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Abstract

Endocrine dynamics spans a wide range of time scales, from rapid responses to physiological chal-
lenges to with slow responses that adapt the system to the demands placed on it. We outline a
non-linear averaging procedure to extract the slower dynamics in a way that accounts properly for
the non-linear dynamics of the faster time scale and is applicable to a hierarchy of more than two
time scale, although we restrict our discussion to two scales for the sake of clarity. The procedure
is exact if the slow time scale is infinitely slow (the dimensionless ε-quantity is the period of the
fast time scale fluctuation times an upper bound to the slow time scale rate of change). However,
even for an imperfect separation of time scales we find that this construction provides an excellent
approximation for the slow-time dynamics at considerably reduced computational cost. Besides the
computation advantage, the averaged equation provided a qualitative insight into the interaction
of the time scales. We demonstrate the procedure and its advantages by applying the theory to the
model described by Tolić et al. (2000; J. Theor. Biol., 207: 361–375) for ultradian dynamics of the
glucose-insulin homeostasis feedback system, extended to include β-cell dynamics. We find that
the dynamics of the β-cell mass are dependent not only on the glycemic load (amount of glucose
administered to the system), but also on the way this load is applied (i.e. three meals daily versus
constant infusion), effects that are lost in the inappropriate methods used by the earlier authors.
Furthermore, we find that the loss of the protection against apoptosis conferred by insulin that
occurs at elevated levels of insulin has a functional role in keeping the β-cell mass in check with-
out compromising regulatory function. We also find that replenishment of β-cells from a rapidly
proliferating pool of cells, as opposed to the slow turn-over which characterises fully differentiated
β-cells, is essential to the prevention of type 1 diabetes.

Keywords: Glucose, Insulin, β-cell, Diabetes, Endocrine control system

1. Introduction

Neuroendocrine control systems respond rapidly to physiological challenges while concurrently
undergoing adaptation on a much slower time scales (e.g. Schmidt and Thews, 1989; Frayn, 2003).
Moreover, an interplay prevails between processes at disparate scales: the slow adaptation is a
dependent on the fast events. Such an interplay is a pervasive characteristic of many biological
systems.
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Figure 1: Diagram of the extended Sturis-Tolić model. Squares are state variables, clouds are sources/sinks. Dotted
lines indicate functional dependence (arrowheads: positive; blunt ends: negative). A delay line marked τd intervenes
between Ii and ψgr. The state variable Q is the relative β-cell mass; with Q fixed at 1, the original Sturis-Tolić
model is recovered. Li: liver, source of glucose derived from glycogen breakdown. Pa: pancreas, site of β-cells which
are a source of insulin. See Table 1 for an explanation of the symbols.

As is well known, the dynamics of such systems can be analysed by considering separate and
distinct dynamical systems that correspond to the biological system as it operates on two or more
“time scales”. In such procedures, the approximation usually is exact if the slower component
is “infinitely slower” than the faster component (see e.g. Keener and Sneyd, 1998, for examples
and applications). On a given time scale, the slower variables are “frozen” and figure as constant
parameters, whereas the faster ones can often be treated using a quasi-steady state approximation
(up to boundary or transition layers) in which the fast variable is essentially replaced by a function
which relates its (fast-time system) equilibrium value to the prevailing values of the slower variables.
Similarly, in those cases where the fast-time system does not equilibrate but tends to a periodic
solution (e.g., a limit cycle or the stationary response to periodic forcing), intuition would suggest
that the fast variables might be replaced by a long-term average. However, this intuition need
not be correct. We outline a homogenization method to tackle such problems on two time scales
(see Pavliotis and Stuart, 2008, for an introduction to homogenization techniques). The type of
system we have in mind describes the dynamics of an organism’s physiology (or the relevant part
thereof) together with the dynamics of the (neuro)endocrine system that regulates this physiology.
We apply the method to a well-established model of the regulation of glucose concentration in the
blood plasma, which we extend with a slow component, viz. the dynamics of the mass of endocrine
cells. A diagrammatic representation of this system is given in Figure 1.
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Introduction to the biological application. Glucose in the blood plasma provides an essential supply
of immediately available energy substrate to all tissues of the body (Salway, 1999). Adverse effects
ensue when the concentration of glucose in the blood plasma becomes either very low or very high;
avoidance of these effects defines a “euglycemic” range of values and, moreover, endocrine control
loops operate so as to keep the blood glucose concentration in this range (Watkins, 2003). Whenever
the supply of glucose derived from dietary carbohydrate exceeds demand from the tissues, the blood
glucose level rises, stimulating the secretion of the hormone insulin, which in turn stimulates the
disposition of glucose, either to be taken up as energy substrate rather than fatty acids, or to be
stored away as a storage polymer, which is glycogen in liver, muscle, and kidneys, and lipid in
adipose tissue (Frayn, 2003). When energy demand outstrips supply, the blood glucose level drops
and insulin is not secreted. The resulting drop in the insulin concentration leads to a decrease of
insulin-dependent uptake of glucose from the bloodstream as well as an increase of the release of
storage-derived glucose from the liver, both of which have the effect of restoring glucose levels. At
low levels of glucose, the hormone glucagon is released, which promotes the breakdown of glycogen
and fatty acids (Brook and Marshall, 2001). A paracrine interaction between insulin and glucagon
secretion has been proposed (Hope et al., 2004). However, inasmuch as glucagon plays a prominent
role in humans only when glucose falls significantly below the euglycemic range (Raju and Cryer,
2005), the focus here is on the glucose-insulin feedback loop.

Insulin is a peptide hormone, consisting of two peptide chains linked by disulphide bonds, and
produced by the β-cells in the so-called Islets of Langerhans, which are clusters of endocrine cells
found scattered throughout the predominantly exocrine pancreas (Brook and Marshall, 2001). The
total mass of β-cells changes over time: it continues to do so during adult life and it has become
apparent during the past decade that the pathogenesis of both type 1 and type 2 diabetes involves
failure to maintain an appropriate β-cell mass (Bonner-Weir, 2000; De León et al., 2003; Lee et al.,
2006; Steil et al., 2001). The total mass is the combined result of three processes: proliferation (cell
division), apoptosis (programmed cell death), and neogenesis (regeneration from a pool of rapidly
dividing cells, which themselves derive from pluripotent stem cells, or possibly de-differentiated
β-cells, or alternatively trans-differentiated pancreatic cells); these processes are influenced by the
levels of both glucose and insulin (Beith et al., 1998; Bouwens and Rooman, 2005; Dor et al., 2004;
Efanova et al., 1998; Johnson and Alejandro, 2008; Lipsett and Finegood, 2002; Rooman et al.,
2002; Young et al., 2008). As a result, there is an interplay between the fast, ultradian fluctuations
of glucose and insulin and the slower (>days) changes in β-cell mass. This means that we need
to consider a fairly realistic, high-dimensional mathematical model on the fast time scale in order
to abstract the slow-time dynamics; we choose the model developed by the Lyngby group (see
Pattaranit and Van den Berg, 2008, for a review of several comparable models).

2. Theory: time-scale homogenization

The dynamics of a system comprising both the regulated physiology and the associated (neuro)en-
docrine system can, in many cases, be represented as a dynamical system of the following form:

d

dt
x = f(x,u) (1)

where x is the state of the system, u represents an external input, and f is the system’s dynamics.
We assume that the state variables in x and the input variables in u have been non-dimensionalised,
so that time t is the only unit-bearing quantity remaining. The input u(t) is assumed to be a
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periodic function of time with period T . We now outline a construction that decomposes the
original dynamics into two uncoupled systems of lower dynamical dimension. These two systems
may be studied independently of one another. The idea is to preserve the way in which features of
the dynamics affect the dynamics at the slow time scale, by constructing the slow dynamics as a
map that is specific for the fast-scale regime. If this formulation this seems obscure: the application
in Section 3 provides examples.

For physiological systems it may naturally be assumed that the rates of change are bounded,
that is, for each of the n state variables, there is a finite number ξi such that the dynamics of xi
satisfies

|fi(x,u)| < ξi < +∞ (2)

as x and u range over all physiologically attainable values. Without loss of generality, the state
variables can be ordered so that

ξ1 ≥ ξ2 ≥ · · · ≥ ξn > 0

(i.e., fastest first). Scaling of the fi with respect to the corresponding ξ leads to

d

dt
x = ξ · f∗(x,u) (3)

where ξ is a diagonal matrix with the ξi on its main diagonal and f∗i is a dimensionless quantity
satisfying |f∗| ≤ 1. We are interested in the case where some variables are “rapid” (i.e. oscillate
on a time scale of order T ) and others are “slow”. That is to say, we consider the case where
ξ1 ≥ T−1 � ξn and we assume that there exists an ν ≤ n such that ξiT is a small parameter (i.e.,
ξiT � 1) for ν ≤ i ≤ n. Anticipating the separation of time scales, we write

x(t) = x[0](ϕ(t), τ(t)) + x[1](τ(t)) (4)

where the fast component x[0] depends on a fast time ϕ and a slow time τ , whereas the slow
component x[1] depends on slow time τ only. These two times are defined as follows:

ϕ =
t

T
−
⌊
t

T

⌋
(5)

τ = ξνT

⌊
t

T

⌋
(6)

where bxc denotes the largest integer smaller than or equal to x. The input is similarly decomposed;

u(t) = u[0](ϕ(t), τ(t)) + u[1](τ(t)) . (7)

Let us write
∂

∂ϕ
x[0] = Tξ · f∗(x[0],u[0]; x[1],u[1]) (8)

for ϕ ∈ [0, 1). To follow the fast dynamics, equation (8) is integrated from ϕ = 0 to ϕ = 1−

subject to initial condition x[0] = 0 at ϕ = 0. Now define the following variation: for η ≤ ξνT and
i = ν, . . . , n:

δx
[1]
i (τ, η) = Tξi

∫ η/(ξνT )

0

f∗i (x[0],u[0]; x[1],u[1])dϕ (9)
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(this variation may be regarded as a total differential sensu Protter and Morrey, 1970, p. 724).
Dividing equation (9) by η and specifying for η = ξνT , this becomes:

δx
[1]
i (τ, η)
ξνT

=
ξi
ξν

∫ 1

0

f∗i (x[0],u[0]; x[1],u[1])dϕ (10)

for i = 1, . . . , n. In the limit ξνT → 0, the following expressions are exact:

d

dϕ
x

[0]
i = Tξif

∗
i (x[0],u[0]; x[1],u[1]) for i = 1, . . . ν − 1 (11)

d

dτ
x

[1]
i =

ξi
ξν

∫ 1

0

f∗i (x[0],u[0]; x[1],u[1])dϕ for i = ν, . . . n (12)

where for i ≥ ν we have x[0]
i ≡ 0, τ now denotes the argument of the R 7→ R function x

[1]
i (·),

and the operator ∂/∂ϕ has been replaced by d/dϕ without impunity since ϕ is restricted to the
interval [0, 1). If we let x[1]

ν+ = (x[1]
ν , . . . , x

[1]
n ) then for i < ν we have x

[1]
i = Xi(x

[1]
ν+), where

(X1(x[1]
ν+), . . . , Xν−1(x[1]

ν+)) is a parametrical representation of the slow manifold of the dynamics of
the system (or a branch of this manifold). The fast variables x1, . . . , xν−1 move close to through a
forced limit cycle of period T (and exactly so in the limit ξνT → 0). The slow manifold can and
generally will be varying in slow time τ . It may be desirable to have the slow variable represent
a cycle average, rather than the start-of-cycle value which depends on the arbitrary assignment of
phase value 0; this is not problematic but would render the notation somewhat more cumbersome
and less perspicacious.

3. Calculation: application to the regulation of the glucose concentration in the blood
plasma

We apply time-scale homogenization to glycemic homeostasis, which is representative of a well-
studied and important physiological system in which fast (regulatory) and slow (adaptive) responses
interact in a way that is essential to the system’s operation, both in health and disease.

3.1. The extended Sturis–Tolić model
The model for glucose dynamics as originally proposed by Sturis et al. (1991) and subsequently

further developed by Tolić et al. (2000) is depicted diagrammatically in Figure 1 and is described
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by the following system of ordinary differential equations:

dG

dt
= ψin(t)− ψii(G)− ψid(G, Ii) + ψgr(G,w3)− ψgx(G) (13)

dIp
dt

= Qψis(G)− Φ
(
Ip
Vp
− Ii
Vi

)
− Ip
τp

(14)

dIi
dt

= Φ
(
Ip
Vp
− Ii
Vi

)
− Ii
τi

(15)

dw1

dt
=

3(Ip − w1)
τd

(16)

dw2

dt
=

3(w1 − w2)
τd

(17)

dw3

dt
=

3(w2 − w3)
τd

(18)

dQ

dt
= (ρ(Ip)− µ(G))Q(t) + ψng(G) (19)

where we have adapted the notation slightly to facilitate cross-referencing. In the model, the state
variable G(t) denotes the blood plasma content of glucose whereas Ip(t) denotes the blood plasma
content of insulin (so that G/Vg and Ip/Vp are plasma concentrations) and Ii(t) is the amount
of insulin in the interstitial spaces of the body tissues. Furthermore, w1(t), w2(t), and w3(t) are
auxiliary state variables that mimic a delay of duration τd in the release of glucose from hepatic
glycogen stores, in response to Ip (see Pattaranit and Van den Berg, 2008, for a more detailed
explanation); and Q(t) is the β-cell mass, which is a slow state variable presently added to the
original model. The input is the forcing function ψin(t), which represents the flux of glucose into
the blood stream from external sources. The parameter Φ represents the diffusive exchange of insulin
between blood and interstitial space; Vp and Vi are the distribution volumes of blood plasma and
interstitial space, respectively, for insulin. The parameter τp represents the mean life time of an
insulin molecule in the blood plasma, whereas τi represents the mean life time of an insulin molecule
in the interstitial space. These dependencies are modelled in the Sturis–Tolić model by means of
plausible, but empirical functional relationships, which are listed in Appendix A.

As indicated in Figure 1, there are a number of rates and fluxes that depend in various different
ways on the state variables. Glucose-uptake by the tissue depends on the plasma glucose level only
in the case of insulin-independent uptake (ψii), but also on the plasma insulin level in the case of
insulin-dependent glucose uptake (ψid). When glucose levels become very high, the kidneys begin to
excrete glucose; this flux is indicated as ψgx. Two fluxes contribute to increases of plasma glucose:
these are the input from the food (or glucose administered by an injection or infusion), denoted
as ψin, which is treated as a forcing function in the present model, and the second flux is glucose
secreted by the liver; this glucose release flux ψgr is also dependent on both plasma glucose and
plasma insulin. Glucose stimulates the secretion of insulin, and thus the insulin secretion ψis is
glucose-dependent.

The model has been extended here with the dynamics of the β-cell mass, which involves three
processes: β-cell proliferation, whose specific rate ρ is assumed to depend on plasma insulin; β-
cell death, occurring at a specific rate µ that depends on both plasma glucose and insulin, and a
neogenesis flux ψng which also depends on both plasma glucose and insulin. Empirical formulas
for these dependencies, as well as a justification, is given in Appendices A and B. Inasmuch as the
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Figure 2: Reference cycle. Top: glucose input; middle: plasma glucose content; bottom: plasma (black line) and
interstitial space (grey line) insulin content.

contribution of neogenesis remains to be fully elucidated and may be considered controversial, we
shall analyse the model first on the assumption that this term is absent.

The glucose input ψin(t) can assume various forms. It may be set of a constant value, as can be
arranged under experimental conditions where glucose is administered by means of an infusion, or it
may be time-varying. If ψin is set to a constant value, ultradian oscillations may become prominent
feature of the dynamics, as shown by Tolić et al. (2000). Here we choose as standard reference a
periodic function with a period of 24 hours and three “meal peaks” in every day, as shown in the
top panel of Figure 2. Under this particular input, the system settles on a stationary forced cycle
within a few days, also shown in Figure 2.

3.2. Analysis without neogenesis of β-cells
To analyse the dynamics in the absence of neogenesis, we set ψ̂ng = 0. It will emerge that the

resulting β-cell dynamics is very slow on this assumption, which can be taken as indirect evidence
that neogenesis is an important factor in rapid (i.e., hours/days rather than months or years)
adaptation, provided we accept the parameter values taken from the literature.

Following the method outlined in Section 2, the steps are to render the system dimensionless,
except for time, determine the maximum absolute rates (the ξs), and to rank the scaled variables
according to these rates. Choosing 10 g as the reference value for glucose and 44 mU as the reference
value for insulin, we find the following ranking (ξs all in min−1; Q is already dimensionless):
x1 = Ip/Iref x2 = G/Gref x3 = Ii/Iref x4 = w1/Iref x5 = w2/Iref x6 = w3/Iref x7 = Q
ξ1 = 4.8 ξ2 = 0.11 ξ3 = 0.066 ξ4 = 0.028 ξ5 = 0.028 ξ6 = 0.028 ξ7 = 8.7× 10−7
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Figure 3: Dynamics of β-cell mass on the slow time scale. Top: relative daily change of β-cell mass, for various
glycemic loads (black curves, from top to bottom: 1, 2, 2.5, and 3 times the reference input; grey curves, from top to
bottom: 0.5 and 0 times the reference input). Middle: fixed point of the β-cell dynamics as a function of the relative
glycemic load (solid line: stable branch; dashed line: unstable branch). Bottom: fast-time scale glucose stationary
cycle characteristics (dotted line: average value; bottom and top of filled region: minimum and maximum values).

A time-scale separation at ν = 7 is apparent, with small parameter ξνT = 8.7×10−7 min−1× (24×
60 min) = 0.00125; a unit of slow time τ thus corresponding to 800 days.

The theory of Section 2 now prescribes that the dynamics in slow time for x[1]
7 is derived using

equation 12, whereas the variables x[1]
1 , . . . , x

[1]
6 are to be obtained as functions of x[1]

7 on the basis
of the slow-manifold condition, which corresponds to the stationary forced cycle in fast time when
x

[1]
7 is held at a fixed value. These relations can be obtained numerically without trouble: results

are shown in Figure 3. Since the reference cycle corresponds to a fairly high glycemic load, higher
loads may be regarded as hyperglycemic. At such loads, the dynamics of the β-cell mass has two
fixed points: a lower unstable one and a higher stable point. The existence of the unstable fixed
point, referred to as a “pathological fixed point” by Topp et al. (2000), indicates that catastrophic
involution of β-cell mass will occur when x7 becomes lower than this equilibrium value. It will then
decay to zero: the loss of β-cells leads to further hyperglycemia and lower insulinemia, which leads
to further β-cell losses (Topp et al., 2000). Such a process may underlie non-autoimmune diabetes
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Figure 4: Simulations of overfeeding (left) and (underfeeding) right. On day 1000, the glycemic load is changed to
2.5 (left) or 0.1 (right) normal; on day 11,000 the load is restored to the normal value. Dotted line: slow glucose;
dot-dashed line: slow plasma insulin; dashed line: slow β-cell mass. Thin lines show the results of a direct simulation
of the 7-dimensional system. (“Relative value” refers to scaling by Gref and Iref, as explained in the text; Q = x7 = 1
corresponds to the stationary value of β-cell mass if the standard-cycle glycemic load were administered at a constant
rate; stationary values can be read off from Figure 3.)

mellitus, as described by Imagawa et al. (2000).
As the glycemic load increases, these two fixed points move together and collide. At even higher

glycemic loads, the globally attracting point is the trivial equilibrium Q = 0, that is, zero β-cell
mass. The decrease in the stable equilibrium value with increasing glycemic load is due to an
increased β-cell death rate at such high loads, both as a result of higher glucose toxicity (Efanova
et al., 1998), and of increased susceptibility to apoptosis at higher insulin levels (Johnson and
Alejandro, 2008); the latter authors describe this situation as a “sweet spot” for insulin in the high
pico-molar range, which corresponds to order 1 levels in the scaled system.

As might be expected from the strong separation of time scales, the approximation for the slow-
time scale dynamics is excellent. Figure 4 compares the dynamics according to the approximation
(which is simple and 1-dimensional) to the dynamics of the original, 7-dimensional, system, in an
overfeeding and an underfeeding simulation. The results are indistinguishable: thus, the long-term
dynamics is well-captured by the approximation. The full system was numerically integrated in
fast time using an explicit Runge-Kutta method of order 2(1), which is the Mathematica default
method (Sofroniou and Spaletta, 2004). The slow system was evaluated using Euler-forward with a
step size of one day, giving virtually the same result at less than a thousandth of the computational
cost (run time; excluding the one-time cost of establishing the dynamics of x7, which costs about
1% of the full-system’s run time).

In formulating a mathematical model for the long-term dynamics of the β-cell mass, it is tempt-
ing, although incorrect, to represent the glycemic load as a constant that represents the average
of the daily cycle (e.g., Topp et al., 2000; De Winter et al., 2006; Ribbing et al., 2010). However,
the dynamics of x[1]

7 in slow time τ do in fact depend critically on the “temporal fine structure” of
glucose uptake on the fast time scale t, through the integration in equation (12). Such dependence
is neglected by an approach that replaces glucose uptake by its short-term average. This becomes
readily apparent when we consider the case where the glycemic load is assimilated as a constant
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Figure 5: Dynamics of β-cell mass on the slow time scale: relative daily change of β-cell mass, for various glycemic
loads, administered as a constant infusion (black curves, from left to right: 1, 2, 2.5, and 3 times the reference input;
grey curves, from left to right: 0 and 0.5 times the reference input).

infusion (set to zero for the first 30 minutes after midnight, to enforce a 24-hour cycle) instead of a
daily 3-meal cycle. It is found that the long-term dynamics of the β-cell mass is strikingly different:
the “pathological fixed point” remains very close to zero and the system achieves near-perfect regu-
lation of the average glucose level even at a hyperglycemic load that is 4 time higher than normal, as
shown in Figure 5. Comparison with the case ιai →∞ (not shown) shows that decrease of insulin’s
potency in inhibiting apoptosis at high levels is responsible for keeping the β-mass in check without
compromising the ability to regulate: for ιai →∞, the fixed point of x7 increases sharply with load,
even though normalisation of glucose levels is already achieved at x7-values comparable to those
indicated in Figure 5.

3.3. Extended model with neogenesis of β-cells
The response dynamics shown in Figure 4 is very slow. An example of such sluggish dynamics

is shown in Figure 6: if 80% of the β-cell mass is destroyed, it takes about 50 years to recover.
This means that the subject will be effectively diabetic for much of his or her lifetime; the baseline
turn-over dynamics of β-cells is too sluggish to respond adequately to such challenges. However,
in reality, recovery from such damage is accomplished within a few weeks’ time (Bouwens and
Rooman, 2005). It has been proposed that the slowly proliferating β-cell pool may, under certain
conditions, be replenished by differentiation of cells from a more quickly proliferating pool of pro-
genitor cells (De León et al., 2003; Rooman et al., 2002) that is phenotypically distinct from the
differentiated β-cells themselves (Ackermann Misfeldt et al., 2008). A competing hypothesis is that
β-cells themselves are capable of rapid proliferation (Dor et al., 2004; Lee et al., 2006; Nir et al.,
2007). The two hypotheses may be reconciled if the rapidly proliferating pool of cells is derived
(by a process akin to dedifferentiation) from adult β-cells, since such cells are readily driven back
into cell cycle by activation of the proto-oncogene c-myc (Pelengaris et al., 2002). Here, the pool of
proliferators will be treated as a source term, an approach compatible with either point of view. We
shall refer, for the sake of clarity, to the proliferator pool as “progenitors”, with the caveat noted
above.
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Figure 6: Dynamics of β-cell mass on the slow time scale: recovery to normal values after addition or destruction of
β-cells at time t = 0. (“Relative value” has the meaning explained in the caption for Figure 4.)

We propose to describe the neogenesis of β-cells from progenitor cells by the following equation:

ψng(G) = ψ̂ng

(
1 + exp

{
αng,g

(
1− G/Vg

γng

)})−1(
1 + exp

{
αng,i

(
1− Ii/Vg

ιng

)})−1

(20)

with positive parameters ψ̂ng, αng,g, αng,i, ιng, and γng. This equation is built from the same generic
sigmoid building blocks used in the orginal model, to represent graded responses to the relevant
stimuli. The key assumption is that neogenesis is driven by prolonged hyperglycemia (Lipsett and
Finegood, 2002) in conjunction with elevated insulin levels (Grossman et al., 2010). It may be
observed that the right-hand side of equation (20) behaves like a soft and-gate: the flux ψng is
large when both glucose and insulin levels are elevated. Prolonged concurrence of high glucose
and insulin levels may be associated with insufficiency, so it would make teleological sense, in a
manner of speaking, to control β-cell mass compensation in this manner. From a mechanistic point
of view, it is known that the pathway regulating rapid β-cell proliferation can act like an and-
gate. Specifically, the proto-oncogene gene c-myc, which encodes the transcription factor c-Myc,
which stimulates proliferation as well as susceptibility to apoptosis (Pelengaris and Khan, 2003)
such that the net effect is loss of β-cells unless an anti-apoptotic co-signal is present (Pelengaris
et al., 2002). Expression of c-Myc is induced by glucose (Jonas et al., 2001) whereas insulin induces
an anti-apoptotic signal (Johnson et al., 2006). Thus, whereas glucose alone induces a net loss
of β-cells (Van de Casteele et al., 2003), the simultaneous presence of glucose and insulin would
stimulate rapid proliferation, possibly via rapid (partial) dedifferentiation of existing adult β-cells
to the proliferative phenotype. It has been suggested that this dual proliferation/apoptosis pathway
acting via c-myc acts as a fail-safe that defaults to β-cell loss unless both glucose and insulin are
elevated (Pelengaris and Khan, 2003).

The action of glucose is indirect and thought to be via glucagon-like peptide 1 (GLP-1; De León
et al., 2003), an incretin and cytokine which is secreted by enteroendocrine L-cells. Since the half-
life of GLP-1 is extremely short (Mentlein et al., 1993), an instantaneous functional dependence
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Figure 7: Model with neogenesis: recovery to normal values after addition or destruction of β-cells at time t = 0
Gray curves: direct simulation; circles: approximation according to slow-time approximation. Top panel: recovery
over a month; bottom panel: recovery over a year. (“Relative value” has the meaning explained in the caption for
Figure 4, but the normal stationary value is now different since the dynamics includes neogenesis.)

on G/Vp appears warranted. In principle, ψng should also depend on, and be limited by, the
amount of progenitor cells present in the pancreas; in the present model, this pool is assumed to
be non-limiting and is thought of as an unlimited source.

When neogenesis is included in the model, recovery from partial ablation of β-cell mass is much
more rapid and in keeping with the various values quoted in the literature (recovery in a 1 to
5 week period; see Bouwens and Rooman, 2005, for a review of the experimental data), as shown in
Figure 7. The slow-time approximation is still excellent, despite the fact that time-scale separation
is now up to two orders of magnitude worse due to the rapid β-cell expansion that occurs when
the β-cell mass is too low. The relationship between d

dτ x7 and x7 remains qualitatively the same,
except that the lower, unstable fixed point (the pathological fixed point) is now very low and the
positive rate of change that prevails when x7 lies in between the fixed points is now several orders
of magnitude larger.

If too much of the β-cell mass is destroyed, recovery takes disproportionally longer, as shown in
the bottom panel of Figure 7: when more than ∼ 80% of the β-cells are destroyed, recovery takes
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the best part of a year, which implies the subject is diabetic for a number of months until recovery
occurs.

Type 1 diabetes is an illness due to autoimmunity directed against β-cells (Watkins, 2003). The
simulations in Figure 7 suggest that there is a critical level of ablation at which recovery becomes
very much slower. If the progenitor cells do not express the insulin-derived antigen, or do so in
sufficiently low levels to escape immune attack, the progression to type 1 diabetes is a matter of
ψng being unable to compensate for the losses, leading to a net diminishment of β-cell mass until
the critical depletion level is reached. If the progenitor cells are also susceptible to immune attack,
the rate of recovery will be further compromised and the rate at which the β-cell mass descends to
the critical level may be accelerated.

4. Discussion

The interplay between the glycemic homeostasis feedback loop, which operates on the ultra-
dian time scale, and the adaptive changes in β-cell mass, which happen on a days-to-months time
scale, is a typical feature of endocrinological and neuroendocrinological regulation, where a slower
adaptive feedback loop is superimposed on a more rapid feedback loop, the latter directly involved
with a physiological system, with the former regulating the level of activity in some manner, e.g.
by controlling rates of transcription, translation, electrical activity (secretion), or, as in the present
example, number of endocrine cells (Brook and Marshall, 2001). Moreover, the dynamics of such
systems usually exhibits a strongly non-linear character (Keener and Sneyd, 1998), which means
that small variations in the precise time courses of the fast processes (the temporal fine structure)
can have a profound effect on the rates of change of the slow processes. Time-scale separation
can be a powerful tool to abstract a low-dimensional dynamical system modelling the slow adap-
tation process, which is considerably more easy to analyse and visualise. In the present case, a
7-dimensional dynamics is reduced to 1-dimensional dynamics, which is straightforward to analyse;
indeed, as Figure 3 shows, in qualitative terms the system is much like logistic growth with an Allee
effect.

When equation (12) is evaluated (in most cases this needs to be done numerically), the causal
relationships may be obscured somewhat. For instance, in the present model, the rate of change of
the β-mass is dependent, in the direct, mechanistic sense of the word, on glucose and insulin, as
the model’s equations make explicit. However, the time courses of glucose and insulin depend on
the prevailing β-cell mass, together with the input ψin, and as a result, in slow time, the rate of
change of the β-cell mass depends on the β-cell mass itself plus the input waveform, i.e., the rate
of change in slow time is a functional of the input ψin(t), as is clear from the integration over the
fast-time scale cycle in equation (12). In this way, the temporal fine structure is taken into account,
in analogy to similar spatial homogenisation procedures (see Keener and Sneyd, 1998, and Holmes,
1995).

The assumption in this paper has been that rapid compensation in β-cell mass is driven by
proliferation, based on the observation that β-cells can be driven back into cell cycle by activation
of c-myc (Pelengaris et al., 2002) and data on recovery from partial pancreatomy and hyperglycemic
challenge (Bouwens and Rooman, 2005). However, it is also possible that β-cells respond by ad-
justing the amount of hormone-producting machinery per cell (and, concomitantly, cell volume)
and that data concerning short-term changes in numbers of β-cells are distorted by the fact that
temporarily depleted cells (degranulated cells) are spuriously not counted as β-cells (Akirav et al.,
2008). The relative importance of such non-proliferative adaptation, which possibly depends on
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the time scales and extend of challenge at hand, remains to be elucidated in detail; whereas hy-
pertrophy was held to be the main mechanism for increases in β-cell mass in man until the last
decade (Nielsen et al., 1999; Weir et al., 2001), recent years have seen a change in emphasis towards
proliferation and neogenesis (Bouwens and Rooman, 2005; Lingohr et al., 2002; Pelengaris et al.,
2002).

In the model considered here, all but one of the state variables was fast. The Sturis–Tolić model
can be extended with further slow variables. One such variable might be the insulin sensitivity
of the body’s tissues, which plays a major role in the etiology of type 2 diabetes (Salway, 1999).
However, a more precise characterisation of the process we have referred to as neogenesis is essential
to make progress: in particular, the maximum rate at which this pool can proliferate, as well as the
rates at which it is replenished (which may depend on the sources: β-cells are transdifferentiated
pancreatic cells) are likely to be critical to the ability of neogenesis to furnish the amount of new
β-cells required. The present paper has shown that the pathological fixed point, first noted and
so termed by Topp et al. (2000), becomes a prominent factor only when neogenesis is impaired,
and, moreover, that this pathological fixed point has a value that is dependent on the diel time
course of the rate at which glucose is administered to the system. Whereas mathematical modelling
can never replace the experiments that elucidate these processes, it can help to characterise the
functional consequences of these findings along the lines outlined in the present paper.
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Table 1: Notation and parameter values

Parameter Value Units Interpretation
Φ 0.2 l min−1 blood/interstitial space permeability
Vp 3 l insulin distribution volume
Vi 11 l interstitial space volume
Vg 10 l glucose distribution volume
τg 6 min mean lifetime of insulin in plasma
τi 100 min mean lifetime of insulin in interstitial space
τd 36 min response delay of glucose release
α1 1.86 — first sensitivity of β-cell death
α2 14.5 — second sensitivity of β-cell death
αii 4.8 — sensitivity of insulin-independent glucose uptake
αid 1.77 — sensitivity of insulin-dependent glucose uptake
αgr,i 7.54 — insulin sensitivity of hepatic glucose release
αgr,g 10 — glucose sensitivity of hepatic glucose uptake
αis 6.67 — sensitivity of insulin secretion
αgx 0.00065 — renal excretion parameter
αng,i 0.5 — sensitivity of neogenesis to insulin
αng,g 0.5 — sensitivity of neogenesis to glucose
γ1 1.6 g l−1 first pivot point of β-cell death rate
γ2 2.6 g l−1 second pivot point of β-cell death rate
γii,lo 144 mg l−1 pivot point of non-splanchnic insulin-independent glucose uptake
γii,hi 2 g l−1 pivot point of splanchnic insulin-independent glucose uptake
γid 1 g l−1 pivot point of insulin-dependent glucose uptake
γgr 2 g l−1 pivot point of glucose release
γis 2 g l−1 pivot point of insulin secretion
γgx 0.3 g l−1 renal excretion parameter
γng 1.3 g l−1 pivot point of neogenesis for glucose dependence
δ 0.34 — contribution of non-splanchnic insulin-independent glucose uptake
δ0 0.64 — insulin-sensitive portion of β-cell proliferation
ι0 115 mU l−1 pivot point of β-cell proliferation rate
ιid 80 mU l−1 pivot point of insulin-dependent glucose uptake
ιgr 26 mU l−1 pivot point of hepatic glucose release
ιai 0.3 U l−1 pivot point for apoptosis inhibition
ιng 30 mU l−1 pivot point for neogenesis for insulin dependence
ψ0 40 mg min−1 baseline of insulin-dependent glucose uptake
ψ̂ii 0.21 g min−1 maximum flux: insulin-independent glucose uptake
ψ̂id 0.94 g min−1 maximum flux: insulin-dependent glucose uptake
ψ̂gr 0.18 g min−1 maximum flux: hepatic glucose release
ψ̂is 0.21 U min−1 maximum flux: insulin secretion
ψ̂ng 0.001 min−1 maximum flux: neogenesis of β-cell mass
ψ∗gx 29 mg min−1 renal excretion parameter
ρ0 0.166 year−1 baseline β-cell proliferation rate
µ̂ 0.311 year−1 maximum β-cell death rate

The term “pivot point” refers to midrange values, saturation constants etc. of saturating responses.
Insulin units: 1 U .= 6.67 nmol.
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Appendix A. Functional relationships for rates and fluxes

The ψs are fluxes and rates modelled by empirical functions: ψii represents insulin-independent
glucose uptake by body cells:

ψii(G) = ψ̂ii

δ(1− exp
{
−G/Vg
γii,lo

})
+

1− δ

1 + exp
{
αii

(
1− G/Vg

γii,hi

)}
 (A.1)

where ψ̂ii, γii,lo, γii,hi, δ, and Vg are positive parameters (see Table 1 for values). Insulin-dependent
glucose uptake is represented by ψid:

ψid(G) =
G/Vg
γid

[
ψ0 +

ψ̂id − ψ0

1 + exp
{
−αid ln

{
(Ii/ιid)(Vi−1 + (Φτi)−1)

}}] (A.2)

with positive parameters ψ0, ψ̂id, αid γid, and ιid. Endogenous release of glucose is represented
by ψgr:

ψgr(G,w3) = ψ̂gr

(
1 + exp

{
−αgr,g

(
1− G/Vg

γgr

)})−1(
1 + exp

{
−αgr,i

(
1− w3/Vp

ιgr

)})−1

(A.3)

with positive parameters ψ̂gr, αgr,i, αgr,g, ιgr, and γgr. Insulin secretion from pancreatic β-cells is
represented by ψis:

ψis(G) = ψ̂is

(
1 + exp

{
αis

(
1− G/Vg

γis

)})−1

(A.4)

with positive parameters ψ̂is, αis, and γis. Renal excretion of glucose, which becomes important at
elevated glucose levels, is represented by ψgx:

ψgx = ψ∗gx ln
{

1 + αgx exp
{
G/Vg
γgx

}}
(A.5)

with positive parameters ψ∗gx, αgx, and γgx. The proliferation rate of the β-cells is assumed to be
dependent on the insulin concentration:

ρ(Ip) = ρ0

(
1 + δ0

Ip
ι0Vp + Ip

)
(A.6)

with positive parameters ρ0, α0, and ι0. The death rate of the β-cells is assumed to be dependent
on the glucose concentration and the interstitial insulin concentration:

µ(G, Ii) = µ̂

(
1 +

Ii/Vi
ιai

)(
1 + exp

{
α1 −

G/Vg
γ1
− α2

(
1− G/Vg

γ2

)4
})−1

(A.7)
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Figure B.8: Pancreatic β-cell death rate data and least-squares fit of the formula used in the model.

with positive parameters µ̂, α1, α2, γ1, and γ2. The above formulas and the values listed in Table 1
have been taken from Tolić et al. (2000), with the addition of two novel elements: glucose excretion
(ψgx), which is necessary to represent hyperglycaemic challenges, and the β-cell mass dynamics.
Glucose excretion is based on the graph given in Schmidt and Thews (1989), whereas β-cell mass
dynamics is based on various data from the literature, as detailed in Appendix B.

Appendix B. Parameter estimation for β-cell dynamics

Whereas the fast time-scale parameters could be adopted from Tolić et al. (2000), the rates of
proliferation, death, and neogenesis of β-cells had to be estimated from the experimental literature.
Although the model describes the human system, the parameter values here are taken from experi-
ments on rodents, which is a limitation. However, the parameters represent cellular characteristics
which may to a first approximation be assumed to be transferrable from the rodent to the human
setting. An exception is the parameter ψ̂ng, but our method of estimating this parameter implicitly
contains the required scaling.

Appendix B.1. Death
Efanova et al. (1998) reported fractions of surviving β-cells after 40 hours and exposure to

varying levels of glucose. The average death rate per hour over this interval can be estimated using
the formula − ln{f}/(40 hrs) where f is the fraction cells alive after 40 hrs of exposure. Death
rates thus obtained are plotted as a function of the ambient glucose concentration in Fig. B.8.
Equation (A.7), which is not intended as a mechanistic explanation but merely to capture the
phenomenology, was fitted to these data by non-linear least-squares. However, it was found that
these rates were several orders of magnitude larger than the accepted β-cell turn-over rate quoted
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Figure B.9: Pancreatic β-cell proliferation rate data and least-squares fit of the hyperbolic formula used in the model.

in the literature (Dor et al., 2004; Topp et al., 2000), a fact we attributed to the unfavourable ex
vivo conditions under which these data were obtained. For this reason, we scaled the parameter
µ̂ in such a way that the standard cycle described in the main text would be characterised by a
balance of β-cell birth and death.

Johnson et al. (2006) documented a direct anti-apoptotic effect of insulin, quantified by various
measures which showed broadly similar trends in dependence upon insulin concentration, the effect
being most pronounced at low insulin levels and diminishing hyperbolically as insulin is increased
to hyper-physiological levels. Johnson and Alejandro (2008) synthesised these trends in a single
graph, which shows that the relative potency of the anti-apoptotic effect drops off more or less
hyperbolically with insulin concentration I, i.e. as follows:

relative effect =
1

ιai + I
(B.1)

where ιai is approximately 0.3 U l−1. The reciprocal of this protective effect appears as a prefactor
of the death rate in equation (A.7).

Appendix B.2. Proliferation
Okada et al. (2007) and Beith et al. (1998) demonstrated that insulin stimulates β-cell prolifer-

ation. Data taken from the latter paper were used to fit a simple hyperbolic model, equation (A.6),
shown in Figure B.9.

Appendix B.3. Neogenesis
Neogenesis of β-cells remains to be fully characterised in quantitative terms. The formula used

in this paper to represent the rate at which β-cells are replenished is therefore speculative. To
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Figure B.10: The Steil et al. experiment as simulated by the present model. After two control days, glucose is
switched to an infusion. Top: plasma glucose content; middle: interstitial space insulin content; bottom: β-cell mass.

obtain reasonable values for the relevant parameters (those with subscript ng), simulations were
performed that mimicked an experiment described by Steil et al. (2001) in which rats were given
infusions of glucose that initially doubled the plasma glucose levels. Within a day, euglycemia was
re-established and the β-cell mass had doubled. The simulations are shown in Figure B.10
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