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Using data collected with the LHCb detector in proton–proton collisions at a centre-of-mass energy
of 7 TeV, the semileptonic decays B0

s → D+
s Xμ−ν and B0

s → D0 K + Xμ−ν are detected. Two struc-
tures are observed in the D0 K + mass spectrum at masses consistent with the known Ds1(2536)+ and
D∗

s2(2573)+ mesons. The measured branching fractions relative to the total B0
s semileptonic rate are

B(B0
s → D∗+

s2 Xμ−ν)/B(B0
s → Xμ−ν) = (3.3 ± 1.0 ± 0.4)%, and B(B0

s → D+
s1 Xμ−ν)/B(B0

s → Xμ−ν) =
(5.4 ± 1.2 ± 0.5)%, where the first uncertainty is statistical and the second is systematic. This is the
first observation of the D∗+

s2 state in B0
s decays; we also measure its mass and width.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Much less is known experimentally about semileptonic B0
s de-

cays, than for the lighter B mesons. In the case of the B0
s when

the b → c transition results in a single charm hadron this can be
a D+

s , a D∗+
s or another excited cs state. The relative proportion of

these final states provides essential information on the structure
of these semileptonic decays, and can be compared with QCD-
based theoretical models. In this Letter we present a search for
B0

s semileptonic decays, that might occur via an excited cs meson
that disintegrates into final states containing D0 K + . One such state
is the D+

s1, thought to be J P = 1+ , that decays into D∗K , and an-
other is the D∗+

s2 , a possible 2+ state that has been observed to
decay directly into D K [1].

The LHCb detector [2] is a forward spectrometer constructed
primarily to measure CP-violating and rare decays of hadrons con-
taining b and c quarks. The detector elements are placed along
the beam line of the LHC starting with the Vertex Locator (VELO),
a silicon strip device that surrounds the proton–proton interaction
region and is positioned 8 mm from the beam during collisions.
The VELO precisely determines the locations of primary pp inter-
action vertices, the locations of decays of long lived hadrons, and
contributes to the measurement of track momenta. Other detectors
used to measure track momenta comprise a large area silicon strip
detector (TT) located before a 3.7 Tm dipole magnet, and a combi-
nation of silicon strip detectors (IT) and straw drift chambers (OT)
placed afterward. Two Ring Imaging Cherenkov (RICH) detectors
are used to identify charged hadrons. Further downstream an Elec-

✩ © CERN, for the benefit of the LHCb Collaboration.

tromagnetic Calorimeter (ECAL) is used for photon detection and
electron identification, followed by a Hadron Calorimeter (HCAL),
and a system consisting of alternating layers of iron and chambers
(MWPC and triple-GEM) that distinguishes muons from hadrons
(MUON). The ECAL, MUON, and HCAL provide the capability of
first-level hardware triggering.

In this analysis we use a data sample of approximately 20 pb−1

collected from 7 TeV centre-of-mass energy pp collisions at the
LHC during 2010. For the first 3 pb−1 of these data a trigger was
used that requires a single muon without any requirement that it
misses the primary vertex, a trigger which was not available for
the remainder of the data taking. This sample is well suited to de-
termine the number of semileptonic B0

s decays, that we take as
the sum of D+

s Xμ−ν , D0 K + Xμ−ν and D+K 0 Xμ−ν decays, ig-
noring the small ≈1% contribution from charmless B0

s decays. The
entire 20 pb−1 sample, however, is useful for establishing signal
significance, resonance parameter determination, and the ratio of
numbers of events in the D0 K + states.

2. Selection criteria

In both data samples backgrounds increase markedly with in-
creasing track numbers. Thus, events are accepted only if the num-
ber of reconstructed tracks using the VELO and either the IT or OT
is less than 100. Tracks were accepted based on similar criteria to
those described in Ref. [2]. This results in only a 5.6% loss of sig-
nal in the 3 pb−1, and a larger 9.4% loss over the entire 20 pb−1

sample.
In this analysis we select a charm hadron that forms a ver-

tex with an identified muon. We consider two cases: (i) D+
s →

K +K −π+ , that has a branching fraction of (5.50 ± 0.27)% [1] –

0370-2693/ © 2011 CERN. Published by Elsevier B.V. All rights reserved.
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Fig. 1. The invariant K + K −π+ mass spectra for events associated with a muon for the 3 pb−1 sample in the pseudorapidity interval 2 < η < 6 for RS combinations (a) and
WS combinations (c). Also shown is the natural logarithm of the IP distributions of the D+

s candidates for (b) RS and (d) WS D+
s muon candidate combinations. The labelling

of the curves is the same on all four sub-figures. In descending order in (a): green-solid curve shows the total, the blue-dashed curve the Dfb signal, the black-dotted curve
the sideband background, the purple-dot-dashed the misinterpreted Λ+

c → pK −π+ contribution, the black dash-dash-dot curve the D∗+ → π+ D0 → K + K −π+ contribution,
and the barely visible red-solid curves the Prompt yield. The Dfb signal, the Λ+

c reflection and D∗+ signal are too small to be seen in the WS distributions. The insert in (b)
shows an expanded view of the region populated by Prompt charm production. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this Letter.)
these are used to normalize the B0
s yield; (ii) D0 → K −π+ decays

with a branching fraction of (3.89 ± 0.05)% [1] – these are com-
bined with an additional K + that forms a vertex with the D0 and
the μ− in order to search for B0

s semileptonic decays that might
occur via an excited cs meson that decays into D0 K + . In this Letter
the mention of a specific final state will refer also to its charge-
conjugate state. The selection techniques are similar to those used
in a previous analysis [3]. Most charm hadrons are produced di-
rectly via pp → cc X interactions at the LHC, where X indicates the
sum over all other possible final state particles. We denote these
particular charm reactions as “Prompt”. Charm is also produced
in pp → bb X collisions where the b-flavoured hadron decays into
charm. These are called charm from b hadrons or “Dfb” for short.
Muon candidates are selected using their penetration through the
iron of the muon system. The candidates used in the analysis of
the first 3 pb−1 sample must be those that triggered the event
and have momentum transverse to the beam direction, pT, greater
than 1200 MeV (we use units with c = 1).

The selection criteria for D+
s and D0 mesons include identifying

kaon and pion candidates using the RICH system. Cherenkov pho-
ton angles with respect to the track direction are examined and a
likelihood formed for each particle hypothesis [2]. We also require
that the pT of the kaons and pion be greater than 300 MeV, and
that their scalar sum be greater than 2100 MeV (D+

s ) or greater
than 1400 MeV (D0). Since charm mesons travel before decaying,
the kaon and pion tracks when followed backwards will most of-
ten not point to the primary vertex. The impact parameter (IP)
is the minimum distance of approach of the track with respect
to the primary vertex. We require that the χ2 formed by using

the hypothesis that the IP is equal to zero, χ2
IP, be > 9 for each

track. The kaon and pion candidate tracks must also be consistent
with coming from a common origin, the charm decay vertex, with
vertex fit χ2 per number of degrees of freedom (ndof) < 6. This
charm candidate’s decay vertex must be detached from the closest
primary interaction point. To implement this flight distance signif-
icance test we form a variable, χ2

FS, based on the hypothesis that
the flight distance between the primary and charm vertices is zero,
and require χ2

FS > 100.
Partial B0

s candidates formed from D+
s muon candidates must

form a vertex with χ2/ndof < 6, and point at the primary ver-
tex: the cosine of the angle of the b pseudo-direction formed from
the D+

s and muon vector momentum sum with respect to the line
between the D+

s μ− vertex and the primary vertex (cos δ) must
be > 0.999. They must also have an invariant mass in the range
3.10 GeV < m(D+

s μ−) < 5.10 GeV. All of these requirements were
decided upon by comparing the sidebands of the invariant mass
distributions, representative of the background, with signal Monte
Carlo simulation using PYTHIA 6.4 [4] event generation, and the
GEANT4 [5] based LHCb detector simulation.

The analysis for the D+
s Xμ−ν mode follows the same proce-

dure as our previous D0 Xμ−ν study [3], and uses the 3 pb−1

sample. The K +K −π+ mass spectra for both the right-sign (RS
K +K −π+ +μ−) and wrong-sign (WS K +K −π+ +μ+) candidates,
as well as the ln(IP/mm) distributions for events with mass com-
binations within ±20 MeV of the D+

s mass are shown in Fig. 1
for the pseudorapidity interval 2 < η < 6. Here IP refers to the
impact parameter of the D+

s candidate with respect to the pri-
mary vertex in units of mm. For both the RS and WS cases,
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we perform unbinned extended maximum likelihood fits to the
two-dimensional distributions in K +K −π+ invariant mass and
ln(IP/mm), over a region extending from 80 MeV below the D+

s
mass peak to 96 MeV above. This fitting procedure allows us to
determine directly the background shape from false combinations
under the D+

s signal mass peak. The parameters of the Prompt
IP distribution are found by examining directly produced charm
[3]. The Monte Carlo simulated shape is used for the Dfb compo-
nent. The fit separates contributions from Dfb, Prompt, and false
combinations. The Prompt contribution is small. Background com-
ponents for D∗+ → π+D0 → π+K +K − and the reflection from
Λ+

c → pK −π+ decay, where either a proton or a pion is wrongly
identified as a kaon by the particle identification system, are also
included. The shape of the D∗+ background is constrained to be
equal to that of the D+

s → K +K −π+ signal peak and the yield
is allowed to float, while the shape of the Λ+

c reflection is deter-
mined from Monte Carlo and the yield is allowed to float within
the uncertainty of our expectation.

To evaluate more carefully the D+
s yield the fits are per-

formed in η bins and the detection efficiency in each bin is de-
termined separately so as to remove uncertainty from differences
in the η dependent production observed in data compared to the
Monte Carlo simulation. This procedure yields 2233 ± 60 RS Dfb
events in the D+

s Xμ−ν channel in the b pseudorapidity range
2 < η < 6, uncorrected for efficiency; the average detection effi-
ciency is (1.07 ± 0.03)%. This yield is then reduced by 5.1% for
additional correlated b decay backgrounds as determined by simu-
lation.

3. Measurement of D0 K + Xμ−ν

Semileptonic decays of B0
s mesons usually result in a D+

s me-
son in the final state. It is possible, however, that the semilep-
tonic decay goes to a cs excitation, which can decay into either
D K or D∗K resonances, or produces non-resonant D K . To search
for these final states, we measure the D0 K + Xμ−ν yield. To seek
events with a D0 candidate and an additional K + we require that
the K + candidate has pT > 300 MeV, be identified as such in the
RICH system, has χ2

IP > 9, and that the vector sum pT of the D0

and kaon be > 1500 MeV. The resulting partial B candidate must
have an invariant mass in the range 3.09 GeV < m(D0 K +μ−) <

5.09 GeV, form a vertex (χ2/ndof < 3) and point at the primary
vertex (cos δ > 0.999). In addition, we explicitly check that if the
kaon candidate is assigned the pion mass and combined with the
D0, it does not form a D∗+ candidate, by requiring the differ-
ence in masses m(K −π+π+) − m(K −π+) − m(π+) > 20 MeV, in
addition to the ±20 MeV requirement around the D0 mass for
m(K −π+).

Fig. 2(a) shows the D0 K + invariant mass spectrum in the
3 pb−1 sample. D0 candidates are chosen from K −π+ Xμ−ν
events with a K −π+ invariant mass within ±20 MeV of the D0

mass. A clear narrow signal near threshold is seen corresponding
to the Ds1(2536)+ , but at a lower mass of 2392 MeV. An axial-
vector state cannot decay into two pseudoscalar mesons but this
resonance can decay into D∗0 K + . Since we do not reconstruct
the γ or π0 from the D∗0, the mass peak will be shifted down
from its nominal value. However, because the resonance is so close
to threshold, the mass resolution will still be very good result-
ing in a narrow peak. This final state was seen previously in B0

s
semileptonic decays by the D0 Collaboration using D+

s1 → D∗+K 0
S

decays [6]. There also appears to be a feature near the known
mass of the D∗

s2(2573)+ meson. The width of this state is not
well measured; the PDG quotes 20 ± 5 MeV [1]. Clearly there is
a large excess over the wrong-sign background here evaluated us-
ing D0 K − mass combinations.

Fig. 2. The mass difference m(K −π+ K +)−m(K −π+) added to the known D0 mass
for events with K −π+ invariant masses within ±20 MeV of the D0 mass (black
points) in semileptonic decays. The histogram shows wrong-sign events with an
additional K − instead of a K + . The curves are described in the text. (a) For the
3 pb−1 data sample and (b) for the 20 pb−1 sample.

In order to ascertain the size of the putative signals above
background we perform an unbinned maximum likelihood fit. The
data are fit with a threshold background function proportional to
M pe−aM , with M = m(D0 K +) − m0, where m0, the threshold
point, is fixed at 2358.52 MeV. The fit determines p and a. We
assume that the B0

s → D0 K + Xμ−ν signal above the background
function is saturated by the D+

s1 and D∗+
s2 states. For the D+

s1 sig-
nal function we use a bifurcated Gaussian shape, whose relative
widths above and below the peak are fixed from simulation. The
mass and average width are fixed to the values 2391.6 MeV and
4.0 MeV, respectively, found using the higher statistics sample dis-
cussed below, while the simulation, including the effects of the
missing D∗0 decay product, predicts a mass of 2392.2 ± 0.3 MeV.
The width is essentially due to the missing γ or π0 from the
D∗0 to D0 decay. There are 24.4 ± 5.5D+

s1 events. A relativistic
Breit–Wigner signal shape convolved with the experimental res-
olution of 3.3 MeV (r.m.s.) is used in the region of the D∗+

s2 where
both the mass and width are allowed to float in the fit. We find
a mass value of 2559 ± 9 MeV, a width of 24.1 ± 9.2 MeV and
22.1 ± 7.5 events, where all of these uncertainties are statistical
only.

To confirm the D∗+
s2 signal we use the full data sample of

20 pb−1, in which we accept all events that were triggered. While
this sample is useful to increase statistics it suffers from a larger
number of interactions per crossing, and multiple triggers, that
makes it more difficult to ascertain the total number of B0

s decays.
The measurement of the relative yields of D∗+

s2 to D+
s1, however,

will not be affected. Fig. 2(b) shows the resulting D0 K + invariant
mass spectrum. The difference between RS and WS events outside
of the resonant peaks is consistent with background from other
b decays as demonstrated by Monte Carlo simulation. We use the
same fitting functions as above, but here we allow the mass and
average width values of the bifurcated Gaussian to float while still
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fixing the ratio of widths above and below the peak from simula-
tion. The fit to the D+

s1 yields 155±15 signal events, a D0 K + mass
of 2391.6±0.5 MeV, and 4.0±0.4 MeV for the width. For the D∗+

s2
we again allow the mass, the width and the number of events to
float in the fit. We find a mass of 2569.4 ± 1.6 MeV, a width of
12.1 ± 4.5 MeV, and 82 ± 17 events. These errors are purely sta-
tistical. The previously measured mass and width values from the
PDG are 2572.6 ± 0.9 MeV and 20 ± 5 MeV [1]. The probability of
the background fluctuating to form the D∗+

s2 signal corresponds to
eight standard deviations, as determined by the change in twice
the natural logarithm of the likelihood of the fit without includ-
ing this resonance and accounting for the change in the number of
degrees of freedom.

The systematic uncertainty on the D∗+
s2 mass is determined

from several calibration channels. For example, our measured D0

mass differs from the known value by 0.2 MeV, though the known
value has a 0.14 MeV error. We also see a variation on the order
of 0.3 MeV by varying the fit region and background shape, where
we use a linear function instead of the threshold function. Thus
we take ±0.5 MeV as the systematic uncertainty. We use the same
method of changing the fits to find the systematic uncertainty on
the width. The maximum observed change is 1.4 MeV. There is
also a contribution from our uncertainty on the experimental res-
olution of ±0.5 MeV that contributes an additional 0.7 MeV error
on the width. Taking these two components in quadrature gives a
width uncertainty of 1.6 MeV.

The relative branching fractions are determined from the
20 pb−1 sample, assuming that the D+

s1 decays only into D∗K fi-
nal states, the D∗+

s2 decays only into D K final states, and isospin is
conserved in their decays. Note that the only observed decays D∗+

s2
are to D K final states, while decays to D∗K , although possible,
have not yet been seen, including the study by the D0 Collabora-
tion [6]. The D∗+

s2 /D+
s1 event ratio is computed, correcting for the

lower detection efficiency for D∗+
s2 of (0.516 ± 0.017)%, compared

with the D+
s1 efficiency of (0.598 ± 0.025)% as

B(B0
s → D∗+

s2 Xμ−ν)

B(B0
s → D+

s1 Xμ−ν)
= 0.61 ± 0.14 ± 0.05. (1)

The relative branching fraction of the D+
s1 with respect to the

total Bs semileptonic rate is measured using 24.4 ± 5.5 events
in the 3 pb−1 sample. The number of B0

s semileptonic decay
events in this sample is evaluated from the efficiency corrected
sum of the B0

s → D+
s Xμ−ν events and twice the efficiency cor-

rected B0
s → D0 X K +μ−ν yield. The efficiencies are 1.07% and

0.57%, respectively. The doubling of the D0 K + Xμ−ν yield accounts
for the missing D+K 0 Xμ−ν contribution, which is equal due to
isospin symmetry. A small component of B → D+

s K Xμ−ν is sub-
tracted based on a branching fraction measurement from BaBar of
(6.1 ± 1.2) × 10−4 [7], reducing the D+

s Xμ−ν yield by 3.2%. The
overall uncertainty on the B0

s semileptonic yield is 6.6%. The main
contributions to this error are the uncertainty on the absolute D+

s
branching ratio of 4.9%, and the uncertainty on the amount of
D0 K + Xμ−ν events to add to the B0

s yield of 3.0%. The correspond-
ing number for the D∗+

s2 branching fraction is computed also using
this sample and the result from Eq. (1). Correcting for the unre-
constructed D+K 0 decays results in the doubling of the rates of
the relative branching fractions, that we determine to be

B(B0
s → D∗+

s2 Xμ−ν)

B(B0
s → Xμ−ν)

= (3.3 ± 1.0 ± 0.4)%,

B(B0
s → D+

s1 Xμ−ν)

B(B0
s → Xμ−ν)

= (5.4 ± 1.2 ± 0.5)%, (2)

where the systematic uncertainty for both includes a 5% error on
the detection efficiency, and the above mentioned 6.6% uncertainty
on the number of B0

s semileptonic decays. In addition there is a
systematic uncertainty of 8% on the D∗+

s2 yield estimated by vary-
ing the fit region, and background shape. Our branching fraction
for the relative rate of D+

s1 decay is consistent with, but smaller
than, the value of (9.8 ± 3.0)% measured by D0 [6].

4. Conclusions

The first observation has been made of the rare semilep-
tonic decay B0

s → D∗
s2(2573)+ Xμ−ν and its branching fraction

relative to the total semileptonic B0
s decay rate has been mea-

sured as B(B0
s → D∗+

s2 Xμ−ν)/(B0
s → Xμ−ν) = (3.3 ± 1.0 ± 0.4)%.

For B0
s → Ds1(2536)+ Xμ−ν semileptonic decays the ratio is

B(B0
s → D+

s1 Xμ−ν)/B(B0
s → Xμ−ν) = (5.4 ± 1.2 ± 0.4)%, where

in both cases the first uncertainty is statistical and the second is
systematic. We have assumed that the D+

s1 decays only into D∗K
final states, the D∗+

s2 decays only into D K final states, and isospin
is conserved in their decays. These values were predicted in the
ISGW2 model as 3.2% and 5.7%, for D∗+

s2 and D+
s1, respectively, in

good agreement with our observations [8]. Another set of predic-
tions based on the quark model are 1.8% and 2%, respectively [9].
The mass of the D∗+

s2 is measured to be 2569.4 ± 1.6 ± 0.5 MeV,
and the width as 12.1±4.5±1.6 MeV, in agreement with previous
observations.
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