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Summary 
This thesis presents research on the epidemiology and transmission dynamics of 
healthcare-associated infections (HCAI) and focuses on the antibiotic resistant 
hospital pathogen methicillin-resistant Staphylococcits aureus (MRSA). 

First, a stochastic mathematical model of MRSA transmission dynamics is 
developed in which patient movement within and between both hospital and 
community populations is considered. The effects on transmission of both 
surveillance and control within this setting are explored. Significant interplay is 
found to exist between surveillance and control; surveillance is shown to be 
essential to control success and in addition allows quantification of the level of 
control achieved. Furthermore, patient movement between hospital and 
community populations is shown to have a considerable impact on transmission 
dynamics and on the success of infection control strategies. 

Analyses of the demographics of a hospital population using a real hospital 
dataset are presented and the heterogeneous nature of the patient population 
described. Differences in admission patterns and length of hospital stay between 
age groups, gender and speciality are explored. Combining these analyses 
highlights the patient groups constituting the majority of patient days. Further to 
this, the heterogeneous nature of patient readmissions is described and the 
existence of a 'core group' of most frequently readmitted patients is illustrated. 
Overall, readmissions are found to be far more likely than previously thought, 
with the majority of patient admissions to hospital being readmissions. 

Given this finding of increased readmission, the hospital admission data is used to 
inform the development of a model in which real patient movements between the 
hospital and community are simulated and transmission within this setting 
explored. Endemic behaviour results and the change in movement patterns is 
found to influence control strategy success. Further to this, the model is extended 
to simulate transmission within a multi-centre setting where patient movements 
within a three-hospital and community network are simulated. This increase in 
heterogeneity within the patient population appears to allow endemic behaviour 
throughout all hospitals within the network. 11 
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Chapter 1 

Introduction 

1.1 Rationale 
Healthcare-associated infections (HCAI) pose an increasing threat to public 

health. The development of antibiotic resistance by many nosocomial pathogens, 

such as resistance to methicillin in methicillin-resistant Staphylococcus aureus 

(MRSA), has presented a particular infection control problem with the majority of 

English acute NHS Trusts being affected (CDSC, 2002) and number of isolate 

reports increasing (CDSC, 2004). With the emergence of resistance to 

vancomycin (the current drug of choice for MRSA patients) and the lack of 

development of alternatives, therapy is fast becoming limited. As a consequence, 

prevention of infection i. e. infection control, as opposed to therapy once infection 

has occurred, has become increasingly important. 

The aim of this thesis is to further explore the potential for control of HCAL such 

as MRSA, using mathematical modelling. By enhancing the understanding of the 

pathogen's transmission dynamics and by developing quantitative frameworks 

based on these dynamics, control policies can be investigated. The findings may 

therefore aid the development of cost-effective and successful infection control 

strategies (Pelupessy et al., 2002), helping to combat this threat to public health. 
I-- r-I 



1.2 Healthcare - associated infections 

HCAl are those in which disease is a result of exposure to infectious agents due to 

healthcare procedures (Grundmann and Hellriegel, 2006). The infections may be 

caused by a number of transmissible agents such as bacteria, fungi, viruses, 

parasites or prions and may involve a variety of clinical situations. The most 

common are those of the urinary tract, accounting for 30-35% of all HCAI. 

Surgical site infections (for example those at the skin incision, involving foreign 

implants like joint prosthesis or postoperative bone infection) represent a further 

20-30%, with Staphylococcus aureus the major pathogen (Huges and Anderson, 

2001). Lung infections leading to pneumonia account for 20-25% of HCAI, with 

the major causative organisms being Streptococcus pneumoniae or HeInophilus 

influenzae as well as S. aureus, Gram negative enterobacteria and Pseudomonas 

aeruginosa. These infections are often due to ventilator therapy: the weak state of 

patients coupled with the large amount of tissue involvement leads to high 

mortality (30%) (Huges and Anderson, 2001). Bloodstream infections account for 

a further 15%. Catheterisation is the common route of entry for the causative 

organisms like staphylococci, enterococci or Gram negative bacteria (Aygen et 

al., 2004). Progression of the bacteraernia to septicaernia or septic shock carries a 

relatively high mortality rate of 20%. (Huges and Anderson, 2001). 

In recent years HCAI have become an increasing risk to public health. It has been 

estimated that approximately 100,000 new cases occur in England and Wales each 

year (Glynn et al., 1997). Not only are they associated with an increase in 

morbidity and mortality of patients they also create logistic and economic 

problems for healthcare services. As a result, HCA1 have recently developed a 
high public profile, the topic is high on political agendas and has attracted much 

media attention with MRSA (and more recently Clostridium difficile (Starr, 

2005)) being regarded as the greatest threat. 



1.2.1 Why are these infections such a problem? 

Since the first applications of antimicrobial chemotherapy to control infections 

with micro-organisms, the frequency of resistance to antimicrobials by these 

pathogens has increased. Resistance has developed across groups of micro- 

organisms: in parasites such as malaria, viruses and the majority of bacterial 

pathogens (Stewart et al., 1998). Pathogens resistant to antimicrobials commonly 

used against them obviously present a treatment problem due to the limited 

effective therapeutic alternatives. Effectively an arms race has ensued; as the 

pathogen's resistance evolved, new or modified antimicrobial agents had to be 

developed (Stewart et al., 1998). However, now the development of new 

antimicrobials is slowing and the pharmaceutical industry is struggling to keep 

one step ahead of the microbes (Austin and Anderson, 1999a). The rate of 

introduction of new antimicrobial drugs has slackened making therapeutic options 

limited (Swartz, 1994); "natural selection" seems to be winning the arms race 

(Neu, 1992). 

As a consequence, resistance is now regarded as a major public health crisis and 

the evolution of bacteria within hospitals that are multiply resistant to all major 

antibiotics seems likely (Austin and Anderson, 1999a). It seems clear that a 

considered comprehensive strategy for antibiotic use is essential, built on a firm 

understanding of how indiscriminate use translates into the emergence of resistant 

strains (Levin 2001; Levin and Andreasen, 1999). 

So why do these infections flourish in healthcare environments? It is not only the 

use of broad spectrum antibiotics that make hospitals a favourable environment 

for the development of resistant strains (Tenover and McGowen, 1996), but also 

the frequent mixing of patients and healthcare workers (HCW) (Austin and 

Anderson, 1999a). Studies of various HCAI including vancomycin-resistant 

enterococci and fungal pathogens have demonstrated transmission via the hands 

of transiently colonized HCW (Bonten et al., 1996; Sanchez et al. 1992). 

Additionally, patients in healthcare environments are more likely to have open 

wounds or in\, asive de\'ices such as catheters and also more likely to be 
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immunocompromised; making an ideal entry point into an ideal environment for 

the pathogen. 

1.3 Staphylococcus aureus: a particularly problematic 

pathogen 
S. aureus is a Gram positive bacterium that can live harmlessly on many skin 

surfaces. Humans are a natural reservoir of S. aureus and it is commonly carried 

on the skin or in the nose of approximately 30%-50% of the (healthy) population 

at any one time (Kluytmans et al., 1997; Lowy, 1998). This asymptomatic, 

potentially long-term carriage is known as colonization, but it is the invasion of 

staphylococci into the bloodstream; due to a breach in the skin or mucosal barrier 

that causes infection (Lowy, 1998). 

Invasive infections, as opposed to colonizations, are usually minor and local 

causing symptoms such as pimples or boils. However, in some patients the 

infection may be more serious such as surgical wound infections, pneumonia, 

bacteraernia with metastatic abscess formation and a variety of toxin-mediated 

outcomes including gastroenteritis, scalded skin syndrome and toxic shock 

syndrome (van den Broek, 2003). Most infections can be treated with antibiotics, 

but the development of antibiotic resistance by S. aureus has made treatment a 

problem in these cases. 

1.3.1 The development of antibiotic resistance in S. aureus 

Antibiotics can be used to inhibit growth of many pathogenic bacteria. However, a 

characteristic of bacterial populations, that they have the potential for rapid 

evolution, has had a major consequence on the treatment of many HCAL the 

emergence and spread of antibiotic resistance (Austin and Anderson, 1999a). 

Resistant staphylococci were a clinical problem as early as 1944 when 

sulphonamide-resistant strains appeared among the wounded during the war 

(Massad et al., 1993). Penicillin resistance emerged in S. altreus in the early t, 
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1940s, shortly after its introduction (North, 1946) and by 1948 it was reported that 

over half of the hospital staphylococcal strains were penicillin-resistant (Barber 

and Rozwadowska-Dowzenko, 1948). Following this, as new antimicrobial agents 

were introduced (for example streptomycin, tetracycline, erythromycin and 

chloramphenicol) resistance to them developed and by the end of the 1950s 

multiply resistant bacteria were common. 

The introduction of methicillin in 1960, a penicillinase-stable antibiotic, seemed 

to be the answer to these increasing therapeutic problems. However, the relief was 

short-lived as naturally occurring resistance was reported just a year later. By the 

late 1960s resistance to methicillin was increasing and a matter of concern within 
hospitals (Benner and Kayser, 1968). However, the 1970s brought a decrease in 

the incidence of multiple antibiotic resistance and methicillin resistance declined, 

but the problem of methicillin resistance had by no means gone for good. By the 

1980s new 'epidemic strains' of MRSA appeared. Epidemic MRSA (EMRSA) 

strains differed from those MRSAs of the 1960s, in that, rather than being plasmid 
borne, resistance was carried on the chromosome. The first, EMRSA-l caused 

outbreaks in London hospitals before spreading beyond (Cooper et al., 2003). 

Currently in the UK, EMRSA- 15 and EMRSA- 16 have become widespread since 

hospital outbreaks in the early 1990's and the emergence of a new strain 

(EMRSA-17) associated with particularly high resistance has recently been 

reported (Aucken et al., 2002). 

Resistance to methicillin is brought about by an alternative penicillin-binding 

protein (PBP 2a), coded for by the mecA gene, which is unable to bind P-lactam 

antibiotics such as methicillin (Westran and Struthers, 2003). The Ine(A gene and 

associated inec-DNA is acquired through horizontal transfer, (initially as a result of 

the horizontal transfer of the tnecA gene from S. sciltri (Wu et al., 1996)) and it is 

the integration of this gene into the chromosome of methicillin-sensitive S. allreus 

that confers resistance (Stefani and Varaldo, 2003). The percentage of a bacterial 

population that expresses the resistant phenotype varies according to the 
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environmental conditions (Lowy, 1998) and considerable variations in prevalence 

exist between institutions and geographic areas (Stefani and Varaldo, 2003). 

Despite the fact that alternative antimicrobials that can be used to treat MRSA 

infections do exist, such as the glycopeptides vancomycin and teicoplanin and the 

oxazolidone linezolid, with intermediate and even full resistance now being 

reported (CDC, 2002; Hiramatsu et al., 1997; Howe et al., 1998, Tsiodras et al., 
200 1) it seems that it is only a matter of time before these too become redundant. 

1.3.2 Route of transmission 

MRSA is almost always spread by direct physical contact i. e. infection is almost 
invariably acquired by transmission of pre-existing MRSA clones rather than 

resistance developing de novo during antibiotic treatment. The major reservoir of 
infection consists of both infected and colonized patients and personnel in the 

hospital (Boyce, 1992; Salgado and Farr, 2003). Transmission of bacterial 

pathogens by the transiently colonized hands of HCW is well documented 

(Cookson et al., 1989; Farrell et al., 1998; Grundmann et al., 2002; Salgado and 

Farr, 2003) and it has been estimated that 80% of HCW who treat MRSA-infected 

wounds may carry the organism on their hands for as long as three hours (Peacock 

et al., 1980; Thompson et al., 1982). The bacteria may also be transmitted via 

contamination of the environment (Bhalla et al., 2004), however the extent of the 

role the environment plays in transmission is controversial (Hota, 2004) and many 

studies have shown this role to be limited (Bradley et al., 1991; Cookson et al., 

1989; Grundmann et al., 2002). 

1.3.3 Risk factors for infection 

Risk factors for MRSA infection include previous hospital isation, underlying 

disease, recent antibiotic use, presence of surgical wounds and catheterisation 

(Ayliffe et al. 1998; Braun et al., 2003-, Grundmann et al., 2002: Swartz, 1994). In 

addition, studies into bed-occupancy, overcrowding and the role of HCW (Blok et 

al., 2003, Borcy, '1003-, Nijssen et al., 2003) indicate that greater staff workloads 

and ovci-crowdincy also correspond to an increased risk. L_ 
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Hospital management itself is therefore linked to many of the potential risk 

factors. Hospital management has changed dramatically over the past decade, 

budget restrictions and competition between institutions have created challenges 

for infection control (Dettenkofer et al., 1999). 

Recent studies suggest that the acquisition of MRSA is not restricted to the 

hospitalised or even to those with predisposing risk factors (Salmeninna et al., 

2002) with multiple studies reporting MRSA as a community pathogen (Bukharie 

et al., 2001; Herold et al., 1998; Pate et al., 1995; Salgado et al., 2003). Recently 

in the United States, the number of community-associated MRSA (CA-MRSA) 

infections has increased dramatically (King et al., 2006; Moellering, 2006) and 

MRSA is now not only being considered as a nosocomial problem. CA-MRSA 

differ from healthcare-associated MRSA in that CA-MRSA are most commonly 

still susceptible to non-p-lactam antibiotics and, more worryingly, are correlated 

to the Panton-Valentine leukocidin (PVL) toxin gene, itself associated with highly 

lethal necrotizing pneumonia (Naimi et al., 2003; Wannet et al., 2005; Gillet et 

al., 2002). 

1.3.4 Epidemiology 

Despite the fact that the importance of staphylococci as the major cause of 

nosocomial infections actually lessened in the early 1960s, to be replaced by 

enteric Gram negative bacilli, enterococci and fungi (Massad et al., 1993), they 

are now one of the most important nosocomial infections worldwide. MRSA is 

widespread and endemic in many UK hospitals (Cooper et al., 2003). In 1990 

MRSA accounted for less than 2% of S. aureus bacteraernias in the UK, but recent 

findings show the figure to have increased to approximately 45% by 2005 (Boyce 

et al., 2005). Furthermore, methicillin-resistant strains, rather than replacing 

methicillin-scrisitive strains, seem to have added to them, further increasing the 

burden of infection. (Cooper et al., 2004a; Farr, 2004). Moreover, the recent 

emergence of vancomycin-resistant S. altreus (VRSA) implies that the eventual L- 
loss of this current drug of choice for MRSA positive patients is inevitable. 
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Infection with antibiotic resistant organisms has been associated with significantly 

higher morbidity, mortality and hospital costs than Infections caused by 

susceptible organisms (Salgado and Farr, 2003). The economic impact of MRSA 

is considerable, with costs associated with increased length of stay, treatment, 

extra staff etc. The attributable length of stay estimated to be between 2 and 8 

days (Abramson and Sexton, 1999; Cosgrove et al., 2005). Each case has been 

estimated to carry an additional cost of f-2500 due to increased patient stay and 

additional antimicrobial treatment amongst other costs (Mehtar, 1995). 

1.3.5 Control measures 
The lack of treatment options has meant that prevention of infection is all the 

more crucial; effective infection control is needed to combat the problem. How 

best to control MRSA remains a controversial matter and the value of infection 

control strategies often debated (Rahman et al., 2000). As a result, control of 

nosocomial infections has been attempted using a variety of methods, including: 

prevention of horizontal transmission, for example through nurse cohorting, 

patient isolation or increased handwashing compliance of HCW; controlled 

antibiotic use to inhibit further selection of resistant strains and the 

implementation of epidemiological surveillance systems including screening 

programmes. The possibility of vaccination seems unlikely and strategies for 

developing vaccines are scarce (Balaban et al., 1998). However, despite 

previously being associated with a number of problems, the potential for use of 

bacteriophages as therapeutic agents looks promising; further studies still need to 

be undertaken, but in a setting of ever decreasing antibiotic options phage therapy 

may be a valuable alternative (Sulakvelidze and Morris, 2001). 

As MRSA infection is almost invariably acquired by transmission (particularly via 

the hands of HCW), rather than developing de novo, effective infection control is 

usually brought about by preventing spread. There are two basic approaches: 

universal and targeted. Universal approaches, such as increasing hand hygiene, 

aim to reduce the transmission opportunities between patients, but are not 

specifically aimed at patients known to be infectious. If they can be implemented 
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to such an extent that each infectious patient produces (on average) less than one 

other infectious patient, then this intervention alone is sufficient to control 

infection within the hospital. In contrast targeted approaches rely on identification 

of infectious cases through surveillance, and taking steps to reduce their 

infectiousness from the point of detection. 

With infection rates relentlessly increasing, old guidelines for control have 

become infeasible and impractical to perform. Currently, flexible, targeted 

approaches, based on medical and scientific rationale and suggestive evidence, 

tend to be favoured (Ayliffe et al., 1998; Cooper et al., 2003). As a consequence 

strategies are not uniformly applied and vary from hospital to hospital. The 

endemic state of MRSA in the UK makes control an uphill struggle and coupled 

with an increasingly aware and demanding public even more pressure has been 

put on, already overstretched, infection control resources. 

Infection control 'bundles', an approach combining many interventions, are 

currently favoured in the UK. The key to such control methods (as included in the 

current guidelines (Coia et al., 2006)) is handwashing and a combination of 
detection and isolation. 

" Handwashing 

Handwashing is a non-targeted measure that aims to reduce the probability of 
horizontal transmission through direct physical contact by curtailing the infectious 

period. Studies have consistently shown that the transient carriage of MRSA on 

the hands of HCW can be effectively reduced by timely handwashing with liquid 

soap and water (including Thompson et al., 1982; Peacock et al., 1980, Pittet et 

al., 2006). However, the efficacy of handwashing is often reduced due to 

problems attaining and maintaining compliance (Pittet, 2000). 

" Isolation 

Despite isolation being a pivotal component of most control packages the r-I 
evidence of its efficacy is contradictory. Cooper and colleagues (2003-, 2004b) 
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describe how the existing narrative reviews differ in their conclusions as to the 

efficacy of isolation. In view of the apparent lack of systematic assessment they 

perform a systematic review of the literature and conclude that "no well designed 

studies exist that allow the role of isolation measures alone to be assessed". 

However, despite the limitations of existing research they find evidence that 

concerted interventions that include isolation measures to be able to reduce 

transmission. Similarly, Mulligan and others (1993), in a consensus review, state 

that studies examining the impact of stric tly-fol I owed isolation measures found a 

decrease in the incidence of endemic MRSA infection and cross-transmission. 

From an economic point of view, Jernigan et al. (1996) claim that, when studied 

carefully, the implementation of isolation measures appears to be cost-effective. 

0 Screening 

Screening is used in situations where earlier detection and therefore earlier 

treatment improves the prognosis of a disease. In terms of HCAI, detection of 

infection or colonization allows control measures to be imposed upon detected 

individuals; not only improving the outcome for the individual, but also being 

beneficial for the population through preventing ongoing transmission to others. 

Screening may be applied to a whole population (mass) or to particular selected 

individuals (targeted) and may occur systematically or opportunistically. 

MRSA transmission can occur from both colonized and infected patients, 

therefore both colonized and infected MRSA patients make up the within-hospital 

reservoir of infection. Infected individuals will most likely be detected through 

clinical specimens, taken due to overt clinical symptoms such as skin infections 

like abscesses or boils, or due to systemic infections giving symptoms such as 

fever, vomiting and diarrhoea. However, if carriage is asymptomatic, no overt 

clinical symptoms will be present making it unlikely for a clinical sample to be 

taken. It has been estimated that between 70%-90% of hospitalized patients 

colonized with MRSA are never identified (Coello et al., 1997; Jernigan et al., 

1995). Detecting MRSA in routine clinical samples has been shown to be 

inadequate and epidemiological surveillance allowing identification and treatment 
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of carriers is crucial to epidemic control and reduction in infection numbers 

(Coello et al., 1997; Cookson, 1997; Farr, 2004; Lepelletier, 2004). The 

importance of this population was highlighted in a study by Thompson et al. 

(1982) in which a hospital MRSA epidemic was controlled only once colonized 

patients were identified by active surveillance (i. e. in addition to those identified 

by clinical cultures). 

Current screening guidelines 

As early detection of carriage of resistant strains is essential for appropriate 
isolation and effective infection control (Pittet and Waldvogel, 1997), it is clear 

that some kind of screening of the hospital population is required. Current UK 

guidelines (Coia et al., 2006) state that at the very least, basic infection control 

measures should include 'alert' organism surveillance, i. e. the continuous 

monitoring of specified organism incidence (in this case MRSA) isolated by the 

microbiology laboratory. Further guidelines depend on the state of MRSA within 

the hospital and the particular scenario. Where MRSA is endemic the infection 

control team are advised to continue to assess the occurrence of MRSA and 

whether most cases are new acquisitions within the hospital or admissions and 

transfers of already affected patients. The approach in medium to low risk areas 

where MRSA is endemic includes admission screening of patients who are known 

to be previously infected or colonized with MRSA, frequent re-admissions or 

those transferred from high risk populations and potentially the screening of 

contact cases. In high risk areas these screening activities are expanded so both 

admission and discharge screening occurs and, in some cases, staff screening. 

Finally, in an acute hospital with endemic problems it is advised that if a case is 

identified, detection of colonized or infected patients is carried out on admission, 

followed by admission to an isolation room or ward until deemed MRSA free. 



Influences on screenini2 success 

Sample site 

The success of screening seems to be partly dependent on the site sampled. In a 

study of 403 MRSA carriers, the sensitivity of various sample sites at detecting 

carriage was found to be 78.5% for sampling from nose alone; 85.6% for nose and 

throat; 94.3% for nose and perineum and 98.3% for nose, throat and perineurn 

(Coello et al., 1994). The current guidelines state that initially nasal swabs should 

be taken, following this admission screening, ward screening and screening of 

staff with positive nasal swabs should include nose, perineum/groin, lesions and 

manipulated sites (e. g. indwelling intravascular catheters). 

Sensitivity and SpecificitY 

As with most medical tests screening is not 100% accurate and may falsely 

identify both positives and negatives. The sensitivity (proportion of true positive 

results detected) and specificity (proportion of true negatives) of any test is 

unlikely to be 100% and there is usually some kind of trade-off between the two, 

however sensitivity is usually prioritised over specificity. 

Therefore, in addition to the site sampled, there is also variability in success due 

to the particular test used. Recent development of new media (such as 

CHROMagar) are both sensitive and specific and may aid in the reliable 
identification of MRSA (Loulergue et al., 2006). 

Titne to detection of resistance 

Clearly the time taken between screening and implementation of control will have 

an influence on whether a particular screening strategy would be of benefit. If 

found cost-effective, new advances in rapid diagnostic testing techniques based on 

immunological or molecular technologies, such as polymerase chain reaction 

(PCR) assays, may offer a fast and effective alternative to current techniques 

(Metan et al., 2005, Tenover, 2007). 
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1.3.6 Uncertainties surrounding infection control 
With therapeutic options scarce, and becoming scarcer. the focus is shiftincy to a 

provision of preventative rather than reactive measures. However, studies on 
infection control measures are limited (Cooper et at., 2004b) and evidence for 

their effectiveness sparse and often contradictory (Cooper et al., 2003). Due to this 

uncertainty over efficacy coupled with the inherent costs and disruption involved, 

how best to control MRSA remains a much debated matter. Interventions can 
increase costs to the hospital, increase workloads for staff and disrupt a hospital's 

working practice and despite some evidence suggesting infection-related costs 

exceed those of screening and control (Casewell, 1996: Chaix et al., 1999, Cooper 

et al., 2003; Papia et al, 1999), the costs and benefits associated with screening are 
largely unknown. This may lead to reservations regarding strategy implementation 

and so it is important, at the hospital level, to be certain the benefits will outweigh 

these considerable costs and so a greater understanding of the potential benefits is 

clearly needed. 

Performing well-controlled trials of the numerous possible interventions is 

problematic (Farrington et al., 1998) and, in addition, it is often difficult to 

determine whether an intervention under trial has been successful, compare 

relative merits of interventions or identify the reasons for success/failure (Lipsitch 

et al., 2000). For example, as control policies often comprise many elements many 

confounders exist, thus making assessment of individual contributions difficult. 

Similarly, it is sometimes the by-product of an intervention that causes a change in 

outcome. Furthermore, fluctuations and trends seen ordinarily can be falsely 

attributed to interventions. 

1.4 Mathematical modelling 
Formulation of a mathematical model which simulates a particular system forces a 

theoretical framework to be established and thus complex relationships to be 

brouctht down to their simplest form. This requires determination of the factors of 

prime importance and obtaining information on them. This process is not purely 

mathematical, but relies on clinical medicine also, ensuring the model makes t-- 
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'biological sense'. This requires an understanding of underlying processes 

involved (Bonten et al. 2001) and, in addition, helps identify areas In which more 

precise information is needed (Austin and Anderson, 1999a). For example. in 

terms of antibiotic-resistant pathogens, data on frequency of resistance coupled 

with drug consumption in a population over time are sparse as well as areas such 

as the pharmacodynamics of the interaction between drugs and bacteria (Austin 

and Anderson, 1999a). 

Once data are available key parameters can be estimated and used to develop 

mathematical models, which can then be used for possible scenario analysis, and 

even theoretical models (in the absence of good data) can help to develop further 

hypotheses for investigation (Austin and Anderson, 1999a). 

Models of infectious diseases aim to simplify the process of disease spread and 

thus to enhance our understanding of transmission dynamics. These models can 

apply to all infectious diseases; bacterial, parasitic and viral and mathematical 

models have already enhanced our knowledge in a number of areas (Bonten et al., 
2001). For example, in estimating the impact of HIV, in the design of vaccination 

programmes (Levin et al., 1999) or in determining effectiveness of infection 

control measures (Anderson and May, 1991). Models of viral infections in 

particular have lead to substantial advances in the understanding of disease 

progression and the effects of therapy (Austin et al., 1998). In terms of bacterial 

infections, within-host dynamics are less well understood, making mathematical 

models less common (Levin et al., 1997). 

Mathematical models of the transmission dynamics of pathogens provide 

quantitative predictions and a formal framework, thus allowing assessment of 

interventions, control measures and criteria for eradication, prior to 

implementation (Austin and Anderson, 1999a-, Austin et al., 1999; S6bille et al., 

1997, S6bille and Valleron, 1997). For example Cooper et al., (1999) presented a 

mathematical model for the spread of hand-borne nosocomial pathogens such as 

S. am-eits within a general medical -surgical ward. Simulations of the course of an 
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outbreak were used to evaluate possible effects of a number of control measures 

including handwashing and surveillance. In short, models help to quantify the 

transmission process and effects of infection control (Bonten et al., 200 1) 

Furthermore, models incorporating economic analyses allow exploration of the 

cost-effectiveness of control strategies, an important criterion in intervention 

evaluation. However, few studies have attempted this, examples of those which 
have addressed putative costs (and cost benefits) involved in infection control 
include those by Ayliffe et al. 1998; Kunori et al. 2002; Lauria and Angeletti, 

2003 and Vegni et al., 2004. 

1.4.1 Models of the spread of antimicrobial resistance 

As resistance to antimicrobial drugs is now a serious clinical problem in a wide 

range of infections there is a growing need to understand the factors that lead to 

the evolution of the spread of resistance. It is likely a combination of 

pharmacological, genetic, ecological, and social factors are responsible for the 

patterns of resistance seen and mathematical models of the population dynamics 

of sensitive and resistant organisms are beginning to provide explanations for 

these patterns of resistance (Levin et al., 1999). 

Mathematical models of the pharmacokinetics of antimicrobial agents (i. e. drug 

absorption and disposition) can be linked with within-host pathogen population 
dynamics to give models of the dynamical response of the infectious agent, 

termed pharmacodynamics. However, the precise pharmacodynamic effects of 

antibiotic resistance are still uncertain (Austin and Anderson, 1999a). Many 

models of bacterial pathogens focus, instead, on the development and spread of 

antimicrobial resistance within the bacterial population for example in a study by 

Austin and Anderson (1999a) mathematical modelling is used to address the issue 

of resistance at a number of levels: within the host, within and between hospital 

settings as well as the epidemiology and evolution in communities of people. 

Mathematical modellers can use such frameworks to address questions such as 

whethei- tailoring drug use/ decreasing treatment rate will sufficiently decrease the 
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frequency of resistant microbes (Austin and Anderson, 1999a; Stewart et al.. 

1998). 

Studies by Massed et al. (1993) and Bonhoeffer et al. (1997) address the 

population dynamics of organisms such as Mycobacterium tuberculosis and 

Neisseria gonorrhoeae, i. e. organisms that cause disease, leading to clearance 

upon antibiotic treatment. The first group, Massad et al. (1993) find that antibiotic 

treatment creates a selective pressure causing a shift in the outcome of 

competition between sensitive and resistant strains. While Bonhoeffer et al. 

(1997) find that, in most cases, the most beneficial antibiotic strategy in terms of 

minimizing resistance is to treat with combinations of antibiotics. However, they 

note that the spread of resistance due to treatment will be faster than the decrease 

of resistance through removal of treatment, a result which agrees with the results 

of other resistance models (Anderson and May, 1991). 

The studies by Levin et al. (1997) and Stewart et al. (1998) also address the 

development of resistance, but differ in that the bacteria they study have the 

capability of asymptomatic, long-term colonization. Many of the organisms 

causing nosocomial infections, e. g. Streptococcus pneumoniae, S. aureus, 

Enterococcus spp., and Escherichia coli, are of this kind, where disease only 

occurs when the (normally commensal) bacteria enter a sterile site (Bonhoeffer et 

al., 1997). Models for these types of bacterial infection also suggest that in order 

to deal with the problem of antibiotic resistance an understanding of the 

population dynamics of both sensitive and resistant strains is crucial. 

Few studies combine population genetics issues, which determine the evolution 

and spread of resistant organisms, with the transmission dynamics in host 

populations (Austin et al., 1999; Bonhoeffer et al., 1997; Levin et al., 1997: 

Sebille et al., 1997). It seems that an interdisciplinary approach is required to 

understand resistance evolution and spread, and so too to understand how best to 

manage it (Austin and Anderson, 1999a, Stewart et al., 1998). 
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1.4.2 Models of the transmission and control of HCAI 

Despite the uncertainty over how best to control hospital pathogens very few of 

the multitude of studies on infection control methods provide a quantitativc 

measure of practical efficacy (Bonten et al. 2001). In terms of nosocomial 

pathogens, mathematical models can help give reasons for observed patterns and 

the increased understanding of their dynamics means theoretical guidelines can be 

provided for the design and development of cost-effective and successful infection 

control strategies ( Grundmann and Hellriegel, 2006; Pelupessy et al., 2002). 

Models of infectious disease transmission commonly fall into one of two 

categories: deterministic or stochastic. Deterministic models use differential 

equations to approximate the mean behaviour from a set of initial conditions. The 

main advantage of this 'analytical' approach is generality (Bonten et al. 2001). In 

contrast, stochastic models define movements of individuals to be chance events 

occurring at random time intervals determined by the assumed model parameters. 

A stochastic model simulates transmission given those parameter values and as 

chance events are captured, the outcome will be different for different simulation 

runs. An advantage of this type of model is therefore that the range of possible 

outcomes that may occur can be seen, accounting for the effect of random 
fluctuations (Bonten et al. 2001). A disadvantage, however, is that the outcome is 

only applicable to the parameter values chosen (Bonten et al. 2001). 

Due to the small number of patients in a hospital population, particularly single 

wards, chance or stochastic effects may have a large influence on the transmission 

dynamics (Grundmann and Hellriegel, 2006) and therefore stochastic models are 

generally thought to be the most appropriate for modelling HCAL 

In the past 7 or 8 years there have been a number of mathematical models looking 

specifically at nosocomial infection transmission dynamics, providing testable 

hypotheses and allowing quantitative assessment of infection control in both Z-- 
hospitals and communities (Austin and Anderson, 1999a; Austin and Anderson, 

1999b, Austin et al., 1999, Bonten et al., 200 1; Cooper et al., 1999; Cooper et al.. 
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2003; Cooper et al., 2004a; D'Agata et al., 2002; Grundmann et al., 2002, Levin, 

2001; Lipsitch et al., 2000; Sebille et al., 1997; Sebille and Valleron, 1997). 

The earliest models of HCAI concentrated on transmission dynamics within a 

single hospital ward (Austin et al., 1999; Cooper et al., 1999; D'Agata, et al.. 

2002-, Sebille et al., 1997). Cooper et al. (1999) use a single ward model to 

investigate the effects of handwashing and reducing the number of colonized 

admissions. A reduction in MRSA spread is shown by both strategies. In addition, 

their results highlight the effects of stochasticity on transmission events. Similarly 

Austin et al. (1999) use a single ward model to investigate control measures on 

the prevalence of vancomycin-resistant enterococci (VRE). The framework of this 

model is based on those of vector-borne diseases (i. e. using the Ross-MacDonald 

equations (Anderson and May, 1991)) in that the HCW are viewed as vectors and 

patients definitive hosts. They find hand hygiene and nurse cohorting to be 

effective control methods, although the constant introduction of VRE colonized 

patients allowed endemicity. Grundmann et al. (2002) made use of this model in 

the context of MRSA transmission and find staffing levels to be of critical 
importance. 

Sebille et al. (1997) propose a deterministic single ward model in which MRSA 

transmission occurs through patient and staff contact. Both hand disinfection and 

antibiotic use were explored. They found that the number of patients being 

colonized by strains from HCW was crucial to the transmission dynamics, whilst 

both hand hygiene and antibiotic policy showed surprisingly little effect. 

Curtailing admission of colonized patients however, allowed rapid eradication of 

the pathogen. 

S6bille and Valleron (1997) also use a stochastic approach to simulate the spread 

of an antibiotic-resistant pathogen. They use a Monte Carlo simulation in which 

every patient and staff member is represented, such that heterogeneities between 

individuals can be considered. In this study they highlight the importance of 
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handwashing and the role of admitted colonized patients in the initiation and 

perpetuation of outbreaks. 

1.5 An overview of the thesis 

Modelling HCA1 transmission dynamics and infection control 

In Chapter 2 the development of a stochastic mathematical model describing the 

transmission of a HCAI, in and between hospital and community populations, is 

presented. At present, most models of the transmission dynamics of MRSA and 

HCAI have addressed only transmission either within the hospital (such as work 
by Bonten et al., 2001; Grundmann et al., 2002 and Sebille et al., 1997) or, more 

rarely, within the community (Bukharie et al., 2001; Leman et al., 2004; Salgado 

et al., 2003). However, it seems likely that heterogeneity of the population will 
influence dynamics considerably (Cooper et al., 2003) and therefore needs to be 

considered in infection control efforts (Smith et al., 2004). Therefore it can be 

seen that the inclusion of the movement patterns of individuals between the 

hospitals and the community are necessary. 

In Chapter 3 this model will be used to assess the impact of infection control 

measures. Both surveillance (patient screening) and control (an isolation ward) are 

examined, and the interplay between the two investigated. 

Using data to inform the model 

Demographics of the patient population are important to the transmission 

dynamics of HCAI as they define the context in which infection is acquired. 

Despite the existence of a wealth of data there is little published on the 

demographics of patient populations within hospitals. In Chapter 4 hospital 

admission data is used to describe patient demographics of a hospital population 

over a seven year period. 

The Univcrsity Hospitals of Leicester (UHL) NHS Trust was used for the 

purposes of this study. The Trust comprises three hospitals: Leicester Royal 
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Infirmary, Leicester General Hospital and Glenfield General Hospital, which 

collectively have a catchment area of approximately I million people across the 

city of Leicester, and the counties of Leicestershire and Rutland. The Trust is the 

main provider of secondary and tertiary healthcare in this region and consequently 

the majority of hospital isations within the community occur within the Trust. 

Despite the potential importance of the community population to the transmission 

dynamics of HCAI, to the author's knowledge, there are no studies describing t-- 

movements to and from the hospital and community. An increased knowledge of 

the patient population, such as the proportion of patients likely to come back into 

hospital after discharge, how many times they are likely to admission hospital, 

how long it is likely to be between each admission, how long they are likely to 

spend in hospital on each admission and so on, may provide insight into HCAI 

transmission. An increased understanding of such movement patterns, in turn 

allowing increased understanding of HCAI such as MRSA and C. difficile, would 

provide a better basis from which to design control strategies. Under this 

rationale, Chapter 5 investigates the readmission patterns of the patient population 

at the UHL NHS Trust. 

Chapter 6 further extends the model of HCAI transmission dynamics developed in 

Chapters 2 and 3 to simulate transmission in a setting of realistic patient 

movement patterns based on those for the UHL NHS Trust presented in Chapters 

4 and 5. Again, the impact of surveillance and control strategies are assessed. 

Developing a multi-centre model of HCAI transmission dynamics 

As the UHL NHS Trust data includes (and distinguishes between) admissions for 

the three hospital sites that comprise the Trust, patient movement patterns around 

a multi-centre healthcare system can be established. Using these movement 

patterns, in Chapter 6a three hospital model is developed and transmission 

dynamics within a multi-centre setting investigated. 
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Chapter 2 

Developing a mathematical model of 
MRSA transmission dynamics 

This chapter demonstrates the use of mathematical models as a tool for further 

understanding infection transmission dynamics and subsequently their use in 

theoretical assessment of control strategies. Firstly the framework of a model of 
HCAI transmission dynamics is described. Following this is the extension of this 

model such that effects of infection control strategies can be considered. An 

analytical exploration of this system is presented in which factors influencing 

transmission dynamics are investigated, in addition the results of a deterministic 

version of the model are presented. Some of the research included in this chapter 
is published (Robotham et al., 2007b) and has previously been presented at the 

Sixth International Conference of the Hospital Infection Society, Amsterdam, 

Netherlands. Where indicated (in the figure legends) research has been undertaken 

in collaboration with C. A. Scarff. 

2.1 Model rationale 
Most models of the transmission dynamics of MRSA and HCAI have addressed 

only transmission either within the hospital (such as those studies outlined in 

Chapter 1) or, more rarely, within the community (Bukharie et al., 2001, Leman et 
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al., 2004; Salgado et al. 2003). However, heterogeneity of the population may 

influence dynamics considerably (Cooper et al., 2003). 

It seems intuitive that in studying HCAI focus should be on the hospital, with 

carriage and transmission in the community being largely ignored, especially for 

such pathogens as MRSA where the colonization of healthy people is generally 

harmless. However, the recent work by Cooper et al. (2003 and 2004a) and Smith 

et al. (2004) highlights the importance of considering the heterogeneous nature of 

the population in infection control efforts. These studies indicate that movement 

of carriers between hospitals, long-term care facilities and the community may 

play a large part in determining the dynamics of pathogenic spread. Upon 

consideration of heterogeneities the predicted dynamics become consistent with 

reported epidemic patterns (in the form of fast and slow phases). Similarly, a 

recent model by Cooper et al., (2004a) suggests that the interaction between 

hospital and community may produce different long and short-term dynamics and 

may explain many of the epidemiological features of the transition from epidemic 

(short, limited outbreaks) to endemic (persistent) behaviour. 

Therefore it can be seen that studies including the development of contact 

networks describing movement patterns of individuals between hospitals and 

between the hospital and the community are necessary. The inclusion of 'hospital 

demography' (i. e. a network structure) will allow the transmission dynamics of 

MRSA to be modelled considering heterogeneity. 

In view of this, this work builds on studies, particularly those by Cooper et al. 

(1999-, 2003; 2004a) which use stochastic models to explore the spread of 

nosocomial pathogens, and the model described here simulates transmission 

within and between hospital and community populations. 

2.2 Description of model framework 

The framework is based closely on Cooper et al. (1999-, 2003: 2004a). A closed 

population is modelled consisting of both a fixed size hospital and the community L- 
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it serves. Individuals in both the hospital and community populations are 

categorised as either MRSA-positive and infectious (either infected or colonized) 

or MRSA-negative and susceptible to infection (for brevity referred to as infected 

and susceptible respectively from now on). 

Infected inpatients are classified into one of three groups: isolated (ISO); detected 

but not isolated (DNISO) or undetected infected (UIH)- Isolated patients are those 

known to be MRSA-positive and consequently placed in an isolation facility, 

detected but not isolated patients are those known to be positive, but who cannot 

be isolated; and undetected infected patients are those not known to be infectious. 

The term isolation considers any mechanism by which patients are effectively 

isolated in terms of transmission; this might include specific facilities (e. g. an 

isolation ward) or staff (e. g. cohort nursing). For convenience, isolation ward 

(IW) is used as the abbreviation for this facility. The key assumptions are that 

isolation is perfect (i. e. transmission from isolation never occurs) and it is limited 

(i. e. there is a fixed capacity in terms of the numbers of patients that can be 

isolated at any one time). Infected patients are detected, and isolated if capacity is 

available (if the fixed capacity of 1W is not reached), and marked DNISO 

otherwise. Thus, observed (apparent) hospital prevalence of infection (i. e. those 

picked up by any detection effort) is ISO + DNISO, whereas the actual (real) 

prevalence is ISO + DNISO+ UIH- 

Under the assumption of 100% bed occupancy, patients discharged from hospital 

are immediately replaced by an individual from the community, with the rate of 

discharge (p) being assumed equal for all hospital subgroups (i. e. regardless of 

infection status). 

The community population is also split into sub-groups, each with a different 

readmission rate. Upon discharge patients enter the first community group (CI) 

which has a high readmission rate (01) from where, if they are not readmitted, they r-I 
move at a set rate (6) to the second community group (C-) with a lower 

readmission rate (0-0 (Cooper et al.. 2003, Cooper et al., 2004a). The number of 
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susceptible and infected individuals in C, andC2are denoted Scl, Icl, SC2 and IC, 

respectively. On admission or discharge an individual would join the 

corresponding group (i. e. susceptible or infected) within the hospital or 

community population respectively. 

Transmission is assumed to be within the hospital only, meaning the dynamics are 
hospital driven. The rate of infection of susceptible patients is determined by the 

transmission parameter P and the proportion Of UIH and DNISO patients, i. e. 
isolated patients do not contribute to infection, and for simplicity it is assumed 

that UIH and DNISO patients are equally infectious. Homogeneity is assumed 

within the susceptible population with all individuals having an equal chance of 
becoming infected. For simplicity, recovery of infected patients is assumed to 

occur at an equal rate (y) for all infected groups in both the hospital and 

community, and isolated patients are assumed not to recover, but be discharged 

infected. However, the effects of eradication therapy may mean that in fact the 

recovery rate for known infected (and therefore treated) patients would be greater 

than for untreated patients (i. e. undetected infected and infecteds in the 

community). Additionally, homogeneity of MRSA itself is assumed in terms of 
both transmissibility and detectability. 

2.2.1 Including screening as an infection control strategy 

Within this setting, of HCAl transmission within and between hospital and 

community populations, two screening strategies are considered: random and on- 

admission. Both strategies are assumed to be 100% accurate and the effects of 

sensitivity and specificity are not included explicitly, although their effects can be 

included in the model parameters. 

Random screening allows patients to enter the hospital unscreened as either 

susceptible (SH) or undetected infected (UIH). Routine random screening then 

occurs at a set rate (0), so that each patient is screened at an average interval of 

1/0 days. Detected infections are moved into the fW. If the IW is at capacity then 
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these detected patients are DNISO and have priority to move into fW when space 

becomes available, i. e. when an isolated patient is discharged. 

The on-admission screening strategy screens a proportion (CO) of patients on entry 

to the hospital, so detected infected individuals are placed directly in isolation and 

cannot infect. Again, if the M is at capacity then detected infected patients 

become DNISO. Note that a proportion (1-(o) of admissions are unscreened and 

joinSH or UlHappropriately, where they will remain, unscreened, for the duration 

of their stay. 

To allow effective comparison between the two strategies the numbers of patients 

screened per day were set to be equal. The number screened at random is ON per 

day (where N is hospital capacity) and admission rate is ýtN per day (where I/V is 

average length of stay) so that the numbers screened on-admission per day are 

cogN. For the screening effort to be equal: 

cou 

Schematic diagrams of the model framework including the two screening 

strategies are presented in Figure 2.1, although the model framework allows both 

strategies to be included simultaneously. 
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a. Random screening 

Hoý 

Community Grp 2 

b. On-Admission screening 

Figure 2.1 Schematic diagram of the model for both screenincr stratecries: (a) L_ L_ L_ 

random screening and (b) screening on-admission. See text for symbol definitions. 
The bold lines indicate the screening processes. Parameter values determining L_ Z-7 
rates of transitions between states are given in Table 11. The events the arrows 
represent are given in Table 2.2. 
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Parameter values are in accordance with previous work by Cooper et al. (2003-, 

2004a) and given in Table 2.1. 

Parameter Symbol Value Reference 

Transmission coefficient 0.1622 Defined by other 

parameters to set 

value of Ro 

Discharge/admission rate It 0.125 (Cooper et al., 2003) 

(day -1) 

Recovery rate (day -1) 7 0.0027 (Cooper et al., 2003) 

Readmission rate - 01 0.0057 (Cooper et al., 2003) 

community group I 

Readmission rate - 
02 0.00063 (Cooper et al., 2003) 

community group 2 

Decay rate from 6 0.03 (Cooper et al., 2003) 

community group I to 2 

Community group I C, Range: 3.3263 x 103 Defined by other 

population size 3.5014 X 103 parameters 

Community group 2 C, Range: 1.584 x 105 Defined by other 

population size 1.6673 X 105 parameters 

Overall community C Range: 1.6172 x 105 Defined by other 

population size 1.70236 X 105 parameters: C1 + C2 

Isolation ward capacity NISO Range: 0- 50 

Hospital population size NH 1000 - NISO 

Table 2.1 Parameter values used in the model 

27 



The model proceeds as a stochastic, iterative process with successive events 

performed after random time intervals (drawn from a negative exponential 

distribution with rate given by the total rate of events) and events occurring to Cý 
whole individuals. This stochastic nature of the model is essential for the 

simulation of dynamics of hospital infections, where random events have the 

potential to greatly influence outbreak behaviour (Cooper et al., 1999). 

Replication of each simulation is necessary as each simulation run will lead to a 
different outcome. Unlike all other events, the movement of susceptible 

individuals from C, to C2 is assumed to be deterministic due to the large numbers 

of individuals involved. All stochastic events and their corresponding rates are 
listed in Table 2.2. 

At the start of each simulation it is assumed that the hospital is an entirely 

susceptible population and that all infected individuals are in the community, 

therefore an epidemic can only occur once an infected individual is admitted to 

hospital. The size of the community population is set to be 170230, calculated 
from the other parameter values in a setting without infection, using the following 

equations: 

ý, 
=, uNH - 01 C, - ÖCI 

and 

gC1 
- 

022C2 (2.2) 

giving the equilibrium value for community group 1, 

ci *- uNH (2.3) 
0, +, 5 

and the equilibrium value for community group 2 as, 
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i5, uNH 
0'(01+45) 

(2.4) 

Out of this community population it is assumed that 100 individuals are initially 

infected. 

The model was written and run in MATLAB@ (Version, 7.0, MatLab, The 

MathWorks, Natick, MA, USA) on a personal computer. 
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Event description Event Rate Event 

Infection of a , u,, ceptible within the hospital SH (UIH+ DNISO) SH 
---)'UIH 

Recovery of an undetected infected within the YUIH UIH 
---)'SH 

hospital 

Detection of an undetected infected in the hospital UIH 
---)'ISO 

(i. e. by random screening)* 
OUIH 

U1H 
---> DNISO 

Recovery of a DNISO DNISO DNISO -SH 

Discharge of an isolated patient (and their ISO ---ý 1(, 1 and 

replacement by a DNISO)* ISO 
DNISO ISO 

DNISO discharged* DNISO DNISO 1(-, 

Susceptible discharged* SH SH 
--+ 

SCI 

Undetected infected discharged* UIH UIH --* ICI 

Admission of susceptible 

from community group I 

Admission of susceptible 

from community group 2 

Admission of infected 

from community group I -, unscreened 

Admission of infected 

from community group 1; screened and detected 

Admission of infected 

I*rom community group 2- unscreened 

Admission of infected 
from community group 2- screened and detected L- 

clol SO 

clol +CO,, SO + ICI 

c 10-1 SC -) 
Clol + C-Al SC2 + IC2 

Clol icl 

CIO, + C, O, ) sc, + Ici 

clol icl 

clol 

+C,, O,, SCI + ICI 

C202 IC2 

Clol + CIO' SC2 + IC2 

c 
-, 

0., IC2 

(1) 
CI ol +C 

201 
SC2 + IC2 

SCI ý SH 

S('2 --)'SH 

ICI --)' UIH 

IC, --> ISO ** 

Ic, ) DNISO ** 

IC2 --* UIH 

IC2 --+ ISO ** 

Ic2 --+ DNISO ** 

Movement of an infected from community group I 61C, IC, 
to community group C- 

Each discharge event/movement into IW is associated with an admission event (of either a 
susceptible or infected individual from one of the two community groups). 

** This event can only, occur given that at least one DNISO patients exists. 

Table 2.2 Stochastic events and event rates. 
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2.3 The model in terms of RO 
The transmissibility of the infection is considered in terms of the basic 

reproduction number (RO), defined as the average number of secondary cases 

caused by one primary case in a completely susceptible population. Using this 

definition in a scenario where RO is above I an epidemic will ensue, whereas an 
RO less than one will not cause epidemic behavior. Therefore the aim of any 

infection control practice is to reduce RO to less than 1. 

2.3.1 Analytical description 

For models, such as this, where the community population is included explicitly, 

there are two components to RO: a within-hospital value (ro) and a term to include 

the possibility of multiple returns to hospital (Cooper, et al., 2003; Cooper et al., 
2004a). Readmissions (i. e. multiple returns to hospital) have the potential to 

reintroduce infection and may be sufficient to cause an epidemic, especially if the 

infected individual is brought into an entirely susceptible population. This 

reintroduction of infection into the hospital, by an infected person readmitted from 

the community can be measured in terms of P, the probability of an infected 

patient being readmitted while still infected. Using a reproductive number that 

considers the term P allows transmission to be spread over multiple visits. 

The within-hospital reproduction number in the absence of intervention, given by 

ro =P1 (2.5) 
P+y 

considers only the number of secondary cases arising from a single admission. 

The overall Roconsiders the number of secondary cases caused by a single visit 

and the mean number of visits per patient, while they are still infected (Cooper, et 

al., 2003; Cooper et al., 2004a). 

If P is the probability that an infected patient is discharged and readmitted while 

still infected (in the absence of control), then I/O-P) is the mean number of 

infected visits, For example, if there were a 50c1c chance of being discharged and 
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readmitted while still infected (i. e. P=0.5) you would expect two admissions 

whilst infectious. 

So that 

Ro = ro 
1 

(2.6) 
I-p 

where 

p= 
Pol (02 + Y) +jU(50') 

' 
(2.7) 

(01 + 
#V 

+ (5) (02 + Y) 

Therefore RO can be expressed as 

Ro = 
ß(01 + y+ 5)(0� + 7) (2.8) 

(P + y)«01 + y+ (5)(0� + y) -, UOI (0, + y) -, UÖO, ) 

The value for ro (within-hospital) was taken from the study by Cooper et al. (2003; 

2004a) and set at 1.27 and the value of P was calculated to be 0.037 using the 

parameter values shown in Table 2.1 (taken from the same study), these 

parameters give an overall RO value of 1.32. 

Including screening as an infection control strategy 

Including control by isolation (but not any constraint on isolation capacity) has 

differing impact depending on the screening strategy adopted. Random screening 

has the effect of curtailing the period of time over which infected individuals can 

transmit (i. e. they are removed from general circulation). If ro is the within- 

hospital reproduction number with random screening, then 

ro 
+ 7+ 0 

(2.9) 

Whereas, when patients are screened on admission, the effect is to reduce P to P' 

where 

0))P. 
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2.3.2 Analytical results 

Comparing random and on-admission screening 

The properties of each strategy can be described in terms of overall and within- 

hospital RO values given different levels of surveillance effort. Figure 2.2 (a) 

shows a diagrammatic representation of Ro values and compares both the within- 
hospital ro and the overall RO for the two screening strategies. 

Upon an increase in surveillance effort, random screening gives a decrease in 

within-hospital ro and the overall RO value decreases at the same rate. Random 

screening has no effect on the readmission of community infection. The decrease 

in the overall RO is simply due to the hospital roeffects. Conversely, screening on 

admission has no effect on the within-hospital ro and the decrease in the overall RO 

corresponds only to the decrease in infectious readmissions from the community 

(I /(I -P)). 

For these initial conditions (Figure 2.2 (a)), it is the reduction in ro as opposed to 

the reduction in 1/(I-P) that is likely to influence the transmission dynamics to the 

greatest degree and therefore random screening is the strategy best able to reduce 

RO; only random screening is able to reduce RO to less than 1. 

Consideration of setting: the effect of reproductive number and readmission 

rate 

Figure 2.2 (b) shows overall and within-hospital RO values in a setting of 

increased infected patient movement between the hospital and community 

populations (i. e. P has increased, from 0.037 to 0.5). Under these initial conditions 

as screening effort increases the reduction in 1/(I-P) by on-admission screening 

follows a similar pattern to the reduction in ro by random screening. Therefore 

both strateuies have approximately the same ability to reduce overall Ro. An 

increase in P has effectively increased the benefit obtained through on-admission 

screening. 
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The bottom two panels of Figure 2.2 (c and d) again compare settings of low and 

high readmission rates. However, in these cases the Initial condition for within- 

hospital ro is reduced to be less than I (such that a hospital epidemic will die out 

in the absence of infected admissions). In a setting where P is low, the reduction 

in initial ro has the result of enabling the overall RO to be brought below one by on- 

admission screening at high screening efforts; however, the reduction in ro is still 

of greatest importance to the transmission dynamics and RO is still reduced further 

by random screening. When P is substantially increased, however, the relationship 

between screening effort and I/ (I-P') again becomes non-linear and the influence 

of on-admission screening on overall RO is increased. 
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Figure 2.2 Diagrammatic representations of ro, RO and 1/(I-P) values given 
different screening effort levels and initial conditions. Full lines (-) denote 
random screening and dashed lines ( --- ) screening on-admission. The orange lines 
show o iihm i,, values, green lines 1A I-P) values and light blues 
1\',, values. Shaded grey areas indicate the region where reproduction numbers are 
less than 1, i. e. control occurs. Initial conditions: (a) RO = 1.32, ro = 1.27, P= 
0.037; (b) RO = 2.54, ro = 1.27, P=0.5; (c) RO = 1.01, ro = 0.98, P=0.037; (d) RO 

1.96, ro -- 0.98, P=0.5. In all panels range: 0-0.125, o) = range: 0- 1 to create 
screening efforts from 0 to 1. 
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Combining random and on-admission screening 

Analytical results exploring the effectiveness of combinations of random and on- 

admission screening in settings with increasing infective readmissions (i. e. 

increasing P values) are displayed in Figure 2.3. The most effective ratio of 

random: on-admission screening is dependent on the degree of movement by 

infectious patients between the hospital and community populations (i. e. P). For 

low P (<0.35) random screening alone provided greatest control. As P increases 

the greatest level of control results from a combination of strategies with 

gradually decreasing levels of random screening and increasing levels of on- 

admission screening. Therefore in a setting where infected readmissions are more 

likely, the most effective strategy focuses on reducing the chance of these infected 

readmission episodes and thus predominantly on on-admission screening. 

However, at high P values the most effective screening strategy was not that of 

100% on-admission screening: 0% random screening, but instead a combination 

of random and on-admission screening. Also as P increases the ability to control 

decreases (note the differences in scale on the RO axes). 
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Figure 2.3 Relationship between screening effort, screening strategy combination 
and RO under different initial P values. Initial conditions RO = 1.0 1, ro = 0.98, (a) P 

= 0.037, (b) P=0.35, (c) P=0.4, (d) P=0.45, (e) P=0.5, (f) P=0.6.0 = range: 
0-0.125, (o = range: 0- 1 to create screening efforts from 0 to 1. The combination 
of screening strategies producing the lowest RO, i. e. greatest control, is indicated 
by an arrow. Research for this figure was conducted with C. A. Scarff. Z-- 
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2.4 Deterministic model 
A deterministic version of the framework described in section 2.2 and shown 

schematically in Figure 2.1 can be constructed by determining the rate of chancre Z-- 
in the number of individuals in each state using the events and their corresponding 

rates (given in Tables 2.1 and 2.2). 

The resulting set of differential equations can be written as follows: 

ýH 
: ":::: W, 

H+ )DNISO + 01 SCI + 02 SC2 - ffi 
H- 

ßS 
H 

(U, 
H+ DNISO) 

NH 

#S 
H 

(UI 
H+ DNISO) UIH 

= NH 
COW ICI + (1 

- CO)02 IC2 
-)UUIH - 

WI 
H- 

OUIH 

Iýo =(Cool ClgSo)+ 
(Cool IC29ISO)+ OIH9ISo 

-IUISO + fDNISO(, uISO) 

0 
DNISO= OIH (1- 

gISO) -, uDNISO - ýDNISO 
+ (6901 ICI (1 

- gIso)) + 
(690-1 IC2 (1 

- gIso)) - JDNISO(PISO) 

SCI = XCI + 
JUSH - 

01 SCI 
- (ßC1 

0 
ICI --": UUIH+, uISO +, uDNISO - gcl - b7c, - 01 Ic, 

0 
SC2 

- 7fc-, + ýci 
- 

01 SC2 

0 

C2 
= No - 

ýlc-', - OICI 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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2.4.1 Deterministic results 

No control 

In a situation where no screening occurs (Figure 2.4 (a)), the deterministic model 

shows the epidemic curve within the hospital reaching an equilibrium of 

approximately 400 infected individuals after approximately 2 years. The epidemic 

in the community population (b) is slower, with the build up of infected patients 

continuing in community group 2 once equilibrium has been reached in 

community group I. By the end of the study time (5 years) both community groups 

appear to have reached equilibrium with approximately 14,000 infected 

individuals in total. 
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Figure 2.4 Deterministic model results over a period of 1800 days (-5 years) 
when no control measures are imposed. Panel (a) -shows the change in numbers in Z-- 
groups within the hospital population and panel (b) the change in numbers in the 
COIIIIIILinity population groups. Parameter values are set to those in Table 2.1. 
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Comparing random and on-admission screening 

On introduction of random screening (coupled with an Isolation ward) as an 

infection control strategy (Figure 2.5) the numbers of infected patients in the 

hospital are reduced dramatically. Despite gradually increasing over the study 

period, numbers of infected patients within the hospital never exceed 15 (a) and 

the isolation ward capacity (20) is never breached meaning there are no detected 

but unisolated patients. This hospital control is reflected in the community (b) 

with far fewer numbers of infected individuals than in the situation without 

control (Figure 2.4 (b)). However, again numbers of infected individuals are 

steadily increasing throughout the study period. 
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Figure 2.5 Deterministic model results with a control strategy of random 
screening. Panel (a) shows the change in numbers in groups within the hospital 

L- r-I 
population and panel (b) the change in numbers in the community population L- 
OrOLIPS. O= 0.087 (corresponding to a screenincy effort of 7017c), all other 
pparameter Values are set to those in Table 2.1. 
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In contrast, the deterministic model results for a control strategy of isolation and 

on-admission screening display a dramatically reduced infection control 

capability. An epidemic is seen within the hospital (Figure 2.6 (a)) with the 

numbers of infected individuals reaching an equilibrium of approximately 300. 

Within a year the isolation ward reaches capacity and remains as such, resulting in 

a build up of detected but unisolated patients. The epidemic within the hospital is 

reflected in the community (b) with a build up of infected individuals occurring Z_ 
until equilibrium of approximately 13,000 infected individuals is reached. 
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Figure 2.6 Deterministic model results with a control strategy of screening on- 
admission Panel (a) shows the change in numbers in groups within the hospital 
Population and panel (b) the change in numbers in the community population r-I 
groups. (o = 0.7 (such that 70% of the admissions/day are screened), all other 
parameter values are set to those in Table 2.1. 
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2.5 Discussion 
Consideration of both the hospital and community population and movement 
between them within the model structure means that the transmission dynamics of 
HCAI are dependent on two factors: transmission from a single hospital stay and 

transmission due to readmission of infectious individuals. In this chapter these 

two factors were explored analytically in terms of reproduction numbers-, the 

overall RO term being dependent on both transmission during a single hospital stay 
(ro) and the probability of infectious readmissions (1/(I-P)). 

An analytical exploration into the effect of an infection control strategy, in this 

case screening, on these transmission parameters showed that the reduction in RO 

brought about by each control strategy was due to influences on different 

components of RO. Random screening within the hospital had the effect of 

reducing transmission from a single visit (ro), whereas screening on admission had 

the effect of reducing the probability of infectious readmissions (1/(I-P)). As 

different screening strategies influenced different components of transmission, the 

relative importance of these components (dependent on setting) to the 

transmission dynamics strongly influenced which strategy was most beneficial. 

For example, in a setting where infectious readmissions are unlikely, transmission 

within the hospital (i. e. from a single hospital stay) has the greatest influence on 

transmission dynamics. It is therefore the strategy that can reduce ro that becomes 

most beneficial i. e. random screening. Whereas in settings of higher readmission 

rates the importance of 1/(I-P), to the transmission dynamics, increases and as a 

result on-admission screening, which works to reduce 1/(I-P), becomes 

increasingly beneficial. This relationship holds in settings of both r0>1 and ro<l. 

However, at r0>1 only random screening can reduce RO to less than one, 

furthermore this can only be achieved at low rates of infectious readmission. 

When r0<1 both strategies are able to reduce RO to less than one providing the 

level of effort put into screening is sufficiently high. A low ro (below one) also 

allows high rates of infectious readmission to be combated, but only at the highest 

screening effort levels (Figure 2.2 panel d). The investigations into combination 

screening tally with these findings in that with increasing readmission rates the L_ r_1 
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infection control , trategy of greatest benefit includes an increasing proportion of Z7: 1 
on-admission screening. 

These analytical results of the model framework could be compared to the results 

of a deterministic model of HCAI transmission. The deterministic results show 

epidemic behaviour in both hospital and community populations (for an ro of 1.27 

and an Ro of 1.32). Modelling the two screening strategies deterministically shows 

random screening to largely control infection within both the hospital and 

community, although prevalence gradually increases over the 5 year simulation 

period. On-admission screening, however, allows epidemic behaviour within the 

hospital, which in turn translates to an epidemic within the community population. 
These results agree with the analytical results for these particular parameter 

values, where P is low, ro is greater than one and screening effort is at 70%. 

Namely, in a setting of low P it is the reduction in ro that enables Ro to be reduced 

to the greatest extent, therefore the greatest degree of control will be brought 

about by random screening. Only random screening can reduce Ro to less than I 

for these particular parameter values (Figure 2.2 panel a). 

From this chapter it has been shown that analytical and deterministic 

investigations into a proposed model structure/ framework can highlight factors 

with a potential to influence the transmission dynamics within the system, and 

therefore can provide some interesting hypothesis for further work. 
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Chapter 3 

Using stochastic mathematical modelling 

as a theoretical test of control measures 

3.1 Introduction 
The efficacy of screening as an infection control strategy is assessed theoretically 

using the stochastic model described in Chapter 2. This is the first attempt to 

model both control (by isolation) and active surveillance in a single framework 

which considers both hospital and community populations. The majority of the 

research presented in this chapter has been published (Robotham et al, 2007a) and 

some presented at the 45th ICAAC (Interscience Conference on Antimicrobial 

Agents and Chemotherapy), Washington, USA. Additionally, some of the work 

presented (where indicated in figure legends) was carried out with C. A. Scarff. 

Firstly, surveillance and control of MRSA in an epidemic setting are investigated, 

through two screening strategies: random and on-admission. Comparisons of the 

two screening strategies in terms of numbers of detected infected individuals are 

presented. To examine the relationship between surveillance and control. the 

implementation of isolation once positive patients are identified is included, 

therefore determining how the effectiveness of detection for each strategy 

translates to the effectiveness of conti-ol. The combined effects of the amount of 
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effort put into each strategy (i. e. 0 and o)) and the capacity of the fW are 

considered. The outcome variables of interest are the apparent and real Infection 

prevalences in the hospital and community (i. e. surveillance and control success). 
Additional to allowing targeted control, surveillance of infection (i. e. detection) 

plays an important role in measuring the magnitude of the problem, determining 

the penetrance of antibiotic resistance (e. g. vancomycin-resistant S. aurells 
(VRSA)) and determining the effectiveness of control. Consequently, control of 
infection by detection and isolation is not independent of surveillance. Here this 
interplay between surveillance and control is described. 

3.2 Results 

3.2.1 Surveillance of epidemic (no control) 
Initially the effect of the two surveillance strategies in the absence of any control 
during an epidemic (i. e. from the introduction to endemic state) is considered. 
Figure 3.1 shows 10 epidemic simulations in terms of the real number of 
infections in the hospital and community (panels a and b respectively). With the 

chosen parameters the prevalence in the hospital and community reach 

approximately 400/1000 and 14000/170234 respectively. These values correspond 

well to those achieved using the deterministic model in chapter 2 (Figure 2.4). The 

apparent number in the hospital (i. e. those detected through active surveillance) is 

shown for the two screening strategies: random (c) and on-admission (d). There 

are two features to note. First, random screening is more efficient in that more 

infected individuals are detected (the equilibrium value is approximately 160 as 

opposed to approximately 80). Second, the pattern of timing of detection with 

random screening closely follows the pattern of the overall hospital prevalence, 

whereas detection with screening on admission follows the community prevalence 

pattern, which is slower with a pronounced lag of about half a year. 

45 



a Real hospital prevalence tD Real community prevaience 
500- 15000 

500, 
o 

400 
V) 

10000 
C: 
CID 

CL 
300 

E E 
D z 200, z 50001 

100, 

0 01 0 200 400 600 800 1000 1200 1400 1600 1800 200( 0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Time Time 

250 

200 

150 
75 
C, 
B 

E 100 
D z 

50 

c. Random: Apparent hospital 
120 

100 

80 

60 

.0 E 
Z, Z 40 

20 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Time 

ow- IIII 
0 200 400 600 800 1000 1200 1400 1600 1800 200( 

Time 

Figure 3.1 Results of 10 simulations with no control over 1800 days (-5 years): 
(a) real hospital prevalence including both known and unknown infected 
individuals; (b) real community prevalence; (c) apparent hospital prevalence 
Linder random screening; and (d) apparent hospital prevalence under screening on- 
admission. Note the different vertical scales. Screening parameter values are O= 
0.087 and w=0.7 (such that 70% of the admissions/day are screened). All other 
parameters are set to the values in Table 2.1. 
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The relationship between real and apparent prevalence for one epidemic further 

highlights differences between the two strategies (Figure 3.2). For random 

screening, the apparent prevalence reflects the real prevalence within the hospital. 

i. e. there is a linear relationship, so that a doubling in real hospital prevalence 

gives a proportional increase in the number detected (a). Surveillance efficiency is 

the slope of the relationship, so that, for example with 0=1/8 days, about 50% of 

all infections in the hospital are detected (200 vs. 400). However, the same 

relationship is not seen between apparent and real prevalence in the community 

(b). There is an initial linear relationship between real and apparent prevalence, 
but once the real community prevalence reaches a threshold level (between 1000 

and 2000 infected individuals), and the epidemic takes off in the community, 
further increases in community prevalence make very little difference to the 

numbers detected by random screening in the hospital. For example, for 0=1/16 

days, for all community prevalence values between approximately 2000 and 9000 

the corresponding apparent prevalence results are within the narrow range of 

about 80 to 140. However, increasing the detection effort results in increased 

efficiency and more sensitive results (i. e. the relationship becomes more linear). 
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Screening on-admission provides less effective detection overall (note the 

difference in horizontal scales). This strategy underestimates hospital infection at 
low prevalence levels (during the early stages of the epidemic), although the 

relationship becomes more linear once infection levels become sufficiently high (a 

threshold level of approximately 250) (c), especially with increased effort 

(measured as the proportion screened on admission, o)). In contrast to random 

screening, on-admission screening reveals a linear relationship between real and 

apparent community prevalence meaning the apparent prevalence more accurately 

reflects the real prevalence throughout the epidemic. The efficiency of this is 
increased with increasing screening effort (i. e. the slope of the relationship 

decreases with an increase in effort). Note that for both strategies the hospital 

prevalence reaches an endemic state at the end of the simulation (the points are 

clustered together). 

In terms of surveillance, screening on-admission clearly provides a better 

approach to estimating community prevalence than screening inpatients at 

random. However, screening on-admission provides much more limited 

information on hospital prevalence, which is better estimated by randomly 

screening inpatients. 

3.2.2 Control of epidemic 

Upon introduction of a control measure the values for ro, P and RO are altered 

dependent on screening effort. The corrected ro, P and RO values are 0.76,0.037 

and 0.79 for a random screening effort of 0=0.087 and 1.27,0.011 and 1.28 for 

an on-admission screening effort of o) = 0.7 (effort values correspond to those in 

Figure 3.1). 
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Figure 3.3 shows 10 simulations under each screening strategy when a control 

measure is present, in this case an M of 20 patient capacity, so that the detection 

of individuals serves an additional purpose: it allows them to be isolated, in the 

expectation of preventing transmission and, hence, an epidemic. The two 

strategies show very different dynamics. 

Random screening gives greatest control; both hospital and community 

prevalence is lower than for on-admission screening (comparing a vs. b and g vs. 

h). The number of infected individuals in the hospital appears to increase very 

gradually throughout the simulation period under random screening. One of the 

simulations begins to show epidemic behaviour at the end of the period, but for 

most simulations the number of infected individuals remains below 50 with only 

small scale fluctuations. The capacity of the IW (20) is generally adequate with 

most detected individuals being able to be placed under control and fW overflow 

occurring infrequently (c and e). The community prevalence also gradually 

increases over time (g). For most simulations (excepting the one exhibiting 

epidemic behaviour) the maximum community prevalence is approximately 800 

by the end of the simulation period. 

Overall, random screening appears to exhibit control, but with gradually 

increasing numbers of infected individuals causing control capability to be 

increasingly stretched and IW overflow and epidemic behaviour increasingly 

likely. 

Screening on-admission allows epidemics within the hospital which take off 

rapidly and remain uncontrolled; the endemic state that develops has an 

eqL111ibrium value of approximately 300 infected individuals (b). In 

correspondence with the hospital epidemic the I-W quickly reaches and remains at 

its capacity of 20 patients and subsequently overflows (d). The number of DNISO 

patients steadily increases up to an equilibrium value of approximately 60 (f). The 

community prevalence levels show a slower epidemic pattern than that in the 

hospital, reaching nearly 14000 infected individuals at equilibrium (h). 
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Overall, on-admission screening does not control MRSA under the chosen 

parameter values. The epidemics in all simulations take off quickly causing the 
IW to become overwhelmed, in turn leading to a build up of known positiý, e 

patients who cannot be isolated. 

Again, these stochastic results show very similar patterns to those achieved using 
the deterministic model in Chapter 2 (Figures 2.5 and 2.6). 

3.2.3 Surveillance and control 
Figure 3.4 explores the relationship between surveillance and control, looking at 

the effect of surveillance effort (0 and o)) in terms of number of 
infections/detections summed over the simulation period (1800 days) given 
different control capabilities (i. e. different IW sizes). 

Under random screening the average number of infections in the simulation 

period can be seen to decrease with increasing screening effort (a). The effect of 
increasing IW capacity is to reduce the level of effort required to achieve the same 

result e. g. to achieve a drop to 15000 infections per simulation period a detection 

effort of OzO. 06 is required when the fW capacity is 50, compared to a detection 

effort of OzO. 09 when the IFW capacity is 10. 

The results for screening on admission show a different picture (b); the average 

number of infections during the simulation period remains high until greater than 

80% of admissions are successfully screened. Larger IW sizes correspond to 

slightly fewer infection events, but have relatively little effect i. e. the constraint is 

detection. 

The number of detections over the simulation period for both policies is peaked 

with a single maximum. The initial increase is caused by the fact that as screening 

effort increases then so does the ability to detect infected individuals. Howevcr, 

the steady decline in numbers of detections that follows the peak is due to the fact 
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that the detection is enabling effective control. Therefore there are fewer 

individuals available to be detected, leading to fewer detection events. For random 

screening an increase in IW capacity causes the peak to be reached at lower effort 

levels and with lower numbers of detections, meaning that detection is efficient 

and isolation capacity is a constraint for control success. 

For on-admission screening, the average number of detections over the simulation 

period (d) increases linearly with detection effort, up to an 80% screening effort. 

Detection effort values over this give a decreasing number of detection events, 

corresponding to the control seen after this effort level (b), i. e. once control occurs 

there are fewer infected individuals to detect. The peak in the number of 

detections occurs at a much higher effort level for on-admission screening (d) than 

for random screening (c), meaning that random screening is more efficient, i. e. 

less detection effort is required for successful control. 
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3.2.4 Combining random and on-admission screening 

Different combinations of random and on-admission screening are compared at 
different screening efforts ranging from 0% to 100% where different 

combinations of screening strategies are applied to complete the total screeninL' 

effort. Modelling a combination of screening strategies (random and on- 

admission) under the initial conditions RO = 1.32, ro = 1.27 and P=0.037 produced 

similar results to those deduced analytically in Chapter 2 (Figure 2.3 (a)). For 

these parameter values random screening is consistently more effective at 

reducing RO over all screening efforts and the greater the proportion of random 

screening that contributes to the screening effort the fewer transmission episodes 

are seen (Figure 3.5 (a)). Reflecting the results in Figure 3.4, greater detection 

capability is achieved by strategies including a larger proportion of random 

screening (Figure 3.5 (b)). In addition, less effort is required (i. e. fewer 

individuals need to be screened) to achieve maximum detection with increasing 

levels of random screening. The decrease in detection following the peak occurs 

due to control; control causes numbers of infected individuals to decrease which 

in turn causes a decrease in the number of detected infected individuals. 
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3.3 Discussion 
To the author's knowledge this is the first attempt to simultaneously consider the 

effects of surveillance and control on the transmission dynamics of nosocomial 

infections. Surveillance plays two important roles with respect to control. Firstly, 

active surveillance allows detection of infected (and possibly more importantly 

asymptomatic, colonized) patients. This identification is necessary for targeted 

control that curtails the infectious period ("Isolation"). The second role of 

surveillance is to estimate the burden of infection, which is essential if the success 

of any control strategy is to be quantified. 

3.3.1 Surveillance and control 

For many bacterial infections, the risk of disease (with overt clinical symptoms) 

given infection/colonization is small and dependent on other factors (e. g. surgical 

wounds, catheterisation, presence of intravenous devices and antibiotic use). 

Consequently, monitoring and controlling infection requires active surveillance to 

detect individuals with asymptornatic carriage. Inadequate surveillance causes any 

control strategy to fail as too few infectious patients are isolated and transmission 

is not sufficiently reduced (i. e. RO remains greater than one). However, despite 

actually failing, the control strategy can appear effective since the apparent 

prevalence is low due to the inefficiency of detection. The potential for 

misinterpretation lies in the fact that a successful surveillance and control 

programme would give exactly the same results in terms of numbers detected. 

When infection is controlled the apparent prevalence is low, not due to the 

inadequacy of surveillance, but because it reflects real prevalence. This finding is 

displayed in Figure 3.4 (c and d) where the same apparent prevalence is seen for 

both low and high detection efforts. 

Such a phenomenon is outlined in a study by Tomic et al. (2004) where, upon 

introduction of aggressive infection control measures, incidence was seen to 

increase despite the proportion of MRSA cases acquired decreasing (i. e. because 

of the enhanced screening, cases that would previously have remained undetected LI- 
were being elucidated). Zý 
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The two screening strategies examined here display different control capabilities 

in an epidemic situation simply due to the differences in detection capability. 
With random screening, the apparent hospital prevalence reflects the real hospital 

prevalence consistently for all real prevalence values, i. e. there is a linear 

relationship (Figure 3.2 panel a). Therefore epidemics can be prevented (by 

isolation) while infected numbers are still low. The IW can cope with these small 

numbers of detected patients and the epidemic can be controlled before it becomes 

endemic. By contrast, screening on admission means that apparent prevalence 

reflects community prevalence accurately, but reflects real hospital prevalence 

only when real prevalence levels are high (i. e. when the hospital prevalence also 

reflects community prevalence) (Figure 3.2, bottom row). Therefore the 1W is 

more likely to be overwhelmed and the control strategy fail (Cooper et al., 2004a). 

At the start of an epidemic, the majority of infections are amongst inpatients, so 

provided there is isolation capacity, epidemics within the hospital are controlled 
by random screening before they disseminate into the community (Figure 3.3 (g)). 

Whereas, screening on admission cannot detect infected individuals in the 

hospital, who may be either a) readmissions of infected individuals from the 

community (the probability of which increases as the community prevalence 
increases) that remain unscreened (with a probability of 1 -0)) or b) those who have 

acquired MRSA whilst in hospital. Therefore these patients provide an unchecked 

source of infection. Additionally, DNISO patients are also a potential source of 

infection. With on-admission screening, the number of DNISO patients resembles 

the epidemic pattern seen in the community because IW overflow is caused only 

by admitted patients (i. e. from the community). As soon as the 1W becomes full it 

remains full, therefore all admitted, screened patients move straight into the 

DNISO class. Consequently, whatever the levels of infection look like in the 

community, this pattern will be reflected in the hospital. 

Control of dissemination of MRSA throughout the community requires effective 

control of nosocomial MRSA transmission (Salgado et al., 2003) and therefore 
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the surveil lance/control strategy adopted, whilst not neglecting community 

effects, should concentrate on reducing hospital transmission. This implies that 

on-admission screening alone cannot be used to control MRSA epidemics or any 

other infection which is driven by transmission between inpatients. This would 

apply to the pending epidemics of VRSA. However, on-admission screening may 

play an important role in surveillance and control of endemic infection (i. e. when 
it is well established in the community); in particular it provides an estimate of the 

infectious assault a hospital is experiencing, community prevalence and past 

transmission. 

There is an apparent contradiction in that Figure 2.2 (a) shows that for on- 

admission screening the overall RO can never be brought below the within-hospital 

ro, meaning that using these parameter values, with an ro greater than one (ro = 
1.27), on-admission screening will never be able to control hospital infection once 
it is established even at 100% screening (i. e. (o = 1). However, in Figure 3.4 on- 

admission screening at (o =I allows control. This is due to the assumption that at 

(o =1 100% of admitted patients are screened and all of these screens effective. 
As all infected individuals are assumed to be in the community population 
initially, 100% effective screening will prevent any infectious individuals ever 

entering the hospital i. e. the screening barrier is never breached. Therefore, 

despite the within-hospital ro being greater than one no infectious individuals are 

ever actually present within the hospital to transmit MRSA. 

From these stochastic results, it has been shown that screening inpatients 

randomly provides the best information on hospital prevalence (Figure 3.2) and is 

most effective at reducing the rate of infection within the hospital (Figure 3.4). In 

contrast, screening on-admission provides a better approach to estimating 

community prevalence (Figure 3.2), but does not reduce within-hospital ro; 

therefore the overall RO can only ever be reduced to the initial within hospital ro 

value (Figure 2.2 (a)). As transmission is determined by the within-hospital 

reproduction number, random screening becomes the more effective strateLv 

overall. Therefore the stochastic results in this section agree with both the L_ 
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analytical results and deterministic model results deduced in Chapter 2 for these 

particular parameter values, in that random screening is more effective at 

epidemic control. 

3.3.2 Consideration of setting: the effect of reproductive number and 

readmission rate 

The finding that random within-hospital screening does more to control MRSA 

than on-admission screening may seem counter intuitive. However, it can be 

explained by consideration of the degree of patient movement around the system 

i. e. the frequency of readmission. 

As previously described, in terms of basic reproduction numbers, addition of 

random screening (at rate 0) changes the within-hospital ro to: 

fP 

ro (2.9) 

whereas, on-admission screening (with proportion (o) has the effect of reducing P 

to: 

CO)P. (2.10) 

In other words, random screening reduces transmission within the hospital arising 

from a single visit, whereas on-admission screening reduces transmission which 

considers movement between the hospital and community by reducing the 

probability of multiple infected returns to hospital. Therefore, admission 

screening may become increasingly effective when either a) multiple returns to 

hospital become more likely, or b) multiple returns are more likely to be infected 

i. e. there are higher infection levels within the community. As the simulation 

results presented use a particularly low readmission rate (P=0.037) i. e. where 

multiple returns to hospital are unlikely, admission screening is less likely to be 

effective. 
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3.3.3 Combining random and on-admission screening 

It seems intuitive that a combination of screening strategies would be desirable, in 

that both hospital transmission and infectious assault could be reduced. Further 

research is required to determine optimal combination strategies, within given 

constraints (e. g. the number of patients that can be screened per day, ), and 
dependent on given goals. The community prevalence and pathogen 

transmissibility values will help determine the optimal combination, i. e. the 

optima will change for different epidemic/endemic situations. For example, if 

community prevalence is high and transmissibility low then a reduction in RO 

through screening on-admission may be most effective, but in a setting of low 

community prevalence and high pathogen transmissibility then a reduction in 

within-hospital ro would likely be most beneficial and so random screening 
favoured. 

The stochastic results for different combinations of random and on-admission 

screening for specific ro and P values (Figure 3.5) agreed with the analytical 

results (Figure 2.3 (a)). Transmissions decreased with increasing screening effort 

due to control. Detections increase before control is achieved and subsequently 

decrease upon control because there are fewer infected individuals to detect. An 

increase in control corresponded with an increase in the proportion of random 

screening. Comparing the stochastic results to the analytical descriptions of the 

behaviour of RO for the corresponding parameter values (Figure 2.2 (a)) shows 

similar trends. The analytical results show the greatest reduction in Ro to be 

achieved by random screening (due to the reduction in ro) and that RO is brought 

below I for all screening effort levels above 0.35. The stochastic simulations 

(Figure 3.5) also show random screening to bring the greatest level of control. 

This control corresponds to the greater surveillance capability of random 

screening, where a greater proportion of the infected population can be detected 

with lower effort levels. 
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3.3.4 Targeted screening 
Screening through routine clinical specimens has been shown to be inadequate 

and an active screening programme will generally be required to control MRSA 

(Coello et al., 1994). The random and on-admission strategies included here are 

expensive and intensive. In reality screening is likely to occur in a more targeted 

way, in that certain criteria help determine which individuals are to be screened. 
For example, van Saene et al. (2004) suggest only those at high risk should be 

targeted and less effort given to those where MRSA is unlikely to increase 

mortality. Targeted screening to high risk groups alone has been shown effective 
in a number of studies (Girou et al., 1998; Girou et al., 2000). Wernitz et al. 
(2005) find on-admission screening of defined risk groups for MRSA carriage, 

combined with preventive isolation at admission, may be able to prevent HA- 

MRSA infections in an endemic setting. The risk groups were defined as either: 

patients with a known history of MRSA colonization or infection; patients 

transferred from foreign hospitals or hospitals where MRSA was endemic-, or 

patients with at least two other high-risk characteristics such as residing in a 

nursing home, requiring dialysis or having an invasive device. Other targeted 

approaches include screening HCW to prevent subsequent transmission to patients 
(Blok et al., 2003), and also so called 'ring-fencing' where screening is targeted to 

the contacts of a known case (Drinka et al, 2004). 

A potential problem with these targeted methods is that their failure may go 

unnoticed due to the fact that those individuals who are not specifically targeted 

may provide a reservoir of undetected infection. As no screening would occur to 

untargeted individuals, no MRSA would ever be detected; however this would not 

necessarily mean that MRSA was not present i. e. there may be large differences 

between real and apparent prevalence. Thus targeted methods of screening, unless 

implemented carefully, may lead to control failure. Randomly screening outside 

the target group may be a way of overcoming this problem. This is supported by 

the previously described result from Figure 2.3, in that despite the efficacy of on- 

admission screening increasing with P, even at the highest P values 100% on- 
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admission screening is sub-optimal, with some degree of random screening Z771 
always being required. 

3.3.5 Limitations of the model 

The main limitations are due to the simplification of the system and resulting L- 
reduction in heterogeneity. 

As homogeneity is assumed no patient is more or less likely to transmit or 

contract MRSA than any other. Heterogeneity in patient susceptibility (to 

infection and disease) and infectivity is also missing. It is therefore assumed that 

the chance of a susceptible contracting the infection is equal on every contact with 

an infected patient and this is not the case. The chance of an infected or colonized 

person passing the infection on depends on the amount of bacteria they shed and 

where their infection or colonization is localised to. Heavy dispersers are often 

infected individuals who have widespread eczema or large burns, but patients with 

upper respiratory tract infections or colonized individuals may also be dispersers 

(Ayliffe et al. 1998; Sherertz et al., 1996). 

Screening of patients is said to result in 100% detection within the model. 

Realistically no screening method is 100% efficient and incorrect screening 

results could drastically affect the course of infection. There is also assumed to be 

no delay between screening an individual and receiving the results. In reality it 

can be several days until the results of any screening test are received, and in this 

time if the patient is not isolated and they are infected they are free to transmit to 

others. Furthermore, a colonized patient may be even harder to detect than those 

who are infected (Ayliffe et al., 1998). Additionally, the assumption that the rate 

of discharge is equal for all hospital sub-groups ignores a particular feature of 

MRSA: it increases length of stay. Perhaps most importantly, heterogeneity in 

patient contact rates is not included, other than to assume that recently discharged 

patients have a higher rate of readmission. For example, the possibility that 

prolonged length of stay and/or infection with MRSA (as well as other factors 

as age) might increase the readmission rate is not included. It is likely that 
L_ 
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the "mixing" Of patients and staff will have important impacts on the transmission 

dynamics, especi I with a sinale ially when considering multiple healthcare facilities 
Z_: 

community reservoir. Movements of individuals (particularly persistent carriers) 
between hospitals, long-term care facilities and community populations need to be 

included in order to model MRSA transmission dynamics effectively (Smith et 

al., 2004; Smith et al., 2005). 

It must be kept in mind that this model is not meant to be used as a forecasting 

tool, but instead to give an indication of factors that would contribute to a 

successful control strategy. The model forces a theoretical framework to be 

established therefore making assumptions a necessity, which in turn helps identify 

areas in which more information is needed (Austin and Anderson, 1999a). 

3.3.6 Summary 

Surveillance is essential to infection control and the particular surveillance 

strategy adopted can dramatically alter the effectiveness of this control. Given 

exactly the same control strategy and setting, one surveillance strategy may allow 

a particular control method to work and prevent spread, whilst another may cause 
it to fail and an epidemic to ensue. Moreover, effectiveness of surveillance can 

not only influence control success, but also the quantification of this success; 

effective surveillance and control exhibiting prevalences that mimic those when 

there is no control and ineffectual surveillance. 

From mathematical simulations, screening randomly within the hospital was 
found to be an effective strategy for hospital surveillance and screening on 

admission to be effective at community surveillance. Additionally it was found 

nosocomial control, brought about by effective hospital surveillance, also 

pre\, cnted epidemic behaviour in the community. Thus making random screening 

the more effective strategy overall for the parameter values chosen. 

Analytical results showed the optimal screening strategy to be highly dependent 
Cý L- 

on the readmission rate of infectious patients, in that when readmission rates were 
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low control within the hospital was most beneficial compared to prevention of 

infectious admissions from the community being the priority when readmission 

rates were high. The results highlight that the consideration of setting i. e. the 

characteristics of the infectious agent (e. g. reproductive value), the characteristics 

of the host population (e. g. the degree of mixing between sub-populations), is 

essential in the development of a successful infection control strategy. 
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Chapter 4 

Hospital and patient demographics at the 

University Hospitals of Leicester NHS 

Trust 

Despite the existence of a wealth of data on patients admitted to UK hospitals 

there is seemingly little published about the demographics of the patient 

population within hospitals. Hospital admissions data provide an excellent 

resource for generating an overview of patient demographics; information on 

which would be invaluable for many areas of epidemiology and infection control. 

The objective of this chapter is to describe such demographics. This was carried 

out though various analyses of hospital admissions data, from the three hospitals 

comprising the University Hospitals of Leicester (UHL) NHS Trust, over the 

period I April 1998 to 31 March 2005. A description of the study setting will be 

presented and following this basic summary statistics and frequency distributions- 

as well as investigations into the association between a number of factors such as 

age, gender, hospital, ward type/specialty with hospital visit patterns including 

length of stay in hospital. 
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4.1 Introduction 
Hospitals collect and retain a wealth of information on each of their patients. Data 

on patient demographics such as age, sex and medical history exist in the form of 

medical records and in an array of computerised systems. This information is 

commonly used for research studies investigating specific diseases or -syndromes, 
often attempting to assign risk factors and relate patient demographics to 

prognoses or surgery outcomes (Bergeron et al., 2005; Carbonell et al., 2005a: 

Carbonell et al., 2005b). Another application is in analyses of resource usage and 

economics using Hospital Episode Statistics (HES). However, these data could 

also be used more generally to give an overall picture of patient demographics. 

The patient population within a healthcare institution is determined by the 

interaction of the basic processes of immigration (admission) and emigration 

(discharge or death). Patients are admitted from the community which contains a 

population with different histories of admission. An understanding of the 

demography of the patient population is important from a healthcare management 

viewpoint in that flow through the healthcare system is a key component of 

resource use and functionality (Marshall et al., 2005). Of particular interest here is 

the infection dynamics of HCAI: in terms of infection control it is the patient 

population dynamics that define the context within which infection is acquired 

and transmitted. Information about the hospital population and changes to it could 

potentially provide insights into factors connected with infection rates and trends. 

An exploration of patient flow including readmission patterns would be 

particularly useful as it may translate to readmission of a particular pathogen into 

the hospital environment. If carriage of the pathogen persists over long time 

periods the number of transmission events caused by each case may be distributed 

over several hospital admissions making reintroduction from the community an 

important factor in transmission (Cooper et al., 2004a). 

However, despite the potential benefits of such information, to date there have 

been few studies into, or descriptions of, basic hospital demographics, especially Z-- 

over long time periods. This may be due to the fact that such extensive, detailed 
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and up-to date data are required which can be difficult to obtain, will be different 

for every hospital and will change over time. This chapter presents patient 

demographics for the UHL NHS Trust using patient admissions data collected 

from the three Leicester hospitals in the time period from April 1998 to April 

2005. 

The first section focuses on the demographics of the admitted population; the 

second section examines the length of stay of each of these admittees in terms of 

their demographic group. Following this, the demographics of the patient 

population within hospital are established. Within this framework a number of 

factors are investigated, such as age, sex, hospital and ward type/specialty. These 

investigations are extended in Chapter 5 where patterns of patient movements 

within the Trust are explored. 
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4.2 Methods 

4.2.1 The dataset 

The dataset used for these analyses comprised unique patient admissions into the 

UHL NHS Trust from 17 th April 1994 though to 31st March 2005. The Trust 

comprises 3 hospitals: Leicester Royal Infirmary, Leicester General Hospital and 
Glenfield General Hospital, which collectively have a catchment area of 

approximately I million people across the city of Leicester, and the counties of 
Leicestershire and Rutland. 

The source of the data is the hospital's principal administration system (Hospital 

Information Support System (HISS)). The system records all manner of 
demographic information; including age, date of birth, sex, ethnicity, and address. 
Additional data such as admission/discharge dates, admitting hospital site and 

ward, specialty etc are also recorded by a number of groups of staff such as Ward 

Clerks, Clinical Coders and Clinic Coordinators from a variety of sources such as 

patient's case notes. The HISS enables reporting and analysis that facilitates the 

management of performance, commissioning, clinical indicators and other 

operational targets for the Trust. 

Key outputs of the data warehouse are: 

Internal (UHL) clinical and performance monitoring reports 

Mandatory returns to the Department of Health 

9 Commissioning datasets which are sent to the Secondary Users Service 

and are the source of commissioning, Payment by Results and HES data 

which all contribute to how UHL is measured and generate income for 

activity performed 

Variables included in the dataset used for these analyses were unique patient 

identifier (i. e. the identification of patients on successive admissions was 

possible), scx, unique hospital stay identifier, hospital stay duration (nights), L- 
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admitting hospital, discharge hospital, age at admission (years), admission date, 

discharge date and discharge specialty name. Both inpatients and outpatients were 
included within the dataset and were labeled accordingly making discrimination 

between them possible. 

4.2.2 Data cleansing 

Using SPSS (Version 14.0 for Windows) simple exploratory analyses of each 

variable were carried out, revealing inconsistencies and anomalies. It was found 

that the data collected before 1998 was incomplete. Therefore it was decided to 

include data from Is' April 1998 through to 31s' March 2005 only. Missing data 

within this time period was infrequent, but where it did it occur it was decided that 

any case with missing data should be excluded from any analysis using that 

particular case. The only other discrepancy found was with the variable 'age at 

admission' in which negative numbers had been entered as the patient's age. In 

only 30 cases (out of n= 1401471) did this occur, therefore due to the small 

numbers involved it seemed reasonable to exclude these cases from any age 

related analyses without compromising the results. 

70 



4.2.3 Data analyses 

Section A: Admissions 

Frequency distributions of admissions to the Trust based on age, gender, speci alty 

and hospital were determined using a combination of SPSS (Version 14.0 for 

Windows) and Microsoft Office Excel (2003). In addition to Trust level 

investigations trends were also investigated at the individual hospital level, again 

with respect to age, specialty and gender. For some analyses results using all 

admissions (inpatients and outpatients) are compared to admissions of inpatients 

(n=1401471 and n=679588 respectively), where the trend for inpatients alone 

resembled that of all patients, the results for all patients are presented. 

Section B: Length of Stay 

Analyses of length of stay in hospital by age, gender, specialty and hospItal were 

carried out, again using a combination of SPSS and Excel. Results are presented 
in terms of all admissions and also in terms of inpatient admissions only. 

Section C: The Patient Population 

The results from Sections A and B, i. e. who is going into hospital and who is 

staying there, allow information about the patient population to be determined. 

Distributions describing who is in hospital over time by age and gender are 
determined for the Trust as a whole and also for each hospital individually. For 

these analyses the patient population was determined for one particular month 

(March) over three consecutive years. The years 2001,2002 and 2003 (i. e. those 

in the middle of the dataset) were chosen to reduce the problems associated with 

censoring. 
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4.3 Results 

4.3.1 Section A: Admissions 

Trust Level 

Admissions to the Trust, by both inpatients and outpatients collectively, ranged L- 
from 14732 to 19442 per month and increased gradually over the 7 year period. 
Excluding outpatients, these figures drop to 6824 and 9177 respectively, but 

remained more constant over the study period (Figure 4.1). 
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Figure 4.1 Total number of admissions to the Trust per month from April 1998 to 
April 2005, includes both inpatient and outpatient admissions total n=1401471 
and admissions by the inpatient group are distinguished, n=679588. 

The ages of both inpatients and outpatients admitted to the Trust as well as the Z-7 
at-yes of inpatients only are shown in Figure 4.2; the distributions are similar in that 

ages range from 0 to 109 years with an acye of 0 (i. e. includine, births) beincy the 

most common. In both cases the distributions are bimodal (if babies are excluded), 

however when Outpatients are included the peak at around 30 years of age appears 
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more pronounced. On inclusion of the outpatient population the mean age of all 

admissions is marginally lower at 45.07, as opposed to 46.08 for inpatients. 
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Figure 4.2 Frequency distribution of patient age on admission to the Trust. Panel 
a) includes inpatient and outpatient admissions, n= 1401352, b) includes only 
inpatient admissions, n= 679508. 

Figure 4.3 compares the age distribution of all hospital admissions to the age 
distribution obtained from the 2001 census. The very young (0-4 yrs) and the 

elderly are over-represented, children over 4 years, teenagers and middle aged 

adults are under-represented. 
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Figure 4.3 Frequency distribution comparing ages of patients admitted to the 
Trust in 2001 (n=279921) to the age distribution of Leicestershire Unitary 
Authority obtained from the 2001 census (n=102587). 

The frequency distribution of gender (Table 4.1) shows that the higher proportion 

of admissions to the Trust are female and that this is more marked when 

outpatients are considered. The 2001 census data states that a greater percentage 

of the population from the Leicestershire Unitary Authority is female (51.8%). 

Gender Frequency Percent Frequency Percent 
(both in- and (of all (inpatients only) (of inpatient 
outpati nts) admissions) admissions) 

Feimile 810434 57.817c 377435 5 5.5 cl, 

MaIc 591027 42.2% 302153 4 5.5 cl( 

hidetei-minate 6 0 0 0 

Total 1401467 100% 679588 10017c 

Table 4.1 Frequency distribution of gender of patients in the Trust, n= 1401467 
for in and Outpatients collectively and for inpatients only n= 679588. 

The bimodal distribution of age at admission can be explained by splitting the age 11 
L- 

distribution by gender (Ficture 4.4), the peak in age frequency at around 30 years 
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is due to female admissions and the peak in elderly admissions can be maInly 

attributed to male patients. 
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Figure 4.4 Frequency distribution of ages of patients on admission to the Trust 
split by gender. The different panels show the distribution for female inpatient and 
outpatient admissions n= 810388 (inpatient admissions only, n=377406), and the 
distribution for male inpatient and outpatient admissions, n= 590954, (inpatient 
admissions, n= 302102). 

There are 63 specialties within the three hospitals that make up the Leicester 

Trust, data on specialty is in terms of specialty from which the patient was 
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discharged. It is assumed that the specialty to which a patient is connected for a 

particular hospital stay is equivalent to the specialty from which they were 
discharged. The specialty discharged from most frequently is obstetrics making up 
14.9% of in- and outpatient discharges (208121 of 1401471), followed by 

integrated medicine from which 14.1% (196940) of all hospital discharges occur. 
The most common specialty when only inpatients are included is integrated 

medicine (21.7%: 147237 of 679588), followed by obstetrics and general surgery 
(11. M 75368 and 10.3%: 69869 respectively). 

Hospital Level 

The number of admissions to each hospital by year (Figure 4.5) shows the 

majority of admissions to the Trust are to Leicester Royal Infirmary (LRI); in total 

this hospital encompasses 58.9% of all admissions and 53% of inpatient 

admissions. Admissions to Leicester General Hospital (LGH) account for 26.9% 

of the Trust's admissions and 29.8% of inpatient admissions. Glenfield General 

Hospital (GH) has the fewest yearly admissions of all the hospitals, 14.2% of all 

admissions to the Trust and 17.2% of the Trust's inpatient admissions. Numbers 

for 1998 and 2005 are lower for all hospitals due to the dataset only encompassing 

part of these years. 
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Figure 4.5 Number of admissions to each hospital within the Trust by year from 
1998 to 2005, a) includes both inpatient and outpatient admissions, n= 140147 1, b) 
includes inpatient admissions only, n= 679588. 
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The main differences in age distributions between each of the three hospitals 

(Figure 4.6) are that children are mainly seen at LRI, whereas patients under the 

age of 15 are rare for LGH and GH. However, patients of 0 years of age are t, 
common in both LRI and LGH. The distribution for GH shows an increase as age L- 
increases with a peak at approximately 60-70 years, showing that elderly patients 

are more common at GH. 
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Figure 4.6 Distribution of age groups between each hospital within the Trust, 
includes all admissions n=1401352 (for LRI n= 825499, for LGH n= 376320 and 
for GH n= 199533). Summary statistics for the age distribution of each hospital 
are given in Appendix I (Table Al. 1). 

Patients at LRI and LGH are more likely to be female than male (approximately 

60% and 40% respectively for the entire hospital populations and approximately 

57% and 43% for inpatients only), whereas a more even distribution is seen in GH 

(Table 4.2). 
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Leicester 

Royal 

Infirmary 

Leicester 

General 

Hospital 

Glenfield 

General 

Hospital 

Freq. (including in- and outpatients) 497165 216116 95439 

Female Percent (of all patients) 60.4 57.5 48.0 

Freq. (including inpatients only) 203807 115471 58157 

Percent (of inpatients) 56.6 57.0 49.8 

Freq. (including in- and outpatients) 326277 159412 103487 

Male Percent (of all patients) 39.6 42.4 52.0 

Freq. (including inpatients only) 156382 87032 58739 

Percent (of inpatients) 43.4 43.0 50.2 

Freq. (including in- and outpatients) 4 2 0 

Indeterminate Percent (of all patients) 0 0 0 

Freq. (including inpatients only) 0 0 0 

Percent (of inpatients) 0 0 0 

Total Freq. (including in- and outpatients) 823446 375530 198926 

Freq. (including inpatients only) 360189 202503 116896 

Table 4.2 Frequency distribution of the gender of patients at each hospital within 
the Trust, n= 1397902 (for LRI n= 823446, for LGH n= 375530 and for GH 
n= 198926). 

On comparison of the most common specialties for each of the three hospitals 

obstetrics can be seen to be the most common discharge specialty for LRI (17.4% 

of 825596 discharges) followed by integrated medicine (10.4%), clinical oncology 

(10.0%) and paediatric medicine (8.9%). Obstetrics and integrated medicine are 

also common in LGH together with urology (21.4c/c, 17.1 c1c and 18.1% of 376341 
L- 

discharges respectively). However, at GH, except integrated medicine (making up 

15.6% of 199534 discharges), discharge specialties differ from those at the other L- Z-- 
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hospitals with the most common being cardiology (21.8%) along with general 

surgery (20.1 %) and thoracic medicine (I I%). 

Looking specifically at inpatients, for LRI the most common specialty was 

integrated medicine, with 20.1% (72219 of 360189) of all inpatient discharges 

occurring from this specialty, followed by obstetrics and paediatric medicine, at 
12.6% and 9.6% of discharges respectively. For LGH the most common specialty 

was integrated medicine (with 24.7% of 202503 discharges) followed by 

obstetrics, general surgery and urology (with 14.8%, 12.6% and 11.9% of 
discharges respectively). For GH the most common specialties were integrated 

medicine, general surgery, cardiology and thoracic medicine (with 21.3%, 17.8%, 

17.1 %and 14.2% of the 116896 discharges respectively). 

Transfers between hospitals 

If a transfer occurred during the hospital stay, the first hospital at which the 

patient stayed was taken to be the hospital they were admitted to. Transfers 

occurred in 0.25% of all admissions (3565 out of 1401471) and 0.52% of inpatient 

admissions (3526 of 679588). Tables of hospital transfers for both in- and 

outpatients and inpatients as a separate group are given in Appendix I (Tables A. 2 

and A. 3). 
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4.3.2 Section B: Length of stay 

Trust Level 

The most common length of -stay for a patient visiting the trust was 0 nights. 

However, due to the large range (0-1446 nights) the mean length of stay was 3.23 

nights. The frequency distribution of length of stay (Figure 4.7) shows that stays 

were most frequently short, with the 75% quartile being at 3 nights. If outpatients 

are excluded from the analyses the mean length of stay increases to 6.65 nights 

and the 75% quartile to 7 nights. The remainder of analyses include only the 

inpatient population, as it is in this population where length of stay differs. 
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Figure 4.7 Frequency distribution of inpatient's length of stay (given in nights) in 
the Trust's hospitals, n=679588. 

The relationship between age and length of stay shows a 3-fold increase in mean 

length of stay with increasing age, a similar distribution is seen with median Z-- 
length of stay despite the summary statistics showing shorter stays due to the 

skewed data (Figure 4.8). 
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Figure 4.8 Mean and median length of stay by age (panels a and b respectively), 
includes inpatients only, n= 679508. Error bars represent 95% confidence 
intervals. 

Overall, little difference was found between the lengths of stay of males and 
females, with mean length of stay being approximately 3 nights (summary 

statistics are given in Appendix 1, Table AIA). Splitting the hospital stays into 

those by males and those by females, and exploring the length of stay by age 
based on these demographic groups gave very similar results, however females in 

older age categories were shown to have slightly longer stays (Figure A. 1, 

Appendix 1). The relationship between specialty and length of stay was also 

investigated and the longest stays (in nights) corresponded to rehabilitation, with 

rehabilitation of the elderly having a mean length of stay of nearly 48 nights Z-- 
(n=1401471, all admissions). Given that females of ages 15-40 years constituted 

such a large proportion of hospital admissions, specialties associated with these 

patients were also explored, with mean length of stay for obstetrics being 1.04 

nights (n= 220812 1) and aynaecology 1.21 nights (n = 80189). 
L- L- L- 
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Hospital Level 

All three hospitals show a fast decline in the distribution of length of stay with the 

majority of inpatients staying I night only (Figure 4.9). Comparing the hospitals it 

can be seen that LRI has a higher percentage of shorter visits, whereas longer 

visits are more common in GH than in the other hospitals with mean lengths of 

stay (for inpatients only) of 5.75 nights at LRI, 7.16 nights at LGH and 8.55 

nights at GH. 
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Figure 4.9 Frequency distribution of the patient's length of stay at each hospital 
within the Trust, includes inpatients only, n=679588 (for LRI n=360189, for LGH 
n=202503 and for GH n= 116896). 

At an individual hospital level, length of stay by age at admission largely reflects 

that for the Trust as a whole. However, the length of stay for patients below 50 

years is generally longer at GH than the other hospitals, especially for Infants. The 

distributions of lenath of stay of the inpatient population by age at each hospital 
L- L- 

can be seen in Fil"Lire 4.10. Again, little difference was found between the lengths 

of stay of females compared to males for each hospital: having a mean of 2.39 
Z-- 

mohts and 2.69 nights respectively at LRL, 3.66 nights and 4.11 nights at LGH 
Cý L- L- t-- 

and 5.36 nights and 4.69 nights at GH (full summary statistics are criven in L- C- 11 
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Appendix 1, Table A 1.5). The investigations into length of stay in relationship to 

specialty showed that for all patients the specialties associated with the longest 

hospitals stays were rehabilitation (for LRI with a mean length of stay of 48 

nights) and rehabilitation and care of the elderly (for LGH and GH with mean 
lengths of stay for this specialty of 48 and 51 nights respectively). 
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Figure 4.10 Frequency distribution of the patient's length of stay (mean, top row 
and median, bottom row) by age group at admission for each hospital within the 
Trust, includes inpatients only. Where, Hospital I =LRI, n=360127, Hospital 2 
LGH, n= 202486 and Hospital 3= GH, n=1 16895. 
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4.3.3 Section C: Patient population 

Trust Level 

Demographic characteristics of the patient population were determined by 

establishing patients who were in hospital on any day(s) during March 2001,2002 

and/or 2003. Note that the same patient may be included more than once if they 

were readmitted in a different year or changed category between readmissions. 

The patient population is slightly biased towards females consistently over the 3 

years. With respect to age (Figure 4.11) the patient population is largely made up 

of patients of the age groups 0-4years, 20-35 years and 70-85 years. The most 

variation in age distribution between years was seen in the older age categories. 
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Figure 4.11 Age group representations in the Trust's patient population during 
March 2001,2002 and 2003 (n = 28090, the numbers of patients in each age band 
seen during March 2001,2002 and 2003). 

Hospital Level 

From the hospital level analyses it is clear that the populations in LRI and LGH 

have a slightly greater proportion of female patients, whereas there is little 
L- L- 

difference in gender representation at GH (Figure 4.12). With respect to 

representation of different age cYrOLIPS within the patient populations (Figure 4.13) 
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the vast majority of patients of less than 20 years are seen at LRL where an 

approximately even distribution is seen throughout the other age groups. The 

population at LGH is made up of either infants (0-4 years) or patients of 15 years 

or above. The population of GH is largely made up of patients of older age 

groups, with 50-85 years olds being the most common. 
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Figure 4.12 Gender representations in the patient population of individual 
hospitals during March 2001,2002 and 2003 (n=28613, the numbers of patients of Z, 71 
each sex seen in March of 2001,2002 and 2003). 
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Figure 4.13 Age group representations in the patient population of individual 
hospitals during March 2001,2002 and 2003 (n = 28622, the numbers of patients 
in each age band seen during March 2001,2002 and 2003). 
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4.4 Discussion 

4.4.1 Section A: Admissions 

Of the 1401471 admission events the vast majority of admissions were aged 0 

years, most likely representing births (Figure 4.2). This corresponds to obstetrics 
being the most common discharge specialty. There is also a peak in admission of 

patients in their late 20's and early 30's (which is particularly apparent when 

outpatients are included) (Figure 4.2), most likely corresponding to pregnant 

mothers, as is backed up by the age distributions split by gender in Figure 4.4. 

Additionally there is a peak in admissions at approximately 80 years (Figure 4.2), 

this would be expected as the elderly more frequently visit hospital. 

In the comparison of patient demographics to the demographics of the 

Leicestershire area it may be concluded that in terms of age, babies and the elderly 

were highly represented within the Trust (Figure 4.3) and in terms of gender 
females were highly represented (Table 4.1). As the demographic groups of the 

very young and very old are often the most susceptible to infection, the high 

representation of these age groups within the hospital population is likely to have 

consequences in infection control policy design. The overrepresentation of 
females may be due to pregnant mothers who, therefore, may pose more of an 

infection risk than previously suspected. However, the fact that admittees of this 

age group are often outpatients may serve to reduce the threat. 

Demographics of the admission population may differ considerably between 

hospitals. For example, the age distribution of the admission population seen at 

the Trust level (Figure 4.2) is not mirrored at each individual hospital and there is 

clearly an age bias for each hospital (Figure 4.6). Patients in the 5-10 year age 

category have approximately a 90% chance of admitting LRI, where as 60-65 year 

olds are most likely to be admitted to GH. These differences in age distributions 

may be explained by the specialty distributions for each hospital: whilst 

paediatrics was common at LRL specialties associated with older age groups (e. g. 

cardiology) were common at GH. Similarly, each hospital had a slightly different 
L- 
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distribution regarding gender (Table 4.2). For example, GH had a slightly lower 

proportion female admissions than male admissions (4817c for In- and outpatients) 

whereas the opposite was true for the other two hospitals, the distinct lack of 

admissions of patients of 20-30 years (Figure 4.6), which was seen in the other 

two hospitals, may correspond to few admissions of child-bearing women and 

therefore low numbers of female patients. Moreover, a decrease in admissions of 

child-bearing women would mean fewer births, explaining the markedly lower 

percentage of admissions of 0 year olds (Figure 4.6). 

These differences in the demographics of the admission populations may have 

implications in infection control in that hospitals with higher probabilities of 

admitting higher risk patients could be targeted as an infection control priority. 

Additionally, an important consideration regarding the influence of patient 

admission patterns on infection control may be the distinction between inpatient 

and outpatient admissions. The potential risks posed by these two groups may 

differ considerably depending on differences such as staff and patient mixing 

patterns both within and between groups. 

4.4.2 Section B: Length of stay 

Most hospital stays were short (Figure 4.7) with 75% of visits being for less than 

4 nights and the vast majority of patients being outpatients. With regards to 

infection control this may equate to a smaller risk of contracting a HCAI. 

Length of stay generally increases with age (excluding infants) (Figure 4.8). The 

drop in mean length of stay in patients greater than 100 years may be due to the 

higher death rate in the very elderly, however the confidence interval associated 

with this result is large making any inferences spurious. The finding that length of 

hospital stay is greatest for the elderly is corroborated by the relationship between 

length of stay and specialty where, as may be expected, rehabilitation and care of 

the elderly was associated with the longest stays. Similarly the relationship 

between age and lencyth of stay may also tally with the hospital level distributions 
Lý L- 
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seen in Figure 4.9, which show that on comparison of the three hospitals LRI was 

associated with shorter hospital stays and GH was associated with longer stays. 

This is to be expected if considered with the age distributions for each hospital 

(Figure 4.6) where LRI is associated with younger age groups and GH is 

associated with older age groups. 

Such confounding factors need to be considered in the design of an infection 

control strategies, for example if elderly patients are more common then longer 

hospital stays are more likely which is a known risk factor for HCAI (Graffunder 

and Venezia, 2002; Safdar and Maki, 2002) and due care and attention needs to be 

paid to the presence of this risk group. 

4.4.3 Section C: Patient population 

The representation of different demographic groups within the patient population 

is dependent not only on admission frequencies, but also the associated length of 

stay. 

Despite there being little difference in length of stay between males and females 

overall more females were admitted to the Trust (especially in the 20-30 year age 

category) (Figure 4.4) meaning the Trusts population was slightly biased towards 

female patients. Similarly, despite the relatively short length of stay of infants and 

20-30 year olds (Figure 4.8) the vast numbers of admissions of these age groups 

(Figure 4.2) meant they were still highly represented within the patient population 

(Figure 4.11). The relatively high numbers of admissions of elderly patients, 

coupled with their lengthy stays meant that elderly patients consistently made up a 

large proportion of the Trust's population (Figure 4.11). 

From the hospital level results, it becomes clear that the slightly higher female 

representations are associated with those hospitals that have a higher proportion of 

younger patients within their population (namely LRI and LGH). Again, linking 
L- 

to the peak in female admissions in the 20-30 year age category (Figure 4.4). 4-- 
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Whereas hospitals with an older patient population have a more evenly distributed 

gender representation (GH) (Figures 4.12 and 4.13). 

From these patient demographic distributions, again infants and the elderly are 

highlighted as a potential infection control risk due to their high representation 

within the population. However, perhaps more surprisingly, young females (20-30 

years) are shown to make up a considerable proportion of the population despite 

being associated with some of the shortest stays, and may therefore prove to be, a 

previously overlooked, high priority demographic group in terms of infection 

control. This may be a particular risk for infection with high transmissibility 

where short hospitals stays will be less of a limitation on infection spread. 

This chapter has demonstrated that even a simple presentation of basic patient 

demographics highlights a number of interesting findings with many implications, 

especially with regards to infection control. 
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Chapter 5 

An estimate of the impact of 
heterogeneity in readmission rates in 

transmission dynamics of healthcare- 

associated infections 

5.1 Introduction 
Theoretical modelling has shown that patient movements in and out of hospitals 

are likely to affect nosocomial transmission dynamics considerably. The 

community acts as a "reservoir" and readmission of individuals colonized during 

previous admissions can result in sporadic transmission episodes within hospitals. 

These transmissions distributed over multiple hospital admissions may have a 

considerable effect on the benefit of infection control practices. Information on 

patient movements in and out of hospital and flow around the healthcare system 

would be of value in furthering our knowledge of infectious disease transmission 

and control. 

In this chapter, patient movement patterns are investigated and the frequency with 

which hospital readmissions occur determined using a7 year dataset from the 

UHL NHS Trust. Sufficient information is held on individual patients to study the 
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heterogeneity in readmission. Another interesting aspect of this dataset is that it 

includes admissions and discharges to and from the three hospitals within the 

Trust that serve a defined population. Therefore, movements around the whole 

healthcare system can be studied. To the author's knowledge this is the first 

attempt to describe hospital demographics in a multi-centre setting. 

Basic summary statistics and frequency distributions are presented exploring 

differences in readmission patterns for the Trust as a whole as well as on an 

individual hospital level. In addition, results in terms of the probability of an 

infected patient being readmitted while still infected are presented. Direct 

estimates of this probability are obtained from the dataset and the relationships 

with demographic groups are investigated. The majority of the findings in this 

chapter are published (Robotham et al., 2007b) and have been presented at the 

Sixth International Conference of the Hospital Infection Society, Amsterdam, 

Netherlands (2006). 

5.1.1 Importance of the community and readmission 

A number of studies have investigated the importance of the community 

population in terms of the transmission dynamics of HCAL Cooper et al. (2004a) 

explain how control policies (particularly those largely made up of increased hand 

hygiene and patient isolation) have had mixed success. They describe how in 

some cases control measures have contributed to infection control, whereas in 

other settings the same measures have failed. They use a stochastic mathematical 

model to explore potential reasons for these differences and investigate conditions 

under which policies are likely to succeed. They find that if the pathogen can be 

carried asymptornatically (such as with MRSA), and over long periods of time, 

then transmission may be distributed over several hospital admissions, i. e. 

readmitting patients reintroduces sources of infection to the hospital. They find 

that this reintroduction of infection through readmissions may be sufficient to 

cause an epidemic, especially if the infected individual is brought into an entirely 

susceptible population. Therefore readmissions have an effect of prolonging 

infection within hospitals, and introduce an inherent time delay-, the prevalence of 
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infection at admission is determined by hospital transmission many months 

previously. As a consequence, control policies which reduce secondary cases for a 

single admission only, despite short term control, may not prevent infection 

becoming endemic in the longer term. They further highlight the importance of 

the community and surrounding hospital network with respect to control 

success/fai lure, in that control failure at neighbouring hospitals may give rise to 

an increase in cases through hospital transfers or overlapping catchment areas. 

Similarly, Smith et al. (2004) describe how even if hospitals reduce incidence of 

infection (i. e. the rate of new cases), prevalence of infection/colonization may not 

reduce due to the admission of carriers from populations outside the hospital such 

as the community, other hospitals and long-term care facilities. They use 

structured population models to explore the consequences of persistent 

colonization and demonstrate how an epidemic within one hospital may cause an 
increase in prevalence to other hospitals and the community population, i. e. its 

own catchment population. They describe how consideration of this accumulation 

of carriers in the catchment population is important to control, suggesting that 

control measures should be regionally coordinated and patient movement patterns, 

around the network, tracked (especially HCW, frequent and recent admittees, and 

long-term patients). 

In another study, Smith et al. (2005) investigate the economic incentives and 

population biology of hospital infection control. They find that a hospital's 

infection control strategy should be influenced by the proportion of positive 

admissions, highlighting the importance of the community as a reservoir of 

infection, and also by the strategies of the surrounding hospitals. again 

highlighting the importance of consideration of the whole healthcare network. 

Pittet et al. ( 1996) confirmed that approximately one third of all patients 

harbourin(v MRSA during one hospital stay remained persistent carriers and were 

still MRSA positive upon readmission. They proposed that an admission 

identification list of all patients positive for MRSA during their previous stay 
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would have allowed identification upon readmission. leading to immediate 

identification of at least a third of the hospital prevalence. Sebille and Valleron 

( 1997) suggest that it is the admission of these infected or colonized patients that 

is associated not only with the initiation of outbreaks, but also the perpetuation of 

epidemic behaviour. 

In addition, earlier work in this thesis (Chapter 3), building on that of Cooper et 

at. (2003; 2004a), explored surveillance and control strategies in a framework 

including both hospital and community populations. Whilst inpatient screening 

controlled transmission within the hospital which translated to community control, 

admission screening failed to reduce transmission within the hospital and allowed 

community infection level build up. Only once community infection levels- 

became sufficiently high (i. e. a sufficient proportion of readmitted patients were 
infected/colonized) did admission screening become effective. This showed that 

there is interplay between control within the hospital and control within the 

community population and that community infection levels can determine the 

success of a control strategy. 

Despite these studies theoretically describing the importance of movement 

between the hospital and community, to the authors' knowledge, there are no 

studies using observed movements to and from the hospital and community, 

particularly with respect to patient readmission patterns. Knowledge of factors 

such as what proportion of patients are likely to come back into hospital after 

discharge, how many times they are likely to be admitted to hospital, how long it 

is likely to be between each admission, how long they are likely to spend in 

hospital on each admission and so on, would be of great benefit. Furthermore, 

with a growing body of evidence suggesting that CA-MRSA can be transmitted 

within the hospital and similarly hospital-associated MRSA within the community 

(Calfee et al., 2003) and with the apparent increase of CA-MRSA (Fridkin et at., 

2005) the importance of investigating the patterns of patient movement between Z__ 
hospitals and communities is all the more crucial. 
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For the purposes of this thesis an increased understanding of such movement 

patterns would most importantly inform the transmission dynamics of HCAI such 

as MRSA and C. difficile, providing a better basis from which to design control 

strategies. In view of the lack of studies into the pattems of patient flow between 

the hospital and community, here hospital data from the UHL NHS Trust 

spanning seven years 1998-2005 is analysed. 

5.1.2 Importance of readmissions in terms of RO 

Previous work investigating nosocomial transmission dynamics and screening 

strategies with respect to both the hospital and community populations (Cooper et 

at., 2003; Cooper et al., 2004a and the work introduced in Chapter 2) considered 

transmission in two inter-related, but differentiated aspects: transmission within 

the hospital and transmission considering movement between the hospital and 

community populations i. e. transmission caused by multiple returns to hospital. 

As previously described, both can be considered in terms of basic reproduction 

numbers; in the simplest model, the within-hospital reproduction number (ro) is 

the number of secondary cases during a single admission, while the overall basic 

reproduction number (RO) combines the number of secondary cases arising from a 

single admission and the mean number of admissions per patient whilst infectious 

(I /(I -P)), where P is the probability of an infected individual being readmitted. 

For the simulation results in Chapter 3 the value for ro (within-hospital) was taken 

from the study by Cooper et al. (2003) and set at 1.27. The RO and P values were 

determined by the other parameter values used in the model (discharge/admission 

rates, readmission rate and recovery rate) again taken from a previous study by 

Cooper et al. (2003). These parameter estimates gave aP value of 0.037 and an 

overall RO value of 1.32. 

Later in the chapter the hospital readmission data is used to estimate P. Using both 

the recovery rate (as in Chapter 2) and the readmission time distribution (from the 

data) the percentage of patients likely to be readmitted within the recovery time t. 7 
and therefore of an infected person being readmitted while still infected is 
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estimated. The value obtained is then compared to the one used for previous 

nosocomial transmission models and the consequences of any difference seen 
discussed. 

5.2 Methods 

5.2.1 The dataset 

A dataset from the UHL NHS Trust described in Chapter 4 (4.2.1) was used for 

the purposes of this study. The manipulated dataset as described in section 4.2.2 

was used for all investigations. 

For the study setting of the UHL NHS Trust the relationship between the hospital 

and community population is that the Trust is the main provider of secondary care 
for Leicestershire (except for specialties that are not covered in UHL, e. g. 

neurosurgery and care provided by the two small private hospitals in the area 
(Nuffield and BUPA)). For patients requiring sub-specialty tertiary care, this is 

either provided in UHL, or patients are referred as appropriate, e. g. to Harefield 

for heart/lung transplantation. In addition, the vast majority of admissions to the 

Trust are from the local population. As the dataset contained 7 years of admission 

and discharge data for all three hospitals within the Trust, and also as admissions 

to all three hospitals were from a shared catchment population, not only 

readmission patterns could be studied, but also how readmissions related to 

movement within a linked network of hospitals within a near closed system which 

shared patients. 

5.2.2 Investigations into readmission patterns 
The data were explored and analysed using a number of interrogation techniques 

in a combination of SPSS (Version 14.0 for Windows), Excel (2003) and 

MATLAB (Version 7.0). Basic summary statistics and frequency distributions 

gave an overview of admissions and readmissions to the Trust. Following this, 

movement between hospitals, times between hospital admissions and length of 

stav analyses were invcstiuated. acyain usincy a combination of summary statistics Z-- r_1 Cý 
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to gain information from the data. A brief investigation into the demographics of 

the 'core group' of patients who are most frequently admitted to hospital was also 

undertaken. 

'Readmission' was defined as any admission by a patient who had a previous 

admission within the study period, i. e. between April Is' 1998 and the admission 

in question. As readmissions were estimated retrospectively it was necessary to 

use only the final 3 years of the total dataset (i. e. from April 2002 to April 2005) 

for some analyses in order to reduce the effect of left censoring (i. e. admissions 

occurring before the study period). Furthermore, as readmissions were considered 
in terms of previous admission, the effects of right censoring could be ignored for 

the purposes of these investigations. The effects of censoring and precautions 

taken are explained further in section 5.3.1. For studies that looked at 'readmitted 

patients' only, these were defined as patients that were admitted more than once 
during the study period, therefore even on the first admission any patient who 11'as 

to be readmitted was classed as a readmitted patient. Additionally, 'time between 

admissions' was defined as the time in days between a discharge and following 

admission. 

Investigations into P were performed by determining the percentage of patients 

(of a particular demographic group) who were readmitted within the recovery time 

(taken from a negative exponential distribution, mean 370 days). Time in days (at 

admission) since the previous discharge was taken to be the readmission time. 
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5.3 Results 

5.3.1 Overall readmission patterns 

Trust Level 

As the data encompassed a7 year period it was possible for the same patient to be 

admitted to the Trust more than once. A frequency distribution of the number of 

times each patient was admitted to the Trust within the 7 years is shown in Figure 

5.1. Most patients (5 1.3%, n=514159) were seen only once and the 75 th percentile 

is at 3 visits. However, the tail of the distribution is considerable with one patient 

having visited hospital 620 times. 
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Figure 5.1 Frequency distribution of the number of times each patient was 
admitted to hospital, n= 5 14159 (the total number of patients seen over the 7 year 
study period). 

Patients known to be readmitted accounted for 81.2% (1137799/1401471) of all 

admissions, with 63.3% of all admissions being readmissions. 

Censoring 

In order to reduce the effect of censoring in the remainder of the readmission Z: ) 
analyses a truncated dataset is used. Figure 5.2 was used to determine a cut off 

point and it was decided that the most accurate estimate of true readmissions 
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would result from using only the final 3 years of the total dataset (i. e. from April 

2002 to April 2005) and looking retrospectively for previous admission. For 

example, if the whole dataset was used if a patient was admitted I" March 1998 

then again Is' May 1998 the second admission would not be counted as a 

readmission because Is' March 1998 is before the study period. Whereas if only 

the final 3 years of the dataset are used there is an increased probability of a 

readmitted patient having been seen before within the study period and therefore a 

readmission event would have a reduced probability of being classed as a first 

time admission. For this reason any analyses that include readmission or hospital 

visit number the truncated dataset was used. As the proportion of readmissions of 

all admissions approached a plateau (Figure 5.2) and readmission is estimated in 

terms of previous admission the effects of censoring could be accounted for. 
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Figure 5.2 The proportion of admission episodes that are readmissions. The 

shaded area depicts that chosen for the following analyses, where the proportion 
of readmissions begins to stabilise. 

Frorn April 2002 to April 2005 there were 624338 admissions in total (including 

both in- and Outpatients). Of these 18.3% (114404) were only seen once, 81.7% 

(509934) were admissions by patients who were readmittees (i. e. either their first 

visit or a readmission) and 72.4% (45 1768) were readmissions. In terms of patient 

numbers, 282913 were seen over the three year period, 40.4% (114404) of whom 

were seen only once and 59.6% (168509) of whom were readmittees. For 
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inpatients only, frorn a total of 291593 admissions, 22.4% (65353) were by 

patients who were only admitted once over the year study period, and 77.7% 

(226600) of admissions were by readmittees, with 68.0% (198548) of admissions 

being readmissions. At a patient level, from a total of 186544 inpatients seen from 

April 2002 to April 2005,35.0% (65353) were admitted only once and 65.0% 

( 12119 1) were readmittees. 

The frequency distribution of time between hospital admissions is highly skewed 

towards shorter time periods between admission episodes. Figure 5.3 shows a 

generally decreasing distribution; however, when outpatients are included definite 

spikes can be seen corresponding to readmissions occurring at weekly intervals. 
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Figure 5.3 Frequency distribution of days between admissions, for in- and 
outpatients n=451768, for inpatients only n=198548 (the total number of 
readmission events from April 2002 to April 2005). 

The relationship between time between readmission and length of stay (Figure L- 
5.4) shows that generally longer periods between readmission episodes equates to c Z-1 I 

longer hospital stays. L- 
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Figure 5.4 Mean length of stay in nights against number of days between 
admissions, for in- and outpatients n=887312 (the total number of readmission 
events). 

Hospital Level 

The distribution of patient admissions to each hospital within the Trust's network 

is described in Table 5.1. Briefly, LRI had the majority of admissions and saw the 

most patients; moreover patients at LRI were more likely to only visit this hospital 

during the study period. 
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Leicester 
Leicester General Glenrield General 

Royal 
Hospital Hospital 

Infirmary 

Number of patients seen 333870 184244 116710 

Total number of admissions 825596 376341 199534 

(% of all admissions to Trust) (5 8.9 (26.9 c7, 14.2 c7c 

Mean number of admissions to any 2.47(4.7) 2.04(2.4) 1.71 (1.5) 

hospital per patient (SID); range; 25, 1-620 1-80 1-89 

50 and 75 percentiles) Ij2 1,1,2 1,1, 

Number of patients seen only once 
191982 114199 74290 

(as a (/( of number of patients seen at 
(5 7.5 %) (62.0%) (63.7c/(-) 

this hospital) 

Number of patients seen more than 

once 141888 70045 42420 

(as a% of number of patients seen at (42.5%) (38.0%) (3 6.3 c1c 

this hospital) 

Number of patients who visited this 

hospital only 241353 108701 59854 

(as a% of number of patients seen at (7 2.3 cl, - (59%) (51.3cl. ) 

this hospital) 

Number of patients who visited this 

hospital and one of the other hospitals 76103 59129 40442 

(as a% of number of patients seen at (22.8%) (3 2.1 cl() (34.6%) 

this hospital) 

Number of patients who visited this 

hospital and both others 16414 16414 16414 

(as a% of number of patients seen at (4.9 c1c (8.9(/(-) (14.117() 

this hospital) 

Table 5.1 Summary statistics describing admissions to each hospital within the 
Trust (using full dataset from April 1998 to April 2005). 

Z-- 
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For each hospital the vast majority of admission events are readmissions with very 

little difference between hospitals and between in- and outpatients admissions and 
inpatient admissions (Figure 5.5). In view of this, the remainder of the analyses 
include both the in- and outpatient populations. 
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Figure 5.5 Proportion of admissions and readmissions for each Individual hospital 
for both in- and outpatients and inpatients only (LRI in- and outpatients 
n=367522, inpatients only n=154083; LGH in- and outpatients n=169459, 
inpatients only n=87005; GH in- and outpatients n=87357, inpatients only 
n=50865, all n values correspond to the number of admissions from April 2002 to 
April 2005). 

Figure 5.6 shows at what stage in a patient's readmission history they are likely to 

visit each hospital. For example, approximately 5% of readmissions to LRI are on 
nd ii a patient's 6"' hospital visit. The distribution shows that patient's I" and 2 visits 

to hospital are more likely to be to GH, but as the visit number increases the 

readmission event is more likely to be to LGH or LRI. For very high visit 

numbers LRI shows the highest percentage values. Z-1 

As would be expected, higher hospital admission numbers were also correlated L- 
with shorter times between subsequent readmissions (Figure 5.7). For example, L- 
the mean IlUrnber of days between a patient's first and second hospital admission 
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was found to be nearly 400, whereas this reduces to only about 100 days between 

a patient's 9(h and I Oth admission. 
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Figure 5.6 Distribution of admissions to each hospital categorised by hospital 
visit number, n= 624338 (admissions by in- and outpatients from April 2002 to 
April 2005). A hospital visit number of 0 corresponds to those patients admitted to 
hospital only once during the study period, whereas I corresponds to the first 
admission of patients that are to be readmitted (i. e. of readmittees). 
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Figure 5.7 Relationship between hospital admission number and the mean and 
niedian number of days since last admission (panels a and b respectively), 
including 95% confidence intervals (n = 45 1768, the total number of readmission Z-- 
events frorn April 2002 to April 2005). For example, the number of days between 
admissions for hospital admission number 2 corresponds to the time between the 
first hospital admission and the second hospital admission. 
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Similarly, length of stay was found to vary according to the number of times the 

patient had been readmitted to hospital. The mean length of stay in hospital for the 

patient's 1,, I to I Oth admission can be seen to be between 3 and 4 nights, however, 

for subsequent readmissions the mean length of stay decreases; the mean lenath of L- 

stay for a patient's 51s' readmission or higher, being between 0 and I night r-I 

(Figure 5.8). However, the median length of stay for all hospital visit number 

groups was 0, except for that of patients with hospital visit number 0-10, where 

the median length of stay was one night. 
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Figure 5.8 Relationship between hospital admission number and the mean length 
of stay in hospital in nights, including 95% confidence intervals (n= 1401471 the 
total number of admission events). Hospital admission number =0 corresponds to 
the first hospital admission of patients who were only seen once in the study 
period, hospital admission number =I corresponds to the first hospital admission 
of patients who are seen more than once in the study period and all subsequent 
hospital admission numbers correspond to readmission events. 

5.3.2 Between hospital readmission patterns 

Of the 8873 12 readmissions 79.2% (702847) were to the same hospital as the 

previous admission and 20.8% (184463) were to a different hospital. However, as 

time between readmission increases the chances of being readmitted to a different 

hospital also increases (Figure 5.9). 

105 

0-10 11-20 21-30 31-40 41-10 51-1; 0 f, '1-70 1-1-80 81-90 91 - 101- Il- -'CO. 100 1 So 200 



100% 

80% 

60% 

:3 40% 
19 

LL 

20% 

0% 

Time between admissions (days) 

Readmission to 
different hospital 

Readmissions to 
same hospital 

Figure 5.9 Times between hospital admissions comparing percentages of 
readmissions to the same hospital and readmissions to different hospitals (n= 
8873 12 the total number of readmission events using the full dataset). 

Further analyses into the degree to which patients were 'faithful' to hospitals 

showed the majority of patients (79.7%) were admitted only one of the Trust's 

three hospitals within the study period, more than would be expected if 

readmissions were random, and that only 3.2% admissioned all three (Table 5.2). 

Number of hospitals visited Percentage of patients 

expected if readmission was 

random (from a multinomial 
distribution) 

63 

Percentage of patients 

79.7 

11 26 1 17.1 

31 11 1 3.2 

Table 5.2 Number of hospitals each patient is admitted to, comparing random 47- 
readmissions between hospitals with the actual readmission distribution from the 
dataset (n= 5 14159, the total number of patients seen in the study period). 

79.7% of patients (409908) visited one hospital only, 241353 to LRI, 108701 to 

LGH and 59854 to GH (Table 5.1). The remainder of patients were admitted to 
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more than one of the three hospitals, with 1276 different permutations of hospital 

orders and a maximum number of hospital changes of 36. The frequency 

distribution of the number of hospital changes on readmission (Figure 5.10) shows 

no change or very few changes of hospital in a string of readmissions to be most 

likely. Where a change in hospitals did occur on readmission the most common 

change was either from hospital I to 2 (i. e. LRI to LGH) or 2 to I (LGH to LRI) 

(Figure 5.11). 
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Figure 5.10 Frequency distribution of number of changes in hospital during string 
of readmissions, 0 changes correspond to patients who visited only one hospital 
(n= 5 14159, corresponding to the full dataset). 
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Figure 5.11 Frequency distribution for each permutation of order of hospitals 
visited (including only permutations that applied to at least 200 patients where 
there was at least one change of hospital between visits, n= 95633 patients, taken 
from the full dataset). I= Leicester Royal Infirmary, 2= Leicester General 
Hospital, 3= Glenfield General Hospital. 

The percentage of admissions to each hospital based on hospital of discharge 

(Table 5.3) reinforces the finding that the majority of admissions are to the 

hospital of previous discharge. Further to this, it is the symmetry in hospital 

changes that is most striking. Effectively this symmetry means that changes 

within certain hospital pairings are more likely with movements in either direction 

within the pair being approximately equal. Namely, changes between LRI and 

LGH are most likely, followed by LRI and GH, and lastly LGH and GH. 
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Previous discharge 

I (LRI) 2(LGH) 3(GH 

l(LRI) 52.167( 5.2(/( 3.5 c1c 
Next 
admission 2(LGH) 5.017c 19.4 cl( 1.717c 

3(GH) 3.6 c/(- 1.817c 7.8 c1c 

Table 5.3 The percentage of admissions to any of the three hospitals given 
discharge from any of the three hospitals (n=887312 the total number of 
readmission events). 

5.3.3 Readmission patterns for different demographic groups 

On comparison of age for different patient groups (based on how many times they 

are admitted) it was found that patients who were readmitted at least once were 

more likely to be either young adults (between 25 and 35 years), or elderly (at 

least 70 years old). Furthermore, patients who were readmitted the most (at least 

20 times) were most likely to be older (approximately between 50 and 80 years). 

Basic summary statistics are shown in Table 5.4. 

Mean 

Median 

Mode 

Ranae L, 

Patients who were ad"tted 

only once during study period 

(n= 263585) 

34.56 

33 

0 

0-107 

Patients who were readmitted 

at least once (>1) 

(n= 1137767) 

47.51 

49 

0 

0-109 

Patients who were admitted to 

hospital at least 20 times 

(n= 71352) 

50.81 

55 

68 

0-96 

Table 5.4 Summary statistics showing ages of patients (in years) in different 
groups, based on the number of readmissions. 
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Patients who are admitted less than 30 times were more likely to be female, but 

those patients who were admitted more than this were more likely to be male 

(Figure 5.12). 

1 OCP/. 

809/. 

601/6 

20% 

Op/. - 

Nkimber of times each patierd %visited hospital 

a Female 

[I N/ble 

Figure 5.12 Number of times patients visit hospital (n= 514149 the number of 
patients that were seen in the Trust from April 1998 to April 2005) split by 
gender. For example, of all the patients who visited hospital 20 times 38.7% were 
male and 61.3% were female. 

5.3.4 P-value estimation 

The probability of an infected patient being discharged and readmitted while still 

infected (P), was estimated from the dataset assuming a negative exponential 

distribution of loss of infection over time with a recovery rate of 0.0027/day 

(mean recovery time of 370 days). The mean P value of all patients was calculated 

to be 0.442, i. e. 44.2% of infectious discharges are readmitted while still infected. 

This P value gives an estimate of the mean number of admissions whilst infected 

(1/(]-P)), as 1.79. Excluding day cases this value dropped to 39.8%, i. e. a mean Z-- 
number of admissions of 1.66. 

Fi(TUre 5.13 explores P with respect to age and gender; it is found that for younger 4--1 L- L- Z-- 

patients (less than 50 years) it is the females who have a crreater chance of being Z-- L- 
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readmitted within the recovery time. Females in the 20-30 year age category seem 

to pose particularly high risk with 54.5% of admissions by this group being 

followed up with a readmission episode within a mean of 370 days (the recovery 

period). Conversely, for patients over 50 years, as age increases it is the males 

who are increasingly likely to be readmitted. Overall, females have a slightly 

increased P value compared to males (0.46 compared to 0.42 respectively, this 

difference is further enhanced on the exclusion of day cases where P for females 

increases to 0.53 and for males drops to 0.36). 
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Figure 5.13 Heterogeneities in readmission rates with respect to age and gender, 
panel a) shows P values, the probability of an infected individual being discharged 
and readmitted while still infected, panel b) shows 1/(I-P) the expected number of 
admissions while infectious. Results are shown for different age groups split by 
gender, n= 887275. 
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5.4 Discussion 

5.4.1 Consequences of readmission patterns for transmission 

The number of hospital visits was generally low (Figure 5.1), with 75c1c of 

patients visiting the Trust 3 or fewer times over the 7 year study period. HoNXeVer 

a few patients visited the Trust repeatedly over the 7 years, up to nearly 100 times 

a year, and it is these readmission events that make up the majority of hospital 

episodes. Basic statistics, such as 81.2% of all admissions are by readmitted 

patients and 5 1.3% of all patients are readmitted, highlight the fact that the 

majority of hospital days are taken up by patients who have been in hospital 

before or are to come in hospital again. 

In terms of transmission this pattern can work in two ways. Firstly, a high rate of 

readmission means a greater probability of reintroduction of infection, especially 

given the fact that readmission events are more likely to be over shorter time 

periods (Figure 5.3) and thus the shorter the duration of infectiousness necessary 
for readmissions to be in infection threat. However, the strong presence of a core 

group, of frequently readmitted patients, within the hospital population means that 

transmission is mostly contained within that group i. e. they are mostly 

transmitting to each other (either directly or indirectly). An individual's contact 

rate with members of the core group, in which a higher prevalence is likely, will 
determine their risk of acquisition. These dynamics are similar to those found for 

sexually transmitted diseases where sexual partner networks determine 

transmission patterns. Ghani et al. (1996) suggest that distinguishing between the 

role of contacts in risk of acquisition and the risk of transmission may be 

significant. In a further study Ghani and Garnett (2000) describe how an 

individual's risk of acquisition depends not only on their contacts, but also on the 

contacts of their contacts, as well as the prevalence within the associated 

networks, whereas, risk of transmitting infection depends more on individual 

behaviour. 
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Most readmissions (79.2%) were to the same hospital from which discharge 

occurred, with the vast majority of patients (79.7%) only admissioning I out of 

the 3 hospitals within the Trust (Table 5.2). This pattern has two main 

implications in terms of transmission. 

Firstly, there is a relatively low chance (0.208) that an infected patient discharged 

from one hospital will be readmitted to another hospital, and an even lower 

chance of doing so while they are still infected, especially on consideration of the 

fact that readmission episodes to a different hospital were associated with longer 

periods of time between one admission and the next (Figure 5.9), presumably 

admissions associated with different diseases/ailments. Therefore there is a 

relatively low chance of patients becoming infected with MRSA in one hospital 

and subsequently spreading it to another hospital. In effect, 'core groups' appear to 

be largely hospital-specific and so have the potential to contain infection within 

individual hospitals, meaning that epidemic behaviour in one hospital may not 

necessarily generate epidemic behaviour in neighbouring hospitals. 

Secondly, the chance of an infected patient being discharged and readmitted to the 

same hospital is relatively high and it is this kind of patient movement pattern that 

leads to persistence (either through re-seeding or 'fuelling' an existing epidemic). 

For example, if an epidemic were to occur within a hospital and an infected 

patient discharged, then in the time between their discharge and readmission the 

epidemic may have been controlled. Thus a susceptible population is created, 

meaning that upon readmission the individual would have the potential to 're- 

ignite' the epidemic. 

This effect of reintroducing infection to the hospital of discharge may be 

enhanced due to the finding that patients who were readmitted most quickly, i. e. 

in the shortest time since their last discharge, were even more likely to return to 

the same hospital from which they were discharged (Figure 5.9). Moreover, those 

that were most quickly readmitted were also found to have been in hospital many 

times previously (Ficrure 5.7). This high number of same-hospital admissions L_ 
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within a small time frame makes these patients ideal vectors for infection: they are 

at an increased chance of acquiring infection due to their numerous hospital visits 

and have an increased chance of transmitting Infection due to 'quick' 

readmissions i. e. before recovery. However, it was also found that for higher 

hospital admission numbers shorter hospital stays were more likely (Figure 5.8). 

Therefore, due to length of stay being a proven risk factor for nosocomial 
infections (Graffunder and Venezia, 2002; Safdar and Maki, 2002), the chance of 

either becoming infected or infecting others may be reduced. In addition, longer 

stays in hospital were associated with longer times between visits, again having 

the potential to reduce the threat of reintroduction of infection. 

Further work would need to be undertaken to determine the degree of between 

hospital movement that would ensure each hospital reaches a high prevalence as 

well as being able to seed others. 

Heterogeneities in readmission 

Not all hospitals within the Trust share the same readmission patterns. For 

example, LRI had the highest proportion of readmissions (Figure 5.5) and from 

Figure 5.6 it can be seen that these readmissions correspond to higher hospital 

visit numbers. However, LGH and GH were associated with those patients who 
had only been readmitted a few times (i. e. lower hospital visit numbers). Again, 

hospitals associated with short stays (LRI) (Figure 4.9) were also associated with 

more frequent visits from patients (Figure 5.6) and similarly the hospitals 

associated with longer hospital stays (GH) are associated with less frequent visits. 

These patterns imply that certain hospitals have a higher epidemic risk than 

others. Namely, those at which the readmittees have been into hospital most times 

previously (and therefore have an increased probability of being either infected or 

colonized by MRSA) and those whose patients are readmitted most frequently. 

As wc1l as variations between hospitals, different demographic groups were also 

tI ound to have differences in readmission patterns: most notably younLg women 
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(21-30 years) and also elderly males appear to be 'core groups'. Analysis reveals 

that women in reproductively active age-groups are amongst the most likely 

people to be readmitted to hospital whilst still infected, and consequently the 

group most likely to have a high prevalence of HCAl. A HCAI epidemic in 

reproductively active women may not have occurred previously for three reasons. 

First, this group is less frequently exposed to antibiotics. Second, Obstetrics & 

Gynaecology is relatively separate from others in terms of patient placement 

within hospital and staff cross-over. Third, the length of stay (LOS) of patients 

admitted to this specialty is shorter (mean LOS 1.04 nights for obstetrics, 1.21 

nights for gynaecology compared to 6.61 nights for females in all specialties 

(results from chapter 4, section B)). However, should a HCAI enter this group it is 

likely to become well established at a high prevalence, therefore special attention 

should perhaps be given to ensure this does not occur. 

Infected readmission estimates 
Overall, it was found that approximately 44.2% of infected discharges will 

subsequently be readmitted to the Trust (either to the same or different hospital 

from which discharge occurred) within the recovery time i. e. while they are still 
infected and infectious. This is a much higher parameter estimate for P than that 

used in the previous models by Cooper et al. (2003; 2004a) and that used in 

Chapter 3. The previous estimates gave aP value of 0.037, giving approximately 

half the number of infected admissions per infected patient to that estimated using 

these findings (1.04 compared to 1.79). 

Despite these estimates being calculated from a single dataset, the fact that they 

are so much higher than previous estimates, with almost half of the infected 

discharges being subsequently readmitted, highlights the need for more collection 

and analysis of such data. 

It must be remembered that the accuracy of all readmission pattern analyses is 

compromised due to the effects of censoring. There may be some value in 

developing a model of admission behaviour, in order to reduce bias brought about 
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by censoring. No such model has been developed here, but would be a sensible 

next step in the investigation of readmissions. 

5.4.2 Consequences of readmission patterns for infection control 

The determination of a 'core group', and more importantly identification of its 

members, would have obvious benefits for infection control. It is these few 

patients who are admitted frequently, who are likely to have most contacts and 

take up the majority of patient days, who are of most interest from an infection 

control perspective. If these patients were to have an infectious disease then 

without effective surveillance they would provide a source of infection upon each 

visit. However, if frequent readmittees were 'flagged' in some way then the threat 

posed by them could be reduced as they would be known to be high risk upon 

admission and therefore could be treated accordingly. 

The fact that readmission events are generally more likely to be over shorter time 

periods (Figure 5.3) even further highlights the need for effective surveillance of 

readmittees. Furthermore, the potentially predictable nature of some readmissions, 

for example the weekly readmission patterns seen within the outpatient population 

(Figure 5.3), could be made use of when devising a surveillance strategy. In 

general, knowledge of both patient length of stay and how frequently they visit 

hospital may determine whether or not a particular control strategy will succeed or 

fail, and should therefore be considered during design. 

Parallels may be drawn between targeting control to frequent hospital readmittees 

and that explored by Sutton et A (2006) where persistent offenders were 

vaccinated against hepatitis B at prison reception, a strategy aiming to increase 

coverage of the high risk injecting drug user population. t-- 

The faithfulness of patients to hospitals is also potentially advantageous for 

infection control in that faithfulness effectively constrains transmission within 

particular hospital populations, thus reducing spread to other hospitals within the 

network. Effectively, clustering of the patient population is generated. However. L- t--I 
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despite the low probability, there is still a chance of infection transfer occurring 

and therefore must not be overlooked in infection control practices, particularly 

when the transfer of infection maybe into a susceptible population (i. e. a hospital 

without an epidemic) and thus being a perfect setting for effective transmission. 

For example, Scanvic et al. (2001) find a high percentage of their MRSA cases to 

be due to transmissions from outside hospitals. 

Heterogeneities in readmission, by hospital and demography, further our 

understanding of the frequently readmitted 'core group'. An increased knowledge 

of these patients would be of great benefit in terms of infection control, as these 

are the patients with the greatest potential to become infected and reintroduce 
infection on each visit. In addition, this is the patient group likely to have the 

highest prevalence, due to the predominantly within-group transmission. 

Therefore any control strategy that targeted the demographic groups/hospitals 

most likely to be in the 'core group' would be likely to have the greatest influence 

on overall infection levels, both in the short term (i. e. for the 'core group' itself) 

and the long term (by reducing the probability of transmission to individuals 

outside the group and reducing the probability of reintroduction of infection). 

Analysis of heterogeneities in readmission rates provide insight into those patients 

who may need to be prioritised within infection control policies and although 

difficult to conceive of practically, overall, any method of reducing P would be 

likely to be an effective intervention strategy. 

The fact the probability of readmission of an infected individual, whose infection 

was acquired on a previous hospital admission and to whom recovery has not yet 

occurred, is so much higher than previous estimates implies that reintroduction of 

infection may be a critical factor in the transmission dynamics of MRSA. The 

identification of factors of influence to transmission allows the development of 

more informed control strategies, as discussed in earlier chapters a higher P value 

and a settincy of areater patient movement (particularly infectious patient L- t-- 

movement) beoveen the hospital and community Populations will have an impact 
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on infection control strategy success. Due to their influence on transmission, and 

therefore on control strategy success, readmitted patients (especially those 

readmitted within a year) should be an infection control priority and there may be 

value in strategies such as screening on discharge or screening and isolating on 

admission. Moreover, the analytical results in Chapter 2 find that increases to the 

value of P relate to an increased benefit in on-admission screening. Therefore, the 

fact that our estimated P value is much higher than previously estimated implies a 

strategy solely comprised of random screening may not be the preferential 

strategy. Indeed, the greatest control at P=0.45 (Figure 2.3) find an approximately 
50% random screening to 50% on-admission screening to be optimal. Therefore a 

strategy that is tailored towards the targeting of readmittees may be of greatest 

value. 

Further mathematical modelling studies into the effectiveness of infection control 

strategies given much higher, and therefore, according to these findings, more 

realistic, readmission rates are shown in Chapter 6. 

5.4.3 Conclusions 

These findings provide the first direct estimates of the impact of readmission and 
heterogeneities in readmission rates. The results shown imply readmissions may 
have a definite influence on nosocomial infection transmission dynamics, with 

transmissions caused by patients admitted from the community potentially being 

of more importance than within-hospital transmission. This shift from hospital 

driven to admission driven transmission dynamics would likely provide very 
different transmission patterns and further work in this area would need to be 

undertaken to ascertain the effect this change in focus would have on infection 

control strategy advice. 

Clear representation and increased knowledge of these kinds of statistics could 

help infection control practices within hospitals greatly. Using these patterns and 

distributions to determine a realistic setting, various control strategies may be 

devised and tested LlSing mathematical modelling. Further work in thi CI C, ZI is area nee. 
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to be undertaken to link such findings on patient demography and patient flow to 

the development of a comprehensive model of a hospital system. Such a model 

would enable theoretical testing of control strategies within a particular hospital 

network, in this case for the UHL NHS Trust. Additionally, such models could be 

generalised and be useful in many areas, not only for epidemiology and infection 

control but also for areas such as hospital management and planning. Such a 

model has not been developed here since the observed data will be used in future 

chapters. 
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Chapter 6 

Using hospital data to 

development in order 

understand transmission 

0 

inform model 
to further 

dynamics of 

healthcare- associated infections 

The purpose of this chapter is to describe how the mixing patterns and hospital 

demographics obtained from the hospital data were used to inform a mathematical 

model. The development of a stochastic model of infection transmission within a 

setting of real patient movements between hospital and community is described. 

Namely, real patient movements in and out of the UHL NHS Trust are simulated. 
The model simulates this setting for a period of 7 years from 1998 to 2005, where 

all admission and discharge events are as those described in Chapters 4 and 5. To 

the author's knowledge, this is the first time such a model, using real patient 

movements around a healthcare network, has been developed and used to further 

understanding of HCAI transmission dynamics. Simulation results, showing 

epidemic behaviour and preliminary investigations of control strategies in this 

setting are given in terms of numbers of infected patients over time. 

6.1 Introduction 
One of the most significant findings from Chapter 5. especially from an infection 

control point of view. was that the majority of patients In hospital are those who 

121 



have been in hospital before (with approximately 80% of readmissions occurring 

within a year of discharge). Overall, readmissions were found to be much more 

common than previously thought with the mean number of infected admissions 

estimated to be almost double that of previous estimates. The elderly, especially 

males, and young females (21-30yrs) were found to have a particularly high risk 

of readmission within a short time frame. 

From these results it is clear that the model developed in Chapters 2 and 3 

simulates infection in a different setting to that described in the data. In these 

simulations readmission was much less likely and therefore the effect of 

reintroduction of infection may have been underestimated. Moreover, the 

analytical results in Chapter 2 indicate that movement patterns may be key to 
infection control strategy success or failure, in settings of different patient 

movement patterns different control strategies may be appropriate. For example, 

whereas within-hospital screening may be beneficial in a setting of low patient 

readmission, as readmission rates increase the benefit of this strategy may 
decrease and the benefit of on-admission screening increase. As discussed in 

Chapter 5, this dependence of control strategy success on patient movement 

patterns, coupled with the finding that readmissions are much more common than 

previously thought, suggests that in a more realistic setting (with higher 

readmission rates) the control strategy of most benefit may be different to the 

results seen in Chapter 3. Therefore a more realistic representation of the hospital 

setting in terms of patient movements will aid in understanding the best strategy 

to be adopted. 

Creating a model using real patient movement patterns over a defined time period 

will have two major outcomes: firstly, a more realistic model will provide greater 

insight into HCAI transmission dynamics generally and secondly, despite not 

being attempted here, these types of models could be used to provide quantitative 

control strategy advice to the hospital(s) to which the data applies. L- 
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In order to simulate the situation at UHL NHS Trust more closely a distinction is 

made between the three different hospitals within the Trust, rather than treating all 

three hospitals as one entity. The development of the original model to include 

three hospitals and a community is described. The mixing and readmission 

patterns obtained from the individual hospital data analyses will be used to inform 

the model framework, such that a multi-centre model with non-random mixinc, is 

created. This is the first attempt at developing a multi-centre model using real 

patient movements within the network and will have the benefit of allowing 
investigation of transmission in a heterogeneous setting. 

6.2 Model Development 

6.2.1 Single-centre model 
An individual -based model (IBM) was developed such that the infection status of 

each individual was recorded over time. The model was developed to follow 

closely the theoretical, stochastic model described in Chapter 2. 

A closed hospital and community population was modelled. As described in 

Chapter 5 (5.2.1) the majority of the community population uses the Trust and the 

majority of the patients in the Trust are from the community population; therefore 

the assumption of a closed hospital and community system seems a reasonable 

one for this particular setting. Patient movements between the hospital and 

community were modelled on an individual level. Patients moving into hospital 

acquired the status 'ins' and patients moving out 'outs'. Once admitted, 'ins' were 

given the status 'inpatient' (which was then subsequently lost upon discharge). 

Admissions and discharges were carried out on a daily basis with the assumption 

that admissions and discharges occur simultaneously. In this way, day cases are 

never considered a part of the inpatient population and are therefore effectively 

excluded. For MRSA this assumption seems reasonable as the major infection 

threat will come from inpatients. 
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It is important to note that admissions and discharges were simulated exactly as 

they occurred in real time; therefore these events were not modelled stochastically 

and did not have associated estimated parameters, due to this there existed only 

one community group. This differs from the model described in Chapter 2 where 

two community groups existed, each associated with a different readmission rate. 

Infection was included as a stochastic event such that each individual also had an 
infection status. For all simulations it was assumed that initially there existed 100 

infected individuals within the community population (chosen at random initially, 

but constant between runs). Infection (or colonization) of a susceptible patient 
lead to a status change from 'susceptible' to 'infected', these patients were 

assumed infectious and able to infect other susceptible individuals until loss of 
'infected' status upon recovery. Upon discharge, infected patients retained their 

'infected' status within the community population, and were assumed to recover 

at the same rate as infected individuals within the hospital. 

The addition of an infection control strategy including patient screening and 
isolation was created using further categorisations. Screening allowed detection of 
infected individuals; this detection being accompanied by the addition of a 
'detected' status. Again screening and detection occurred either within the 

hospital (random screening), on patient admission (on-admission), or alternatively 

was comprised of a combination of the two. Screening was carried out 

stochastically, but the method used differed slightly from that in Chapter 3. Here, 

the number of people screened per day was chosen, thus establishing effort, and 

the value of an additional parameter cy (taken from a range of 0-1, where 0= 

solely on-admission screening and I= solely random screening) determined 

which strategy was adopted. It is worth noting that recovery of a detected 

individual did not cause loss of their 'detected' status. This model could therefore 

be developed to explore the effect of re-screening previously detected patients. 

However, loss of 'detected' status did occur on hospital discharge. Therefore it 

was possible for an infectious patient to be readmitted to hospital and their 

infection status unknown upon admission, despite being known during their 
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previous hospital stay. Another extension of this model would therefore be to 

explore the possibility of targeting screening to those individuals who were 
known to be infected during their previous hospital visit, especially if this was in 

the last year, for example. The inclusion of a fixed capacity isolation ward 

allowed detected individuals to be isolated while capacity allowed. Upon isolation 

the individual gained the additional status of 'isolated, which was lost upon 

patient discharge or patient recovery. A diagram depicting the model's structure is 

given in Figure 6.1 and the parameter values, stochastic events and their 

corresponding rates in Tables 6.1 and 6.2. 

Figure 6.1 A Venn diagram representing the entire study population in terms of 
status possibilities, where each set represents a status type. For example, the 
detected patient group is largely made up of infected patients, some of whom may 
also be isolated, but is also partly made up of susceptible patients; all detected 
patients are part of the hospital population. 
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Parameter 

Transmission coefficient 

Recovery rate (day -I) 

Isolation ward capacity 

Average number 

admissions/ day 

Average number in 

hospital/ day 

Overall population size 

Screening effort 

Screening type 

Symbol 

ß 

7 

NISO 

NA 

Value 

0.1622 (unless 

otherwise stated, 

where values of 
0.1126 and 
0.1939 are used) 
0.0027 

20 

548 

NH 1719 

NH+NC 514159 

F- Range: O-NA 

Range: 0- 1 

Reference 

As in chapter 2 

(as described in 

section 6.2.1 ) 

As in chapter 2 

From dataset 

(as described in 

chapters 4 and 5) 

From dataset 

From dataset 

Table 6.1 Parameter values used in the 'real -movements' models 
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Event description F-Event Rate 

Infection of a susceptible 

within the hospital 

Recovery of an infected 

individual 

Detection of an infected in 

the hospitai (i. e. by random 

screening)* 

Detection of an infected on 

admission to the hospital 

(i. e. by on-admission 

screening)* 

(susceptible r) inpatient). I (infected n inpatient n isolated') 
Y (inpatient) 

(infected) 

Z(infectedn detected") 

where 0=E-c 
NH 

v. (ins ninfected) 

where ,= 
E'(' -C) 

NA 

*Movement of detected infected individuals occurs automatically following detection when 
l(isolated) < NISO 

and Y (infected r) inpatient r-) detected r-) isolated) >0- 

Table 6.2 Stochastic events and event rates given in terms of sets described in 
Figure 6.1. 

6.2.2 Model extension to multi-centre 

Exactly the same framework and assumptions were used for the multi-centre 

model, except the patient population was split into 3 distinct sub-populations 

representing each of the three hospitals. Again, discharges and admissions were 

carried out simultaneously on a daily basis and movements around the network 

simulated the real movements of patients into and out of the three hospitals 

comprising the UHL NHS Trust from 1998 to 2005 (as described in Chapter 5). 

Again, infection was added stochastically. Infection could only occur in hospital 

(not in the community) and, in addition, an infected patient could only infect 

susceptible patients within the same hospital. The multi-centre model's structure 

is as that given in Figure 6.1 except the hospital population is split into three 
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identical hospital populations each with susceptible, infected, detected and 

isolated sets within it. The stochastic events and their corresponding rates are as 

those in Tables 6.1 and 6.2, except that the average number of admissions to each 

hospital per day and average number of patients in each hospital per day are Lis 

those given in Table 6.3. 

Parameter Symbol Value Reference 

Average number NAI 324 From dataset 

admissions/ day to (as described in 

hospital I chapters 4 and 5) 

Average number NA2 149 From dataset 

admissions/ day to 

hospital 2 

Average number 

admissions/ day to 

hospital 3 

Average number in 

hospital I/ day 

Average number in 

hospital 2/ day 

Average number in 

hospital 3/ day 

Overall population size 

(the population that visits 

hospital at least once over 

the study period) 

NA3 

NHI 

NH2 

NH3 

NHI+NH2+NH3+NC 

75 

781 

556 

382 

514159 

Table 6.3 Parameter values used in the multi-centre model. 

From dataset 

From dataset 

From dataset 

From dataset 

From dataset 

The models were written and run in MATLAB@ (Version, 7.0, MatLab, The 

MathWorks, Natick, MA, USA) on a personal computer. 
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6.3 Results 

6.3.1 Analytical results 

Single-centre model 

To calculate ro in the single-centre model with realistic patient movement patterns 

the relationship 

ro = 

IU +7 

introduced in Chapter 2, can be used. Where P and y values are as those in Table 

6.1, and I /ýt the average length of stay in hospital is calculated from the dataset 

(given in Chapter 4, section 4.3.2). This calculation is complicated slightly by the 

fact that in the single-centre simulations admissions and discharges are performed 

simultaneously; therefore, outpatients effectively leave the hospital 

instantaneously upon admission meaning they will not contribute to infection 

within the hospital. Therefore, in calculating ro and RO, I /ýt is taken as the average 
length of stay excluding outpatients (6.65 nights). In this way ro for the single- 

centre model is calculated to be 1.062, and from this RO as 1.9 (using 

Ro = ro 
I 

I-P, 

where ( 1/( 1 -P)) is taken to be 1.79 as calculated from the dataset in Chapter 5). 

Using this rationale, whilst P remains the same as the value in Chapter 2, ro and RO 

are different (due to the difference in 1/(I-P) and ýt values when calculated from 

the dataset). For this reason, simulation results were also obtained using altered P 

values, such that settings in which both ro and RO reflect those in Chapter 2 could 

be explored (all P values and their corresponding ro and RO values are given in 

Table 6.4). 
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pI ro Ro 

0.1126 

0.1622 (as in chapter 2) 

0.1939 

0.74 

1.06 

1.27 (as in chapter2) 

1.32 (as in chapter 

1.90 

2.27 

Table 6.4 Range of P values used in 'real -movements' model simulations and 
their corresponding ro and RO values. 

Multi-centre model 
To calculate the within-hospital reproduction number (ro) for each individual 

hospital in the multi-centre model, the relationship 

roi -A 

pi + ri 
can be used (where i refers to the hospital number). Using the parameter values as 
described in Table 6.5, ro for hospitals 1,2 and 3 can be calculated to be 0.92, 

1.14 and 1.36 respectively. 

Parameter Symbol Value Reference 

Transmission coefficient hospital I P, 0.1622 As in chapter 2 

Transmission coefficient hospital 2 P2 0.1622 As in chapter 2 

Transmission coefficient hospital 3 P3 0.1622 As in chapter 2 

Discharge rate (day-') hospital I ýt 0.174 From dataset 

Discharge rate (day- I) hospital 2 

Discharge rate (day- I) hospital 3 

Recovery rate (day-) hospital I 

Recovery rate (day-') hospital 2 

Recovery rate (day-) hospital 3 

ýt2 0.140 

ý0 0.117 

71 0.0027 

72 0.0027 

73 0.0027 

(section 4.3.2) 

From dataset 

(section 4.3.2) 

From dataset 

(section 4.3.2) 

As in chapter 2 

As in chapter 2 

As in chapter 2 

Table 6.5 Values for P, ýt, y used to calculate individual hospital ro values in the 
multi-centre model. *I/ [ti = LOS in hospital i, where i=1,2,3. 
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The calculation of the overall Ro for the multi-centre model uses a matrix of P 

values of the form 

P 
12 

P,, 0.66 0.10 0.15 

Pý 12 
Fý3 = 0.04 0.52 0.07 

ýl 
2 

Pýl 

_0.03 
0.04 0.40_ 

where, for example, P12 is the probability of an infected individual being 

discharged from hospital I and readmitted to hospital 2 while still infected. These 

probabilities are calculated using the distribution of all readmissions (n= 8873 12) 

and numbers of infectious readmissions (calculated as described in section 5.3.4 

using a negative exponential distribution of recovery with a mean recovery rate of 
0.0027/day). 

From this Qij is calculated, where Qij is the probability of an infectious admission 

to hospital j (at some point) given an infectious discharge from hospital i, where 
i1i = 1,2,3. QIj differs from Pij in that Qij incorporates all infectious admissions to 

hospital j by an infectious individual initially infected in hospital i Oa any route 
(i. e. rather than just directly) over the entire period they are colonized. For 

example, considering the schematic in Figure 6.2, if an infected individual were to 

be discharged from hospital 2, then the total number of infectious cases they 

would cause in hospital I would be the sum of the infectious cases caused by the 

three hospital episodes in hospital I (from admissions A, B and Q, providing they 

remain colonized throughout this period. 

C 

B 

Figure 6.2 Schematic diagram of the readmission history of one infected clý 
individual within and between three hospitals (1,2 and 3). Where A= P-,,, B= P3, 
and C=P, i. 
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Clearly, to calculate the total number of secondary infections in hospital I caused 
by an individual initially infected in hospital 2 considering only P-), would be 

insufficient as the total number of infectious cases caused in I is also dependent 

on P31 and P, 1. Instead Q21 is used, in which each possible route of entry to 

hospital I from hospital 2 is considered. The matrix for Q is given by 

Qll Q12 QI3 0.67 0.04 0.03 
Q21 Q22 Q23 --": 0* 11 0.53 0.04 . 

-Q31 
Q32 Q33- 

_O. 
16 0.07 0.40_ 

Equations for Qjj are given in Appendix 2. From this an Rij matrix can be 

established, where Rij is the average number of secondary infections in hospital j 

caused by an infected individual initially infected in hospital i, using 

Of Qu 

where i=j, and 

Rij = Qij Rjj 

otherwise (full equations given in Appendix 2). 

Giving 

RI, R12 R, 1 2.75 0.11 0.08 

R,,, R, )-) R, 
_j 

0.30 2.43 0.09 

_R31 
R12 R13 

_0.44 
0.18 2.28_ 

in turn giving an overall RO for the multi-centre network of 2.9. 

6.3.2 Single-centre model results 

Without control 
With no control imposed upon the infectious population an epidemic pattern is 

observed (Figure 6.3). Within the first year an exponential increase in the number 

of infected individuals within the overall Population occurs. Endemic equilibrium 

is reached within 4 years, where approximately 25000 individuals (of a population 

of size 5 14159) are infected. Infected individuals in the hospital reach equilibrium 

(-750 infected patients) within the first 2 to 3 years. 
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In terms of surveillance, although both strategies (random and on-admission) are 

able to detect infected patients, random screening is by far the most efficient 

strategy. At a 70% effort level random screening is able to detect approximately 

70% of infected patients. Whereas on-admission screening detects approximately 

a quarter of the infected patient population, even once endemic equilibrium is 

reached in the community. 

On varying the transmission parameter P according to the values calculated in 

Table 6.4, in order to give ro and Ro values that reflect those in the stochastic 

model (in Chapter 2), endemic behaviour is seen to occur with each P value 

(Figure 6.4). Reducing P (and therefore roand RO) has the effect of increasing the 

time taken to reach endemicity and decreasing the value at which endemic 

equilibrium is achieved. As may be expected, increasing P (and therefore ro and 

RO) has the opposite effect i. e. decreasing the time taken to reach endemicity and 

increasing the value at which endemic equilibrium is achieved. These patterns are 

observed in both the hospital and community populations. 
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Figure 6.3 Simulation results over -7 years (2500 days) with no control strategy 
i rnposed. All parameter values are as those given in Table 6.1. Panels each show 
three simulations where, a) and b) depict infection and detection within both the 
hospital and community populations and panels c) and d) show the same data for 
the hospital population only. For panels a) and c) the surveillance strategy is 
100% random screening, whereas for panels b) and d) surveillance is 100% on- 
admission screening (both screening strategies were set at a 70% effort). Where: 

inpatient; infected; inpatient & infected; and -= inpatient & 
detected. 
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Figure 6.4 Simulation results over -7 years (2500 days) in which the transmission 
parameter (P) is varied and no control is imposed. P is varied according to the 
values given in Table 6.4 and all other parameters are as those given in Table 6.1. 
Panels each show three simulations of each transmission parameter where, a) 
depicts infection and detection within both the hospital and community 
populations and b) the same data for the hospital population only. 
Where: - inpatient; -= infected when P=O. 1939; -= infected when 
P=O. 1622; infected when P=O. 1126; --= inpatient & infected when 
P=O. 1939; inpatient & infected when P=O. 1622; and inpatient & 
infected when P=O. 1126. 
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Control of epidemic 
Control is clearly exhibited by random screening and a 50/50 combination of 

random and on-admission screening, whereas a strategy solely comprised of on- 

admission screening does not control infection (Figure 6.5). Lookinc, at the 

interplay between surveillance and control in more detail (Figure 6.6), generally 

the greater degree of random screening employed, the greater the level of control 

achieved. However, rather than a strategy of 100% random screening to Ocl( on- 

admission screening, a strategy of 90% random screening to 10% on-admission 

screening seems to be optimal. An increase in the proportion of on-admission 

screening that makes up the 70% screening effort results in more infected 

individuals within the hospital and a reduced capability of detecting them (the 

sum of the detected patients in hospital begins to deviate from the sum of the 

infected patients in hospital). 
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Figure 6.5 Simulation results over -7 years (2500 days) comparincy combinations L- 
of random and on-admission screening alongside an IW (capacity 20). Parameters r-I 
are as those given in Table in 6.1. Panels a) and b) depict 100% random screening L- r, I 
0 and d) 50% randorn/50% on-admission screenina, e) and f) 100% on-admission L- 
screenin2. Where: inpatient; infected; nfected. inpatient &i 
inpatient & detected, and isolated. 
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Figure 6.6 Relationship between screening strategy and detection and control. 
The number of infected and detected individuals in the hospital summed over the 
7 year simulation period is plotted, averaged over 5 simulation runs. Screening 
effort was made up to 70% in every combination and all parameters set to those in 
Table 6.1. 

6.3.3 Multi-centre model results 

With no control imposed the epidemic patterns seen for the multi-centre model 

(Figure 6.7) appear similar to those for the single-centre model (Figure 6.3) in the 

community population and an endemic state is achieved in each of the three 

hospitals (Figure 6.7). However, the individual hospital prevalence is seemingly 

hospital dependent. For example, at endemic equilibrium approximately half of 

the population of hospital I is colon i zedli n fected compared to approximately a 

seventh of the population of hospital 2. Epidemic behaviour exhibited in the 

community approaches equilibrium towards the end of the 7 year simulation 

period with approximately 25000 infected individuals. 

As a result of varying the transmission parameter P both epidemic timing and 

magnitude vary in both hospital and community populations (Figure 6.8). A 

decrease in transmission rate results in a slower epidemic with a lower prevalence 

thI-OUghOUt the simulation period. This effect is seen most markedly in the 

Community Population but also occurs in each individual hospital within the 

network. 
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Figure 6.7 Five i-nulti-centre simulation results (over -7 years) with no control 
strategy imposed. Parameter values are set to those in Table 6.1 except average L- 
admissions and population sizes which are as those in Table 6.3. Panel a) depicts 
the C011111IL1111ty population, b) hospital 1, c) hospital 2 and d) hospital 3. Where: 

inpatient*, infected and inpatient & infected. 
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Figure 6.8 Five simulation results (over -4 years) in which the transmission 
parameter (P) is varied between runs and no control is imposed. Parameter values 
are as those in Tables 6.1 and 6.3. Panel a) depicts overall infection prevalence 
(Including that in the community), b) hospital 1, c) hospital 2 and d) hospital 3. 
Where: -= infected (P = 0.1939); infected W=0.1622), -= infected 
W 0.1126). inpatients, -= inpatient & infected (P =0 . 1939); 

inpatient & infected 0.162- '2)-, = inpatient & infected 0.1126). 
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6.4 Discussion 

The purpose of this chapter was to develop a model to investigate transmission 

dynamics and infection control of HCAI given a setting of real movements 
between hospital and catchment populations. In this way the findings in Chapter 5 

regarding the increase in probability of infectious readmissions (compared to that 

used in previous models) will be inherent. In addition, heterogeneities in patient 

readmission rates, with some demographic groups more likely to return to 
hospital, will also be integrated. 

The results from the single-centre real-movements model, in which the Trust is 

modelled as a whole and transmission between all inpatients possible, show little 

variability. Endemic equilibrium is consistently reached in both hospital and 

community populations within the seven year simulation period (Figure 6.3). 

However, as stated in Chapter 5, in using the real admission/discharge dataset to 

determine patient movements in and out of hospital this model creates a setting in 

which infected readmissions are more likely. In effect, the value of the parameter 
P has increased compared to that used in the stochastic model described in earlier 

chapters. This change in P has the effect of altering ro and RO for these simulations 

(given that all other parameter values are assumed to remain the same as those 

used in the stochastic model). The effect of changing the value of the transmission 

parameter (0) in order to create settings in which ro and RO reflect those in 

previous stochastic models was to change both the time until endemic equilibrium 

was reached and also to change the prevalence attained at this equilibrium (Figure 

6.4). 

These results emphasise the importance of heterogeneity in admissions. By 

extension, there will be heterogeneity in P by individual (in terms of 

infectiousness and susceptibility), length of stay, hospital and specialty for 

example. This uncertainty over the transmission parameter requires some further 

consideration, for example by sensitivity analysis to determine the extent to which 

dynamic behaviour is dependent on it. Furthermore, although not attempted here, 

analysis of infection data would enable estimation of heterogeneitie,, in 
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transmission and the impact of these heterogeneities on transmission dynamics. In 

addition, the effect of the initial conditions on these dynamics needs to be 

considered, especially as the only variability seen in the single-centre model 

results occurs in the initial stages of the simulations. 

It was predicted that in a more realistic setting, i. e. with an increase in patient 

movements, on-admission screening may be the preferred infection control 

strategy. The probability of infectious readmissions for the single-centre model 
(calculated from the hospital dataset) was 0.44, giving, on average, 1.8 infectious 

readmissions per infected patient. For this parameter value the analytical results in 

Figure 2.3 (Chapter 2) show a strategy comprised of 50% random screening/50% 

on-admission screening to give control provided the equivalent of at least 70% of 
hospital admissions are screened, a strategy comprised of 100% on-admission 

screening giving control only when all patients are screened and 100% random 

screening giving control with a screening effort of 80% or greater. The simulation 

results for the single-centre model, under these screening strategy combinations, 

seem to reflect these analytical predictions (Figure 6.5). Strategies comprised of 
100% random screening and 50%/50% random/on-admission screening (Figure 

6.5 a, b, c, d) exhibit control. Whereas epidemic behaviour is seen when screening 
is solely on-admission (Figure 6.5 e and f). 

It is worth noting that the ro value in these simulations is greater than 1, whereas 

the analytical results in Chapter 2, Figure 2.3 (to which the simulation results are 

compared) apply to an ro value of 0.98. However, as a 70% screening effort 

applied to an entirely on-admission based screening strategy was inadequate at 

controlling infection when admissions were necessary for infection to persist (the 

analytical results) it seems unlikely that control would occur when infection could 

persist irrespective of infectious admissions (simulation results). 

Again, similarly to the results seen in Chapter 3, the capability of control can be 

explained by the surveillance capability. Random screening within the hospital is 

more ettective at surveillance than screening on-admission which detects few of 
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the infected individuals (even when infectious admissions from the communitv 

epidemic are at their highest) (Figure 6.3 panel c compared to panel d) and this 

surveillance capability translates to hospital and community control (Figure 6.5). 

When the total number of detected individuals is compared to the total number of 
infected individuals (Figure 6.6) it can be seen that a greater proportion of random 

screening (in any random/on-admission screening strategy) has two outcomes: 
firstly, it gives a greater degree of control and secondly, the number of detected 

individuals more closely reflects the number of infected individuals. Again, as in 

the results seen in Chapter 3, on-admission screening as well as being less able to 

control infection, is also less able to detect this control failure. Despite on- 

admission screening being less effective than may have been predicted in the 

analytical results for settings of such high patient movements, a control strategy of 
100% random screening is less effective at control than a strategy incorporating a 

small degree of on-admission screening, with a strategy focusing 10% of its effort 

on reducing infectious admissions and 90% on reducing within-hospital 

transmission found to be optimal (Figure 6.6). 

When the Trust is modelled as three distinct hospital populations, with patient 

movements around the healthcare network occurring according to the 

admission/discharge data, variability in epidemic pattern between hospitals can be 

seen (Figure 6.7). 

All hospitals exhibit endemicity, however proportionally hospital I has a greater 

prevalence than that in hospitals 2 and 3. Despite hospital I having the lowest 

within-hospital ro, this behaviour can be explained through the greater numbers of 

admissions and readmissions to hospital I (Figures 4.5 and 5.5). This suggests 

potential importance of patient movement patterns in the transmission dynamics 

of HCAI; certain hospitals may be at a higher risk of MRSA infection simply due 

to the patient movement patterns. 

The fact that the sum of the prevalences at each individual hospital in the multi- 

centre model is not equal to the overall hospital prevalence for the single-centre 
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model is to be expected due to the inclusion of between hospital heterogeneities. 

Generally, however, it seems that the patient population benefits from there being 
tý 

three individual hospitals as opposed to one pooled population (i. e. the proportion 

of infected individuals at the hospital with the greatest prevalence (hospital 1, 

shown in Figure 6.7, panel b) is still less than that for the single-centre model). 

The consistency of epidemic pattern between simulations is striking (Figure 6.7). 

This lack of variability is to be expected as in each simulation the same 
individuals are initially infected and their subsequent movements around the 

network are identical across simulations. Any variability that occurs is due only to 

the stochastic nature of within-hospital transmission events and both hospital and 

community recovery events (the rates of which also remain constant across 

simulations). 

It is likely that each individual hospital would have a different transmission 

coefficient value, unlike the assumption in the multi-centre model where a single 

value is used. However, without good infection data these P values cannot be 

estimated. Investigations into sensitivity to the transmission parameter (Figure 

6.8) demonstrate that epidemic patterns are sensitive to variations in the 

transmission rate. Further work in this area would help to give more precise and 

hospital specific transmission parameter estimates, which would in turn allow a 

greater understanding of the comparative effects of hospital driven and 

admission/readmission driven dynamics and how these effects may influence 

control strategy success. 

The degree to which the hospital epidemics shown are fuelled by readmissions 

from their own population compared to transfers from other hospitals could also 

be investigated further. The majority of patients returned to their hospital of 

discharge (as described in Chapter 5 (Table 5.2)) and so constrained transmission 

to one particular hospital. However, it seems that an approximately 20clc chance of 

between hospital transfer on readmission (as was found to be the case for UHL 

NHS Trust) is sufficient to maintain infection throughout the network. These 
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results suggest that neighbouring hospitals with a shared catchment population 

help to maintain persistence throughout the network. This agrees with previous 

work in which endemic behaviour is achieved and sustained with transfer of 
infection between hospitals and the community (Smith et al., 2004, Austin and 

Anderson, 1999a) and, in turn, the resulting community reservoir further helping 

in persistence of hospital outbreaks (Cooper et al., 2004a). 

An interesting extension of this model would be to vary the transmission rate in 

individual hospitals in order to investigate the extent to which contributions to the 

infectious community reservoir from surrounding hospitals influence the epidemic 

pattern seen at a particular hospital. Clearly, in terms of control, it is important to 

determine whether epidemic behaviour in one hospital is partially dependent on 
its neighbours and therefore whether the success of control within each individual 

hospital could have a more far-reaching impact than just its own population. 

Further work needs to be undertaken to explore the dynamics within a multi- 

centre setting, especially in the context of infection control. For the model 

presented here, the effects of initial conditions and parameter values need to be 

considered. In addition, including patient heterogeneity within the model would 

allow effects such as difference in susceptibility by age, gender and specialty to be 

explored. 
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Chapter 7 

Discussion and Conclusions 

HCAI pose a major threat to public health yet strategies for their control remain 

varied between hospitals and healthcare institutions. With a lack of well 

performed intervention trials it is unclear which strategies would be best to adopt. 

This research addresses the potential of mathematical modelling for furthering our 

understanding of HCAI transmission and as a too] for infection control strategy 

assessment. 

Furthermore, analyses of real hospital data, carried out to inform model 

development, help to provide an understanding of the setting in which 

transmission and control occur. Despite the fact that the dynamics and behaviour 

of pathogens (particularly drug-resistant strains) are governed by a complex 

network of, potentially poorly understood, interactions in settings where chance 

events and variability is likely, research that allows any of these factors of 

influence to be identified or more clearly understood increases our ability to 

combat the problem. 

Use of a stochastic model to further understand transmission and control of 

healthcare associated infections 

Chapters 2 and 3 showed that the development of a mathematical model, 

incorporating knowledge of the biology, natural histor , epidemiology, L- 
y 

transmission and control of an infectious organism, can be used to further our 

understanding of HCAL The model presented explores transmission of an 
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antibiotic-re,, iý, tant pathogen, and in terms of the assumptions and parameter 

estimations used, the model applies particularly to MRSA. For example, 

transmission relies on contact between individuals and the reservoir of infection is 

made up of both infected and colonized individuals. The novel aspect of this 

research is that the model includes both hospital and community populations as 

well as movement between them. By including the exploration of both 

surveillance and infection control within a single framework, this research 

examines transmission and control in a heterogeneous population. Due to this 

consideration of both hospital and community populations the overall 

reproduction number (RO) included two components: one to capture within- 
hospital transmission (ro) and the other to capture the effects of transmission 

caused by movement between the hospital and community populations (1/(I-P)). 

The simulations presented show infection progression over long time scales (5 

years) and therefore incorporate the previous hospitalisation history of patients - 
an important factor in both acquisition and transmission of MRSA. 

Control strategy assessment provided results that, on initial inspection, seemed 

counter-intuitive: randomly screening within the hospital population served to 

reduce spread of HCAI more effectively than screening patients on hospital 

admission. This result was looked at in detail from the perspective of both 

surveillance and control and the interplay between them. It was found that given 

the same control capability, the effectiveness of surveillance was integral to the 

effectiveness of control; essentially, effective surveillance translated to effective 

control. Random screening most accurately estimated true prevalence, this 

detection capability permitting successful within-hospital control, in turn allowing 

control within the community population. In this case fixed control capacity was 

brought about by the presence of an IW, but this can be generalised and 

essentially represents the ability of a hospital (i. e. the resources available) to 

reduce transmission. Therefore, as well as effective control measures, such as 

isolation or increased handwashing compliance for example, surveillance was 

found to be an important component of infection control implying that it should 

,. strategy design. be considered during 
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In addition to allowing control, effective surveillance also allows quantification of 

control success. Conversely, inadequate surveillance will not only prevent control, 
but will be unable to detect control failure, and therefore the resulting epidemic 

may go unnoticed; ineffective surveillance can only ever detect a small proportion 

of the total number of infected individuals and can therefore easily give the 

impression that only a few individuals are actually infected. This outcome has the 

potential to influence HCA1 epidemic behaviour and any surveillance strategy 

should aim to achieve estimates of the number of infected individuals that reflect 

true hospital infection levels. If an increase in the effort put into detection 

increases the number of infected individuals detected, then the surveillance effort 
is not adequate. 

The seemingly counter intuitive result of random screening being of more benefit 

than on-admission screening was explained in terms of the degree of movement 
by patients between the hospital and community populations. Analytical results 

showed the optimal screening strategy to be highly dependent on the degree of 

mixing between populations, quantified in terms the readmission rate of infectious 

patients. In a setting of low readmission rates the infectious assault posed by the 

community population is correspondingly low and so concentrating on control 

within the hospital population (i. e. within-hospital screening) was the most 

beneficial strategy. In contrast, prevention of infectious admissions from the 

hospital by on-admission screening should be a greater priority when readmission 

rates are higher. The simulation results in Chapter 3 use specific parameter values 

which create a setting of low patient readmission, therefore it is to be expected 

that on-admission screening has little effect on HCAI infection control. 

When considered in terms of the overall reproduction number the effect of 

infectious readmissions becomes more intuitive: random screening serves to 

reduce within hospital transmission (ro), whereas on-admission screening serves to 

reduce the infectious assault from the community population (1/(I-P)). Using this Z__ 
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simple mathematical description of transmission it is clear that strategy success is Z-71 
greatly influenced by P. 

It must be remembered that all results obtained, both analytical and simulated. are 
for specific RO, ro and P values, which may or may not reflect the real situation. In 

the simulations in Chapters 2 and 3, ro = 1.27 (taken from work by Cooper et al. 
2003) and is thought to be similar to the actual value in the UK, although value', 

will vary widely from hospital to hospital and over time. In the analytical results, 

ro = 0.98 was used to investigate the situation when ro <I (i. e. insufficient to 

allow an epidemic in the hospital) and RO >1. In this situation readmissions of 
infected patients are essential for persistence of MRSA within the hospital; 

implying on-admission screening may be more effective. The analytical results 

comparing the two strategies do seem to support this theory, but only when P is 

sufficiently large. When P>0.495 it is the reduction in infectious admissions (i. e. 
1/(I-P)) that has the greatest influence on control success and so RO is reduced 
further by on-admission screening. Conversely, when P is small it is the reduction 

of within-hospital transmission that is of greatest benefit, and on-admission 

screening therefore provides little control. This demonstrates the success of each 

strategy is inexorably linked to the setting in which it is applied. Therefore when 

considering how to deal with potential epidemics, such as for VRSA, factors such 

as estimated reproduction numbers, hospital and community prevalences and 

readmission rates need to be taken into account. These can only be estimated from 

surveillance data and the lack of use of such data to inform parameter estimates 

for transmission is a weakness in these particular results. 

Analysis of real hospital data 

Due to the relationship found between control capability and degree of patient 

movement in and out of the hospital population, readmissions were explored in 

more detail in analyses of a real hospital dataset. It was found that on average an 

infected person had a 44.2% chance of being readmitted to the Trust while still 

infected. This value is far higher than previous estimates (3.7c/c (Cooper et al.. 

2003)) on which the parameters used in the simulation of Chapter 3 were based. 
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Thus, the model results in Chapter 3 may underestimate the risk of infectious 

admissions to hospital, and therefore on-admission screening may be of more 

benefit than predicted. 

Analysis of patient admission data found that despite most patients only visiting 

the hospital a few times, it was the few patients who were frequently readmitted 

that constituted the majority of admissions (-80%). It is these frequent 

readmittees, who are most often in hospital and who, as a result, are likely to have 

most hospital contacts, that make up the 'core group'. Their numerous hospital 

visits increase their risk of acquiring MRSA, the short time periods over which 

these readmissions occur mean they have the greatest potential to reintroduce 

infection and their numerous contacts means they are also the most likely group to 

transmit infection (especially given the likelihood of high prevalence within the 

group). However, as these individuals are mostly in contact with each other, there 

is the potentially advantageous aspect that heterogeneities in readmission create a 

group who mostly only transmit to each other. Consequently, the dynamics of this 

'core group' are important and knowledge of frequent readmittees, for example 

age/gender rates of admission and discharge, beneficial in that it gives the ability 

to target control to them. Targeting these groups in infection control measures, by 

screening on discharge/admission or isolating on admission for example, may 

serve to reduce the threat they pose. 

The fact that individuals are most likely to be readmitted to the hospital from 

which they were discharged is likely to enhance each of these implications for 

transmission: the 'core group' has an even greater potential to increase the 

prevalence within the hospital to which they are specific, but equally their high 

degree of hospital specificity serves to reduce the threat they pose to other 

hospitals within the network. 

Investigations of a real hospital dataset highlighted demographic information on 

the patient population potentially of interest in terms of transmission and therefore 

from an infection control perspective. As may be expected, Infants and the elderly 
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were found to constitute a large proportion of the hospital population, either 

through large numbers of admissions (infants) or long hospital stays (the elderly). 
Interestingly, despite relatively short hospital stays, females of child-bearing age Z-- Z-- 
were also highlighted as a large constituent of the hospital population. 
Furthermore, in terms of readmission they were found to have a particularly hiah 

chance of being readmitted. Despite potential differences between this 
demographic group and other patients, such as reduced antibiotic consumption 

and use of potentially almost self-contained specialties (in terms of staff and 

patient mixing), young females should perhaps be a future target in infection 

control. 

Given that length of stay is a proven risk factor for HCAI, heterogeneities in 

patient length of stay may give an indication of those demographic groups who 

pose a particular infection risk. Generally length of stay increased with age, again 
implying that the elderly are a particular threat/risk. Moreover, P values 

associated with older age groups were found to be higher, meaning their 

probability of infected hospital return is higher than for other groups. 

Demographics of the patient population were found to be, to some extent, hospital 

dependent, with gender, age and specialty distributions varying between hospitals. 

The demography of individual hospital populations will be a strong influence on 

the transmission dynamics within that hospital; the patient groups constituting the 

majority of the hospital population at most times will be those at most risk of 

acquisition and also those with the greatest transmission potential for that 

particular hospital. 

Development of a 'real -movements' model 

The development of a mathematical model informed by hospital 

admission/discharge data allowed real movements in and out of hospital to be 

incorporated and epidemic behaviour to be simulated in this setting. To the 

author's knowledge this is the first time such a model has been developed for the 

purposes of modelling HCAl transmission dynamics. As this model (Chapter 6) 
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uses data of a sufficient level of detail so as to allow individual-based movements 

to be simulated, any heterogeneities in patient readmission rates (as described in 

Chapter 5) are captured. For example, the presence of a 'core group' of Z__ 
readmittees, i. e. patients who are admitted frequently and who actually constitute 

the majority of the patient population seen in hospital, is incorporated. Despite the 

increase in average readmission rate and therefore increase in rate of infectious 

admissions from the community population, the increase in benefit of on- 

admission screening was not seen to the same degree to that predicted in earlier 

chapters. However, unlike the results from the model in Chapter 3 (with a lower 

readmission rate), a strategy in which on-admission screening constituted a small 

proportion (10%) of the overall screening effort (the remainder made up by 

random screening) was preferential to an entirely within-hospital based strategy. 
Therefore the increase in readmission rate increased the benefit in on-admission 

screening to some degree. 

In addition to the development of an 113M using real data to inform patient 

movement patterns, Chapter 6 also included a further extension to the model in 

which the Trust's population was modelled in terms of real movements between 

three individual hospital populations. Previous research has indicated that it is in 

settings such as this, where a network of hospitals share a community catchment 

population, that transfer of infectious individuals between hospitals may be 

sufficient to initiate and sustain endemic behaviour. 

The results from the multi-centre model (Chapter 6) showed epidemic/endemic 

behaviour in each of the hospitals within the network. However, due to 

heterogeneities in readmission rates coupled with heterogeneities in within 

hospital reproduction numbers, there was a considerable degree of variability in 

prevalence achieved at endemic equilibrium between hospitals. The results 

suggest that infectious readmissions to hospitals may influence the transmission 

dynamics within an individual hospital more than the within-hospital reproduction 

number i. e. it is the probability of multiple infectious returns that influences 
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transmission to a greater extent than the number of secondary infections from a 

single hospital stay. 

As would be expected, epidemic/endemic behaviour observed was dependent on 

the transmission parameter P. Given this sensitivity to P, the lack of inclusion of 

any information surrounding heterogeneities in transmission between 

hospital s/indi vidual s is clearly a limitation in these results. This highlights the 

need for further investigations into factors that may be of influence to 

transmission. In addition, the lack of distinction between staff and patients may 

prevent effects from factors such as long-term carriage by HCW from being 

captured. 

The next step in this research, where real movements of individuals in a multi- 

centre setting are modelled, would be to incorporate real infection data from this 

setting and study period. With more time, the value of this research could be 

increased through working more closely with UHL NHS Trust to obtain this 

infection data and fitting the 'real -movements' model to it. This would give 
further insight into the transmission parameters required to most closely simulate 

the dynamic behaviour seen. This would solve the problems associated with 

uncertainty regarding the transmission parameter and would highlight model 

structure deficiencies. 

Once realistic (or validated) models of transmission within a multi-centre setting 

have been established the assessment of control strategies, within this setting, can 

be explored, thus helping to determine whether the capability of control at one 

hospital is influenced by that of its neighbours. 

Overall, these investigations have furthered previous studies into the transmission 

dynamics of HCAI as heterogeneity is considered, in terms of both hospital and 

community populations and the heterogeneous nature of movement between them. 

The research has demonstrated the potential importance of transmission driven by 

hospital admissions and has therefore highlighted that consideration of the 
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community population may be critical to the success of hospital -assoc i ated 
infection control. 

Future Work 

Throughout this research it has been highlighted that surveillance (in this case in 

the form of screening) is a critical component in any control strategy. In the 

absence of effective surveillance, infected individuals cannot be detected and 

control cannot be imposed upon them, meaning the strategy is likely to fail. In all 

infection control assessments presented, screening is assumed to be both 100% 

specific and 100% sensitive. This assumption may be justified as reduced effort 

was put into screening such that a proportion of the population remained 

unscreened. However, in reality neither specificity nor sensitivity are likely to be 

100% accurate and this lack of accuracy has the potential to influence 

transmission dynamics. A low sensitivity would mean infected patients would go 

undetected and therefore no control would be imposed on them. Whilst a low 

specificity would result in susceptible patients being identified as infected and 

thus 'controlled'. If a component of this control was an 1W, for example, the 

isolation of susceptible individuals would drastically increase their chances of 

acquiring infection and would also inefficiently use, already limited, resources. 

Further investigations, using such models as those developed in Chapters 2 and 6 

could easily be adapted to discern the change in screening effort, or IW size, 

required given changes to specificity and sensitivity, or the optimum trade-off 

between the two for example. 

In addition, screening and resulting control is assumed to occur with no time 

delay. In actuality the turn around time between screening, identifying positives 

(through culture for example) and imposing control is likely to be at least 24 

hours. However, this time period may vary depending on techniques applied, for 

example for cases that may be considered high risk, faster identification and 

antibiotic sensitivity tests may be employed. The time delay before control is 

imposed will clearly have an effect on the transmission dynamics, as it is this 

interim period in which infected individuals can infect others. Further research 
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into the extent to which this time delay contributes to epidemic behaviour needs to 
be undertaken and given the advent of rapid diagnostic screening techniques a 

theoretical assessment of their potential impact, compared to current techniques, 

would be of benefit. 

The models presented could also be adapted to investigate alternative screening 

strategies, the obvious next step given the potential importance of infected 

readmissions, would be targeted screening in which the most frequently admitted 

patients were given priority. Further to this, with the addition of structuring to the 

population the assessment of targeting of particular demographic groups could be 

explored. The degree to which the community/hospital network structure 
influences control within each hospital may also be crucial to the development of 

successful control strategies and requires further investigation. 

Overall, with relatively few changes to the parameter values, model frameworks 

or underlying assumptions, different settings, pathogens and control strategies 

could be investigated. 

Of particular value may be the use of such models in the economic assessment of 

control strategies. As discussed, any intervention carries with it a significant 

economic burden. If we are to ensure strategy implementation and continued 

compliance it is important that, at the hospital level, the advantages offset these 

costs. The incorporation of economic data in the model development would allow 

cost-effectiveness studies to be carried out. Little work has been undertaken in 

this area and the allocation of costs to both control methods and their respective 

benefits is likely to be challenging. 

Another area in which further research could be undertaken is in the consideration 

of CA-MRSA. Despite still being considered as a largely nosocomial problem, t: ) 
MRSA in individuals without recent hospitalization is a rapidly increasing Z71 

problem. Therefore its inclusion within models such as these, where both hospital 

and community populations are included explicitly, may provide further insight Z71 
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into observed patterns. CA-MRSA has been reported to lead to HCAI (O'Brien et 

al., 1999; Saiman et al., 2003) and so admittees from the community population 

harbouring these strains have the potential to ignite hospital epidemics. Given the 

importance of infectious admissions demonstrated in previous chapters, the 

potential influence of this steadily increasing threat needs to be determined. In a 

setting of endemicity within the community (maintained without hospital 

transmission), we could potentially see situations in which any level of hospital- 

based control will be insufficient due to the relentless infectious assault posed by 

the community population. A two-strain model, in which both hospital-driven and 

community-driven dynamics (and interplay between them) are explored, would 

allow theoretical assessment of control in this, increasingly likely, setting. 
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Appendix I 

Leicester 

Royal Infirmary 

Leicester General 

Hospital 

Glenrield General 

Hospital 

In- and 
outpatients 

Inpatients 
only 

In- and 
outpatients 

Inpatients 
only 

In- and 
outpatients 

Inpatients 
only 

N 360127 825499 202486 376320 116895 199533 
Mean 39.26 39.86 49.55 48.95 61.10 59.32 
Median 35 36 53 50 66 62 

Mode 0 0 0 0 74 74 
Range 0-107 0-107 0-109 0-109 0-106 0-106 

IQR 14,35,66 20,36,63 29,53,73 30,50,70 51,66,76 48,62,74 

Table AM Summary statistics for age by hospital. 

Discharge Hospital 

GH I LGH LRI 

Freq % Freq 17c Freq C/C 

GH 198926 0.9970 283 0.0014 325 0.0016 

Admitting LGH 411 0.0011 375530 0.9978 400 0.0011 
Hospital LRI 1086 0.0013 1060 0.0013 823450 0.9974 

Table A1.2 Transfers between hospitals, including in- and outpatients, n 
1401471. 

Discharge Hospital 
GH LGH LRI 

Freq C/C Freq Freq C/( 

Admitting 
Hospital 

GH 
LGH 
LRI 

116291 
410 
1064 

0.9948 
0.0020 
0.0030 

283 
201695 
1049 

0.0024 
0.9960 
0.0029 

322 
398 
358076 

0.0028 
0.0020 
0.9941 

Table A1.3 Transfers between hospitals, including inpatients only, n= 679588. 
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Female -- ý-Nlale 

In- and 
outpatients 

Inpatients only In- and 
outpatients 

Inpatients only 

N 810434 377435 591027 302 153 

Mean 3.08 6.61 3.43 6.7 

Median 0 3 1 3 

Mode 0 1 0 1 

Range 0-1398 1-1398 0-1446 1-1446 

IQR 0,2 1,7 1,3 L7 

Table AIA Summary statistics for length of stay by gender. 

Female Male 

15 

*. 0 

I 

0 

Age (Years) Age (Years) 

Figure ALI Mean length of stay by age, split by gender. Includes inpatients only, 
for females n= 377406, for males n= 302102. 
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I N Mean Median Mode Range IQR 

Leicester 
Royal 

In- and 
out atients 

F 

- 

498216 2.39 0 0 0-1398 0.2 

Infirmary 
p 

M 327372 2.69 0 0 0-1446 0,2 

Inpatients 
onl 

F 203807 5.85 2 1 1-1398 1,5 
y M 156382 5.63 1 1 1-1446 1,5 

Leicester 
General 

In- and 
out atients 

F 216481 3.66 1 0 0-453 0.3 

Hospital 
p NI 159858 4.11 1 0 0-428 0.4 

Inpatients 
onl 

F 115471 6.86 3 1 1-453 1,7 
y M 87032 7.75 3 1 1-428 1,8 

Glenfield 
General 

In- and 
atients out 

F 95737 5.36 1 0 0-269 0.7 

Hospital 
p M 103797 4.69 1 0 0-367 0.6 

Inpatients 
onl 

F 58157 8.82 5 1 1-269 2,10 
y M 58739 8.29 5 1 1-137 2,10 

Table A1.5 Summary statistics for length of stay by gender at an individual 
hospital level. 
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Appendix 2 

Rij Qij 
( /-1 7-1 . 7-1 /-'% .n /-I 
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Table A2.1 Full equations for Rij and Q-, j, in terms of Pij and r0i where i= hospital 

number (i. e. hospital I, 2 or 3). 
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