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Summary 

This thesis covers two related subjects: homology of commutative algebras and certain 
representations of the symmetric group. 

There are several different formulations of commutative algebra homology, all of which 
are known to agree when one works over a field of characteristic zero. During 1991-1992 

my supervisor, Dr. Alan Robinson, motivated by homotopy-theoretic ideas, developed a 
new theory, ]F-homology [ Rob, 2 1. This is a homology theory for commutative rings, and 
more generally rings commutative up to homotopy. We consider the algebraic version of 
thetheory. 

Chapter I covers background material and Chapter Il describes r-homology. We arrive 
at a spectral sequence for IF-homology, involving objects called tree spaces. 

Chapter III is devoted to consideration of the case where we work over a field of 
characteristic zero. In this case the spectral sequence collapses. The tree space, Tn, which is 

used to describe ]F-homology has a natural action of the symmetric group Sn- We identify 

the representation Of Sn on its only non-trivial homology group as that given by the first 
Eulerian idernpotent en(l) in OSn- Using this, we prove that r-homology coincides with 
the existing theories over a field of characteristic zero. 

In fact, the tree space, Tn, gives a representation Of Sn+l- In Chapter IV we calculate the 
character of this representation. Moreover, we show that each Eulerian representation of Sn 
is the restriction of a representation Of Sn+1. These Eulerian representations are given by 
idempotents enO), for j=1, ..., n, in OSn, and occur in the work of Barr [B1, Gerstenhaber 

and Schack [ G-S, 1 1, Loday [ L, 1,2,3 I and Hanlon [H1. They have been used to give 
decompositions of the Hochschild and cyclic homology of commutative algebras in 

characteristic zero. We describe our representations of Sn+1 as virtual representations, and 
give some partial results on their decompositions into irreducible components. 

In Chapter V we return to commutative algebra homology, now considered in prime 
characteristic. We give a corrected version of Gerstenhaber and Schack's [ G-S, 21 
decomposition of Hochschild homology in this setting, and give the analagous 
decomposition of cyclic homology. Finally, we give a counterexample to a conjecture of 
Barr, which states that a certain modification of Harrison cohomology should coincide with 
Andr6/Quillen cohomology. 

iv 



Chapter 0: Introduction 

This introduction is given over to briefly summarising the existing cohomology theories 
for commutative algebras and some representation theory of the symmetric group. 

Chapter I covers the Hochschild and Harrison theories in more detail. In particular, it 

gives Gerstenhaber and Schack's [ G-S, 1 I decomposition of the Hochschild (co)homology 

of a commutative algebra in characteristic zero. This introduces the Eulerian idempotents 

enO) in QSn. This chapter is entirely expository. 
Chapter II provides the definition of IF-(co)homology, which is described in terms of 

the tree spaces. Apart from the presentation of the Ir category, this material is due to my 
supervisor, Dr. Alan Robinson. 

In Chapter III, by describing cycles in the tree space explicitly and investigating their 
connection with shuffles, it is shown that ][-(co)homology coincides with Harrison 
(co)homology in characteristic zero. 

Chapter IV describes the representation of the symmetric group given by the tree space, 
showing that it extends that given by the idempotent en(l). This result is generalised to 
show that the representations enO)QSn are all restrictions of representations of Sn+l- 
Character formulae are given for these representations. 

Chapter V contains some remarks on commutative algebra cohomology in prime 
characteristics. It gives Gerstenhaber and Schack's [ G-S, 2 I decomposition in this case, 
and clarifies some points about it. Then we give the analagous decomposition of cyclic 
cohomology. Finally, we give a counterexample to a conjecture of Barr. 

Section 0.1 :, (Co)homology Theories for Commutative Algebras 

There is a standard cohomology theory for an associative algebra A over a commutative 
ground ring k, called Hochschild cohomology. This was introduced by Hochschild in 1945 
[ Ho 1, (for the case where k is a field), and is covered in the standard texts on homological 

algebra, such as Cartan and Eilenberg [ C-E I and MacLane [ Mc 1. It fits into the general 
context of relative homological algebra, (see [ Mc, Ch. IX. 1). The nth Hochschild 

cohomology group of A with coefficients in an A-bimodule M, HHn(A/k; M), is the 

relative Ext group, Extn (A; M). This consists of equivalence classes, under a AOAOP, k 

standard equivalence relation, of those n-extensions of A by A-bimodules which are k- 

1 



- introduction - 

split. (See [ Mc 1). In the case where k is a field, requiring that the extension be k- split is no 

restriction, and the above is the same as the absolute Ext group, Extn (A; M). 
AOAOP 

Hochschild homology is defined in the obvious way. Hochschild (co)-homology is 

computed using a special case of the categorical bar resolution, ([ Mc I IX. 7). This is the 

standard Hochschild chain complex ( B. (A), b'), which is a relatively projective resolution 
of A by A-bimodules. 

The Hochschild cohomology theory has many nice properties, such as a dimension 

shifting technique [ Ho I and Morita invariance LJ 1. The second Hochschild cohomology 
groups are closely related to algebra extensions Ho 1. Two examples are worth mentioning. 
The first, due to Connes [C1, relates Hochschild homology to differential forms: if X is a 
smooth manifold and A= CI(X) is the algebra of smooth real-valued functions on X, 

then HHn(A; A) is isomorphic to Qn(X), the differential n-forms on X. The second relates 
Hochschild homology to standard group homology (see e. g. [ Mc, Ch. IV 1): if kG is the 

group algebra of a group G then HHAG; kG) is Hn( G; kGad ), the group homology with 
coefficients in the G-module kG, with G acting by conjugation. Alternatively, the 
Hochschild homology of the group algebra can be seen as the homology of the free loop 

space on the classifying space of the group, HHAG; kG) 2E Hn(LBG; k) [ Go 1. 
For a commutative algebra A, we may consider the algebraic differential forms on A. 

The A-module of differential 1 -forms CIIAlk has generators da for a in A, satisfying d(ab) 

= a. db +b. da. Then QlAlk is isomorphic to 1/12, where I is the kernel of the multiplication 
map AOA -ý A. The A-module of differential n-forms fln Alk is given by the exterior 

an I 
A/k* We have d: fln product over A, An fil Alk 4 Alk given by d(aodal... dan) = da0da, ... dan 

and we get the de Rham complex ( fl*Alk, d ), whose homology is the de Rham 

cohomology of the algebra, H*dR (A). For Aa smooth commutative algebra over k, and Ma 

symmetric A-bimodule, a result of Hochschild, Kostant and Rosenberg [ H-K-R I relates 
(& n Hochschild homology to algebraic differential forms, HHn(A/k; M) 25 MAA KlAlk* 

Cyclic cohomology was introduced by Connes [CI in 1985 in his paper 'Non- 

commutative differential geometry'. His original approach was through the theory of non- 

commutative differential forms on an algebra. Working over a field of characteristic zero, 
cyclic (co)homology can be defined by using the quotient of the Hochschild complex by the 

actions of the cyclic groups. Working over a general commutative ground ring, the 
definition can be given using a certain bicomplex, as described by Loday and Quillen 
[ L-Q 1. This gives rise to a spectral sequence, involving the homology of cyclic groups, 
converging to cyclic homology. An important property of cyclic homology is the long exact 
'periodicity sequence' which links it to Hochschild homology, due to Connes [C1. Cyclic 
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homology is Morita invariant. Returning to our two examples, for the algebra A= 010(X) 

of smooth functions on a manifold X, we have a result of Connes [CI relating the cyclic 
homology to de Rham cohomology: 

HCn(A) a5 j2n(X)/dK2n-1(X) ED YHn-2i (X). dR 

Loday and Quillen [ L-Q I proved an algebraic version of this result. If A is a smooth 
commutative algebra over k containing 0, then 

A/k/dan-I (E) n-2i (A). HCn(A) as fln A/k 
YaHdR 

i>1 
Secondly, the cyclic homology of a group algebra is given by the SI -equivariant homology 

of the free loop space on the classifying space of the group, HCAG) 25 HS 
I (LBG; k) 

n 
Go 1. Cyclic homology is also related to Lie algebra homology. Loday and Quillen [ L-Q 

show that, over a field of characteristic zero, cyclic homology is the primitive part of the 
homology of the Lie algebra of matrices. 

There have been several attempts to construct a theory specifically suitable for 

commutative algebras. Firstly, there is Harrison cohomology, defined by Harrison [ Ha I in 
1962. In the case of a commutative algebra, the Hochschild complex has a shuffle product. 
The quotient of the Hochschild complex by the decomposable elements for this shuffle 
product gives a complex, whose (co)homology is the Harrison (co)homology. If one works 
over a ground ring containing Q then Harrison cohomology is a direct summand of 
Hochschild cohomology. In dimensions greater than two, it is also a direct summand of 
cyclic cohomology. The second Harrison cohomology groups can be related to 
commutative algebra extensions [ Ha 1. 

Another version of commutative algebra cohomology is that due independently to 
Andr6 [AI and to Quillen [Q1. This gives cohomology for Aa commutative algebra over k 

a commutative ring, with coefficients in an A-module M. The cohomology groups, 
D*(A/k; M), are defined as certain derived functors of derivations on the category of k- 

algebras over A. In particular, DO(A/k; M) = Derk(A, M). The derived functors are 
defined by applying the functor X ý+ Derk(X, M) to a free simplicial k-algebra resolution 
of A, and taking cohomology. This theory is related to the more general cotriple 
cohomology, which is described in ( B-B 1. In particular, the symmetric algebra cotriple 
gives rise to another version of commutative algebra cohomology, which is described by 
Barr [B1, and which is identical to the Andr6/Quillen theory. When A is a projective k- 

module and k contains 0 Andr6/Quillen cohomology coincides with Harrison 

cohomology. The Andr6/Quillen theory has the property of transitivity, that is to say there 
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is a long exact sequence in cohomology for a triple of commutative rings. It also has a flat 

base change property, meaning that if Tor k(A, B) =0 for q>0, where A and B are k- 
q 

algebras, then we have isomorphisms: 
Dq (AOkB/B; M) Dq(A/k; M) 

Dq (AOkB/k; M) Dq(A/k; M) E) Dq(B/k; M), 

where M is a AOkll-module. If A is a smooth commutative k-algebra then Dq(A/k; M) 

=0 for q>0. There is a spectral sequence relating Andr6/Quillen cohomology to 
Hochschild cohomology, which can be used to deduce a decomposition of Hochschild 

cohomology when k contains 0. 
IF-homology is a new homology theory for commutative algebras, formulated by my 

supervisor, Dr. Alan Robinson [ Rob, 2 1. In fact the theory extends to the topological 
analogue of commutative rings, E00-ring spectra [M1. Its introduction was motivated by 

consideration of obstructions to the existence of E00 structures. (Another theory for E. - 
ring spectra is the topological Hochschild homology of Bokstedt, Hsiang and Madsen 
[ B-H-K 1). The IF-theory can be described by giving an explicit chain complex, closely 
related to the nerve of the category, IF, of finite sets and suýective maps. If instead, we were 
to use orderpreserving surjective maps we would simply get the Hochschild complex. Ile 
idea is to describe an analogous complex, but, using the commutativity of the algebra, to 
build in the actions of the symmetric groups. We arrive at a spectral sequence for IF- 
homology, involving the symmetric groups. Properties of the theory include a long exact 
sequence for triples of commutative algebras or 1300-ring spectra. In this thesis, we shall 
only cover the strictly algebraic version of the theory. Ile main result of Chapter III is that 
IF-homology coincides with the existing theories in characteristic zero. 

Section 0.2 : Representation Theory of the Symmetric Group 

The second subject covered by this thesis is representation theory of the symmetric 

group. Since I-hornology is given by a spectral sequence involving the symmetric groups, 
it is important to understand the symmetric group representations which arise, the tree 

representations. This in turn led to the study of some closely related representations, those 

given by the Eulerian idempotents. For each n, in the rational group algebra of the 

symmetric group, On, we have a collection of n mutually orthogonal idempotents enO), i ý- 
1, ..., n, whose sum is 1. These were originally introduced by Gerstenhaber and Schack 
[ G-S, 1 1, who defined them as certain polynomials in the total shuffle operator, sn. They 
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showed that they are essentially the unique elements with the property of commuting with 
the Hochschild boundary. They therefore can be used to give a decomposition of the 
Hochschild (co)homology of a commutative algebra over a ground ring containing Q. 

Natsume and Schack [ N-S I generalised this result to give a similar decomposition of 

cyclic (co)homology for a commutative algebra over k containing Q. An alternative 
approach, also giving the decompositions of Hochschild and cyclic (co)homology, is given 
by the X-operations of Loday [ L, 1,2 1. This involves the Eulerian partition of the 

symmetric group, according to the number of descents a permutation has. For each n, we 
have n representations enO)QSn Of Sn, giving a decomposition of the regular 
representation. 

The main results on the symmetric group representations enO)QSn given by these 
idempotents are due to Hanlon [H1. He gives a description in terms of sums of 
representations induced from wreath products, and thus provides character formulae. The 

general problem of giving descriptions of the decompositions of these representations into 

their irreducible components remains open. However, there is a description for the special 
case j=1. This is due originally to Kraskiewicz and Weyman [ K-W 1, and an alternative 
approach can be found in [S1. The same representations arise in the different context of free 

Lie algebras, and have here been studied by Reutenhauer [RI and by Garsia [G1. 

We show that each of the Eulerian representations Of Sn is the restriction of a 
representation Of Sn+l- We give a description of the new representations and character 
formulae. For certain cases, we give the decomposition of the representation into irreducible 

components. 
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Chapter I: Hochschild, Harrison and Cyclic (Co)homology 

Introduction 

This chapter outlines the background necessary for the subsequent work, describing 

some of the existing (co)homology theories for commutative algebras. It is entirely 
expository. 

The first section describes Hochschild (co)homology. This is a standard cohomology 
theory for any associative algebra over a commutative ground ring with coefficients in a 
bimodule over the algebra. It was introduced by Hochschild in 1945 [ Ho 1. The 

cohomology groups can be described in terms of extensions of bimodules over the algebra. 
It is computed using a certain standard complex, which simplifies in the special case we are 
interested in, where the algebra is commutative and the coefficient bimodule is symmetric. 

Next we introduce Harrison (co)homology. This is a theory for the case of a 
commutative algebra and a symmetric coefficient module. In this situation, Harrison 
(co)homology is computed from a certain quotient complex of the Hochschild complex, 
defined in terms of particular permutations called shuffles. This theory was developed by 

Harrison in 1962 [ Ha 1. 
Ile third section summarises further properties of Hochschild and Harrison 

(co)homology which hold in the special case where the ground ring contains 0. By 
introducing an idempotent en in the group algebra QSn, Barr [BI showed that the Harrison 

complex is a direct summand of the Hochschild complex, and hence Harrison 

(co)homology is a direct summand of Hochschild (co)homology. By defining further 

idempotents enO) in OSn for j=1, ..., n, Gerstenhaber and Schack [ G-S, 1 I generalised 
Barr's results. They give a decomposition of the nth Hochschild (co)homology group as a 
direct sum of n parts, the first of which is the Harrison (co)homology. 

We note the similar decomposition of cyclic (co)homology of a commutative algebra 

over a ground ring containing Q, due to Natsume and Schack [ N-S I and to Loday [ L, 1,2 1. 

The standard periodicity sequence linking Hochschild and cyclic cohomology also 
decomposes as a sum. Other approaches to the decompositions can be found in [ F-T 1, 
[B -V I and [VI (for differential graded commutative algebras), and [P1. The %-operations 

and further properties of the Eulerian idempotents are covered in [ L, 1,2 1. 
Finally, we give Hanlon's results [HI on the characters of the representations enO)QSn 

of the symmetric 90UP Sn- 
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- Hochschild, HatTison and cyclic (co)homology - 

Section 1.1 : Hochschild (Co)homology 

Let A be an associative algebra (with identitY) over a commutative ring k and let On 

denote AOAO ... OA, the n-fold tensor product of A over k. The Hochschild 
(co)homology groups of A with coefficients in an A-bimodule M can be defined using a 
certain standard complex of A-bimodules, B. (A), where Bn(A) = AOAOnOA and the 
boundary b': AO(n+2) A'9(n+I) is given by 

b'(aoO ... Oa n H)i ( a00 ... Oaiai+, O ... Oan+l n+1 ýI 
i=O 

This complex is acyclic because of the contracting hornotopy, s: A19*1) 4 AO(n+2) given 
by 

s (aO0 ... Oan 1 OaOO ... (Dan 

satisfying b's + sb' 1. Here s consists of k-module homomorphisms, providing k- 

splittings for V. (Equivalently, s can be regarded as consisting of right A-module 
homomorphisms, providing right A-splittings). 

Definition L 1.1. 
The Hochschild homology groups of A with coefficients in an A-birnodule M are 

defined by 
HH. (A/k; M) = H(MOA(&AopB*(A)). 

Similarly, the Hochschild cohomology groups are given by 
HH*(A/k; M) = H(HomAOAop(B. (A), M)). 

When A is projective over k, B. (A) is a projective resolution of A as an A(DAOP- 

module. (See [ C-E I p175). So, 
HHn(A/k; M) = Extn (A, M). 

A(&A'P 
Thus HHn(A/k; M) consists of equivalence classes, under the usual relation, of n- 
extensions of A by A-bimodules. In particular, this holds when k is a field. 

In general, B. (A) is a k-split resolution of the bimodule A by (AOAOP, k)-relatively 

projective bimodules, (or an A-split resolution by (A(&AOP, A)-relatively projective 
bimodules). This means that Hochschild cohomology is actually an instance of a relative 
Ext group , and should more properly be written: 

HHn(A/k; M) = Extn (A, M) 2ý Extn 
AOA'P, k AOA*P, A (A, M). 

Thus HHn(A/k; M) consists of equivalence classes, under the usual relation, of those n- 
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- Hochschild, Har7ison and cyclic (co)homology - 

extensions of A by A-bimodules which are k-split, (or equivalently A-split). [ See [ Mc 
P282 1. 
Since we have 

HOMAOA'P(Bn(A), M) = HomA0Aop(A(DAOP(&AOn, M) 

2s HOmk(Aen, M), 

we can use the universal property of the tensor product to describe the Hochschild complex 
in dimension n explicitly as the k-module of all k-multilinear functions f on the n-fold 
Cartesian product Ax... xA of A. It can be checked that this complex then has 

coboundary given by: 

8f( ap ..., an+, alf( a2, ..., an+, )+ (-I)i f( ap ... ' aiai+,, ..., a n+1 

+ (-l)n+lf( ap ... ' an )an+, 
* 

This retrieves the original definition of Hochschild [ Ho 1. Similarly, for homology 
MOAgAopBn(A) 2-- MOA(&n. 

and the boundary b: M(&Aon 4 M(8)A(&n-1 is: 

n-I b (mgalg ... (Dan) = majOa2O ... 
Oan+ (-l)'mOaO... (gaiai+lO ... 

Oan 

+ (-l)n anmOalO... Oan-1. 

A zero cochain is a constant mGM; its coboundary is the function f: A4M given by 
fa = am - ma. Hence, HHO(A, M)=f meMI ma = am V ar=A 1, the invariant elements 
of M. A 1-cocycle is a k-module homomorphism f: A -ý M which satisfies 
f(aja2) = ajf(a2) + f(aj)a2 V a,, a2 G A. Such a functor is called a crossed homomorphism 

or derivation of A into M. It is a coboundary if it has the form fm(a) = am - ma, and these 

are called principal crossed homomorphisms. Hence, HHI(A/k; M) consists of all the 

crossed homomorphisms A4M, modulo the principal ones. 

Now let A be a commutative k-algebra and let M be a symmetric A-bimodule i. e. am 
ma V ae A, mE M. (Of course this is really the same as a left A-module). As Barr points 

out [B1, using the fact that M is symmetric, we can work with a 'symmetrised' complex, 
since then we have 

HOMAOA (Bn(A), M) ne HOMA (Cn(A), M), 

where C, (A) = AOAOn, viewed as a symmetric A-bimodule with A acting on the first 
factor. 
Denote ( aO(& ... (Dan) E Cn(A) by ao [ al, ..., an I. The boundary b: Cn+j (A) 4 Cn(A) is 

given by the A-linear map such that: 

8 



- Hochschild, Hat7ison and cyclic (co)homology - 

.... an+, ap ..., an+, a, [ a2, ... ' an+, + ap ..., aiai+,, 

+ (-I)n+l an+, ap an 

Then the coboundary of f r= HOmA( Cn(A) ,M) is given by the A-linear map such that: 

n Sf [ ap..., an+, I= alf [ a2, ... ' an+1 + (-I)i f[ ap..., aiai+,,..., an+, 

+ (_ 1)n+l an+If ap..., an 
Note that when M is symmetric HHO(A/k; M) =M and HHI(A/k; M) = Derk(A, M), the 
derivations of A into M. 

Section 1.2 : Harrison (Co)homology and Shuffles 

The (symmetrised) Hochschild chain complex ( Cn(A), b) for a commutative algebra 
has a product, known as the shuffle product. 

DefinitionLZI. 
A permutation 7c in the symmetric group Sn is called an i-shuffle if 7cl < n2 < ... < ni 

and n(i+l) < n(i+2) < ... < 7cn. Ilen the shuffle product Ci(A)OCn-i(A) -+ Cn(A) is 

given by 

a[ ap ..., ai I* al ai+,, ... t an I (sgn n) aa'[ a. 41, yn I 

where the sum is taken over all i-shuffles 7E E Sn- It is easily seen that this product is 

associative and graded commutative. In fact the product passes to a map 
*: Ci(A)OACn-i(A) 2ý Cn(A) -* Cn(A). 

DefinitionLZZ 
We define elements Six-i Of the group algebra kSn- 

Let si, n-i =I (sgn n) n, where the sum is over all i-shuffles in Sn- 

Let Sn act on on the left on Cn(A) by 7E ao [ ap an ao [ a. 41, ..., aic-In 
Then [ ap ..., ai I*[ ai+,, ..., an I= sin-i [ ap an 1. 

Definition 1.2.3. 
n-I n-I Let Shn(A) Im si, n-i. Let Sn Si, n-i - (st = SO = 0)- 
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- Hochschild, HarTison and cyclic (co)homology - 

The element sn is called the total shuffle operator. 
The shuffle product is well -behaved under the boundary: 

Proposition 1.2.4. 
b( [a, 

..., all* [aj+j,..., an])= (b[al 
..., ail)* [aý+,,..., anl 

+ all* (b[aj+j ... -, anl) 13 

It follows immediately that Sh. (A) is a subcomplex of QA). So we can consider the 
quotient complex Ch. (A) = QA) / Sh. (A). Ibis is the Harrison complex. 

DefinitionLZ5. 
For Ma symmetric A-bimodule, the HaiTison (coffiomology groups of A, with 

coefficients in M are given by: 
Harr. (A/k; M) =H (MOACh. (A)), 
Harr*(A/k; M) =H (HOMA(Ch. (A), M)). 

Equivalently, Harrison cohomology can be regarded as the homology of the complex 
consisting of those Hochschild cochains which vanish on shuffles. i. e. A Hochschild n- 
cochain f is a Harrison cochain if fsin-i = 0, for i=1, ..., n-1. 

Section 1.3 : The Decomposition of Hochschild (Co)homology 

Throughout this section it is assumed that A is a commutative algebra over k 

containing 0. The preliminary results used to prove the existence of a decomposition of 
Hochschild (co)homology in this situation are contained in Barr's paper 'Harrison 
homology, Hochschild homology, and triples[ B 1. They are summarised below. 

Let sgn : QSn 40 be the algebra homomorphism extending the usual alternating 
representation sgn : Sn 4 0- 

Definition 1.3.1. 

Let en '1 /n! Y, (sgn ir) ir 
7CES n 

It is then clear that for all u in QSn, ucn ý-- F-nu ý (sgn u) Cn- 

10 
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Barr shows that this element, applied to any chain, vanishes under the boundary b, and that 
it is essentially the only such element: 

Proposition 1.3.2. 

1). For all [ ap ..., an 1, ben[ ap..., an 0. 
2). If u in QSn satisfies bu[ ap..., an 0 for all [ ap..., an I then u= (sgn u) F-n- 13 

The behaviour of the shuffle product under the boundary gives : 

Proposition 1.3.3. 
For n 'a 1, bsn " sn-lb. ( s, = so =0). 11 

Now we are in a position to introduce the idempotent en in QSn, which was defined 
inductively by Barr. 

Theorem 1.3.4. 
For each n ý: 2 there exists an element en of QSn, ('Barr's idempotent'), satisfying: 

1). en is a polynomial in sn without constant term; 
2). sgn en = 1; 
3). ben = en-lb; 
4). e2n = en; 
5). ensiri-i = six-i for 1: 5 i: 5 n-1.13 

Theorem 1.3.5. 
1). enOSn 7- si, n-iOSn, so Shn(A) -,.: enCn(A). 
2). Cn(A) enCn(A) ED (1-en)Cn(A), SO Chn(A) = (1-en) Cn(A). 13 

So the Harrison complex Ch. (A) is a direct summand of the Hochschild complex QA), 

and hence Harrison homology, Harr. (A/k; M), is a direct summand of Hochschild 

homology, HH*(A/k; M). 

Gerstenhaber and Schack [ G-S, 1 I have shown how to extend the results of Barr to 

give a further decomposition of Hochschild homology in this situation. They show that in 

fact the Hochschild complex splits as a direct sum of sub-complexes : 
Cn(A) = Cln-I(A) ýý C2, n-2(A) ED ... ED CnO(A), 

11 
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where Cl,. -I(A) = Ch. (A), Harrison's complex. 
Consider sn G QSn- It is an element of a finite dimensional algebra over a field, and so 

must satisfy some monic polynomial with coefficients in that field. There is a unique one of 
lowest degree, called the minimal polynomial Of sn- 

Theorem 1.3.6. 
The minimal polynomial Of sn is 

n 
mn(x) x-(2 -2)] 13 

Definition 1.3.7. 
Let gi = 2i-2. Then mn(x) ý (X-91) ... (X-gn)- 
Then let 

en 0) " rI (sn - Rd / (ýtj - Rd- 
i#j 

i. e. enO) is the value of the jth Lagrange interpolation polynomial at sn. The following is 
immediate: 

Theorem 1.3.8. 
The e,, O)'s are mutually orthogonal idempotents (the Eulerian idempotents) satisfying: 

pp Y, eno) = 1, and Ygjeno) = Sn- 13 
j=1 j=1 

Notation 
Let enO) =0 for n<j, and let eo(O) = 1. 

Theorem 1.3.9. 
1). en = en(2) +. .. + en(n); 
2). benO) = en- I O)b; in particular ben(n) = 0; 
3). sgn enO) =0 for j : P, -- n; sgn en(n) = 1; 
4). en(n) = en- 11 

Hence, the Hochschild chain complex QA) is a direct sum of the sub-complexes 
e. O)C. (A): 

n 
Cn(A) I eno)Cn(A). 

j=1 

12 
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This gives a decomposition of Hochschild (co)homology into a similar direct sum. 

Definition 1.3.10. 
HHj, n-j(A/k; M) denotes the part of HHn(A/k; M) corresponding to enO)- 

Summarising the above we have: 

Theorem 1.3.11. 
The Hochschild homology of a commutative algebra A over k containing 0, with 

coefficients in a symmetric A-bimodule M, decomposes into a direct sum: 
HHn(A/k; M) = HHIn-I(A/k; M) (D HH2, n-2(A/k; M) ED ... ED HHnO(A/k; M), 

where HHin-i is the eigenspace for the eigenvalue 2i-2 of the shuffle operator sn- 
In particular HHIn_,, the part corresponding to en(l), is Harrison's nth homology group. 
Similarly, for cohomology: 

HHn(A/k; M) = HHIn-I(A/k; M) ED HH2, n-2(A/k; M) ED ... ED HHnO(A/k; M), 

where HHI, n-I(A/k; M) = Harr"(A/k; M). 0 

Gerstenhaber and Schack [ G-S, 2 I also show that the nth component of the 
decomposition of HHn(A/k; M) consists of the 'skew multiderivations', where an n- 
cochain f is skew if fa = (sgncr)f for all or= Sn and is a multiderivation if it is a derivation 

of each argument (all others being held fixed). For homology, the result is HHn, O(A/k; M) 

an ý5 MOA Alk. The decomposition coincides with the usual Hodge decomposition of 
HV, P, for Xa smooth complex projective variety [ G-S, 3 I. 

Gerstenhaber and Schack [ G-S, 1 I also note that the enVs are essentially the only 
operators which commute with the Hochschild boundary: 

TheoremL3.12 
If we have tn e OSn for n=1,2, ... such that btn = tn- lb for all n, then 
n 

.., 
( sgn tj )e 13 tn =I nO)- 

j=1 

Section 1.4 : The Decompositon of Cyclic (Co)homology 

In the case where we work over a ground ring containing 0, cyclic (co)homology is 

13 
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particularly simple to define. Essentially it is computed from the quotient of the Hochschild 

complex under the actions of the cyclic groups. 
To calculate the Hochschild homology of A with coefficients A, we use the complex 

(AO(*11)0 b) where b: AO(n+l) 4 On is given by: 
n-I b( aO(& ... (&an)= F, (-1)1 ( ao(g... Oajaj+10 ... Oan + (- 1)n ( anao(& ... Oan-I 
i=O 

We denote its homology, HH. (A/k; A), simply by HH. (A). 
We let the permutations of 10, n) act on A&(n+l) by : 

ic ( aoO ... Oan )=( an-, 00 ... Oalt-in ). 

Notation 
Let An+1 denote the (n+1) -cycle (0 12 ... n) and let t= (sgn ý-n+IP-n+l. 

We have the relation b( I-t) =( 1-t) b' (see[ L-Q I). Hence we can consider the quotient 

complex Q, (A), where 6 (A) = AO(n+l)/ (1 -t ), meaning that we divide out by the k- 
n 

linear span of the elements of the form (I -t )x in AO(n+l). The boundary in this complex is 

again b. 

Definition 1.4.1. 

The homology of the complex (Cý (A), b) is denoted Hý (A). If the ground ring k 

contains Q this is the cyclic homology of A. 

n For cohomology, we use the dual complex (CX* (A), b), where CK (A) consists of functions 
f: AO(n+l) 4k which are cyclic, that is t'kn+l ý (sgn Xn+I)f " (-I)nf. The homology of 

this complex is denoted H* (A), and is the cyclic cohomology of A if k contains 0. X 

When A is commutative we have benO) = en-10)b as in the previous section. Now, 

when k contains 0, all the arguments applied to Hochschild cohomology will apply to give 
a similar decomposition for cyclic cohomology provided that when f is a cyclic cochain so 
is each fenO). This has been proved by Natsume and Schack [ N-S 1. 

In order to define cyclic (co)homology in a characteristic free context, we introduce the 
(normalised) b-B double complex of Connes [CI (See [ L-Q 1) : 

14 
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b, L B bL BbI 
AO AO A 
bl bL 

AO AA 
b, L B 

A 

Here, A/k, regarding k as contained in A as multiples of the identity element. Each 

column of the double complex is a normalised Hochschild complex (AO b), whose 
homology is still the Hochschild homology, HH. (A). The map B: AO-Xo(n-1) -+ AO -X(&n 

is given by 
n-I 

B(aoga, O ... gan-1) = 
Z(-l)(n-l)j(10aj(D 

... (Dan-lgaog ... 0 aj-, 
j=o 

One has B2 =0 and Bb + bB =0 (See [ L-Q 1). 

Definition]142 
The cyclic homology of A, HQA), is given by the homology of the total complex 

corresponding to this double complex. For cyclic cohomology, HC*(A), we use the dual 
double complex. 

Over k containing Q this definition coincides with the previous one, HC. (A)2ý H% (A). In 

this context, we need the additional relation Ben-IO) = en('+I)B to get the decomposition 

of cyclic homology for a commutative algebra, since then the double complex decomposes 

as the direct sum of the sub-double complexes [ L, 2 1: 

bI 

enO)(A(&-X(gn) 
bý 

en-j0)(A(&P(n-')) 
bI 

b 

en_10-1)(A(g 
B bL 

en-20-1)(A(D 
bl 

15 
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Denoting by HCjn-j(A) the homology of the total complex corresponding to the above, we 
have: 

TheoremL4.3. 
For Aa commutative algebra over k containing 0, HCOO(A) = A, and for n ý: 1, 
HCn(A) = HCIn-, (A) G ... (1) HCn, O(A). 13 

There is a long exact sequence linking Hochschild and cyclic homology, often refered 
to as the periodicity sequence: 

IsB 
HHn(A) --ý HCn(A) -ý HCn-2(A) -+ HHn_, (A) 

Here, I is induced by the inclusion of the first column in the b-B double complex and S, 

the periodicity operator, is induced by the map which shifts degrees in the total complex by 
2. Natsume and Schack [ N-S I and Loday [ L, 2 I have shown that for a commutative 
algebra over a ground ring containing 0 this sequence decomposes as a direct sum of long 

exactsequences: 
Ir Sr Br 

. -, 4 HHr, n-r(A) -+ HCrn-r( A) --ý HCr-ln-r-I(A) --+ HHr, n-r-I(A) 

where Ir, Br, Sr are the restictions of I, B, S. 

For n ý: 3, Harrison homology Harrn(A/k; A) is the first part of the decomposition of 
cyclic homology HCn(A). For a smooth algebra or the algebra of smooth functions on a 
compact manifold the decomposition of HC. (A) coincides with those given by Loday and 
Quillen [ L-Q I and Connes [CI in terms of de Rham homology [ N-S 1, [ L, 2 1. 

Section 1.5 : The Symmetric Group Representations given by the 
Eulerian Idempotents 

For each n=1,2, ... we have described mutually orthogonal idempotents eno) in (Q Sn, 

which give a decomposition of Hochschild (co)homology. These idempotents give 
representations enO)OSn of the symmetric group Sn, which have been studied by Hanlon 
[H1. In this section we summarize his main results. 

Let Xjn denote the character of the representation enO)QSn. Hanlon gives a formula for 

16 
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i 
Xh as a certain direct sum of induced characters. These characters are induced from wreath 
product groups, which we shall describe briefly. See [ J-K, Ch. 41 for more details. 

Suppose we have a subgroup G of Sm of size g and a subgroup H Of Sn of size h. 
Then the wreath product, HwrG, is a subgroup Of Smn of size g. hm, consisting of (M+1)- 

tuples ( hi, ..., hm, g ), with hi EH for all i and gEG. We think of HwrG as acting on 
(j, i) I 1: 5j: 5 n, 1: 5 i: 5 mI by (hjq ... 9 hm, g )(j, i)=( hg(j)0), g(i) ). 

If (x is a linear character of H and 0 is a linear character of G, then there is a linear 

character awro of HwrG as follows. For each cycle Y yj . ..... ys ) of g, define A(Y) by 
A(Y) = a(hyl- hy 

S 
). Then define 

(awro) ( hl, ..., hm, g P(g) 111 A(Y) 1. 
y 

The particular case we shall be interested in is where H= Cn =<( 12 ... n)>, G= 
Sm. We may think Of CnwrSm as the group of mxm pseudo permutation matrices, where 
the non-zero entries are chosen from Cn. We consider the character CCwrP, where P is the 
trivial character of Sm, and a is the linear character of H given by (x( 12 ... n)= e2ni/n. 

Now for any ae Sn we describe a linear character 4. of its centraliser, Z((Y). Suppose 

cr has mu u-cycles for each u. Then Z((Y) is isomorphic to a direct product over u of the 

wreath products C wr Sm.. The character 4(, is then a product of linear characters 4 (u) 
of Ua 

mu, where 4(u) is exactly the character (xwrp above, with P the trivial character of Cuwr S (T 
Smu and (x the linear character of Cu given by (x( 12 ... u e*216/u. 

Now we can state Hanlon's main result [H1. 

Theorem L5.1. 

XJ= sgn ED indý(, 
n ýt) 

where the sum is over all partitions g of n with exactly j parts, cr, is any permutation in Sn 
with cycle type g, and * denotes product of characters. 13 

This determines the dimensions of the representations enO)QSn- 

CorollaryLg. Z 
The representation enO)QSn has dimension equal to the number of permutations in Sn 

with exactly j cycles. 13 

17 
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1 Note that forj =I the formula above gives simply: Xn ý-- sgn * 
(indSd (t(12-. n)))- 

A general formula giving the decomposition of each representation enO)QSn into 
iffeducibles is not known, although Hanlon [HI states some results for particular values of 

For small values of n, Hanlon gives the following table of decompositions. 

TableLS. 3. 

X 

2 

3 EP 

4 EP + [F EP EB +2 

+Iroio 

EF"' 
[f + 

I 

For fixed n, the sum of the representations enOASn is the regular representation Of Sn- 
So, for ga partition of n, the multiplicity of the irreducible representation [gI in this sum is 

the number of standard Young tableaux of shape g. The n, h component, en(n)oSn, is 

always the sign representation. Hanlon gives explicit decompositions for the cases j= n-I 

and j= n-2. He shows that the trivial representation appears in en( [ (n+l)/2 I )OSn. For 

the case j=1, we have the following result giving the decomposition of en(I)0Sn into 
irreducibles, due originally to Kraskiewicz and Weyman [ K-W 1. Let T be a standard 
Young tableau. We call a number i an ascent of T if i+I appears to the right of i in T. We 
let a(T) denote the sum of the ascents of T. 

18 
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Theorem L 5.4. 
Let g be a partition of n. Then the multiplicity of (91 in en(l)QSn is the number of 

standard Young tableaux T of shape g with a(T) =- 1( mod n ). (3 

Stembridge (SI has also supplied a proof of this result. 
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Chapter II : Ir-(Co)homology 

Introduction 

This chapter is devoted to describing Dr. Alan Robinson's new (co)homology theory 
for commutative algebras, ]['-(co)homology. In fact this theory is applicable not just to 

strictly commutative algebras but also to those which are commutative up to homotopy. 

Here we will describe the algebraic version of the theory. 
The first section describes the IP category and gives a presentation. 
From here on the material in this chapter is Dr. Robinson's, and we quote without proof 

the results we need to desribe the theory. First we cover tree spaces. Ilese are particular 
building-like simplicial complexes, which are related to the nerve of the IF category. 
Section 2 is devoted to a simple description, and a statement of the theorem on their 
homotopy type [ Robj 1. Section 3 relates them to the Ir category. 

Finally, we define Ir-(co)homology of a commutative algebra, by giving a chain 

complex to compute it [ Rob, 2 1. This involves the nerve of the Ir category, which can then 
be replaced by the tree space. The chain complex has a natural filtration, which gives rise to 

a spectral sequence in the usual way. 

Section IIA : The Category r- 

Definition 11.1.1. 
F is the category whose objects are the sets [nI=f1, ..., n 1, n ; >- 1, and whose 

morphisms are surjective maps. 

We can give a presentation of this category as follows: 

Let Tli n+l 14 [nI be defined by 11' 
j if j<i 

, for i=1, ..., n. 0) 
j-1 if j>i 

Then i1iiji = iljTli+l for j :5i. 
Each morphismy: [nI -ý [ n-k I of r may be expressed as a permutation ae Sn, followed 
by an order preserving surjection, i. e. as a r= Sn followed by a product of k il's, but not 
uniquely. 
We use the standard presentation Of Sn, with generators the transpositions (Yj = (i i+1), and 
relations (Y, 2 = 1, (Yj(Yj+j(Yj = (Yj+j(Yj(Yj+j9 (Yi(Yj = aj(yi for Ii-jI ý: 2. 
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Then it is straightforward t, 

cFi 
TIj-1 lyj cFj-l 

Tlj"(Yjcyj+l 

11 i cFi+l 

o check that: 

if i<j-1 

if i=j-1 

if i=j 
rvaj = TI, 

if i>j 

If y(i) denotes the set of inverse images of i in order, and Pi =I Y4(i) 1, then we can 

write each morphism y of Ir uniquely as the permutation cy which is order preserving on 
inverse images, a: I y4(1), y4(2), ... , y4(n-k) I -+ 11,2, ... ' nI in order, followed by 
(jjn-k)P1n-k-1 

... 
(7j2)M-%j1P1-'. Note that 04 is a (PI, ---, Pn-k)-multishuffle of 

f 1, ... ' n 1. 

If we drop the relations cr, 2 = 1, we replace Sn by the braid group Bn, giving a braid 

group version of the 17 category. 

Section 11.2 : Tree Spaces 

Definition ILZ 1. 
A tree is a compact contractible one-dimensional polyhedron. It is always triangulated 

so that each vertex is either an end (i. e. belongs to exactly one edge, called a free edge), or 
a node (i. e. belongs to at least three edges). Edges which are not free are called intemal 

edges. 
Let n ýt 2. An n-tree is a tree such that: 

1). it has exactly n+1 ends, labelled by 0,1,2, ..., n; 
2). each internal edge (x has a length 1((x), 0< l(a):! 9 1. 

DefinitionII. ZZ 
An isomorphism of n-trees is a homeomorphism which is isometric on edges and 

which preserves the labelling of the ends. 
Tn is the space of isomorphism classes. We shall continue to refer to trees, although we 

actually mean isomorphism classes of trees. 

Tn is a cubical complex. Two trees lie in the same cube if they differ only in internal 
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eAge lengths. These give the coordinates in the cube. It is a cone, since given any n-tree we 
can reach the tree without internal edges by contracting all the internal edges at once. 

Definitionff. Z3. 
Tn, the space of fully-grown n-trees, is the base of the cone. It consists of trees that 

have at least one internal edge length equal to 1. 

We quote results on the structure of Tn without proof. See Robinson [ Rob, 1 I for 
details. 

Proposition H. Z4. 
1). Tn can be triangulated as a simplicial complex, such that every simplex is the face of an 
(n-3)-simplex. 

2). Every (n-4)-simplex of Tn is a face of exactly three (n-3)-simplexes. 

A simplex of Tn corresponds to a shape of a fully-grown tree (i. e. an equivalence class 
under label-preserving homeomorphism) [ Rob, 1 1. Its faces correspond to those tree 
shapes obtained by shrinking an internal edge to zero. Again, we may use 'tree' to mean 
Ptree shape'. 

TheoremILZ5. 

Tn is homotopy equivalent to a wedge of spheres, Tn V Sn-3.13 (n-1)1. 

Hence, Tn has only one non-zero (reduced) homology group, with coefficients K, 

Hn-3(Tn; K) = K(n-l)!. Since Sn+j acts on T., by permuting the labels 0,1, ..., n on trees, 
this homology group gives a representation of Sn+1* In fact, in terms of r-cohomology we 
need only consider it as a representation Of Sn, and we shall denote this KSn-module by 
Vn. Robinson shows that the homology generators are regularly permuted by Sn-1, 

Section 11.3 : The Relationship between the 17-category and the Tree 
Spaces 

A standard construction gives, for any small category C, a simplicial set NC, the nerve 
of the category. 
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Definition H. 3.1. 
The nerve of a category C is a simplicial set NC with: 

NC, O = obj C, and for k; -> 1, 

NCk =f composable strings of k morphisms in C fl f2 fk 
CO -4 Cl -4 C2 -->'** -ý Ck 

Denote such a string by [ fk I fk-, l I 
... 

I f, 1. 

Face maps Di : NCk NCk-, are given by: 
DO ifk' fk-I I*** I ft I ifk I fk-I 1- 1 f2l 
Di I fk 1 fk-I I 

... 
IfIl =Ifkl ... 

I fi+lfi I... I f, I for 0<i<k, 
ak I fk I fk-I I 

*** 
I fl ImI fk-I I 

--- 
I fl ]- 

Degeneracies si: NCk 4 NCk+j, for i= Op ... q k, are given by inserting identity maps 

Sitfkl***Ifi+llfil***Ifl]=Ifkl ***Ifi+liilfil ... 
I f, I. 

We work with Nr, and consider NIP( [n1, [ 11 ), consisting of the strings of morphisms 
in IF, starting at [nI and ending at [ 11, and their faces. Intuitively, such a string of 

morphisms looks like an n-tree, where the end labelled 0 marks the end of the string. 

We will also consider certain categories associated to the IF-category. Thus [n 1/17A II 

will denote the category of finite sets and surjections strictly under [nI and over [1 This 

means that the category has objects given by a set [r1,1 <r<n, and two morphisms nI -* 
[r 14 [ 11. A morphism of the category is a surJection [ r, I r2l such that the following 
diagram commutes: 

(n] -' (r1] -* (1] 

. 1. - 

I r2l 
The symmetric 90UP Sn acts on this category, and hence on its nerve, by precomposition 
with permutations. 

The relationship between the IF category and the tree space is given by: 

Proposition IIJZ 
There is an Sn-equivariant map, 0: I N( [n 1117A 11 )I -+ Tjrj , which is a homotopy 

equivalence. This map is described in [ Rob, 3 1.13 

Vn if r=n-3 Hence, HIr( I N( [n 1/1-/[ 1K0 
otherwise. 
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Section IIA : IF-(Co)homology of Commutative Algebras 

Let g: [nI -* [ rn I be a morphism in IF. By looking at the inverse image of each point in 

m 1, we may consider the components of g, gi :[ ni I -ý [1 where ni =I gl(i) 1. Similarly, 

given a string of k morphisms of r ending at [ rn 1, [ fk I ... f, 1, (i. e. a k-simplex of Nr), 

we decompose this into m. strings of k morphisms each of which ends at [ 11. We denote by 
0 fV) I the ith component of [ fk f, 

We are now in a position to define the chain complex giving r-homology. Let K be a 
commutative ground ring, and Aa flat commutative algebra over K. We will define the 17- 
homology of A, with coefficients in an A-module M. We have described Nr( [n1, [ 11 ). 
We denote by KNr( [n1 the corresponding free K-module. In what follows 0 
denotes OK- 

Definition HA 1. 
The 17-chain complex, Cr is defined as follows: *9 

r On (& M. Cq(A/K; M) = I: KNrq([ n 1,11 I)OA 

n>l 

The boundary d: Cqr -* CFq is the alternating sum of face maps Cr Cr q q-1 
for 

0: 5 i: 5 q. 
Note that a IF-morphism fnmI induces a map f. : Agn 4 AOm by multiplying and 

permuting factors according to f in the obvious way. 
Then the face maps are defined on generators [ fq I ... 

I f, I OaOrn. by: 

Do ( [ fq I... I f, I Oagm [ fq I... I f2l Of,. (a) Om 
ai( IQ 

... 
I f, I OaOm I fq I 

... 
I fj+lfj I 

... 
I f, 10 a Om for 0<i<q 

aq( [Q 
... 

lf, 10a(&m )= 
01 01 )) 

fc, ) 1 ... 
(ail a aj rn q-l ik 

where fq_l 
... f, nr1, and where I ai,, ..., ajo is the ordered preimage of i under 

fq-1 *** fl* 
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qi 
Now, d )': (-1) Di. It can be checked that these face operators satisfy the usual 

i=O 
simplicial identities and so we get d2 = 0. Hence we can define the homology of the chain 
complex in the usual way, giving the F-homology of A over K 

with coefficients in M, H]Fq(A/K; M). Of course, we can also define F-cohomology, 

using the corresponding cochain complex. For cohomology, A should be a projective K- 

algebra. (For a general commutative algebra the topological definition of Ir-(co)homology 

may be used [ Rob, 2 1, which coincides with the algebraic version described here when A is 
flat (projective)). 

There is a natural filtration of the chain complex CF, by the size of the sets InI in r 

FPCr*(A/K; M) (KNr( [nj Ill )0 On (D M). 
15n: 5p 

This filtration of Cr* gives rise to a spectral sequence in the usual way, and since 
U FP Cý (A / K; M) = Cr* (A / K; M) this spectral sequence converges to ][-homology: 
P 

( FPCr (A/ IC; M) El Hp+q-1 
- =, > Hr., 

-q-I(A/K; 
M). 

p, q FP-'Cr. (A/1-r, - Mý 

Now FP/FP-1 = KNF( Ip1, [I 1) (9 A&P 0 M, with boundary induced from the boundary 
d described above. Le. we get all the boundary terms involving A(&P from this boundary, 
other terms being zero. 

We calculate the dt boundary in the spectral sequence: 
di : Hp+q_, (FP/FP-1) -ý Hp+q-2(FP-I/Fp-2). 

This is the connecting homomorphism from the short exact sequence of chain complexes: 
0. + FP-1/Fp-2 -+ Fp/Fp-2 _> Fp/Fp-1 _> 0. 

i ir 
By definition of the connecting homomorphism dt is given by [z 14 [ i'dn-lz 1, where d is 
the boundary in the chain complex FP/FP-2. This is the same as the original boundary 
except terms in AO: 5P-2 become zero. Then dt is given by [zI -+ [ 3z I where a is given by 
the terms of the original boundary which take AOP terms to A'OP-I terms. 
i. e. D: KNr([ p ], [1 ]) 0 AOP 0M -ý KNr([ p-I 1, ( 11) 0 AOP-1 0 M. 
Then D= Do + (-l)p+q-la 

p+q-1 where: 
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I 
DO([ fp+q-11 ... 

I fl ]OaOrn)=ý 
I fp+q--Il 

... 
I f2 ](&fl*(a)(&m if fl: [pl-ý[p-ll 

0 otherwise 
Dp+q-l(lfp+q-11 

... 
I fl I Oa 0 m) 

component of [ fp+(1-21 ... 
I fl I which is [p - 11 -ý [11 if such exists 

0 otherwise 

In order to calculate the El -term, we use a second spectral sequence which converges to it. 
For each p, consider a term of the filtration quotient FP/FP-1, [ fP+q-1 1 ... 

I f, 10 a0m. 
Firstly, we normalise the complex so that we may assume that f 

-1 
is not an p+q 

isomorphism. On the other hand, our string of morphisms may begin with some number of 
isomorphisms, fl, ..., fr, say. We filter the filtration quotient according to this number r. A 
(p+q-l)-simplex, [f... I f, 1, as above can now be seen as an element of: p+q-1 

I 
N+( IP I/r/1 11 )p+q-r-30Cr(Sp), 

where C, (Sp) denotes a string of r permutations in Sp (as in the standard bar construction 
for Sp - see [ Mc I IV. 5) and N+ denotes the augmented nerve, i. e. there is an additional 
simplex of dimension -1 corresponding to the map [pI -ý [ 11. For each p, the complex 
FP/FP-1 with the r-filtration gives a second spectral sequence, converging to the El term 
of the original spectral sequence: 

0. =* El p, r, p+q7r-1 r pq* 

The filtration quotient for the second filtration now contains only those strings of 
morphisms which begin at [pI and begin with exactly r isomorphisms. 

FO --, ý KN+( [p ]/IF/[ II )p+q-, 
-3(Dq(Sp)OAOP8M- p, r, p+q-r-I 

In this quotient the boundaries which decrease the r-filtration are zero, and so the 
differential is just the boundary operator in N( [p I/r/[ 11 ). Thus, 

H p, r, p+q-r-I p+q-r-3(N( [p i/r/[ 11 ); K)(&Cr(Sp)(&AOPOM. 
In the previous section, we stated results on the homology of N( [p I/r/[ 1 which now 
allow us to see that the second spectral sequence collapses. 

Op, 
r, p+q-r-I ý 

VpOCr(Sp)(&AOPOM if r=q 
0 otherwise. 

In F1 the differential dl is induced by the differential in the original chain complex, and so 
is now just the differential in the two sided bar construction on Sp, acting on Vp on one 
side and on AOP on the other. So the El term of our original spectral sequence is given by 

1 =172 [= TorKSP(Vp, AOP) 0 M. Eý, q p, q, p-1 q 
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Chapter III : 17-(Co)homology in Characteristic Zero 

Introduction 

The main result of this chapter is Theorem MAI., which states that the r-homology 

of a flat commutative algebra coincides with the Harrison homology in the case where we 
work over k containing 0. In Chapter I, Harrison homology was defined in terms of 
permutations called shuffles. 17-homology was described in the previous chapter, in terms 
of tree spaces. 

Firstly we need more information about the structure of the tree spaces. We already 
know their homology groups, but we need to explicitly identify the cycles. In particular, we 
identify a cycle in Tn, denoted cn, which consists of 'trees with cyclic labelling'. 

Once we have done this we can proceed to explain how shuffles act on the tree space. 
We show that the cycle described above, cn, vanishes on shuffles. This enables us to 
describe the representation Vn of the symmetric group Sn given by the tree space Tn. We 

show that, working over k containing 0, Vn is en(l)kSn, where en(l) is the idempotent in 
QSn described in Chapter 1. (Definition 1.3.9. ). Since Harrison (co)homology is the part of 
the decomposition of Hochschild (co)homology corresponding to this idempotent en(l), 
this gives us the connection with Harrison cohomology. 

Next, we return to the spectral sequence giving r-homology which we had at the end 
of the last chapter. It turns out that this spectral sequence collapses when we work over k 
containing 0, leaving us with a relatively simple chain complex to compute the IF- 
homology. We show that this chain complex is isomorphic to the Harrison chain complex, 
and hence we get the result. 

Finally, we consider what we can say without assuming characteristic zero. We show 
that the edge of the spectral sequence for I-homology still gives Harrison homology, and 
so in general we have a homomorphism between the Harrison and IF theories. 

Section IIIA : Cycles in the Tree Space Tn 

We have seen that Tn t-- V Sn-3. In this section we give a precise description of the (n-l)l 
generators of the only non-trivial homology group, Hn-3(Tn; k). 
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Definition 111.1.1. 
An n -tree has cyclic labelling if it can be drawn in such a way that the labels 0,1, ..., n 

are encountered in order as you go around the tree. 

Example 

Ile 10-tree : 

6 
5 

4 
2 

3) 2 
has cyclic labelling. 

Proposition III I. Z 
The (n-3) -dimensional simplices of Tn given by n-trees with cyclic labelling can be 

oriented so that they form a cycle. 

Proof 
Let t be such an (n-3)-simplex in Tn. So t is a cyclically-labelled n-tree with n-2 

internal edges. Its boundaries are given by deleting internal edges. Since t has cyclic 
labelling, each component of its boundary is an (n-4)-simplex, also with cyclic labelling. 
An (n-4)-simplex is given by an n-tree with one noder of order 4, all other nodes having 

order 3. A given (n-4)-simplex is the face of 3 (n-3)-simplices, since in general there are 
3 ways of pulling apart the node of order 4: 

ab 
The general (n-4)-simplex s, 

X. 
is the face of the following 3 (n-3)-simplices 

dc 
bc 

c dcd 

However, if the (n-4)-simplex s has cyclic labelling, then so do the first two of the 
(n-3)-simplices shown, but the third does not. So each boundary component of the top- 
dimensional simplices with cyclic labelling occurs exactly twice. It remains to show that we 
can choose orientations so that these cancel, and so we have a cycle. 
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-, r-(co)homology in characteristic zero - 

f-41,! ) * Clumn 
The trees with cyclic labelling in Tn can be given orientations so that they form a cycle. 

Proof of Claim 

First we explain how we will specify an orientation for each tree with cyclic labelling. 
An orientation of a simplex is given by an ordering of its vertices, or equivalently an 
ordering of its faces. We explain how to order the internal edges of a given n-tree, t. Mere 
is a unique arc between any two ends of the tree (see [ Lef 1). Let an be the arc between n 
and n-1, an-I the arc between n-I and n-2, ..., a, the arc between I and 0. Thus an ... a2al 
is a path between n and 0. Since omitting an internal edge disconnects the tree into two 

components, such a path which visits every end must cover every internal edge. Now write 
this path as a sequence of internal edges, eo, ... ' en-3, omitting repetitions of edges already 
listed. Ibis gives our ordering of the internal edges. From now on t will mean the tree t 

with this orientation and -t the same tree with the opposite orientation. The boundary Dt is 
Z (-1ý t(6j), where t(Ej) means the face of t given by deleting the edge ej. 'Me sign with 
which t(Ej) appears in the boundary of t is called the incidence number of t(aj) in t, i(t(aj), t). 

Now we will choose to draw our trees with cyclic labelling with n at the top, 0 at the 
bottom, and everything else to the left of a straight trunk joining them. 

Example 
The 10-tree with cyclic labelling depicted earlier is now to be drawn: 

in 

4 

3 

Notation 
If a is some part of a tree, let IaI denote the number of internal edges of the tree in a, 

and let [a] denote (-1)1 a 1. 

The diagram below shows an operation, called branching, on a tree drawn as above, 
whereby two adjacent side branches are joined together: 
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- 1--(co)homology in characteiistic zero - 

in 

b- a 

.0 

ttI 

Notice that the two trees, t and t', before and after branching share a common boundary 

component, (by deleting the edges e, e' indicated in the diagram ), t(a) = t'(-e'). We have 

i(t(ý), t) =- [a] [b] and i(t(F), t') = -[a]. Given an orientation for the first tree t, (sgn t), we 

choose the orientation on the second, (sgn f), so that (sgn t) i(t(a), t) =- (sgn t') i(t'(8'), 

t'), making the common boundaries cancel. i. e. we choose (sgn t) =- [b] (sgn t). 

n- 
n- 

It is clear that if we start with the straight tree 
210 
1 

we can get every cyclic tree by a sequence, (not unique), of branchings. Now we start by 

choosing an orientation on the straight tree shown above and proceed with branchings until 

we have every cyclic tree, at each stage choosing the orientation determined by making the 

common boundary component cancel. 

rlin I 
Ualm 

This gives a well-defined orientation to every cyclic tree. 

Proof Of Claim 
Several sequences of branchings may lead to the same tree. However, they must then 

create all the same branches, so they can only differ by the order in which independent 
branchings are done. Hence it is sufficient to show that this does not affect the orientation 
assigned to the tree. This is shown by the following diagram, where the labelling of the 
arrows indicates the effect of each branching on the sign given to the tree. 
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n 

h sign 
multiplied 

C: by -[a] 

sign 
multiplied 
by [61 

0 

n 

C 

0 

10 

sign 
multiplied 
bY 461 

Xiiýgn 

multiplied 
by -W 

, 

f'41n J"im 

With these orientations, trees with cyclic labelling form a cycle. 

Proof Of Claim 
We have already seen that each boundary occurs exactly twice. Consider a general face 

s of a tree with cyclic labelling. As before we consider s as having four parts a, b, c, d, 
meeting at the node of order 4. Firstly, consider the case where the labels n and 0 appear on 
different parts of s, w. l. o. g. a and d. Then the two cyclic trees with this boundary may be 
drawn: 

b- 

c 

These differ precisely by a branching and by choice of signs their common boundaries 
cancel. 

So suppose n and 0 appear on the same part of s, w. l. o. g. the part labelled a. 
Then we can draw the two cyclic trees, t and t', with this boundary as: 
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bnbn 
I ceJ, 

a a 
ce 

d0 
0 

Now i(t'(&), t') = [b] i(t(E), t). These two trees can be formed by the same sequence of 
branchings, except they differ by two moves at the stage of theircornmon ancestor. 

, b 
:n 

n sign 
C 

multiplied 0 , ooýsign by [b]. [c] 
multiplied 0 
by -[b] 

nn 
sign 

0 multiplied 
-ICI 

sign 0 multiplied d by -[b] 

So at this stage the signs on the two trees differ by -[b]. After this stage we do the same 
branchings to each tree, so these have the same effect on signs. Thus: 

(sgn t) i(t'(E'), t') = -[b] (sgn t) [b] i(t(-e), t) (sgn t) i(t(E), t), 
and the common boundaries cancel. 
This completes the proof that trees with cyclic labelling form a cycle. 13 

Notation 
The cycle described above will be denoted by cn- This is a formal sum, 7, (sgn t)t, over 

the n-trees t with (n-2) internal edges and with cyclic labelling, where (sgn t) is the 
orientation. 
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We let Sn+j act on the right on (oriented) n-trees : ta denotes the result of applying the 
permutation cy' to the labels of the tree t. Of course, tcy comes with the orientation induced 
from that on t. This extends in the obvious way to formal sums of n-trees, such as the 
cycle cn- 

Remark 
There is an obvious way of associating a bracketing of n objects to a cyclic tree in Tn. 

For example we associate to the tree 3 

04 

the bracketing (((a, a2)a3)a4) . 

This gives a 1-1 correspondence between trees with cyclic labelling and bracketings. In 
fact, cn's the dual of the boundary of the Stasheff polyhedron corresponding to bracketings 

of n objects. (See [ St ] ). 

Now consider cn1r, for 7c r: Sn-1, the permutations of 11,2, ... ' n-1 1. Since cn is a 
cycle so is each Cn7r. These give (n-l)! distinct cycles, all passing through the vertex: 

1 
1 

Now, in the proof of the homotopy type of Tn [ Rob, I ], it is shown that the homology 

generators are the simplices given by the trees: 0 Iq 7tý ... n(nF I) 
n (*), for 

7[ E Sn-1, attached along their boundaries to a contractible space. Since 

0-ý is the only such 'straight tree' in cn, the tree (*) above 
occurs in only Cn7c, and so the Cn7r, for 7c r: Sn-1, are homology generators, which are 
regularly permuted by Sn-1, 

Notation 

n-I Let 12 
... n)c Sn. Let A,, =I (sgn gl )g'. 

i=O 
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Proposition IRIA 

CnAn : -- 0- 

Proof 
Note that if a tree t with cyclic labelling has the form: 

ab 
labelled labelled 

k by 1,..., 
y 

by k+l,..., n 
0 

then týk also has cyclic labelling: 

a b, 
relabelled. in order relabelled in order 
by n-k+l, ..., nY by 1, ..., n-k 

and k, n are the only powers of g with this property. 
So each tree tgi in CnAn also appears as (týk)gi-k. 

f"1,2 * 
I-MIM 

We get opposite signs on these two trees, so all the terms cancel. 

Proof Of Claim 
There are three ingredients here - the orientations of the cyclic trees, the effect of the 

permutations on these orientations, and the signs of the permutations. First consider the 
I straight' cyclic tree t: 

k 
-k+l lk-I 

... 
12 

1 
10 

n ... 
lk+2 

In this case it is fairly straightforward to show: 
a). The signs of t and tgk in cn differ by (-l)(k-I)k/2 +I for kAn-1, and by 
(-I)(n-2)(n-l)/2 if k=n-1. 
b). The difference between the sign on tgi induced from t and that on (tgk)gi-k induced 
from t4k is (-l)k(n-1) + (k-I)k/2 for kAn-1 and (-l)(n-3)(n-2)/2 for k=n-1. 
Since the signs of the permutations differ by (-l)k(n-1), this gives the result for straight 
cyclic trees. 

Finally, we can deduce the result for a general cyclic tree from this by considering 
collections of adjacent simplices starting at the given tree and ending at a straight tree. We 
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omit further details. 13 

Section 111.2 : Tree Spaces and Shuffles 

Definition HLZ 1. 
A pair of consecutive integers (i, i+1) is called a descent for the permutation 7C E Sn if 

7d > n(i+l). The identity is the only permutation without any descents. Note that the 
identity permutation is an i-shuffle for each i. Apart from this, i-shuffles are those 
permutations with exactly I descent (i, i+1). 

The main result of this section is that the cycle cn vanishes on shuffles. 
i. e. cnsin-i =0 for i=1, ..., n-1. 

Example 

n=3. 
sl, 2,.,, - 1- (12) + (13 2). 

s2', =I- (2 3) + (12 3). 

12221 

C3S1,2 + 
303 

1223133 

C3S2,1 ++= 
10 

The proof is based upon the following observation: 
Let t be a top-dimensional tree in Tn with cyclic labelling, and consider the node where the 
free edge labelled 0 is attached: 

a 
y 

0 

Since t has cyclic labelling we may assume w. l. o. g. that the subtrees a and b are labelled by 
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the sets 11, ..., kI and I k+1, ..., nI respectively. 
Imagine t split into the two trees : 

ab 
I 

and 
I 

00 

We will denote these by a' and V. It is clear that a' is a tree with cyclic labelling in Tk, and 

that, by relabelling Vin order, b'may be thought of as a tree with cyclic labelling in Tn-k- 

v 

3 
2,4 

7 
0 

splits into 

The above observation allows the use of induction arguments. 

and 
0 

We will also consider the reverse of this process, whereby we graft together a tree in ck, a', 

and a tree in cn-k, b', to obtain a tree in cn. Later we will need to consider how this process 

affects signs. 

LemmaHIZZ 
Suppose that the two trees a and b in Ck differ in sign by c (= ±1). Let c be a tree in 

cn-k* Then the two trees in cn, obtained by grafting c to a and to b, also differ in sign by C. 

Proof 
We write down a collection of adjacent simplices forming a path from a to b. i. e. we 

have a collection of trees in ck, I ap ... ' ar I such that a, = a, ar = b, and such that ai and 

ai+l share a common boundary, for each i. Signs are such that these common boundaries 

cancel, so consideration of this collection of trees gives us the difference in sign of a and b, 
E. 

But then consider the collection of trees in cn, obtained by attaching c to each of the 

above trees. Clearly this is a collection of adjacent simplices, forming a path between the 
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two trees that we are interested in. Signs are such that the common boundaries cancel as 

above, and so the two trees differ in sign by c just as do a and b. 13 

Note that cn is first non-empty for n=3. However we formally extend the definitions 

ton= 1,2. Letc, andc2be: 

and 

0y 

Then cis, =0 trivially, since s, = 0, and note that c2S2 = c2sl, l= 0 since S2 = S1,1-2 1- 

(12). We adopt these conventions to cover the cases where one of a or b is labelled by a set 

of only one or two elements. 

Proposition III. Z3. 

Cnsi, n-i =0 for i=1, 
..., 

Proof 
This will be proved by induction on n. 

The example above demonstrates the result for n=3. Assume the result for k<n. 
Fix some i=1, ..., n-1. 
Recall that M means apply the permutation n' to the labels of the tree t. SO cnsin-i is a 
collection of trees got by applying the inverses of i-shuffles to top-dimensional trees in Tn 

with cyclic labelling. 
Let t be a top-dimensional tree in Tn, and as above draw t as: 

a 
y 

0 

We consider which such trees will give a tree with cyclic labelling upon applying some i- 

shuffle 7c. (This is equivalent to considering which trees occur in cnsi, n-i)- 
Suppose a and b are labelled by the sets S, and S2 respectively; w. l. o. g. we may assume 
that 1e SI. Suppose I S, I=k, for some ke 11, ..., n-1 1,1 S21 = n-k. 
We break the proof down into several stages. 

LemmaIII. Z4. 
If a tree t, as above, occurs in cnsi, n-i it must satisfy one of the following conditions 
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I. Sl=fi,..., kl, S2=fk+l,..., nl. 
II. S 1, 

..., 
j, j+n-k+l, 

..., n 1, S2 ̀ = i j+l, 
..., 

j+n-k 1, where j=i or j= i+k-n. 

IH. S 1, ..., j, i+l, ..., k+i-j 1, S2 =I j+l 
I .... i, k+i-j+l, 

..., n 1, for some i<i. 

Proof 
Consider a general tree t as described above: 

ab 
labelledy labelled 
by S, by S2 

If we are to get a tree with cyclic labelling when we apply some i-shuffle n to t, we must 
have one of the following: 

A. n(S, )=[I,..., kland7c(S2)=fk+l,..., nl. 
or B. 7c(SI) = In-k+l,..., nl and 702) = fl,..., n-k}. 

In case A, if s r= S2, s+1 E S, then 7ts > n(s+l), and so (s, s+1) is a descent for 7C. Now in 

si, n-i we have permutations with at most one descent, at (i, i+J). It follows that one of the 

conditions I, H with j= i+k-n, or III must hold. 

In case B, if seSV s+1 r: S2 then ns > n(s+l), and so (s, s+1) is a descent for 7t. Again, 
this only happens for s=i. So the only possibilities are I if k=i, and II with j=i. 

Le. A tree t only appears in cnsin-i if it satisfies one of the conditions above. 13 

We treat each case separately. 

Lemma III Z5. 
Each tree t which occurs in cnsi, n-i and which satisfies condition I, occurs an even 

number of times with cancelling signs. 

Proof 

ab 
labelled labelled has form: by 1, ..., 

Yk 
by W, ..., n 

0 

38 



- r-(co)homology in characteilstic zero - 

We treat cases A and B separately. 

A. 7c IkI=Ik1,7c I k+l,..., nI=f k+l,..., n 1. 

A non-trivial permutation of either set will introduce a descent. A shuffle has at most one 
descent, so n must be the identity on one of the sets. 
If i<k, then n must fix i k+1, ... ' n 1, and we can think of 7t as an i-shuffle of 11, ... s kL 
I. e. 7c fixes b, and shuffles a; we think of n acting on the corresponding tree ain Tk. So, i- 

shuffles 7c of 11, ... ' nI such that tn-1 has cyclic labelling correspond to i-shuffles n of 
11, ... ' kI such that a'70 has cyclic labelling. By the induction hypothesis there are an 
even number of such i-shuffles, J 7rr I say, and the signs on the copies of a' cancel. I. e. 

(sgn ic,, )(sgn from orientation of (a'nr 1)Xd = 0' 
r 

Hence, regarding the permutations nr as in Sn, there are an even number of such, so that 
t 7cr I has cyclic labelling, and by Lemma 111.2.2: 

J(sgn nd(sgn from orientation of (t7tr 1)'rr) 

r 

, 
(sgn nd(sgn from orientation of (a'n-1)7rr) = 0. 

r 
r 

If i>k, then 7c must fix 11, 
... ' k 1, and we may think of 7c as an (i-k)-shuffle of 

I k+1, ..., nL Similarly to the first case we consider (i-k)-shuffles a which take b' to 
b'cr- I with cyclic labelling. By induction, 2 

.., 
(sgn cr)(sgn (b'cy-l)a) = 0. 

such a 
k(,, n-k, To take into account relabelling b by 1, 

... ' n-k in order, we want i-shuffles 7c =g 
where g=( 12 ... n ). So sgn n= sgn (;. 
Again Lemma 111.2.2 gives us E(sgn 7c)(sgn(t7c-I)n)=O. 

such n 

If i=k, the shuffle n must be the identity, and we get one copy of the tree t if it is a tree 
with cyclic labelling. However this will cancel with: 

B. ir { 1, ..., kI={ n-k+1, ..., n 1,7c I k+1, ..., n}= 11, 
..., n-k L 

There is only one such shuffle, where i=k, namely 
,, n-k =(12... 

k k+1 k+2. **n n-k+1 n-k+2 ... n12... n-k)- 
It is clear that this k-shuffle will only give a tree with cyclic labelling if t has cyclic 
labelling. Of course in this case we also get a copy of the tree from the identity permutation 
as above. Now in the proof that CnAn ,20 we saw that the signs on these two copies of t 
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differ by (_l)k(n-l)+I; the sign of ýLn-k is (-Iý(n-i), so the two copies of t do appear with 
opposite signs and cancel. 13 

Since the other cases are similar we shall give less details. 

LemmaHI. Z6 
Each tree t which occurs in cnsi, n-i and which satisfies condition II, occurs an even 

number of times with cancelling signs. 

Proof 
A. n[1, ..., i+k-n, i+I, ..., nI= 11, ..., kI i+k-n+l, I k+1, ..., n 
We have a descent at (i, i+I), and this must be the only one. 
So I i+k-n+l, ..., iI -* i k+I, ..., nI in order. i. e. n simply relabels b in order. 
Now the i-shuffles 7r we require correspond to (i+k-n)- shuffles G on a. So consider 
(i+k-n) -shuffles (Y such that a'(Y-l has cyclic labelling, and use induction to conclude that 
there are an even number of such, and that I (sgn co (sgn (a'cy-l)(Y = 0. 

such a 
A similar argument to above allows us to conclude that: 

I (sgn n)(sgn (tn-I)n) = 0. 
n i-shuffle 
It VC-1 cyclic 

B. 7c 11, 
... ' i, i+n-k+l, 

..., nI=I n-k+l, ..., n 1,7c f i+1, ..., 
i+n-k I= 11, 

..., n-k 
We have a descent at (i, i+1) and for a shuffle n this must be the only one. 
So f i+I, 

..., 
i+n -k I -* 11, 

..., n-k I in order. Again n simply relabels b in order and is an 
i-shuffle on a. By induction, using similar arguments to above, there are an even number 

of shuffles with the required property and signs cancel. 

LemmaIlIZZ 

13 

Each tree t which occurs in cnsi, n-i and which satisfies condition III, occurs an even 
number of times with cancelling signs. 

Proof 
Only case A is possible. 
it ... ' j, i+j, ... ' k+i-j I= 11, 

... ' k 1,7c f j+j, ..., it k+i-j+l, ... ' nI=f k+1 n 
ic has a descent at (i, i+1). Its restriction to a' is a j-shuffie such that a'n-1 has cyclic 
labelling, and its restriction to b'is an (i-j)-shuffle such that b'n-1 has cyclic labelling. Fix 
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such a j-shuffle on a'. Now apply induction to conclude that there are an even number of 
such (i-j)-shuffles and the signs on the copies of b' cancel. Hence, as above, the same is 

true for the copies oft. Repeating this for each j-shuffle on a'we have the result. 

So in each case, all copies of a given tree cancel. This completes the proof that cnsi, n-i'o 
0- 

13 

Section 111.3 : The Representation of S,, given by the Tree Space T. 

The aim of this section is to show that, working over K containing 0, Vn is the same 
representation of Sn as that given by the right KSn-module en(1)KSn. The idempotent 

en(l) in OSn was defined in Chapter 1, as a certain polynomial in the'total shuffle operator', 
sn, as indeed were idempotents enO) for i ý-- 1, ..., n. As we saw in Chapter I, these 
idempotents are used to give a decomposition of the Hochschild (co)homology of a 
commutative algebra over a ground ring containing 0. It is an immediate consequence of 
the definition of enO) that : 

eno)sn -= (2j-2)enO)- 
In particular, en(l)sn = 0. In fact, en(l)sk, n-k =0 for k=1, ..., n-1 

Notation 
Let Pnk = (n k)(n-1 k+l)(n-2 k+2) ... r= Sn, for k=1, n. 

Let Pnk = (-l)([n-k+llln-k+21/2 -1 )Pn, 
k rý QSn' for k=1, n. 

Note that if n is a k-shuffle in Sn, either 7cn =n or 7tk = n. 
(n) (sgn 7t)n, where the sum is over k Let sk, n_k -shuffles fixing n. 

Lets(k)- (sgn n)n, where the sum is overk-shuffles such that 7tk = n. k, n k 
(k) + s(n) SO skn-k Skn Note that we may think of s(n) as in QSn-I A kn-k* kn-k (n) Si, n_k = skn-l-k, for k=1, 

..., n-2; s(n) n-I I 

Proposition 111.3.1. 

S(n) CnPn, k -m cn k l, n-k+l , for k n. 

[ we regard 1 as the only O-shuffle 1. 
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Proof 
Use downward induction on k. 

When k=n, the result is trivial, since both sides equal cn- 
Assume the result for k+1, and deduce it for k. 
We use cnskn-k ` 0. (Proposition 111.2.3. ) 

(k) + s(n) Now as above, skn-k-2 skn-k kn-k* 
So, 

(k) (n) 
cnsk, n-k cnskn-k CnPnk+l 

by the induction hypothesis. 
Note that Pn, k+l (k k+I 

... n (-l)n-k+l Pnk- 
Also, n is a k-shuffle such that nk =n if and only if n( k k+1 ... n) is a (k-l)-shuffle 

fixing n. 
(n (k) 

-k+l 
(-l)n-k Sjn2, n-k+l' 

i. e. skn_k (k k+l ... n)= sgn((kk+l ... n))Sk n 

Then composing each side of the above equation (*) with (k k+1 ... n) gives the result. C3 

Remark 
The above proof uses only CnSkn-k = 0, for k=1, ..., n-1. Since en(l) satisfies 

en(')Sk, n-k = 0, for k= n-1, the same proof gives 
I)S(n) en(l)Pn, k = en( k-ln-k+l * 

Proposition IIIAZ 
Working over K containing 0, the tree representation Vn Of Sn coincides with 

en(l)KSn- i. e. Vn aý en(I)KSn , as right KSn-modules. 

Proof 
(n) We have en(I)Pnk = en(I)sk-In-k+I- 

Then for cc e Sn, (I =( (n k) (n-1 k+1) ... )(x', for some kn and some cc' G Sn-I* 
So, en(l)(x = enOX (n k) (n- 1 k+j) ... )cc' 

= (-I)([n-k+ll [n-k+21/2 -I )en(I)S(n) (X I k-l, n-k+l - 
The right-hand side contains only terms en(l)n for 7t e Sn-1, so this shows that en(')KSn 
is generated by enMIC for nG Sn-1- Since Hanlon [HI has shown that en(I)KSn has 
dimension (n-l)!, the en(*ý'S for 7c c Sn-I must form a basis. 
S imilarly we have: CnCC = (-l)([n-k+ll [n-k+21/2 -1 )Cns (n) a k-t, n-k+l 
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SO 0: Vn 4 en(1)KSn defined by O(CA = en(1)7r, and extending linearly, gives a well- 
defined KSn-module isomorphism. 0 

Remark 
Since Sn+j acts on Tn, Vn is actually an Sn+I-module, giving a representation Of Sn+j 

which restricts to en(I)KSn- We shall return to this and discuss the representation theory 
further in Chapter IV. Note also that although the idempotent en(l) is only defined 

rationally, the representation Vn makes sense over any ground ring. 

Section 111.4 : r-(co)homology in Characteristic Zero 

We saw in the previous chapter that the Ir-homology of a flat commutative k-algebra 
A, where k is a commutative ground ring, is given by a spectral sequence: 

Fý1, q = TorkSp(Vp, AOP)(&M Hr q p+q-, (A/k; M), 

III 
where dp, q: Ep, q-ýEp-I, q is induced from the original differential in the IF chain complex; 

and where AIOP is a left kSp-module as before via n4 (a, O... (Dan) = (a. 10 ... Oann), and 
VP is a right kSP-module as explained above. 

We consider the case where k contains Q. Then kSp = ep(l)kSp 9(I -ep(l) )kSp, and 
so Vp a ep(I)kSp is a projective kSp-module. Hence 

1= TorkSp (Vp, AOP) 0M 
VPOkSPA(DP(&M if q=0 Fý, qq0 

otherwise 
Thus the spectral sequence collapses, El having non-zero terms along the line q=0 only. 
So over a ground ring containing 0, IF-homology is given by the homology of the chain 
complex: 

( VP&k. SpAOPOM, dl). 

We will now describe the boundary map 
dI: VnOkS. AO'OM4 Vn-IOkSn-jAOn-I(&M. 

This map is induced from those parts of the original boundary map d which take terms in 
On to terms in On-1. We will denote by [v(&a(&m1 an element of VnOkSnA on (& M. 
Now we have seen that Vn has basis cn7c, for 71 e Sn-1- 

Recall from Chapter I that we may describe the Hochschild complex for a commutative 
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algebra A with coefficients in a symmetric A-bimodule M as ( AO*OM, b ), where the 
Hochschild boundary b: AenoM 4 Aen-I (&M is given by 

n-I - b (a, O ... (Dan0m) = a20 ... (gan0alm + (-1)'ajO... Oaiai+j0 ... OanOrn 

+ (-l)n a, (& ... gan-10anm. 
(Note that the formula here is modified to take into account that we are writing the 

coefficients M on the right. ) 

LemmaHI4.1. 
dt I cnn(DaOrn Cn- 10 b( 7ta(gm 

where 7c r= Sn-1, ae Aen, meM, and where b is the Hochschild boundary. 

Proof 
First let us consider dt I CnO a10 ... Oan (9M 1. Only the first and last terms of the 

original boundary contribute to di. We must interpret these in terms of trees. (Le. we 
transfer the boundary from N( [nl/r/[ll ) to Tn using the map 0 of p23). Let us consider the 
first term Do. In the original chain complex this was given by 

Do U fn-11 ... 
I f, 1 (9 a0 m) =[ fn-11 ... 

I f2l 0 fl. a 0 m, 
and this contributes to dt only if f, :[nI -ý [ n-1 1. 
We can see that for each tree in Cn this operation corresponds to wherever possible 
replacing a pair of ends labelled by i and i+1 by a single end labelled by i, and then 
relabelling the rest of the tree in order; thus a10 ... Oan(&M becomes 

a10 ... Oaiai+, O ... Oangm- It is clear that for each i=1, ..., n- 1, replacing a pair i, i+1 with i 

on each tree where such a pair occurs gives us a copy Of Cn-1- 
Now consider the final term of the original boundary an-1- In the original chain 

complex this was given by summing over components of [ fn-21 ... 
I f, 1. Here we only have 

the case where there are exactly two components, [ n-1 I -ý [ 11 and [II -ý [ 11, and we get 
the first of these. For Cn this operation corresponds to orniting aI or an n wherever such 
appears in a pair together with 0 on a tree, (after orniting 1 you relabel the resulting tree as 
appropriate); thus a, (& ... (Danigm becomes a20 ... Oan(Dalm or ajO ... 0an-10anm. Again it is 

clear that in each case you are left with a COPY Of Cn-1- 
So we have seen that the terms which occur are precisely those in 

I Cn- 10 b( al(KRan (9M )L 
It remains to check that the signs are correct, but this follows from didt = 0. (For example, 
considering xj(& ... (&Xn, where the xi's are generators of the polynomial algebra k[xl,.. -, Xnl, 
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then the standard cancelling of terms under b2 is the only one possible). Hence we have d, 

CnO ajO ... Oan Om 1 -0 1 cn-j(& b (ajO ... Oan OM) L 
So dt I cnn(g a (9m I= dt I CnO 7ca (Dm I= cn-10 b( ira Orn I as required. 13 

We are now in a position to prove the main theorem. 

TheorcmIIIAZ 
For Aa flat (projective) commutative algebra over k containing Q, and M an A- 

module, r- (co)homology coincides with Harrison (co)homology 
Hrn-I(A/k; M) = Harrn(A/k; M), 
Hrn- I( A/k; M)= Haffn( A/k; M ). 

Proof 
We will prove the result in homology. We have a chain complex (Vn OkS. A On (& M, 

di ). Now we have seen that, for k containing Q, Vn 2k en(l)kSn, by cnx ý+ en(l)x, for xe 
kSn- (Proposition 111.3.2. ). 

Hence, Vn (&kSn Agn 0Ma en(l)kSn(&kSn Aen(&M a en(l)Aon(&M. 
Explicitly we have 

On: VnOkSn On 0M4 en(I)AonoM given by On I cnx0a(gm en(I)xagm, 
for xe kSn, and 

, qfn: en(l)A(gn(&M. + Vn OkS. A(Dn (9 M by Nfn(en(l)a(8)m) ýI cn(&a(&m 1. 

It is easily checked that these maps are well-defined and mutually inverse. 
Now recall (from 1.3) that Harrison homology is precisely the homology of the 

complex ( en(l)Aon(gM, b ), where ben(l) = en-I(I)b. We wish to show that we have an 
isomorphism of chain complexes: 

( V. 00*0M, di ) 2ý ( e*(1)A8*(&M, b 
Now dlyn(en(Uagm) = dl I cn(&a(&m I=[ cn-10 b (a0m) 1, by Lemma 111.4.1. and 

xVn_jb(en(1)a(&m) = Nfn-1en-1(1)b(a(&m) cn-10 b (a0m) 
So dlxVn = Vn-lb. 
Also On-ldl I cnx0a0rn I= On-1 I cn-10 b (xa(gm) I= en-j(1)b(xa(&m), and 

bOn I cnx(gagm I=b (enMxa(&m) = en-10)b(xagm). 
SO On-ldl = bOn- 
Hence, we have an isomorphism of chain complexes, giving the result. 13 
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Section 111.5 : The Relationship between the Harrison and r 
Theories in General 

The idempotent en(l) is only defined in characteristic zero, but the representation Vn 

makes sense over a general ground ring, and a simple modification of the above arguments 
shows that the edge of the spectral sequence for IF-homology is still Harrison homology. 

Proposition HIS. 1. 

Vn(&kS Agn a AOn/( n-I 
n si. n-i AOn) 

Proof 
Define 0: Aft 4V nOkSn Aon by 0(a) ` cn(ga. If CnCCi (9 ai G VnOkSn Aft, for 

(Xi E kSn, ai E Agn then Ycnoci 0 ai = CnOIcciai = 0(yaiai), so 0 is suýective. 

n-1 
Now lsim-ikgn c: Ker 0 since 0(sin-ia) = CnOsim-ja = cnsin-iOa = 0, by 

M 
Proposition 111.2.3. In fact, in Section 111.3 we saw that the relations cnsi, n-i =0 deterrnine 

the Sn-module structure Of Vn, so that cn(x =0 for ae kSn if and only if a r= 

n-I n-I Y, si, n-ikSn. Hence Ker 0= Ysi, 
n-iAen. i=l i=l 

Proposition 111.5.2. 

E3 

For Aa flat (projective) commutative algebra over any commutative ring k, and M an 
A-module, we have homomorphisms: 

Hrn-I(A/k; M) -) Harrn(A/k; M), 
HI'll-I(A/k; M) <-- Harrn(A/k; M). 

Proof 
The above proposition says that in the spectral sequence for Ir-homology we always 

I n-I have q, O ca A(gn/( si, n-i 
On) 0 M, Harrison's nth chain group. As above, we can 

identify the boundary d, q, O 4 q-1,0 with the Hochschild boundary. Thus 

F2 '_ 25 Harrn( A/k; M n, O 
So the required homomorphism is the edge map of the spectral sequence. Similarly for 
cohomology. 13 

46 



Chapter IV : Extensions of the Eulerian Representations of the 
Symmetric Groups 

Introduction 
In this chapter we consider some representation theory of the symmetric group. From 

Chapter III, the tree space Tn is a simplicial complex satisfying Tn 0, V Sn-3. Since the (n-1)1 
symmetric group Sn+j acts on Tn by permuting the labels 0,1, ..., n on trees, the only 

non-trivial homology group ! in-3(Tn; k) gives a representation Of Sn+1. We denote this 

representation by Vn', and its restriction to the subgroup Sn (which keeps 0 fixed) by Vn- 
From Section HI. 3, working over k=0, 

-the 
representation Vn is that given by the first 

Eulerian idempotent, en(l)QSn- 
Working over 0, we begin by identifying Vn'as An+len(l)QSn+t, where An+jen(l) is 

an idempotent described below. Next we show that each Eulerian representation, eno)QSn, 
is in fact a restriction of a representation Of SnA, given by an idempotent An+lenO) in 

QSn+l* Then we provide a description of the representation An+lenO)QSn+l as a virtual 

representation, by first proving a certain relation between the idempotents eno) and en+10)- 
For the tree representation, the result is that Vn' is given by Vn induced to Sn+1 modulo 
Vn+1- This description leads to a character formula, using the results obtained by Hanlon 
[HI for the Eulerian representations. Finally, we state some partial results on the 
decompositions of these representations into irreducibles. A formula for the decomposition 

of the eno) representation into irreducible components is not known in general. It may be 

productive to approach this problem by considering how the An+lenO) representation 
decomposes, and then restricting. However, we have. not made much progress in this 
direction. We give a table of decompositions for small n; the results for j=1, n-2, n- 1, n; 

and the relationship between our representations and the trivial representation. 

Section IVA : The Representation Of Sn+l given by the Tree Space T 11 

In this section it is shown that Vn' is the same representation Of Sn+l as that given by 

the right Sn+l-module An+ien(l)QSn+l, where An+jen(l) is an idempotent in QSn+, 
describedbelow. 

Recall that cn is the cycle in the tree space Tn consisting of trees with cyclic labelling. 
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Pro IV. 1.1. 

Cn (0 1 
... n)= (- Wcn- 

Proof 
Obviously (0 1 ... n) takes a tree with cyclic labelling to another such tree. So it is just 

a question of checking that (01... n) has the stated effect on orientations. T'his is 

straightforward. D 

Notation 
Let kn+l = (0 1 ... n) e Sn+l- 

1n 
LetAn+, =-1: 

(sgn%in+, )Xin+l '=-OSn+l- 
n+ 1 i=o 

Clearly, An+1 is an idempotent in QSn+t* 

Proposition IV. 1.2. 
An+lsn " SnAn+l* 

Proof 
A typical term on the right-hand side of this equation is nXi h+I, appearing with sign, 

Now 7c%j +1(0) = no). So 7C%j +1 = %7c0j7z', for 7t' where n is some shuffle in Sn nn n+ 
X-7[ in Sn- n+P)n Xjn+I 

claim 
7c -+ n' = %-I, p )n XJ +, is a bijection Sn -+ Sn, taking shuffles to shuffles, for j= Ol 1, 

n+ n 
n. 

Proof Of Claim 
For J=n, this was proved by Natsume and Schack [ N-S Lemma 9 1. It is 

straightforward to show that the claim follows by iterating their result. 

So each term of the right-hand side, n%Jn+l with sign, appears in the left-hand side as 
%no P 

n+ln, with n' a shuffle, also with sign. 13 
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CorollaiyIV. 1.3. 
An+lenO) = enO)An+l forj = n. 

Proof 
Each enO) is a polynomial in sn- Since An+I commutes with sn, it commutes with each 

enO)- 13 

Corollary IV. 1.4. 
An+lenO) is an idempotent in QSn+l- 

Proof 

(An+lenU) )2 = An+lenO)An+lenO) = An+12en 0)2 = An+lenO)- 13 

So in particular An+len(l) is an idempotent in (QSn+l, giving a representation Of Sn+I, 
An+len(l)(QSn+l- 

Proposition IV. 1.5. 

Working over 0, the tree representation Vn'of Sn+l coincides with An+len(l)(QSn+l- 
i. e. Vn'a An+len(I)QSn+l as right QSn+l-modules. 

Proof 
Since Vn' restricts to Vn 25 en(1)QSn (Proposition 111.3.2. ), we first show that 

An+len(l)QSn+l restricts to en(')QSn- Consider the homomorphism of right QSn-modules 
0: en(')QSn -ý An+len(')OSn+l given by left multiplication by An+1. Now since An+, and 
en(l) commute, and since we may write ne Sn+I uniquely as X In+, n' for some i and some 
7cl G Sn, we have 

AnAenMIC =ee n(I)An+IXin+17C' = (sgn %In P)An+17c'ý (sgn Xi+, ) AnAe n PW- 
Hence, the homomorphism of right QSn-modules An+len(l)OSn+l -+ en(I)QSn which is 

given by An+je +, ) e is an inverse for 0. So P)n 14 (sgn ), In PW for 7c e SnA 
An+jenMOSn+j and ePASn are isomorphic as OSn-modules as required. 

i Now we have cn%in+l = (sgn %n+l)cn (Proposition W. I. I. ). So the action of the 
(n+l)-cycles kinA is the same on cn as on An+jen(l), hence the result. El 

So the tree representation Vn' is a representation of Sn+j restricting to the first Eulerian 
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representation Of Sn, en(I)OSn- More generally, we have defined idempotents An+Ieno) for 

j=I, ... ' n and we show these give representations of Sn+j restricting to the Eulerian 

representations Of Sn, enO)(QSn- 

Proposition IV. 1.6. 
An+lenO)(QSn+l restricts to enO)QSn, for j=1, ..., n. 

Proof 
The proof is exactly as for the case j=1 given above. 13 

Proposition IV. I. Z 
The sum of the representations An+lenO)QSn+l for j=1, ..., n is given by taking the 

sign representation Of Cn+l ý-- < ý-n+l >C Sn+l, and inducing up to Sn+1- 

Proof 

nn Y, An+lenO) = An+1Y, enO) = An+1- 
j-1 j-1 

So the sum of the representations An+lenO)QSn+i is An+IQSn+i- It is easily seen that this 

representation is as claimed. 13 

Section IV. 2 :A Relation between e. 0) and en+10) 

In this section we prove certain relations between our idempotents, which will be 

needed in the following section to give descriptions of our representations. The main result 
is Proposition IV. 2.5., giving a simplification of the product enO)en+lo)- 

From now on we shall revert to standard notation where Sn+j denotes permutations of 
1, ..., n+1 } rather than { 0,1, ..., nL So Xn+l now denotes (12... n n+1 ). The 

symmetric 90UP Sn is contained in Sn+j as the permutations fixing n+1, and similarly 
QSn C QSn+1- 

LemmaIV. 2.1. 
An+lenO-l) = en+lo) An+,, forj = 

50 



-extensions of the Eulelian representations - 

Proof 
This follows from Loday's relation BenO-1) = en+I(j)B [ L, 1; Theorem 4.6.6, p150 

where B is Connes'boundary operator in the normalised setting. (Ile formula for B in this 

normalised situation is just (n+1) s An+1 - see pI 5). 13 

CorollaiyIV. ZZ 
An+lenO-1)OSn+l c en+10)OSn+l, forj = 2,.... n+l. E3 

Hence, since the group algebra QSn+I is semi-simple, we may write: 
en+10)OSn+t ý An+lenO-')OSn+l 9 YOSn+I, 

for some y r: QSn+t- 

Notation 
Let Pn 2-- (1 n)(2 n-1)(3 n-2) ... r= Sn and let ON '0 (-I)n(n+l)/2 Pn ý (-I)n(sgn Pn) Pn 

e QSn. Now consider the idempotent GO = 1/2 (1+(-1*Pn) in QSn- 

Gerstenhaber and Schack [ G-S, 1 I show that these idempotents correspond to the even and 

,e odd pans or the Eulerian decomposition: GnQ) =I A) if i is even, and Cyn0) 
j even 

14 enO) if i is odd. In particular Cyn0) (and hence Pn) is a polynon-dal in sn and so 
j odd 

commutes with sn- Of course, en(i)(YnO) ý (YnWen(i) = 
en(i) if i=j mod2 10 

otherwise 

Notation 
Let sn*+, =I (sgn 7c) 7; where the sum is over shuffles in Sn+1 which do not fix n+l. 

So we may write sn+l "1+ Sn + Snn*+l- 

LemmaIV. Z3. 
(I Sn*+l ) Gn+10) " GnO+l) (I+ Sn*+l )- 

Proof 
Equivalently, we show Pn (I+ Sn (-I)n (I+ s*+, First consider the term *+I ) Pn+1 ý- n 

on the left-hand side. Note that Pn-Pn+1 n+ 
Pn-Pn+l n+I n ... 21 and since this is 

a I-shuffle with _I)n n+1(1) = n+1 it appears in the right-hand side and the factor ( 
cancels its sign. Now let 7c be a k-shuffle in Sn+1, not fixing n+I, so we must have nk 
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n+l. Consider Pn R Pn+l- 'Men it is easy to see that Pn 7' Pn+l is an ( n+2-k )-shuffle such 

that ( n+2-k ) 14 n+l. (If k=1, we must have 7c = %-I,, and we get Pn 7C Pn+l 13 
n+ 

Recall that snenO) = enU)sn = gjenO), where gj = 2j-2. 

LemmaIV. 24. 

enffl c; n+C 
( Sn+I - gi )' ()* 

Proof 

enO) Gn+10) ( Sn+1 - gj enO) Sn+I gi ) Gn+10), since cyn+10) is a polynomial in sn+1 

enO) 1+ Sn + Sn*+I, - gi ) Cýn+10) 

enO) Sn - gi ) (yn+10) + enO) + Sn*+l ) (yn+10) 

enO) 1+ Sn*+1 ) an+10), since enO)sn = gjenO) 

enO)'5nO+1) (1+ Sn*+j ) by Lemma IV. 2.3. 

0.13 

Proposition IV. Z5. 

enO) en+10) = enO) an+10)- 

Proof 
It follows from Lemma IV. 2.4. that enO)an+, O) is contained in the left ideal 

QSn+l(en+lo)). Hence, enO) an+10) = enO) an+10) en+10). But'un+10) en+10) = en+, O)- 

So, enO) Cýn+10) = enO) en+10)- 13 

In fact, using the same methods, we have: 

enO) en+10) = enO)'5n+10) " (YnO) en+10)- 

Section IV. 3 : An+ienU)QSn+i as a Virtual Representation 

The main result of this section is Theorem IV. 3.3., giving a description of the 
representafionAn+jenO)QSn+l- In order to prove this we first need a proposition. 

Definition IV. 3.1. 
We define certain elements of the group algebra QSn+I : 
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2+n 
Xn+10) (n - 1) + (-l (i - 2)(sgn ),! +, 

)Xi 
+1 n +I 

ýWn 
i=3 nn 

Proposition IV. 3.2 

enO) en+10) 'n+10) ý (1 - An+, ) enO)- 

Proof 
We will use eno) = (-1ýeljo)opn; also 'PnOPn+l = -(sgn X-nl+ n+1) X-nl+l* 
Now enO) en+10) xn+10) enO) an+10) xn+10), by Proposition IV. 2.5. 

., ý 
1/2 enO) (1+ (-VOPn+1 ) Xn+10) 

So eno) en+10) xn+10) 1/2 enO) (1+ OPnoPn+l ) xn+10) since eno) =(4ýenO)ON 
1/2 enO) (1- (sgn X-nl+l) X-n+11) Xn+10) 

Now: 
(sgn ?, -nl+l) X-nI+I Xn+10) 

-2 n-I 
(n - 1)(sgn + (sgn X-n+l, )X-n+l op + Y, (i - 1)(sgn 

n+1 

I 

n+ In 
i=2 n n+1 

-2 (-1 ý (sgn X-I IA-1 + (i - 1)(sgn 
n+I n+ n+IOPn n n+I 

I 

i=2 

I. 

So: 
(sgn 

n+l n+l) Xn+10) 

2 (n-l)+(-lýOPn-(-Jý(sgn%-lj)%-l W 
n+ n+lOPn 

(sgn Xin+l n+l] n+ i=2 
Hence, 

eno) en+10) xn+10) 
n en (n - 1) + (-l ý opn - (-l ý (sgn W 

n+ n+l ON (sgn Xln+l n+l i=2 

I 

en 0) [n- 
(sgn ), -I %i (sgn Xi 

n+ n+l) ON knl+l ON -y n+l) n+l 
i=2 

I 

= en 0) [n- 
(sgn Xn+I». n+I - Y, (s gn2, in 

i=2 
n+1)lin+I 

1 
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) enO) n 
Thus enO) en+l 0) Xn+l 0n-Y, (sgn kln+l 

n+l n+l 

I 

i=l 

I 

= eno) (I - Aln+, )= (1 - An+l) enO) - 13 

Now we can prove the main result. First note that given an idempotent e r= QS., giving a 
representation eQSn of Sn, then the induced representation Of Sn+I is given by eQSn+l* 

Theorem IV. 3.3. 
The representation An+lenO)QSn+t is given as a virtual representation by inducing the 

sum from i=I to j of the representations en(')QSn to Sn+j and subtracting the sum from i 

=1 toj of the representations en+l(')QSn+i- 
i. e. in terms Of QSn+I - modules: 

Aii n+lenO)QSn+t (ý (D en+l(i)QSn+l 25 Q) en(i)QSn+l- 
i=1 i=1 

Proof 
The result will be proved by induction on j. First we consider the case j=1. Here we 

need to show that : 
An+len(l)QSn+l (D en+1(1)QSn+t =- en(l)QSn+t- 

Now it is clear that en(I)QSn+l = An+len(I)QSn+t 6) (1 - An+I) en(l)(QSn+l- 
So we must show that: 

en+1(1)QSn+125 (1 - An+, ) en(I)QSn+l- 
Note that these modules both have dimension nl. 
We define 0: en+I(I)OSn+l 4G- An+, ) en(')OSn+l to be the homomorphism of right 
QSn+I-modules given by left multiplication by the element (I - An+I) en(l)- 
Then (I - An+l)en(l) = en(')en+1(1)'n+l(') ý (1 - An+l)en(I)en+I(I)xn+1(1) 
O(en+I(1)Xn+1M), by IV. 3.2. Thus 0 is surjective, and so an isomorphism, giving the result 
for n=1. 

Now we assume the result for j-1, and consider j. Using the induction hypothesis it is 
sufficient to show that: 

An+lenO)QSn+, (D en+10)QSn+l a enO)QSn+, (D An+jenO-I)QSn+I- 
Now we clearly have : enO)QSn+t = An+lenO)QSn+l 0 (1 - AnO enO)QSn+l, so we 
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must show that: 
en+10)QSn+l a An+lenO-1)QSn+l (D (1 - An+, )enO)QSn+l- 

By Corollary W. 2.2, 

en+10)QSn+l ý An+lenO-I)QSn+I(D YQSn+I- 
Hence, the above simplifies to showing that: 

YQSn+l a (1 - An+, ) enO)OSn+l- 

We define 0: en+10)OSn+I -* (1 - An+, ) enO)QSn+l to be the homomorphism of right 
QSn+I-modules given by left multiplication by (1 - An+, )enO)- 
Now An+lenO-')QSn+l C Ker 0, since (1 - An+, ) enQ)An+lenC-l) 2-- 0- 
Hence, 0 induces a QSn+l-module homomorphism: 

0': YQSn+I -* (1 - An+I) enO)QSn+l- 

Now we check the dimensions of these QSn+I-modules. 
Recall that Hanlon [HI gave the dimension of e nO)(QSn as the number of permutations in 
Sn with exactly j cycles, s(n, j). Also, we have already seen that An+lenO)QSn does restrict 
to enOASn, so has the same dimension. SO, YOSn+l has dimension s(n+I, j) -s(n, j-1), 

and (1 - An4. l)enO)QSn+l has dimension (n+l)s(n, j) - s(n, j) = ns(n, j). Since an easy 
calculation gives s(n+I, j) = s(n, j-1) + ns(n, j), the two modules do have the same 
dimension. 
Hence, it is sufficient to show that 0' is sudective to conclude that it is a QSn+j -Module 
isomorphism. 

But, (1 - An+l)enO) = enO) en+10) xn+lo), by Proposition IV. 3.2. 

= (1 - An+, )enO) en+10) xn+10) 
= 01 (en+10) xn+10))- 

Hence 0' is surjective. 13 

Notation 

Let Yjn+l denote the character of the representation An+lenO)oSn+l Of Sn+l- 
Let Xi denote the character of the representation e n nO)QSn Of Sn- (This is Hanlon's 
notation). 
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Corollary IV. 3.4. 
iiii 

Ti lindSn+I(X x n+l Sn n n+l 

Proof 
Immediate from the above. 

We give the formula for the character TI of the tree representation Vn'explicitly. 
n+I 

Corollary IV. 3.5. 

sgn (7c) 
Ip n/p(n /p)! g(p) 
n 

-sgn(ic) 
/q ((n + q)! g (q) 

n+l 
0 

if n has cycle type p/P. 1 

E3 

if n has cycle type qn+I/q, qýl 

otherwise, 

for ne Sn+I, and where g denotes the classical Moebius function. 

(Tbe cycle type of n r: Sn is 1(112CC2... if when n is written as the product of disjoint cycles 
there are al 1 -cycles, (X2 2-cycles and so on). 

Proof 

Firstly, we have shown that TI restricts to X1 . So any 7c with at least one fixed 
n+1 n 

point, being conjugate to an element of Sn, has 

sgn (n) 
1 

pn IP (n / p)! g (p) if 7c has cycle type pn/p. 1 
T'n+1 Wn 

0 otherwise, 

see [HI or [G1. (This is a straightforward calculation from since this holds for Xn 

Hanlon's result: XI = sgn in without fixed 
n 

+n (4(12-. 
n)))). 

Now consider 7c G Sn+I 

points. We have shown that TI +1 = indSn+l (X1 X1 n Sn n n+I, 
Ile standard formula for an 

induced character gives: 
indSn+I(XI )(1c) = 1/nI Z X, (CFJCG-Iý Sn n 

GGSn+I 
n 

Conjugates of n have the same cycle type, and hence do not lie in Sn, so this expression is 

zero. So, for 7c without fixed points, 411 1 
n+1 Xn+I, and the result follows from [H1.13 
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Section IVA : Some Results on Decompositions 

The following table lists the decompositions of the representations of Sn+I 

corresponding to the idempotents An+lenO), for n=1, ..., 4 and j=1, ..., n. 

TableIVAI. 

1 2 ___________ 4 

1 9 

___ ___ 

2 liii 

___ 

3 LI" 
- 

4 

[JII WI 

I III II 

H" 

The first column gives the representation of Sn+1 which comes from the tree space Tn. 
(We have seen that this is An+len(')QSn+l)- Ile above restrict to the representations listed 
by Hanlon [HI for the en6)QSn'S (see Table 1.5.3. ). 

In the diagram above, the sum along the nth row gives the representation An+IQSn+l, 
i. e. the sign representation Of Cn+1 induced to Sn+1, which restricts to the regular 
representation of Sn- the sum along the nth row in Table 1.5.3. 

For some values of j, it is possible to describe the decomposition of the representation 
An+lenO)QSn+l into irreducible components. Let 0- denote the irreducible character of the 

symmetric group Sn+I corresponding to the partition X of n+1. 
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Proposition IVAZ 

1). 0=1)'Ibe multiplicity of 0, in NVIn is the number of standard tableaux T of shape X 
n+I 

such that a(T) =- 1 (mod n) minus the number such that a(T) a1 (mod n+1). (Recall from 

1.5. that a(T) denotes the sum of ascents of a tableau T). 

2). O=n-2) xpn-2 = (. 221n-3 . . 321n-4 ) o)3 
21n-5 

n+l 

3). O=n-1) Tn-I = (, 3, n-2 
n+l 

%pn ln+I 
. n+I = (0 

n 
, Tj is the number of standard 5). The multiplicity of coý in the sum of characters F 

j=1 n+1 

tableau T of shape X such that a(T) a0 (mod n+1). 

Proof 
1). Claim :T is a standard tableau for Sn+I such that a(T) aI (mod n) if and only if it is 

obtained from a standard tableau Tfor Sn, with a(T) M1 (mod n), by attaching n+I to the 

end of some row/column. 
Proof of Claim : Given such a tableau T, n+1 must appear at the end of a row or 

column since T is standard. Removing it gives a standard tableau T' for Sn and the only 
possible change to the ascents is that n may cease to be one. So a(T) E3 a(T') (mod n). 

Now since in XI cog has multiplicity the number of standard tableau T' of shape g for 
n 

S such that a(T') a1 (mod n) [ K-W 1, the claim shows that in indSn+I(XI ), coý has n Sn n 
multiplicity the number of standard tableau T of shape X for Sn+I such that a(l) u1 (mod 

n). Since, TI = indSn+l (XI X1 +1 the result follows. 
n+1 Sn nn 

2)., 3). and 4). These results follow directly from Hanlon's for Xn-2 Ix 
n-1 and Xn. i. e. For nnn 

i= n-2, n-1, n, the decomposition of TI n+1 given above is the only one which will restrict 
back to give the correct decomposition of Xn i. Of course, in the case j=n, we have 
An+Ien(n) = An+lcn m F-n+l, and we can see directly that we have the sign representation. 

5). We have seen that this sum of characters is just the sign character Of Cn+l induced to 
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Sn+l* The formula for the decomposition of this is given by Stembridge [S1.13 

We also give the relationship between our characters and the trivial character. 

Proposition IV. 4.3. 

The trivial character Win+' appears only in %pn/2 if n is even and does not appear in 
n+1 

any %Fin+l if n is odd. 

Proof 
Let en+1 = 1/(n+l)! 7,7C 

ICr: Sn+l 

It is easily checked that An+len+t en+1 if n is even 
0 if n is odd. 

Hence, the trivial representation does not appear in An+IOSn+i when n is odd. When n is 

even it appears once, and this must be in An+len(n/2)QSn+l, since Hanlon (HI shows that 

the trivial representation of Sn appears in the restriction en([(n+l)/21 ASn- 13 

Corollary IV. 4.4. 

The character oPI does not appear in any Ti if n is even and appears only in 
n+1 

T(n+l)/2 if n is odd. n+I 

Proof 
The irreducible character ont of S 

n+1 
is the only one apart from wn+' which gives the 

trivial character Of Sn on restriction. Hence the result follows from the above. 13 

The even/odd parts of the representation can be described explicitly. Consider the 
idempotent 

I An+lenO) if n is even 
An+l-( 1+ (sgn Pn)Pn )/2 = An+1'5n(n) j even 

I An+jen0) if n is odd 
j odd 

This gives the even or odd part of the decomposition according to whether n is even or odd. 
It clearly gives the representation Of Sn+1 induced from the sign representation of the 
dihedral subgroup generated by Xn+l and Pn- 
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Proposition IV. 4.5. 
The character of the representation An+lcFn(n)QSn+l is given by, for n even 

n! /2 if (; =1 
(n/2)! 2n/2-1 (sgn c; ) if cy has cycle type 2n/2.1 

(n + /q)! qn+l/q(, (q)(sgn a) if c; has cycle type qý+I/q for q dividing n+I 
2(n + 1) 

0 otherwise 

and for n odd by 
cr ý+ 

n! /2 if C; =1 

((n - 1) / 2)! 2(n-3)/2 (sgn cr) if o has cycle type 2(n-IY2.12 

(n + I/q)! q n+l/q (p(q)(sgn cF) if a has cycle type qn+l/q for q dividing n+I, q o2 
2(n + 1) 

2(n-')/2 ((n + 3)/2)! (sgn a) if a has cycle type PAY2 
(n + 1) 

otherwise 
where (p is Euler's function. 

Proof 
We work out which cycle types occur in the subgroup D2(n+l) < (I n)(2 n-1).... 

12 ... n+1 >=< Pn, ý-n+l >. The elements are XnA and pn XnA for i=1, ..., n+1. We 

have the elements of the cyclic group, with cycle type q(n+l)/q occuring (P(q) times for each 

q dividing n+1. Now the elements Pn %in+, all have order 2, and consideration of fixed 

points shows that if n is even they all have cycle type 2n/2.1, whereas if n is odd half have 

type 2(n-1)/2.12 and the other half have type 2(n+l)/2. Now the result follows from the 

standard formula for an induced character. C3 

We can give formulae of sorts for the decomposition of this representation into 
irreducibles, for example: 

Proposition IV. 4.6 
When n =- 2 (mod 4) the multiplicity of co% in 7- Tjn+l is given by: 

j cven 
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(the number of standard tableaux T of shape X such that a(T) =- 0 (mod 2)) 

+ 1/2 [the number of standard tableaux T of shape X such that aM=-O (mod n+1) - wX(I)l 

Proof 
By Frobenius reciprocity, 

< CO,, indSn+l (sgn) > D2(n+l) 
< 0ý'D2(n+l)' sgn >D 

2(n+l) 
1 

7, coý((Y) sgn(a) 2(n + 1) crED2(n +I) 

x sgn (), i n n+1) + (J)I(Pn%in+l) sgn(Pn%in+l) T(n -+1) 1(0 (A'I 11) 
i=O 

As above, for n even all the Pn X' +I's 
have cycle type 2n/2.1. So we get: n 

(n + 1) ( (oX, indSn+l (sgn)) + (n + 1) coý- (a)sgn (a) where a has type 
2(n + 1) Cn+I 
2n/2.1, 

I(( 
(07, indSn+I (sgn) + coý-(cY)sgn((; ) 

2 Cn+I 
I 

(OX, indSn+l (sgn) + 2( cl)%, ind. Sn+t (sgn CO, (1) 
2(( Cn+I Pn> 

This formula involves representations induced from the two cyclic groups Cn+j and <p, >, 

and the result follows from the results of Stembridge [SI on such representations. 13 
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Chapter V: Some Remarks on Commutative Algebra 
(Co)homology in Prime Characteristics. 

Introduction 

In this chapter we consider some aspects of commutative algebra (co)homology in 

prime characteristics. We begin by describing the work of Gerstenhaber and Schack 
[ G-S, 2 1, giving a modified decomposition of the Hochschild (co)homology valid in this 
situation. In fact their reasoning is slightly wrong and we make the necessary corrections. 
We also correct their statement that the first part of the decomposition is still the null space 
of the total shuffle operator or Harrison's cohomology. 

In the next section, we explain how to give the analagous decomposition of cyclic 
(co)homology in prime characteristics. 

Finally, we give a counterexample to a conjecture of Barr (see [ G-S, 1 I p232), which 
states that a certain modification of Harrison cohomology, taking into account torsion, 
should coincide with Andr6/Quillen cohomology in prime characteristics. 

Section V. 1 : The Decomposition of Hochschild (Co)homology in 
Prime Characteristics. 

We have seen that when we work over k containing 0, there is a direct sum 
decomposition of Hochschild (co)homology. The first part of this decomposition is 
Harrison (co)homology. Now suppose that k contains Zp, In this situation Gerstenhaber 
and Schack [ G-S, 21 give a modified version of the decomposition. They show that for 0< 
i<P, the idempotents Zn (i) = 7, en (i + (p - 1)m) are defined in characteristic p. Thus, 

M2: 0 
setting HHi, n-i (A/k; M) = ýO)HHn(A/k; M), we have a direct sum decomposition of 
Hochschild homology into p- 1 parts: 

HHn(A/k; M) = HHj, n-1 (A/k-, M) 19 ... 9 HHp-l, n-p+I(A/k; M), 
and similarly for cohomology. 

In fact, as we show, although it is true that these idempotents are defined in 
characteristic p, the reasoning of Gerstenhaber and Schack is slightly wrong. Below we 
make the necessary corrections to their argument. 
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First we will summarise some more results over 0. 

Definition V. I. 1. 
L (q) 21 x et sn . 

(sgn COO r: ZSn, 

PeP(n, q) GEShp 

where P(n, q) denotes the set of all ordered partitions p= (pl, ... ' Pq) of n into q parts with 
Ipj =n and all pi ý. - 0, and for pe P(n, q) the set of p-multishuffies, Shp, consists of a r= 
Sn such that a(l) < ... <CF(PI), CF(pj+I) < ... < CY(PI+P2), ... ' CY(Pl+---+Pq-1+1) < ... < ci(n). 

Hence, sO) =I and s(2) = +2, where sn is the total shuffle operator. The elements s(q) nn Sn n 
come from the qth characteristic endomorphism of the shuffle bialgebra, and differ from 

Loday's %-operations only by a sign, s(q) = (-l)q-1 ), I [ G-S, 2 L, 2 1. Now, 
nn 

Gerstenhaber and Schack show that b s(q) = s(q) b for each q, so that using the universal n n-I 
property of the idempotents enO) with respect to commuting with the Hochschild boundary 

we have: 

Proposition V. I. Z ([G-S, 21, [L, 21) 
n 

S(q) en (i) for all q ; -> 
1.13 

n 

In particular, en (i) S(q) ýn (i) for i=1, 
..., n, q ; -> 

1 
n 

Now we wish to translate the above to characteristic p. 

Proposition V. I. 3. 
The idempotents ý, (i) =I en 0+ (P - I)m) are defined in kSn, where k contains 

M2: 0 
Zp, for p prime. 

Proof 

Over Q, we have e,, (i + (p - 1)m) (s(q) - qi) +(P-I)m - q) ýn (i + (p - I)m), for i, 
n 

q P-1, Mý0. 
Now although ý+(P-I)m-q' is zero mod p, the denominator of en(i+(P- ')M) may also 
contain multiples of p. However, by choosing a sufficiently large r, we have for each i: 

en 0+ (P ')M) (S(q) q i)r (q'+(P-1)'-q' )r en (i + (p - I)m) E3 0 mod n 
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Hence, ý10)(s(q)-q)r a0 mod p, for i, q= n 

q 
Vr (s( r- 

qir Now let's also choose r to be a power of the prime p, so that (s( 
nn 

(s(P r-qqr 
mod p. Hence, we have ý, (i)(S' a q'ýj (i) mod p. So the idernpotents 

nn n 
(i) satisfy the equations: 

Ij I 
q'! Fn (i) (mod p) 

i=1 
The matrix of coefficients (qi) is Vandermonde and invertible over Zp, so the idempotents 
ý, 0) are defined in characteristic p. 13 

-1 
(i)b from b s(q) = s(q), b and Applying the same argument, we can deduce bý, (i) - ! ýn 

n n- 
so that these idempotents do decompose Hochschild homology. 

P-1 . The equation (*) replaces the equation s(q) q1 ! Fn (i) (mod p) of Gerstenhaber and n 
Schack, which is wrong. 

Now, Gerstenhaber and Schack incorrectly assert that the first part of the cohomology 
decomposition, 1EIJt-1 (A/k; M) corresponding to Zý (1), is the null space of the shuffle 
operator sn and thus Harrison's nth cohomology group. In fact, we show that the three 

objects, the null space Of sn, Harrison's nth cohomology group and (A/k; M) are 
all different. 

We begin by showing that in characteristic p, Harrison cohomology is not the null 
space of the shuffle operator. A Hochschild n-cochain f is a Harrison cochain if it vanishes 
on shuffles. However, this means that we must have fsin_i =0 for i=1, ..., n-1. In 
characteristic zero this condition is equivalent to fsn =-- 0, and the Harrison nth cohomology 
is the null space Of sn. However, in characteristic p, these two conditions are not equivalent. 
For example, we have: 

S1,2 =I- (12) + (13 2) 
S3 =2- (12) - (2 3) + (12 3) + (13 2). 

If we work in characteristic 2 and consider those Hochschild 3-cocycles, f, which are 
invariant under permutations, then fs,. 2 =0 ýt* f=0, so there are no such Harrison 
cocycles. However, fS3 =0 <* 2f = 0. so any such cocycle lies in the null space of s3. A 
specific example is given by taking the polynomial algebra Z2[xl, with coefficients in Z2, on 
which x acts trivially. Define a cochain f. - Z2[x]03 -* Z2 by 

f [Xil, xi2, xi3 
1 if il = i2 = i3 -ý I 
0 otherwise 
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and extending linearly. Then f is not a Harrison cocycle. However, f is a Hochschild 3- 
cocycle which is in the null space of s3, and it is not the coboundary of any 2-cocycle, g, in 
the null space Of S2, since: 

Bg[x, x, x] . g[X2. x I +g[x, x2] . gS2 [ X, X2 ). 

Secondly, we note that Harrison cohomology is not We consider the example 
of a polynomial algebra. If A-k[x. 1, a polynomial algebra on one indeterminate, then 
jilin ( A/k; k)=0 for n 2! 2. For Andr6/Quillen homology we have Dn( A/k; k)=0 for 
n 2: 1. Now Barr [ 13 ) gives an example to show that in characteristic p, the Harrison 
cohomology groups of the polynomial algebra k[x. I are non-zero in dimensions 2p', for 
any integer rn > 0. This shows that the Harrison and Andr6/Quillen theories are different in 
characteristic p. It also shows that the Harrison theory is not a direct summand of the 
Hochschild theory in prime characteristics. So jM1'n_1 (A/k; M) ý Harr n (A/k; M). 

Thirdly, one can check directly that URtn-1 (A/k-, M), the part corresponding to the 
idempotent ! Fn (1), is not the null space Of sn- For example, in characteristic 3: 

ý30) ý e3M + e3(3) =2+ (13), 
and one easily checks that ý3(1)s3 00 (mod 3). As above, we only have that iý (1)(sny 
0 (mod p) for some sufficiently large r. In the above example, we have ý3(1)(S3)3 =0 
(mod 3). 

We should consider the homology theory HHi. *-t (A/k, M), since it is another 
commutative algebra homology theory agreeing with Harrison theory in characteristic zero. 
Firstly, it is not the same as r-homology: it is a direct summand of Hochschild homology 
and therefore the higher groups are zero for the polynomial algebra k[x1, whereas 
Robinson [ Rob, 2 I has calculated that we get some non-zero r--homology groups. 
Secondly, it is not the same as Andr6/Quillen homology. To see this, consider the 
polynomial algebra kI X1, ---t Xr It whose higher Andr6/Quillen groups are all zero. 

We show that HHIn-l(k[xl,..., xr I; k) ý 0, when n =-I (mod p-1) and n: 5r. Here k is 
ak[ xi, ..., x. ]-module via the map which sends each xi to zero. 

Notation 

n[ dx Let Ak1, ..., dxr I denote the degree n elements of Ak [ dxj, ..., dxr 1, the exterior k- 
algebra on symbols dx 1, ..., dxr of degree 1. 
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Proposition V. 1.4. 

If k contains Zp, 

nI dxl, ..., dxr 
HH,. n-j (k[ xl,..., xr 1; k 

Ak 

0 

Proof 

if n=m(p-l)+l for me N 

otherwise. 

n[ dxl, ..., dx, 1- HHI�, -l 
(k [ x�..., xý; k) = ýi (1)IMn(k [ x�..., xý; k) = *ýi (1) Ak 

Now (sgn ý, (1» (sgn en (1 + (p - 
m20 

1 if n= m(p- 1)+ 1 
0 otherwise. 

Hence the result. 

So, HHI, * -1 gives a theory somewhere between the Andr6/Quillen and r theories. 

Section V. 2 : The Decomposition of Cyclic (Co)homology in Prime 
Characteristics. 

13 

We note that we can give an analagous decomposition of cyclic (co)homology over k 

containing Zp. As above, the idempotents !ý (i), for i p-1, are defined in 

characteristic p, and we have b Zn (i) = ý1-1 (i) b. 

Proposition V. Z I. 
B= ! ý(i)B, for i= 29 ... 9 P-1, 
BZn-l(p-1) = ý1(1)Bq 

where B is Connes'boundary operator in the normalised setting. 

Proof 

(S(q rr Now Loday shows that s(q)B = Bq s(q), [ L, 1,2 1. Thus B= Bqr (s(q), ) 
. Then n n- n- 

by (*), for r some sufficiently large power of p, we have 
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P-1 P-1 P-1 
q'ýn (i) B Bqr (i) Bq 

p 
F, ýBý1-1(i-l)= P-1 

qBý1-1(p-l)+ F, ý 1) (mod p) 
i=2 i=2 

The result follows by inverting the matrix (q). 13 

It follows that the (b-B) bicomplex for cyclic homology is a direct s um of the sub- 
bicomplexes, for i=0,1, p-1, where Uý') denotes Z. (i)(AOXO*): 

bBb b b b 

n+1 Z! (P-2) 
n-i 

b 13 b b b b 

n i+1 
-(P-1) Cn" Z(P 

n-i-1 
bbI b b bI 

(Here we adopt the convention ý0(0) = 1. For i=0, the bicomplex simply contains A, 

concentrated in bidegree (0,0). ) 
So, denoting by jjC-j'. 

_j 
(A) the homology of the total complex of the above, we have: 

Proposition V. 2.2. 
If A is a commutative algebra over k containing Zp, we have a decomposition of cyclic 

homology into p-1 parts : 
HC-n(A) = 4TC-1, 

n-1(A) (D ... E) i! Cp-1, n-p+1(A), 
for n>0, 

HCO(A) = HCO, O(A) =A. 13 

For p=2, the decomposition is trivial. For p=3, we have a decompostion of HCn(A) into 
two parts, and this is HCn(A) = HYn (A) (1) HDn(A), Loday's splitting in terms of dihedral 
homology, where A has the trivial involution [ L, 4 1. 

The above also shows that the periodicity sequence linking Hochschild and cyclic 
homology respects their decompositions. 
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Rroposition V. 23. 
For i=2, ..., p- 1, there are long exact sequences 

HHi, n-i(A)-* HCi, n-i(A)-* HCi-l, n-i-I(A)-+ HHi, n-i-I(A)-+... 
ISB 

and for i=1: 
HHI, n-I (A) HCi, n-I (A)-+ HCp-l, n-p-I(A) -* HHI, n-2(A) 13 

sB 

Corollaty V. Z4. 
HHI, n-I (A) is isomorphic to a direct summand of HCn(A) for 2<n<p. 

Proof 
For i=1, the bicomplex is: 

bB b bI 

p 4) Zý(P-, ) 
P-1 

- -2) Zýp(P-2 

bl B bI bI 

P-1 j; pl 
+- 0 0 

bl I 

0 

It is immediate that HHl, n-l (A) HCI, n-l (A) for 2<n<p. 13 

Corollary V. Z5. 
When k contains Zp, Harrison homology, Harrn(A/k, A), is a direct summand of 

Hochschild. homology, HHn(A), in dimensions n<p, and of cyclic homology, HCn(A), in 
dimensions 2<n<p. 
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Proof 
Note that for n<p, en(l) and so HHI, n-I(A) = HHI, n-I(A) = 

Haffn(A/k, A). 13 

Remark 
Let k be Zp. The idempotents ýn (i), for i=I*.... p-1, are defined in characteristic p, so 

they give rise to p-modular representations Zn(i)kSn of the symmetric group Sn- Since 
in (i) = 1, these decompose the regular representation into p-1 parts. 

Section V. 3 :A counterexample to a conjecture of Barr. 

We note that, if T is the tensor algebra of a commutative algebra A, then T/T*T may 
have torsion. For example, [a, bl*[a, b] = 2[a, b, a, b], so that when the ground ring k 

contains 0a Harrison 4-cochain must vanish on [a, b, a, b], but not when k has 

characteristic 2. Let us denote by HB* the homology of the subcomplex of all Hochschild 

cochains vanishing not only on shuffles but also on those elements some multiple of which 
is a shuffle. Barr conjectures that this gives the triple cohomology (Andr6/Quillen 

cohomology). (See [ G-SJ I p232). We give a counterexample. 

Proposition VAL 
HB5( Z2[xl; Z2 0, where Z2 is a Z2[xl-module via the trivial x-action. 

Proof 
Define a Hochschild 4-cochain g by letting g[1, x, 1, x] = g[x, 1, X, 11 = 911, X, X, 11 

g1x, 1,1, x] = 1, letting g be zero on any other chain of the form [Xil, Xi2, Xi3, Xi4], and 
extending linearly. 

Let f= 8g. Now fý0, since for example f [1,1, x, 1, x] = 1. So, of course, f is a non- 
zero Hochschild 5-cocycle. 

Next we check that g vanishes on shuffles, i. e. gsi, 4_i =0 for i=1,2,3. It is clearly 
sufficient to check that g vanishes on shuffles which involve [1, x, 1, x], [x, 1, x, 11, 
11 

, x, x, 11 or [x, 1,1 , x] . For example, 
g( 1* [x, 1, x] )= g[l, x, 1, x] - g[x' 1,1, X] + g[x' 1,1, X) - g[x' 1, X, 11 = 0. 

Similar calculations show that g does indeed vanish on all such shuffles. Hence g is a 
Harrison cochain, and so f= Sg is a Harrison 5-cocycle. 
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Notice, however, that 2[1, x, 1, x] = [1, x1*[1, x), so 11, x, 1, x] has a multiple which is a 

shuffle and yet g[1, x, 1, x] A 0. i. e. g does not satisfy Barr's condition. 
In fact, if f= 8h, then: 

1=f [1,1, x, 1, x] = 8h [1,1, x, 1, x) =h [1, x, 1, x]. 
So f is not the coboundary of any cochain satisfying Barr's condition. Hence, if we can 

show that f itself does vanish on elements some multiple of which is a shuffle, then (fI is a 

non-zero element of HB5( Z2[xl; Z2 )- 
Now one easily checks that the only chains of the form [Xit, Xi2, Xb, xU, xi5l on which f is 

non-zero are: 
a, = [19 1. x, 1, A a4 = [x, 1, x, 1,11, 
a2 = X, 1,1, X], a5 1XI 11 11 X, 11, 

a3 = 1, X, X, I], a6 11, x, x, 1,1]- 

We have f(ai) = 1, for i=6. We need only check for shuffles which are multiples of 

expressions involving these terms. We introduce the following notation: 
b, = 1,1, x, x], b2 = [x, 1,1,1, x], b3 = [x, x, 1,1,11, 

b4 = x, 1, x, 11. 

We want to consider all possible shuffles involving three 1's and 2 x's. Routine calculations 
yield that these have the following form: 

xj(aj+a2) + x2(al+a5) + x3(a2+a4) + x4(bl+a2+a3) + x5(bl+a2+a6) + x6(b2+ai+a4) + 

x7(b3+a3+a5) + x8(b3+a2+a6) + xqb4, where xi G Z. 
(For example, a, + a2 m 11, x] * 11,1, x] )- 
Now consider when the above expression has the form q( Ikiai + IIjbj ), for q, ki, Ij e Z. 
Firstly, the coefficient of each ai and bj is a multiple of q, and adding the coefficients of a2, 

88 
a5 and b2 gives 7, xi. So Yxi r= qZ. Secondly, the sum of the coefficients of the ai's is 

8 
q1ki =2 Yxi. Hence, q1ki e 2qZ, and Iki a0 (mod 2). 

i=1 
But then f( Ikiai + YIjbj Iki =- 0 (mod 2). 
Hence, f does vanish on any element some multiple of which is a shuffle. So 0fIG 
HB5( Z2[x]; Z2 )- 13 

Notation 
Cb* denotes the complex of Hochschild cochains satisfying Barr's condition; as before 

Ch* denotes Harrison's cochain complex; Cs* denotes the complex of cochains vanishing 
on the shuffle operator s* and HS* its homology. 
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Now if f is a Hochschild n-cochain, 
(f satisfies Barr's condition) 4 (fsi, n-i -= 0 for i=1, ..., n-1) =0 (fsn = 0), 

so we have inclusion maps at the level of cochain complexes: 
Cb* (A/k; M) -* Ch* (A/k; M) -+ Cs* (A/k; M), 

giving induced maps in homology: 
HB*(A/k; M) -+ Harr*(A/k; M) 4 HS*(A/k; M). 

These maps are isomorphisms when k contains 0, but not in general. 
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Index of Notation 

Symbol Meaning 

(B*(A), b) standard Hochschild chain complex 

( C*(A), b) 'symmetrised Hochschild complex' 

Cn cycle in Tn, consisting of trees with 
cyclic labelling 

( Ch. (A), b Harrison chain complex 

( Cr-, d IF chain complex 

(A) b cyclic chain complex, in characteristic 
zero 

en Barr's idempotent 

enO) Eulerian idempotents in QSn 

r category of finite sets and surjections 

Harr* Harrison homology 

HC. Cyclichomology 

Hr* IF-homology 

HH* Hochschild homology 

x H* Cyclic homology in characteristic zero 

Page of definition 

7 

8 

32 

10 

24 

14 

11 

12 

20 

10 

15 

25 

7 

14 
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indG (X) H representation X induced from H to G 17 

ý-n+l (01 
... n) E Sn+I, 14 

or( 12 ... n+I ) r= Sn+I 50 

An+lenQ) new idempotents, in QSn+I 49 

Pn, k (n k) (n-1 k+I ) (n-2 k+2) E Sn+1 41 

Pn, k (_j)(In-k+Il [n-k+21/2 -1) Pnk 41 

Si, n-i sum, with sign, over i-shuffles in Sn 9 

Sn total shuffle operator in QSn 9 

Sh. (A) subcomplex of C. (A) generated by shuffles 9 

Tn space of fully-grown n-trees 22 

Vn representation Of Sn on Tn 22 

Vn representation Of Sn+I on Tn 47 

i Xn character of representation enO)QSn 17 

Ti 
n+I character of representation A 

n+lenO)QSn+l 
55 
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