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Shear flows have a profound influence on turbulence-driven transport in tokamaks.

The introduction of arbitrary initial flow profiles into the code ORB5 (Jolliet. et. al.,

Comp. Phys. Communications, 177, 409) allows the convenient study of how flows

on all length scales both influence transport levels, and self-consistently evolve. A

formulation is presented which preserves the canonical structure of the background

particle distribution when either toroidal or poloidal flows are introduced. Turbu-

lence supression is possible above a certain shearing rate magnitude for homogeneous

shear flows, and little evolution of the shearing rate is seen. However, when a flow

with a zone boundary, where the shearing rate reverses at mid-radius, is introduced,

the shear flow evolves substantially during the simulation. E × B shear flows with

a zone boundary of a positive sign decay to a saturation amplitude, consistent with

the well known saturation of turbulently generated zonal flows. Unlike the E × B

flow, the parallel flows relax diffusively.

Gyrokinetic turbulence modelling indicates that the self-consistent flows driven by drift

wave turbulence can substantially suppress transport levels in tokamaks. Imposing a ho-
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mogeneous background (toroidal or poloidal) flow shear can reduce transport levels even

further. However, the physics of turbulence-scale and global-scale flows have been investi-

gated as separate topics. A comprehensive understanding of the physics of the interaction

between shear flows on the full range of length scales and turbulence is lacking.

For example, the process which limits the amplitude of self-consistently driven shear

flows has not been seen to act on homogeneous flow shears applied as an initial condi-

tion. We would like to know what supresses this saturation mechanism for large-scale flows.

Understanding this is particularly crucial for the physics of transport barriers, where flow

structures form on intermediate length scales.

We study this problem numerically using the global gyrokinetic code ORB5[1]. In order

to systematically investigate both homogeneous shear flows, and the zig-zag type flows seen

in quasi-steady state gyrokinetic simulations, we allow arbitrary flow profiles as an initial

condition in the code. This requires a definition of the background gyrocentre distribution

f0 which allows poloidal and toroidal flows with arbitrary profile. In order that f0 remains

a canonical distrubution (i.e., constant along trajectories when the perturbed electric field

is zero), the background electrical potential enters into the definition of the distribution

function.

We then perform a series of numerical tests to examine how the structure of the back-

ground shear flow modifies turbulence levels, and to examine the dynamics of the flow struc-

tures. First, the effect of a homogeneously sheared background flow is examined, partly as

a benchmark against previous simulations. Secondly, we examine the linear and nonlinear

evolution for ‘V-shaped’ flow profiles where the sign of the flow shearing rate changes at mid

radius. The zone boundaries, where the sign of the flow shearing rate changes, are shown to

play a critical role in self-consistently limiting the shearing-rate.

I. GLOBAL GYROKINETIC EQUILIBRIA WITH BACKGROUND SHEAR

FLOW

We consider small background flows, with ve/vth ≪ 1, so that we ignore the transonic

terms that arise when the E×B flows are of order 1. Note however, that we expect to largely

recover the effects of the Coriolis and centrifugal forces for toroidally rotating plasmas, which

are mostly associated with strong flow along the magnetic field[2]. In this limit the standard
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gyrokinetic formulism is valid, and we simply start from a different initial condition for the

flow and electric field. To consider plasmas with a background electric potential φ0, we

consistently modify the background distribution f0, and substitute φ→ φ0+φ in the zeroth

order gyrokinetic equations of motion. We also introduce parallel flows in f0 such that the

sum of the E × B and parallel flows is either dominantly poloidal, or dominantly toroidal.

The Vlasov-Poisson equations are unmodified, but the equations for δf are modified due

to the different f0. In principle we could add an initial flow in the initial perturbation δf0,

but incorporating the flow perturbation in f0 means that δf/f and therefore noise can be

reduced, and linear dynamics can be conveniently treated.

Here, we require that the background distribution function be a collisionless gyrokinetic

equilibrium, so that f0 is constant along the unperturbed gyrocentre orbits. If the back-

ground equilibrium is chosen to be a local Maxwellian, as in some gyrokinetic codes, one

must either tolerate large transient fluxes at the beginning of the simulation, or ignore terms

arising from the derivatives of f0 along the gyrocentre trajectory.

In order for f0 to be a collisionless equilibrium, f0 must only be a function of the three

canonical momenta: the energy ǫ = mv2/2+qφ0, toroidal canonical momentum ψc = ψ(~R)+

mv‖RBζ/qB and magnetic moment µ. We supress the gyroaveraging for the background

field φ0, which will vary on scales considerably longer than the gyroradius. We define a

canonical Maxwellian

f0 =
n0(Υ)

(2πT (Υ)/m)3/2
exp

(

−
ǫ− qφ0(ψ∗)

T (Υ)

)

, (1)

where ψ∗(ψc, ǫ, µ) is a modified canonical momentum which will be chosen later, and Υ is

the ‘corrected’ canonical momentum defined in ref. [3]. The toroidal canonical momentum is

equal to the poloidal flux at zeroeth order in ρ∗, and thus can be used as a radial parameter;

in the ρ∗ → 0 limit, this equilibria is locally Maxwellian, with temperature and density

varying as a function of radius. To make the dependence on φ0 more explicit, the exponent

in the definition of f0 can be written [mv2/2 + qφ0(ψ) − qφ0(ψ∗)]/T . The addition of the

qφ0(ψ∗) term is necessary in order that
∫

dv3f0 ∼ n0, so that the density and the electric

potential can be independently specified.

The initial electron density is assumed to almost neutralise the initial ion density, to

give the prescribed initial electric field. In practice, we do not calculate the ne exactly, but

instead, the approximation ne(ψ) ∼ n0(ψ) ∼< f0 > is used for the electron density which
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appears in the quasineutrality approximation, neglecting terms of order ρ∗.

The equations of motion are as before, except with an E ×B flow incorporated into the

equations of motion:

dR

dt
=

v‖
B∗‖

~B∗+
v2⊥

2ΩiBB∗‖
~B ×∇B +

(

E0+ < ~E1 >
)

× ~B

BB∗‖
(2)

and
dv‖
dt

=
~B∗

miB∗‖
·

(

miv
2

⊥

2B
∇B + qi∇ (φ0+ < φ1 >)

)

(3)

The evolution equation for δf = f(R, t)− f(R, t0) is then:

dδf

dt
= −f0κ(Υ)

dΥ

dt
+

qif0
Ti(Υ)

< ~E > ·
d~R

dt

∣

∣

∣

∣

∣

0

−
f0q

Ti(Υ)

dφ0(ψ∗)

dψ∗

dψ∗

dt
, (4)

with

κ(Υ) =
n′
0
(Υ)

n′
0
(Υ)

−
3T ′

i (Υ)

2Ti(Υ)
+

[ǫ− qφ0(ψ∗)]T
′
i (Υ)

Ti(Υ)2
(5)

The f0κdΥ/dt term arises as before from the density and temperature gradients, and the

second term results from the modification to the gyroenergy as the particles interact with

the perturbed electric field. The third term arises directly from the inclusion of φ0 in

the definition of f0. Note that all three terms are modified due to the modified marker

trajectories.

Choosing ψ∗ = ψc, the canonical toroidal momentum, results in the a near ‘pure toroidal

flow’ case, with small poloidal flows arising from temperature and density gradients. The

poloidal component of the parallel flow along the field line cancels the poloidal flow due to

the E0 × B motion. Parallel flow appears because ψ − ψc is proportional to the parallel

velocity, and φ0(ψc) − φ0(ψ) ∝ Erv‖: the distribution (ignoring for a moment the density

and temperature gradients) is simply a shifted Maxwellian in the small Er limit. Because

collisions are thought to keep the distribution quite close to neoclassical equilibrium for

most fusion relevant parameters, it is desirable that our background equilibrium be close

to neoclassical equilibrium. For ψ∗ = ψc the solution is an exact neoclassical equilibrium

for the case where there is zero temperature gradient and ∂φ0/∂ψ constant (with only ion-

ion collisions); once temperature gradient is introduced, the departure from neoclassical

equilibrium is small, of order ρ∗.

On the other hand, choosing

ψ∗ = ψc′ = ψ(~R) + Fv‖/B − F < v‖/B >, (6)
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which we call the modified canonical toroidal momentum, results in a state with small parallel

flows. Here, the angle brackets denote a bounce average along zeroth order trajectories. ψc′

is equal to the bounce average of ψ, so that is can be considered a good ‘average radial

position’ variable. This choice minimises the distortion to the distribution function f0 due to

ψ0, by reducing the RMS magnitude of the term ψ0(φ)−ψ0(ψ
′
c). However, once the electrical

potential difference across a banana orbit qErρi(a/Rq)
1/2 becomes comparable to the thermal

energy, f0 departs strongly from Maxwellian: collisionless equilibria with poloidal flows are

inherently far from local Maxwellian. For large enough flows, the distribution function

becomes double-peaked, due to structures at the trapped-passing boundary, and may well

be unstable to bump-on-tail instabilities (which would not be correctly modelled in the

gyrokinetic ordering and on the spatial scales resolved). In practice, with q ∼ 2 and R/a ∼ 3,

this leads to a restriction to poloidal flows . 0.1vth, because we have assumed that the

distribution function is near-Maxwellian in our derivation of the gyrokinetic equations, and

simulations with larger flows manifest flow-driven instabilities which we would not expect

to correctly resolve. It is interesting that there may be a mechanism limiting the size of

poloidal flows even in strictly collisionless toroidal devices.

Plasma flows driven by the flux-surface averaged component of the electrical potential

are capable of secularly tilting turbulent structures superimposed on the flow. The main

impact of these sheared flows can be captured by an effective shearing rate,

ωE×B =
r

qB

d

dr

(

q

r

dφ0

dr

)

(7)

which gives the rate at which turbulent structures will be sheared in the poloidal plane, once

an overall toroidal propagation has been factored out.

To substantially stabilise drift wave turbulence with shear flows, the effective shearing

rate would have to be similar to typical growth rates. For a homogeneous flow shear with

effective shearing rate of the order of (for example) the typical ITG growth rate 0.1cs/a,

over the whole minor radius, we would have E × B shear flows ∼ 0.1vth at the plasma

edge. Poloidal flows of this size would usually violate the assumption that f0 be close to

Maxwellian. Toroidal flows would need to be ∼ vth, for typical q ∼ 2 and R/a ∼ 3, too

large to be correctly modelled without adding transonic terms into our gyrokinetic model,

and much larger than seen in typical measurements in the cores of tokamaks. For standard

parameter choices, it is only possible to introduce large enough flow shear to substantially
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modify the turbulence, within the limits of our ordering, by restricting the region with strong

shear flow to an interval of the minor radius: for example, in a localised internal transport

barrier.

The local density and mean kinetic energy are not substantially modified by the impo-

sition of a background electric field, for moderate values of the electric field strength, so

that the specified T (r) and n(r) are very close to the reconstructed initial T (r, θ) and n(r, θ)

found by taking moments (which would trivially be the case in codes which use a local

Maxwellian as an initial condition). This is important in order to conveniently specify the

initial profiles in a simulation. Also, we have implicitly assumed that the electron density

and background potential are flux surface functions, which would be inconsistent if the ion

density varied with poloidal angle.

II. SIMULATIONS WITH UNIFORM SHEAR FLOWS

A series of simulation scans with two different plasma configurations were performed, with

homogeneously sheared toroidal and poloidal flows. The STD case used in ref. [4], which also

investigated stabilisation with shear flow, serves as a convenient choice for benchmarking.

For this case, q = 2, (r/q)dq/dr = 1.0, R/LT = 9 at midradius, and a/R = 1/3. The Cyclone

case, which has been used in many other investigations, is also an obvious choice as a baseline;

we choose a slightly higher temperature gradient, however, because we are interested in

situations where flow shear stabilisation leads to substantially improved confinement. For

this Cyclone-like case, q = 1.4, (r/q)dq/dr = 0.8, R/LT = 8 at r/a = 0.5, and a/R = 0.36.

Circular concentric model equilibria are used for both simulations. The simulations were

run using an adiabatic electron model. In order to limit the flow amplitude at the inner and

outer simulation boundaries, while treating a reasonably broad turbulent region, > 100ρi,

the simulations were run at fairly small ρ∗ = 1/400, on an annular domain r ∈ [0.3, 0.83].

Noise was controlled using a Krook operator with damping rate 0.008cs/a, as desribed in

Ref. [5], but with toroidal flow conservation also enforced.

First, a set of linear simulations were run for the Cyclone case, with pure poloidal flows,

and it was found that a background flow with a shearing rate of 0.05cs/a is sufficient to

almost completely stabilise the system (fig. 1), although there is a small residual growth

rate of∼ 0.009cs/a. Strong linear supression with arbitrarily small values of flow shear would
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be predicted in flux tube simulations[6], because adding a small flow qualitatively changes

the nature of the linear spectrum, in much the same way as adding a small resistivity

fundamentally changes the nature of the ideal MHD spectrum. We find a somewhat less

dramatic, but still strong, stabilisation in this global analysis. Interestingly, the maximum

growthrate in these simulations occurs not for zero flow shear, but for small positive flow

shear: the profile shearing which results from the radial variation of the local mode frequency

ω(r) is exactly cancelled by the flow shear at this point. Secondly, a nonlinear scan of Cylone

cases were run with shearing rates [0,±0.025, ±0.05, ±0.10, ±0.12, ±0.15, ±0.2](a/cs). It

was necessary to start nonlinear simulations with large initial perturbations, as in ref. [4],

because the cases with large shear are marginally or completely linearly stable, and the

simulations are run over a relatively short timescale of [0, 800]a/cS. Substantial heat fluxes

are seen for shearing rates several times larger than the point where linear growth rates

are almost zero, so that there is a broad region of subcritical turbulence. The nonlinear

stabilisation by the sheared flow therefore cannot be directly explained by a reduction in

linear growthrates: quasilinear predictions would be expected to be problematic in plasmas

with shear flow.

The changes in radially averaged shearing rate during the simulations, which fall in the

range [−0.02, 0.03](cs/a), are much smaller than the range of shearing rates considered,

[−0.2, 0.2], so the conclusions on the effects of shearing rate remain the same whether we

use the initial or final shearing rates for comparisons. Fig. 1 shows the thermal diffusivities

in the simulation versus the shearing rate. Despite some scatter, the dependence of thermal

diffusivity on shearing rate can be well modelled by parabolas except for the highest shearing

rates where turbulence is supressed entirely. The turbulence is entirely supressed when the

shearing rate is |ωs| ∼ 0.8γITG or ∼ 1.0γITG for poloidal and toroidal flows respectively.

Ref. [4] also saw evidence of subcriticality for initial shearing rates close to the quench point,

where large perturbations were required to acheive sustained turbulence: this phenomenon is

more marked in our Cyclone simulations, which required large initial perturbations even for

relatively small shearing rates, ωs ≥ 0.05cs/a. For the simulations with substantial thermal

diffusivity and toroidal flows, the flux of parallel momentum Γ‖ is roughly proportional to

the product of the radial derivative of the parallel flow profile and the heat flux. The ratio

of the effective momentum diffusivity to the heat diffusivity, the Prandtl number, found by

linear fitting, is ∼ 0.4.
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We also ran simulations with relatively large shear-free rotation of 0.04cs and −0.04cs,

and found a diffusivity of 2.6 and 2.5χGB respectively, indicating that diffusivity is largely

independent of the flow rate over the range [−0.04, 0.04]cs. The maximum flow rate vE×B

in the sheared simulations is 0.04cs. We therefore do not expect the magnitude of the flow

to influence the diffusivity in the inner and outer parts of the sheared simulations.

For the STD case, a scan was conducted for shearing rates over the range

[−0.145, 0.145]cs/a with pure toroidal flows, and [−0.09, 0.09]cs/a with pure poloidal flows.

The diffusivities agree relatively well with the adiabatic electron cases in ref. [4] and ref. [7],

for either sign of shearing rate; the local simulations are expected to be insensitive to the

sign of the shearing rate for up-down symmetric equilibria, due to a symmetry of the local

gyrokinetic equations. Although we do not plot it here, the uncertainty due to turbulent

fluctuation is of the order of 20%. The range of shearing rates examined here is somewhat

smaller than those in refs. [4] and [7] in order to avoid excessively large flows near the in-

board and outboard edge of the annulus: to examine larger shearing rates we would need to

consider a smaller annulus of a larger plasma, nearer the local limit. The Prandtl number,

is around 0.5 (for the three cases with nonzero velocity shear), in rough agreement with [7],

although the scatter is too large to recover the dependence on shear.

Notably, both poloidal and toroidal shear flow allow complete turbulence stabilisation

in the Cyclone case, whereas in the STD case, toroidal shear flow does not substantially

suppress turbulence. In the Cyclone case, the toroidal shear flow required to produce a

substantial shear on the turbulent structures is considerably lower (due to lower q and

R/a), and the temperature gradient is relatively close to critical. This may explain why

the destabilising effects of parallel shear flow which is introduced when considering toroidal,

rather than poloidal, shear flows, is weaker in the Cyclone case.

Figures 3(a), and 3(b) show inward propagating bursts across the simulation domain for

positive shearing rates and outwards propagating bursts for positive shearing rates. This

can be quantitatively confirmed by considering 2D autocorrelation diagrams, as in ref. [8];

the dominant correlations along the lines δr = vδt, where v is the burst velocity, suggest

that most of the time variation in heat flux is associated with bursts. This is consistent

with the results and theory presented in ref. [8]. We also observe a shift in the diffusivity

profile as a function of shearing rate (Fig. 2), which may be due to a process which we call

‘turbulence convection’ in analogy with the ‘turbulence spreading’ proposed by others[9]: the
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FIG. 1: Diffusivity versus shearing rate for pure poloidal flow (large circles), and for pure toroidal

flows (squares), for the (a) Cyclone case and (b) Waltz standard case. In the left subplot, quadratic

fits of these points are shown (solid lines, extreme cases with complete stabilisation have been

omitted from the fit), with maximum ITG growth rate for these cases shown as a dashed line

(small circles). (colour online)

bursts carry information about turbulence levels across the minor radius, which may modify

the steady state fluxes that would be expected in a local picture. Given that bursts can

propagate across a large proportion of the turbulent region, simulation results in the centre

of the annulus may depend on boundary conditions, because the bursts could be generated

at the boundary. This is despite the active region being 150 gyroradii wide, comparable to

the radial extents used in typical flux tube calculations, and a sizeable proportion of the

width of the core in experiments like JET.

III. SIMULATIONS CONTAINING ZONE BOUNDARIES

Quasi-steady state turbulently generated flows tend to self-organise into a zig-zag struc-

ture, with alternating domains of roughly constant positive and negative poloidal flow shear.

To model a plasma contaning a boundary between two flow zones, we consider a ‘V-shaped’

flow profile, with two zones of opposite but equal flow shear, and set the interface between

the two zones at roughly mid-radius, as shown in figure 4. Here we have flow shear profiles
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FIG. 2: The mean position of the heat flux profile, < rΛ > / < Λ >, as a function of shearing rate.

A linear fit is show for comparison.

of the form

ω(r)E×B = −ωvsign(r − r0). (8)

First, we perform a linear stability analysis of the Cyclone test case with poloidal ‘V-shaped’

flows of varying amplitude, ωv, and at different values of temperature gradient. In linear sim-

ulations with V-shaped flow, the unstable mode is radially localised near the zone boundary;

the strong linear stabilisation resulting from homogeneous flow shear appears to be enough

to locally damp the mode away from this inhomogeneity. At low values of temperature

gradient (fig. 5) introducing flow shear reduces the growth rate. Note that the stabilisation

with flow shear depends strongly on the sign of the ‘V’, and that positive V-flows are much

less effective for stabilisation. For large enough negative V-profiles, and larger temperature

gradients, the plasma becomes more unstable with increasing shear, so that only a finite

‘window’ in flow shear is stable. At a certain temperature gradient ∼ 6.3, there is no longer
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(a) (b)

FIG. 3: Flux versus time and radius for the Cyclone-like simulations with background shear (a)

0.1a/cs and (b) −0.1a/cs.

any stable value of ωv. This should be contrasted with the situation for homogeneous shear

flows (see fig. 1(a)), where a shearing rate of 0.05cs/a is sufficient to almost completely

stabilise the flows at R/LT = 8.3, higher than any considered here.
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FIG. 4: Components of poloidal flow for simulations with an imposed V-shaped poloidal flow (a)

and toriodal flow (b) with ωv = 0.2. The initial profiles, and those at the end of the simulation are

shown as thin lines, and thick lines, respectively (colour online).

As a rough method to characterise the interaction of these linear modes with the poloidal

flow, we consider the profiles of radial gyrocentre flux Γ. This gyroflux induces a prompt

modification of the axisymmetric radial electric field. The zonal electric field is also influ-

enced by a radial redistribution which occurs on the bounce time due to the parallel velocity
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dependence of the perturbation[10], which we do not analyse. In figure 6 we plot Γ nor-

malised to the maximum heat flux for the linear eigenmodes of the R/LT = 6.94 case. In

each case the gyrodensity perturbation produced by the flux would act to reduce the flow

at the zone boundary. By far the strongest normalised gyrocentre flux occurs for the case

with large positive V-profile.

The fact that there are stable equilibria with flow above the zero-flow stability limit can

be considered a manifestation of the Dimits shift. The temperature gradient where all flow

states are unstable (between R/Lt = 6.25 and 6.94) is roughly equal to the nonlinear critical

gradient in Ref. [11]. An analogous linear stability analysis was performed in Ref. [12] for

a sinusoidal flow profile, to determine the range of existence of such states.
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FIG. 5: ITG growth rate versus imposed flow shear amplitude for ‘V-shaped’ flow profile. (colour

online)

A nonlinear scan is then performed to further investigate shear flow supression, with V

shaped flows, at R/LT0 = 8.0. In these simulations, in contrast to the simulations with
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FIG. 6: Gyrocentre flux versus radius, normalised to maximum heat flux, for V-shaped profiles,

with R/LT = 6.94. (colour online)

homogeneous shear, the overall flow profile undergoes substantial time evolution when the

initial V shaped flow is strongly positive: the turbulently generated flows act to reduce the

peak flow in this case. To quantify this reduction in global shear, we measure the overall

E × B shearing rate in the left (ωl) and right (ωr) half of the ‘V’, and define an large-scale

shearing rate ω∗
ExB as ωl/2 − ωr/2. At the start of the simulation, |ω∗

ExB| is equal to the

mean absolute value of the shearing rate. We plot the diffusivity versus initial and final

ω∗
ExB in fig. 7(a). Unlike in the simulations of the previous section, there is a marked

tendancy for the ω∗
ExB to decrease. For large enough initial V-shaped flow, the final ω∗

ExB

decreases to roughly 0.12cs/a, indicating that there is a saturation mechanism acting to limit

the global shear. For these cases, ω∗
ExB stabilises an its final value about 300a/cs into the

nonlinear period. Even for ω∗
ExB < 0.12cs/a, the value of ω∗

ExB decreases somewhat during

the simulation, so that for negative V-flows, the absolute shear actually increases. It is well
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known from previous gyrokinetic simulations that small-scale zonal flow shear to saturate

at ∼ 0.2cs/a: this also occurs for positive V-shaped flows on long length scales.

The late time diffusivity is not strongly dependent on the sign of the flow profile, but

only the magnitude of the late time ω∗
ExB. The average late time heat flux both in these

simulations and those of the previous section is well predicted by the late time |ω∗
ExB| (the

parabolic fit used in 1 is reproduced in 7 for comparison). However, this is no longer the

case when the early time behaviour is considered. The simulations with large initial positive

V-flow, show large diffusivity in the early stages, 2−3χGB, as the flow profile evolves towards

saturation, unlike the simulations with large negative V-flows, which show almost complete

turbulence supression. To accurately quantify the diffusivity levels for large positive V-flows,

we would need to artificially maintain the global flow profile: nevertheless, we conclude that

positive V-flows are less effective for turbulence supression than negative V-flows.

The complete supression of late-time turbulence seen at the largest negative ωv is not

surprising given the very strong (but not complete) linear stabilisation at R/LT = 6.94. At

positive ωv, the linear theory suggests only a small supression of turbulence at the zone-

boundary. This is broadly consistent with the high levels of turbulence seen in the nonlinear

simulations with large positive ωv at early time. Unlike in the case with homogenous shear

flows, the regimes of linear and nonlinear stability coincide moderately well. The much

stronger flow profile evolution seen for cases with large positive ωv is also consistent with

the large normalised gyrodensity flux in linear modes at large positive ωv (assuming that

ratio between heat flux and gyrodensity flux stays roughly constant in the nonlinear regime).

The stronger linear stability, and lower diffusivity for negative ωv provides a plausible

explanation for the correlation between Er and the perturbed temperature gradient δ(R/LT )

seen in earlier ITG simulations[13, 14]. Figure 8 shows the temperature gradient fluctuation

and Er profile averaged over 60a/cs in an earlier CYCLONE-type simulation with ρ∗ =

1/280, and no heat source. We can clearly see that the temperature gradient profile and the

Er profile are correlated on short scales but not exactly proportional: the strong change in

temperature gradient at the edge of the turbulent region is not really reflected in Er. Radial

profiles of temperature gradient and Er show corrugations on the zonal flow wavelength, with

lower R/LT at negative zone boundaries, and higher R/LT at positive zone boundaries; lower

temperature gradient compensates for the larger diffusivity in order that the heat flux be

radially uniform.
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FIG. 7: Diffusivity versus large-scale shearing rate, ω∗
ExB, for simulations with an imposed V-

shaped poloidal flow (a) and toriodal flow (b). Diamonds show initial ω∗
ExB and squares show

ω∗
ExB averaged over the last half of the simulation. The parabola is the fit from 1, where a

homogeneous flow was imposed. (colour online)

Other authors have suggested that the sum of the diamagnetic and E × B flow is dy-

namically conserved even in collisionless simulations[13], or found similar correlations during

bursts in weakly collisional simulations and ascribed them to radial force balance[14]. How-

ever, it is clear from figure 8 that the sum of the diamagnetic (∝ dT/dr) and E × B flows

is not conserved, and we know of no reason to expect this quantity to be conserved except

on the collision timescale.

An important difference between the physics with positive and negative V-shaped flow

is the propagation of bursts in the system. Again, the burst direction depends on the local

sign of the flow shear, so bursts travel outwards from (inwards towards) the zone boundary

for positive (negative) V-flows. Dynamics at the positive V-boundary might therefore be

expected to have a strong nonlocal effect on the plasma.

When V-shaped toroidal flows are specified, the overall dynamics are similar to the sim-

ulations with V-shaped poloidal flows. The Er profile evolution is similar, as is the thermal

transport level. We were able to perform a wider scan in initial shearing rate with pure

toroidal flows than poloidal flows, because the restriction that the toroidal flow be a small

fraction of the sound speed is less strict that the requirement for poloidal flows not to ex-

cessively distort the background distribution. One complication that arises when V-shaped
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FIG. 8: Profiles of temperature gradient fluctuations (thin line) and the radial derivative of the

zonal potential (thick line) versus radius, averaged over the last 60a/cs of an ITG simulation

without a heat source. (colour online)

toroidal flows are added is that the reconstructed temperature gradient profile becomes

somewhat sensitive to the input parameter ωv, with a bump or hole appearing at the re-

versal point (this effect is proportional to ρ∗). For these simulations, we turn off the heat

source inside the turbulent region [0.4, 0.7], to allow the temperature profile to relax to a

self-consistent steady state: the localised inhomogeneity in the temperature profile is rapidly

removed, well before substantial changes to the flow profile occur. A side-effect is that the

temperature gradient profiles are less well controlled, so that the simulations with larger

diffusivities tend to have lower local temperature gradients.

For pure toroidal flows (Fig. 7(b)), the transport does almost completely stabilise for

sufficiently strong positive V-flows, at about 1.5 times the level needed for negative V-flows.

Another important feature is that the dynamics of E×B and parallel flows are qualitatively
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quite different. The E×B flow evolution is similar to that in the pure poloidal flow cases, so

that for large positive V-flow, ωE×B decreases to the saturation level, but otherwise remains

roughly constant. The toroidal flow evolution, on the other hand, looks like a simple diffusion

process dependent on the turbulence level, with the originally V-shaped parallel flow profile

itself evolving to a smooth hump in cases where there is a substantial turbulence level (Figure

4(b) is typical).

It would be difficult to explain these global flow dynamics using a 1D transport equation,

where poloidal and toroidal flow dynamics are determined via momentum fluxes dependent

on the local gradients. For pure poloidal flows, there is little global flow reorganisation in the

system with homogeneous shear flows. If we used the homogeneous shear simulations as a

basis for a model of flow dynamics, we would also expect to see little poloidal flow evolution in

the simulations with V-shaped flows, but we do see a strong flow reorganisation. In both pure

toroidal and pure poloidal flow simulations, the effective (toroidal or poloidal) momentum

diffusivity is strongly dependent on the sign of the flow profile, which is surprising, because

flux-tube models of up-down symmetric equilibria are symmetric with respect to the sign of

the shearing rate.

IV. DISCUSSION AND CONCLUSIONS

We have modelled the effects of two different forms of flow profiles on turbulence levels,

and examined the time evolution of the flow profile. For homogeneous flow shear pro-

files, both toroidal and poloidal flow can competely suppress turbulence for some parameter

choices, well above the Dimits shift region. Little E × B flow profile evolution is seen on

the timescale of the simulation for homogeneous flows. On the other hand, for the non-

homogeneous flow profiles, the E × B component of positive V-shaped flow profiles can

rapidly decay to a saturated state.

The results help to explain why small-scale zonal flows and large scale homogeneous shear

flows have different impacts on turbulence. Inhomogeneities, and, in particular, zonal flow

boundaries, play a crucial role and can modify the turbulent dynamics over a substantial

region. For the V shaped profiles, dynamics over a simulation domain ∼ 150 gyroradii wide

is critically modified when a flow shear boundary is introduced. The zone boundaries appear

to control poloidal flow reorganisation in these systems, and induce the saturation in E×B
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shear flow level seen in typical ITG simulations. The poloidal flow does not saturate in

simulations with homogeneous imposed fields, where no zone boundaries are present.

In addition, the thermal and toroidal momentum fluxes depend not only on the magnitude

of the local E × B shearing rate, but on the overall flow profile over a wide region. The

presence of strong nonlocal effects is correlated with the presence of bursts which can traverse

a wide radial extent in strongly sheared plasmas.

This allows some insight into the effects of more general flow profiles which would be

relevant to experiments, which are not generally homogeneous. For example, flow pro-

files associated with transport barriers have relatively short wavelength features. Models

of transport barriers using homogeneous shear flows might predict stabilisation for strong

enough shear, but the saturation effect shown here may limit the shearing rate and prevent

turbulence supression.
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