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Abstract

State Space Models (SSM) is a MATLAB toolbox for time series analysis by state
space methods. The software features fully interactive construction and combination of
models, with support for univariate and multivariate models, complex time-varying (dy-
namic) models, non-Gaussian models, and various standard models such as ARIMA and
structural time-series models. The software includes standard functions for Kalman fil-
tering and smoothing, simulation smoothing, likelihood evaluation, parameter estimation,
signal extraction and forecasting, with incorporation of exact initialization for filters and
smoothers, and support for missing observations and multiple time series input with com-
mon analysis structure. The software also includes implementations of TRAMO model
selection and Hillmer-Tiao decomposition for ARIMA models. The software will provide
a general toolbox for time series analysis on the MATLAB platform, allowing users to
take advantage of its readily available graph plotting and general matrix computation
capabilities.

Keywords: ARMA model, Kalman filter, state space methods, unobserved components, soft-
ware tools, TRAMO/SEATS.

1. Introduction

State Space Models (SSM) is a MATLAB (The MathWorks, Inc. 2007) toolbox for time series
analysis using general state space models and the Kalman filter (Durbin and Koopman 2001).
The goal of this software package is to provide users with an intuitive, convenient and efficient
way to do general time series modeling within the state space framework. Specifically, it seeks
to provide users with easy construction and combination of arbitrary models without having
to explicitly define every component of the model, and to maximize transparency in their
data analysis usage so no special consideration is needed for any individual model. This is
achieved through the unification of all state space models and their extension to non-Gaussian
and nonlinear special cases (those which can be linearized). The user creation of custom mod-
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els is also implemented to be as general, flexible and efficient as possible. Thus, there are
often multiple ways of defining a single model and choices as to the parametrization versus
initialization and to how the model update functions are implemented. Stock model compo-
nents are also provided to ease user extension to existing predefined models. Functions that
implement standard algorithms such as the Kalman filter and state smoother, log likelihood
calculation and parameter estimation will work across all models, including any user defined
custom models.

The state space model manipulation procedures are implemented through object-oriented
programming primitives provided by MATLAB and classes in the toolbox are defined to con-
form to MATLAB conventions whenever possible. The standard Kalman filter-based state
space algorithms are implemented in C. Thus the toolbox combines efficient state space algo-
rithms (by allowing to run C functions in MATLAB) with full integration into the MATLAB
computing environment. Model building is intuitive and model objects behave like standard
MATLAB objects, whereas application of state space algorithms to these objects is as fast as
comparable programs in C code. Data exploration and custom model building using SSM is
also greatly facilitated by MATLAB’s interactive environment.

The result is an integrated toolbox with support for general state space models and standard
state space algorithms, complemented by the built-in matrix computation and graphic plotting
capabilities of MATLAB.

1.1. The state space model equations

This section presents a summary of the basic definition of models supported by SSM. Cur-
rently SSM implements the Kalman filter and related algorithms for model and state estima-
tion, hence non-Gaussian or nonlinear models need to be approximated by linear Gaussian
models prior to or during estimation. However the approximation is done automatically and
seamlessly by the respective routines, even for user-defined non-Gaussian or nonlinear models.

The following notation for various sequences will be used throughout the paper:

y: px1 Observation sequence

et px1 Observation disturbance (unobserved)
a; mx1 State sequence (unobserved)

ne 7T x1 State disturbance (unobserved)

Linear Gaussian models

SSM supports linear Gaussian state space models in the form

Yr = Ztat + Et, Et ~ N(O, Ht),
iyl = €t + Ttat + Rt??t, e ~ N(Oa Qt)v (1)
o] N(al,Pl), tzl,...,n.

Thus the matrices Z;, ¢¢, T3, Ry, Hy, Q¢, a1, Py are required to define a linear Gaussian state
space model. For details of these matrices refer to Commandeur et al. (2011). The matrices
and their dimensions are listed here for reference:



Journal of Statistical Software

Z;y pxm State to observation transform matrix
¢t mx1 State update constant

T m x m State update transform matrix

R, m xr State disturbance transform matrix
H; pxp Observation disturbance variance

Q¢ rXxXr State disturbance variance

ar  m x 1 Initial state mean

P, m xm Initial state variance

Non-Gaussian models

SSM supports non-Gaussian state space models in the form

ye ~ pyelb), 0y = Zioy,
a1 = ¢+ Tyay + Ryme, e ~ Qp = p(my), (2)
[0 % N(a1,P1), t:1,...,n.

The sequence 6, is the signal and @; is a non-Gaussian distribution (e.g., heavy-tailed dis-
tribution). The non-Gaussian observation disturbance can take two forms: an exponential
family distribution

Hy = p(yi/0:) = exp [ytTet = bi(0r) + cr(yr) |, —00 < b < o0, (3)
or a non-Gaussian additive noise
Ye = Op + e, e ~ Hy = p(er). (4)
With model combination it is also possible for Hy and @Q; to be a combination of Gaussian
distributions (represented by variance matrices) and various non-Gaussian distributions.
Nonlinear models

SSM supports nonlinear state space models in the form

v = Zi(ay) + ey, et ~ N (0, Hy),
apr = ¢+ Tilay) + Reme, me ~ N(0,Qy), (5)
[0 % e N(al,Pl), tzl,...,n.

Z; and T} are functions that map m x 1 vectors to p x 1 and m x 1 vectors respectively, and
both functions should possess first derivatives. With model combination it is also possible for
Zy and T} to be a combination of linear functions (matrices) and nonlinear functions.

1.2. Getting started

The easiest and most frequent way to start using SSM is by constructing predefined models,
as opposed to creating a model from scratch. This section presents some examples of simple
time series analysis using predefined models; the complete list of available predefined models
can be found in Appendix A.

Model construction

To create an instance of a predefined model, call the functions ssm_* where the wildcard is
the short name for the model, with arguments as necessary. For example:
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e model ssm_11m creates a local level model.

e model = ssm_arma(p, q) creates an ARMA(p, ¢) model.

The resulting variable model is a SSMODEL object and can be displayed just like any other
MATLAB variables. To set or change the model parameters, use model.param, which is a
row vector that behaves like a MATLAB matrix except its size cannot be changed. The
initial conditions usually defaults to exact diffuse initialization, where model.al is zero, and
model.P1 is oo on the diagonals, but can likewise be changed. Models can be combined by
horizontal concatenation, where only the observation disturbance model of the first one will
be retained. For example, N models

meoy) =20 + e, (6)
m: y” =200 +e?, (7)
) ®

can be combined by horizontal concatenation M = [mj mo - -+ my] into
W = 200 1 200D 4 20 4 ) o)

More details on the class SSMODEL can be found in Peng and Aston (2007).

Model and state estimation

With the model created, estimation can be performed. SSM expects the data y to be a matrix
of dimensions p x n, where n is the data size (or time duration). The model parameters
are estimated by maximum likelihood, the SSMODEL class method estimate performs the
estimation. For example:

e modell = estimate(y, modelO) estimates the model and stores the result in modell,
where the parameter values of modelO is used as initial value.

e [modell logl] = estimate(y, modelO, psiO, [], optnamel,
optvaluel, optname2, optvalue2, ...) estimatesthe model with psiO as the initial
parameters using option settings specified with option value pairs, and returns the
resulting model and loglikelihood.

After the model is estimated, state estimation can be performed, this is done by the SS-
MODEL class method kalman and statesmo, which is the Kalman filter and state smoother
respectively.

e [a P] = kalman(y, model) applies the Kalman filter on y and returns the one-step-
ahead state prediction and variance.

e [alphahat V] = statesmo(y, model) applies the state smoother on y and returns the
expected state mean and variance.



Journal of Statistical Software 5

The filtered and smoothed state sequences a and alphahat are m X n+1 and m X n matrices
respectively, and the filtered and smoothed state variance sequences P and V are m X m X n+1
and m X m X n matrices respectively, except if m = 1, in which case they are squeezed and
transposed. The complete list of data analysis functions can be found in Appendix B.

1.3. Toolbox structure and implementation

SSM is composed of two parts, the core C library of state space algorithms (built on top of
LAPACK Anderson et al. 1999) and the MATLAB model object library. This section provides
a brief overview of the toolbox, for complete details as well as usage particulars refer to the
State Space Models manual (Peng and Aston 2007).

C state space algorithms library

The core C library has functions for Kalman filtering and smoothing, with support for exact
diffuse initialization, missing values and dynamic observation vector length (p; varies through
time), and unconditional sampling from state space models. A set of MATLAB C mex functions
are built on top of the C library implementing the Kalman filter, state smoother, disturbance
smoother, fast state smoother, simulation smoother, loglikelihood and gradient calculation,
unconditional sampling, signal extraction and filtering and smoothing weights calculation
(support for dynamic p; is suppressed). The C source files are stored in the csrc subdirectory,
and can all be automatically compiled by running the script mexall.m.

MATLAB object library

The MATLAB object library consists of five classes SSMAT, SSDIST, SSFUNC, SSPARAM and
SSMODEL.

The class SSMAT represents a state space matrix, with elements marked as variable (dependent
on model parameters) and/or dynamic (dependent on time). SSMAT objects are designed to
mimic MATLAB matrices and, in particular, concatenation and addition are supported.

The classes SSDIST and SSFUNC are derived from SSMAT and represent non-Gaussian dis-
tributions and nonlinear functions, respectively. Because SSM currently handles both non-
Gaussian and nonlinear model elements by linear approximation of the loglikelihood function,
derivation of these classes from state space matrices is natural. User definition of custom
SSDIST objects can be a bit involved, as functions that calculate the approximating (het-
eroscedastic) Gaussian variances from observation data and the smoothed state, and the
(non-Gaussian) loglikelihood from estimation innovation, are required. But once these are
defined, the model can then be used in all SSM functions without further coding. User
definition of SSFUNC requires the nonlinear function itself and its first derivative.

The class SSPARAM manages the model parameters, including storing and transformation of
the values.

The class SSMODEL represents a state space model and embeds all the previous classes. SSMODEL
objects can be horizontally concatenated to form a new model with the sum of the observation
vectors from the previous models as its observation. Block diagonal concatenation leads
to a model with the concatenation of observation vectors from the previous models as the
observation. This new model can then be further horizontally concatenated, or dependence
between observation elements can be introduced through changing the observation or state
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disturbance.

The class methods of SSMODEL provides the glue that joins the state space algorithms (ssa)
mex functions with the object library. Overhead is minimized by only passing the resolved
state space matrices Hy, Zy, etc. to the mex functions (in other words, the mex functions have
no knowledge of model parameters). Parameter estimation is achieved through a set of update
functions that transform parameters to model matrices, which are all stored in the SSMODEL
object level for efficiency and flexibility, since often multiple model elements are dependent
on parameter values through the same mechanism, storing the update functions in individ-
ual SSMATs leads to the need for either messy global variables or duplicated computation.
The disadvantage for this solution is increased complexity in defining custom models. Re-
ducing this complexity will be the objective of future work. The parameter estimation class
method itself is implemented in MATLAB and makes use of existing optimization routines
(e.g., fminsearch), and calls the mex function kalman_int as part of its operation.

A set of functions for the construction of predefined objects are provided (see Appendix A for
a list of predefined models). The functions ssm_* returns predefined SSMODEL objects for var-
ious models (see the appendix for the complete list of predefined models). Auxiliary functions
mat_*, fun_* and dist_x* constructs predefined individual MATLAB matrices, update func-
tions and SSDIST objects respectively, and can be variously combined for more convenient
and flexible construction of custom models.

1.4. Paper overview

The rest of the article proceeds as follows. In Section 2, as in all the papers in this special
volume, the local level model will be examined and used to analyze the Nile river data. In
the remaining sections, many data analysis examples are conducted, based on the data in
the book by Durbin and Koopman (2001), to facilitate easy comparison and understanding
of the methods used here. In the interests of brevity, most of the model descriptions are
either omitted or only cursorily introduced, as further details can be found either in Durbin
and Koopman (2001) or in the introductory paper of this volume (Commandeur et al. 2011).
In addition, all the examples (plus others as well) are included as demos in the software
package. Specifically, Section 3 contains a univariate analysis of the road accident data from
(Harvey and Durbin 1986), while Section 4 contains a bivariate analysis. Section 5 contains an
analysis using ARMA models, while Section 6 contains an analysis using cubic spline methods.
Section 7 reviews an application of the software to seasonal adjustment using ARIMA models.
Section 8 shows how the software extends to non-Gaussian models.

2. Local level models — The Nile river data

In this example the Nile data (as seen in the other papers of this volume) will be analyzed
using the local level model as described by Harvey (1989). Briefly, in line with the description
given in Commandeur et al. (2011), the equations for the local level model are

Yyt = /u't+€t7 Et NN<O7O—§>7

parr = e+ & ftNN(O,Ug)y (10)

Code for the model construction and estimation for the data y are as follows:
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Figure 1: Nile data filtered state sequence and standardized prediction errors.

1lm
[logL fvar]

estimate(y, ssm_11lm, [10000 5000]);
loglik(y, 11lm);

When the model is parameterized such that ¢ = log([oc o¢]), the maximum likelihood pa-
rameter estimates are ¢ = [4.8112 3.6462] and asymptotic s.e. [0.1041 0.4354] respectively,
calculated through numerical derivatives of the likelihood. This yields parameter estimates of
o2 = 15098.4, og = 1469.1, very close to those seen in Durbin and Koopman (2001). The fol-
lowing code obtains the filtered and smoothed state sequences and its 90% confidence interval,
which are shown in Figures 1-2:

[a P v F] = kalman(y, 11lm);

aconf90 = [a+1.645*sqrt(P); a-1.645*sqrt(P)];

[alphahat V r N] = statesmo(y, 1llm);

alphaconf90 = [alphahat+1.645*sqrt(V); alphahat-1.645*sqrt(V)];

Figure 2 also shows the forecast and confidence interval obtained by the Kalman filter using
the following code:

yforc = [y repmat(NaN, 1, 9)];
laforc Pforc vforc Fforc] = kalman(yforc, 1lm);

where repmat () is a standard MATLAB function. The auxiliary residuals (Figure 3) can be
calculated directly from the smoothed disturbances, which can be found using

[epshat etahat epsvarhat etavarhat] = disturbsmo(y, 1lm);

3. Univariate analysis

In this and the following example, data on road accidents in Great Britain (Harvey and
Durbin 1986) is analyzed using structural time series models following Durbin and Koopman
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(2001, Section 9.2). The purpose of the analysis is to assess the effect of seat belt laws on road
accident casualties, with individual monthly figures for drivers, front seat passengers and rear
seat passengers. The monthly price of petrol and average number of kilometers traveled will
be used as regression variables. The data is from January 1969 to December 1984.

The drivers series will be analyzed with a univariate structural time series model, which con-
sists of local level component i, trigonometric seasonal component -, regression component
(on price of petrol) and intervention component (introduction of seat belt law) Sz;. The

model equation is

Y = Wt + v + By + ey,

(11)

where ¢; is the observation noise. The following code example constructs this model:

1vl

seas

ssm_11m;

ssm_seasonal ('trigl', 12);
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Figure 4: Driver casualties estimated by basic structural time series model.

intv = ssm_intv(n, 'step', 170);

reg = ssm_reg(petrol, 'price of petrol');

bstsm = [lvl seas intv regl;

bstsm.name = 'Basic structural time series model';
bstsm.param = [10 0.1 0.001];

With the model constructed, estimation can proceed with the code:

[bstsm logl] = estimate(y, bstsm);
[alphahat V] = statesmo(y, bstsm);
irr = disturbsmo(y, bstsm);

ycom = signal (alphahat, bstsm);
ylvl = sum(ycom([1 3 4], :), 1);
yseas = ycom(2, :);

The estimated model parameters are [0.0037862 0.00026768 1.162e-006], which can be
obtained by displaying bstsm.param, the loglikelihood is 175.7790. State and disturbance
smoothing is performed with the estimated model, and the smoothed state is transformed into
signal components by signal. Because p = 1, the output ycom is M x n, where M is the number
of signal components. The level, intervention and regression are summed as the total data
level, separating seasonal influence. Using MATLAB graphic functions, the individual signal
components and data are shown in Figure 4. The coefficients for intervention and regression
are defined as part of the state vector in this model, so they can be obtained from the last
two elements of the smoothed state vector (due to the order of component concatenation)
at the last time point. The coefficient for the intervention is alphahat (13, n) = -0.23773,
and the coefficient for the regression (price of petrol) is alphahat(14, n) = -0.2914. In
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this way diagnostics of these coefficient estimates can also be obtained by the smoothed state
variance V.

4. Bivariate analysis

The front seat passenger and rear seat passenger series (y2) will be analyzed together using
bivariate structural time series model following Durbin and Koopman (2001, Section 9.3),
with components as before. Specifically, separate level and seasonal components are defined
for both series, but the disturbances are assumed to be correlated. To reduce the number
of parameters estimated the seasonal component is assumed to be fixed, so that the total
number of parameters is six. We also include regression on the price of petrol (petrol) and
kilometers traveled (km), and intervention for only the first series, since the seat belt law only
effects the front seat passengers. The following is the model construction code:

bilvl = ssm_mvllm(2);

biseas = ssm_mvseasonal(2, [], 'trig fixed', 12);
biintv = ssm_mvintv(2, n, {'step' 'null'}, 170);

bireg = ssm_mvreg(2, [petrol; km]);

bistsm = [bilvl biseas biintv bireg];

bistsm.name = 'Bivariate structural time series model';

The model is then estimated with carefully chosen initial values, and state smoothing and
signal extraction proceeds as before:

[bistsm logl] = estimate(y2, bistsm,
[0.0054 0.0086 0.0045 0.00027 0.00024 0.00023]);
[alphahat V] = statesmo(y2, bistsm);
y2com = signal(alphahat, bistsm);
y21vl = sum(y2com(:,:, [1 3 4]), 3);
y2seas = y2com(:,:, 2);

When p > 1 the output from signal is of dimension p X n x M, where M is the number of
components. The level, regression and intervention are treated as one component of data
level as before, separated from the seasonal component. The components estimated for the
two series is shown in Figure 5. The intervention coefficient for the front passenger series is
obtained by alphahat (25, n) = -0.30025, the next four elements are the coefficients of the
regression of the two series on the price of petrol and kilometers traveled.

5. ARMA models

In this example the difference of the number of users logged on an internet server (Makridakis
et al. 1998) is analyzed by ARMA models (Commandeur et al. 2011, Section 4) following
Durbin and Koopman (2001, Section 9.4), and model selection via BIC and missing data
analysis are demonstrated. To select an appropriate ARMA (p, ¢) model for the data various
values for p and ¢ are tried, and the BIC of the estimated model for each is recorded, the
model with the lowest BIC value is chosen.
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Figure 5: Passenger casualties estimated by bivariate structural time series model.

q=0 qg=1 q=2 q=3 q=4 q=5
p=01]6.3999 5.6060 5.3299 5.3601 5.4189 5.3984
p=115.3983 5.2736 5.3195 5.3288 5.3603 5.3985
p=2 153532 5.3199 5.3629 5.3675 5.3970 5.4436
p=3 152765 5.3224 5.3714 5.4166 5.4525 5.4909
p=4 153223 5.3692 5.4142 5.4539 5.4805 5.4915
p=25 153689 5.4124 5.4617 5.5288 5.5364 5.5871

Table 1: BIC values of ARMA(p, q) models for users logged on an internet server.

for p=0:5, forq=0:5
larma logL output] = estimate(y, ssm_arma(p, q), 0.1);
BIC(p+1, g+1) = output.BIC;

end, end

[m i] = min(BIC(:));

arma = estimate(y, ssm_arma(mod(i-1, 6), floor((i-1)/6)), 0.1);

The BIC values obtained for each model are shown in Table 1. The model with the lowest
BIC is ARMA(1,1), second lowest is ARMA(3,0), and the former model is therefore chosen
for subsequent analysis.

Next missing data is simulated by setting some time points to NaN, model and state estimation
can still proceed normally with missing data present.

y([6 16 26 36 46 56 66 72 73 74 75 76 86 96]) = NaN;
arma = estimate(y, arma, 0.1);
yf = signal(kalman(y, arma), arma);

Forecasting is equivalent to treating future data as missing, thus the data set y is appended

11
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forecast

m data
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Figure 6: Forecast using ARMA(1, 1) model with 50% confidence interval.

with as many NaN values as the steps ahead to forecast. Using the previous estimated
ARMA(1,1) model the Kalman filter will then effectively predict future data points.

[a P v F] = kalman([y repmat(NaN, 1, 20)], arma);
yf = signal(a(:, 1:end-1), arma);
conf50 = 0.675xrealsqrt(F); conf50(1:n) = NaN;

The plot of the forecast and its confidence interval is shown in Figure 6. Note that if the
Kalman filter is replaced with the state smoother, the forecasted values will still be the same.

6. Cubic spline smoothing

The general state space formulation can also be used to do cubic spline smoothing (Durbin
and Koopman 2001, Sections 3.11 and 9.5), by putting the cubic spline into an equivalent
state space form, and accounting for the continuous nature of such smoothing procedures.
The discrete state space representation of the cubic spline model is given by

y = aptep, er ~ N(0,02),

= 204 — o1+ G, G~ N(0,02/X),A>0 (12)

Q41
Here the continuous acceleration data of a simulated motorcycle accident (Silverman 1985) is
smoothed by the cubic spline model,

y(t) = wplt) +ei e ~N(0,02), i=1,...,n

e = (0) +v(0)t + o¢ fg w(s)ds, 0<t<T (13)
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Spline and 5% confidence intervals

Figure 7: Cubic spline smoothing of motorcycle acceleration data.

and with A\ = =5. The continuous cubic spline model is predefined in the software:

J\qm‘mqw

spline = estimate(y, ssm_spline(delta), [1 0.1]);
[alphahat V] = statesmo(y, spline);

conf95 = squeeze(1l.96*realsqrt(V(1, 1, :)))';
[eps eta epsvar] = disturbsmo(y, spline);

where delta is the distance between the observations y, not necessarily regularly spaced. The
smoothed data and standardized irregular are plotted and shown in Figure 7.

It is seen from Figure 7 that the irregular may be heteroscedastic, an easy ad hoc solution
is to model the changing variance of the irregular by a continuous version of the local level
model. Assume the irregular variance is O'?h? at time point ¢t and h; = 1, then we model the
absolute value of the smoothed irregular abs (eps) with h; as its level. As defined in Harvey
and Koopman (2000), the continuous local level model with level h; needs to be constructed
from scratch.!

contllm = ssmodel('', 'continuous local level',

0, 1, 1, 1, ssmat(0, [], true, zeros(l, n), true),

'Qd', {@(X) exp(2#X)*delta}, {[]}, ssparam({'zeta var'}, '1/2 log'));
contllm = [ssm_gaussian contllm];
alphahat = statesmo(abs(eps), estimate(abs(eps), contllm, [1 0.1]));
h2 = (alphahat/alphahat(1))."2;

The following code calls more advanced forms of the SSM class constructors and MATLAB anonymous
functions, the interested reader can refer to the SSM Manual (Peng and Aston 2007) or the MATLAB docu-
mentation for more details.

13
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Spline and 95% confidence intervals

Figure 8: Cubic spline smoothing of motorcycle acceleration data with heteroscedastic noise.

h2 is then the relative magnitude of the noise variance h? at each time point, which can be
used to construct a custom dynamic observation noise model as follows:

hetnoise = ssmodel('', 'Heteroscedastic noise',
ssmat (0, [], true, zeros(l, n), true), zeros(l, 0), [I, 01, 0O, ...
'HA', {@(X) exp(2*X)*h2}, {[1}, ssparam({'epsilon var'’}, '1/2 log'));
hetspline = estimate(y, [hetnoise spline], [1 0.1]);
[alphahat V] = statesmo(y, hetspline);
conf95 = squeeze(1l.96*realsqrt(V(1l, 1, :)))';
[eps eta epsvar] = disturbsmo(y, hetspline);

The smoothed data and standardized irregular with heteroscedastic assumption is shown in
Figure 8, where it is seen that the confidence interval shrank, especially at the start and end
of the series, and the irregular is slightly more uniform.

In summary the motorcycle series is first modeled by a cubic spline model with Gaussian
irregular assumption, then the smoothed irregular magnitude itself is modelled with a local
level model. Using the irregular level estimated at each time point as the relative scale of
irregular variance, a new heteroscedastic irregular continuous time model is constructed with
the estimated level built-in, and plugged into the cubic spline model to obtain new estimates
for the motorcycle series.

7. Hillmer-Tiao decomposition

As an example of extensions to the SSM object library, TRAMO model selection (Gémez and
Maravall 2001a) and Hillmer-Tiao decomposition for ARIMA type models as used in SEATS
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(G6émez and Maravall 2001b) are implemented. These ideas are widely used as part of the
TRAMO/SEATS seasonal adjustment framework. The functions implemented here either
take SSMODEL objects as arguments, or return SSMODEL objects.

In this example seasonal adjustment is performed by the Hillmer-Tiao decomposition (Hillmer
and Tiao 1982) of airline models, a particular type of regComponent model (see Bell (2011) in
this volume for a more in depth discussion of RegComponent models). Briefly, The ARIMA
Model Based (AMB) decomposition for the airline model with seasonal period s, can be
expressed in the following way using the decomposition of Hillmer and Tiao (1982)

U(B)St == QS(B)wt
(1-B)’Ty = 0r(B)n
I, = &t

where U(B) = (1+ B+ ...+ B*1) and wy, n, ¢ are independent white noise processes and
ytZSt—i-Tt-i-It.

Here By; = y;—1, with S; being the seasonal component, 7; the trend and I; the irregular
component, and 0g(B) and 6rB are seasonal and trend MA components, respectively. In
order to define a unique solution (which may or may not exist) for g(B) and 6p(B), the
ARIMA component parameters, in terms of the parameters of the original airline model,

(1-B)(1—B%)y = (1—0B)(1— OB%)s, & ~ N(0,0?) (14)

with MA parameter 6, seasonal MA parameter ©, and variance o2, the restriction is taken
that the pseudo-spectral densities of the seasonal and trend components have a minimum
of zero (in line with the admissible decompositions of Hillmer and Tiao 1982). When this
condition cannot be met without resulting in a negative variance for I;, the decomposition is
said to be inadmissible.

The data (manufacturing and reproducing magnetic and optical media, US Census Bureau)
is fitted with the airline model, then the estimated model is Hillmer-Tiao decomposed into an
ARIMA components model with trend and seasonal components. The same is done for the
Frequency Specific ARIMA model (Aston et al. 2007), also known as the generalized airline
model, and the seasonal adjustment results are compared. The following are the code to
perform seasonal adjustment with the airline model:

air = estimate(y, ssm_airline, 0.1);
aircom = ssmhtd(air);

ycom = signal(statesmo(y, aircom), aircom);
airseas = ycom(2, :);

aircom is the decomposed ARIMA components model corresponding to the estimated airline
model, and airseas is the seasonal component, which will be subtracted out of the data y to
obtain the seasonal adjusted series. ssmhtd automatically decompose ARIMA type models
into trend, seasonal and irregular components, plus any extra MA components as permissible,
which typically result from sARIMA models other than the airline model.

The same seasonal adjustment procedure is then done with the generalized airline model,
using parameter estimates from the airline model as initial parameters:

15
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Figure 9: Seasonal adjustment with airline and generalized airline models.

param0 = air.param([1 2 2 3]);

param0(1:3) = -param0(1:3); param0(2:3) = param0(2:3).7(1/12);
ga = estimate(y, ssm_genair(3, 5, 3), param0);

gacom = ssmhtd(ga);

ycom = signal(statesmo(y, gacom), gacom);

gaseas = ycom(2, :);

The code creates a generalized airline (3-5-1) model, Hillmer-Tiao decomposition produces
the same components as for the airline model since the two models have the same order. From
the code it can be seen that the various functions work transparently across different ARIMA
type models. Figure 9 shows the comparison between the two seasonal adjustment results.

8. Non-Gaussian linear models

8.1. Poisson distribution error models

The road accident casualties and seat belt law data analyzed in Sections 3 and 4 also contains
a monthly van driver casualties series. Due to the smaller numbers of van driver casualties the
Gaussian assumption is not justified in this case, previous methods cannot be applied. Here
a poisson distribution is assumed for the data (Durbin and Koopman 2001, Section 14.2), the
mean is exp(f;) and the log density of the observation y; is

log p(y:|6:) = 6; v — exp(6;) — log ;!
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Figure 10: Van driver casualties and estimated level.

The signal ;, the log of the conditional mean, is modeled with a local level model. The total
model is then constructed by concatenating a poisson distribution model with a standard
structural time series model, the former model will replace the default Gaussian noise model.

pbstsm = [ssm_poisson ssm_llm ...
ssm_seasonal ('dummy fixed', 12) ssm_intv(n, 'step', 170)];
pbstsm.name = 'Poisson basic STSM';

Model estimation using the function estimate will automatically calculate the Gaussian ap-
proximation to the poisson model. Since this is an exponential family distribution the data
1y also need to be transformed to ¥, a time-varying transformation based on an appropriate
approximating model (see Durbin and Koopman 2001, Table 11.1), which is stored in the out-
put argument output, and used in place of y; for all functions implementing linear Gaussian
(Kalman filter related) algorithms. The following is the code for model and state estimation:

[pbstsm logL output] = estimate(y, pbstsm, 0.0006, [], 'fmin', 'bfgs',
'disp', 'iter');

[alphahat V] = statesmo(output.ytilde, pbstsm);

thetacom = signal(alphahat, pbstsm);

Note that the original data y is input to the model estimation routine, which also calculates
the transform ytilde. The model estimated then has its Gaussian approximation built-in,
and will be treated by the state smoother as a linear Gaussian model, hence the transformed
data ytilde needs to be used as input. The loglikelihood logL here is based on importance
sampling using Gaussian approximation of the model, with 1000 samples (default setting).
The state estimates alphahat are calculated from both the approximation and original mod-
els. The signal components thetacom obtained from the smoothed state alphahat is the
components of 0y, the mean of y can then be estimated by exp(sum(thetacom, 1)).

The exponentiated level exp(6;) with the seasonal component eliminated is compared to the
original data in Figure 10. The effect of the seat belt law can be clearly seen.

8.2. t distribution models

In this example another kind of non-Gaussian models, ¢ distribution models is used to analyze

17
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Figure 11: t distribution irregular.

quarterly demand for gas in the UK (data from the standard datasets in Koopman et al. 2000)
following Durbin and Koopman (2001, Section 14.3). A structural time series model with a
t distribution heavy-tailed observation noise is constructed, similar to the last section, and
model estimation and state smoothing is performed.

tstsm = [ssm_t ssm_11t ssm_seasonal('dummy', 4)];

tstsm = estimate(y, tstsm, [0.0018 4 7.7e-10 7.9e-6 0.0033], [1],
"fmin', 'bfgs');

[alpha irr] = fastsmo(y, tstsm);

Since t distribution is not an exponential family distribution, data transformation is not
necessary, and y is used throughout. A plot of the irregular in Figure 11 shows that potential
outliers with respect to the Gaussian assumption have been detected by the use of heavy-tailed
distribution.

9. Concluding remarks

SSM is an open source MATLAB toolbox for data analysis using state space methods. It
combines the usability and flexibility of interactive model construction with the efficiency of
C-implemented state space algorithms. In addition to the large number of predefined models
available for immediate use, any models expressible in state space form, with appropriate
approximations if they are nonlinear or non-Gaussian, can be defined and used within SSM,
without having to write additional code for optimization, estimation or combination with
other models. While extensive support for MCMC or other sampling based approximation
techniques is not currently implemented beyond that of simulation smoothing, these could be
combined using other MATLAB implementations of such methods.

By adapting open source licenses, it is hoped that the software package can attain wide-spread
use (as of September 2010 well over 2000 downloads of the software have been made since SSM
went online on October 2007), with user contribution of new models and even new state space
algorithms. Possible future features under consideration include incorporation of particle
filters to analyze more non-Gaussian or heteroscedastic model types, and incorporation of
Markov switching for general regime or change-point analysis. On the software side, usability



Journal of Statistical Software

will continue to be improved, while it is also important to consider porting to a completely
open source environment such as R or Python.

Software availability

The software is freely available from http://sourceforge.net/projects/ssmodels/ along
with detailed documentation and numerous demo files, including full code and instructions
for performing the analysis of the examples given in the paper. The toolbox was written for
MATLAB 7.0 R14 and later, and any C compiler compatible with MATLAB can be used.
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A. Predefined model reference

The predefined models can be organized into two categories, observation disturbance models
and normal models. The former contains only specification of the observation disturbance,
and is used primarily for model combination; the latter contains all other models, and can
in turn be partitioned into structural time series models, ARIMA type models, and other
models.

The following is a list of each model and function name.

o Observation disturbance models

— Gaussian noise: ssm_gaussian([p, cov]) or ssm_normal([p, cov])
p is the number of variables, default 1.
cov is true if they are correlated, default true.

— Null noise: ssm_null([p])
p is the number of variables, default 1.

— Poisson error: ssm_poisson
— Binary error: ssm_binary

— Binomial error: ssm_binomial (k)
k is the number of trials, can be a scalar or row vector.

— Negative binomial error: ssm_negbinomial (k)
k is the number of trials, can be a scalar or row vector.

— Ezponential error: ssm_exp

— Multinomial error: ssm_multinomial (h, k)
h is the number of cells.
k is the number of trials, can be a scalar or row vector.

— FExponential family error: ssm_expfamily (b, d2b, id2bdb, c)

p(v10) = exp (376 — b(6) + c(y))

b is the function b(6).
d2b is b(6), the second derivative of b(6).
id2bdb is b(0)~1b(h).
c is the function ¢(y).

— t-distribution noise: ssm_t([nu])
nu is the degree of freedom, will be estimated as model parameter if not specified.

— Gaussian mixture noise: ssm_mix

— General error noise: ssm_err
o Structural time series models

— Integrated random walk: ssm_irw(d)
d is the order of integration.

— Local polynomial trend: ssm_lpt(d)
d is the order of the polynomial.

21
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— Local level model: ssm_11m
— Local level trend: ssm_11t

— Seasonal components: ssm_seasonal (type, s)
type can be *dummy’, ’dummy fixed’, *h&s’, *trigl’, >trig2’ or *trig fixed’.
s is the seasonal period.

— Cycle component: ssm_cycle

— Regression components: ssm_reg(x[, varname])

— Dynamic regression components: ssm_dynreg(x[, varname])
x is a m X n matrix, m is the number of regression variables.
varname is the name of the variables.

— Intervention components: ssm_intv(n, type, tau)
n is the total time duration.
type can be ’step’, ’pulse’, ’slope’ or ’null’.
tau is the onset time.

— Constant components: ssm_const

— Trading day variables: ssm_td(y, m, N, td6)
’td6’ is set to true to use six variables.

— Length-of-month variables: ssm_lom(y, m, N)
— Leap-year variables: ssm_ly(y, m, N)

— FEaster effect variables: ssm_ee(y, m, N, d)
y is the starting year.
m is the starting month.
N is the total number of months.
d is the number of days before Easter.

— Structural time series models: ssm_stsm(lvl, seas, s[, cycle, x])
1lvl is ’level’ or ’trend’.
seas is the seasonal type (see seasonal components).
s is the seasonal period.
cycle is true if there’s a cycle component in the model, default false.
x is explanatory (regression) variables (see regression components).

— Common levels models: ssm_commonlvls(p, A_ast, a_ast)

0 I, "
Yy = a* + A* oy + &t
Hip1 = pg+m;

p is the number of variables (length of y;).
A_ast is A* a (p — r) X r matrix.
a_ast is a*, a (p — r) x 1 vector.

— Multivariate local level models: ssm_mv1lm(p[, cov])
— Multivariate local level trend: ssm_mv11lt(p[, cov])

— Multivariate seasonal components: ssm_mvseasonal(p, cov, type, s)
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— Multivariate cycle component: ssm_mvcycle(pl, covl])
p is the number of variables.
cov is a logical vector that is true for each correlated disturbances, default all true.
Other arguments are the same as the univariate versions.

— Multivariate regression components: ssm_mvreg(p, x[, depl)
dep is a p X m logical matrix that specifies dependence of data variables on regres-
sion variables.

— Multivariate intervention components: ssm_mvintv(p, n, type, tau)

— Multivariate structural time series models: ssm_mvstsm(p, cov, lvl, seas, sl[,
cycle, x, depl)
cov is a logical vector that specifies the covariance structure of each component in
turn.

e ARIMA type models

— ARMA models: ssm_arma(p, q, mean)
— ARIMA models: ssm_arima(p, d, q, mean)

— Multiplicative seasonal ARIMA models: ssm_sarima(p, d, q, P, D, Q, s,
mean)

— Seasonal sum ARMA models: ssm_sumarma(p, q, D, s, mean)

— SARIMA with Hillmer-Tiao decomposition: ssm_sarimahtd(p, d, q, P, D, Q,
s, gauss)
p is the order of AR.
d is the order of 1.
q is the order of MA.
P is the order of seasonal AR.
D is the order of seasonal I.
Q is the order of seasonal MA.
s is the seasonal period.
mean is true if the model has mean.
gauss is true if the irregular component is Gaussian.
— Airline models: ssm_airline([s])
s is the period, default 12.
— Frequency specific SARIMA models: ssm_freqspec(p, d, q, P, D, nparam,
nfreq, freq)
— Frequency specific airline models: ssm_genair(nparam, nfreq, freq)
nparam is the number of parameters, 3 or 4.

nfreq is the size of the largest subset of frequencies sharing the same parameter.
freq is an array containing the members of the smallest subset.

— ARIMA component models: ssm_arimacom(d, D, s, phi, theta, ksivar)
The arguments match those of the function htd, see its description for details.

o Other models

— Cubic spline smoothing (continuous time): ssm_spline(delta)
delta is the time duration of each data point.
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— 1/f noise models (approximated by AR): ssm_oneoverf (m)
m is the order of the approximating AR process.

B. Data analysis functions reference

Most functions in this section accepts analysis settings options, specified as option name and
option value pairs (e.g., (’disp’, ’off’)). These groups of arguments are specified at the
end of each function that accepts them, and are represented by opt in this section.

e batchsmo

[alphahat epshat etahat] = BATCHSMO(y, modell[, opt]) performs batch smooth-
ing of multiple data sets. y is the data of dimension p X n x N, where n is the data length
and N is the number of data sets, there must be no missing values. model is a SSMODEL.
The output is respectively the smoothed state, smoothed observation disturbance and
smoothed state disturbance, each of dimensionsm x n X N, p xn x N and r x n x N. This
is equivalent to doing fastsmo on each data set.

disturbsmo

[epshat etahat epsvarhat etavarhat] = DISTURBSMO(y, model[, opt]) performs
disturbance smoothing. y is the data of dimension p x n, and model is a SSMODEL. The
output is respectively the smoothed observation disturbance (p x n), smoothed state
disturbance (r x n), smoothed observation disturbance variance (p X p x n or 1 x n if
p = 1) and smoothed state disturbance variance (r x r x nor 1 xn if r = 1).

estimate

[model logL output] = ESTIMATE(y, model[, paramO, alphaO, opt]) estimates
the parameters of model starting from the initial parameter value paramO. y is the
data of dimension p X n, and model is a SSMODEL. paramO can be empty if the current
parameter values of model is used as initial value, and a scalar param0 sets all parame-
ters to the same value. Alternatively param0 can be a logical row vector specifying which
parameters to estimate, or a 2 X w matrix with the first row as initial value and second
row as estimated parameter mask. The initial state sequence estimate alpha0 is needed
only when model is non-Gaussian or nonlinear. output is a structure that contains op-
timization routine information, approximated observation sequence ¢ if non-Gaussian
or nonlinear, and the AIC and BIC of the output model.

fastsmo

[alphahat epshat etahat] = fastsmo(y, model[, opt]) performs fast smoothing.
y is the data of dimension p X n, and model is a SSMODEL. The output is respectively
the smoothed state (m x n), smoothed observation disturbance (p x n), and smoothed
state disturbance (r x n).

gauss
[model ytilde] = GAUSS(y, model[, alphaO, opt]) calculates the Gaussian approx-
imation. y is the data of dimension p X n, and model is a SSMODEL. alphaO is the initial
state sequence estimate and can be empty or omitted.



Journal of Statistical Software 25

kalman

[a P v F] = KALMAN(y, model[, opt]) performs Kalman filtering. y is the data of
dimension p X n, and model is a SSMODEL. The output is respectively the filtered state
(m x n+1), filtered state variance (m X m x n+1, or 1 X n+1 if m = 1), one-step prediction
error (innovation) (p X n), one-step prediction variance (p X p x n, or 1 x n if p =1).

linear

[model ytilde]l = LINEAR(y, model[, alphaO, opt]) calculates the linear approx-
imation. y is the data of dimension p X n, and model is a SSMODEL. alphaO is the initial
state sequence estimate and can be empty or omitted.

loglik

LOGLIK(y, model[, ytilde, optl]) returns the log likelihood of model given y. y is
the data of dimension p x n, and model is a SSMODEL. ytilde is the approximating
observation § and is needed for some non-Gaussian or nonlinear models.

sample

[y alpha eps etal] = SAMPLE(model, n[, N]) generates observation samples from
model. model is a SSMODEL, n specifies the sampling data length, and N specifies how
many sets of data to generate. y is the sampled data of dimension p X n x N, alpha, eps,
eta are respectively the corresponding sampled state (mxnxN), observation disturbance
(p x n x N), and state disturbance (r x n x N).

signal

SIGNAL(alpha, model) generates the signal for each component according to the state
sequence and model specification. alpha is the state of dimension m x n, and model is a
SSMODEL. The output is a cell array of data each with dimension p X n, or a M X n matrix
where M is the number of components if p = 1.

simsmo

[alphatilde epstilde etatilde] = SIMSMO(y, model, N[, antithetic, opt])
generates observation samples from model conditional on data y. y is the data of
dimension p X n, and model is a SSMODEL. antithetic should be set to 1 if antithetic
variables are used. The output is respectively the sampled state sequence (m X n x N),
sampled observation disturbance (p x n x N), and sampled state disturbance (r x n x N).

statesmo

[alphahat V] = STATESMO(y, model[, opt]) performs state smoothing. y is the
data of dimension pxn, and model is a SSMODEL. The output is respectively the smoothed
state (m X n), smoothed state variance (m x m X n, or 1 x n if p = 1). If only the first
output argument is specified, fast state smoothing is automatically performed instead.

oosforecast

[yf err SS] = OOSFORECAST(y, model, ni, h) performs out-of-sample forecast. y
is the data of dimension p X n, model is a SSMODEL, n1 is the number of time points to
exclude at the end, and h is the number of steps ahead to forecast, which can be an
array. The output yf is the forecast obtained, err is the forecast error, and SS is the
forecast error cumulative sum of squares.
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