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Abstract: 

In the 15years since the identification and characterisation of the extracellular 

calcium-sensing receptor (CaR), it has become increasing apparent that this cationic binding 

receptor is found on many tissues, not associated with the control of plasma calcium.  One of 

these tissues is the pancreatic islet where insulin secretion provides the basis of energy 

regulation.  It seems inherently unlikely that the islet responds to alterations in systemic 

calcium and a more plausible and intriguing possibility is that the CaR mediates cell-to-cell 

communication through local increases in the concentration of extracellular Ca2+, co-released 

with insulin. This short commentary explores this possibility and suggests that this novel 

mechanism of cell communication, along with direct coupling via gap-junctions and other 

local paracrine regulators helps explain why the glucose-responsiveness of the intact islet is 

greater than the sum of the composite parts in isolation. 
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Introduction: 

It has been 15years since the original cloning and characterisation of the extracellular 

calcium-sensing receptor (CaR; Brown et al. 1993).  Since then more than 1,000 articles have 

been published chronicling the role of this G-protein coupled receptor in the physiology and 

patho-physiology of systemic calcium regulation (extensively reviewed in Brown 2007).  

However, over the last decade and a half it has become apparent that the ability of cells to 

detect local changes in free calcium ion concentration is not restricted to tissues involved in 

Ca2+-homeostasis. The CaR has been detected on an ever increasing range of tissue types, 

including oesophageal (Justinich et al. 2008) and colonic epithelia (Cheng et al. 2004), the 

cardiovascular system (reviewed in Smajilovic & Tfelt-Hansen 2007), hypothalamic neurons 

(Vizard et al. 2008), pancreatic ducts (Racz et al. 2002) and pancreatic α- and β-cells 

(Rasschaert & Malaisse 1999; Squires et al. 2000; Gray et al. 2006). 

The functional significance of the CaR in tissue not involved in regulating plasma 

Ca2+ is not fully understood. In the exocrine pancreas it has been suggested that the CaR 

monitors extracellular Ca2+ in pancreatic juice to limit the risk of calcium carbonate stone 

formation (Bruce et al. 1999), and in gastrin secreting cells of the human antrum the CaR may 

detect dietary Ca2+ (Ray et al. 1997; Buchan et al. 2001).  However, a more global 

explanation for the role of the CaR in these disparate tissues could be in its ability to detect 

local fluctuations in Ca2+, mediating cell-to-cell communication and coupling function. Cells 

communicate locally via gap junctions that physically connect adjacent cells and permit the 

free-flow of ions and small molecules (Hills et al. 2006), or through the release of local 

paracrine messengers (Squires et al. 2002). Recent evidence, from our work on pancreatic β-

cells, suggests an important function for the CaR in mediating cell-to-cell communication 

within islets to co-ordinate insulin secretory responses (Jones et al. 2007). Local changes in 

the concentration of extracellular Ca2+ can occur as result of changes in Ca2+-influx/efflux 

pathways across the plasma-membrane (Green et al. 2007). Additionally, secretory granules 

contain high concentrations of calcium that is released upon exocytosis (Belan et al. 1998). 
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As the volume of space between cells is often small, large changes in Ca2+ concentration can 

occur in the micro-environment immediately surrounding cells (Perez-Armendariz & Atwater 

1986).  These local extracellular ‘hot-spots’ of calcium are sufficient to activate the CaR on 

neighbouring cells and facilitate cellular co-operation. 

 

CaR: cell-to-cell communication and the pancreatic islet 

 Several theories have been proposed to explain the synchronous and cooperative 

activity of islets when compared to non-cooperative events in isolated individual β-cells 

including direct communication via gap junctions (Moreno et al, 2005; Rogers et al. 2007), 

the presence of other endocrine cells (Ishihara et al, 2003), as well as the existence of 

extracellular diffusible mediators (Squires et al. 2002; Hellman et al. 2004). The possibility 

that local changes in extracellular Ca2+ resulting from the efflux of mobilised Ca2+ in one cell 

are sufficient to activate the CaR on an adjacent cell was elegantly demonstrated in a HEK293 

model system (Hofer et al. 2000). These studies suggested that the extrusion of Ca2+ from 

stimulated cells, recruited neighbouring cells, allowing amplification and integration of a 

tissue wide response (reviewed in Hofer et al. 2004).  In the pancreas we’ve long argued that 

close cell-to-cell contact improves the functional responsiveness of cells and augments insulin 

secretion (Hauge-Evans et al. 1999).  Activation of the CaR using receptor-specific 

calcimimetics (reviewed in Trivedi et al. 2008) enhances insulin secretion from human islets 

(Gray et al. 2006) and provides an obvious link by which glucose-evoked release of calcium-

rich secretory granules feeds forward to synchronise secretion and perpetuate the whole islet 

response.  The proposed model of this CaR-mediated propagation of signals across the islet is 

illustrated in the schematic below.  Here glucose-evoked changes in insulin secretion in one 

cell can stimulate insulin secretion from neighbouring cells expressing the CaR, through co-

release of divalent cations, ultimately improving overall secretory function.  

It is unusual for receptor-mediated stimuli to initiate insulin release in the absence of 

stimulatory glucose concentrations.  However, calcimimetic activation of the CaR in human 
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and rodent β-cells transiently increases insulin secretion, without the need for an associated 

increase in nutrient stimulation (Gray et al. 2006), stressing the potential importance of the 

CaR to islet function. It is therefore surprising that activating mutations of the CaR as seen in 

autosomal-dominant hypocalcaemia (extensively reviewed in Egbuna & Brown, 2008), cause 

hypocalcaemia of varying severity without hypoglycaemia as expected from an increase in 

insulin secretion under the current model. This discrepancy could be explained by the fact that 

hypocalcaemia has been shown to reduce insulin secretion (Schlumbohm & Harmeyer, 2002), 

perhaps through a reduced drive for Ca
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2+-entry following glucose-stimulated closure of the 

ATP-sensitive potassium channels on the β-cells. Certainly if CaR function is increased in 

pancreatic β-cells from a background of eucalcemia there is an increase in insulin secretion 

(Grey et al, 2006), an effect that may form the basis of the intra-arterial calcium stimulation 

test for the detection of insulinomas (Kato et al. 1997; Won et al, 2003). Loss of CaR 

function may partially explain increased prevalence of coincident diabetes in patients 

presenting with primary hyperparathyroidism, where the loss of CaR-function in the 

parathyroid increases PTH-secretion (reviewed in Taylor & Khaleeli, 2001).  

 

CaR: a role in cell adhesion and proliferation in the islet. 

The biosynthetic and secretory function of the islet depends largely on the 

architecture of the islet, itself dictated by specialised cell adhesion molecules such as the cell 

surface adhesion protein epithelial (E)-cadherin (ECAD) and β-catenin (reviewed in 

D’Souza-Schorey 2005). The co-localisation of adherens junction proteins to secretory 

granules (Hodgkin et al. 2007) suggests that the adherens junction may play a novel role in β-

cell function, both in terms of β-cell proliferation (Carvell et al. 2007) and insulin secretion 

(Hodgkin et al. 2007; Rogers et al. 2007). Neutralising ECAD-mediated cell adhesion 

decreases glucose-evoked synchronicity in Ca2+-signals between adjacent cells within islets 

(Rogers et al. 2007) and evidence from human epidermal keratinocytes suggests that 

inactivation of the CaR suppresses the assembly of the ECAD-catenin-PI3K complex (Tu et 
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al. 2008). These data provide compelling evidence that the CaR influences multiple functions 

that ultimately regulate synchronicity of Ca
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2+-activity between β-cells within the islet and 

thus dramatically impinge on insulin secretion. 

 

Conclusion: 

Calcium receptor-mediated cell-to-cell communication permits local changes in co-

released Ca2+ to synchronise whole islet responses to secretagogues.  It seems likely that the 

local paracrine function of extracellular Ca2+ acts in unison with other better characterised 

mechanisms for cellular coupling, to ensure appropriate glucose-responsiveness. 

Calcimimetic compounds that activate the CaR and block PTH-secretion have been developed 

to treat hyperparathyroidism, whilst calcilytic compounds potentially provide and anabolic 

therapy for osteoporosis (reviewed in Nemeth, 2004).  However, the expression of a 

functional CaR within human pancreatic islets suggests that these therapies may have wider 

implications for tissues outside the normal targets for control of systemic calcium, and these 

possible contra-indications need to be fully explored. This short article demonstrates the 

importance of the CaR in orchestrating a synchronised whole islet response to improve 

secretory function. 
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Figure Legend: 

 

CaR-mediated cell-to-cell communication within pancreatic islets:  Glucose 

metabolism within pancreatic β-cells is limited by the low affinity glucokinase (GK).  

The resultant rise in ATP/ADP ratio closes the ATP-sensitive potassium channels (K+
ATP), 

depolarising the cell membrane and opening voltage-dependant Ca2+-channels (VDCC). 

Calcium enters the cell down a concentration gradient and stimulates insulin secretion (•). 

Divalent cations, including free Ca2+ (°) are co-released with insulin, increasing the local 

concentration of extracellular calcium (↑[Ca2+]e) in the intra-islet space. These changes 

act in a paracrine fashion that is detected by the extracellular Ca2+-sensing receptor (CaR) 

on adjacent cells. CaR-mediated increases in [Ca2+]i, propagate the signal across the islet, 

thus co-ordinating activity and enhancing glucose-induced insulin secretion.  
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