADING AND RESTRAINT SYSTEM 



123 

2, W 

Axis of colu 
test 

v, v 

for axis beam 

FIG. 4.12 CO-ORDINATE AXES USED TO DESCRIBE DEFORMATIONS. 
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FIG. 4.13 APPLICATION OF DISPLACEMENT TO MAJOR AXIS 
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0 

FIG. 4.14 APPLICATION OF DISPLACEMENTS TO MAJOR AND MINOR AXES 
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FIG. 4.15 GEOMETRY OF DEFORMATIONS WITH OFFSET 
MINOR AXIS 
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FIG. 4.16 STABILITY OF AXIAL LOAD SYSTEM. 
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Fixed grillage sliding grillage 

Bearings A, B, C and 0 are rotationally free 

FIG. 4.19 PLAN OF INSTRUMENTATION RIG SHOWING DEGREES OF FREEDOM OF 

BEARINGS. 
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CHAPTER 5. CHOICE AND MANUFACTURE OF TEST COLUMNS. 

5.1 1 nt roductIon 

To enable the theoretical work to be chocked and to assist 

In the development of design methods for composite columns a series 

of tests was carried out. This Chapter discusses the choice of 

tests, the instrumentation and manufacture of the specimens, and 

the auxiliary tests carried out. Chapter 6 gives a description of 

the behaviour of the columns under test, and Chapter 7 gives 

comparisons with the theoretical predictions. 

5.2 Choice of test specimens. 

5.2.1 Practical slenderness ratios. 

In Chapter I Section 1.5.3 it was stated that a survey of 

reinforced concrete no-sway multi-storey frames showed that 90% 

of the columns within them had a slenderness ratio LID of less than 

10. Since composite columns generally have a larger steel to 

concrete ratio and hence a larger axial load capacity than reinforced 

concrete columns it is likely that for a given loading a composite 

column will tend to be slightly more slender, possibly 10% more. 

Composite columns of slenderness greater than 25 are unlikely 

to occur in many buildings. The majority of the slender columns 

are used at ground-floor level in multi-storey buildings when a 

higher ceiling may be required. If the column height is 8m and 

L/r') equals 25 then the overall depth of the column will be 

320 mm. The new BS. 449 is likely to require(72) a minimum of 50 mm 

cover for fire-resistance and thus the steel section will be 220 mm 
k"' 

which is a fairly light section. 

ý? 
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Thus a slenderness of 25 is unlikely to 6e ©xcooded by many 

columns in buildings and in most cases is likely to be loss than 

about 12. In the tests the range of slendornesses tested was 

13-26. Stockier columns were not tested because instability effects 

are not likely to be very marked. 

5.2.2 Specimens used. 

There were three groups of tests: 

(I) uniaxial tests on short columns (RCI, RC2, and RC3); 

(2) uniaxial test on slender columns (RC4 and RC5); and 

(3) biaxial tests (BCI, 0C2 and ßC3). 

In group I the tests were carried out using stocky columns, 

2.6 m long with L/0 ! L/B a 13, restrained and bent about the 

major axis but free to fall about the unrestrained minor axis. 

Test specimens RCI and RC3 were both loaded in single curvature 

with ß-I and end-moments M/Mp approximately 0.5, where 

Mp is the moment of resistance of the cross-section with zero axial 

load. In test RCI a loss of stiffness due to the formation of 

cracks on the initial application of moments occurred. To assist 

in the evaluation of this effect in the test of specimen RC3 the 

end-moments were applied at a higher axial load level. 

Column RC2 was tested in single curvature with $-} and the 

maximum applied M/Mp approximately 0.7. 

The two tests, RC4 and RC5, in group 2 were carried out on 

columns 5.3 m long with L/0 - L/B - 26. Both tests were carried 

out with columns restrained and loaded about one axis but free to 
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fall about either axis. In test RC4 the restraint was about the 

columns major axis and In test RC5 It was about the minor axis of 

the column. 

The columns In group 3, BCi, BC2 and BC3 were all tested with 

loading and restraint about both axes. All three columns had 

slenderness ratios of L/D - 19 and L/B " 13. 

The columns were all loaded with similar major axis applied 

moments, of about 0.5 Mpo 

Tests on columns 8CI and 0C3 had similar loading about the 

minor axis, 0.5 M/Mp, for three reasons: - 

(I) In test 6C) an instability failure of the link used to 

apply the minor axis moments, Fig. 4.2, had occurred at the failure 

load of the column. The link had been modified but some doubt 

remained about the result of the test. 

(2) Two similar test were required to check if repeatable 

results could be obtained. 

(3) Test BCI had displayed extensive spalling of the concrete 

along the corner in maximum compression over the middle half of the 

column at loads of 70% of the failure load. 

Column BC3 had similar major axis moments as columns BCI and 

BC3 but had a smaller minor axis moment, 0.35 M/MP. 

5.3 Manufacture of specimens. 

Columns RCI to RC5 were manufactured from 152 x 152 X 23 kg/m 

universal column sections of Grade 43 steel, in BCI, BC2, and 6C3 
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152 x 89 x 17.1 kg/m rolled steel joists of Grade 43 steel were 

used. The steel sections were wire brushed to remove loose rust 

and scale and steel plates were welded to each and. Links of 4 mm. 

diameter mild steel were placed at 150 mm. centres 6 mm diameter 

high yield steel was used for the longitudinal bars in the RC 

tests and 4 mm diameter mild steel in the BC tests. Medium strength 

concrete was used for the casing. Cross-sections are shown In 

Fig. 5.1. 

Details of the concrete mixes used are given in Table 5.1. 

The aggregate used had a maximum size of 10 mm and the mixes had 

medium workability. To keep the cube strength down, for tests 

RCI, RC2, and RC3, whilst giving a practical proportion of cement 

size particles, 25N of the cement was replaced by pulverised fuel 

ash (P. F. A. ) 

The concrete was mixed in batches of up to 80 kg and two 100 mm 

cubes were taken from each batch. 

The columns wehe cast horizontally in plywood formwork mounted 

on a 305 x 89 channel strongback. A section is shown in Fig. 5.2. 

To assist the placing of concrete and to avoid the trapping of 

air and free water beneath the flanges, the channel was placed on 

a series of rockers. These enabled the whole system to be rotated 

through 20° during casting and vibration. 

The moulds were placed on two vibrating tables during concreting 

and Kango hampers with rubber heads were used against the sides of 

the formwork. 
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The concrete was cured for 7 days beneath damp hessian, and 

the cubes, after denoulding, were stored under water until they 

werd tested. 

5.3.1 Instrumentation of specimens. 

The location of strain gauges fixed to each flange and on 

the concrete cover is shown in Fig. 5.3. On both the steel section 

and concrete surfaces 120 ohm temperature compensated electrical 

resistance gauges were used. On the steel 10 mm long gauges 

were used, and were protected from the ingress of moisture during 

concreting with rubber coatings. On the concrete 60 mm long gauges 

were used. 

5.4 Auxiliary tests. 

5.4.1 Calibrations 

All load cells were calibrated before and after testing. The 

transducers were calibrated before testing. 

5.4.2 Materials tests. 

Tension tests to BS18(73) were carried out on coupons cut 

from the Universal Column and Rolled Steel Joist sections. A 

cross-head speed of 0.5 mm/min. was used. Stress-strain curves 

were obtained using an autographic tensometer and XY plotter. 

Two cross-sections were taken from the universal column sections 

designated A and B, Table 5.2. Similarly from the rolled steel 

joist sections two cross-sections C. and D were taken. Typical 
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positions of coupons are shown in Figure 5.4 and results In 

Table 5.2. 

The results of the compression tests on the concrete cubes, 

which were carried out at the same time as the main test, are 

given in Table 5.3. 

5.4.3 Cross section dimensions 

The cross-sectional area of each sample of the universal column 

and the rolled steel joist was found by weighing a known length 

and assuming a density for steel of 7840 kg/m3. The dimensions of 

the cross-section were also checked at various positions as shown 

in Fig. 5.5. The average values for web and flange thickness, 

oversall dimensions and area are recorded in Table 5.4. 

5.4.4 Residual stresses 

Residual stresses in the universal column section were measured, 

full details can be found In Reference 74. Typical stresses from 

the rolling of universal column used are shown in Fig. 5.6. 

5.4.5 initial deflections 

Initial deflections of the steel section relative to a 

straight line from and to end were recorded and are given in Table 

5.5. 
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RCI, RC2 & RC3 RC5 & RC6 BC1 & 13C2 DO 

Ordinary Portland Cement 0.75 1.0 1.0 1.0 

Pulverised fuel ash 0.25 0 0 0 
i" Aggregate 2.08 1.30 1.43. 1.43 
Sand 3.14 2.55 2.76 2.76 
Water 0.67 0.57 0.67 0.65 

Proportions per batch 

loo 
90 

80 

70 
60 

50 
a 
41 40 
r. 
d u 30 
N ä 20 

Medium workability 

10 

100 
90 

80 
U, 70 
Ii 60 
u 

50 

40 

30 

20 

I0 

150 300 600 1.18 2.36 5 10 20 

sieve size 
Grading curve for sand 

150 300 600 1.18 2.36 5 10 20 

sieve size 
Grading curve for i" aggregate 

TABLE 5. I MIX DETAILS 
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Section Details Coupon No. a N/mm2 
y 

152 x 152 UC23 Fl 287 
F2 288 
F3 296 

'A' F4 293 
W1 286 
W2 288 
W3 ( 302 

Av. 291 N/mm2 

'8' Fl 280 
F2 283 
F3 282 
F4 290 
WI 282 
W2 298 
W3 283 

Av. 286 N/mm2 
Average value of c for "A" & "13" 288 N/rrn- 

'C' t11 273 
W2 289 
W3 281 
Fl 282 
F2 274 
F4 261 

Av. 27 7 N/mm2 
'D' WI 277 

W2 276 
W3 277 

Fl 265 
F- 283 
F3 "" 277 

- F4 286 

Av. 237 N/mm2 

Average value of a for "C" and "D" 277 N/mm2 
y 

TABLE 5.2 RESULTS FRAM TENSILE TESTS ON COUPONS 
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COLUMN CUBE STRENGTH N/csa2 

NO. BATCH NO. 
AVERAGE 

12 34 

43.5 32.8 37.2 - 
36.5 RC1 

- 32.0 37.1 

33.0 j 27.8 27.9 
RC2 30.3 

35.1 28.8 29.5 - 

30.0 24.2 34.0 
4 29 RC3 . 

30.5 25.6 32.2 

41.4 45.0 44.8 41.4 
43.2 

RC4 

1 

39.1 45.6 44.1 44.4 

4 37.0 39.1 34.7 33.7 

36.4 RCS 

36.7 37.2 37.6 35.0 

30.7 28.6 - - 
BC1 2 29 . 

29.2 28.5 - - 

26.8 30.0 
BC2 27.9 

27.8 26.9 - - 

32.9 28.5 

BC3 
- 29.7 - -I 

30.4 

TABLE 5.3 RESULTS OF CONCRETE CUBE TESTS 
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DIMENSION 

LOCATION CS1 CS2 CS3 RSJ1 RSJ2 

Flange (ti) 6.8 6.7 6.7 9.02 9.01 

Web (cam) 6.4 6.2 6.2 5.48 5.54 

W1 (cm) 152 151.5 151.5 88 88 

W (ý) 2 152.5 152 152 88 88 

D (cm) 150 154 154 154.5 154.5 

Area (cn2) 29.0 29.2 29.0 23.2 23.3 

Dimensions used in analysis 

(C RSJ 

flange thickness 6.7 m 9.0 mm 

web thickness 6.1 mm 5.5 rm 

overall depth (J) 152 am 154.5 mm 

overall width (W) 154 mm 88 m 

TABLE 5.4 CROSS-SECTION MEASUREMENTS 
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LOCATION 

COLUMN tio. AXIS 2 3 

Major 0 + 1.0 mm + 0.5 mm 

RC 1 
Id i nor 0 1.5 mm + +1 .5 mm 

Major 0 + 0.5 mm + 0.5 mm 

RC2 
Minor +1.5 mm + 1.5 mm 0 

Major 0 - 0.5 mm 0 

RC3 
Minor +I. O mm + 1.0 mm + 0.5 mm 

Major +1 mm + 1.5 mm +1 mm 

RC4 
Mi nor -I mm -I mm +2 mm 

Major + 1.0 mm + 1.5 mm + 1.0 mm 

RC5 
Minor + 1.5 mm + 2.5 mm + 2.0 min 

Major + 0. I mm + 0.2 run + 0.1 mm 
ßC1 

Minor + 0.1 mm 0 0 

Major +0.1mm +0.1mm + 0. Imm 

BC2 
Minor + 0.1 g-xn + 0.1 mm 0 

Major + 0.3 mm + 0.5 mm + 0.4 mm 

9C3 
Minor 0.2 mm +0.2mm + 0.2 mm 

Table 5.5 cont... 
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k 
2 

7 ý' / 
a 

-/ 

± 
Locations 

+ ve 

Major axis applied end moment 

- ve 
1ý 

self weight 
- ve 

Minor axis -" One- -l 
+ ve 

Signs of deflections 

TABLE 5.5 VALUES OF INITIAL DEFLECTIONS 
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FIG. 5.1 CROSS SECTION DETAILS 
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link positions 
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Fig. 5.2 cont.... 
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FIG. 5.3 LOCATION OF STRAIN GAUGES 
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CHAPTER 6 TEST RESULTS 

6.1 Testing procadur©. 

The column to be tested was placed in the rig and bolted 

to the boxes containing the knife edges. The column was located 

in the correct vertical position by jacks beneath the boxes. The 

Lee McCall bars were tightened up until an axial load of about 2 kN 

had been applied to take the slack out of the rig. 

An axial load of about 150 kN was applied and the changes in 

strain at a cross-section measured to check for eccentricity of 

loading. If the strains indicted an eccentricity of greater than 

2.5 mm, assuming the column to be linear-elastic, then the positions 

of the boxes containing the knife edges were adjusted using the 

hydraulic jacks. The strains at the cross-section were then checked 

again for compliance with the above criterion. The load was cycled 

between 10 kN and 150 kN about six times and the strains checked 

each time. 

An axial load of the order of 150 kN - 200 kN was then applied 

in 3 or 4 increments. This load was applied to stabilise the rig 

and to avoid extensive cracking of the column when the moments were 

applied. The moments were applied incrementally about one axis. 

When the required moment had been achieved the moment about the 

second axis, in the biaxial tests, was then applied. Axial load 

was then applied until failure took place, except in RC3 when 

additional moments were also applied to each end, Fig. 6.7. 
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; he norunts in tho horizontal plane, (the major axis in all 

tests but RC5), were applied independently to each of the beams 

giving two moments, and I and end 2 on the Figures. End-moments 

in the vertical plane, In the biaxial tests, wore applied by 

deflecting the beams with the screw Jack in the link, Fig. 4.2, 

and so were the some at each end of the column. 

Each test had between 20 and 40 separate load Increments at 

whicn detlection, strain and load readings were taken. 

6.2 Results of tests on columns 1CI. RC2 and RC3. 

6.2.1 Typical behaviour 

The typical behaviour of a test specimen is described with 

respect to column RCI as shown in Figs. 6.1,6.2, and 6.3. 

On initial loading the strains in both steel and concrete 

increased linearly and indicated plane sections remaining plane 

and virtually uniform compression, Fig. 6.3. Application of the 

moments caused cracking on the tension face of the column at every 

link position. 

The addition of further axial load caused the cracks to close, 

the section to stiffen, the end-moments to increasa'and deflections 

to decrease, Figs. 6.1 and 6.2. Further increase in axial load 

caused the section to lose stiffness and the end-moments to fall. 

Failure of the short columns commencod with Indications of 

crushing along the compression face and longitudinal cracking on 

tho compression face adjacent to the flange tips, Fig. 6.9. 
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Further axial load caused sections of the concrete cover to 

the flange to break off. Extensive yielding of the flange could 

then be seen. Final failure occurred with a snap through and an 

overall buckling failure about the minor axis with local buckling of 

the flanges between links and longitudinal bars occurring between 

stirrups. A typical failure zone is shown in Figs. 6.9 and 6.10. 

6.2.2 Individual column behaviour 

6.2.2.1 Column RCI 

An axial load of 150 kN was applied initially. End-moments 

of 30 kNm, 0.5 Mp, were applied at each end of the column to give 

single curvature bending. The cracks at each link position extended 

approximately 60 mm into the section. 

The axial load was increased and the cracks started to 

close. Fig. 6.1 shows the behaviour of the column end-moments undar 

increasing axial load. 

First signs of crushing occurred at an axial load of 1240 kN 

with signs of crushing along the entire compression face, especially 

close to end 2, and the start of longitudinal cracking on both faces 

adjacent to the flange tips. As the load was increased further 

more crushing appeared, followed by spalling of the concrete at a 

point about 500 mm from the centre of the column. 

Failure of the section occurred at 1340 kN with an Inelastic 

buckling failure about the minor axis, followed by the formation 

of a hinge at about 500 m. m from the centre of the column. 
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An Inspection of the specimen after failure showed extensive 

signs of crushing along the ontire compression faco, toguthcr with 

longitudinal cracking. 

6.2.2.1 Column RC1. 

An axial load of 150 kN was applied and end-moments of 40 kNm, 

0.67 Mp, at end I and 20 kNm, 0.33 Mp, at end 2 to give unsymmetrical 

single curvature. 

Cracks of up to 10 mm into the section occurred at the end 

with the larger applied moment. 
3 

Increasing axial load caused the cracks to close. Figs. 6.4 

and 6.5 show the behaviour of the column under increasing axial 

load. 

First signs of crushing and longitudinal cracking occurred at 

1100 kN at a point about 750 mm from the contre of the column, 

Fig. 6.6. 

Spa IIing started at a load of 1235 kN at the point where 

crushing had first been noted. Failure took place at 1270 kN 

with Inelastic buckling about the minor axis. 

6.2.2.3 Column RC3. 

An axial load of 300 kN was applied and then end-moments of 

15 kNm, 0.25 Mp, applied at each end to give uniform single curvature. 

Only short cracks, less than 10 mm long, appeared. 

The axial load was then increased to 600 kN and the moments 

increased to 37 kNm, Fig. 6.7. Fine cracks, up to 25 mm deep, 
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appeared. On the additlon of further axial load to 900 kN the 

crack lengths reduced to 10 mm and closed completely at 1050 kN. 

The first signs of longitudinal cracking and crushing occurrod 

at a load level of 1325 kN. These were followed by spalling and 

an inelastic buckling failure about the minor axis, Figs. 6.9 and 

6.10 at 1360 kN. 

6.3 Results of tests on columns RC4 and RCS. 

6.3.1 Column RC4 

On initial loading strains in both the steel section and the 

concrete encasement increased linearly and indicated plane sections 

remaining plane, and a small amount of bending due to initial 

imperfections. At an axial load of 200 kN the end-moments were 

applied in small increments up to a level of 33.5 kNm, 0.5 Mp 

cracking occurred on the tension face at link positions. 

Additional axial load caused the end-moments to fall off 

immediately, Fig. 6.13. 

As the axial load was Fncreased the minor axis deflections 

increased until, at about 600 kN, a rapid rate of change of minor 

axis deflections was noted, Fig. 6.11. 

Failure occurred at 850 kN with a minor axis instability 

failure, Fig. 6.15, and with relatively small deflections about 

the najor axis Figs. 6.12 and 6.14. 

6.3.2 Column RC5. 

An axial load of 200 kN was applied initially. End-moments of 

approximately 16.5 kNmm, 0.4 Mp, were applied at each end incrementally 

to give single curvature bending. Cracking occurred on the tension 
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face at link positions. 

Additional axial load caused an increase to deflections, Fig. 

6.16, and a fall off in the and moments, Fig. 6.17 and reversal 

of end moments occurred at about 700 W. First signs of crushing 

occurred near the hinge position at 750 kN. 

Fine cracks appeared on the inside face at link positions near 

the beam-column joint just before failure, Fig. 6.19. Failure 

occurred with the formation of a hinge and minor axis instability 

at 825 kN, Fig. 6.18. Major axis deflections were relatively small, 

Fig. 6.20. 

6.4 Results of biaxial column tests. 

6.4.1 Co i umn Bi. 

On initial loading the strain in the steel section increased 

linearly and indicated plane sections remaining plane and a small 

amount of bending due to initial imperfections and possibly a 

small eccentricity of loading. At an axial load of 200 kN the end- 

moments were applied in small increments. The minor axis moment of 

4.5 kNm, approximately 0.45 M 
PY was applied first followed by 

the major axis moment of 21.5 kNm, approximately 0.5 Mpx, where 

Mpy and hlpx are the minor and major axis ultimate moments at 

zero axial load. On application of the minor axis moment cracking 

occurred on the tension face at link positions. When the major 

axis moment was applied additional cracks appeared and others 

started to close as areas changed from tension to compression. 

Additional axial load caused the minor axis and-moments and 
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one of the major axis moments to fall off. The other major axis 

end moment Increased Slightly, Figs. 6.21 and 6.22, but started to 

docroase at about 300 M. 

At a load of about 450 kN a small amount of crushing appeared 

near the contra of the column in the compression zone. This 

crushing Incroased slightly with additional load. 

At 650 kN the minor axis and-moment changed sign. 

Extensive crushing along the compression corner occurred at 

700 kN followed by the formation of a hinge, Figs. 6.23 and 6.24, 

and collapse at 742 M. 

During the test deflections were recorded at quarter points along 

the column about both axes, Figs. 6.25 and 6.26. The major axis 

deflections, Fig. 6.25 varied very little and gave little indication 

of the onset of failure. The minor axis deflections, Fig. 6.26, 

did increase more rapidly when an axial load of 700 kN had been 

reached. 

6.4.2 Column BC2 

The behaviour of BL2 was similar to ®CI up to 200 M. The 

minor axis moment of 3.5 kNm, 0.35 M 
PY , was applied tollowed by 

the major axis moment of 20.5 kNm, 0.45 MPx. Cracking occurred at 

the link-positions. Additional axial load, to a level of 300 kN, 

caused ail applied moments, Figs. 6.27 and 6.28, to increase before 

falling off. 

One of the major axis end-moments however increased until a 
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load of 450 kN after which, it also dropped. 

No signs of distress were seen until about 700 kN when crushing 

occurred along the compression face near the centre of the column, 

Fig. 6.32. This crushing continued to increase until failure at 

834 kN. Just prior to failure, crushing was observed at the ends 

of the column adjacent to the end-plates, Fics. 6.31,6.32 and 6.33, 

indicating large restraining moments from the minor axis beams. 

The deflections were recorded at quarter points and the 

behaviour was as test BCI. The deflections at the mid-height of 

the column are given on Figs. 6.29 and 6.30. 

6.4.3 Column BC3 

The behaviour of BC3 was similar to BC1 and BC2 up to 200 M. 

In this test the major axis moments of 22.6 kN, 0.55 Mpy, were 

applied first. Cracking occurred at link positions and also 

longitudinal cracking, Fig. 6.43. The minor axis moment of 5 kNm, 

0.55 MpX, was then applied, and some cracks closed leaving a crack 

pattern as Fig. 6.34. 

Increasing axial load caused a fall off of minor axis moments, 

Fig. 6.36 and initially a slight increase in one of the major axis 

moments, Fig. 6.35. Further axial load caused all moments to fall. 

At 550 kN spat ling commenced along the compression tip of the 

column over the central half. This increased fairly slowly until 

about 675 kN when extensive crushing and cracking appeared. Failure 

occurred at 730 kN, Fig. 6.40 and 6.41. 
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As in column BCZ crushing occurred at the ands of the 

column, Fig. 6.39. 

Deflections were recorded at quarter points and mid-height 

deflections are given in Figs. 6.37 and 6.38. As In test DCi 

little prior indication was given oy the deflections of the onset 

of failure. 

6.5 Accuracy of experimental results. 

6.5.1 Measuremenr errors. 

The accuracy of the 2 MN load colt was 0.25% of full read 

out, (F. R. O) i. e. ±5 kN, for a stabilised Input. The input 

voltage was monitored throughout testing and found to vary up to 

0.5% giving a maximum error of 0.75% of F. R. O. i. e. ± 15 kN. 

Hence the maximum error on ultimate load is about 2% O. G. 15 kN on 

750 kN). The tension-compression cells have a linearity of 0.1% 

of F. R. 0, which can introduce an error of up to ± 0.26 kNm in the 

end-moments in tests RCI to RC5, and ± 0.13 kNm in the major axis 

end-moments and ± 0.06 Mn in the minor axis end-moments in tests 

BCI to 6C3. The Input voltage was monitored throughout testing and, 

as for the 2MN load cell, found to vary by ± 0.5%. Hence the 

moment can have an additional error of ± 0.5%. 

The transducers are calibrated to 0.1% linearity, i. a. 

for ±50 m transducers to 0.05 mm., and give stable results for 

voltages of 30 ±3 volts. 

The strain-gauges on the steel wer© in general reliable. 

The gauges on the concrete, however, failed to give consistent 

results. 
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6.5.2 t. iisa)ignment errors and rig defects. 

The most likely source of misalignment errors was in the 

setting up of the knife edges, column, and load cell or jack. Any 

misalignment caused additional moments about either or both axes. 

If the axis had beam loading and restraint then the additional 

moment was automatically rocorded on the tension-compression cell 

as a change of force in the link. Misalignment errors about an 

axis with pin-ends however caused additional moments which were not 

recorded and increased directly as axial load. Deflections about 

such axes were therefore recorded, Tests RCI, RC2, RC3, RC4 and RC5, 

and were found to be small until failure was Imminent. 
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FIG. 6.6 COLUMN RC2 - FINAL DEFLECTED SHAPE OF COLUMN 
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FIG. 6.10 COLUMN RC3 - FAILURE ZONE VIEWED ABOUT MAJOR AXIS 
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FIG. 6.31 COLUMN 6C2 - CRUSHING DUE TO RESTRAINING MOMENTS 
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FIG. 6.32 COLUMN BC2. GENERAL VIEW OF HINGE AND CRUSHING. 
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FIG. 6.33 COLUMN BC2 GENERAL VIEW OF FA i1 roc nc rni i ! Mni 
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CHAPTER 7. COMPARISON OF THEORETICAL PREDICTIONS AND TEST RESULTS. 

7,1 Introduction 

The computer program described In Cnapter 2 was used to give 

theoretical predictions of the behaviour of the columns tested. The 

results of the analyses and details of the comparisons with the 

test results are given in this Chapter. 

7.2 Parameters used in theoroticai prodictions. 

The stress-strain curves used for the steel and the concrete 

used In the test columns are those given in Chapter 2. The values 

of yield stress and yield strain for the steel are the average of 

those obtained from the tension tests and are given in Table 7.1. 

The value of maximum concrete stress, au Fig. 2.1, Is obtained 

by multiplying the average stress obtained from the cube tests, 

Table 5.3, by a factor, K. 

Various investigatorsC54.76) have shown that this factor, K. 

should consist of two parts, K1 and K2 such that 

K* K1 x K2 (7. t) 

where K1 is a coefficient to rotate the 6" cube strength 

to the strength in uniform compression, which Is similar to the 

cylinder strength, and is equal to about 0.8. 

K2 is a coafficient to allow for variability of concrete 

strength in a column due partly to migration of water up the column 

as it is being poured, and partly variations due to poor compaction 

etc. This factor is usually taken to be equal to about 0.8. 

Because the columns were cast horizontally in the laboratory and 
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special care was taken with compaction K2 has been taken as 

equal to I. 

For the analysis of the tost specimens the value of K was 

reduced to 0.8/1.05, or 0.76, on the assumption(77) that the 

strength of a 100 mm cube Is 5 per cent higher than that of a6 In. 

cube of the same concrete. 

The strain at maximum stress is assumed to be 0.0025 and 

maximum strain is 0.0035. 

The concrete was assumed to have a tensile stress strain curve 

given by 

aý 1 eu 

where 

E3-0.0001 

and C1 is a coefficient as defined in Equation 2.1. 

Values of all the main parameters used in the theoretical 

analyses are given in Table 7.1. Dimensions of the steel cross- 

section used are given in Table 5.4. 

The longitudinal reinforcement was ignored in the analyses, 

the effect of this is discussed in Section 7.4. 

7.3 Discussion of the behaviour of individual tests. 

(7.2) 

The theoretical predictions of the behaviour of columns RCI to RC3 

and RC5 during tasting have been obtained from a computer program, 

as described in Chapter 2, which ignores out of plane effects. 

This was because in these tests the loading was only about the one 
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axis, I. e. that with the restraint. In the biaxial tests, 

DCI, 6C2 and BC3 the biaxial analysis was used. In test RC4 

although restrained and loaded about one axis, only, failure was 

due to Instability about the other axis and both biaxial and 

uniaxial analyses were used. 

7.3.1 Column RCI 

Fig. 6.2 shows good agreement between the experimental and 

theoretically predicted deflections at quarter points. The moments 

at the column ends, Fig. 6.1, agree well with the theory for end I 

the theoretical values being slightly higher. The agreement for 

and 2 is not as good, the difference in the moments at ends I and 

2 being due, probably, to variation in the stiffness along the 

column due to variation in concrete quality. The ultimate loads 

are given in Table 7.2 and agreement is very good. 

7.3.2 Column RC2. 

Column RC2 was Initially loaded with moments and axial load 

to a level of 950 M. The column was then unloaded and reloaded 

until failure occurred. 

Agreement between the experimental and theoretical deflections 

is good, Fig. 6.5 as it was for column RCI. 

The theoretically predicted moments, Fig. 6.4, tend to be slightly 

lower than those obtained in the test partly due to the fact that 

the theoretical failure load is 4% lower than the failure load 

obtained in the test, Table 7.2. 
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7.3.3 Column RC3 

Column RC3 was loaded in such a way as to keep cracking to 

a minimum. The predicted ultimate load Is 18% lower than the 

failure load in the test and thus deflections and moments Fig. 6.7 

and Fig. 6.8 are not in as good agreement as in RCI and RC2. 

This may be partly due to the average cube strength being 

reduced by two low results from Batch 2, Table 5.3. If these 

results are ignored in the calculation of the average and the new 

figure used in the analysis an increase in ultimate strength of 

up to 8Z could be expected. Other reasons for differences between 

experimental and theoretical results are given in Section 7.4. 

7.3.4 Column RC4 

This column was analysed using 

(a) The uniaxial in plane analysis about the major axis 

and (b) the biaxial analysis. 

To attempt to quantify the effect of the minor axis self 

weight, imperfections, and eccentricity of loading, estimations 

of the initial midspan deflection were made. Obviously the use 

of the uniaxial analysis is equivalent to an initial deflection of 

zero although the minor axis buckling load is not calculated. 

Other central initial deflections used in the analysis were 

1.0 r. and 2.5 mm and the results are shown on Fig. 6.11. 

The effect of different minor axis initial deflections on 

the major axis deflections and end moments is not significant 

Figs. 6.12, and 6.13 and compare favourably with those obtained from 
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the tests except near to failure. 

However, the effect on the additional deflection about the 

minor axis is very marked. 

7.3.5 Column RC5 

The minor axis deflections, Fig. 6.16, do not agree very well 

the theoretical predictions which ore up to 15% smaller. However 

at the level of moment tested a small additional moment gives a 

large increase in deflection. 

The theoretical and experimental end-moments, Fig. 6.17, agree 

extreme ly we II. 

The failure load obtained from the computer analysis, Table 7.2, 

is about 3% less than that obtained in the test. 

7.3.6 Columns 1301, BC2, and 1C3 

Since the three biaxial tests BCI, BC2 and 6C3 were of a 

similar nature the discussion covers all 3 columns unless 

specifically stated otherwise. 

The agreement between deflections, Figs. 6.25,6.26,6.29,6.30. 

6.39, and 6.38, obtained from the tests and those from the theoretical 

predictions is generally reasonable especially major axis deflections. 

The minor axis deflections in test E3G3. Fig. 6.37, are however 

underestimated by about 4 mm, about 30%. 

Agreement between end moments is good, Figs. 6.29,6.22,6.27, 

6.28,6.35,6.36. The differonco between the two major axis and- 

moments fron any of the three tests again indic3tes the variation 
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In stiffness along the column length duo to dlfforoncos In concroto 

strength, compaction etc. 

The test Ord theoretical ultimato loads, Table 7.2, are In 

reasonable agreerent. 

7.4 General discussion and conclusions of test and computer results. 

The deflections and end-moments obtained from the computer 

analyses and the tests are in broad agreement. The failure loads 

obtained from the computer analysis are generally conservative, 

Table 7.2, but to reasonable agreement. 

In Chapter 6 the possible sources of error in the test 

results, measurement errors, misalignment errors and rig defects, 

were considered. Errors can be introduced into the theoretical 

results because of the assumptions made for the computer analyses. 

These assumptions and their pcssible effect on the results are 

now considered. 

(a) The reinforcement in the cross-section has been ignored 

In the computer aralyses. The area is, however, only about 2N of 

the cross sectional area of the steel section and the reinforcement 

is placed within the flanges, Fig. 5.1. The effect of inclusion 

of the reinforcement in the analysis would be an increase and the 

failure load of less than 2%. 

(b) The self weight of the column has been Ignored in the 

analyses. In tests RCi, RC2, and RC3 this would cause a moment 

about the minor axis, failure however was a predominantly major axis 
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failure due to major axis loading followed, after the formation of 

the hinge, by a minor axis "snap-through". Columns RCI and RC3 

finally failed upwards, I. a. against the self weight. 

Column RC4 was an out of plane failure and also failed upwards. 

This upwards failure was probably duo to a small eccentricity of 

loading and initial Imperfections. An attempt has been made to 

compensate for the effects of self weight, eccentricity of loading, 

and initial imperfections by the use of an initially deflected 

shape. 

Column RC5 failed predominantly in the plane of loadings, 

the minor axis, and only deflected appreciably about the major 

axis very close to failure. 

The effects of self weight in the biaxial column tests are 

much less marked because of loading and restraint in that plane. 

The self weight moment is of the order of 2% of the ultimate moment 

of the section. 

(c) The residual stresses in the steel section have been 

ignored. Virdi(54) has shown that neither the AISC pattern(78) 

nor the Cambridge(75) pattern of residual stresses make much 

difference to the moment-curvature relationships. The measured 

residual stresses are not so onerous as the Cambridge pattern, 

Fig. 5.6, and thus the effect will be very small. 

(d) The assumption that the concroto stress reduction factor 

Is 0.75 may be conservative. Basu(48) used 0.8 with 6" concrete 

cube test rosults to analyse available tests and found it to give 

reasonable results. Virdi, however, used 0.64 is with 6" ("e) 
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concrete cube test results to analyse his biaxial test results. 

However, the specimens used by Virdi were cast vertically which 

may have led to larger variations of strength along the column 

due to migration of water etc. 

(e) The calculation of the stiffness of the beams has been 

carried out using values from the B. C. S. A. Handbook on Structural 

Steelwork(79) and hence a small variation In the stiffness values 

May exist. 

It can be seen from the above list of possible causes of 

errors that the one most likely to affect the results is the 

value of K, the concrete stress reduction factor. 
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TEST NO. SQUASH LOAD TEST FA1LUPE 
! 

CALCULATED 

S 
LOAD FAILURE Nf Al NfM 

eq N kN NN kN I LOAD 
Nc kN 

RCI 1861 

RC2 1687 

RC3 i 1694 

RN 2050 

RC5 1860 

BCI 1216 

6C2 1 191 

ßC3 1240 

1340 1350 0.99 0.72 

1270 1223 1.04 0.75 

1360 1152 1.18 0.80 

850 712 1.19 0.41 

825 803 1.03 0.43 

742 725 1.02 0.61 

834 790 1.06 0.70 

730 685 1.07 0.59 

Mean 1.07 

Standard deviation 0.065 

TABLE 7.2 COMPARISON OF THEORETICAL AND 
EXPERIMENTAL FAILURE LOADS 

0 
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CHAPTER S. DESIGN METHODS FOR COMPOSITE COLUMNS 

8.1 Introduction 

Much rosoarch effort has been directed towards the problem of 

the determination of the uiti-mite load of an isoiatod pin-ondod 

composite column with axial lord and appliod end-moments. The 

closest classification in Horne's chart, Fig. 1.2, Is PxPy 

although, since the object of previous investigations has been to 

produce a design method(50) for Isolated columns, In none of these 

investigations has compatibility with plastically designed beams 

been checked. 

The purpose of this Chapter is to investigate possible design 

methods for composite columns which form part of a rigid jointed frame. 

Three main areas are dealt with: 

Section 8.2: The use of plastically designed beams and composite 

columns (P or Py). 

Sections 8.3 and 8.4: The use of effective lengths and moment 

distribution for the design of composite columns restrained by 

elastic bears (EX or Ey). 

Section 8.5: The use of reduced squash load expressions for 

the dasign of stocky composite columns. 

These initial studies have been carried out on columns loaded 

and failing in-plane. However the proposals made in this Chapter 

can be extended to include biaxially loaded columns 

(P 
xpy; 

EXEY; PxEY; EP) by using the Bresler formula, Equation 
xy 

ß. i6. 
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8.2 Tho design of columns In frames with plastically designed 

beans. 

If composite columns are to be used within a rigid jointed 

frame with composite beams that have been designed plastically, 

then the rotation capacities of neither the beam nor the column 

should be exceeded. In this section certain cases are analysed 

to study where problems may arise. 

8.2.1 Moment-rotation relationships for hinges in beams. 

In the Draft Codes of Practice(8l 82) for composite construction, 

the plastic design of continuous beams is limited to sections 

which are compact. Ciimenhaga and Johnson(GO) have defined 

compact composite cross-sections as those with 

b/t < 0.70/ cy(3.18 - vas a) 
" 

d/w , (2.44/trc- 
y 

)(i - 1.4 0) for 0$0<0.28 

d/w s 1.48/, for 0.28 <4 

where sy is the yield strain of steel in the Joist. 

0 is Arayr/As ay. 

Ar is the cross-sectional area of the longitudinal 

reinforcement 

oyr is the yield stress of the reinforcement 

A5 is cross-sectional area of the joist 

ay is the mean yield stress of the joist 

b is the width of the flange of the joist 

t is the thickness of the flange 

d is the clear depth of the web 

iv IS the thickness of the web 

a is the ultimate tensile strength of steal, us 
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and co is the yield stress of the foist. They found that a 

typical moment-rotation relationship for a negative hinge in a 

compact cross-section was as shown by curve a, Fig. 8.1(a). In 

compact cross-sections the ultimata moment exceeds that calculated 

using simple plastic theory, ignoring the concrete in tension, 

and the available plastic rotations of the hinge always exceeds 

0.05 radians. It has been suggested(01) that the maximum rotation 

available should therefore be taken conservatively, as 0.05 radians 

for compact beams. 

In sagging regions Hope-GiII(08) found that the moment 

capacity exceeded that calculated using simple plastic theory for 

rotations up to 0.11 radians, Fig. 8.1(b). 

8.2.2 Analysis of simple frame with 

The frame given in Figure 8.2, which 

plastic mechanisms in both beams, and aqua 

moments in the column, is now considered. 

end-moments are used because they give the 

for given end-moments. 

plastic beams. 

Is loaded to give 

I single curvature end- 

Equal single curvature 

largest end-rotations 

The noment-rotation curves as given in Fig. 8.1(a) for 

negative hinges and Fig. 8.1(b) for positive hinges are used. 

Assuming rigid-plastic beams and referring to Fig. 8.2(b), 

for canpätibility 

©h3 *0 h2 4Ohl +0 

and 0"0hi"0 
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where 0hi, 0h2, and 0h3 are. the rotations of hinges I, 2 

and 3 respectively, 0e Is the column and rotation 

thus 0h3 0 20h1 + 2°C' 

For equilibrium 

8p < ohl < ®m 

o< ßt12 < p 
©m 

Op < 0h3 < em. 

where 9p and 8p are the rotation at which the moment- 

rotation curves become plastic for positive and 

negative hinges respectively 

and 0m and 9m are the maximum permissible rotations for 

positive and negative hinges respectively. Hance the following 

conditions must be satisfied 

e < e' -9' c n p 

e < e -e c r � p 2 

if 0 and ep are taken as 0.005 radians then 

8c is controlled by the negative hinge rotation and should be 

less than 0.045 radians. The positive hinge allows a rotation 

of up to 0.05 radians. 

When the column is designed the optimum section is that 

which gives just the required moment and axial load capacity 

at a rotation of less than 9n'-0p' if the negative hinge 

control or 0n/2 -0p if the positive hinge controls, o. g. 

curve I Fig. 8.2(c). Curve 2 will also satisfy all conditions 
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except that it has additional moment capacity. Curve 3 satisfies 

the load capacity but at an excessive rotation. 

Preliminary Investigations of the end-moment-end-rotation 

characteristics of composite columns using a slender column, l/0 * 40, 

Fig. 8.3, show that it is likely that most columns in the practical 

range reach the maximum end moment (with ß- +1) at and-rotations 

of less than 0.045 radians, If the axial loads Is in excess of 

about 0.2 N/Nsq. 

8.2.3 Analysis of limited substitute frame with plastic beams 

The frame of Fig. 8.2 Is, of course, unlikely to occur in 

practice, so the syrmetric frame, Fig. 8.4, is considered with all 

beams loaded to give plastic mechanisms. The moments acting on the 

column are obviously zero. If the axial load, N. Is increased the 

column behaves as a pin-ended strut and end-rotations do not 

became large until close to failure, and are small compared with 

the maximum permissible hinge rotation. If the column had no 

initial deflections, eccentricity of loading, etc., no end- 

rotations would occur until failure, Fig. 3.2. 

Often in column design patterned loading, Fig. 8.5, is used 

to determine the moments and axial loads that the column is to be 

designed to resist. 

It has been shown in Chapter 3, Section 3.6.3 that if the 

more heavily Ioaded beams contain a plastic machanism, Fig. 8.5, then 

the column can fail by either 
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todo I: a failure of the column, dun to a combination of axial 

load and end-moment, before the development of a plastic hinge 

In the lightly loaded beam. 

Mode 2: a failure due to the formation of a plastic hinge in the 

lightly loaded bean, Fig. 8.5, and hence zero and-moment on the 

column and also zero rotational restraint. 

For collapse to occur by mode I the end-rotation of the lighter 

loaded beam must be such that it remains elastic: Mode 2 collapse 

occurs when the rotation of the column is such that a hinge forms 

adjacent to the co, Iumn, Fig. 8.5,1 n the lighter Ioaded beam. 

8.2.4 The inclusion of hinges with elastic plastic-strain- 
h3rdeninc characteristics. 

The final case to be considered is that of a column loaded 

through beams in which all hinges have the some elastic-plastic- 

strain-hardening rotation characteristics, Fig. 8.6a; any unloading 

of the hinges is assured to be elastic. 

The beams on both sides of the column are loaded to give plastic 

mechanisms, Fig. 8.6b, and thus if 

0h3 0 h31 + () h32 

then 0 h31" 0h32 0 ©hl u 0h2 
" 

It is worth noting that this condition can only be satisfied if 

0> zap 

If the plateau 0p to 0sh is too short then a plastic mechanism 

cannot occur. When the fixed end of the beam reaches its plastic 
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moment ttp the contra l 

moment; additional load 

and also tho end-moment 

the strain-hardening br; 

characteristics such as 

moment is still loss that its plastic 

causes the control Moment to increase 

to follow the plateau and start to ascond 

inch. Cases with hingt moment-rotation 

this have not been studied. 

It can be seen that when the beam Is loaded to give a 

plastic mechanism rotation will continue until ©h3 ' 0sh 

thus 0h2 = Ohl =0 sh/2. 

If axial load is applied to column then a rotation, ec, of 

the column occurs, Fig. 8. bc, and thus the hinge adjacent to 

joint in beam 8 starts to unload. To maintain equilibrium, 

since the beam is carrying its plastic collapse load, the contras 

hinge In the beam must Increase Its not capacity and thus 

commences to move along the strain-hardening branch. In beam 

'A' however the hinge adjacent to the column initially only 

increases in rotation by 9c until the rotation 0hi becomes 

equal to 0sh it then moves up the strain-hardening branch 

and the central hinge starts to unload elastically. 

Thus the beans are now exhibiting a rotational stiffness, 

K, such that 
,K>K 

st 

where KE is the elastic rotational stiffness and is 

a EI/L 

and kst is the strain-hardening rotational stiffness and is 

a ESN I/L. 
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Further Investigations in+-,, this type of behaviour are 

required especially when plastically designod composite 

beans are used with siandcr composite columns or stool columns 

because this restraint effect due to strain-hardening may 

compensate for the lack of rotation capacity in the composite 

beam and thus enable a simple plastic design to be used for 

any composite frame. 

8.2.5 Conclusions. 

For symmetric frames Fig. 8.4, with beams designed plastically 

the following conclusions and suggestions can be made. 

(I) That in no-sway fra"es the effective length of the column 

should be taken as being equal to its actual length between 

centrelines of beams. 

(2) That columns should be designed for Mode I type failure. 

Thus any out of balance moments should be distributed and the 

column designed to resist both moments and axial load with 

an effective length of the column equal to its actual length 

between centrelines of beans. This method will obviously be 

conservative for more slender columns where joint rotations are 

large enough to cause the formation of a hinge in the lightly 

loaded bean and hence a Mode 2 type failure. 

(3) That in most practical frames with plastic beams the rotation 

capacity of the beams will not be exceeded for the following reasons: 
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(n) That in general axial load prodorinatos In columns, ospocially 

In the lower storoys of a tall building, and thus N>0.2 Nrq 

and end-rotations of the column will be small when the ultimate 

moment-carrying capacity of the column is roachod, Fig. 8.3. 

(b) That in many cases single-curvature bending with equal end- 

moments can not occur and thus for a column tho ond-rotations aro 

smaller for a given and moment than those in Fig. 8.3. 

(c) That in the majority of columns, since they will be stocky that 

is L/0 < 15, the end-rotation at maximum moment for any given 

axial load will be small compared to those In Fig. 8.3. 

(d) As discussed in Section 8.2.4 the assumption of the elastic- 

plastic curves for hinge behaviour, rig. 8.1, is conservative. 

(4) it is worth noting that If bare steel sections are to be used 

Instead of composite sections for the columns It is possible that 

the necessary end-rotation of the column to achieve the required 

moment will be excessive. This is because steel columns tend to be 

more slender. The conclusions 3a, 3b and 3d will obviously also 

apply to steel columns but more research is required before these 

are used with plastically designed composite beams (see also Section 

8.2.4). 

8.3 The design of colurins in rigid jointed frames with elastic beams. 

8.3.1 Introduction 

Most design methods for columns within rigid-jointed no-sway 

frames take some account of the additional strength due to the 
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restraint oft rod by the beams. The normal way of doing this is 

to use either elastic critical loads or elastic offocttvo tongths 

as one of tho basic design paramoters. 

8.3.2 Proposed design method. 

It has been proposed(82) that for the design of composite 

columns within rigid jointed frames where the beams remain elastic 

the following design method could be used. 

Step I. Select a suitable cross-section for the column. 

Stop 2. Calculate the elastic effective length of the column 

to be designed using charts(83) such as Fig. 8.7. 

Step 3. Carry out a moment distribution, ignoring stability 

effects, to determine the end-moments on the column. 

Step 4. Apply the column end-moments calculated from 

Step 3 to a column of length equal to the effective length 

calculated in Step 2. 

Step 5. Check, using an ultimate load method, that the column 

of Step 4 Is suitable. 

To enable the accuracy of the method to be determined a 

series of initial studies have been carried out, the results of which 

are discussed here. 

8.3.3 Par, ratric study to check use of effective lengths. 

Initially a parametric study was carried out, using the computer 

program described in Chapter 2, to check the use of offective 

lengths for concentrically loaded composite columns, constrained to 
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fail in-plane. Dotails of tho column cross-suction, matorial 

properties and the frame analysed ore given In Fig. 0.0 and 

Table 8.1. 

The stross-strain curve used for the concrete is that given 

by Equation 2.1 and for steel that given to Fig. 2.1. However to 

calculate the ratios Kb/Kc a nodular ratio, m, of 10 has been 

assumed henco with Es taken as 200 kN/m2, EC becomes 20 kN/m2. 

The stiffness of the beams then remains constant throughout the 

analysis although the value of Young's Modulus of the concrete In 

the column is varying. The effect of choice of m is discussed 

later. Obviously as only the use of effective lengths Is 

checked, the columns have no externally applied end-moments and 

are constrained to fall in-plane. 

Initially a number of pin-ended columns, 1</Kc . 0, of 

various slenderness ratlos, l/0 whero 0 is depth of the section 

in the plane of bending, were analysed to determine the failure 

load, Table 8.1. The results were used to give the basic column 

curves, rig. 8.9, and Fig. 8.10. 

The columns were then ro-analysgd with various end restraints, 

Table 8.1, to determine the failure loads. The elastic effective 

length charts Fig. 8.7, were then used with m assumed to be 10 to 

convert the lengths of the restrained columns to effective lengths. 

The results of the analyses are plotted against the effective 

slenderness, L/0, Fig. 8.9 and Fig. 8.10., from which it can be 

seen they lie very close to the curve obtained from the pin-ended 
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struts (Kb " 0). None of the results lie beneath the curve, 

indicating that for these uxonplos the use of affective longths, 

with m" 10, Is rorarkabiy accurate with the small orrors always 

on the safe side. 

Since the value of E)/L for the beam Is an independent 

variable in the analysis we can investigate the effect of the 

choice of Ec for a column design. The value of Ec in the 

computer analysis is given by 

`c a 
do 

.. °u (2.41 - 3.730 (C)2 
- 0.180 (9)3} 

u Cu u u 

and because It is dependent on the strain it varies across the 

cross-section and along the column length. Therefore a value of 

Ec has to be chosen that will give a reasonable average estimation. 

The value of Ec - 20 kN/mm2 has been used because it corresponds 

to m- 10. If the moment-curvature curves corresponding to this 

choice of Ec are plotted against the calculated curves, 

Fig. 8.11 and Fig. 8.12., it can be seen that this is a good 

choice if the axial toads are greater than 0.2 Nsq and the moments 

less than about 70% of the maximum morent capacity. 

Since the columns are under predominantly axial load the use 

of effective lengths should therefore be accurate. 

If Ec is taken as being equal to zaro, that is the concrete 

is assumed to provide no contribution to the stiffness of the 

co'posite cross-section, then m--. 

Since the beam stiffness of the columns analysed is not 

altered the ratio Kb/K 
c rust increase. For the columns analysed 

with Kb/KC - 5, when m- 10, the ratio Kb/Kc becomes 
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approximately 25 with mw" and thus the effective length 

tend to the limit 

L/2. 

These results have been plotted agbinst the new effective 

lengths, calculated with Kb/Kc   25, as curve 'b' on Fig. 8.9. 

This shows that even with this extreme situation variation 

in results of only 5% occur. 

Generally in a frame, however, it is the relative values 

of stiffness that are important and hence in the above case 

the beam stiffness, assuming that the beam is composite, would 

also reduce and the ratio c/(Kb + K) would not vary much. 

8.3.4 Study of method with elastic columns 

The second part of the study has been carried out to show 

that the method should only be used for ultimate load design 

and not for methods which use a limiting stress as the failure 

criterion. A study of an elastically restrained column, Fig. 8.13, 

was therefore carried out. 

It can be shown(89) that the end-moment, on the column, for 

a symmetric frame loaded in single curvature is 

(2 - 2c +8 (c-i) +4 
;K (i - c), MsscX pi08 8.5 

C2-c-8+4EK21 
_c2 SS Kc 

) 

where MO9 is the out of balance fixed and moment 

KC Is the column stiffness 

EK Is the total stiffness at a joint and S and C 

are the stability functions. 
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Furthermore it can be shown(89) that the mid-holght moment, 

MCEN, Is given by 

M CENiMsec2 N 
0 

8.6 

By applying equations 8.5 and 8.6 to the frame at various 

load levels the theoretical end moments on the column and the moment 

at the contra of the column can be determined. The results are 

given in Fig. 8.13 and Fig. 8.14. 

If the proposed method is used then the moments predicted, 

Fig. 8.13, are unconservative, if fmax is the criterion of 

failure. It is also of interest to plot the results of an analysis 

with the effective length equal to I, which was the basis of the 

Steel Structures Research Conmittee's metnod(I0). This shows the 

conservatism of such an approach, although it should be noted that 

when proposed by S. S. R. C., permissible stresses in columns were 

lower and hence values of N/NE were very low. 

It should be noted also that both the theoretical and the 

proposed curves tend to MEN co at the critical load of the 

frame, N/NE = 2.5. Thus if a column is to be designed which is 

made of a material which is perfectly elastic then a column is 

required with an Euler load equal to the critical load of the 

frame. If however the maximum moments in the column are to be 

checked then either an analysis incldding stability affects has 

to be carried out or a magnification factor which incIudes the 

offect of bean restraints used, such as that included in JCR2(57). 

Vlood(83) has presented th4 results of a series of analyses and 

gives limits to the possible variation, the la4er limit being 
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equation 8.6, Fig. 8.15. 

It should be noted that If design Is to a limiting stross 

the error in the maximum moment, if equation 8.6 is used, will 

probably not make much difference to the total stress including 

axial load stresses etc., at the cross-section under consideration 

since the error in the stress due to the moment increases as the 

axial load stress increases. 

Similarly if the failure criterion is the attainment of a 

maximum moment, as CPIIO(22) then because the moment is only one 

of the two components, the other being axial load which is 

accurately determined, the total error to the design loading is 

small. 

8.3.5 The behaviour of an inelastic column. 

The behaviour of a column made of a material with an elastic- 

plastic stress-strain curve is now considered. Until the onset 

of yield the behaviour of the column is identical to an elastic 

column; however as yielding occurs the cross-section stiffness, 

ElCOL reduces and hence the end--moments reduce more rapidly, 

Fig. 8.16 and Fig. 8.17. The effective length determined for the 

elastic system has obviously now become conservative, that Is 

the actual effective length Is now less than that calculated 

using the original stiffness since 
Kc has reduced and is 

tending to zero. However the load at which the moments change 

sign, the Euler load for an elastic column, has also reduced, 

since Elcol has reduced due to plasticity. 
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Thus, if a column Is considered at the point of failure, then 

if the column remains perfectly elastic the distribution of moments 

is as shown, Fig. 8.17. The distance between the points of 

contraflexure, at failure, being equal to the elastic effective 

length. Therefore the column can be designed as a pin-ended column 

under axial load with a length equal to effective length of the 

column in the frame. 

If however the column is elastic-plastic it has been stated 

that at failure the effective length is shorter and hence the 

moment distribution is different, Fig. 8.17. Hence to design this 

column an elastic-plastic effective length is required which can 

then be used as the length of the pin-ended column. 

If the elastic effective length is used as the length of the 

column to be designed then the design should be conservative. 

However, if large beam moments are applied to the column it may 

not be able to develop the shorter effective length because at 

some point in the column the moments may exceed, MP, and thus 

a material failure occur. To overcome this a conservative 

distribution of moments, Fig. 8.17, is used in the Draft Bridge 

Code(82). 

8.4 Parametric study of the use of effective lengths and moment 

distribution. 

To check the degree of conservatism and the sensitivity to 

changes in the modular ratio of the method, when beam loadings 

are included, a number of analyses were carried out. The column 

cross-section and frame details are the same as those used for the 
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effective length analysis. 

The frome is loaded by beam loads, which would give a fixed 

ended beam moment of ME, and an axial load N. Details of the 

loadings and other variables are given with the results in Table 8.2. 

The results for the two column lengths analysed have been plotted 

on Fig. 8.18 the effective length ratio for m- 10 being LE/L   0.68. 

It can be seen that, as expected from the theory, the method is 

conservative and Increasingly so as the applied beam moment Increases. 

If the two extremes of values of m are investigated then the 

sensitivity of the method to changos in the value of EC can be seen. 

If m -º 0, Ec -º - and Kb/Kc + 0. The two effects, the distribution 

at moments and the Instability effects are now considered separately. 

it car be seen that when instability Is considered the column tends 

to becore pin-ended and th s L/LE -+ 1.0. However, in relation to 

the beam, the column has become very stiff and thus tends to attract 

the total fixed end moment. Hence at MF/MULT 0 1.0 the column will 

fail with N=0, Fig. 8.19. It Is worth noting that with'short composite 

columns an increase in axial load will also give an increase In moment 

capacity, Curve 'b' Fig. 8.19, because with moment and low axial load 

tensile cracks form. Increasing axial load causes these cracks to 

close and thus an increase In load capacity. Curve 'a' is the expected 

curve for a column made of a material that does not exhibit this 

characteristic. 

The other extreme is with m°-, that is an under-estimation of 

E. As the area of the steel-core reduces then Kb/Kc ;o and 

LE/L - 0.5. Thus, in that limit, the effective length has been 

underest; r%ated and an unccnservative estimation of the failure load 

results. eecausq the beams are relatively euch stiffer than the column 
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no moment is distributed Into tho column and as M FpULT Increases 

no account is taken of loss of load capacity due to moment action. 

Thus the loads become unconsurvative for short columns, end very 

unconservativo for slender columns. It can be seen from Fig. 8.9 

and Fig. 8.10 that the worst estimations will occur with L/0 between 

approximately 30 and 40 since in this region the gradient of the curve 

has its largest value. 

As discussed In Section 8.3.3 it Is generally the ratio of 

stiffness between beams and columns that is important and thus any 

error in the estimation of Ec, and hence m, would be refloctod in 

the calculation of both Kb and hc. 

It should be noted that to analyse the columns with the calculated 

effective lengths and end-moments the exact analysis has boon used. 

Thus any method, such as that of IIasu and Sonmerville(50), which can 

be used to design pin-ended columns with axial load and applied end 

moments exactly, or conservatively, is suitable for use in the 

method of Sectibn 8.3.2. 

8.5 The use of "squash toad" expressions for the design of elastically 

restrained composite columns. 

8.5.1 Introduction. 

The Code of Practice for the Structural Use of Concrete, CPIIO, (22) 

allows certain columns, within no-sway frames, to be designed using 

strplifled expressions based on a proportion of the squash load. 

If the column is short, that is the ratio LEID , 12, where LL 

is the elastic effective length of column, and carries axial load only 

then it need only satisfy the condition that 
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0 
N. 0.8 r'sq . 8.8 

It should be remembered that partial factors of safety for 

The value of 

tolerances. 

Ný0.9 U 
J 

0.9 N 
5q 

8.7 

Is used to make in iiiowanco for construction 

If tho column is in a fromo with an approximatoiy 

symmetrical arrange-rent of beans then the condition that has to 

be satisfied is that 

the materials and loadings have to be included in the expressions 

when used for the design of columns. 

The Draft Bridge Codo(82) has adopted a slightly different 

approach for short axially loaded columns in that equation 8.7 

is replaced by 

N, 0.85 K 
lY 

N 
sq 

8.9 

where Kly is the ratio of the permissible axial load, from a 

strut curve, to the squash load. 

Since a large proportion of practical columns satisfy these 

conditions design of columns is simplified by the use of squash 

load expressions. 

The object of this section is therefore to carry out an 

initial investig3ticn into the use of similar expressions for 

restrained composite columns. 

8.5.2. Are-atisessrnent of the p, 3ramatric surveys to establish 

squish load oxprnss i ons . 

The result, of the parametric surveys, cables 8.1 and 8.2 can 

bo used to establish the bounds for 3 simplified design method. 
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From Table 8.2 It Is noted that all but the most heavily loaded 

of the short columns can carry over 0.85 Nsqº From labte 8.1 

by linear interpolation, which Is conservative, the expected 

reduction in load capacity if the slenderness is Increased 

from L/0 - 10 to L/D - 15 Is for rý /KC ai is about 5%. 

The reason that these columns, oven with largo initial out 

of balance beam fixed and moments, ME, carry such high loads Is 

that as the axial load Is increased the moment is shed back into 

the beams, which must therefore be capable of resisting these 

increased morlents without losing stiffness. Woodl58ihas recommended 

that such beans should be designed as elastic continuous beams 

on props. 

8.5.3. Inclusion of biaxial end-norents. 

To enable the extension of the method to include biax! aliy 

loaded columns it is necessary to initially consider the possible 

effects of patterned loading. 

For an internal column it can be seen from Fig. 8.19 that 

to have the worst single-curvature moments acting on the column 

that either loading 'a' for major axis moments or loading 'b' 

for minor axis moments is required. In both cases, if the frame 

is symetric, the applied moment about the other axis is zero. In 

practice some allowanco is usually made to take account of 

construction tolerances, initial imperfections, etc. This 

allowance can be in the form of a seall moment. 
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Inspection of Table 8.2 shows that for small applied end 

roments, 1`. tß/MULI < 0.5, the offact on the failure load of a 

short column is small, less than 2141. From Table 8.1 It can be 

soon that Nux. Nuy. Thus substituting, in the modified 

aresler formula, for major axis single curvature bending with 

small minor axis moments gives 

La !. I_I 

NNU. 9TN N 
xy x uy uy 

and hence f1xy Hx 

Similarly It can be shown that the reduction for minor axis 

single curvature moments with small major axis momants is small. 

8.5.4 Proposed dosign method. 

The design method proposed is that if restrained columns 

satisfy the following criteria about each axis then they can be 

designed such that 

N<0.8 N5q 8.10 

where N is the axial load to be resisted by the column and 

Nsq is the ultimate axial load of the column. 

The criteria are 

(1) L/D 15 

(2) MF/"4ULT< 1.5 about one axis and 

0.5 about the second axis 

and (3) 1b/Ko >, 1.0. 
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Criteria (2) and (3) have to be satisfled at oach end of the 

column. These limits have been derived from Table 0.1 and Table 8.2 

and Section 8.5.3 and are based on analyses carried out on columns 

loaded In symmetric single curvature. Thus since this Is the 

worst possible condition the design method applies +0 frames In 

which unequal and-rcmernts oxist about one or both axes. 

The-ratio L/D " 15, is equivalent when Kb/Kc - I, to 

Leff/D - 10 which is slightly m4ro onerous than the CPIIO condition. 

However the design method does allow for heavier out-of-balance beam 

loadings. 

In cases In which the failure is about one axis-only then 

the conditions are that 

(I) L/D < 15 

(2) "F /1.4 
ULT ;1 .5 

and (3) KbIKc > 1.0 

for Equation 8.10 to be used. 
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L/0 M 10 
t1I I NOR MAJOR 

AXIS AXIS 

Kb /K 
c 

Loff /0 N/N N/N 
sq sq 

10 0 10 0.909 0.909 
10 1 6.8 0.971 0.976 
10 5 5.5 0.971 0.978 

20 0 20 0.667 0.714 
20 I 13.6 0.882 0.888 
20 5 11.0 0.900 0.900 

30 0 30 0.407 0.467 
30 1 20.4 0.693 0.742 
30 5 16.5 0.786 0.808 

40 0 40 0.250 0.294 
40 1 27.2 0.480 0.560 
40 5 22.0 0.626 0.683 

TABLE 8.1 RESULTS OF ANALYSES OF COLUiNS WITH END RESTRAINTS. 
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THEORETICAL PROPOSED METHOD 

L/D 1b/K M /M N m 10 m=   c F ULl TH 
Nsq Nf Nf Nf Nf Nf Nf 

NS N NTHý N 

40 I 0 0.480 0.470 0.98 0.667 1.39 0.250 0.52 

0.5 0.355 0.315 0.89 0.667 1.88 0.037 0.10 

1.5 0.217 0.093 0.43 0.667 3.07 0. 0 

2.5 0.143 0.019 0.13 0.667 4.66 0 0 

10 I 0 0.971 0.968 0.997 0.981 1.01 0.909 0.94 

0.5 0.954 0.884 0.93 0.981 1.03 0.720 0.75 

1.5 0.885 0.774 0.87 0.981 1.11 0 0 

2.5 0.792 0.600 0.76 0.981 1.24 0 0 

TABLE 8.2 RESULTS OF ANALYSES OF COLUMNS WITH BEAM LOADINGS 
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CHAPTER 9. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK. 

9.1 Introduction 

The object of this Chapter is to summarise the conclusions made 

In previous Chapters and rn ke suggestions where further work is 

required. References to the Sections where e fuller account of the 

conclusions or the behaviour of a column may be found are given. 

9.2 Conclusions. 

9.2.1 Theorotical analysis 

An analysis for blaxially loaded inelastic columns with both 

rotational and directional restraints at the column ends has been 

presented. Because the method involves the solution of the flexural 

differential equations using finite difference expressions an 

exact solution is obtained as the number of nodes for the finite 

difference expressions is increased. It is found that in general, 

however, no more than 16 nodes are required to give results within 

4% of the exact solution (Section 2.8). 

The main advantages of the analysis are that: 

(1) It includes the effects of directional restraint and 

thus if the restraint is zero a sway solution can be obtained. 

The value of the restraint can also be set to include the effects 

of infill panels etc. If the directional restraint is set to 

infinity then no-sway solutions are obtained (Section 2.3.3). 

(2) It can be extended to include additional effects such 

as axial shortening and torsion. 

t3) It only has small error matrices (Section 2.6). 
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9.2.2. Tests on composito columns. 

Eight rotationally restrained no-sway composite columns have 

been tested to failure using a purpose-built rig. The results from 

these tests have compared with predictions from the computer 

analysis and have shown good agreement (Section 7.3 and Table 7.2). 

The computed predictions of failure loads are, In general, conservative. 

One of the three biaxlally loaded and rostrained columns 

exhibited premature spalling along the compression zone and further 

research is required in this area to determine whether this may 

occur at loads low enough to cause problems at the servicoability 

limit state (Section 6.4). 

The more slender of the columns tested, RC4 and RCS, failed 

initially by instability followed by the formation of a hinge. 

(Section 6.3 Fig. 6.15). The remainder of the columns exhibited 

extensive crushing of the concrete and the formation of hinges 

followed by an instability failure (Chapter 6). A number of the 

columns tested exhibited moment reversal (e. g. Fig. 6.28). 

The results of the tests on composite columns and other tests 

I 

on pin-ended tapered steel columns(86) have shown the suitability 

of the test rig for a variety of column types, and conditions and 

loadings. 

9.2.3 Desion methods for camposito columns in rigid jointed 

frames. 

Preliminary studies of composite columns within rigid jointed 

frareworks have led to the following proposals: - 



254 

(1) That composite columns in frames with plastically 

designed composite beams will generally not exceed the permissible 

beam rotation capacity of the axial load is greater than 20% of 

the squash load of the column (Section 8.2.5). 

(2) That failure of short columns in frames with plastically 

designed beams and patterned loading may occur before the column 

end-rotation is large enough to have activated the first plastic 

hinge in the lightly loaded beam (Section 8.2.5) and until further 

investigations have been carried out the column should be designed 

to carry the full out of balance moment. 

(3) That the use of steel columns with plastically designed 

composite beams should include a check on the required end-rotation 

of the column to mobilise the necessary moment capacity since it 

is likely that this rotation will often exceed the maximum end- 

rotation of the beam, (Section 8.2.5). 

(4) That in frames with elastic beams the use of elastic 

effective lengths and moment distribution to calculate the end 

moments on the column to be designed is conservative, (Section 8.4). 

(5) That having calculated the end moments and the effective 

length of the column to be designed the method of Basu and Somerville(50) 

can be used to design the column, (Section 8.4). 

(6) If the column is stocky, L/D 15, restrained by beams 

at either end such that Ka/Kc >, I and has out of balance beam 

fixed end-r. ýments which do not exceed 1.5 times the ultimate moment 
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of the column at either end then the cross-section can be designed 

such that N, 0.8 N (Section 8.5). If the column is loaded 
sq 

about the second axis by out of balanco fixed end-moments of less 

than 0.5 times the ultimate moment and satisfies the conditions 

above it can also be designed as above. 

9.3 Suggestions for future work. 

The first extension to the computer program should be the 

inclusion of the moment-rotation relationships for composite beams. 

The behaviour of the composite limited substitute frame with joints 

assumed fully rigid can then be investigated and thus the design 

of composite columns with plastic beams developed further. The 

effect of choice of the value of effective elastic restraint from 

a composite beam, when the beams are designed elastically, on the 

behaviour of the column can also be investigated further. 

The program could also be used to carry out investigations 

into the behaviour of steel columns with plastically designed 

composite bea� . 

As more research is carried out on the behaviour of real joints 

the moment-rotation characteristics of these joints could be included 

in the analysis to allow the investigation of the behaviour of frames 

with real joints to be carried out. 

Shear restraint characteristics to include the effects of 

walls etc., can also be included so that sway frames can be investigated 

and rules formulated for when such frames can be treated as no-sway 

frames for design. 
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Further tests are required on biaxialiy restrained composite 

columns, especially with the non-linear type of restraint provided 

by composite beams. 

For the design of no-sway rigid-jointed frames Wood(58) has 

suggested that PXEy design is likely to lead to the most economical 

solution. Because composite columns tend to have less variation of 

the ratio of major to minor axis flexural rigidity and also tend 

to be stockier a PXPy solution may be the optimum. However the 

studies of restraint carried out in Chapter 8, Table 8.1, do show 

that a small amount of restraint can be beneficial and can also lead 

to simple design methods (Section 8.4). 

More research is obviously now required to determine the more 

economical approach and its limitations, if any. 
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Appendix Al 

The Newton-Raphson technique for the determination of roots of 

non-linear simultaneous equations. 

Ai. I Method for two equations. 

Consider two equations in two unknowns 

f (x, y) -0 

g(x, y) "0 (AI. I) 

and let x0, y0 be initial approximate solutions. The method 

seeks to obtain corrections Ax and Ay on xo and yo so 

that the corrected values will be 

X' XO # AX 

y Yo +eY (AI. 2) 

for which 

ftxo + ex, yo + ey) 0 

g(x0 + Ax, y0 + Ay) 0 tAl. 3) 

Expansion of equations Ai. 3 by Taylor's theorem gives 

f(xo + Ax, yo + Ay) " f(xP, y )+f, (xo, Yo) Ax 

+ fy(xo, Yo)A f ....  0 

g(xo + Ax, Yo + Ay) -9Cx0, y 0) + gX (xo, Yo)Ax 

+ 9y (xo, yo)A + .... "0 (AI. 4) 

where f,, fy, gX, gy are notation for partial derivations. 

Ignoring all terms higher than first order and rearranging 

A4 9 ives 
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fX(x0, y0)ax + fy(xo, yo)ay a -f(x0, Yo) 

9'(x0, y0)a + 9y(x0'YO)Ay   -g(xo. Yo) (A1.5) 

which can be solves simultaneously to give Ax and Ay. The 

process is then repeated using 

xi " xo " DX CAl. 6) 

yi - Yo + Ay 

and evaluating the functions and their partial derivatives at 

x, y. The process is repeated until the desired degree of 

accuracy is obtained. 

A1.2 Extension to 'n' equations and use in structural problems 

In most structural applications the differentiation is carried 

out numerically by incrementing each independent variable in turn. 

e. g. fx*(xo, y0)ax 

f(xo + b, yo) - f(xoya) dx 

d 

and similarly for f-(x0, yo)ey etc. y 

Substituting these differentials into A5 and rearranging gives 

f(x0 +6x, yob - fixo, yob ftxo'y +6 Y) - f(x01 

a x 

9(x0 + 6X, y0) - 9(XO, Yo) 

a X 

-f(xo, yo) ýx 

-ytxo, y0) Qy 

(A1.7) 

d 
Y 

9(xo, Yo + dy) ' g(x01y0) 

Y 

(A1.8) 

E 
c 
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thus [A] e- [EJ 1 [f] (A1.9) 

where E is the matrix of errors. Extension to solution of 

equations of higher degree is accomplished by the use of Taylor's 

Theorem and results in equations similar to A1.9 where the order of 

E is the same as the number of variables. 
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Appendix A2 Column analysis by integration of the shear equation. 

A2. I. Theory. A saving could be made In computation time in the 

moment curvature relationships If those can be entered with known 

curvatures, Ox and 0y and axial load, N. as the error matrix reduces 

from 3x3 to a single term. The following method is an attempt 

to do this whilst retaining the advantage of equilibrium on each 

iteration. 

Consider the column in Fig. A2-I then 

MI = M1 - Slx * Nv (A2. I) 

and hence 

dMi 
e _M +N 

dv (A2.2) 
1 dx 

dx 

As Mi - (EI)I(gi-2 
i 

if (El)i is variable, due to plasticity, cracking, etc., 

then dM1 
' 

d2v 
dM 1 
dEll 

-- EI d3v (A2.3) 
dx dx2 dx3 

Equation A2.3 can now be forward solved using central differences. 

If we consider a node in the analysis, Fig. A2-2, where v0, v10 V2 

and v3 are known then the curvature at node 2 can be calculated, 

and from the moment curvature relationships the value of El. dMI is 
dx 

calculated from equation A2.2 and 
dMl is found using backward 

differences on nodes 2 and I. 

Equation A2.3 can now be solved for d3v 
and hence, by the 

d3 
use of central differences v found. X 

4 
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The extension to the biaxial caso involves the solution of the 

flexural equations about both axes. The moment-thrust-curvaturo 

rotations are then entered with two curvatures ý and 0. 

A2.2 Starting analysis 

Consider the top and of a column, Fig. A2-3. If MI Is known 

then from the moment curvature relationships the curvature can be 

found and 
dEl 

estimated. As the shear will be known dM 
can be 

calculated from equation A2.2. Solution of equation A2.3 gives 
d3v 

and by use of finite differences operating on nodes 0, It 2 and 
dx3 
3 the deflection at node 3 can be found. 

A2.3 Comments on analysis. 

The analysis has been programed and various tests carried out. 

During each test external moments calculated during the analysis have 

been compared with the internal moments obtained from the moment- 

curvature relationships. Agreement has not always been good and this 

seems to be due to the calculation of the function dEl 
dP"1 

Discontinuities occur in the values due to elements being uncracked at 

one load level and then cracking, Fig. A2-4, and similarly with 

yielding elements. 

This method of analysis has thus been discontinued but it Is 

felt that the method is potentially powerful enough to warrant further 

investigation. 
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FIG. A2.3 NODES NEAR TOP OF COLUMN 
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Appendix A3 . Use of over relaxation to analyse columns. 

A3.1 Thy. Young(2l) has used a method of analysts based on the successive 

over-relaxation of deflection residuals. This method has been extended 

to biaxially loaded composite columns. 

Considering Fig. A3-1 the equilibrium equation is 

Mi Mo- No _S xI "M (A3. I) 

where Mj - Internal moment at node I 

and M0 - external moment at node 1. 

Mi is also linked by the curvature relationship 

m "-4, K (A3.2) 

where K is a function of the flexural stiffness EI. 

If the deflected shape is estimated then for the correct shape 

0K+ Nie - S1xI + 1.1, s0 (A3.3) 

Substituting in the finite difference expression for $ using node 

numbering as Fig. A3.2. 

vi + v3 - 2voý K+ Nvo - Sixt + M1 mp (A3.4) 
ß2 

where ß is the element length. 

If the incorrect deflected shape has been chosen then equation 

A3.4 is obviously not equal to zero. Equation A3.4 can b"e written as 

vl +v3-G0v0+Ho"0 

where Go ffi 2" rýM 

and No 
E26 CSx -M 

i1 
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The extrapolated Liebemann Method(87) then gives that the correction 

to be applied to a node is given by 

6von'1 - v0n+1 - von . Cl (vin's « vin - co von H0} (A3.5) 
0 

where a is a factor used to tune the computer and varies botweon 

I and 2, and n is the number of the iteration. 

A3.2 Comments on the analysis. 

The analysis has been programed and various tosts carried out 

using it. The main advantage of the method is that, as with the 

integration of the shear equation method, that it enters the moment 

curvature relationships with two curvatures and axial load. 

The disadvantages are that it is slow to converge and that if 

used in a restrained analysis nethod it would have to be used as an 

internal iteration. Each iteration is of course not in equilibrium 

and this is of no use for the preparation of charts etc. 

This method of analysis has been discontinued and is probably not 

suitable for highly non-linear problems such as composite column analysis. 
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Appendix A4. Derivation of finito difforonco oxpressions using Taylor's 
series. 

The Taylor series expansion around the point x" at Fig. A3.1 Is 

f(x) = f(a) + (x - a) fl(a) + (x - a)2 fll(a)/2: +.... 

Evaluating the series for the points x- x1 and x" x_1 gives 

fRf+ Lf I+R? f 11 + 
R3 f 111 + 

L4 f IV + .... (A4.1) 
100 21.0 3. o 4. o 

fI = fo - pf01 + f0 11 _ 
jL3 fo111 +f foly (A4.2) 

2' 3.4. 

Subtracting A3.2 from A3.1 and re-arranging gives 

f1 fl - f-1 
- t2 f 111 - 

R4 fV (A4.3) 
oTo5, o 

2t 3. 

the expression 
fi f-1 

is used in the analysis as the finite 
2L 

difference representation for f01 the terms, in equation A3.3, 

'2? fo11, _, fo1V .... are the error terms. 
5. 
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FIG. A4. I DEFINITION OF NODES AND DEFLECTIONS 
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Appendix A5 The stub stanchion effect. 

Consider the column and beam loading arrangement of Fig. A5.1. 

If the fixed and moments due to the beam (o3ding aro r"FA and 

MEG then 

ALI[ 2MA - 3MFA] (A5.1) 

for symmetric bean loads where 

mF13 *-l"Fa" 

EI Is the flexural rigidity 

L is the span of the beam 

and MA Is the moment at end A. 

From statics it is found that 

h1E ' '1A +P (RS + db)0 A 

hence 0A of 
C2ME - 3'A FA] L 

6EI + 2PLIV. + db) (A5.2) 
s 
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