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Abstract

This paper presents a method for estimating the effects of a policy change on an outcome
distribution that uses a comparator quantile rather than a control group and provides
methods for estimating the variances of the estimators. The empirical analysis presents
estimates of “spillover” effects of increases in the UK minimum wage, i.e. effects on the
wages of those already above the minimum, under different counterfactual distribution shift
assumptions. Evidence is presented against a simple scaled counterfactual. On the basis of
the proposed counterfactual estimated spillover effects are small and in most cases do not
reach above the 5th. percentile.

Keywords: Policy change effects; Distributional effects; Counterfactual distributions; Quan-
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1 Introduction

This paper estimates the effect of a policy change on the distribution of an outcome variable.

There is an extensive literature in statistics, econometrics and other disciplines on the

estimation of the average effect of a policy change, or treatment, and such methods have

been employed in a vast range of empirical contexts. In many situations researchers are

interested in estimating the distributional effects of a policy change or treatment, rather

than just the average effect. Although less studied, there is now a growing literature on the

estimation of such distributional effects.

The estimation of distributional effects has been approached in a number of different,

but interrelated, ways. However, all the methods in some way involve estimating a counter-

factual distribution. In distributional extensions of the difference-in-differences approach,

for example, this involves a comparison of treatment and control groups and a compari-

son of before and after time periods. The post-change counterfactual distribution for the

treatment group is then estimated under certain assumptions using the treatment group

pre-change distribution and the pre- and post-change distributions for the control group

(see Athey and Imbens, 2006).

The estimators used in this paper are similar to those proposed in these related lit-

eratures in terms of general approach and framework, but differ in an important regard.

Rather than comparing treatment and control groups, as the difference-in-differences es-

timator does, the estimators in this paper use a comparator that is another quantile of

the same distribution. The fact that these quantiles are correlated has important implica-

tions for the estimation of the variance of the difference and hence of the variances of the

estimators used here.

An important identifying assumption for the difference-in-differences estimators is that

those in the control group are unaffected by the policy change or treatment. In some

empirical situations a useful alternative approach involves the comparison of two parts of

the same distribution. The equivalent identifying assumption used in this case is that the

policy change or treatment only affects part of the distribution, i.e. that there is another

part of the distribution not affected. In this sense the estimator is like a distributional effects

difference-in-differences estimator, but with the comparator based on the same distribution.

The empirical context studied in this paper is the impact of minimum wage increases

on the wage distribution. The paper estimates effects at different points in the distribution.

In particular it examines the effects of such increases on the wages of those already above

the minimum, known as “spillover” or “ripple” effects of the increase in the minimum.

The approach taken compares quantiles of the observed wage distribution after an in-
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crease in the minimum wage with those of an estimated counterfactual wage distribution if

there had not been an increase in the minimum wage. This counterfactual is constructed by

making appropriate adjustments to the observed wage distribution before the increase. The

approach measures what are known as quantile treatment effects under different potential

counterfactuals.

The approach can also be viewed as an extension of the informal method used by Dickens

and Manning (2004a) and others since. Their method is based on percentile plots and

informal visual inspection. To evaluate the effect of the introduction of the new UK national

minimum wage in April 1999 they compare the observed change in log wage percentiles with

the “compliance change” assuming no spillovers above the minimum and adjusting by the

change in the median.

The main contributions of this paper are threefold. First, it presents a method for

estimating the effects of a policy change on an outcome distribution that uses a comparator

quantile rather than a control group and provides methods for estimating the variances of the

estimators. Second, it presents a formalisation and extension of the commonly used “scale

by the median” method for examining distribution shifts, together with estimation methods

for the variances of these estimators. Third, it estimates the “spillover” effects of increases

in the UK national minimum wage, i.e. the effects on the wages of those already above the

minimum, under different counterfactual distribution shift assumptions. In particular this

includes estimates based on a more credible counterfactual distribution than those used

previously in the literature.

The next section describes the increases in the UK minimum wage since its introduction.

It then considers why we might expect spillover effects of a minimum wage increase and

why such effects are potentially important. It also provides a brief review of the existing

literature on minimum wage spillover effects. Section 3 describes the data used in this paper.

Section 4 lays out the empirical framework employed to conduct the tests for spillover effects

including derivation of estimators of the variances of quantile treatment effects estimators.

Sections 5 and 6 present the results under two different counterfactual assumptions and

Section 7 gives the conclusions.

2 Minimum wage increases and spillovers

A national minimum wage was introduced in the UK in April 1999 following a period in

which there was no wage floor. The tests in this paper are applied to the initial introduction

in 1999 and subsequent upratings from October 2000 onwards. The data used cover the

period up to April 2008. In some cases these upratings have been larger than the prevailing
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underlying wage growth and in others smaller. Table 1 shows how the adult minimum

wage has changed over the period under consideration and how these changes compare with

changes in the general level of wages and with price inflation.

The 2001 minimum wage rise was the largest in percentage terms during this period —

about 6% above general wage growth and about 9% in real terms. The 2003 and 2004 rises

were also above the general rate of increase in wages (by 3 to 4%) and prices (by 4 to 5%).

The other rises over the period have been smaller relative to general wage or price growth

than these.

Much research has been conducted on the effects of the minimum wage introduction and

subsequent upratings, with a particular focus on the effects on employment. The evidence

suggests little or no impact on employment; see Metcalf (2008) for a review. The evidence

assembled by the Low Pay Commission (LPC) suggests that firms have used a variety of

strategies to adjust to minimum wage increases, differing across sectors of the economy.

Much of the evidence is mixed. There is some evidence of increased costs being passed

on via higher relative prices for minimum wage-produced consumer services; of a reduction

in the relative profits of firms employing low-wage workers in some sectors; of reductions

in hours rather than workers; of increases in training; and of labour market frictions and

company wage setting power facilitating such adjustments (Metcalf, 2008).

Minimum wage spillover effects on the wage distribution might be expected for a number

of reasons. First, the increase in the minimum raises the relative price of low-skilled labour.

This may lead to a rise in the demand for certain types of more skilled labour, depending on

substitutability, and hence to increased wage rates for certain types of worker already above

the minimum. Second, it may lead firms to reorganise how they use their workforce to realign

the marginal products of their minimum wage workers with the new minimum, and this may

have effects on the marginal products of other workers. Third, it may lead to increases in

wages for some workers above the minimum in order to preserve wage differentials that are

potentially important for worker morale and motivation and hence may affect productivity.

Fourth, the rise may increase the reservation wages of those looking for jobs in certain

sectors and hence push up the wages that employers must pay in those sectors to recruit.

Falk et al. (2006) find in a laboratory experiment that minimum wages have a significant

effect on subjects’ reservation wages. They suggest that the minimum wage affects subjects’

fairness perceptions and speculate that this response may lie behind any observed spillover

effects. Flinn (2006) shows that minimum wages can also affect workers’ reservation wages

in search and matching models with wage bargaining.

Whether or not these potential spillover effects above the minimum occur when the

minimum wage is raised, and if so how extensive they are, are important for several reasons.
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First, they are important in the evaluation of the impact on the wage distribution as a

whole and through this on measures for which wages are an important component, such

as household incomes and welfare. Second, they are important in the investigation of how

minimum wages affect wage inequality and its evolution over time.

Third, ignoring any spillover effects leads to a potential underestimation of the effect

of any increase in the minimum wage rate on the wage bill. This may in turn lead one to

underestimate the effect on prices, profits, etc. Fourth, the potential presence of spillovers

is important for the key underlying assumption in much of the difference-in-differences

methodology that has been used to evaluate the effect of the minimum wage on various

outcomes. In this approach the group initially just above the new minimum is used as

the “control” group under the assumption that they are not affected by the rise in the

minimum. The approach has been used extensively to evaluate the UK minimum wage, to

look at effects on employment (e.g. Stewart, 2004 and Dickens et al., 2009), hours (Stewart

and Swaffield, 2008, Dickens et al., 2009) and second job holding (Robinson and Wadsworth,

2007) among other outcomes.

Minimum wage spillover effects have been investigated by a number of authors from

Gramlich (1976) onwards. Most of these studies have been for the United States. The

much quoted study by Lee (1999) examines the cross-state variation in the relative level of

the US federal minimum wage and finds evidence of substantial spillover effects on certain

specified percentiles of the wage distribution.

The influential book by Card and Krueger (1995) also finds evidence of spillovers, al-

though rather more limited in scope. They find significant positive effects of increases in

the US federal minimum on the 5th and 10th percentiles of the wage distribution using

data across states, but not on the 25th. However, Neumark and Wascher (2008) point out

that the Card and Krueger analysis does not necessarily identify spillover effects, because

“workers at the 5th percentile (and perhaps even at the 10th percentile in low-wages states)

can be minimum wage workers” (2008, p. 117). The Card and Krueger estimates measure

a combination of effects on the spike in the distribution at the minimum and any spillover

effects above it. This is an inherent difficulty with percentile-based methods. It is addressed

in the empirical framework for this paper outlined in section 4 below.

The results in DiNardo et al. (1996) are consistent with spillovers above the minimum

and Neumark et al. (2004), who examine effects on individual wage changes directly, also

find evidence of substantial spillover effects. In contrast Autor et al. (2010) find much less

evidence of spillovers and stress the important impact of measurement error on estimated

effects.

There has been much less work testing for minimum wage spillover effects for the UK.
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Dickens and Manning (2004a, 2004b) provide the main evidence available on such effects for

the introduction of the minimum wage in 1999 and do not find evidence of spillover effects.

As a result the UK is often pointed to as the exception to the finding of spillover effects of

minimum wages in other countries, for example by Falk et al. (2006). Dickens and Manning

(2004a) provide evidence in the form of percentile plots, but do not provide a formal test

or estimates. This paper builds on their approach.

Subsequent studies have extended their analysis of changes in wage percentiles. Butcher

(2005), Butcher et al. (2008) and LPC (2009) examine percentage changes in hourly pay

percentiles relative to corresponding changes in the median for longer time spans. Although

no standard errors or confidence intervals are presented, LPC (2009) provide evidence sug-

gesting spillovers for the period 1998—2004, but a far smaller impact for the minimum wage

rises during 2004-2008.

3 Data used

The analysis presented in this paper is based on data from the Annual Survey of Hours

and Earnings (ASHE). The ASHE, developed from the earlier New Earnings Survey (NES),

is conducted in April of each year. It surveys all employees with a particular final two

digits to their National Insurance numbers who are in employment and hence aims to

provide a random sample of employees in employment in the UK. The ASHE is based on

a sample of employees taken from HM Revenue and Customs “Pay-as-you-earn” (PAYE)

records. Information on earnings and paid hours is obtained in confidence from employers,

usually directly from their payroll records. It therefore provides very accurate information

on earnings and paid hours. Providing accurate information for this survey is a statutory

requirement under the Statistics of Trade Act.

The ASHE survey and follow-up design provides better coverage than the old NES

of employees who changed, or started new, jobs after sample identification. Technical

details of the ASHE are given in Bird (2004); for a review of the issues involved in, and

the investigations conducted for, the redevelopment of the NES into the ASHE see Pont

(2007). Subsequently the Office for National Statistics (ONS) have constructed consistent

back series by applying ASHE-consistent methodology to NES data back to 1997. Some

summary ASHE results for the period 1997 to 2008, which is the same as the period for the

data used in this paper, are provided in Dobbs (2009).

There are some limitations of the data that should be born in mind when interpreting the

results of the analysis. There is some under representation of low paid employees. This is for

two reasons. First, the survey under samples those with weekly earnings below the PAYE

5



deduction threshold. This affects predominantly part-time employees with particularly

short weekly hours. It also predominantly affects employees in businesses that return paper

questionnaires rather than those who provide data electronically on all relevant employees

in the return.

The second reason stems from the fact that there is a short gap between the drawing

of the sample from HMRC records and the survey reference week. Those who enter em-

ployment from non-employment during this period may get excluded. Those who change

employer may also get missed if they cannot be traced. Again businesses that provide data

electronically reduce this. This time gap may also result in under representation of low paid

employees to the extent that they have higher turnover.

Since 2004 supplementary data has been collected to address the latter reason. This has

improved the coverage of employees who either changed employer or entered employment.

This therefore represents a discontinuity in the data. Another discontinuity occurred in

2007. In the 2007 and 2008 surveys the sample size was reduced by 20%. There were also

more minor changes in ASHE methodology in 2005 and 2006, but these are not expected

to impact on the analysis in this paper. See Dobbs (2009) for more details of the changes.

The wage variable used for the analysis in this paper is defined as average hourly earnings

for the reference period, excluding overtime. It is constructed by dividing average gross

weekly earnings excluding overtime for the reference period by basic weekly paid hours

worked. The original returned data is for the most recent pay period and is converted to a

per week basis if the pay period is other than a week. Both overtime earnings and overtime

hours are excluded in the construction of the wage variable used.

The focus of attention in this paper is on the wages of adults and the adult minimum

wage rate. As Neumark et al. (2004) point out, “policymakers typically are most concerned

with adult workers near the minimum wage”, because young workers are still in the early

part of their wage-experience profile. The data used here are restricted to those aged 22 or

over (the age cut-off for the minimum wage adult rate), who are on full adult rates, and

whose pay in the reference period was not affected by absence. This produces a sample for

the 12 years used, 1997 to 2008, of about 1.65 million observations, an average of 137,500

observations per year.

4 Empirical framework

The estimation of the distributional effects of the policy change involves the comparison

of the observed post-change distribution of the outcome variable with an estimate of the

counterfactual distribution. The possible estimators can be viewed as extending the tech-
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niques developed for the estimation of average treatment effects; see Imbens and Wooldridge

(2009) for a review.

The analysis is based on differences in (adjusted) percentiles of log wages. Since quantiles

are commutative with any monotonic transformation, these differences can also be viewed

as the logs of ratios of (adjusted) percentiles of wages. To explain the framework used,

consider a comparison of two dates either side of a single policy change, e.g. an uprating of

the minimum wage. Denote by t = 1 and t = 2 observation periods before and after this

uprating respectively. For example these might be the ASHE survey dates in April 2001

and April 2002, respectively 6 months before and after the October 2001 uprating of the

minimum wage. Denote the cumulative distribution functions of log wages at these two

dates by F1(.) and F2(.) respectively. Evaluation of the impact of the uprating on the wage

distribution then requires a comparison of F2 with a counterfactual estimate of what the

distribution would have been if there had not been an uprating, with this latter being based

on adjusting F1.

4.1 Quantile treatment effects

Consider first the simplest case where it is hypothesised that in the absence of the minimum

wage increase there would have been no changes in wages. In this case we simply need to

compare F2 with F1. This simple case is just an application of the two-sample treatment

response model of Doksum (1974) and Lehmann (1974). Suppose that the increase in the

minimum wage adds δ(w) to the log-wage of someone whose log-wage in the absence of

the increase in the minimum wage would have been w. Then the distribution F2 of post-

increase log wages is that of w+ δ(w), where w has distribution F1. Following Doksum and

Lehmann, define δ(w) as the horizontal distance between F1 and F2 at w so that

F1(w) = F2(w + δ(w)) (1)

and therefore δ(w) is given by

δ(w) = F−12 (F1(w))− w (2)

Evaluating at a specified quantile, θ = F1(w), for θ ∈ (0, 1), gives what is known as the
“quantile treatment effect” (QTE) as

∆(θ) = δ(F−11 (θ)) = F−12 (θ)− F−11 (θ) (3)

This is simply the difference in θ-quantiles between time periods t = 1 and t = 2. In this

simple two-sample case with the counterfactual being no change in wages, the QTE can be

estimated by the difference in the estimated log wage quantiles

∆̂(θ) = F̂−12 (θ)− F̂−11 (θ) (4)
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where F̂j denotes the empirical distribution function of log wages in the sample for time

t = j. Construction of the variance of this estimator is addressed in section 4.3 below,

together with that for the estimator considered in section 4.2.

This estimator can be formulated as a quantile regression model (Koenker, 2005), esti-

mated on the pooled data (for t = 1 and t = 2 combined) with a binary sample indicator:

Qθ(wit|Dit) = α(θ) + β(θ)Dit (5)

for θ ∈ (0, 1), where Qθ(w|D) denotes the conditional θ-quantile of the distribution of w
given D and where Dit = 1 if t = 2 and Dit = 0 if t = 1. Quantile regression estimation of

this equation gives estimates α̂(θ) = F̂−11 (θ) and β̂(θ) = F̂−12 (θ)− F̂−11 (θ) = ∆̂(θ).

The above framework provides a formalization of the informal method used by Dickens

and Manning (2004a) when they compare the observed change in the log wage percentiles

from March 1999 to May 1999 with the “compliance change” required for the minimum

wage introduction, since the difference between them is equal to the difference between the

observed May 1999 percentiles and the counterfactual ones using the March 1999 distribu-

tion and assuming compliance with the minimum but otherwise no wage changes including

no spillovers.

The “compliance change” is zero above the new (increased) minimum, i.e. for log-wages

such that F−11 (θ) > m2, wherem2 is the log of the minimum wage in year t = 2. Hence tests

for spillovers can be conducted by testing ∆(θ) > 0 for θ > F1(m2), i.e. for θ ∈ (F1(m2), 1).

In practice we are interested in testing for “spillover” effects only at the bottom end of

the wage distribution. Thus tests are conducted for θ ∈ (F1(m2), θ
U ), where θU is a pre-

specified upper limit for the range of tests. θU = 0.25 is used in the empirical part of this

paper.

4.2 Simple scaled counterfactual

The simple model outlined in section 4.1 assumes that in the absence of the minimum

wage increase there would have been no changes in wages. This is almost certainly not an

appropriate assumption. There would likely have been movements in the wage distribution

between, say, April 2001 and April 2002. Therefore one needs to specify a counterfactual

distribution and estimate the effect relative to that. This requires a hypothesis of how

individual wages would have moved in the absence of the increase in the minimum.

When Dickens and Manning (2004a) look at longer time gaps than the March—May

1999 one that was their initial comparison, they examine quantile changes relative to the

change in the median. This is to account for “nominal wage growth in the whole economy”.

Although they do not view it in these terms, the implicit counterfactual is therefore that
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in the absence of the minimum wage change all wages would have risen in line with the

median. This is also used as the implicit counterfactual in the subsequent papers referred

to in section 2 that examine adjusted percentile plots. It is used as the initial simple

counterfactual examined in this paper.

In general the adjusted effect therefore takes the form

∆(θ) = [F−12 (θ)− F−11 (θ)]− [F−12 (η)− F−11 (η)] (6)

for some η > θU . The Dickens-Manning case described above is for η = 0.5. The estimator

is given by replacing each F−1(.) in this expression by the appropriate empirical quantile

for the appropriate year. It is a difference between two estimated QTEs as defined in

section 4.1.

This estimate of the adjusted QTE in equation (6) is equivalent to the difference between

actual and counterfactual θ-quantiles for log wages in year 2:

∆̂(θ) = F̂−12 (θ)− F̂ ∗−12 (θ) (7)

where F̂ ∗−12 (θ) is the estimated counterfactual year 2 quantile under the scenario where all

wages go up in line with the rise in the median (or other quantile), and in general

F̂ ∗−12 (θ) = F̂−11 (θ) + [F̂−12 (η)− F̂−11 (η)] (8)

which is the log of the scaled year 1 wage θ-quantile. The adjustment used by Dickens and

Manning (2004a) and others since takes the form of equation (6), but is equivalent to a

comparison with a counterfactual distribution of the form of (8).

It is worth pointing out similarities with, and differences from, other estimators that

have been proposed in the literature. This estimator can, for example, be viewed in a

difference-in-differences framework. In the simplest version of the difference-in-differences

setup individuals are observed in two groups and two time periods. Individuals in one group

(the treatment group) are affected by the policy change and those in the other group (the

control group) are not. The two time periods are before and after the policy change.

In this setup the estimator of the average effect of the policy change is the difference be-

tween the time change in average outcome for the treatment group and that for the control

group. Under certain assumptions this double differencing removes time-invariant group

differences and common time effects. The estimator can also be viewed as the difference

between the actual average post-change outcome for the treatment group and the counter-

factual average for this group if they had not been treated. This counterfactual average

is estimated by adjusting the pre-change average for this group by the observed change

experienced by the control group.
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This difference-in-differences framework can be extended to distributions. This allows

the effects to differ systematically across individuals and provides an estimator of the entire

counterfactual distribution. The estimator with the scaled counterfactual given in equa-

tion (8) is similar in some ways to the “quantile difference-in-differences” (QDID) estimator

used for specific quantiles by Meyer et al. (1995) and generalized to the full distribution

by Athey and Imbens (2006). Meyer et al. (1995) examine separately the difference-in-

differences for two quantiles (the median and the 75th percentile) of the outcome variable.

Differencing in that estimator is across time and between two mutually exclusive groups.

Labelling the treatment group A and the control group B, the QDID estimator is given by

∆QDID(θ) = [F−1A2 (θ)− F−1A1 (θ)]− [F
−1
B2 (θ)− F−1B1 (θ)]

The counterfactual distribution for the treatment group in time period 2 is such that its

inverse is given by

F ∗−1A2 (θ) = F−1A1 (θ) + [F
−1
B2 (θ)− F−1B1 (θ)]

The adjustment is by the change in the same θ-quantile for the alternative (i.e. control)

group, whereas for the estimator used in this paper the adjustment is by the change in a

different quantile for the same population. This difference complicates the estimation of

the variance of the estimator. There is an important covariance between two quantiles of

the same distribution to take into account for the estimator used in this paper which is not

present for the QDID estimator.

Athey and Imbens (2006) propose a different generalization of difference-in-differences

to distributions which they call the “changes-in-changes” (CIC) estimator and describe the

disadvantages of the QDID estimator relative to this CIC estimator. For the CIC estimator

the counterfactual distribution for the treatment group in time period 2 is given by

F ∗A2(y) = FA1(F
−1
B1 (FB2(y)))

Thus the CIC estimator of the effect of the treatment on quantile θ is given by

∆CIC(θ) = F−1A2 (θ)− F ∗−1A2 (θ)

= F−1A2 (θ)− F−1B2 (FB1(F
−1
A1 (θ)))

However, unlike the QDID estimator, the CIC estimator does not have a natural analogue

for the current context.

Another related approach to the estimation of distributional effects of policy changes

on which there is a growing literature uses assumptions about the relationship between

the outcome variable and a set of covariates and about the change in the distribution of
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the covariates resulting from the policy changes to estimate the counterfactual distribution.

The estimator proposed by Rothe (2010), for example, has the same general form as equa-

tion (7) above. His approach estimates the conditional distribution of the outcome variable

given the covariates by nonparametric kernel methods and then uses that together with the,

assumed known, counterfactual distribution of the covariates to estimate the counterfactual

unconditional distribution of the outcome variable, F ∗. The same estimators as in this

literature are also used in the decomposition methods for changes or differences in distrib-

ution (Fortin et al., 2010). The components in such decompositions are equal to differences

between counterfactual and actual distributions. The estimators in this approach use the

assumption that the conditional distribution of the outcome variable given the covariates is

unaltered by the policy change or treatment being analysed.

As was the case for the simple QTE specification in section 4.1, formulating the esti-

mation and testing in terms of quantile regression equations provides a useful framework

for conducting the analysis of these quantile shifts. The estimates of the θ-quantiles for

each of the two periods described above and the difference between them can be derived by

estimation, using pooled data for the two periods, of equation (5) as before and this can

be combined with the equivalent median regression estimate (i.e. that for θ = 0.5) to give

∆̂(θ) = β̂(θ)− β̂(0.5). This can also be extended to a “regression adjusted” estimator that

controls for changes in other factors by including them in both quantile regressions.

Asymptotic standard errors for the QTE estimator using the scaled counterfactual de-

scribed in this subsection can be derived by analytic methods and are described in the next

two sub-sections. Bootstrap standard errors can also be constructed, e.g. using simultaneous

quantile regression where the quantile regression equations for quantile θ and the median

are estimated simultaneously. Both are used in section 5 below to test for ∆(θ) > 0 and

construct confidence intervals for ∆(θ) for minimum wage changes.

4.3 Variances of quantile differences

Start with a single point in time and suppose that the log wage random variable, w, has

probability density function f(.) and cumulative distribution function F (.). Consider two

quantile points, θ < η, and suppose that the quantiles at these two points have been

estimated using a sample of size n. Then the asymptotic variances and covariance of the

quantiles F−1(θ), F−1(η) are given by

var(F−1(α)) =
α(1− α)

nf2α
α = θ, η (9)

cov(F−1(θ), F−1(η)) =
θ(1− η)

nfθfη
(10)
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where fα = f(F−1(α)) for α = θ, η. (See Kendall, 1940, and Kendall and Stuart, 1977, pp.

251-4.) Thus the variance of the difference between the two quantiles is given by

var(F−1(θ)− F−1(η)) =
1

n

½
θ(1− θ)

f2θ
+

η(1− η)

f2η
− 2θ(1− η)

fθfη

¾
(11)

In particular the asymptotic variance of the difference between a specified quantile (< 0.5)

and the median is given by this expression with η = 0.5.

The asymptotic distribution of (F−1(θ), F−1(η)) is bivariate normal. (See David, 1970,

pp. 201-3, and papers cited therein.) Hence the quantile difference, [F−1(θ) − F−1(η)], is

asymptotically normal with variance given by equation (11).

Estimation of this variance requires estimation of the density function at two quantile

points, f(F−1(α)) for α = θ, η. This estimation is returned to in section 4.4 below.

Now consider two time periods, t = 1 and t = 2. Let the initial (pre-uprating) distribu-

tion of w have probability density function f1(.) and cumulative distribution function F1(.)

and the post-uprating distribution have probability density function f2(.) and cumulative

distribution function F2(.), and suppose that the quantiles are estimated with samples of

size n1 and n2 respectively. The adjusted quantile change in equation (6) can be rewritten

as

∆(θ) =
£
F−12 (θ)− F−12 (η)

¤
−
£
F−11 (θ)− F−11 (η)

¤
(12)

The estimator of section 4.2 uses η = 0.5 and replaces each quantile by its empirical coun-

terpart. Its variance is given by

var(∆(θ)) =
1

n2

(
θ(1− θ)

f22θ
+

1

4f22η
− θ

f2θf2η

)
+
1

n1

(
θ(1− θ)

f21θ
+

1

4f21η
− θ

f1θf1η

)
(13)

where ftα = ft(F
−1
t (α)) for α = θ, η and t = 1, 2. Of course a choice of η other than 0.5 can

also be used. This expression assumes a zero covariance between the quantiles in periods 1

and 2. For the more general case where there is a partial overlap between the individuals

in the two time periods, it provides only an approximation.

4.4 Estimation of the sparsity function

The estimation of the asymptotic variance of ∆ requires the estimation of the density

function at particular quantiles, or the reciprocal of this function, known as the “sparsity

function”:

s(θ) =
£
f(F−1(θ))

¤−1
(14)

The sparsity function, also called the “quantile-density function”, reflects the density of

observations near the θ-quantile. The more sparse the data around the θ-quantile (i.e. the

higher is s(θ)), the less precisely estimated will be the quantile (i.e. the higher its variance).
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Estimation of the sparsity function raises the issue of smoothing. The sparsity function

is the derivative of the quantile function, s(θ) = dF−1(θ)/dθ. A natural choice of estimator

is therefore that suggested by Siddiqui (1960) and Bloch and Gastwirth (1968):

ŝ(θ) =
F̂−1(θ + h)− F̂−1(θ − h)

2h
(15)

where F̂−1 is an estimate of F−1 and h > 0 is a bandwidth that tends to zero as n → ∞.
This then raises the question of the choice of bandwidth. Bofinger (1975) showed that to

minimize mean squared error the optimal choice was

h = n−1/5
©
4.5[s(θ)/s00(θ)]2

ª1/5
(16)

An estimate of [s(θ)/s00(θ)] is required to evaluate this parameter. Fortunately this ratio

is not very sensitive to F (Koenker, 2005, p.139), and so we can approximate it using a

Gaussian distribution.

Using the Gaussian approximation to [s(θ)/s00(θ)] in this expression for h gives

h = n−1/5
½
4.5φ4(Φ−1(θ))

[2Φ−1(θ)2 + 1]2

¾1/5
(17)

This choice of h is optimal for the estimation of s(θ). But Hall and Sheather (1988) argue

that a smaller value of h is needed for the optimal bandwidth for the use of ŝ(θ) for con-

structing tests and confidence intervals. They show that nh needs to be of order n2/3 rather

than n4/5 in this case. They suggest the bandwidth

h = n−1/3z2/3α [1.5s(θ)/s00(θ)]1/3 (18)

where Φ(zα) = 1 − α/2 and α is the desired size of the test. Using the same Gaussian

approximation to [s(θ)/s00(θ)] as above gives

h = n−1/3z2/3α

½
1.5φ2(Φ−1(θ))

2Φ−1(θ)2 + 1

¾1/3
(19)

As an alternative to the Siddiqui-Bloch-Gastwirth histogram estimator, a kernel esti-

mator of the quantile density function can be used. The issue of the choice of bandwidth of

course arises with this estimator too. As long as a suitable bandwidth is chosen, the choice

of kernel function is far less important.

The Silverman plug-in estimate of the bandwidth (Silverman, 1986) is used here. It

minimizes the mean integrated squared error, taking a Gaussian approximation to the

integral of the square of the second derivative of the density. Using this, the bandwidth

estimate is given by

b =

µ
8
√
π

3

¶1/5
δn−1/5σ∗ (20)
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where σ∗ = min(σ, r/{Φ−1(0.75) − Φ−1(0.25)}), σ is the sample standard deviation, r is
the sample inter-quartile range, and δ is a constant that depends on the kernel function

used. The Epanechnikov kernel is used in this paper. For this kernel, δ = 151/5 and hence

b/(n−1/5σ∗) = (40
√
π)1/5 = 2.3449 (Wand and Jones, 1995). The use of the scaled inter-

quartile range as an alternative estimate in σ∗ is to protect against outliers, which can

otherwise increase s and lead to too large a choice of b.

4.5 Double scaled counterfactual

The counterfactual in section 4.2 assumes that in the absence of the minimum wage increase

all wages would have gone up in line with the median. The evidence in section 6 below

indicates that this is probably not an appropriate assumption to make. One advantage of

studying the UK minimum wage is that for a period of about 5 years prior to its introduction

in 1999 there was no wage floor in the UK, enabling one to look at wage distributions in the

absence of the minimum wage directly. Applying the estimation procedure of section 4.2

to changes in quantiles between 1997 and 1998, prior to the introduction of the minimum

wage, produces evidence of strongly significant estimates of ∆(θ) for some quantiles at the

bottom of the wage distribution in the absence of any minimum wage increases (or indeed

of a minimum wage).

The availability of data for this period without a minimum wage in either year suggests

using this period to improve the estimation of the counterfactual distribution. If we assume

instead that wages at each quantile would have risen relative to the median as they did in

the period 1997-98 when there was no minimum wage, then we have what might be labelled

a “double scaled” counterfactual. The quantile effect estimator using this can be viewed as

a quantile difference-in-differences estimator for the quantile change.

Write the simple adjusted effect in equation (6) based on comparing years s and s+ 1

as

∆s(θ) = [F
−1
s+1(θ)− F−1s (θ)]− [F−1s+1(η)− F−1s (η)] (21)

The further adjusted effect being proposed here using the “double scaled” counterfactual is

then given by

∆∗s(θ) = ∆s(θ)−∆97(θ) (22)

Thus the counterfactual distribution is given by

F ∗−1s+1 (θ) = F−1s (θ) + [F−1s+1(η)− F−1s (η)] +

[F−198 (θ)− F−197 (θ)]− [F−198 (η)− F−197 (η)] (23)

and the proposed quantile effect is given by

∆∗s(θ) = F−1s+1(θ)− F ∗−1s+1 (θ) (24)
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The estimator is given by replacing each of the quantiles in (23) and (24) by their empirical

counterparts.

As before this can be formulated in terms of quantile regressions. If we write the quantile

regression in equation (5) for the θ-quantile estimated on pooled data for years s and s+1

as

Qθs(wit|Ds+1
it ) = αs(θ) + βs(θ)D

s+1
it t = s, s+ 1 (25)

where Dτ
it = 1 if t = τ and Dτ

it = 0 otherwise, the estimate of βs(θ) gives the quantile

difference between years s and s+ 1 for the θ-quantile.

Then the proposed quantile effect estimator can be written as

∆̂∗s(θ) = [(β̂s(θ)− β̂s(0.5)]− [(β̂97(θ)− β̂97(0.5)]

= [(β̂s(θ)− (β̂97(θ)]− [β̂s(0.5)− β̂97(0.5)] (26)

The quantile regressions for the separate pairs of years can be combined as

Q∗θs(wit|xit) = (αsj + βsjD
s+1
it )(1−D97

it −D98
it ) + (α

97
j + β97j D98

it )(D
97
it +D98

it )

= αsj + (α
97
j − αsj)(D

97
it +D98

it ) + (β
s
j − β97j )D

s+1
it

+β97j (D
98
it +Ds+1

it ) (27)

This can be estimated as a quantile regression using data for years 1997, 1998, s and s+ 1

with xit = [Ds+1
it , (D97

it +D98
it ), (D

98
it +Ds+1

it )]0. The coefficient on the first of these variables

gives [β̂s(θ) − β̂97(θ)]. ∆̂
∗
s is then given by the difference between this and the equivalent

estimate for the median (i.e. θ = 0.5).

As for the simple counterfactual estimator in section 4.2, analytic or bootstrap standard

errors can be constructed for this estimator. The derived expression for the asymptotic

variance in section 4.3 can be extended to this estimator. It is important to distinguish two

cases. For the upratings, the years involved in the estimation of ∆∗s(θ) do not involve 1997

or 1998 and we can estimate the required variances as

var(∆∗s(θ)) = var(∆s(θ)) + var(∆97(θ)) (28)

However for the minimum wage introduction, we are comparing the 1998-99 and 1997-98

changes and so must take account of the covariance. Thus for s = 1998, there is an extra

term to be included in the variance expression. Denote the variance of the difference for

the single year s by

Vs(θ) = var(F−1s (θ)− F−1s (η)) (29)

with this given by the expression in equation (11). Then var(∆98(θ)) = V99(θ) + V98(θ),

var(∆97(θ)) = V98(θ) + V97(θ) and cov(∆98(θ),∆97(θ)) = −V98(θ). Thus

var(∆∗98(θ)) = V99(θ) + V97(θ) + 4V98(θ) (30)
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Each component of this can be estimated using equation (11) and the methods described

in section 4.4.

As before bootstrap standard errors can also be calculated with the quantile regressions

for quantiles θ and 0.5 estimated simultaneously. Both are used and compared in section 6

below.

5 Results for the simple scaled counterfactual

In this section the estimator based on the simple scaled counterfactual of section 4.2 is

used to investigate the impact of minimum wage increases on the wage distribution using

the ASHE data described in section 3. The estimated effects are given in Table 2 for log

wage percentiles for the minimum wage introduction. (Equivalent estimates for each of the

upratings from 2000 to 2007 are given in the online appendix.) Table 2 therefore gives

estimates of the effects defined in equation (6) for θ = j/100 for integers j such that θ is in

the range defined at the end of section 4.1. To simplify notation ∆j = ∆(θ), θ = j/100, is

used to denote the effect at the j-th percentile.

Table 2 gives four different estimates of the standard errors and corresponding implied

(one-sided) p-values for the tests of ∆j > 0. The literature has been concerned with the is-

sue of positive spillovers. Hence the envisaged tests have a null hypothesis of no or negative

spillovers. To this end one-sided p-values are given in the table. Three analytic asymptotic

standard errors are presented based on the variance given in equation (13). The first two

of these use the Siddiqui-Bloch-Gastwirth rectangular estimator of the sparsity function

(equation (15)), one using the Bofinger bandwidth rule (equation (17)) and one using the

Hall-Sheather rule (equation (19)). The third uses a kernel estimate of the quantile density

function, with the Epanechnikov kernel and the Silverman bandwidth rule (equation (20)).

The final standard error presented is the bootstrap estimate based on 1000 bootstrap repli-

cations.

For the case of a single quantile the bootstrap quantile variance estimator converges more

slowly than the Siddiqui-Bloch-Gastwirth estimator and the coverage error of confidence

intervals and the level error of hypothesis tests for population quantiles constructed using

the bootstrap variance estimator are inferior to those based on the Siddiqui-Bloch-Gastwirth

variance estimator with bandwidth chosen to minimize coverage / level error (Hall and

Martin, 1991).

Figure 1 plots the changes in log percentiles for each year together with 95% confidence

intervals based on the standard errors constructed using the Siddiqui-Bloch-Gastwirth es-

timator of the sparsity function and the Hall-Sheather bandwidth rule (SBG—HS). As ex-
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plained at the end of section 4.1, testing for spillovers involves testing for ∆j > 0 for

j/100 > F1(m2). Tests are conducted here at percentile points that satisfy this condition

up to the lower quartile. The lowest percentile satisfying this condition is shown by the

vertical line on each of the graphs in Figure 1. Percentiles that do not satisfy this condition

are excluded from Table 2.

To be clear about what these estimates show it is useful to explain Table 2 and the

first graph in Figure 1, which relate to the introduction of the minimum wage, in some

detail. The 4th and 5th percentiles of the 1998 wage distribution are respectively £3.50

and £3.61. Thus the 5th percentile is the first above the level at which the minimum

wage was introduced in 1999. Thus the tests for spillovers start at the 5th percentile. The

“compliance change” is zero for all the percentiles tested.

The median wage increased from £7.34 in 1998 to £7.68 in 1999, i.e. by 4.6%. The

counterfactual being considered here is therefore that, in the absence of spillovers, wages at

the 5th percentile and above would all have increased by 4.6%. The 5th percentile actually

increased by 6.6% between 1998 and 1999, which is 2.0% above the increase in the median.

Hence the estimate of ∆5 given in Table 2 and shown in Figure 1 is 0.02.

To view this another way, the 5th percentile increased from £3.61 in 1998 to £3.85 in

1999. If it had increased in line with the percentage increase in the median (4.6%) it would

only have increased to £3.78. Hence these results suggest a 7p spillover at the 5th percentile

from the introduction of the minimum wage.

The four estimates of the standard error of ∆̂5 in Table 2 are between 0.003 and 0.004.

On the basis of any of these therefore ∆̂5 is significantly greater than zero at standard levels.

(The p-value is 0.000 for all four standard error estimates.)

Turning to the 6th percentile, there was an increase of 6.1% between 1998 and 1999,

which is 1.5% above the increase in the median. (The estimate of ∆6 given in Table 2 and

shown in Figure 1 is 0.014.) The 6th percentile increased from £3.74 in 1998 to £3.97 in

1999. If it had increased in line with the percentage increase in the median it would only

have increased to £3.91, a difference of 6p. Again all four estimates of the standard error

of ∆̂6 are between 0.003 and 0.004. On the basis of any of them ∆̂6 is significantly greater

than zero, with a p-value of 0.000 for all four standard error estimates.

Looking at the 7th percentile, it increased by 4.9%, i.e. only 0.3% above the increase

in the median. (The estimate of ∆7 given in Table 2 and shown in Figure 1 is 0.003.)

The 7th percentile increased from £3.84 to £4.03. If it had increased in line with the

percentage increase in the median it would have increased to £4.02, a difference of just 1p.

The estimate of ∆7 is not significantly greater than zero. (The p-value is 0.158 or higher

for all four standard error estimates.) Thus there is evidence of significant spillovers at the
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5th and 6th percentiles, but not at the 7th. Above that there is some evidence of significant

estimates of ∆j for j = 9, 10 and 12 at the 5% level, but not at the 1% level. For these

three percentiles the estimate of ∆j is about 0.005 and hence considerably smaller than for

j = 5 and 6. The estimated effects in Table 2 use the estimator defined by equation (6).

Adding controls for individual characteristics such as age, gender and industry changes the

estimates very little.

For most percentiles there is a fairly good agreement between the four standard error

estimates. The bootstrap standard error estimate is typically slightly larger than the other

three. The average across the 21 percentiles in Table 2 is 0.0027 for each of the other three

estimates and 0.0030 for the bootstrap estimates. Taking the SBG—HS standard error as

the baseline for comparison, the average absolute percentage differences from it are 1.9%

for the SBG—B standard error and 2.4% for the kernel standard error, but somewhat larger

at 10.8% for the bootstrap standard error. The bootstrap standard error is in fact larger

than the SBG—HS standard error for all 21 percentiles. Taking the SBG—HS standard error

as the baseline for comparison again, the SBG—B standard error ranges from 7% below it

to 3% above it and the kernel standard error ranges from 10% below to 7% above, but the

bootstrap standard error ranges from 1% above to 21% above.

The estimates of ∆j for the October 2000 uprating (the second graph in Figure 1) are

all negative. There is no evidence in these estimates of positive spillover effects. The third

graph in Figure 1 gives the estimates for the October 2001 uprating, which was the largest

in percentage terms that there has been. The estimates here indicate a spillover effect of

about 2% at the 5th percentile and of about 1% between the 6th and 11th percentiles.

However, the strongest evidence of spillovers is probably in the estimates for the October

2002 uprating, which is surprising since it was the smallest increase in percentage terms in

the period covered by the data (see also Swaffield, 2008). In this case the estimates indicate

spillovers of between 1% and 2% up to about the 20th percentile. All are significantly

greater than zero up to this percentile, with a p-value of 0.000 for all four standard error

estimates.

The estimates for the October 2003 uprating imply spillovers of about 2% for the 4th,

5th and 6th percentiles. The evidence for spillover effects from the next four upratings is less

clear and the estimated effects smaller. For the first three of these, there is some evidence

of effects of about 1% for some percentiles, but it is not strong. For the 2007 uprating the

effects are all negligible and insignificantly different from zero.

It should also be remembered that it is inherent in the identification strategy that the

estimated effects may conflate any spillover effects with those of other policy changes if

these other policies also have differential effects at low percentiles and the median. For
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example, if the introduction of the Working Time Regulations that limited hours of work

had differential effects of this form on the wage distribution, then the 1998-99 estimates

would incorporate that. If the introduction of paid paternity leave had differential effects

of this form on the wage distribution, then the 2002-03 estimates would incorporate that.

This is inherent in all estimators of this type.

As for the introduction of the minimum, there is a fairly good agreement between the four

standard error estimates for most percentiles for each of the upratings. Taking the SBG—

HS standard error as the baseline for comparison again, the average absolute percentage

differences from it over the 8 upratings are 2.6% for the SBG—B standard error and 2.4%

for the kernel standard error, similar to those above for the introduction. For the bootstrap

standard error, average absolute percentage difference is still larger than for the other two

standard errors, but at 5.7% is only about half what it was for the introduction.

The assumption made for the estimates presented in this section is that, in the absence of

spillovers, wages above the new minimum would all have risen in line with the proportional

rise in the median. The remainder of this section and the next section examine whether

this is an appropriate counterfactual.

Consideration is given first to the sensitivity of the results to the choice of comparator

quantile, η. The estimates above use η = 0.5. However it may be that η = 0.5 is rather too

high up the distribution for an appropriate comparison when investigating minimum wage

spillovers. The characteristics of those at the median may be rather different to those in

receipt of the minimum wage or subject to its spillover effects.

One can think of the double scaling of section 4.5 as one way of accounting for this.

Results are given for this in the next section. Alternatively one can consider alternative

choices of η. However the choice of the most suitable comparator is hard to judge. The

optimal choice would be a quantile just slightly above that where any spillovers run out.

There is a trade-off here. If one chooses η too high (as one might argue η = 0.5 to be),

then the similarity of characteristics of individuals at the points of comparison is weakened.

On the other hand if one chooses η too low, then the comparator quantile (η) might itself

be affected by spillovers. Much of the spillovers literature asks how far up the distribution

spillover effects reach. The comparison here seeks to choose a counterfactual adjusting

quantile that is beyond this point so that we can be confident that it is uncontaminated by

spillovers, but not so far beyond that comparability is lost.

The same estimator based on the simple scaled counterfactual that was used for the

estimates so far in this section is used next with alternative choices of η. Table 3 gives

estimates for the minimum wage introduction using different choices of η ranging from 0.25

to 0.5. (Equivalent estimates for each of the upratings from 2000 to 2007 are given in the
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online appendix.) The counterfactual assumption is that, in the absence of spillovers, wages

above the new minimum would have risen in line with the proportional rise in the chosen

percentile, with this ranging from the 25th to the 50th. Figure 2 plots the changes in log

percentiles for each year and their confidence intervals corresponding to Figure 1, but with

the 30th percentile used as the counterfactual comparator. (Corresponding figures for the

other comparators are given in the online appendix.)

The results for the 45th percentile comparator in Table 3 are similar to those for the

median. The estimated effects increase slightly for percentiles 5 to 12. Those for the 40th

and 35th percentile comparators are then similar to these. Those for the 30th percentile

comparator are again slightly increased for percentiles 5 to 12. When the 25th percentile

is used for the comparator the estimated effects for percentiles 5 to 12 fall back again, to

below those for the median.

Thus in Figure 2 there is slightly more evidence of spillover effects from the introduction

of the minimum wage (the first graph in the figure) than in Figure 1, but the differences are

slight. Turning to the other years, in contrast to this, the evidence of spillovers is slightly

reduced for the 2001, 2002 and 2004 upratings.

6 Results for the double scaled counterfactual

To consider the question of the appropriate counterfactual, it is useful to look at the pro-

portional changes in wage percentiles relative to the median for 1997-98, when there was

no minimum in place in either year, and for 1999-2000, when there was no uprating. The

former are given in Table 4, together with their standard errors and implied p-values. (The

equivalent for the latter is given in the online appendix.)

In both these years there is evidence of significant positive relative changes relative to

the changes in the median of around 1% or slightly more: up to about the 9th percentile

in the case of 1997-98 and about the 11th in the case of 1999-2000. Thus in these years

these percentiles went up slightly more than the median rather than in line with it. One

possible explanation for this is as a manifestation of Galtonian regression towards the mean.

These findings call into question the standard simple counterfactual used above and in the

previous literature that the analysis here builds on.

Figure 3 therefore presents the equivalent adjusted proportional changes in wage per-

centiles to those given in Figure 1, but taken relative to the corresponding changes in

1997-98, a period completely prior to the introduction of the minimum wage. That is esti-

mates of the effects ∆∗s(θ) defined by equations (23) and (24) in section 4.5. The estimates

for the first graph in Figure 3, the introduction of the minimum wage, are tabulated in Ta-
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ble 5 together with their standard errors and corresponding implied test statistic p-values.

(Equivalent estimates for the upratings from 2000 to 2007 are given in the online appendix.)

The counterfactual in this case, rather than being that all wages would have gone up in line

with the median, is that a given percentile would have risen relative to the median as it did

in 1997-98, when there was no minimum wage. This is the “double scaled” counterfactual

described in section 4.5.

The evidence for spillover effects is much less under this counterfactual assumption. For

the introduction of the minimum wage the estimated spillover effect at the 5th percentile is

1.6% with a p-value of between 0.003 and 0.013 depending on which standard error estimate

is used. For the 6th percentile upwards the estimates are negligible and insignificantly

different from zero, for all four standard error estimates, or negative. As for the simple scaled

counterfactual, adding controls for age, gender and industry changes the estimates very

little. The estimate for the 5th percentile falls slightly from 0.0156 to 0.0142, but remains

significantly greater than zero. Those for the 6th percentile onwards remain insignificant.

For the October 2001 uprating the estimated spillover effect at the 5th percentile is

1.6% with a p-value of 0.001 or below. Above that the effects are mostly (but not all)

insignificantly different from zero. Compared to those under the simple counterfactual

assumption in the previous section, these show both a reduction in the magnitude of the

estimated effect at the 5th percentile and a loss of statistical significance at the 6th percentile

in 1999 and for the 6th to 11th percentiles for 2001.

As in the previous section, the estimated effects for the October 2000 uprating are all

negative. The effects of the 2002 uprating are still significantly greater than zero at the 5%

significance level for most of the percentiles considered, but typically reduced in magnitude

from those in Figure 1. Typically these spillovers are now of around 1% and stretching

quite a way up the distribution. Just under half of the estimated effects are significantly

greater than zero at the 1% level for at least one of the standard error estimates, and less

than one third (7 out of 23) are for all four of the standard error estimates. Never-the-less

it is again the 2002 uprating that shows the most evidence of spillover effects.

The estimates for the October 2003 uprating imply a significant spillover at the 5th

percentile, but not at the 4th or 6th percentiles, for which there were highly significant

effects with the counterfactual used in the previous section, or any of the higher percentiles.

There is little evidence of systematic spillover effects relative to this counterfactual for the

upratings that took place in 2004 to 2007 inclusive. Overall, for all years, there is much

less evidence of spillovers under this counterfactual assumption than under the simpler

counterfactual assumption in the previous section.
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7 Conclusions

This paper presents an examination of a method for estimating the effects of a policy change

on an outcome distribution that uses a comparator quantile rather than a control group.

In particular, it provides methods for estimating the variances of these estimators.

The empirical analysis conducted in the paper estimates the “spillover” effects of in-

creases in the UK national minimum wage. Such spillover effects are important for a num-

ber of reasons, discussed in Section 2. Much research on the effects of the minimum wage

on various outcomes has been conducted using a difference-in-differences approach with a

group initially just above the increased minimum used as the “control” group under the

assumption that they are not affected by the rise in the minimum, and in particular that

their wages are not affected by spillover effects.

Spillover effects are estimated in this paper by comparing percentiles of the observed

wage distribution after an increase in the minimum wage with those of an estimated counter-

factual distribution of wages at the same date if the minimum wage had not been increased.

This counterfactual wage distribution is constructed by making hypothesised adjustments

to the observed wage distribution before the increase.

The results presented indicate that the conclusions about minimum wage spillovers are

sensitive to the assumptions made to construct the counterfactual distribution. The first

simple counterfactual used assumes that in the absence of an increase in the minimum wage

all wages would have risen in line with the observed growth in the median. Under this

assumption, the introduction of the minimum wage in 1999 produced significant spillovers

at the 5th and 6th percentiles, while the 2001 uprating produced spillovers between the 5th

and 11th percentiles that were significant. Somewhat surprisingly the strongest evidence

of spillovers is found in the estimates for the October 2002 uprating, up to about the 20th

percentiles. However significant positive proportional changes relative to that in the median

are also found in some lower percentiles for the two “no change” years examined when either

the minimum wage had not yet been introduced or when it did not change. This casts doubt

on the assumption underlying the simple scaled counterfactual.

An alternative “double scaled” counterfactual in which each percentile would have risen

relative to the median as it did in 1997-98, when there was no minimum wage, is proposed.

Based on this counterfactual distribution the evidence of spillover effects is much reduced.

Once again the most evidence of spillovers is found for the October 2002 uprating, but the

significant estimated effects are now rather smaller at only about 1%. A significant spillover

effect is found at the 5th percentile for the 1999 introduction and the 2001 uprating based

on this counterfactual distribution, but not above that.
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The overall conclusion of this paper is that the evidence on minimum wage spillover

effects depends on the counterfactual distribution assumed. Evidence presented calls into

question the assumption underlying the simple scaled counterfactual. On the basis of the

“double scaled” counterfactual proposed in this paper any spillovers are small — about 1%

at most — and, apart from the October 2002 uprating, typically do not reach above the 5th.

percentile.
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Figure 1 
Estimated spill-over effects and 95% confidence intervals – simple scaled counterfactual 

 
 

26



-.0
4

-.0
2

0
.0

2
.0

4
P

ro
po

rt
io

na
l c

ha
ng

e 
(w

ith
 9

5%
 C

I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 1998-1999

-.0
4

-.0
2

0
.0

2
.0

4
P

ro
po

rt
io

na
l c

ha
ng

e 
(w

ith
 9

5%
 C

I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 2000-2001

-.0
4

-.0
2

0
.0

2
.0

4
P

ro
po

rt
io

na
l c

ha
ng

e 
(w

ith
 9

5%
 C

I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 2001-2002

-.0
4

-.0
2

0
.0

2
.0

4
P

ro
po

rt
io

na
l c

ha
ng

e 
(w

ith
 9

5%
 C

I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 2002-2003

-.0
4

-.0
2

0
.0

2
.0

4
P

ro
po

rt
io

na
l c

ha
ng

e 
(w

ith
 9

5%
 C

I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 2003-2004

-.0
4

-.0
2

0
.0

2
.0

4
P

ro
po

rt
io

na
l c

ha
ng

e 
(w

ith
 9

5%
 C

I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 2004-2005

-.0
4

-.0
2

0
.0

2
.0

4
P

ro
po

rt
io

na
l c

ha
ng

e 
(w

ith
 9

5%
 C

I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 2005-2006
-.0

4
-.0

2
0

.0
2

.0
4

P
ro

po
rt

io
na

l c
ha

ng
e 

(w
ith

 9
5%

 C
I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 2006-2007

-.0
4

-.0
2

0
.0

2
.0

4
P

ro
po

rt
io

na
l c

ha
ng

e 
(w

ith
 9

5%
 C

I)

0 5 10 15 20 25
Percentiles

Proportional change in wage percentiles, 2007-2008

Note: Percentile changes are adjusted by the change in the 30th percentile.

Proportional change in wage percentiles

 
 

Figure 2 
Estimated spill-over effects and 95% confidence intervals – using the 30th percentile as comparator 
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Figure 3 
Estimated spill-over effects and 95% confidence intervals – “double scaled” counterfactual 
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Table 1

The UK National Minimum Wage - rates of increase and comparisons

Adult NMW % increase % increase % increase % increase
(£) in NMW in median in AEI in RPI

(ASHE, April)
[1] [2] [3] [4] [5]

April 1999 3.60
Oct 2000 3.70 2.8% 3.0% 4.1% 2.6%
Oct 2001 4.10 10.8% 5.0% 4.1% 1.6%
Oct 2002 4.20 2.4% 4.0% 3.6% 2.1%
Oct 2003 4.50 7.1% 3.9% 3.8% 2.6%
Oct 2004 4.85 7.8% 3.7% 4.8% 3.3%
Oct 2005 5.05 4.1% 3.4% 3.2% 2.5%
Oct 2006 5.35 5.9% 3.7% 4.3% 3.7%
Oct 2007 5.52 3.2% 3.3% 3.6% 4.2%

Notes :
Column [3]: Median hourly pay excluding overtime, April of each year: ASHE (Table 1.6a).

Employees on adult rates whose pay for survey pay-period was not affected by absence.
Column [4]: Average Earnings Index, whole economy, SA, including bonuses.
Column [5]: Retail Prices Index, all items index.
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Table 2

Relative change in log wage percentiles, 1998-1999

ptile SBG—B SBG—HS Kernel Bootstrap
j ∆̂j SE [p-val] SE [p-val] SE [p-val] SE [p-val]

5 0.0191 0.00326 [0.000] 0.00352 [0.000] 0.00317 [0.000] 0.00357 [0.000]
6 0.0144 0.00306 [0.000] 0.00303 [0.000] 0.00308 [0.000] 0.00336 [0.000]
7 0.0030 0.00301 [0.158] 0.00303 [0.160] 0.00304 [0.160] 0.00336 [0.185]
8 -0.0006 0.00287 [0.584] 0.00292 [0.582] 0.00298 [0.581] 0.00295 [0.582]
9 0.0059 0.00282 [0.018] 0.00274 [0.016] 0.00295 [0.023] 0.00297 [0.024]
10 0.0049 0.00279 [0.039] 0.00291 [0.046] 0.00291 [0.046] 0.00322 [0.063]
11 0.0017 0.00281 [0.275] 0.00284 [0.277] 0.00287 [0.280] 0.00308 [0.293]
12 0.0052 0.00279 [0.031] 0.00280 [0.032] 0.00282 [0.033] 0.00305 [0.044]
13 -0.0001 0.00277 [0.518] 0.00272 [0.519] 0.00279 [0.518] 0.00312 [0.516]
14 -0.0009 0.00269 [0.635] 0.00280 [0.630] 0.00276 [0.632] 0.00294 [0.624]
15 0.0004 0.00267 [0.436] 0.00263 [0.435] 0.00272 [0.437] 0.00283 [0.440]
16 0.0018 0.00265 [0.244] 0.00257 [0.237] 0.00269 [0.247] 0.00305 [0.273]
17 0.0032 0.00258 [0.107] 0.00262 [0.111] 0.00265 [0.114] 0.00292 [0.136]
18 0.0024 0.00256 [0.174] 0.00259 [0.178] 0.00261 [0.179] 0.00299 [0.211]
19 -0.0024 0.00250 [0.829] 0.00250 [0.829] 0.00258 [0.821] 0.00256 [0.823]
20 -0.0050 0.00249 [0.978] 0.00251 [0.978] 0.00254 [0.976] 0.00295 [0.956]
21 -0.0037 0.00246 [0.935] 0.00242 [0.938] 0.00250 [0.932] 0.00284 [0.905]
22 -0.0003 0.00242 [0.551] 0.00241 [0.551] 0.00247 [0.550] 0.00291 [0.542]
23 -0.0010 0.00244 [0.659] 0.00242 [0.660] 0.00243 [0.660] 0.00279 [0.640]
24 -0.0017 0.00237 [0.760] 0.00243 [0.754] 0.00239 [0.758] 0.00281 [0.724]
25 0.0013 0.00233 [0.285] 0.00237 [0.288] 0.00235 [0.286] 0.00249 [0.297]

Notes :
Standard errors:
SBG—B: Siddiqui-Bloch-Gastwirth estimates of sparsity function, with Bofinger bandwidth rule.
SBG—HS: Siddiqui-Bloch-Gastwirth estimates of sparsity function, with Hall-Sheather bandwidth rule.
Kernel: Kernel estimates of quantile density function, Epanechnikov kernel, Silverman bandwidth rule.
Bootstrap: Bootstrap estimates of variance-covariance matrix, using 1000 bootstrap replications.
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Table 3

Relative change in log wage percentiles for different comparators, 1998-1999

comparator: comparator: comparator: comparator: comparator: comparator:
ptile Q50 Q45 Q40 Q35 Q30 Q25

5 0.0191 [0.000] 0.0203 [0.000] 0.0203 [0.000] 0.0206 [0.000] 0.0228 [0.000] 0.0178 [0.000]
6 0.0144 [0.000] 0.0156 [0.000] 0.0156 [0.000] 0.0159 [0.000] 0.0181 [0.000] 0.0131 [0.000]
7 0.0030 [0.160] 0.0042 [0.081] 0.0042 [0.083] 0.0045 [0.069] 0.0067 [0.014] 0.0017 [0.299]
8 -0.0006 [0.582] 0.0006 [0.418] 0.0006 [0.416] 0.0009 [0.383] 0.0031 [0.147] -0.0019 [0.734]
9 0.0059 [0.016] 0.0071 [0.004] 0.0071 [0.005] 0.0074 [0.003] 0.0096 [0.000] 0.0046 [0.059]
10 0.0049 [0.046] 0.0061 [0.017] 0.0061 [0.019] 0.0064 [0.015] 0.0086 [0.002] 0.0036 [0.126]
11 0.0017 [0.277] 0.0029 [0.154] 0.0029 [0.158] 0.0032 [0.136] 0.0054 [0.032] 0.0004 [0.455]
12 0.0052 [0.032] 0.0064 [0.011] 0.0064 [0.013] 0.0067 [0.010] 0.0089 [0.001] 0.0039 [0.104]
13 -0.0001 [0.519] 0.0011 [0.345] 0.0011 [0.346] 0.0014 [0.313] 0.0036 [0.102] -0.0015 [0.687]
14 -0.0009 [0.630] 0.0003 [0.460] 0.0003 [0.458] 0.0006 [0.425] 0.0028 [0.174] -0.0023 [0.765]
15 0.0004 [0.435] 0.0016 [0.268] 0.0017 [0.271] 0.0019 [0.241] 0.0041 [0.068] -0.0009 [0.620]
16 0.0018 [0.237] 0.0030 [0.119] 0.0031 [0.125] 0.0033 [0.106] 0.0055 [0.020] 0.0005 [0.430]
17 0.0032 [0.111] 0.0044 [0.048] 0.0044 [0.054] 0.0047 [0.045] 0.0069 [0.007] 0.0019 [0.265]
18 0.0024 [0.178] 0.0036 [0.085] 0.0036 [0.092] 0.0039 [0.078] 0.0061 [0.014] 0.0011 [0.359]
19 -0.0024 [0.829] -0.0012 [0.677] -0.0011 [0.667] -0.0009 [0.633] 0.0013 [0.313] -0.0037 [0.901]
20 -0.0050 [0.978] -0.0038 [0.933] -0.0038 [0.923] -0.0036 [0.908] -0.0014 [0.690] -0.0064 [0.985]
21 -0.0037 [0.938] -0.0025 [0.847] -0.0025 [0.834] -0.0023 [0.809] -0.0001 [0.508] -0.0051 [0.963]
22 -0.0003 [0.551] 0.0009 [0.358] 0.0009 [0.360] 0.0012 [0.327] 0.0034 [0.103] -0.0016 [0.715]
23 -0.0010 [0.660] 0.0002 [0.467] 0.0002 [0.464] 0.0005 [0.428] 0.0027 [0.162] -0.0023 [0.787]
24 -0.0017 [0.754] -0.0005 [0.573] -0.0004 [0.566] -0.0002 [0.529] 0.0020 [0.233] -0.0030 [0.844]
25 0.0013 [0.288] 0.0025 [0.152] 0.0026 [0.162] 0.0028 [0.145] 0.0050 [0.033] 0.0000 [0.500]

Notes :
Standard errors use Siddiqui-Bloch-Gastwirth estimates of sparsity function, with Hall-Sheather
bandwidth rule.
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Table 4

Relative change in log wage percentiles in “no-change” year, 1997-1998

ptile SBG—B SBG—HS Kernel Bootstrap
j ∆̂j SE [p-val] SE [p-val] SE [p-val] SE [p-val]

1 0.0618 0.01236 [0.000] 0.01178 [0.000] 0.00711 [0.000] 0.01263 [0.000]
2 0.0127 0.00488 [0.005] 0.00401 [0.001] 0.00403 [0.001] 0.00440 [0.002]
3 0.0068 0.00390 [0.042] 0.00396 [0.044] 0.00361 [0.031] 0.00431 [0.058]
4 0.0137 0.00347 [0.000] 0.00327 [0.000] 0.00344 [0.000] 0.00356 [0.000]
5 0.0035 0.00337 [0.150] 0.00362 [0.168] 0.00331 [0.146] 0.00449 [0.219]
6 0.0133 0.00326 [0.000] 0.00334 [0.000] 0.00322 [0.000] 0.00392 [0.000]
7 0.0092 0.00323 [0.002] 0.00325 [0.002] 0.00314 [0.002] 0.00381 [0.008]
8 0.0107 0.00295 [0.000] 0.00304 [0.000] 0.00308 [0.000] 0.00373 [0.002]
9 0.0074 0.00290 [0.006] 0.00270 [0.003] 0.00305 [0.008] 0.00333 [0.013]
10 0.0039 0.00279 [0.079] 0.00307 [0.099] 0.00299 [0.094] 0.00380 [0.150]
11 0.0032 0.00288 [0.136] 0.00268 [0.120] 0.00295 [0.142] 0.00348 [0.182]
12 0.0097 0.00284 [0.000] 0.00291 [0.000] 0.00291 [0.000] 0.00349 [0.003]
13 0.0064 0.00283 [0.012] 0.00282 [0.012] 0.00286 [0.013] 0.00346 [0.032]
14 0.0056 0.00284 [0.024] 0.00286 [0.025] 0.00282 [0.023] 0.00361 [0.060]
15 0.0049 0.00275 [0.039] 0.00274 [0.038] 0.00277 [0.040] 0.00335 [0.074]
16 -0.0003 0.00271 [0.551] 0.00259 [0.553] 0.00273 [0.550] 0.00322 [0.543]
17 -0.0009 0.00264 [0.633] 0.00258 [0.636] 0.00269 [0.630] 0.00317 [0.611]
18 0.0029 0.00260 [0.132] 0.00261 [0.133] 0.00266 [0.137] 0.00337 [0.195]
19 0.0022 0.00254 [0.189] 0.00260 [0.194] 0.00262 [0.196] 0.00307 [0.233]
20 0.0016 0.00254 [0.265] 0.00255 [0.266] 0.00257 [0.268] 0.00306 [0.301]
21 0.0031 0.00251 [0.110] 0.00245 [0.105] 0.00254 [0.113] 0.00313 [0.163]
22 -0.0035 0.00246 [0.925] 0.00244 [0.927] 0.00250 [0.922] 0.00304 [0.878]
23 -0.0020 0.00243 [0.798] 0.00239 [0.802] 0.00246 [0.795] 0.00309 [0.744]
24 -0.0026 0.00239 [0.859] 0.00238 [0.859] 0.00242 [0.856] 0.00285 [0.816]
25 0.0029 0.00234 [0.112] 0.00233 [0.111] 0.00238 [0.115] 0.00300 [0.171]

Notes : See Table 2
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Table 5

Relative change in log wage percentiles, 1998-1999 (relative to 1997-98)

ptile SBG—B SBG—HS Kernel Bootstrap
j ∆̂∗j SE [p-val] SE [p-val] SE [p-val] SE [p-val]

5 0.0156 0.00577 [0.003] 0.00629 [0.007] 0.00563 [0.003] 0.00699 [0.013]
6 0.0011 0.00551 [0.418] 0.00552 [0.418] 0.00546 [0.417] 0.00613 [0.426]
7 -0.0062 0.00543 [0.873] 0.00547 [0.872] 0.00535 [0.877] 0.00620 [0.841]
8 -0.0113 0.00501 [0.988] 0.00521 [0.985] 0.00524 [0.984] 0.00594 [0.972]
9 -0.0015 0.00491 [0.618] 0.00463 [0.625] 0.00519 [0.612] 0.00562 [0.604]
10 0.0010 0.00480 [0.420] 0.00523 [0.427] 0.00511 [0.425] 0.00620 [0.438]
11 -0.0015 0.00493 [0.618] 0.00478 [0.622] 0.00504 [0.616] 0.00553 [0.605]
12 -0.0045 0.00488 [0.821] 0.00495 [0.817] 0.00496 [0.817] 0.00559 [0.789]
13 -0.0065 0.00484 [0.911] 0.00480 [0.913] 0.00489 [0.909] 0.00582 [0.869]
14 -0.0065 0.00475 [0.916] 0.00492 [0.908] 0.00482 [0.912] 0.00579 [0.871]
15 -0.0044 0.00466 [0.828] 0.00461 [0.831] 0.00475 [0.824] 0.00545 [0.791]
16 0.0022 0.00461 [0.318] 0.00442 [0.311] 0.00469 [0.321] 0.00533 [0.341]
17 0.0041 0.00451 [0.182] 0.00451 [0.182] 0.00462 [0.188] 0.00555 [0.230]
18 -0.0005 0.00445 [0.545] 0.00455 [0.544] 0.00456 [0.544] 0.00572 [0.535]
19 -0.0046 0.00434 [0.856] 0.00444 [0.850] 0.00449 [0.848] 0.00512 [0.816]
20 -0.0066 0.00436 [0.936] 0.00441 [0.934] 0.00442 [0.933] 0.00532 [0.894]
21 -0.0068 0.00429 [0.944] 0.00415 [0.950] 0.00436 [0.941] 0.00537 [0.897]
22 0.0032 0.00421 [0.221] 0.00418 [0.219] 0.00429 [0.226] 0.00497 [0.258]
23 0.0010 0.00421 [0.404] 0.00414 [0.402] 0.00423 [0.404] 0.00529 [0.423]
24 0.0009 0.00411 [0.414] 0.00419 [0.416] 0.00416 [0.415] 0.00495 [0.428]
25 -0.0015 0.00403 [0.647] 0.00408 [0.646] 0.00409 [0.645] 0.00471 [0.627]

Notes : See Table 2
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