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Summary

This thesis covers two related subjects : homology of commutative algebras and certain
representations of the symmetric group.

There are several different formulations of commutative algebra homology, all of which
are known to agree when one works over a field of characteristic zero. During 1991-1992
my supervisor, Dr. Alan Robinson, motivated by homotopy-theoretic ideas, developed a
new theory, I'-homology [ Rob,2 1. This is a homology theory for commutative rings, and
more generally rings commutative up to homotopy. We consider the algebraic version of
the theory.

Chapter I covers background material and Chapter II describes I'~-homology. We arrive
at a spectral sequence for ' -homology, involving objects called tree spaces.

Chapter III is devoted to consideration of the case where we work over a field of
characteristic zero. In this case the spectral sequence collapses. The tree space, T, which s
used to describe I'-homology has a natural action of the symmetric group S . We identify
the representation of S, on its only non-trivial homology group as that given by the first
Eulerian idempotent e (1) in QS . Using this, we prove that I'~homology coincides with
the existing theories over a field of characteristic zero.

In fact, the tree space, T, , gives a representation of S, 1. In Chapter IV we calculate the
character of this representation. Moreover, we show that each Eulerian representation of S
is the restriction of a representation of S, 4. These Eulerian representations are given by
idempotents e,(j), forj = 1, ..., n, in @S, and occur in the work of Barr [ B ], Gerstenhaber
and Schack [ G-S,1 ], Loday [ L,1,2,3 ] and Hanlon [ H ]. They have been used to give
decompositions of the Hochschild and cyclic homology of commutative algebras in
characteristic zero. We describe our representations of S 4 as virtual representations, and
give some partial results on their decompositions into irreducible components.

In Chapter V we return to commutative algebra homology, now considered in prime
characteristic. We give a corrected version of Gerstenhaber and Schack's [G-S,2]
decomposition of Hochschild homology in this setting, and give the analagous
decomposition of cyclic homology. Finally, we give a counterexample to a conjecture of

Barr, which states that a certain modification of Harrison cohomology should coincide with
André/Quillen cohomology.
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Chapter 0 : Introduction

This introduction is given over to briefly summarising the existing cohomology theories
for commutative algebras and some representation theory of the symmetric group.

Chapter I covers the Hochschild and Harrison theories in more detail. In particular, 1t
gives Gerstenhaber and Schack’s [ G-S,1 ] decomposition of the Hochschild (co)homology
of a commutative algebra in characteristic zero. This introduces the Eulerian idempotents
e,(j) in @QS_. This chapter 1s entirely expository.

Chapter II provides the definition of I'-(co)homology, which is described in terms of
the tree spaces. Apart from the presentation of the I' category, this material is due to my
supervisor, Dr. Alan Robinson.

In Chapter III, by describing cycles in the tree space explicitly and investigating their

connection with shuffles, 1t is shown that I'-(co)homology coincides with Harrison
(co)homologyincharacteristic zero.

Chapter IV describes the representation of the symmetric group given by the tree space,
showing that it extends that given by the idempotent e_(1). This result 1s generalised to
show that the representations €, (j)@QS,, are all restrictions of representations of S_ ;.
Character formulae are given for these representations.

Chapter V contains some remarks on commutative algebra cohomology in prime
characteristics. It gives Gerstenhaber and Schack’s [ G-S,2 ] decomposition in this case,
and clarifies some points about it. Then we give the analagous decomposition of cyclic
cohomology. Finally, we give a counterexample to a conjecture of Barr.

Section 0.1 : (Co)homology Theories for Commutative Algebras

There is a standard cohomology theory for an associative algebra A over a commutative
ground ring k, called Hochschild cohomology. This was introduced by Hochschild in 1945
[ Ho ], (for the case where k is a field), and is covered in the standard texts on homological
algebra, such as Cartan and Eilenberg [ C-E ] and MacLane [ Mc ]. It fits into the general
context of relative homological algebra, (see [ Mc, Ch.IX. }). The n® Hochschild
cohomology group of A with coefficients in an A-bimodule M, HH"(A/k; M), is the

relative Ext group, Ext"
group A® Aop’

standard equivalence relation, of those n-extensions of A by A-bimodules which are k-

k(A: M). This consists of equivalence classes, under a




- Introduction -

split. (See [ Mc ]). In the case where k is a field, requiring that the extension be k-split is no
restriction, and the above is the same as the absolute Ext group, Ext::@Aop (A; M).

Hochschild homology is defined in the obvious way. Hochschild (co)-homology 1is
computed using a special case of the categorical bar resolution, ([ Mc ] IX.7). This is the

standard Hochschild chain complex (B, (A), b"), which is a relatively projective resolution
of A by A-bimodules.

The Hochschild cohomology theory has many nice properties, such as a dimension
shifting technique [ Ho ] and Morita invariance [ L,1 ]. The second Hochschild cohomology
groups are closely related to algebra extensions [ Ho ]. Two examples are worth mentioning.
The first, due to Connes [ C ], relates Hochschild homology to differential forms: if X is a
smooth manifold and A = C®(X) is the algebra of smooth real-valued functions on X,
then HH_(A; A) is isomorphic to Q"(X), the differential n-forms on X. The second relates
Hochschild homology to standard group homology (see e.g. [ Mc, Ch. IV ]: if kG is the
group algebra of a group G then HH_(kG; kG) is H ( G; kG, ), the group homology with
coefficients in the G-module kG, with G acting by conjugation. Alternatively, the
Hochschild homology of the group algebra can be seen as the homology of the free loop
space on the classifying space of the group, HH,(kG; kG) = H (LBG:; k) [Go .

For a commutative algebra A, we may consider the algebraic differential forms on A.
The A-module of differential 1-forms Q) 1, has generators da for a in A, satisfying d(ab)
= a.db +b.da. Then Q, 1¢ is isomorphic to I/12, where I is the kernel of the multiplication
map A®A - A. The A-module of differential n-forms Qf%,, 1s given by the exterior

product over A, A"QL, - Wehaved: Qj/ = Qﬁ‘}}c given by d(agday...da,) = dagday...da,
and we get the de Rham complex ( Q) 1x»d ), whose homology 1s the de Rham
cohomology of the algebra, H;,(A). For A a smooth commutative algebra over k, and M a
symmetric A-bimodule, a result of Hochschild, Kostant and Rosenberg [ H-K-R ] relates
Hochschild homology to algebraic differential forms, HH,(A/k; M) = M®4 Q7 /.-

Cyclic cohomology was introduced by Connes [ C ] in 1985 in his paper Non-
commutative differential geometry'. His original approach was through the theory of non-
commutative differential forms on an algebra. Working over a field of characteristic zero,
cyclic (co)homology can be defined by using the quotient of the Hochschild complex by the
actions of the cyclic groups. Working over a general commutative ground ring, the
definition can be given using a certain bicomplex, as described by Loday and Quillen
[ L-Q . This gives rise to a spectral sequence, involving the homology of cyclic groups,
converging to cyclic homology. An important property of cyclic homology is the long exact
'periodicity sequence’ which links it to Hochschild homology, due to Connes [ C ]. Cyclic

2
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homology 1s Morita invariant. Returning to our two examples, for the algebra A = C®(X)

of smooth functions on a manifold X, we have a result of Connes [ C ] relating the cyclic
homology to de Rham cohomology:

HC,y(A) = Q'(X)/dQ™-1(X) © ) HIz* (X).
i21
Loday and Quillen [ L-Q ] proved an algebraic version of this result. If A is a smooth
commutative algebra over k containing @, then

HC\(A) = Q}/,/dQ%7 © D HIZZ(A).
121
Secondly, the cyclic homology of a group algebra is given by the S1-equivarianthomology
1
of the free loop space on the classifying space of the group, HC(kG) = H> (LBG; k)
[ Go ]. Cyclic homology is also related to Lie algebra homology. Loday and Quillen [L-Q ]

show that, over a field of characteristic zero, cyclic homology is the primitive part of the
homology of the Lie algebra of matrices.

There have been several attempts to construct a theory specifically suitable for
commutative algebras. Firstly, there is Harrison cohomology, defined by Harrison [ Ha ] in

1962. In the case of a commutative algebra, the Hochschild complex has a shuffle product.
The quotient of the Hochschild complex by the decomposable elements for this shuffle
product gives a complex, whose (co)homology is the Harrison (co)homology. If one works
over a ground ring containing @ then Harrison cohomology is a direct summand of
Hochschild cohomology. In dimensions greater than two, it is also a direct summand of
cyclic cohomology. The second Harrison cohomology groups can be related to
commutative algebra extensions [Ha ].

Another version of commutative algebra cohomology is that due independently to
André [ A ] and to Quillen [ Q ]. This gives cohomology for A a commutative algebra overk
a commutative ring, with coefficients in an A-module M. The cohomology groups,
D*(A/k; M), are defined as certain derived functors of derivations on the category of k-
algebras over A. In particular, DY%A/k; M) = Dery (A, M). The derived functors are
defined by applying the functor X » Der (X, M) to a free simplicial k-algebra resolution
of A, and taking cohomology. This theory is related to the more general cotriple
cohomology, which is described in [ B-B |. In particular, the symmetric algebra cotriple
gives rise to another version of commutative algebra cohomology, which is described by
Barr [ B ], and which is identical to the André/Quillen theory. When A is a projective k-
module and k contains Q André/Quillen cohomology coincides with Harrison
cohomology. The André/Quillen theory has the property of transitivity, that is to say there



- introduction -

is a long exact sequence in cohomology for a triple of commutative rings. It also has a flat

base change property, meaning that if Torlé(A, B) = 0 for q > 0, where A and B are k-
algebras, then we have isomorphisms:

D9Y(A®yB/B; M) = DI(A/k; M)
DY(A®B/k; M) = DIYA/k; M) © DIB/k; M),
where M is a A®B-module. If A is a smooth commutative k-algebra then DI(A/k; M)

= 0 for q > 0. There is a spectral sequence relating André/Quillen cohomology to

Hochschild cohomology, which can be used to deduce a decomposition of Hochschild
cohomology when k contains Q.

I'-homology 1s a new homology theory for commutative algebras, formulated by my
supervisor, Dr. Alan Robinson [ Rob,2 ]. In fact the theory extends to the topological
analogue of commutative rings, E,,-ring spectra [ M ]. Its introduction was motivated by
consideration of obstructions to the existence of Ey, structures. (Another theory for Ey,-
ring spectra is the topological Hochschild homology of Bokstedt, Hsiang and Madsen
[ B-H-K ]). The I'-theory can be described by giving an explicit chain complex, closely
related to the nerve of the category, I, of finite sets and surjective maps. If instead, we were
to use order preserving surjective maps we would simply get the Hochschild complex. The
idea 1s to describe an analogous complex, but, using the commutativity of the algebra, to
build in the actions of the symmetric groups. We arrive at a spectral sequence for I'-
homology, involving the symmetric groups. Properties of the theory include a long exact
sequence for triples of commutative algebras or Ey-ring spectra. In this thesis, we shall

only cover the strictly algebraic version of the theory. The main result of Chapter III 1s that
I"'-homology coincides with the existing theories in characteristic zero.

Section 0.2 : Representation Theory of the Symmetric Group

The second subject covered by this thesis is representation theory of the symmetric
group. Since '-homology is given by a spectral sequence involving the symmetric groups,
it is important to understand the symmetric group representations which arise, the tree
representations. This in turn led to the study of some closely related representations, those
given by the Eulerian idempotents. For each n, in the rational group algebra of the
symmetric group, QS,,, we have a collection of n mutually orthogonal idempotents e,(j), ] =
1, ..., n, whose sum is 1. These were originally introduced by Gerstenhaber and Schack
[ G-S,1 ], who defined them as certain polynomials in the total shuffle operator, s,. They

4
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showed that they are essentially the unique elements with the property of commuting with
the Hochschild boundary. They therefore can be used to give a decomposition of the
Hochschild (co)homology of a commutative algebra over a ground ring containing Q.
Natsume and Schack [ N-S ] generalised this result to give a similar decomposition of
cyclic (co)homology for a commutative algebra over k containing Q. An alternative
approach, also giving the decompositions of Hochschild and cyclic (co)homology, is given
by the A-operations of Loday [ L,1,2 ]. This involves the Eulerian partition of the
symmetric group, according to the number of descents a permutation has. For each n, we
have n representations e,(j)QS, of S,, giving a decomposition of the regular
representation.

The main results on the symmetric group representations e (j)@S,, given by these
idempotents are due to Hanlon [ H ]. He gives a description in terms of sums of
representations induced from wreath products, and thus provides character formulae. The
general problem of giving descriptions of the decompositions of these representations into
their 1rreducible components remains open. However, there is a description for the special
case J = 1. This is due originally to Kraskiewicz and Weyman [ K-W ], and an alternative
approach can be found in [S ). The same representations arise in the different context of free
Lie algebras, and have here been studied by Reutenhauer [R ] and by Garsia[G ).

We show that each of the Eulerian representations of S, is the restriction of a
representation of S, ,.1. We give a description of the new representations and character

formulae. For certain cases, we give the decomposition of the representation into irreducible
components.



Chapter 1 : Hochschild, Harrison and Cyclic (Co)homology

Introduction

This chapter outlines the background necessary for the subsequent work, describing
some of the existing (co)homology theories for commutative algebras. It is entirely

expository.

The first section describes Hochschild (co)homology. This is a standard cohomology
theory for any associative algebra over a commutative ground ring with coefficients in a
bimodule over the algebra. It was introduced by Hochschild in 1945 [ Ho ). The
cohomology groups can be described in terms of extensions of bimodules over the algebra.
It is computed using a certain standard complex, which simplifies in the special case we are
interested in, where the algebra is commutative and the coefficient bimodule is symmetric.

Next we introduce Harrison (co)homology. This is a theory for the case of a
commutative algebra and a symmetric coefficient module. In this situation, Harrison
(co)homology is computed from a certain quotient complex of the Hochschild complex,
defined in terms of particular permutations called shuffles. This theory was developed by
Harrison in 1962 [ Ha |.

The third section summarises further properties of Hochschild and Harrison
(co)homology which hold in the special case where the ground ring contains Q. By
introducing an idempotent e_ in the group algebra @S, Barr [ B ] showed that the Harrison
complex is a direct summand of the Hochschild complex, and hence Harrison
(co)homology is a direct summand of Hochschild (co)homology. By defining further
idempotents €,(j) in @S, for j = 1, ..., n, Gerstenhaber and Schack [ G-S§,1 ] generalised
Barr's results. They give a decomposition of the n'? Hochschild (co)homology group as a
direct sum of n parts, the first of which is the Harrison (co)homology.

We note the similar decomposition of cyclic (co)homology of a commutative algebra
over a ground ring containing @, due to Natsume and Schack [N-S ] and to Loday [L,1,2 ].
The standard periodicity sequence linking Hochschild and cyclic cohomology also
decomposes as a sum, Other approaches to the decompositions can be found in [F-T |,
[ B-V ]and [ V] (for differential graded commutative algebras), and [ P ]. The A-operations
and further properties of the Eulerian idempotents are covered in[L,1,2].

Finally, we give Hanlon's results [ H ] on the characters of the representations e () QS
of the symmetric group S .
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Section 1.1 : Hochschild (Co)homology

Let A be an associative algebra (with identity) over a commutative ring k and let A®n
denote A®A®..®A, the n-fold tensor product of A over k. The Hochschild
(co)homology groups of A with coefficients in an A-bimodule M can be defined using a

certain standard complex of A-bimodules, B,(A), where B (A) = A®A®N®A and the
boundary b’ : A®(n+2) ., A®(n+1) js given by

n o
b'(23y®..®a,, 1)= 2 (-1)(2y®..®a3, ®..8a, 1)
1=0
This complex is acyclic because of the contracting homotopy, s : A®(+1) 5 A®(+2) given

by
s (2)®...®a,) = (1®2,®...®a,),
satisfying b’s + sb’ = 1. Here s consists of k-module homomorphisms, providing k-

splittings for b’. (Equivalently, s can be regarded as consisting of right A-module
homomorphisms, providing right A-splittings).

DefinitionI 1.1.

The Hochschild homology groups of A with coefficients in an A-bimodule M are
defined by

HH.(A/k; M) = H( M®A®AopB*(A) ).
Similarly, the Hochschild cohomology groups are given by
HH*(A/k; M) = H( HomA®Aop( B*(A), M ) )

When A 1s projective over k, B,(A) is a projective resolution of A as an AQAOP-
module. (See [ C-E 1 p175). So,

{ o — Il
HH'(A/k; M) = Ext® o (A, M)

Thus HH"(A/k; M) consists of equivalence classes, under the usual relation, of n-
extensions of A by A-bimodules. In particular, this holds when k is a field.

In general, B, (A) is a k-split resolution of the bimodule A by (A®AOP, k)-relatively
projective bimodules, (or an A-split resolution by (A®AO°P, A)-relatively projective
bimodules). This means that Hochschild cohomology is actually an instance of a relative
Ext group , and should more properly be written :

HHYA/k; M) = Ext)  op (A M) = Ext o5 5 (A, M.

Thus HH"(A/k; M) consists of equivalence classes, under the usual relation, of those n-
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extensions of A by A-bimodules which are k-split, (or equivalently A-split). [ See [ Mc ]
p282 1.

Since we have
Homy g s0p(B_(A), M) = Hom,, o » op(A®APRA®", M)
= Hom (A®", M),
we can use the universal property of the tensor product to describe the Hochschild complex
in dimension n explicitly as the k-module of all k-multilinear functions f on the n-fold

Cartesian product Ax..x A of A. It can be checked that this complex then has
coboundary given by :

of(ay, vy apyq ) = a4f(ap, vy apyq ) + ZH)' f(ays s 3344 4 oors Ay q )

+ (-1)M1f(ay, .. ,an)an+1
This retrieves the original definition of Hochschild [Ho ]. Similarly, for homology
M® , o a0pB,(A) = MOASN,
and the boundary b : M®A®N 5, MRA®N-1 ig

b(m®a;®..®a, ) =ma;®a,®...®a + Z (—1) m®a® ... ®aa. (®...®a,
1=1
+ ("1)“ anm®a1® coe ®a.n_1.

A zero cochain is a constant m € M; its coboundary is the function f : A -» M given by
fa = am - ma. Hence, HHO(A, M)={m € M| ma = am V a€A }, the invariant elements
of M. A 1-cocycle is a k-module homomorphism f : A - M which satisfies
f(ajay) = a4f(ay) + f(a1)ay V a4, a5 € A. Such a functor is called a crossed homomorphism
or derivation of A into M. It is a coboundary if it has the form f,,(a) = am - ma, and these
are called principal crossed homomorphisms. Hence, HH1(A/k; M) consists of all the
crossed homomorphisms A -+ M, modulo the principal ones.

Now let A be a commutative k-algebra and let M be a symmetric A-bimodule i.e. am
=ma V a€A, meM. (Of course this is really the same as a left A-module). As Barr points
out [ B ], using the fact that M is symmetric, we can work with a 'symmetrised’ complex,
since then we have

Hompga (By(A), M) = Homy, (Cy(A), M),
where C,(A) = A®A®N, viewed as a symmetric A-bimodule with A acting on the first
factor.

Denote ( ap® ... ®a, ) € C,(A) by agl ay, ..., 3, ] . The boundary b : C,;1(A) - C,(A) 15
given by the A-linear map such that :
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n v
blag, ..., an g I=ag [y, anyg 1+ 21 [ag, o 285040 oo Bnyq ]

1=1

+ (—1)n+1 dn i1 [ dqy eeey &g I

Then the coboundary of f € Homa( C,(A) , M) is given by the A-linear map such that :

n .
Sf[ al, seey a.n+1 ] -— alf [ 32, sesy a-n+1 ] + E (—1)1 f [ al; socy aiai.{.‘l’ seey a-n+1 ]
1=1

+(-1)"1a .flag, .., a].
Note that when M is symmetric HHO(A/k; M) = M and HH1(A/k; M) = Dery(A, M), the

derivations of A into M.
Section 1.2 : Harrison (Co)homology and Shuffles

The (symmetrised) Hochschild chain complex ( C (A), b ) for a commutative al gebra
has a product, known as the shuffle product.

DefinitionI.2.1.

A permutation 7 in the symmetric group S_ is called an i-shuffle if 1l <12 <...<m
and n(i+1) < n(i+2) < ... < nn. Then the shuffle product * : C;(A)®C,,_;(A) = C,(A) 1s
given by

alay,.,al*a' la,q, a1 =2 (sgnm)aa’[a 1, oy 2 |
where the sum is taken over all i-shuffles w € S . It is easily seen that this product is
associative and graded commutative. In fact the product passes to a map

¥ : Ci(A)®,Cy_i(A) = Cp(A) > Cy(A).

DefinitionI.2.2.

We define elements s; ,_; of the group algebra kS,
Letsjn-i = D, (sgn =) &, where the sum is over all i-shuffles in Sp.

Let S, actonon thelefton C (A) by may[ay, ..., a,1=a, [a g, ., a4 ]
Then [ay, ..., a;]1* [, ¢,..,a 1= s;p.ilay, 2l
Definition 1.2.3.

n-1 n-1
Let Shy(A)= 2, Ims;,_;.Letsy= X s 1_i. (51 =s50=0).

=1 1=1
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The element s, 1s called the total shuffle operator.
The shuffle product is well-behaved under the boundary :

Proposition 1.2 4.

b( [ag,..,a)l*[a;,4,...,a,1)=(blay,..,a])*[a 4,..,2,]
+(—1)i[ai,..., ‘]*(b[ai+11--'“’an]) 0

It follows immediately that Sh_(A) is a subcomplex of C,(A). So we can consider the
quotient complex Ch,(A) = C,(A) / Sh_(A). This is the Harrison complex.

DefinitionI.2.5.

For M a symmetric A-bimodule, the Harrison (co)homology groups of A, with
coefficients in M are given by :

Harr.(A/k; M) = H M®,Ch,(A) ),
Harr*(A/k; M) = H (Hom, (Ch,(A), M)).

Equivalently, Harrison cohomology can be regarded as the homology of the complex
consisting of those Hochschild cochains which vanish on shuffles. i.e. A Hochschild n-
cochain f is a Harrison cochain if fsi,n-i =0, fori1=1,..,n-1.

Section 1.3 : The Decomposition of Hochschild (Co)homology

Throughout this section it is assumed that A is a commutative algebra over k
containing Q. The preliminary results used to prove the existence of a decomposition of

Hochschild (co)homology in this situation are contained in Barr's paper 'Harrison
homology, Hochschild homology, and triples’[ B 1. They are summarised below.

Let sgn : @S, -» Q be the algebra homomorphism extending the usual alternating
representation sgn : S - Q.

Definition 1.3.1.
Lete =1/n! ), (sgn )
mES,

Itis then clear that foralluin @S, ue, = €.u = (sgnu) €.

10
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Barr shows that this element, applied to any chain, vanishes under the boundary b, and that
it is essentially the only such element :

Proposition 1.3.2.
1).Forall[ay,...,a ], be[ay,..,a ]1=0.
2). If uin QS satisfies bul ay, ...,a, 1 = Ofor all [ay, ...,a ] thenu = (sgnu) €. D)

The behaviour of the shuffle product under the boundary gives :

Proposition 1.3.3.
Forn21,bs, =s_ _(b.(sy=5,=0). O

Now we are in a position to introduce the idempotent €, in @S, which was defined
inductively by Barr.

Theorem 1.3 4.
For each n 22 there exists an element e, of @S, (‘Barr’s idempotent’), satisfying :
1). e, 1s a polynomial in s, without constant term;
2).sgne, =1;
3). be, = €,_4b;
4).e5=¢.;

5). CnSi,n_i = Si,l'l-—i for1 <i1<n-1. a
Theorem 1.3.5.

1). €,QS, = X 5; @Sy, 50 Shy(A) = €,C (A,

2). Cp(A) = €,Co(A) ® (1-€,)Cyi(A), 50 Ch (A) = (1-¢,) C,(A). 0

So the Harrison complex Ch,(A) is a direct summand of the Hochschild complex C,(A),
and hence Harrison homology, Harr.(A/k; M), is a direct summand of Hochschild
homology, HH«(A/k; M).

Gerstenhaber and Schack [ G-S,1 ] have shown how to extend the results of Barr to
give a further decomposition of Hochschild homology in this situation. They show that in

fact the Hochschild complex splits as a direct sum of sub-complexes :
Cn(A) = Ci,n-I(A) O C2,n-2(A) ®...0 Cn,O(A),

11
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where C1 .-1(A) = Ch,(A), Harrison's complex.
Consider s, € QS_. Itis an element of a finite dimensional algebra over a field, and so

must satisfy some monic polynomial with coefficients in that field. There is a unique one of
lowest degree, called the minimal polynomial of s...

Theorem 1.3.6.
The minimal polynomial of s, is :
n -
mp(x) = [I[ x=(2'=2) ] 0
v 1=1

Definition 1.3.7.

Let y; = 212 Then m,(X) = (X-H1q) ... (X=-L,).
Then let
Q) =1II (s =Ky /7 (—np.
1#)
1.¢. €.(j) is the value of the i Lagrange interpolation polynomial at s . The following is
immediate:

Theorem 1.3.8.
The €,(j)’s are mutually orthogonal idempotents ("the Eulerian idempotents’) satisfying :
fn _ n _
2¢,() = 1,and ¥ pie () = sp. O
=1 J=1
Notation

Lete,(j) = 0 forn <}, and let e,(0) = 1.

Theorem 1.3.9.

1).e, =¢,(2)+...+e (n);

2). be,(j) = e,_1()b; in particular be (n) = 0;

3).sgne () = 0forj#n;sgne (n)=1;

4).e (n) = €. a2

Hence, the Hochschild chain complex C,(A) is a direct sum of the sub-complexes
e,0)C,(A):

Cn(A) = 21 en(0)Ch(A).
j=

12
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This gives a decomposition of Hochschild (co)homology into a similar direct sum.

Definition 1.3.10.
HHjn-j(A/k; M) denotes the part of HHp(A/k;M) corresponding to €,.(j).

Summarising the above we have :

Theorem 1.3.11.

The Hochschild homology of a commutative algebra A over k containing @, with
coefficients in a symmetric A-bimodule M, decomposes into a direct sum :

HHj(A/k; M) = HHy ,_1(A/k; M) © HHj, ,_2o(A/k; M) © ... ® HH,, o(A/k; M),
where HH; ,,_; 1s the eigenspace for the eigenvalue 21-2 of the shuffle operator Spe

In particular HH; ;,_4, the part corresponding to ep(1), is Harrison's n homology group.
Similarly, for cohomology :

HHYA/k; M) = HH1""-1(A/k; M) © HH2"2(A/k: M) @ ... ® HH™O(A/k; M),
where HH1"-1(A /k; M) = Hart(A/k; M). §

Gerstenhaber and Schack [ G-S,2 ] also show that the n'' component of the

decomposition of HH"(A/k; M) consists of the ‘skew multiderivations’, where an n-
cochain f is skew if fo = (sgno)f for all 6€S_ and is a multiderivation if it is a derivation
of each argument (all others being held fixed). For homology, the result is HH, o(A/k; M)
= M®p Q% /- The decomposition coincides with the usual Hodge decomposition of

H*(X, €), for X a smooth complex projective variety [ G-S,3 1.

Gerstenhaber and Schack [ G-S,1 ] also note that the e (j)'s are essentially the only
operators which commute with the Hochschild boundary :

TheoremI.3.12.
If we have t, € QS forn = 1, 2, ... such that bt, = tn_lb for all n, then

tn=2(sgntj)en0)- O
j=1

Section 1.4 : The Decompositon of Cyclic (Co)homology

In the case where we work over a ground ring containing @, cyclic (co)homology is

13
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particularly simple to define. Essentially it is computed from the quotient of the Hochschild
complex under the actions of the cyclic groups.

To calculate the Hochschild homology of A with coefficients A, we use the complex
(A®C+1) b) where b : A®M+1) , A®N ig sjven by :

-1 :
b(2,®..02 )= 3 (~1)i(2® .. ®aa;,(®...®a )+ (-1)" (2,29® ... ®a__1 ).
1=0

We denote its homology, HH, (A/k; A), simply by HH_(A).
We let the permutations of {0, 1, ..., n} act on A®@+1) by :

n(2y®.. 0 ) =(a,.4® ... a1 ).

Notation
Let A, denote the (n+1)-cycle (01 2...n)andlett = (sgn A, 1 )A .1

We have the relation b (1-t) = (1-t) b’ (see [ L-Q ]). Hence we can consider the quotient
complex C} (A), where C?; (A) = A®(+1)/ (1-t), meaning that we divide out by the k-

linear span of the elements of the form ( 1-t )x in A®(™+1), The boundary in this complex is
again b,

Definition 1.4.1.

The homology of the complex (Ci‘ (A), b) is denoted Hi‘ (A). If the ground ring k
contains Q this is the cyclic homology of A.

For cohomology, we use the dual complex (C;'L (A), b), where CR (A) consists of functions
f: A®+1) , 1 which are cyclic, that is fA_ .4 = (sgn A, )f = (-1)"f. The homology of

this complex is denoted Hj (A), and is the cyclic cohomology of A if k contains Q.

When A is commutative we have be,(j) = e,_4(j)b as in the previous section. Now,
when k contains @, all the arguments applied to Hochschild cohomology will apply to give

a similar decomposition for cyclic cohomology provided that when f is a cyclic cochain so
1s each fe; (j). This has been proved by Natsume and Schack [ N-S 1.

In order to define cyclic (co)homology in a characteristic free context, we introduce the
(normalised) b-B double complex of Connes[ C](See[L-Q)):

14
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bl g bl g bi
ARA®2 . A®A «— A
bl bl

ARA A

bl B

A

Here, A= A/k, regarding k as contained in A as multiples of the identity element. Each
column of the double complex is a normalised Hochschild complex (A® A®*, b), whose

homology is still the Hochschild homology, HH, (A). The map B: A® A®M-1) , A@ A®n

1S given by
n-1

B(2y®® ... ®a; )= 3 (-D"W(1@2®... ®a_®2;®..® a; 4 ).
j=0

One has B2 =0 and Bb+bB =0 (See [L-Q)).

DefinitionI.4.2.

The cyclic homology of A, HC,(A), is given by the homology of the total complex

corresponding to this double complex. For cyclic cohomology, HC*(A), we use the dual
double complex.

Over k containing @ this definition coincides with the previous one, HC,(A)= H} (A). In
this context, we need the additional relation Be__4(i) = e (i+1)B to get the decomposition

of cyclic homology for a commutative algebra, since then the double complex decomposes
as the direct sum of the sub-double complexes[L,2]:

b 4 B bd B

en()A® A®) — e . (-1)A® A®M-1) — ...
bl B bl B
en-1NARACSED) — e (-1)(A® A®M-D) — ...

bl bl

15
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Denoting by HCJ- n- j(A) the homology of the total complex corresponding to the above, we
have:

Theorem I.4.3.
For A a commutative algebra over k containing Q, HCO,O(A) = A,and forn=1,
HC (A) = HC1 ,n-l(A) ®D..0D HCH'O(A). 0

There is a long exact sequence linking Hochschild and cyclic homology, often refered
to as the periodicity sequence :

I S B
.. .= HHy(A) = HCy(A) —» HC,5(A) = HH,_,(A) > ...

Here, I 1s induced by the inclusion of the first column in the b-B double complex and S,

the periodicity operator, 1s induced by the map which shifts degrees in the total complex by
2. Natsume and Schack [ N-S ] and Loday [ L,2 ] have shown that for a commutative

algebra over a ground ring containing Q this sequence decomposes as a direct sum of long
exact sequences .

Ir Sr Bl‘
c oo™ m'lr’n_r(A) — HCr’n...r( A) — HCr-‘l,n_r_i(A) — I‘H‘Ir'n_r_i(A) > s e

where I}, B,, S, are the restictions of I, B, S.

For n 2 3, Harrison homology Harr,(A/k; A) is the first part of the decomposition of
cyclic homology HC,(A). For a smooth algebra or the algebra of smooth functions on a
compact manifold the decomposition of HC,(A) coincides with those given by Loday and
Quillen [L-Q ] and Connes [ C ] in terms of de Rham homology [N-S},[L,2 1.

Section 1.5 : The Symmetric Group Representations given by the
Eulerian Idempotents

For each n = 1, 2, ... we have described mutually orthogonal idempotents €,(j) in QS,,,
which give a decomposition of Hochschild (co)homology. These idempotents give

representations €,(j)QS,, of the symmetric group S,, which have been studied by Hanlon
[ H]. In this section we summarize his main results.

Let Xn denote the character of the representation €,(j)@S,.. Hanlon gives a formula for

16
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X{1 as a certain direct sum of induced characters. These characters are induced from wreath

product groups, which we shall describe briefly. See [ J-K, Ch. 4 ] for more details.
Suppose we have a subgroup G of S_, of size g and a subgroup H of §,, of size h.

Then the wreath product, HwrG, is a subgroup of S_ of size g.h™, consisting of (m+1)-

tuples ( hy, ..., h, g), with h, € H for all i and g € G. We think of HwrG as acting on
{(J,l)l 1 Sj <n, 1<i<m} by(hi, ooy hm, g)(j,i) = (hg(i)(i)’ g(i) )

If o 1s a linear character of H and B is a linear character of G, then there is a linear
character awr of HwrG as follows. For each cycle Y = ( Yq» «ees ¥ ) Of g, define A(Y) by
A(Y) = af hY1“' hYs ). Then define

(oawrB) (hy, ., b, g) = B(g) {E,I A(Y) L.

The particular case we shall be interested inis where H=C, =<(12..n)>,G =
S- We may think of C wrS_ as the group of mxm pseudo permutation matrices, where
the non-zero entries are chosen from C,,. We consider the character awrp, where [ is the
trivial character of S, and o is the linear character of H given by a(12...n) = e2m/n,

Now for any o € S we describe a linear character &, of its centraliser, Z(c). Suppose
o has m,, u-cycles for each u. Then Z(c) is isomorphic to a direct product over u of the

wreath products C,wr Sy, . The character & is then a product of linear characters éf}‘) of

Cuwr Sy, Where §£}‘ is exactly the character awrf above, with 3 the trivial character of
Sm, and o the linear character of C, givenby a(12...u) = e2m/u

Now we can state Hanlon's main result [ H ].

Theorem 1 5.1.

] _ . 35n
An = SEN * (@ in ©,) (&.:,}L )),
where the sum is over all partitions |t of n with exactly j parts, o is any permutationin S
with cycle type |, and * denotes product of characters. .

This determines the dimensions of the representations e, (j)@QS..

Corollary I.5.2.
The representation e, (j)@S,, has dimension equal to the number of permutations in S,
with exactly j cycles. »

17
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Note that for j = 1 the formula above gives simply: x}l = Sgn x (indsd\ (73 n)))-
o .

A general formula giving the decomposition of each representation e (j)QS,, into
irreducibles is not known, although Hanlon [ H ] states some results for particular values of
j. For small values of n, Hanlon gives the following table of decompositions.

Tablel.5.3.

For fixed n, the sum of the representations e (j)QS,, is the regular representation of S ,.

So, for |t a partition of n, the multiplicity of the irreducible representation [ )1 ]in this sum s
the number of standard Young tableaux of shape p. The n'® component, e (n)@S,, is

always the sign representation. Hanlon gives explicit decompositions for the cases j = n-1
and j = n-2. He shows that the trivial representation appears in e ([ (n+1)/2 ] )@QS,,. For
the case j = 1, we have the following result giving the decomposition of €,(1)@QS,, into
irreducibles, due originally to Kraskiewicz and Weyman [ K-W 1. Let T be a standard
Young tableau. We call a number i an ascent of T if i+1 appears to the right of i in T. We
let a(T) denote the sum of the ascents of T.

18
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TheoremI.5.4.
Let | be a partition of n. Then the multiplicity of [ }in e (1)@QS_, is the number of
standard Young tableaux T of shape L with a(T) = 1 (mod n). O

Stembridge [ S ] has also supplied a proof of this result.

19



Chapter II : TI'-(Co)homology

Introduction

This chapter is devoted to describing Dr. Alan Robinson’s new (co)homology theory
for commutative algebras, I'-(co)homology. In fact this theory is applicable not just to

strictly commutative algebras but also to those which are commutative up to homotopy.
Here we will describe the algebraic version of the theory.

The first section describes the I category and gives a presentation.

From here on the material in this chapter is Dr. Robinson's, and we quote without proof
the results we need to desribe the theory. First we cover tree spaces. These are particular
building-like simplicial complexes, which are related to the nerve of the 1" category.
Section 2 is devoted to a simple description, and a statement of the theorem on their
homotopy type [Rob,1 1. Section 3 relates them to the I category.

Finally, we define I'-(co)homology of a commutative algebra, by giving a chain
complex to compute it [ Rob,2 ]. This involves the nerve of the I category, which can then

be replaced by the tree space. The chain complex has a natural filtration, which gives rise to
a spectral sequence in the usual way.

Section II.1 : The Category I

DefinitionIl 1.1.

I" is the category whose objects are the sets[n] = {1, .., n}, n2 1, and whose
morphisms are surjective maps.

We can give a presentation of this category as follows :

. L i jsio .
Letn':[n+1]-[n]be defined by n‘(]) = { _ S Lfori=1,..., 0.

j=11f j>1i

Then iy = ini+! for j<i.
Each morphism ¥ : [ n]- [n-k ] of I may be expressed as a permutation 6 € S_, followed
by an order preserving surjection, i.e. as ¢ € S, followed by a product of k 1's, but not
uniquely. |
We use the standard presentation of S, with generators the transpositions o; = (i i+1), and

. 2 . _ _ . v
relations 6;° = 1, 0,0;,10; = 0;,10;0;,1 0;0; = 0;0; for li-jl 2 2.

20
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Then it is straightforward to check that :

"o; if i<j—1
i1 oo s
: N oioig if i=j-1 . .
oin = " it 'ﬂJUj = 1.

W ojoj if =)

"oi if 1>

If y(i) denotes the set of inverse images of i in order, and p; = | v1() |, then we can
write each morphism v of T uniquely as the permutation ¢ which is order preserving on
inverse images, ¢ : { Y'(1), v'(2), ... , Y!(n-k) } » { 1, 2, ..., n } in order, followed by

(ﬂ"'k)p""k_i (le)m'i(ni)m'i. Note that o? is a (P1s oo Pp-p)-multishuffle of
{1,..,nl

If we drop the relations oiz = 1, we replace S, by the braid group B, giving a braid
group version of the I category.

Section II.2 : Tree Spaces

DefinitionIl.2. 1.

A tree is a compact contractible one-dimensional polyhedron. It is always triangulated
so that each vertex is either an end (i.e. belongs to exactly one edge, called a free edge), or
a node (i.e. belongs to at least three edges). Edges which are not free are called internal
edges.

Letn22. An n-treeis a tree such that :

1). it has exactly n+1 ends, labelled by 0, 1, 2, ..., n;
2). each internal edge o has a length (o), 0 < l(ax) < 1.

DefinitionII.2.2.

An isomorphism of n-trees is a homeomorphism which is isometric on edges and
which preserves the labelling of the ends. |

T 1s the space of isomorphism classes. We shall continue to refer to trees, although we
actually mean isomorphism classes of trees.

Tn 1s a cubical complex. Two trees lie in the same cube if they differ only in internal
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edge lengths. These give the coordinates in the cube. It is a cone, since given any n-tree we
canreach the tree without internal edges by contracting all the internal edges at once.

Definition 1.2, 3.

T,, the space of fully-grown n-trees, is the base of the cone. It consists of trees that
have at least one internal edge length equal to 1.

We quote results on the structure of T,, without proof. See Robinson [ Rob,1 ] for
details.

Proposition 11.2.4.

1). T, can be triangulated as a simplicial complex, such that every simplex is the face of an
(n-3)-simplex.

2). Every (n-4)-simplex of T, is a face of exactly three (n-3)-simplexes. O

A simplex of T, corresponds to a shape of a fully-grown tree (i.e. an equivalence class
under label-preserving homeomorphism) [ Rob, 1 ). Its faces correspond to those tree

shapes obtained by shrinking an internal edge to zero. Again, we may use 'tree’ to mean
'tree shape’.

Theorem 11.2.5.

T,, 1s homotopy equivalent to a wedge of spheres, T, = (n:,1)' Sn-3, .

Hence, T, has only one non-zero (reduced) homology group, with coefficients K,

ﬁn-g,(Tn; K) = K-D! Since Sp+1 acts on T, by permuting the labels 0, 1, ..., n on trees,
this homology group gives a representation of S__ 4. In fact, in terms of I'-cohomology we
need only consider it as a representation of S_, and we shall denote this KS_-module by

V- Robinson shows that the homology generators are regularly permuted by S, _;.

Section II.3 : The Relationship between the I'-category and the Tree
Spaces

A standard construction gives, for any small category C, a simplicial set NC, the nerve
of the category.
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DefinitionI1.3.1.

The nerve of a category C is a simplicial set NC with :
NCy=0bjC,and fork=21,

: : : f f f
NGC, = { composable strings of k morphisms in C : 1 2 k 1.
. P : P Co>»Cio5Cr—o - 5C

Denote such a string by [fy 1f, 1 1...1f,].

Face maps d; : NC; - NC; _; are given by :

Al 1 fy 4. I f 1 =0f 1f _41...165]

A Lf 1 £y _q |l £y1 =6 | ol fiofi ]| £ 1for 0<i<k,

O [ 1£_q 1ol ) =6 (1. 1£; )

Degeneracies s; : NG » NG, .4, for1=0, ..., k, are given by inserting identity maps :
(AP T AT A B F N TS AT A A

We work with NI, and consider NI'([n},{ 1 ]), consisting of the strings of morphisms
in T, starting at [ n ] and ending at [ 1 ], and their faces. Intuitively, such a string of
morphisms looks like an n-tree, where the end labelled 0 marks the end of the string.

We will also consider certain categories associated to the I'-category. Thus(n }/I'/[ 1]
will denote the category of finite sets and surjections strictly under [n ] and over [ 1 ]. This
means that the category has objects given by aset[r], 1 <r <n, and two morphisms{n]-

[r]-[1]. A morphism of the category is a surjection [rs ] [r,]such that the following
diagram commutes:

[n] > [r{]>[1]
Nl A
[r2]

The symmetric group Sy, acts on this category, and hence on its nerve, by precomposition
with permutations.

The relationship between the I category and the tree space is given by:

Proposition I1.3.2,
There is an S -equivariant map, 6 : IN([n1]/T/[1]) |- T, , which is a homotopy
equivalence. This map is described in [ Rob, 3 ]. -

Hence, _I-_I'r( IN(Inl/T/I1D)K) = { 0  otherwise
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Section II.4 : I'-(Co)homology of Commutative Algebras

Letg:[n]-[m]beamorphisminI'. By looking at the inverse image of each pointin
[ m), we may consider the components of g, gt : [n']- [1 ], where n' = | g*(i) |. Similarly,
given a string of k morphisms of I" ending at [m], [ f | ... | f; ], (i.e. a k-simplex of NI'),
we decompose this into m strings of k morphisms each of which ends at[ 1 ]. We denote by

[ ff(i)l Ifgi) | the it component of [fy |...1f 1.

We are now in a position to define the chain complex giving I'~-homology. Let K be a
commutative ground ring, and A a flat commutative algebra over K. We will define the I'-

homology of A, with coefficients in an A-module M. We have described N['([n],[1]).

We denote by KNI'([n ], [ 1 ]) the corresponding free K-module. In what follows ®
denotes Q.

DefinitionI1.4.1,
The I'-chain complex, Cf, 1s defined as follows :

Ci(A/K; M)= Y RN[(([n],[1])®A®"®M.

n>1

The boundary d : C; - Cg_l is the alternating sum of face maps d; : C - Cg_l for
0<1<q.
Note that a I'-morphismf :[n]- [m]inducesamapf, : A®n, A®M by multiplying and

permuting factors according to f in the obvious way.
Then the face maps are defined on generators [f;|...|f; ]®a®mby

3 ([£1...16,1@a®m ) = [£,]...11,] ®f,(2) ®m
J; ([fgl..1f;1®a®m ) = [f ]..1f;f;]...Ifj ]®a®mfor0<i<q
Bq( [fql...|f1]®a®m ) =

r L]
Z [ f(i) | soe If l) ] ® d; @ eoe ® a: ® l_[ aj m
=1 q-1 % ( 11 lk) jef-i--f:l}_l(i)

where f,_q ... f; :[n]-[r], and where { a;,, ..., aj; } is the ordered preimage of i under
f f
q-1- 11
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q :

Now, d = 2(—-1)‘8i . It can be checked that these face operators satisfy the usual
1=0

simplicial identities and so we get d2 = 0. Hence we can define the homology of the chain

complex in the usual way, giving the I'-homology of A over K

with coefficients in M, HI‘q(A/K; M). Of course, we can also define I'-cohomology,
using the corresponding cochain complex. For cohomology, A should be a projective K-
algebra. (For a general commutative algebra the topological definition of I"'-(co)homology

may be used [ Rob,2 ], which coincides with the algebraic version described here when A is
flat (projective)). |

There 1s a natural filtration of the chain complex C! by the size of the sets[n]inT
FPCT(A/K;M) = T (KNT([n} [1)® A®"®M).

1<n<p

This filtration of C, gives rise to a spectral sequence in the usual way, and since
UFPC,I,: (A / K; M) = CE(A / K; M) this spectral sequence converges to I'-homology:

Jall .
E})' q" Hp+q-1 [_E_ELM] — HI‘p+q_1(A/K; M).

Now FP/FP-1 = KNT'([p],[1]) ® A®P ® M, with boundary induced from the boundary

d described above. Le. we get all the boundary terms involving A®P from this boundary,
other terms being zero.

We calculate the d1 boundary in the spectral sequence :

db:Hp, o ((FP/F-Y) 5 H, o o(FP-1/FP-2),
This is the connecting homomorphism from the short exact sequence of chain complexes :

0- FP-1/FP-2, FP/FP-2 . FP/FP-1,, 0,

1 T

By definition of the connecting homomorphism d! is given by [z]- [i'dn?z ], where d is
the boundary in the chain complex FP/FP-2, This is the same as the original boundary
except terms in A®<P-2 become zero. Then d! is given by [ z ]~ [ 9z ] where @ is given by
the terms of the original boundary which take A®P terms to A®P-1 terms.

i.e. d:KNI'([pl,[1])® A®P@ M- KNI'([p-11,[1]) @ A®P-1 @ M.
Then 0 = 80 + (-1)p+q-1ap+q_1 where :
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[ fora-tl ... | f2 1®f1.(a)®m if f1: [pl>[p-1)
aO([ fp+q-1|---| f1 ]®a®m) = Prq

0 otherwise

ap.|.q_1( [ f _1' cos I f‘l ] ®a ® m) =
component of [ fp,q-ol .| f1 ] which is [p—1]—[1]  if such exists

0 otherwise

In order to calculate the E1-term, we use a second spectral sequence which converges to it.
For each p, consider a term of the filtration quotient FP/FP-1,[ foirg-11-1f11®a@m.

Firstly, we normalise the complex so that we may assume that f;,5_1 1s not an
isomorphism. On the other hand, our string of morphisms may begin with some number of
isomorphisms, fy, ..., f;, say. We filter the filtration quotient according to this number r. A
(p+q-1)-simplex, [, 41...If;], as above can now be seen as an element of:
N+([pl/T/[1] )p+q-r-38C(Sp),

where C,(Sp) denotes a string of r permutations in Sp (as in the standard bar construction
for Sp, - see [ Mc ] IV.5) and N* denotes the augmented nerve, i.e. there is an additional
simplex of dimension -1 corresponding to the map [ p ]1- [ 1 ]. For each p, the complex

FP/FP-1 with the r-filtration gives a second spectral sequence, converging to the El term
of the original spectral sequence :

The filtration quotient for the second filtration now contains only those strings of
morphisms which begin at[ p]and begin with exactly r isomorphisms.

Fprprgor—1 = KNH(IPV/T/l11)p44.-38C(S)RACPOM.

In thls quotient the boundaries which decrease the r-filtration are zero, and so the
differential is just the boundary operatorin N([p1/T'/{11). Thus,

Forprger—1 = Hprg-r-3N( p/T/111); K)®C(S,) ®ASPEM,

In the previous section, we stated results on the homology of N([p I/T'/[11), which now
allow us to see that the second spectral sequence collapses.

il N {Vp®Cr(Sp)®A®p®M if r=q
’ CI""I"'

0 otherwise

In F! the differential d! is induced by the differential in the original chain complex, and so
1S now just the differential in the two sided bar construction on S , acting on V on one
side and on A®P on the other. So the E! term of our original spectral sequence is glven by

Epiq -ngqap—I- - Tora(s (Vp; A®p)®M'
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Chapter III : I'-(Co)homology in Characteristic Zero

Introduction

The main result of this chapter is Theorem I11.4.2., which states that the I'~-homology
of a flat commutative algebra coincides with the Harrison homology in the case where we
work over k containing Q. In Chapter I, Harrison homology was defined in terms of

permutations called shuffles. '~homology was described in the previous chapter, in terms
of tree spaces.

Firstly we need more information about the structure of the tree spaces. We already
know their homology groups, but we need to explicitly identify the cycles. In particular, we
identify a cycle in T, denoted ¢, which consists of 'trees with cyclic labelling’.

Once we have done this we can proceed to explain how shuffles act on the tree space.
We show that the cycle described above, c_, vanishes on shuffles. This enables us to
describe the representation V,, of the symmetric group S, given by the tree space T,,. We
show that, working over k containing @, V, is e,(1)kS,, where en(1) is the idempotent in
QS, described in Chapter I. (Definition 1.3.9.). Since Harrison (co)homology is the part of
the decomposition of Hochschild (co)homology corresponding to this idempotent e,(1),
this gives us the connection with Harrison cohomology.

Next, we return to the spectral sequence giving I'~homology which we had at the end
of the last chapter. It turns out that this spectral sequence collapses when we work over k
containing @, leaving us with a relatively simple chain complex to compute the I'-

homology. We show that this chain complex is isomorphic to the Harrison chain complex,
and hence we get the result.

Finally, we consider what we can say without assuming characteristic zero. We show
that the edge of the spectral sequence for I'-homology still gives Harrison homology, and
so in general we have a homomorphism between the Harrison and I” theories.

Section IIL1 : Cycles in the Tree Space T,

We have seen that T, = (n-vl)' S$™-3 In this section we give a precise description of the

generators of the only non-trivial homology group, ﬁn_3(Tn; k).
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- I'-(co)homology in characteristic zero -

DefinitionIII. 1.1.

An n-tree has cyclic labelling if it can be drawn in such a way that the labels 0, 1, ..., n
are encountered in order as you go around the tree.

Example
The 10-tree : 8 hascycliclabelling.
9
1
10
0
Proposition I11.1.2.

The (n-3)-dimensional simplices of T, given by n-trees with cyclic labelling can be
oriented so that they form a cycle.

Proof

Let t be such an (n-3)-simplex in T,. So t is a cyclically-labelled n-tree with n-2
internal edges. Its boundaries are given by deleting internal edges. Since t has cyclic
labelling, each component of its boundary is an (n-4)-simplex, also with cyclic labelling.
An (n-4)-simplex is given by an n-tree with one node 7 of order 4, all other nodes having
order 3. A given (n-4)-simplex is the face of 3 (n-3)-simplices, since in general there are

3 ways of pulling apart the node of order 4 :
a b

The general (n-4)-simplex s, >< is the face of the following 3 (n-3)-simplices :
T
d C
b C
b
d C d ¢ d

However, if the (n-4)-simplex s has cyclic labelling, then so do the first two of the
(n-3)-simplices shown, but the third does not. So each boundary component of the top-

dimensional simplices with cyclic labelling occurs exactly twice. It remains to show that we
can choose orientations so that these cancel, and so we have a cycle.

28



- I'-(co)homology in characteristic zero -

Claim

The trees with cyclic labelling in T, can be given orientations so that they form a cycle.

Proof of Claim

First we explain how we will specify an orientation for each tree with cyclic labelling.
An orientation of a simplex is given by an ordering of its vertices, or equivalently an
ordering of its faces. We explain how to order the internal edges of a given n-tree, t. There
is a unique arc between any two ends of the tree (see [ Lef I). Let a, be the arc between n
and n-1, a,_1 the arc between n-1 and n-2, ..., a4 the arc between 1 and 0. Thus a,...aza4
is a path between n and 0. Since omitting an internal edge disconnects the tree into two
components, such a path which visits every end must cover every internal edge. Now write
this path as a sequence of internal edges, €y, ..., €,-3, Omitting repetitions of edges already
listed. This gives our ordering of the internal edges. From now on t will mean the tree t
with this orientation and -t the same tree with the opposite orientation. The boundary dt is
¥ (-1) t(€;), where t(€;) means the face of t given by deleting the edge ¢j. The sign with
which t(€;) appears in the boundary of t is called the incidence number of t(€;) in t, i(t(€;), t).

Now we will choose to draw our trees with cyclic labelling with n at the top, 0 at the
bottom, and everything else to the left of a straight trunk joining them.

Example
The 10-tree with cyclic labelling depicted earlier is now to be drawn :

Notation

If a is some part of a tree, let | a | denote the number of internal edges of the tree in a,
and let [a] denote (-1)'2/,

The diagram below shows an operation, called branching, on a tree drawn as above,
whereby two adjacent side branches are joined together :
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- I'-(co)homology in characteristic zero -

nn n
d
b] ° b,
e
e  ——
C
d
d C
0
0
t t’

Notice that the two trees, t and t’, before and after branching share a common boundary
component, (by deleting the edges e, €’ indicated in the diagram ), t(€) = t'(€"). We have
i(t(€), t) = - [a] [b] and i(t'(®"), t') = -[a]. Given an orientation for the first tree t, (sgn t), we
choose the orientation on the second, (sgn t'), so that (sgn t) i(1(€), t) = - (sgn t) i(t'(€"),
t'), making the common boundaries cancel. i.e. we choose (sgnt) = - [b] (sgn t).

It is clear that if we start with the straight tree :

we can get every cyclic tree by a sequence, (not unique), of branchings. Now we start by
choosing an orientation on the straight tree shown above and proceed with branchings until

we have every cyclic tree, at each stage choosing the orientation determined by making the
common boundary component cancel.

Claim

This gives a well-defined orientation to every cyclic tree.

Proof of Claim

Several sequences of branchings may lead to the same tree. However, they must then
create all the same branches, so they can only differ by the order in which independent
branchings are done. Hence it is sufficient to show that this does not affect the orientation
assigned to the tree. This is shown by the following diagram, where the labelling of the
arrows indicates the effect of each branching on the sign given to the tree.
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- I'-(co)homology in characteristic zero -

n
: sign
multiplied
1 * b by -lc] : f
i / C \ '
sign
multiplied ;
by -[al 0 :
sign n
: mult[ipllied o .1 :
: by -lc ' / .
0
J \ sign
multiplied
by -[a]
' 0

Claim
With these orientations, trees with cyclic labelling form a cycle.

Proof of Claim

We have already seen that each boundary occurs exactly twice. Consider a general face
s of a tree with cyclic labelling. As before we consider s as having four parts a, b, ¢, d,
meeting at the node of order 4. Firstly, consider the case where the labels n and 0 appear on

different parts of s, w.l.0.g. a and d. Then the two cyclic trees with this boundary may be
drawn :

These differ precisely by a branching and by choice of signs their common boundaries
cancel.

S0 suppose n and 0 appear on the same part of s, w.l.0.g. the part labelled a.
Then we can draw the two cyclic trees , t and t', with this boundary as :
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- I'-(co)homology in characteristic zero -

"
-

»
o
@
-y
¢ T
|
--L--
o

1
omosesbheocse=
=V

-
Q
Q.
o

Now i(t'(€"), t) = [b] i(t(€), t). These two trees can be formed by the same sequence of
branchings, except they differ by two moves at the stage of their ‘common ancestor'.

. n
: b
' | n
C e :
’ sign :
: / o multiplied /B
| ?Il]%lrlltiplied : 0 by bl. [c] 0
by -[b]
! n n
i sign E
"0 multiplied
-[c]
sign
: multiplied 0
: by -[b]

50 at this stage the signs on the two trees differ by -[b]. After this stage we do the same
branchings to each tree, so these have the same effect on si gns. Thus:

(sgn t) i(t'(€"), t) = -[b] (sgn t) [b]i(t(€), t) = - (sgn t) i(t(), 1),
and the common boundaries cancel.

This completes the proof that trees with cyclic labelling form a cycle. N

Notation

The cycle described above will be denoted by c,.. This is a formal sum, ) (sgn t)t, over

the n-trees t with (n-2) internal edges and with cyclic labelling, where (sgn t) is the
orientation.
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We let S, 1 act on the right on (oriented) n-trees : to denotes the result of applying the
permutation o to the labels of the tree t. Of course, t& comes with the orientation induced

from that on t. This extends in the obvious way to formal sums of n-trees, such as the
cyclecy,.

Remark

There 1s an obvious way of associating a bracketing of n objects to a cyclic tree in T,.
1

For example we associate to the tree 3 the bracketin g (((agay)az)ay) .

0 4

This gives a 1-1 correspondence between trees with cyclic labelling and bracketings. In

fact, ¢, 1s the dual of the boundary of the Stasheff polyhedron corresponding to bracketings
of n objects. (See[St]).

Now consider c,m, for t € S _,, the permutations of { 1, 2, ..., n-1 }. Since ¢ is a
cycle so is each ¢ . These give (n-1)! distinct cycles, all passing through the vertex :

1

~n-1

0 n
Now, 1in the proof of the homotopy type of T, [ Rob, 1 ], it is shown that the homology

nt TI:E ... T(n-1)
generators are the simplices given by the trees; U (*), for

T € Sp.q, attached along their boundaries to a contractible space. Since

.« . n=1
0—1]——2]—-——|—" is the only such 'straight tree’ in c,, the tree (x) above

occurs 1n only c,, and so the ¢, for t € S__,, are homology generators, which are
regularly permuted by S _;.

Notation

-1 .
Letp=(12..n)e S .Let A = nE (sgn ',
1=0
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Proposition 111.1.3.

c. A, =0,
Proof

Note that if a tree t with cyclic labelling has the form:

a b
labelled labelled
by1i,..k by k+1, ...,n
0
then tpk also has cyclic labelling:
a b

relabelled in order relabelled in order
by n-k+1, ..., n by 1,..,n-k

and k, n are the only powers of |l with this property.
So each tree tplin ¢ A also appears as (tpk)pi-k,

Claim

We get opposite signs on these two trees, so all the terms cancel.

Proof of Claim

There are three ingredients here - the orientations of the cyclic trees, the effect of the

permutations on these orientations, and the signs of the permutations. First consider the
'straight’ cyclic tree t :

k +1

k-1 ... 2 1 0 n ... k42

In this case it is fairly straightforward to show:

a). The signs of t and tpk in ¢, differ by (-1)(k-Dk/2 + 1 for k#n-1, and by
(-1)(0-2)(-1)/2 jf k=n-1.

b). The difference between the sign on tjui induced from t and that on (tuk)pi-k induced
from tpk is (-1)k(n-1) + k-1)k/2 for k£n-1 and (-1)(0-3)(0-2)/2 for k=n-1.

Since the signs of the permutations differ by (-1)k(n-1), this gives the result for straight
cyclic trees.

Finally, we can deduce the result for a general cyclic tree from this by considering
collections of adjacent simplices starting at the given tree and ending at a straight tree. We
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omit further detatils. a

Section III.2 : Tree Spaces and Shuffles

DefinitionIIL.2. 1.

A pair of consecutive integers (i, i+1) is called a descent for the permutation € S, if
ni > n(i+1). The identity is the only permutation without any descents. Note that the

identity permutation is an i-shuffle for each i. Apart from this, i-shuffles are those
permutations with exactly 1 descent (i, i+1).

The main result of this section is that the cycle ¢, vanishes on shuffles.
1.e. CnSi'n_i =(fori= 1, veos n-1.

Example

n = 3.
$12=1-(12)+(132).
S9=1-(23)+(123).

1 2 2 3 1 1 3

2 2 3 3 1

C3S1'2= (I ) I _(I +I +(I -I =0.
3 1 10 3 0 1 0
1 2 2 3 1 3 3 2 3 11 2

0352'1 i I ) I | ) I + I +I ] ) 0.
3 170 2 17 %0 2 0

The proof is based upon the following observation :

Lett be a top-dimensional tree in T, with cyclic labelling, and consider the node where the
free edge labelled O is attached :

a b

Y

Since t has cyclic labelling we may assume w.l.0.g. that the subtrees a and b are labelled by
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- I'-(co)homology in characteristic zero -

the sets { 1, ..., k} and { k+1, ..., n } respectively.
Imagine t split into the two trees :

and
0 0

We will denote these by a’ and b'. It is clear that a’ is a tree with cyclic labelling in Ty, and
that , by relabelling b’ in order, b’ may be thought of as a tree with cyclic labellingin T _;.

Example

The above observation allows the use of induction arguments.

We will also consider the reverse of this process, whereby we graft together a tree in ¢y, @,

and a tree in c,,_y, b, to obtain a tree in ¢ . Later we will need to consider how this process
affects signs.

Lemmalll 2.2.

Suppose that the two trees a and b in ¢, differ in sign by € (= £1). Let ¢ be a tree In
C,-x- Then the two trees in ¢, obtained by grafting c to aand to b, also differ in sign by €.

Proof

We write down a collection of adjacent simplices forming a path from a to b. i.c. we
have a collection of trees in ¢, { a4, ..., a. } such thata; = a,a, = b, and such that a; and

a;, 4 Share a common boundary, for each i. Signs are such that these common boundaries

cancel, so consideration of this collection of trees gives us the difference in sign of aand b,
E.

But then consider the collection of trees in C,, obtained by attaching c to each of the
above trees. Clearly this is a collection of adjacent simplices, forming a path between the
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- I'-(co)homology in characteristic zero -

two trees that we are interested in. Signs are such that the common boundaries cancel as
above, and so the two trees differ in sign by € just as do a and b. s

Note that c_, is first non-empty for n = 3. However we formally extend the definitions
ton=1,2.Letc, andc, be:

Then ¢qs4 = 0 trivially, since sq = 0, and note that c,sy = c581 1= 0 since s, = 54 1= 1 -
(1 2). We adopt these conventions to cover the cases where one of a or b is labelled by a set
of only one or two elements.

Proposition II1.2.3.
CpSin-i =0fori=1,.., n-1.

Proof
This will be proved by induction on n.

The example above demonstrates the result for n=3. Assume the result for k <n.
Fix some1=1,.., n-1.
Recall that tw means apply the permutation 7t to the labels of the tree t. So CnSin-i1S @

collection of trees got by applying the inverses of i-shuffles to top-dimensional trees in T,
withcycliclabelling.

Lett be a top-dimensional tree in T, and as above draw t as :
a b

Y

We consider which such trees will give a tree with cyclic labelling upon applying some 1~
shutfle 7. ('This is equivalent to considering which trees occurin cs; ,_; ).

Suppose a and b are labelled by the sets S¢ and S, respectively; w.l.o.g. we may assume
that 1 € Sy. Suppose| Sy | =k, forsomek e {1, ..,n-1},1S, | =n-k.
We break the proof down into several stages.

Lemmalll 2.4.

If atreet, as above, occurs in c;s; 1, ; it must satisfy one of the following conditions
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L. Sl = { 1,...k }, Sz = {k+1, ey N 1.
I §q=1{1,..j jn-k+1,..,n} S, = {j+1, .., j+n-k }, where j = i or j = i+k-n.
III. S4 = {1, ..., j,i+1, .., k+i-j }, S, = {j+1, ..., 1, k+i-j+1, ..,n }, for some j <1i.

Proof

Consider a general tree t as described above :
a b

labell labelled
by S A by 82

If we are to get a tree with cyclic labelling when we apply some i-shuffle « to t, we must
have one of the following :

A. TC(SI) = { 1, coes k} and R(S2) = {k+1, cosy I }.
or B. TC(SI) = { I'l-k+1, very n} and TC(Sz) = { 1, ..., n-k }.

Incase A, if s € §,, s+1 € S then ns > n(s+1), and so (s, s+1) is a descent for 7. Now in

Si n-i W€ have permutations with at most one descent, at (i, i+1). It follows that one of the
conditions I, Il with j = i+k-n, or III must hold.

Incase B, if s € Sy, s+1 € S, then nts > n(s+1), and so (s, s+1) is a descent for ®. Again,
this only happens for s=i. So the only possibilities are I if k = i, and I with j = i.

Le. A tree tonly appears in C,S; n-; If it satisfies one of the conditions above. O
Wetreat each case separately.

Lemmalll 2.5.

Each tree t which occurs in C,S; n-; and which satisfies condition I, occurs an even
number of times with cancelling signs.

Proof

a b
labelled labelled
t has form : by 1, ..., k by k+1, ..., n

0
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We treat cases A and B separately.

A.rn{l..k}={1,. . kL xn{k+l,..,n}={k+1,...,n}L
A non-trivial permutation of either set will introduce a descent. A shuffle has at most one
descent, so T must be the identity on one of the sets.

If i <k, then Tt must fix { k+1, ..., n }, and we can think of t as an i-shuffleof { 1, ..., k }.
Le. = fixes b, and shuffles a; we think of 7 acting on the corresponding tree a’ in Ty. So, i-
shuffles 7 of { 1, ..., n } such that tn-1 has cyclic labelling correspond to i-shuffles 7 of
{1, ..,k } such that a'n-1 has cyclic labelling. By the induction hypothesis there are an
even number of such i-shuffles, { «. } say, and the signs on the copies of a’ cancel. 1.e.

Z (sgn m_)(sgn from orientation of (a’ n;l)nr) = ().
I
Hence, regarding the permutations 7. as in S, there are an even number of such, so that

_1 . . .
tr " has cyclic labelling, and by Lemma I11.2.2

Z (sgn w.)(sgn from orientation of (t n'r'l)n,)
I

= € 2(sgn n.)(sgn from orientation of (a’ n'r"1)1tr) = ().
 §

If 1 >k, then ® must fix { 1, ..., k }, and we may think of & as an (i-k)-shuffle of
{k+1, ..., n}. Similarly to the first case we consider (i-k)-shuffles o which take b’ to

b'c-1 with cyclic labelling. By induction, Z(sgn o)(sgn (b'c-1)o) = 0.
such ©
To take into account relabelling b by 1, ..., n-k in order, we want i-shuffles 1 = pkopn-x

where . = (12..n).Sosgn & = sgn ©.
Again Lemma I11.2.2 gives us 2(sgn r)(sgn (tx-1)n) = 0.

such =«

’

If 1 = k, the shuffle © must be the identity, and we get one copy of the tree t if it is a tree
with cyclic labelling. However this will cancel with :

B. n{1,..k}={n-k+1,.,n}, n{k+1,..,n}={1,.,n-k}.
There 1s only one such shuffle, where i = k, namely

n-k _ 1 2 ...k k+1 k+2...n
= n-k+1 n-k+2...n 1 2...n—k)'

It 1s clear that this k-shuffle will only give a tree with cyclic labelling if t has cyclic
labelling. Of course in this case we also get a copy of the tree from the identity permutation
as above. Now in the proof that ¢ A_ = 0 we saw that the signs on these two copies of t
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differ by (-1)X(0-1+1; the sign of p"K is (-1)k(-1), 50 the two copies of t do appear with
opposite signs and cancel. .

Since the other cases are similar we shall give less details.

Lemmalll 2.6.

Each tree t which occurs in c_s; . : and which satisfies condition II, occurs an even

number of times with cancelling signs.

Proof

A.ntil,..,itk-n,i+1, ..,n} = {1, ..k}, n {i+k-n+1, .., i} = {k+1, ..,n}

We have adescent at (i, i+1), and this must be the only one.

So {itk-n+1, ...,i} - {k+1,...,n} in order. i.e. & simply relabels b in order.

Now the 1-shuffles © we require correspond to (i+k-n)-shuffles ¢ on a. So consider

(i+k-n)-shuffles o such that a'c-1 has cyclic labelling, and use induction to conclude that

there are an even number of such, and that Z (sgn ©)(sgn (a'c-1)o = 0.

such ©
A similar argument to above allows us to conclude that :

z (sgn w)(sgn (tn-1)x) = 0.
 1-shuffle
st 1 cyclic

B.n{1,..1iitn-k+1,..,n} = {n-k+1, .., n}, n {i+1, ..., i+n-k} = {1, ..., n-k }.
We have a descent at (i, i+1) and for a shuffle &t this must be the only one.
So{i+1,..,i+n-k} - {1,..,n-k } in order. Again  simply relabels b in order and is an

1-shuffle on a. By induction, using similar arguments to above, there are an even number
of shuffles with the required property and signs cancel. u

Lemmalll.2.7.

Each tree t which occurs in C,S; n-; and which satisfies condition III, occurs an even
number of times with cancelling signs.

Proof
Only case A is possible.

il it k- = {1, ., kL w41, .., 1, k+i-j+1, ..,n} = {k+1, ..,n}.
® has a descent at (i, i+1). Its restriction to a’ is a j-shuffle such that a'n-1 has cyclic
labelling, and its restriction to b’ is an (i-j)-shuffle such that b'r-1 has cyclic labelling. Fix
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such a j-shuffle on a'. Now apply induction to conclude that there are an even number of
such (i-j)-shuffles and the signs on the copies of b’ cancel. Hence, as above, the same 1s
true for the copies of t. Repeating this for each j-shuffle on a’ we have the result. O

So in each case, all copies of a given tree cancel. This completes the proof thatcs; ,_; = 0.
D

Section III.3 : The Representation of S, given by the Tree Space T,

The aim of this section is to show that, working over K containing @, V,, 1s the same

representation of S, as that given by the right KS -module e (1)KS,. The idempotent
e, (1) in @S was defined in Chapter I, as a certain polynomial in the "total shuffle operator’,
sp» as Indeed were idempotents e (j) for j = 1, ..., n. As we saw in Chapter I, these

idempotents are used to give a decomposition of the Hochschild (co)homology of a

commutative algebra over a ground ring containing Q. It is an immediate consequence of
the definition of e (j) that :

en()sp = (2-2)e, ().
In particular, ep(1)s, = 0. In fact, e,(1)sp . =0fork=1,...,n-1[B].

Notation

Letppx = (nk)(n-1 k+1)(n-2 k+2) ... € S.,fork=1,..,n.
Let pyy = (-1)(-kHllln-ke2l/2 -1)p | € @S fork = 1, ..., n.

Note that if nis a k-shuffle in S, either #n = n or nk = n.

Let sl((?%_k = Z (sgn m)x, where the sum is over k-shuffles fixing n.
Let sg%_k = ), (sgn m)m, where the sum is over k-shuffles such that 7k = n.

S0 S n-k = Sga-k + Sta-k- Note that we may think of s{™ , asin @Sy :

Skn-k = Ska-toko fork =1, ., n-2; s | =1,

Proposition I11.3.1.

CnPnk = cns](('_‘_)iﬁn_k 41 fork=1,..,n.

[ we regard 1 as the only 0-shuffle .
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Proof

Use downward induction on k.

When k = n, the result is trivial, since both sides equal c;,.
Assume the result for k+1, and deduce it for k.

We use ¢;sy i = 0. (Proposition I11.2.3.)

Now as above, sy ,_i = Sl((k,r)l-k + s]((':%_k.
So,

CnSkn-k T~ cnsl(c?x))-k = = CnPn k+1 (*)
by the induction hypothesis.
Note that p; ., ((kk+1...n) = (-1)"k+1p |,
Also, 7 1s a k-shuffle such that nk = n if and only if n( k k+1 ... n ) is a (k-1)-shuffle
fixing n.

ie. st (kk+l..n) = sgn((kk+1.n)) s 0 poq = GOk,
Then composing each side of the above equation (*) with (k k+1 ... n) gives the result. O

Remark

The above proof uses only c s, . . = 0, for k = 1, ..., n-1, Since e (1) satisfies
cn(l)sk'n_k =0, fork = 1, ..., n~1, the same proof gives :
en(1)pnk = en(I)Sl((ll)1 n-k+1°

Proposition I11.3.2.

Working over K containing @, the tree representation V, of S, coincides with
e(1)KS . 1e. V= e,(1)KS,_, as right KS, -modules.

Proof

We have Cn(i)pn,k = en(l)sgl)l n-k+1°
Thenfora € S, a = ((nk) (n-1k+1)... ), for some k = 1, ..,nand some &' € S__4.

S50, en(1)a = ep(1)( (n k) (n-1 k+1) ... Yo’

= (_1)( [n-k+1} [n-k+2]/2 - 1 )cn(l)slgll)l " o,

The right-hand side contains only terms ep(1)n for we S__,, so this shows that e (1)KS,,

s generated by e (1)n for € S, _4. Since Hanlon [ H ] has shown that e (1)KS, has
dimension (n-1)!, the e (1)n's for t € S__; must form a basis.

Similarly we have : cpar = (~1)([n-k+11[n-k+21/2 - 1 )cnsl(('_‘_l n-k+1 O
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5060 :V, e (1)KS, defined by 6(c,n) = e, (1)x, and extending linearly, gives a well-
defined KS,-module isomorphism. .

Remark
Since S 41 acts on Ty, V,, is actually an S, -module, giving a representation of S, 1

which restricts to e, (1)KS . We shall return to this and discuss the representation theory
further in Chapter IV. Note also that although the idempotent e,(1) is only defined
rationally, the representation V, makes sense over any ground ring.

Section III.4 : T'-(co)homology in Characteristic Zero

We saw 1n the previous chapter that the I'~-homology of a flat commutative k-algebra
A, where k 1s a commutative ground ring, is given by a spectral sequence :

1 = »
Epq = TorkSe(Vp, A°P)OM = HI o 1(A7Kk; M),
where dliz,ﬁq : Eli,'q -E 11,_1'(1 1s induced from the original differential in the I chain complex;

and where A®P is a left kSy-module as before via 11(a;® ... ®a,) = (a;4® ... ®ay), and
vy 1s a right kSp-modulc as explained above.

We consider the case where k contains Q. Then kSp = ep(1)kSp & (1-ep(1) )kSp, and
s0 Vp = ep(1)kSp is a projective kSp-module. Hence

Vp®ro A°POM if q = O
E}Lq = Torlésp(vp’ A®p)®M= [ P kSp

0 otherwise
Thus the spectral sequence collapses, E! having non-zero terms along the line q = 0 only.

50 over a ground ring containing @, I'-homology is given by the homology of the chain
complex:

( VP®kSpA®p® M, dl).
We will now describe the boundary map
dl: Vn @ksn A®n XM- Vn_1®ksn_1 A®n-1 X M.

This map is induced from those parts of the original boundary map d which take terms in

A®n to terms in A®1-1, We will denote by [ v®a®m ] an element of Vj, ®kS,, A®" ® M.
Now we have seen that V|, has basis c,, for 7t € Sn-1-

Recall from Chapter I that we may describe the Hochschild complex for a commutative
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- I'-(co)homology in characteristic zero -

algebra A with coefficients in a symmetric A-bimodule M as ( A®*®M, b ), where the
Hochschild boundary b : A®"®M - A®n-1®@M is given by

n-1 :
b(21®..83,8m) = 2,®...83,@aym + ), (-1)' 219...83;3;,19...802,®m
1=1

+ (-1)"ay®...Qa,_1®a,m
(Note that the formula here is modified to take into account that we are writing the
coefficients M on the right.)

Lemmalll4.1.
d! [c,m®a®m ] =[c,_1® b( ta®m) ],
where T € S;_1,a € A®", m € M, and where b is the Hochschild boundary.

Proof

First let us consider d1 [¢c,® a;®...9a, ®m 1. Only the first and last terms of the
original boundary contribute to dl. We must interpret these in terms of trees. (L.e. we

transfer the boundary from N([n]/T"/[1]) to T, using the map 0 of p23). Let us consider the
first term dy. In the original chain complex this was given by

80([fn_1l ...lf1]®a®m) = [fn-ll ...|f2]®f1,a®m,
and this contributes tod! only if f; : [n]= [n-1]. |
We can see that for each tree in ¢, this operation corresponds to wherever possible
replacing a pair of ends labelled by i and i+1 by a single end labelled by 1, and then
relabelling the rest of the tree in order; thus ay®..®a,®m  becomes
21®...83;3;,1®...®a,®m. It is clear that for each i = 1, ..., n-1, replacing a pair i, i+1 with1
on each tree where such a pair occurs gives us a copy of ¢,_1.

Now consider the final term of the original boundary 0,.1. In the original chain
complex this was given by summing over components of [ f,_ol ... | f1 . Here we only have
the case where there are exactly two components, [n-1]-[1]and[1]-[1], and we get
the first of these. For c,, this operation corresponds to omiting a 1 or an n wherever such
appears 1n a pair together with O on a tree, (after omiting 1 you relabel the resulting tree as

appropriate); thus a1 ®...®a,®m becomes a,®...®a,®ajm or 3;®...8a,_1®a,m. Againitis
clear that in each case you are left with a copy of ¢;,_1.

S0 we have seen that the terms which occur are precisely those in
[ch-1® b (a1®...8a, ®m) .
It remains to check that the signs are correct, but this follows from d1d! = 0. (For example,
considering x¢®...®x,, where the x;'s are generators of the polynomial algebra kixq,....Xp);
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then the standard cancelling of terms under b2 is the only one possible). Hence we have d1
[c,®a(®..8a, ®m]=[c,_.1®b (21®...0a, ®m) .

Sodl[c,n®a®m]=dl[c,® na®m]=c,_1® b[na ®m] as required. 0
We are now in a position to prove the main theorem.

Theorem I11.4.2.

For A a flat (projective) commutative algebra over k containing @, and M an A-
module, I'-(co)homology coincides with Harrison (co)homology :

HI,_1( A/k; M) = Harr,( A/k; M),
HI-1( A/k: M) = Harr( A/k; M).

Proof

We will prove the result in homology. We have a chain complex ( Vy kS, AT @M,

d! ). Now we have seen that, for k containing @, Vy 2= e,(1)kS,,, by c,x b e,(1)x, for x €
kS,.. (Proposition ITL3.2.).

Hence, Vj ®kS., AT @M cn(l)kSn®kSnA@"®M = e (1)A®NQM.,
Explicitly we have
O Va®pg A®"® M- e(1)A®N®M given by 6, [ c;x®a®m ] = ey(1)xa®m,
for x € kS, and
Vo ep(DASI®M - Vi ® g A®" ® Mby yy(e(1)a®m) = [c,@a®m].
It 1s easily checked that these maps are well-defined and mutually inverse.

Now recall (from 1.3) that Harrison homology is precisely the homology of the

complex ( e,(1)A®"®M, b ), where be,(1) = e,_1(1)b. We wish to show that we have an
1somorphism of chain complexes :

(V.®AR*®M, dl) = (e,(1)A®*®M, b).
Now dly,(e,(1)a®m) = d! [c,®a®m] =1 c,_1® b (a®m) ], by Lemma II1.4.1. and
wn_lb(en(1)a®m) = \Vn_len_l(I)b(a®m) = | Cn-1® b (a®m) .
So dlyp = yp1b.
Also 0;,_1d! [ c;x®a®m ] = 0,_1 [ ¢,-1® b (xa®m)] = e,_1(1)b(xa®m), and
b6, [ cpx®a®m ] = b (e,(1)xa®m) = e,_1(1)b(xa®m).
So Bn_1d1 = ben.

Hence, we have an isomorphism of chain complexes, giving the result. O
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Section III.5 : The Relationship between the Harrison and T
Theories in General

The idempotent e,(1) is only defined in characteristic zero, but the representation Vp
makes sense over a general ground ring, and a simple modification of the above arguments
shows that the edge of the spectral sequence for I'-homology is still Harrison homology.

Proposition I11.5. 1.
n-1
Vn®ksnA®n x A®n /( Zsi,n-i A@n)
i=1
Proof

Define 6 : A®" - V,®,g A®" by (a) = c;®a. If X c 0 ® aj € V®yg A®N, for

1
o; € kSy, 3;€ A® then Y. c, 0 ® 3; = ¢,®Y ;a; = 6(Y a;a; ), so 6 is surjective.
1 i i

n-1
Now 3s; n-jA®" © Ker 0 since 6(sj,-ja) = ¢,®sjp-;@ = CpSin-i® = 0, by
1=1

Proposition II1.2.3. In fact, in Section III.3 we saw that the relations ¢ys; h-j = 0 determine
the Sp-module structure of Vp, so that c,a = 0 for o € kS, if and only if a €

n=1 n-1
ESi n-i kSn Hence Ker 0 = 2 Si

=1 A®N, =
1=1 1=1

Proposition II1.5.2.

For A a flat (projective) commutative algebra over any commutative ring k, and M an
A-module, we have homomorphisms :

HI,_1(A/k; M) — Harmr ( A/k; M),
HIM-1( A/k; M) « Harr( A/k; M).

Proof

The above proposition says that in the spectral sequence for I'-homology we always

n-1
have Eh'o = A®n/( >.S; n-i A®" ® M, Harrison's nth chain group. As above, we can
1=1

identify the boundary d1 : E}:,O - E},_LO with the Hochschild boundary. Thus
EZ o Harr,(A/k; M),

So the required homomorphism is the cdgc map of the spectral sequence. Similarly for
cohomology. D
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Chapter IV : Extensions of the Eulerian Representations of the
Symmetric Groups

Introduction

In this chapter we consider some representation theory of the symmetric group. From

Chapter III, the tree space T, is a simplicial complex satisfying T, = (n-\-ll)' Sn-3_ Since the

symmetric group S, 4 acts on T, by permuting the labels 0, 1, ..., n on trees, the only

non-trivial homology group H, _o(T,; k) gives a representation of S, 4. We denote this
representation by V', and its restriction to the subgroup §;, (which keeps 0 fixed) by Vy,.
From Section IIL.3, working over k = @, the representation V is that given by the first
Eulerianidempotent, e, (1)QSy,.

Working over @, we begin by identifying V' as A 1€,(1)RS,, 1, where A, 4€,(1) 1s
an idempotent described below. Next we show that each Eulerian representation, e,(J)@QS,,
is in fact a restriction of a representation of S, 4, given by an idempotent A, 4€,() in
QS,,,1. Then we provide a description of the representation A, 1€,()RS, ;4 as a virtual
representation, by first proving a certain relation between the idempotents €,(j) and e, 41().
For the tree representation, the result is that V_' is given by V induced to S;,1 modulo
V.1 This description leads to a character formula, using the results obtained by Hanlon
[H] for the Eulerian representations. Finally, we state some partial results on the
decompositions of these representations into irreducibles. A formula for the decomposition
of the e (j) representation into irreducible components is not known in general. It may be
productive to approach this problem by considering how the A, 4€,() representation
decomposes, and then restricting. However, we have. not made much progress in this
direction. We give a table of decompositions for small n; the results for j = 1, n-2, n-1, n;
and the relationship between our representations and the trivial representation.

Section IV.1 : The Representation of S ., given by the Tree Space T,

In this section it is shown that V_' is the same representation of S, 4 as that given by

the right S, (-module A, 4¢,(1)@S, .4, where A 4e.(1) is an idempotent in QS 4
described below.

Recall that ¢, is the cycle in the tree space T, consisting of trees with cyclic labelling.
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Proposition 1V 1.1,
¢, (01..n)=(-1),.

Proof

Obviously (01 ... n) takes a tree with cyclic labelling to another such tree. So it is just

a question of checking that ( 0 1 ... n ) has the stated effect on orientations. This 1s
straightforward. 0

Notation
Letxn_l_I = (0 1 ooe n) € Sl'l+1'

1 & : :
LetAp,q = 1 %(sgn 7‘-:1+1) n1 € @pi1:
1=

Clearly, A, , 4 isanidempotentin QS 4.

Proposition IV.1.2,

An+lsn = SnAn+1"'

Proof

A typical term on the right-hand side of this equation is 1:)\,1;1 +1» appearing with sign,
where @ is some shuffle in S. Now nA ,(0) = n(). So nAl ., = ATO, for o' =
xr-lﬂ" n M;Hi in S,

Claim

T = ?L;ffi)n?\,j;l +1 is a bijection S, = S, taking shuffles to shuffles, for j = 0, 1,
veuy TN,
Proof of Claim

For j = n, this was proved by Natsume and Schack [ N-S Lemma 9 ]. It is
straightforward to show that the claim follows by iterating their resuit.

S0 each term of the right-hand side, n),l;l " with sign, appears in the left-hand side as
lﬁﬁln’, with 7" a shuffle, also with sign. .
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Corollary IV.1.3.
A, 1€,0) = €,()A, 4 forj =1, veey N

Proof

Each e_(j) is a polynomial in s,.. Since A, 4 commutes with s, it commutes with each
()2 »
Corollary IV.1.4.

A, 1€,0) 1s anidempotent in QS 4.

Proof
( An+len(j) )2 = An+1en(i)An+1‘=5n(i) = An+123n(i)2 = An+1°n0)' =

So in particular A, 4e,(1) is an idempotent in @S, 4, giving a representation of Sy ¢
Ans1€n(D@Sps1.

Proposition IV.1.5.

Working over Q, the tree representation V' of S . 4 coincides with A, 1€ (1DQRS,, 4.
ie. V' Ay e (1DQS, 4 as right QS . {-modules.

Proof

Since V' restricts to V, = ¢, (1)QS_ (Proposition IIL.3.2.), we first show that
A€ (DQRS 4 restricts to € (1)QS, . Consider the homomorphism of right QS -modules
0:e,(DQS, - A, 16,(DQS, .4 given by left multiplication by A, 1. Now since A, 4 and
¢,(1) commute, and since we may write T € S +1 uniquely as },; +11t' for some 1 and some
T € S, we have

ApsgenDn=e(DAL AL L' = (sgn AL ) e(DAL 7 = (sgn AL ) A qen(DT
Hence, the homomorphism of right @QS_-modules A, 1€,(1)QS, .1 = €,(1)QS, which is
given by A_..e (1)x b (sgn xfl +1) €D’ for m € S, .4 1s an inverse for 0. So
A €n(DQS, . 4 and e (1)QS  are isomorphic as @S ~modules as required.

Now we have c_ )\,fl + = (sgn z,il +1)p (Proposition IV.1.1.). So the action of the
(n+1)-cycles AL .1 is the same on ¢ ason A, 1e,(1), hence the result. 0o

So the tree representation V' is a representation of S_ 4 restricting to the first Eulerian
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representation of S_, e (1)@S, . More generally, we have defined idempotents A, 4€,0) for
j = 1, ..., n and we show these give representations of S .4 restricting to the Eulerian
representations of S, €, (J)QS,.

Proposition IV, 1.6.
Ap1€n()@QS, 4 4 Testricts to e, ()RS, forj =1, ..., n.

Proof
The proof is exactly as for the case j = 1 given above. .

Proposition IV.1.7.

The sum of the representations A, .1€,(G)RS,41 for j = 1, ..., nis given by taking the
sign representation of Cp 1 = < Ap41 D € Sp41, and inducing up to Sp41.

Proof
n n
2 Ani1€0(Q) = An+‘12, €n(J) = An+1.
=1 )=1
So the sum of the representations Ap1€,G)@Sp41 is Apy1QSp41. It is easily seen that this
representation is as claimed. O

Section IV.2 : A Relation between e (j) and e_.,(j)

In this section we prove certain relations between our idempotents, which will be
needed 1n the following section to give descriptions of our representations. The main result
1s Proposition IV.2.5., giving a simplification of the product e,(j)en+10)-

From now on we shall revert to standard notation where S, denotes permutations of
i1, ..., n+1 } rather than { 0, 1, ..., n }. So A1 now denotes (1 2 ... n n+1 ). The

symmetric group S, is contained in S, 1 as the permutations fixing n+1, and similarly

LemmalV.2.1.
An+len6-1) = el'H'IG) Aﬂ+1' fOl'j =1, oy n+1.
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Proof

This follows from Loday’s relation Be (j-1) = e,1()B [ L,1; Theorem 4.6.6, p150 },
where B is Connes’ boundary operator in the normalised setting. (The formula for B in this

normalised situation is just (n+1) s A 4 - see p1)). O
Corollary 1V.2.2.
Ap1€,0-DQS, 4 <€, 1(DQS, 4, forj =2, ..., n+l. O

Hence, since the group algebra QS,,, 1 is semi-simple, we may write:

Cns1(NWSpyq = An+1‘:"’n(i""Umsnﬂ D yQSn41,
forsomey € QS 1.

Notation

Letp, = (1 n)(2 n-1)(3n-2)...€ S_and let op, = (-1)n+1)/2p = (~1)%(sgn p,) p,
€ QS,. Now consider the idempotent 6,_(j) = 1/2 (1+(-1)Yop,) in QS;..

Gerstenhaber and Schack [ G-S,1 ] show that these idempotents correspond to the even and

odd parts or the Eulerian decomposition: ©,(j) = Z en() if J 1s even, and 0,()) =
jeven

2 en() if j is odd. In particular o, (j) (and hence p,) is a polynomial in s, and so
j odd

, s e en() 1f i=) mod2
commutes with s_.. Of : = = :
with s . Of course, e,(1)0,() = o,()ey(1) { 0 otherwise
Notation

Lets?.1 = ), (sgn 1) m, where the sum is over shuffles in S,+4 Which do not fix n+1.
Sowemay write s« =1+5s +58,4.

LemmalV, 2.3,
(1+ S;+1 ) Gn+10) = O'nG+1) (1 +S;+1 ).

Proof

Equivalently, we show p,, (1 + 5841 ) Ppyq = (-1)" (1 + sfi41 ). First consider the term

Pn-Pn+1 On the left-hand side. Note thatp .p .1 =(n+1n..21) = ?\,;11, and since this is

a 1-shuffle with 7‘-;11(1) = n+1 1t appears in the right-hand side and the factor (-1)"
cancels 1ts sign. Now let &t be a k-shuffle in S, +1» NOt fixing n+1, so we must have rtk =
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n+1. Consider p_ 7t p, 4. Then it is easy to see that p, T p, 4 is an ( n+2-k )-shuffle such
that (n+2-k ) n+1. (If k = 1, we musthave © = A~1,,and we getp, ppyq=1). O

Recall that spe;,() = en()sy = Hien(), where J; = 2)-2.

LemmalV.2.4.
€00 Op1(0) (Spyq - H; ) =0.

Proof

€,() Gn410) (8541 - 1; )=¢€,() (8pq - K; ) 0,.1(), since G, +0)1sa polynomial in ;.4
=e (J) (1+s,+sp41- o ) G;4+10)
= €,0) (S - 1) Opyq () + Q) (1 +5741) O yg 0
=€ (j) (1+sf41) Op,10), since ey()sy = Hien()

= ¢,(j) o, (+1) (1+sp,1) by LemmalV.2.3.
= (). O

Proposition 1V.2.5.
€,0) cn+1(j) = €,() Op4+10)-

Proof

It follows from Lemma IV.2.4. that e (j)o,,4() is contained in the left ideal

QSp.1(en,1())- Hence, e,() 0,4 () = €,() Op,10) €41 (). But 64,40) €4410) = €4,40)-
SO: en(i) Gn+10) = enG) cn-[-‘lG)* .

In fact, using the same methods, we have:

€,0) cn+10) = enG) Gn+1(j) = 0,() en+1(i)-
Section IV.3 : Ap,16,())@S,44 as a Virtual Representation

The main result of this section is Theorem IV.3.3., giving a description of the
representation A, 1€,()QS,41. In order to prove this we first need a proposition.

Definition1V. 3.1.

We define certain elements of the group algebra @S, 4 :
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] 2
Xna1 () = — [(n 1)+(-1)’0Pn+2 (1—2)(sgn 7\':1+1)7"n+1j|
Proposition 1V.3.2.

€00) €0410) Xpy10) = (1 = Ay, 4) €,0).

Proof
We will use e,()) = (-l)jcn(i)opn: also op,0p,,1 = —-(sgn 7";11) ln +1°
Now e,() €,,10) X, 10) = €,() 0,,10) X,410), by Proposition IV.2.5.
- =1/2¢,G) (1 + (-1Yop, 1 ) X, 1()
So e () e .10) xn +1@)=1/2¢,(0) (1+0p,0py.1) X,410) since e, () =(- 1)Jcn(.|)t:>pn
=1/2¢,() (1 - (sgn A7) A7) xp440)

Now :
- (580 Anip) Anig st @)

-2

n+1[ (n=1)(sgnAziAn i+ 1) (sgnAgiPAThopy + 2 (1= 1)(sgn 741+1)7‘~n+1}
-2

-- 'T'{[ gzt igtions+ S, G- Dieen 2} oxm]
S0 :

(1- (sgn A73y) Ans1) Xn+10)
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Thus Cn(j) Cn+1(j) xm_l(i) = reln+(li l: n- Z (sgn xi‘l+1)lil+1]
1=1

=€,0) (1 - Ap )= (1 - Apip) €0 =

Now we can prove the main result. First note that given an idempotent e € @S, giving a
representatione@S . of S, then the induced representation of S,41 1S given by eQS,, . 1

Theorem1V.3.3.

The representation A_,,e (@S, is given as a virtual representation by inducing the
sum from i = 1 to j of the representations ¢ (i)QS  to S, 4 and subtracting the sum from1
= 1to of the representations e, +(1)QS__ 4.

1.e. in terms of QS .- modules :

. ) _ )
An41€nDQS,, 4 & ,®len+1(l)QSn+1 = ,elen(l)msnﬂ'
1= 1=

Proof

The result will be proved by induction on j. First we consider the case j = 1. Here we
need to show that :

Api1€a(DQS, 4 © en1(DQS,41 = eq(1)QSy4.
Now itis clear that e (1)QS, 1 = A 11€(DQS, 1 D (1 = A, 9) e, (DAQS, 4.
So we must show that :

°n+1(1)QSn+1 =(1- An+1) en(l)QSnﬂ'
Note that these modules both have dimension nl.
We define 0 : e, 1(1)QSp41 > (1 - A9 e(1DQS, 4 to be the homomorphism of right
QS,,;1~-modules given by left multiplication by the element (1 - A, 4) e, (1).
Then (1 - A, )e,(1) = e(De, . ((Dx (1) = (1 = Ay e(Depq(Dx,,4(1) =
O(e,,1(1)x,1(1)), by IV.3.2. Thus 6 is surjective, and so an isomorphism, giving the result
forn =1,

Now we assume the result for j-1, and consider j. Using the induction hypothesis it is
sufficient to show that :

An41€0)QS ;1@ €1 (DQS g 2 €, (RS Ayyy1€,(-1)QS 4.
Now we clearly have : ¢, ()RS, 4 = Ap1€, ()RS, 4 © (1 - Ay q) €,0)QS, 4, sO we
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must show that :

en+1(j)QSn+1 = An+1an-1)QSn+1 D(1- An+1)enG)QSn+l'
By Corollary IV.2.2,

°n+1(j)an+1 = A1'|+len(j'1)‘Dsn+1e yQSn+1.
Hence, the above simplifies to showing that :

yQSnH =(1 - An+1) enG)QSnH'

We define 0 : €,,1(G)QSp 1= (1 - A ,y) €,G)QS, .4 to be the homomorphism of right
@S, ;1-modules given by left multiplication by (1 - A, 1)e. ().

Now A, .4e,(G-1)QS, .1 < Ker6,since (1 - A, 1) e,(0)A,1€,G-1) = 0.
Hence, 0 induces a QS 1~-module homomorphism :
0':yQ@S 1> -A 1) e,(DAS, 4.

Now we check the dimensions of these @S, 1-modules.

Recall that Hanlon [ H ] gave the dimension of € (j)@QS,, as the number of permutations in
S, with exactly j cycles, s(n, j). Also, we have already seen that Ap,1€,0)QS, does restrict
to €,(J)@QS,,, so has the same dimension. So, yQS, 4+ has dimension s(n+1, j) -s(n, j-1),
and (1 - A, 4)e,()QS, . 4 has dimension (n+1)s(n, j) - s(n, j) = ns(n, j). Since an easy

calculation gives s(n+1, j) = s(n, j-1) + ns(n, j), the two modules do have the same
dimension.

Hence, it is sufficient to show that 6 is surjective to conclude that it is a QS . 4-module
1somorphism.

But, (1-A,.1e,0)=¢,0)e,,10) X,410), by Proposition 1V.3.2,
= (1= Aqi0)en0) €ny40) X4410)
= 0" (€410) Xp410) ).

Hence @' is surjective. -
Notation

Let ‘me denote the character of the representation A, 1€,(G)QS,, 4 of S, 4.

Let X3 denote the character of the representation e (j)@S, of S,. (This is Hanlon's
notation).
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Corollary 1V. 3 4.
‘I‘{Hi = Zmdsll“(xn) - anﬂ
1=1
Proof
Immediate from the above. a

We give the formula for the character 1 o 41 of the tree representation V, 'explicitly.

Corollary IV, 3.5.
sgn (n)lp"/ P(n /p)(p) if © has cycle type p"/P.1
n
‘P}x +1(n) — 1 1qn+1/¢l((n+ 1D /9'n(q 1f © has cycle type q“+1/ 1, q#1
0 otherwise,

forte S, 4, and where p denotes the classical Moebius function.

(The cycle type of t € Sy is 1%12%2,.. if when 7t is written as the product of disjoint cycles
there are o4 1-cycles, a9 2-cycles and so on).

Proof

Firstly, we have shown that i L 44 Testricts to xn So any ® with at least one fixed
point, being conjugate to an element of S, has :

sgn (n)—l-p“/ P(n /p)p(p) if ® has cycle type p"/P.1
n+1 (n) = L

0 otherwise,
since this holds for x}l - see [H] or [ G ). (This is a straightforward calculation from

Hanlon's result: x}l = sgn *(ind%n @(m n))))... Now consider © € S, .4 without fixed
o :

points. We have shown that ‘Pn o = mdggﬂ(ﬁ,) - x}l +1- The standard formula for an

induced character gives :

ind§n#(xp)m =1/n! ¥ ¥ (ono™)

Gesn+1
Conjugates of ©t have the same cycle type, and hence do not lie in S, so this expression is
zero. So, for Tt without fixed points, \Pn =" xn +1» and the result follows from[H]. D
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Section IV.4 : Some Results on Decompositions

The following table lists the decompositions of the representations of Sy .4
corresponding to the idempotents Ay, 1e,(G), forn=1,...,4andj= 1, .., n.

TableIV.4.1.

The first column gives the representation of S, 1 which comes from the tree space T;.
(We have seen that this is Ay, 1en(1)@S,, 1). The above restrict to the representations listed
by Hanlon [H ] for the €,()@S s (see Table 1.5.3.).

In the diagram above, the sum along the n'® row gives the representation Ap 4 @S, 4,
ie. the sign representation of C. . 4 induced to S, .4, which restricts to the regular
representation of S - the sum along the n' row in Table 1.5.3.

For some values of j, it is possible to describe the decomposition of the representation

Apn+1ep(DQS,,, 4 into irreducible components. Let w* denote the irreducible character of the
symmetric group S_, 1 corresponding to the partition A of n+1.
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Proposition IV 4.2,

1). (j=1) The multiplicity of o’ in \P}I +1 1s the number of standard tableaux T of shape A

such that a(T) = 1 (mod n) minus the number such that a(T) = 1 (mod n+1). (Recall from
1.5. that a(T) denotes the sum of ascents of a tableau T).

2). (j=n-2) ¥1-2 = 21" @ 321" @ 031" @ 51,
. _ -2
3). j=n-1) ¥071 = 31",

4).(j=n) Yo = m1n+1.

n

5). The multiplicity of ®* in the sum of characters ¥ ‘P{] 41 18 the number of standard
=1

tableau T of shape A such that a(T) = 0 (mod n+1).

Proof

1). Claim : T is a standard tableau for S, 4 such that a(T) = 1 (mod n) if and only if it is

obtained from a standard tableau T’ for S_, with a(T’) = 1 (mod n), by attaching n+1 to the
end of some row/column.

Proof of Claim : Given such a tableau T, n+1 must appear at the end of a row or
column since T is standard. Removing it gives a standard tableau T’ for S_ and the only
possible change to the ascents is that n may cease to be one. So a(T) = a(T") (mod n).

Now since in %} @M has multiplicity the number of standard tableau T of shape . for
S, such that a(T") = 1 (mod n) [ K-W ], the claim shows that in indg::“(x}l), o> has
multiplicity the number of standard tableau T of shape A for S .4 such that a(T) = 1 (mod
n). Since, ‘{1}1 = indgg'*i(x}]) - x}l +1 the result follows.

2).,3). and 4). These results follow directly from Hanlon’s for x'r“"z, x:"l and xg. 1.¢. For

1 =n-2, n-1, n, the decomposition of \P:] 1 given above 1s the only one which will restrict
back to give the correct decomposition of xfl. Of course, in the case j = n, we have
Apiien(n) = Ay 1€, = €. 1, and we can see directly that we have the sign representation.

5). We have seen that this sum of characters is just the sign character of C_ 4 induced to
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S.+1- The formula for the decomposition of this 1s given by Stembridge [ S ]. .

We also give the relationship between our characters and the trivial character.

Proposition 1V.4.3.

The trivial character ™" appears only in lpgﬁ if n is even and does not appear in
any Wi . if nis odd.

Proof
Lete .1 =1/(n+1)! Xm.

MESn+1

en+1 if N 1S even
0 if n is odd.
Hence, the trivial representation does not appear in A, 1@S,,4 when n is odd. When n s
even it appears once, and this must be in A . e (n/2)QS . 4, since Hanlon [ H ] shows that

It is easily checked that Api1ensq = {

the trivial representation of S_ appears in the restriction e, ( [(n+1)/72])QS,. 0
Corollary 1V.4.4.

The character @ does not appear in any \PL 4 i is even and appears only in
p @172 if n is odd.
Proof

The irreducible character o™ of S.,1 is the only one apart from @™ which gives the
trivial character of S, on restriction. Hence the result follows from the above. s

The even/odd parts of the representation can be described explicitly. Consider the
idempotent

Y. An+ten() if n is even
j even

>, Anp+ien j) if n is odd .
j odd
This gives the even or odd part of the decomposition according to whether n is even or odd.
It clearly gives the representation of S, .4 induced from the sign representation of the

dihedral subgroup generated by A,,1 and p,,.

Ar|+1'-'( 1+ (Sgn pn)Pn )/ 2 = An+1cn(n) =
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Proposition IV .4.5.
The character of the representation A, 10,(n)@QS, ;1 is given by, for n even
n! /2 if =1
(n/2)! 221 (sgn o) if ¢ has cycle type 2721
oH | qM+Y/d
wwmn—m if o has cycle type q"'H'/"l for q dividing n+1
2(n+1)
0 otherwise
and for n odd by
OpP
n! /2 if =1

(n-1)72) 2(=3)/2 (sen &) if o has cycle type 2(““1)/2. 12

 ~N+1/q
(n+1/q)t g o(q)(sgn o) if o has cycle type q““/ 1 for q dividing n+1,q# 2

2(n+1)
(n-1)/2 '
E—JWM if ¢ has cycle type 2 +1)2
(n+1)
0 otherwise

where ¢ is Euler’s function.,

Proof

We work out which cycle types occur in the subgroup Dygneqy = < (1 n)(2 n-1)..,,
(12..n+1) > =< pp, Ays1 - The elements are 7\,; +1 and py :' 4 for 1=1,..,n+l. We
have the elements of the cyclic group, with cycle type q(+1)/d occuring ¢(q) times for each

q dividing n+1. Now the elements p, l; +1 all have order 2, and consideration of fixed

points shows that if n is even they all have cycle type 20/2.1, whereas if n is odd half have
type 2(n-1)/2,12 and the other half have type 2(n+1)/2, Now the result follows from the
standard formula for an induced character. O

We can give formulae of sorts for the decomposition of this representation into
irreducibles, forexample :

Proposition 1V.4.6.
When n = 2 (mod 4) the multiplicity of @*in 3 \PJ;I +1 18 given by:

j cven
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(the number of standard tableaux T of shape A such that a(T) = 0 (mod 2))
+ 1/2 [the number of standard tableaux T of shape A such that a(T)=0 (mod n+1) -~ @A(1)]

Proof
By Frobenius reciprocity,

A inASn+1
< oA, ‘“dD’iE'mn(sg“) >

=< 0)lDZ(nH)’ Seil >D2(n+1)

1 . _ | |
2(n + 1) ié} (“)xo‘-:m) sgn(Ap4q) + (ox(Pnl},H) sgn(ppApyq) )-

As above, for n even all the pnlil +1's have cycle type 27/2,1. So we get:
1

2(n + 1)
2n/2 1

({48 gy + o)

-1 (( o*, ind2n+1 (sgn)) + 2( @”, indSn+ (sgn)> - oM(1) )

2 n+i <pn>

( (n+1) < o™, ind%rrllill (sgn)) + (n+1) m"'(o)sgn(o) ), where G has type

This formula involves representations induced from the two cyclic groups Cp,,1 and <pp>,
and the result follows from the results of Stembridge [ S ] on such representations. 0
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Chapter V : Some Remarks on Commutative Algebra
(Co)homology in Prime Characteristics.

Introduction

In this chapter we consider some aspects of commutative algebra (co)homology in
prime characteristics. We begin by describing the work of Gerstenhaber and Schack
[ G-S,2 ], giving a modified decomposition of the Hochschild (co)homology valid in this

situation. In fact their reasoning is slightly wrong and we make the necessary corrections.

We also correct their statement that the first part of the decomposition is still the null space
of the total shuffle operator or Harrison’s cohomology.

In the next section, we explain how to give the analagous decomposition of cyclic
(co)homology in prime characteristics.

Finally, we give a counterexample to a conjecture of Barr (see [ G-S,1 ] p232), which
states that a certain modification of Harrison cohomology, taking into account torsion,
should coincide with André/Quillen cohomology in prime characteristics.

Section V.1 : The Decomposition of Hochschild (Co)homology in
Prime Characteristics.

We have seen that when we work over k containing @, there is a direct sum
decomposition of Hochschild (co)homology. The first part of this decomposition is
Harrison (co)homology. Now suppose that k contains Zy,. In this situation Gerstenhaber
and Schack [ G-S,2 ] give a modified version of the decomposition. They show that for 0 <

1<p, the idempotents €,(i) = Y e, (i+(p—1)m) are defined in characteristic p. Thus,
m=20

setting _H_ﬁi,n_i (A/k; M) = e,(i)HH,(A/k; M), we have a direct sum decomposition of
Hochschild homology into p-1 parts

HH,(A/k; M) = HHin-1(A/k; M) © ... ® HHp-1 n-p+1(A/k; M),
and similarly for cohomology.

In fact, as we show, although it is true that these idempotents are defined in

characteristic p, the reasoning of Gerstenhaber and Schack is slightly wrong. Below we
make the necessary corrections to their argument.
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First we will summarise some more results over Q.

Definition V,1.1.

Lets@= Y ) (sgn o)oe ZS,,
peP(n,q) oeShy,

where P(n,q) denotes the set of all ordered partitions p = (py, ..., Pg) of n into q parts with
2p; = nand all p;2 0, and for p € P(n,q) the set of p-multishuffles, Shy, consists of © €
Sp such that 6(1) <... <o(py), o(p1+1) <... <O(p1+p2); ...y O(P1t+...+Pg-1+1) <... < O(n).

Hence, sg) = 1 and sgz) = s,+2, where s, is the total shuffle operator. The elements sﬁq)
come from the qt! characteristic endomorphism of the shuffle bialgebra, and differ from

Loday’s A-operations only by a sign, sg“) = (-1)9-1 l?l [ G-S,2 ], [ L,2 ]. Now,
Gerstenhaber and Schack show that b qu) = sg!_)_lb for each q, so that using the universal

property of the idempotents en(j) with respect to commuting with the Hochschild boundary
we have :

Proposition V.1.2, ([G-S,2),[L,2))
s@= 3 qle, (i) forall g 1. .
1=1

Inparticular, e, (i)sgn = qi e,()for1=1,..,nq21.
Now we wish to translate the above to characteristic p.

Proposition V., 1.3,

The idempotents e,(1) = Y e,(i+ (p—1)m) are defined in kS;, where k contains
m20
Z,, for p prime.

Proof

Over @, we have e, (i+ (p~ 1)m) (53‘1)- qi) = (qi+(p’1)m— qi) e, (1+ (p—1)m), for 1,
= 1, ooy P-1, m 2 (.

Now although q'*®D™ — g is zero mod p, the denominator of €, (i+ (p— 1)m) may also
contain multiples of p. However, by choosing a sufficiently large r, we have for each i:

ea i+ (p—1)m) (s@-q') = (gi*@-Dm_giy e (i+ (p-1)m) = 0 mod p.
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Hence, ¢, (i) (sg‘D-qi)r = 0 mod p, fort,q =1, ..., p-1.
Now let's also choose r to be a power of the prime p, so that (s@-q! ) = (qu))r_ qf =
(ss,""))r---qi mod p. Hence, we have ?n(i)(sf‘@)r = qi'En(i) mod p. So the idempotents

€, (i) satisfy the equations:

c p1._
(sQ) = 2 q'% @) (mod p) (*)
1=
The matrix of coefficients (q') is Vandermonde and invertible over Z),, so the idempotents
€, (i) are defined in characteristic p. O

Applying the same argument, we can deduce be (i) = e,_4(i)b from b s,(f') = s,(,@ b and
(x), so that these idempotents do decompose Hochschild homology.

p-1 .
The equation (#) replaces the equation s@ = 3 q'€, (i) (mod p) of Gerstenhaber and
i=1

Schack, which is wrong.

Now, Gerstenhaber and Schack incorrectly assert that the first part of the cohomology
—1n~1

decomposition, HH ~ (A/k; M) corresponding to €,(1), is the null space of the shuffle

operator s and thus Harrison’s n' cohomology group. In fact, we show that the three

. 1 n-1
objects, the null space of s,,, Harrison’s n'! cohomology group and HH g (A/k; M) are

all different.

We begin by showing that in characteristic p, Harrison cohomology is not the null
space of the shuffle operator. A Hochschild n-cochain f is a Harrison cochain if it vanishes
on shuffles. However, this means that we must have fs;;_; = 0 fori =1, .., n-1. In
characteristic zero this condition is equivalent to fs, = 0, and the Harrison n'" cohomology
1s the null space of s . However, in characteristic p, these two conditions are not equivalent.
For example, we have:

$19=1-(12)+(132)

$3=2-(12)-23)+(123)+(132).
If we work in characteristic 2 and consider those Hochschild 3-cocycles, f, which are
invariant under permutations, then fsm =0 o f =0, so there are no such Harrison

cocycles. However, fs; = 0 & 2f = 0, so any such cocycle lies in the null space of s3. A
specific example is given by taking the polynomial algebra Z,[x], with coefficients in Z,, on
which x acts trivially. Define a cochain f: Z,[x]®3 - Z, by

f[xii,xiZ,in&]: 1 if il — iz — i3 = 1
0 otherwise
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and extending linearly. Then f is not a Harrison cocycle. However, f is a Hochschild 3-
cocycle which is in the null space of s4, and it is not the coboundary of any 2-cocycle, g, in
the null space of s,, since

oglx,x,x]=glx2,x1+glx,x2]=gs,[x,x2].

e—eme ], #—1 .
Secondly, we note that Harrison cohomology isnot HH . We consider the example

of a polynomial algebra. If A = k[ x ], a polynomial algebra on one indeterminate, then

HH"(A/k; k) = 0 for n 2 2. For André/Quillen homology we have D?*( A/k; k) = O for
n 2 1. Now Barr [B] gives an example to show that in characteristic p, the Harrison
cohomology groups of the polynomial algebra k [ x ] are non-zero in dimensions 2p™, for
any integer m> Q. This shows that the Harrison and André/Quillen theories are different in

characteristic p. It also shows that the Harrison theory is not a direct summand of the
—1.n-1

Hochschild theory in prime characteristics. So HH (A/k; M) # Harr"(A/k; M).

o——].n~1

Thirdly, one can check directly that HH~ (A/k; M), the part corresponding to the
idempotent €,(1), is not the null space of s,,. For example, in characteristic 3:
&3(1) = e5(1) +5(3) = 2 + (1 3),
and one easily checks that e3(1)s3 # 0 (mod 3). As above, we only have that e, (1)(sp)' =

0 (mod p) for some sufficiently large r. In the above example, we have &;(1)(s3)° = 0
(mod 3).

We should consider the homology theory HHj.-1(A/k, M), since it is another
commutative algebra homology theory agreeing with Harrison theory in characteristic zero.
Firstly, it is not the same as I'~-homology: it is a direct summand of Hochschild homology
and therefore the higher groups are zero for the polynomial algebra k [ x ], whereas
Robinson [ Rob,2 ] has calculated that we get some non-zero I'-homology groups.
Secondly, it is not the same as André/Quillen homology. To see this, consider the
polynomial algebrak [x4, ..., x, ], whose higher André/Quillen groups are all zero.

We show that FIH_an( k(x4,..,%x ] k) #0, when n = 1 (mod p-1) and n <r. Here k is
a k[xy, ..., x,]-module via the map which sends each x; to zero.

Notation

Let Apldxy, .., dx ]denote the degree n elements of Ay [ dxq, ..., dx. ], the exterior k-
algebra on symbols dxy, ..., dx, of degree 1.
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Proposition V. 1.4,
If k contains Zp,
Aﬁ [ dxg» «e» dxr } if n=m(p-1)+1 for me N

HH1no1(k[Xq, o, X ] k) =
g L T {0 otherwise.

Proof

HH 1 (k[ Xy, o, X1 k) = & (DHH (K [Xg, o0, X 1 K) = €, (1) AP [dxy, ..., dx, ).
Now (sgn €,(1)) = (sgn Y e, (1+(p—1)m))

m=20

1 if n=m(p-1)+1
1 0 otherwise
Hence the result. O

So, -H_HL,.. 1 gives a theory somewhere between the André/Quillen and I theories.

Section V.2 : The Decomposition of Cyclic (Co)homology in Prime
Characteristics.

We note that we can give an analagous decomposition of cyclic (co)homology over k
containing Z;. As above, the idempotents €, (@), for i = 1, ..., p-1, are defined in
characteristic p, and we have be, (i) = €,_1(i)b.

Proposition V,2.1.
Be,_1(i-1) = ¢,({)B, fori = 2, ..., p-1,
Be,.1(p-1) = €,(1)B,
where B is Connes’ boundary operator in the normalised setting.

Proof

Now Loday shows that sffDB = Bq sfﬂ)_i [L,1,2 ). Thus (sg‘l))rB = qu(s@ )r.Then

n-1
by (%), for r some sufficiently large power of p, we have
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p—1 . p—‘[ . ' :
_Eiq‘en(l) B = Bq -Z1ql e,_1(1) = Bq z & _1(i)
1= f

P . 1.
= >.q'Bg_4(i-1) =qBe,_1(p-1) + X q'Bg_4(i—1) (modp)
i=2 1=2

The result follows by inverting the matrix (qb). D

It follows that the (b-B) bicomplex for cyclic homology is a direct sum of the sub-
bicomplexes, fori =0, 1, ..., p-1, where _('ff ) denotes . ()A® A®*):

bl g bl b bl bl

n+1 C (i'i)'l & _C-Igli —1) — o0 &~ (12 ) «— Cr(l?-:1£1 — -(-:.I(IE-iZ) 1"
bl g b bl b b

n c® cd .o TOL C(p—l) - Cls?_-z)i -
bl bl bl bi bl

(Here we adopt the convention €,(0) = 1. For i = 0, the bicomplex simply contains A,
concentrated in bidegree (0, 0).)
So, denoting by HC; +—i (A) the homology of the total complex of the above, we have:

Proposition V.2.2,

If A is a commutative algebra over k containing Zj, we have a decomposition of cyclic
homology into p-1 parts :

HC,(A) = HCi n-1(A) © ... ® fi—ép—i.n-mi(A)* forn> 0,
HCy(A) = HCy((A) = A. :

For p = 2, the decomposition is trivial. For p = 3, we have a decompostion of HC,(A) into

two parts, and this 1s HC,(A) = HD; (A) @ HD,(A), Loday'’s splitting in terms of dihedral
homology, where A has the trivial involution [L.4 .

The above also shows that the periodicity sequence linking Hochschild and cyclic
homology respects their decompositions.
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Proposition V.2.3.
For 1 =2, ..., p-1, there are long exact sequences :
vee =P H_H-i n-i(A) - ﬁai,n_i (A) » HCj-1,n-i-1(A) » HHj n-i-1(A) > ...

I S B
and fori=1:
.= HHi n-1(A) » HCy,n-1(A) » HCp-1,n-p-1(A) » HH1n-2(A)> ... O
I S B
Corollary V.2.4,

_H_ﬁ1,n_1 (A) is isomorphic to a direct summand of HC,(A) for 2 <n <p.

Proof
Fori = 1, the bicomplex is:

bl g bl bl

— —(p-1 —
D C[(}) — Cp(li-l ) — Cp(li-22) —
bl g bl bl
-1 rally;
P 1 0 &« 0 ¢
bl J J
o
\J
'(-:1(1) e_ —é(()O)
l
0
Itis immediate that HHq n-1(A) HCyn-1(A) for2<n<p. =
Corollary V.2.5.

When k contains Ly, Harrison homology, Harrp(A/k, A), is a direct summand of
Hochschild homology, HH,(A), in dimensions n < p, and of cyclic homology, HC(A), in
dimensions 2 < n < p.
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Proof

Note that for n < p, §,(1) = e (1) and so HHin-1(A) = HHin-1(A) =
Harrp(A/k, A). 0

Remark

Letk be Z,,. The idempotents €, (i), fori = 1, ..., p-1, are defined in characteristic p, so

they give rise to p-modular representations €,(i)kS, of the symmetric group S,. Since

2.¢eqn (1) = 1, these decompose the regular representation into p-1 parts.
i

Section V.3 : A counterexample to a conjecture of Barr.

We note that, if T is the tensor algebra of a commutative algebra A, then T/T*T may
have torsion. For example, [a, blx[a, b] = 2[a, b, a, b], so that when the ground ring k
contains @ a Harrison 4-cochain must vanish on [a, b, a, b], but not when k has
characteristic 2. Let us denote by HB* the homology of the subcomplex of all Hochschild
cochains vanishing not only on shuffles but also on those elements some multiple of which
1s a shuffle. Barr conjectures that this gives the triple cohomology (André/Quillen
cohomology). (See [ G-S,1]p232). We give a counterexample.

Proposition V. 3.1.
HB>( Z,lx]; Z, ) # 0, where Z, is a Z,[x]-module via the trivial x-action.

Proof

Define a Hochschild 4-cochain g by letting gl1, x, 1, x] = glx, 1, x, 11 = gl1, x, x, 1] =
glx, 1, 1, x] = 1, letting g be zero on any other chain of the form [x!1, x12, x13, x14], and
extending linearly.

Let f = dg. Now f # 0, since for example f [1, 1, x, 1, X] = 1. So, of course, f is a non-
zero Hochschild 5-cocycle.

Next we check that g vanishes on shuffles, i.e. gsj4-i = 0fori=1,2,3.Itis clearly
sufficient to check that g vanishes on shuffles which involve [1, x, 1, x), [x, 1, x, 1),
[1,x,x, 1] orlx, 1, 1, x]. For example,

g(1+[x,1,x])=gll, x,1,x] - glx, 1, 1, x] + glx, 1, 1, x] - glx, 1, x, 1] = 0.

Similar calculations show that g does indeed vanish on all such shuffles. Hence g is a
Harrison cochain, and so f = 8g is a Harrison 5-cocycle.
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Notice, however, that 21, x, 1, x] = [1, x]*[1, x], so [1, x, 1, x] has a multiple which 1s a
shuffle and yet g1, x, 1, x] # 0. i.e. g does not satisfy Barr’s condition.
In fact, if f = Oh, then:

1=f[1,1,x,1,x]=0h[1,1,x,1,xI=h[1,x,1,x].
So f is not the coboundary of any cochain satisfying Barr’s condition. Hence, 1f we can
show that f itself does vanish on elements some multiple of which is a shuffle, then{f]is a
non-zero element of HB>( Z,[x}; Z, ).

Now one easily checks that the only chains of the form [xi1, xi2, x13, x4, x!5] on which f is
non-zero are:

a, =[1,1,x,1,x], a, =Ix,1,x,1,1],
a, =[1,x,1,1,x], as =[x, 1,1, x, 1),
33 = [1, 1, X, X, 1], 36 = [1, X, X, 1, 1].

We have f(a;) = 1, fori = 1, ..., 6. We need only check for shuffles which are multiples of
expressions involving these terms. We introduce the following notation:
by =11,1, 1, x, x], b, =1[x,1,1,1,x], by=I[x,x,1,1,1],
by =11, x,1,x, 1L
We want to consider all possible shuffles involving three 1's and 2 xs. Routine calculations
yield that these have the following form:
Xq(a4+ay) + X5(ag+as) + X5(ay+ay) + x4(by+ay+as) + x5(bytastag) + xg(bytag+ay) +
X7(bytay+as) + xg(bgtas+ag) + Xgby, where x; € Z.
(For example, aq + a5 = [1, x] * [1, 1, x]).
Now consider when the above expression has the form q ( Zk;a; + Z1b; ), for g, k;, 1; € Z.
Firstly, the coefficient of each a; and b; is a multiple of q, and adding the coeff icients of a,,

8 8 .
as and by gives T xi. S0 Yx; € qZ. Secondly, the sum of the coefficients of the a;'s is
1=1 1=1
8
qXk; = 2 Y x;. Hence, qZk; € 2qZ, and Zk; = 0 (mod 2).

1=1

Hence, f does vanish on any element some multiple of which is a shuffle. So 0 # [f] €
HB( Z,[x}; Z, ). -

Notation

Cb* denotes the complex of Hochschild cochains satisfying Barr’s condition; as before

Ch* denotes Harrison’s cochain complex; Cs* denotes the complex of cochains vanishing
on the shuffle operator s, and HS* its homology.
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Now if f is a Hochschild n-cochain,
(f satisfies Barr's condition) 3 (fs;,.; = 0 fori = 1, ..., n-1) 3 (fsy = 0),
so we have inclusion maps at the level of cochain complexes :
Cb* (A/k; M) Ch* (A/k; M)~ Cs* (A/k; M),
giving induced maps in homology : |
HB*(A/k; M) - Harr*(A/k; M) -» HS*(A/k; M).
These maps are isomorphisms when k contains @, but not in general.
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Index of Notation

Symbol
(B,(A),b")

(C,(A),b)

(Ch,(A),b)
(cl,d)

(), b)

Harr.
HC,

HI'.

Meaning
standard Hochschild chain complex

'symmetrised Hochschild complex’

cyclein T, consisting of trees with
cyclic labelling

Harrison chain complex
I" chain complex

cyclic chain complex, in characteristic
ZEro

Barr'sidempotent
Eulerian idempotents in QS
category of finite sets and surjections

Harrison homology

Cyclichomology
I'~homology

Hochschild homology

Cyclichomology incharacteristic zero
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indgj (X)

lr|+1

An+1e’n(i)

representation X induced fromH to G

(01..n)e€S, 4,
or(12..n+1)€ S 4

new idempotents, in QS 4

(nk)(n-1k+1)(n-2k+2)..€S_,4

(-1)( [n-k+1]} [n-k+2)/2 - 1) Pnk

sum, with sign, over i-shuffles in S,
total shuffle operatorin QS

subcomplex of C, (A) generated by shuffles

space of fully-grown n-trees

representation of S, on T,

representationof S, s on T,

character of representatione (j))QS

character of representation A 1€, (@S 1

13

17

14
S0

49

41

41

22

22

47
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