THE UNIVERSITY OF

WARWICK

Original citation:

Kalvala, Sara and Warburton, Richard (2011) A formal approach to fixing bugs. In:
Simao, A. and Morgan, C., (eds.) Formal methods, foundations and applications.
Lecture Notes in Computer Science (Volume 7021). Berlin Heidelberg: Springer Verlag,
pp. 172-187. ISBN 9783642250316

Permanent WRAP url:
http://wrap.warwick.ac.uk/45672

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Copyright statement:
"The final publication is available at Springer via http://dx.doi.org/
http://link.springer.com/chapter/10.1007%2F978-3-642-25032-3 12 ".

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your research

http://wrap.warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/45672
http://link.springer.com/chapter/10.1007%2F978-3-642-25032-3_12
mailto:publications@warwick.ac.uk

A Formal Approach to Fixing Bugs *!

Sara Kalvala Richard Warburton
Department of Computer Science, University of Warwick, UK
{Sara.Kalvala,R.L.M.Warburton } @warwick.ac.uk

12 August 2011

Abstract

Bugs within programs typically arise within well-known motifs, such
as complex language features or misunderstood programming interfaces.
Some software development tools often detect some of these situations,
and some integrated development environments suggest automated fixes
for some of the simple cases. However, it is usually difficult to hand-
craft and integrate more complex bug-fixing into these environments. We
present a language for specifying program transformations which is paired
with a novel methodology for identifying and fixing bug patterns within
Java source code. We propose a combination of source code and bytecode
analyses: this allows for using the control flow in the bytecode to help
identify the bugs while generating corrected source code. The specifica-
tion language uses a combination of syntactic rewrite rules and dataflow
analysis generated from temporal logic based conditions. We demonstrate
the approach with a prototype implementation.

1 Introduction

Debugging existing programs while maintaining the intent of the programmer is
an unavoidable but difficult task, which can take significant effort in the software
development lifecycle. Some existing tools, such as FindBugs [8], can detect
some of the commonly repeated bugs in particular programming languages, and
some extensions to integrated development environments (IDEs), such as the
UCDetector plugin [I8], may attempt to suggest automated fixes for some of
the simple cases. However, as far as we are aware, there is no general tool for
specifying unusual or domain-specific bug detection mechanisms that also offers
suggested fixes based on the specifications.

*This work was supported by the EPSRC under grant EP/D032466/1 “Verification of the
optimising phase of a compiler”.

TThis is a post-print of a book chapter to be published by Springer Verlag in Lecture Notes
in Computer Science vol 7021. An error in Figure 4 has been corrected in this version.

In this paper we propose a temporal-logic based language that offers a solu-
tion for this difficult problem of finding and fixing subtle bugs. Traditional appli-
cation of abstract interpretation and static analysis is focused around checking
a specified property of a specified program. In this work we seek to find bugs
in large families of programs by facilitating the coding of common bug patterns
and then detecting instances of those bug patterns. Each instance of a bug pat-
tern is a potential bug and each pattern has one or more resolutions associated
with it, that can be instantiated for a given potential bug. We use Java as our
example platform, though our methodology is applicable to many imperative
languages.

An important issue in writing static analysis systems is the representation
over which the analysis is performed, notably whether at source code level,
object code level or some intermediate representation. In order to bug-fix the
programs themselves (rather than a low-level representation) it is necessary to
perform the transformation at the source code level. There are many advantages,
however, to performing analysis at a lower level: for example, it is easier to
extract the control flow graph from a language whose control flow is represented
by conditional goto statements, rather than loops. Therefore, many existing
systems for detecting bugs perform analysis at the bytecode level, but then have
difficulty incorporating fixes to source programs. We attempt to blend the best
of both worlds with our approach to analysis: we perform syntactic analysis
against the source code of the program, whilst performing semantic analysis on
a bytecode representation. We use the standard debugging information from
the Java Bytecode format in order to correlate the results from the source and
Bytecode analyses.

The two characteristics of our work are therefore to support extensibility
by allowing specification of new bug patterns, and correction of the original
high-level programs. In this paper we show how to codify common bug patterns
within a formally defined language based on temporal logic. We also simplify the
construction of tools for static analysis of bug patterns, through model checking
and rewriting.

In we describe the kind of bugs which we consider and also the
approach to software development for which our approach is particularly suited.
We then describe, in the language TRANS;, which can be used for
both identifying bugs and implementing the transformations which correct the
bugs. The prototype implementation FixBugs which applies bug fixes written in
TRANS;i, to Java programs is described in

2 Methodology and Application

2.1 Example Bug Patterns and Categories

We use as a starting point the classification of common Java bugs due to Hove-
meyer and Pugh [§], used in the description of the FindBugs tool which detects
most of them. Many of the bugs identified by Hovemeyer and Pugh are simple

Lock 1 = ...;
l.lock ();

try {
// do something
} finally { 1.unlock(); }

Figure 1: Pattern for correct locking

BufferedReader in = null;

try {
in = new BufferedReader (
new FileReader (‘‘foo’’));
String s;
while ((s=in.readLine()) != null) {
System.out. println(s); }

// (1) close mistakenly placed
in.close ();

} catch (Exception e) {

e.printStackTrace ();

} finally {
// (2) the close should be placed with guard by a null check
if(in != null) {

try { in.close ();
} catch (IOException e) {
e.printStackTrace (); } } }

Figure 2: Possibly Unclosed File Handle

and their identification requires merely a syntactic pattern matching system.
Some of them, however, don’t have obvious fixes. We especially consider some
concurrency bugs, since they require more than simple syntactic pattern match-
ing to be identified yet are amenable to temporal analysis.

Because of space limitations, in this paper we consider only three examples:

Method does not release lock on all paths This bug arises in a situation
where a method acquires a lock, but there exists a path through the
method where the lock isn’t released. The java.util.concurrent lock,
as specified in JSR-166, is considered by the authors of FindBugs.
illustrates the standard solution to this bug.

Method may fail to close stream This bug occurs when a method creates
an IO stream object but does not assign it to any fields, pass it to other
methods that might close it, or return it, and does not appear to close the
stream on all paths out of the method. This may result in a file descriptor
leak. Good programming discipline requires the use of a finally block
to ensure that streams are closed. shows an example of (1) where
not to place a close and (2) where to place it correctly.

Failed database transactions may not be rolled back The JDBC library
for database connections models the beginning, committing and ending of

try {
conn.setAutoCommit (false):

conn .commit ();
} catch(java.sql.SQLException e) {
if (conn != null) {
try {
conn.rollback ();
} catch (java.sql.SQLException e) {
e.printStackTrace (); Yoo}

Figure 3: JDBC Commit and Rollback Pattern

transactions through explicit calls to methods. A common bug pattern is
a failure to check whether a transaction needs to be rolled back if its com-
mit fails. The correct pattern is illustrated in Another common
problem is the failure to ensure that all paths end in either a commit or a
rollback.

2.2 Placing debugging within software development

In general, a good approach to process the fixing of bugs is to not entirely auto-
mate the application of transformations to the users’ programs, since fixes may
not always be semantics preserving. But if an automated tool is not designed
to consider the specification of the program, there is the risk of introducing new
bugs into a currently working system. Bug patterns usually identify scenarios
that are likely to be buggy, rather than being guaranteed to be so. In this con-
text, the conservative approach, which we adopt, is to not alter the program,
but simply suggest bug fixes to the user.

Our implementation, described in and which we call FixBugs, uses
the Eclipse toolkit’s intermediate representation to perform program transfor-
mation. This enables the production of source code that is formatted according
to users’ preferred style guidelines and integrates into the context in which pro-
grams are being developed.

While we have incorporated a few common bugs into FixBugs, the aim is
to provide a framework in which more bugs can be accounted for. The design-
ing of new transformations is easier than in traditional static analysis systems
since the programmer does not have to implement new detailed analysis and
transformation steps. Since the program transformations themselves are merely
syntactic substitutions, it should be relatively natural for any experienced pro-
grammer to tailor the system to common bugs in their application area. The
temporal logic side conditions may be considered a difficult notation to grasp,
but we believe it is a simpler and more intuitive way of formulating dataflow
analysis, than hand writing the code directly.

The FixBugs approach is not intended to subsume traditional debugging tech-
niques such as testing, or traditional formal analysis techniques such as static

analysis and model checking. Its integration into existing tools and techniques
should complement their usage, allowing automated FixBugs sweeps of the code
to be made in order to offer potential improvements to the code base. Bugs
can be found as early as possible through these automated tools, rather than
being identified later through failing test cases, often at a much higher cost. The
inclusion within the development cycle of phases dedicated to improving code
quality, such as the refactoring phases promoted by some agile methodologies,
provides bug fixing program transformations with a suitable hook on which to
integrate themselves into current practice.

3 A Language for Detecting and Fixing Bugs
3.1 Basis: the TRANS language

In previous work concerned with the application of formally specified optimiza-
tions on Bytecode programs [20], we developed and extended Lacey’s TRANS
language [11,9]. In TRANS, compiler optimisations are represented through two
components: a rewrite rule and a side condition which indicates the situations
in which the rewrite can be applied safely.

Side conditions are expressed in an extension of CTL [4], a path-based tem-
poral logic which can capture many properties while still being efficient to model-
check. Temporal logics traditionally describe properties of a system relative to a
point in time, but in TRANS the points of interest are nodes (or program points)
in a control flow graph (or CFG) representing a program. The variant of CTL

used includes past temporal operators ((E and Z), the final operators EF and
AF, and the henceforth operators FG and AG. The next state operators are
extended with information on the kind of edge they operate over: for example,
EXgeq and AXpranen stand for “there exists a next state via a seq edge” and
“for all next states reached via a branch edge” respectively.

A logical judgement of the form: ¢ @Q n states that the formula ¢ is satisfied
at node n of the control flow graph. Two types of these basic predicates can be
used to obtain information about a node in the control flow graph. The formula
node(x) holds at a node n in a valuation that maps n to x. The formula stmi(s)
holds at a node n where the valuation makes the pattern s match the statement
at node n. As well as judgements about states, the language can make “global”
judgements. For example, the formula ¢ @ n A conlit(c) states that ¢ holds at
n and c is a constant literal throughout the program.

User defined predicates can be incorporated via a simple macro system.
These can be used in the same way as core language predicates, and are defined
by an equality between a named binding and the temporal logic side condition
that the predicate should be ’expanded’ into.

3.2 From TRANS to TRANS¢y

We describe a variant of the TRANS language, called TRANSg,, suitable for
specifying the transformation of Java source code with the aim of correcting
bugs that may appear within programs. In contrast to TRANS, where the goal
is to produce optimized low-level code, TRANSg;, is used to produce source code,
since the goal of debugging is usually to maintain reusable and readable source
code, for the developers of the software to continue working on. So rather than
operating on the low-level code which is used as input for the temporal logic
side conditions, rewrite rules must operate on the source program itself.

TRANS;;, specifications consist of actions and side conditions: if the side
condition holds then the action is applied. Many actions consist of replacing
statements with other statements, although they can also include adding new
methods to classes. Actions are applied if side conditions hold.

A BNF for the TRANS;, pattern matching language is provided in
Interesting aspects of TRANSs are its use of metavariables, the new actions and
strategies, and the type system. The core syntax of the rewrite rules is based on
standard programming constructs (assignment statements, while statements, if
statements, etc) which we assume are well understood. The syntax is expanded
with constructs to support meta-variables, representing either syntactic frag-
ments of the program or nodes of the CFG.

The language for transformations contains a Java statement grammar, ex-
tended with metavariables that can bind to different program structures. For
example, the pattern for matching an assignment of a variable by an addition
expression, that is later followed by re-assignment to that variable, is shown in
a). The code snippet shown in b) matches that pattern, via the
bindings shown in [Fig. 5|c).

TRANS; also contains a wildcard operator that matches against
any statement or (possibly empty) sequence of statements. Since a wildcard
statement is a normal pattern matching statement, it can also be bound using a
label, allowing the matching of arbitrary blocks of code in strategic locations. In
order to facilitate the writing of specifications that are intuitive to programmers,
we also allow wildcards to be used in the reconstruction of statements. This is
syntactic sugar for binding the wildcard statements to metavariables using la-
bels, and then substituting in metavariable references within the reconstruction
pattern. Wildcard substitutions are indexed: the nth wildcard block in pattern
matching is substituted into the nth wildcard position in the reconstruction
pattern.

A consequence of the desire to produce source code is the necessity of in-
corporating scoping; while scoping doesn’t exist within methods at a bytecode
level, it is a necessary part of the transformation language of TRANS;,. Support
of scoping allows us to match programming language constructs such as try and
catch blocks.

Java types are also supported in the pattern matching. The pattern :: m
binds any type to the metavariable m. One can explicitly refer to primitive types
(such as int) or object types (such as java.util.Vector). One can also match

“ »

type

expr-pattern

statement

node-condition

side-condition

action

transform

o metavar | primitive-type | object-type | type []

metavar (expression, expression ...)7
eTPTession op expression | unop expression
(type) expression | expression instanceof type
new type expression | new type []

metavar: statement | ¢ metavar‘ | | { statement*}
type metavar = expression

if expression statement statement

while ezpression statement

try expression catch statement £inally statement

expression ; | return expression; | throw expression ;
synchronized (ezpression) { statement }

for (expression®, expression, expression™) { statement }
switch (expression) { statement® }

case expression: statement ; | default ;

assert expression ; | continue metavar; | break metavar? ;
this (expression, expression ...);

super (expression, expression ...); | ;

node-condition V node-condition
node-condition N\ node-condition
= node-condition
3 metavar . node-condition
stmt (metavar) | node(metavar)
——
[EX | AX | EX | AX][metavar] (node-condition)
[EF | AF | EG | AG] node-condition
[E]|A] E | Z] (node-condition U node-condition)

side-condition V side-condition
side-condition N\ side-condition
= side-condition
node-condition @ metavar
pred (metavary,. . . ,metavar,)

REPLACE statement* WITH statement*
COMPOSE action WITH action
CHOOSE action OR action
ADD_METHOD type metavar(
type metavar, ...) statement TO metavar

action WHERE side-condition
MATCH side-condition IN transform
APPLY _ALL transform

transform O transform

transform THEN transform

Figure 4: BNF for TRANS,

7

X Z
n: int x =1 + r; int z =y 4+ 5; 1 y
System.out.println (x); rl|5
m: x = e; z =z + 1; elz+1
(a) the pattern (b) matching code

(c) bindings

Figure 5: TRANSg, Pattern Matching

arrays. The two new calls within the expressions grammar specifically allow
pattern matching array initialisers.

3.3 Actions

Simple rewriting merely replaces code fragments with new code, but many trans-
formations must actually change the structure of the class or apply rewrites at
multiple places. These structural changes are supported by additional actions.

The ADD_METHOD action takes the return type of the method, its name, ar-
guments and a statement to act as the body. This code is then added to a
class, specified through a metavar. This is our primary method of transforming
classes.

The COMPOSE action performs sequential composition on the two actions
passed as arguments and forms a new atomic action. (This is not to be confused
with the THEN transformation (see below) for composing two transformations.)

Combining uses of actions has many applications, for example one could
rewrite a block of code into a method, and replace it with a call to this method,
by using a REPLACE composed with an ADD_METHOD.

A non-deterministic choice action, called CHOOSE ... OR, is used when the
same analysis might suggest more than one possible fix. This fits in with the
methodology of debugging we propose since the user must confirm the applica-
tion of a transformation, and can be given several choices.

3.3.1 Transformationss

are operators for combining different actions. The MATCH ¢ IN T transforma-
tion restricts the domain of information in the transformation 7" by the condition
¢. The Ty THEN T5 transformation applies the sequential composition of 77 and
T5. When actions are applied normally, ambiguity with respect to what node
actions and rewrites are applied to are automatically resolved. In other words,
if there are several bindings that have the same value for a node attribute that
is being used in a rewrite rule then only one of them is non-deterministically
selected. The APPLY_ALL T transformation uses all of the valuations within
transformation 7', without this restriction.

3.4 Type System

TRANS;s, has a simple type system to ensure that programs transformed by
a TRANS;, specification are syntactically valid Java programs. For example,
anything nested at an expression level is an expression. In order to differentiate
types of meta-variables being used in transformations from the types of Java
variables, we refer to the former types as kinds. There are three types of kinds:
Type Kind for metavariables that bind to Java types, Expression Kind for
metavariables used for Java expressions, and Statement Kind for statements
and blocks. The kind system guarantees two important properties:

1. that no metavariable may bind to, or substitute into a position that re-
quires more than one Kind, and

2. that no metavariable may be used in a substitution, if it is not bound
beforehand.

A relatively simple algorithm is used to check these properties. The syntac-
tic replacement rules and side conditions are examined, keeping note of what
context a metavariable is used in. If a metavariable is used in a context that
implies it would need to be of more than one Kind, then kind-checking fails.
If there are metavariables referred to in the substitution part of a replacement
that aren’t bound by either the pattern matching or the side condition then also
the kind-checking fails.

3.5 Specification Examples

We re-visit the common bugs explained in and show how typical
fixes can be expressed in TRANSg;,.

Method does not release lock on all paths The full specification is shown
in Position 1 within the program matches the point at which
the lock is locked, and u at the position where it is unlocked. The side
condition holds where you can sometimes unlock if you have locked, but
not on every path. The replacement rule moves the unlock statement
within a finally clause, ensuring that the lock gets executed on all paths
through the method.

Method may fail to close stream gives a specification for rearrang-
ing the closing mechanism for file handles. It matches the type of the
stream object into the metavariable streamtype and ensures this is a
stream in the side condition. The other component of the side condition
ensures that the close method throws an exception. Wildcard matching is
used to keep the body of the try block in place, while moving the close
call at the end of the method within a finally block—therefore ensuring
that there is a path where the close method throws an exception.

Failed database transactions may not be rolled back A specification for
ensuring that transactions are surrounded by the correct catch pattern for

REPLACE

1: m.lock ()
u: m.unlock ()
WITH
try {

m. lock ()

} finally { m.unlock() }
‘WHERE

EF (node(u)) A —AF (node(u)) @ 1

Figure 6: Transformation to ensure lock released on all paths

SQLException instances is shown in[Fig. 8] The pattern matching of a call
to the setAutoCommit method matches the beginning of the transaction.
The wildcard binds to anything between that and the commit call, i.e. a
whole transaction. This block of code is then replaced with another block,
surrounded by a catch statement. The catch statement rolls back the
transaction in case of a database failure. The side condition checks to
ensure that the commit call can never be followed by a rollback. It also
ensures that conn is of the correct type.

4 Prototype Implementation

The approach proposed in this paper has been prototyped in the implementation
we call FixBugs. This implementation takes a Java program in both source and
Bytecode form and applies transformations to the source, outputting a series of
programs representing possible bug-fixed variants of the program.

As shown in the FixBugs system comprises several components. The
Pattern Matcher produces bindings to metavariables from source code and a
pattern, the Model Checker produces bindings to metavariables that satisfy
the side condition formulae, and the Generator alters the program itself, given
bound metavariables, according to the actions.

The Java programs source code is parsed using the Eclipse [5] project’s Java
developer tools, which provide a standardised intermediate representation for
the programs. This representation is also manipulated by the Generator to
produce bug-fixed programs in concrete syntax. The Model Checker relies on
the ASM bytecode library [2] in order to generate the control flow graph of the
program. ASM allows the manipulation of Bytecode at a programmer-friendly
level of abstraction.

4.1 Silhouettes

One line of Java source code is typically compiled into several lines of Java
Bytecode. Consequently there is a mismatch in the level of detail when using

10

REPLACE
i:streamtype stream = null;
try {

thro: stream.close ();
} catch (ex e) {
c: ...
WITH
::streamtype stream = null;
try {

} catch (ex e) {
} finally {
if (stream != null) {

try {
stream . close ();

} catch(’IOException’ e) {
e.printStackTrace(); } } }

subtype (streamtype, ’java.io.OutputStream’) A
EF (node(c)) @ thro

Figure 7: Closing File Handles

the debugging information to bridge the analysis results of these two represen-
tational levels. We unify these levels within FixBugs through the concept of a
silhouette. The silhouette of a statement of source code is the corresponding
set of commands of its bytecode. The control flow graph silhouette of a source
code line is the subgraph within the control flow graph that corresponds to that
source code line. Every edge within the control flow graph of the program’s
source code has a corresponding edge within the bytecode control flow graph
(but the inverse relation does not hold).

Silhouettes consequently partition the Bytecode control flow graph into sev-
eral overlapping subgraphs. The edges between these subgraphs fall into two
categories. An edge (from,to) is inbound with respect to some silhouette S if
the to node, but not the from node, is a member of .S, it is outbound if the from
node is a member of S, but not to. If both from and to are within S we say that
the edge is contained within S. The relation between source code and bytecode
CFGs is illustrated in

We can obtain the Java control flow graph from the Bytecode representation
very simply with the following steps:

1. extract Bytecode control flow graph (G) using ASM.
2. compute line numbering function (L) using ASM.

3. coalesce (G) to form (G').

Within FixBugs we represent the successor function of G as a map from
integers onto sets of integers, and L as an array of integers. In order to calculate

11

REPLACE
conn.setAutoCommit (false):

commit: conn.commit ();
WITH

try {
conn.setAutoCommit (false):

conn . commit ();
} catch(java.sql.SQLException e) {
if (conn != null) {
try {
conn.rollback ();
} catch (java.sql.SQLException e) {
e.printStackTrace(); } } }
WHERE

type(conn,’java.sql.Connection’) A—EF(stmt(conn.rollback();))@
commit

Figure 8: Correction for JDBC Commit and Rollback Pattern

G’ we therefore replace every edge (from,to) in G with an edge (L(from),L(to0)).
This ensures all inbound and outbound edges are replaced accordingly. We then
remove all edges whose from and to nodes are identical, since they represent
contained edges that don’t exist within the source code control flow graph G’.

The use of the ASM Bytecode analysis library makes it easier to extract and
coalesce the control flow graph than by writing a custom source code analysis. It
also allows us to integrate other information more easily extracted at a Bytecode
level, and then relabel it onto the Java control flow graph accordingly.

4.2 Implementation Details

FixBugs is coded primarily in Scala [I5], chosen because of its support for a
functional style of programming, combined with the plentiful libraries that are
available on the Java platform. Specification files are parsed using the parser
combinators in Scala’s standard library. Disjoint union datatypes, modelled
using case classes, provide an intermediate representation for TRANSsy specifi-
cations. Scala’s pattern matching can then be used in order to bind TRANSy
metavariables to elements of Java source code, represented using Eclipse’s In-
termediate Representation. This development approach is described in

Being a prototype, the current implementation doesn’t provide support for
all the features of the TRANSs, language, such as strategies and class-level ac-
tions. The gist of the approach, however, should map directly to these concepts,
albeit with some programming effort.

12

Java Source

> Bytecode

Eclipse IR—— ASM IR

’ Pattern Matcher L—» Bindingf
t

Patterns i Piindings._J Model Checker ‘

T | Generator |

TRANS;, Source \—, {Java programs}

Figure 9: FixBugs Architecture

5 Analysis

We have introduced an approach that allows one to specify static analyses that
can be applied to programs, and transformations that can be used to debug the
programs. We describe a tool that allows the automated application of these
transformations to programs and how its use can be integrated into existing de-
velopment methodologies. Our implementation uses a novel technique for com-
bining source code and object code analysis through silhouettes—a technique
for unifying information annotated onto a control flow graph. This exploits the
same underlying model as the TRANSg, specification language for transforma-
tions.

While we are satisfied with the performance of this prototype implementa-
tion in practice (applying the bug fixing transformations usually takes in the
order of seconds) we have yet to complete an analysis of its computational com-
plexity. CTL is polynomial time checkable in the size of the system times the
length of the formula [3]. These correspond to the number of statements in
the program being transformed, and the side condition of the transformational
specification. Our pattern matching and reconstruction implementations are
both linear in the size of the pattern plus the size of the method.

Before releasing the software to potential users, we intend to complete the
following tasks:

1. Improve performance by making use of some existing symbolic model
checker or boolean satisfiability solver.

2. Complete the implementation of language features, for example schematic
variables and strategies, and extend to consider inter-procedural analysis.

13

if (x > 0)

iconst_0

iload_1 x=x+1
> (iload_1

it

if_icmpge

iconst_1

... printin(x) |

getstatic

istore_1

H

iload_1

[4

invokevirtual

Figure 10: Relating Java statements with the control flow graph

3. Integrate into IDEs, in order to be able to use the tool effectively.

5.1 Related Work

In we mentioned FindBugs, a system for detecting bugs within Java
programs [8]. Bug patterns are defined as common constructs within programs
that often causes errors. FindBugs detects these patterns through static analy-
sis, but does not attempt to fix them. Its bug detection mechanisms are hand
written in Java. UCDetector [I8] is a plugin for the Eclipse IDE that finds
unecessary code within a project. Its detection mechanism is a custom dead
code static analysis. It can also detect when the visibility of a method can be
restricted, for example from public to private. It can automatically fix the
dead code issues that it detects, but only performs limited program analysis.
The use of predicates to identify program repair points is the basis of the
work of Samanta et al [16]. Their approach relies on the use of standard pre-
and post-conditions for a Boolean program and using propagation based on
Hoare logic. This approach allows them to repair concurrent and recursive pro-
grams, and to reason about correctness. However, they haven’t yet illustrated
the approach on a full programming language, and do not show how language
designers could extend the approach themselves by specifying new bug patterns.
Dataflow analysis has long been employed within the compiler optimisation
community to iteratively compute the nodes within a program at which optimi-
sations can be soundly applied [T}, [T4]. Schmidt and Steffen explain the strong
link between dataflow analysis and model checking, and show how equations
for dataflow analyses can be expressed in modal p-calculus [I7]. Steffen also

14

TRANSsi« TRANS#i«

[Bytecode]

[Scala] ’ Scala— Bytecode

[Bytecode]

Program
Java— Java

[TRANS:]

TRANSi«

A

[Bytecode]

L)

Figure 11: Transformational Diagram for FixBugs

shows how dataflow analysis algorithms can be generated from modal logics
[19]. Rewrite rules with temporal conditions have also been used in the Cobalt
system [12] which focuses on automated provability and also provides executable
specifications, achieved through temporal conditions common to many dataflow
analysis approaches. The specific nature of Cobalt’s temporal conditions is lim-
ited compared to the flexibility provided in TRANSs, from supporting CTL side
conditions, even if this may require more expensive model checking. Rhodium
is another domain specific language for developing compiler optimisations [13].
Rhodium consists of local rules that manipulate dataflow facts. This is a signifi-
cant departure in approach from TRANS, since it uses more traditional, dataflow
analysis based specifications rather than temporal side conditions. The Tempo-
ral Transformation Logic (TTL) [10] also uses CTL, but emphasizes verification
of the soundness of the transformations themselves, i.e. that they are semantics
preserving.

5.2 Correctness Issues

Unlike compiler optimisations, transformations applied to fix bugs are not se-
mantics preserving. The very aim of the transformation is to alter the program
semantics in order to remove a bug. Consequently one is assuming that the
program itself is incorrect according to some specification, but can be corrected
to match this specification. It is possible that the program itself might be cor-
rect, and accordingly the transformations should not be applied automatically.
Additionally the bug finding patterns that we focus on correspond to behaviours
that are generally considered bugs within a program, for example deadlocks.
We plan to extend our methodology to identify transformations that can
be applied soundly, rather than simply leaving the choice of whether to apply
these transformations to the user of the tool. The required soundness proper-

15

ties could be annotated onto the program. For example our specification for
ensuring that locks are released on all paths is sound iff the user of the system
wishes a lock to be in a released state as a post-condition of the method. Infor-
mation of this nature can already be added to Java programs using the existing
annotations framework, recently extended by [6]. There are already tools for
invariant detection in partially annotated Java programs, [7] infers properties
about nullness of variables. Another element of such an extension would be the
ability to automatically infer the soundness of transformations with respect to
given pre and post conditions.

However, we recall that bug-repairing transformations often have to change
the semantics of a program, and the goal of a formal tool should be seen primar-
ily to facilitate the development of correct programs, rather than be constrained
by existing specifications. This is the approach supported by the FixBugs tool.

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools. Pearson Education, 2007.

[2] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a code manip-
ulation tool to implement adaptable systems. In Adaptable and Extensible
Component Systems, 2002.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8:244-263, 1996.

[4] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logic of
Programs, Workshop, pages 52-71, London, UK, 1982. Springer-Verlag.

[5] Eclipse Foundation. Eclipse website, 2009. http://www.eclipse.org.

[6] Michael D. Ernst. Type Annotations Specification (JSR 308). http://
types.cs.washington.edu/jsr308/, October 5, 2009.

[7] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Car-
los Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming,
69(1-3):35-45, December 2007.

[8] David Hovemeyer and William Pugh. Finding bugs is easy. ACM SIGPLAN
Notices, 39(12):92-106, 2004.

[9] Sara Kalvala, Richard Warburton, and David Lacey. Program transforma-
tions using temporal logic side conditions. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 31(4), 2009.

16

http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/

[10]

[13]

[14]

[15]

[16]

Aditya Kanade, Amitabha Sanyal, and Uday Khedker. A PVS based frame-
work for validating compiler optimizations. In SEFM ’06: Proceedings of
the Fourth IEEE International Conference on Software Engineering and
Formal Methods, Washington, DC, USA, 2006. IEEE Computer Society.

David Lacey. Program Transformation using Temporal Logic Specifications.
PhD thesis, Oxford University Computing Laboratory, 2003.

S. Lerner, T. Millstein, and C. Chambers. Automatically proving the
correctness of compiler optimizations. In Proceedings of the ACM SIG-
PLAN 2008 conference on Programming language design and implementa-
tion. ACM Press, 2003.

Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated
soundness proofs for dataflow analyses and transformations via local rules.
In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
stum on Principles of Programming Languages, pages 364377, New York,
NY, USA, 2005. ACM Press.

S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala.
Artima Press, second edition, 2010.

Roopsha Samanta, Jyotirmoy V. Deshmukh, and E. Allen Emerson. Auto-
matic generation of local repairs for boolean programs. In FMCAD, 2008.

D.A. Schmidt and B. Steffen. Data-flow analysis as model checking of
abstract interpretations. In G. Levi, editor, 5th Static Analysis Symposium,
volume 1503 of Lecture Notes in Computer Science, September 1998.

Jorg Spieler. UCDetector: the Unnecessary Code Detector website, 2007.
URL: http://wuw.ucdetector.org.

B. Steffen. Generating data flow analysis algorithms from modal specifica-
tions. Science of Computer Programming, 21:115-139, 1993.

Richard Warburton and Sara Kalvala. From specification to optimisation:
An architecture for optimisation of Java bytecode. In Oege de Moor and
Michael I. Schwartzbach, editors, Compiler Construction, 18th Interna-
tional Conference, volume 5501 of Lecture Notes in Computer Science.
Springer, 2009.

17

	Introduction
	Methodology and Application
	Example Bug Patterns and Categories
	Placing debugging within software development

	A Language for Detecting and Fixing Bugs
	Basis: the TRANS language
	From TRANS to TRANSfix
	Actions
	Transformationss

	Type System
	Specification Examples

	Prototype Implementation
	Silhouettes
	Implementation Details

	Analysis
	Related Work
	Correctness Issues

