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Abstract 

This is the first, ever doctoral thesis in the field of DNA computation. The field has its roots 
in the late 1950s, when the Nobel laureate Richard Feynman first introduced the concept of 
computing at a molecular level. Feynman's visionary idea was only realised in 1994, when 
Leonard Adleman performed the first ever trul 

'y molecular-level computation using D. NA 
combined with the tools and techniques of molecular biology. Since Adleman reported the 
results of his seminal experiment, there has been a flurr 

'y of interest in the idea of using DNA 
to perforni computations. The potential benefits of using this particular molecule are enor- 
inous: by harnessing the massive inherent parallelism of performing concurrent operations 
on trillions of strands, we inay one daY be able to compress the power of toda. y's super- 
computer into a single test tube. However, if we compare the development of DNA-based 

computers to that of their silicon counterparts, it, is clear that molecular computers are still 
in their infancY. Current work in this area is concerned mainl 'v with abstract models of 
comput; ition and simple proof-of-principle experiments. The goal of this thesis is to present 
our contribution to tli(, field, placing it in the context, of the existing body of work. Our 

new results concern a general model of DNA computation, an error-resistant implementa- 
tion of the model, experimental investigation of the implementation and an assessment of 
the complexit 'y and viability of DNA computations. We begin 1) 

' N, recounting the historical 
b; ickground to the search for the structure of DNA. By providing a detailed description of 
this molecule and the operations we may perform on it, we lay down the foundations for sub- 
sequent chapters. We then describe the basic models of DNA computation that have been 

proposed to date. In particular, we describe our parallel filtering model, which is the first 
to provide a general framework for the elegant expression of algorithms for NP-complete 

problems. The implementation of such abstract models is crucial to their success. Previous 

experiments that have been carried out suffer from their reliance on various error-prone lab- 

oratorY techniques. WC, show for the first time how one particular operation, hybridisation 

extraction, inay be replaced by an error-resistant enzymahc separation technique. We also 
describe'a novcl solution read-out procedure that utilizes cloning, and is sufficiently general 
to allow it to he used in an ' N- experimental implementation. The results of preliminar 'v 

tests 
of these techniques are then reported. Several important conclusions are to be drawn from 
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these investigations, and we report these in the hope that they will provide useful experimen- 
tal guidance in the future. The final contribution of this thesis is a rigorous consideration 
of the complexity and viability of DNA computations. We argue that existing analyses of 
models of DNA computation are flawed and unrealistic. In order to obtain more realistic 
measures of the time and space complexity of DNA computations we describe a new strong 
model, and reassess previously described algorithms within it. We review the search for 
"killer applications": applications of DNA computing that will establish the superiorit ,v of 
this paradigm within a certain domain. We conclude the thesis with a description of several 
open problems in the field of DNA computation. 
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Chapter 1 

Introduction 

" Where a calculator on thc ENIAC is equipped with 18,000 vacuum tubcs and 

weZghs 30 tons, computers in the future may have only 1,000 vacuum tubes and 

perhaps weigh 1 112 tons. " So said Popular Mechanics in 1949 [8]. Today, in the 

age of smart cards and wearable PCs, this statement is striking because it falls so 

short of reality. In fifty years from now, who would be prepared to predict how close 

to the levels of molecular miniaturisation described in Feynman's visionary paper 

[26] we will have come? 

Hugc advances in miniaturization have been made since the days of room- 

sized computers, yet the underlying computational model (the Von Neumann archi- 

tecture. ) has remained the same. Today's supercomputers still employ the kind of 

sequential logic used by the mechanical dinosaurs of the 1930s. Some researchers are 

now looking beyond these boundaries and are investigating entirely new media and 

computational models. These include quantum. optical and DNA-based computers. 

It is the last, development that this thesis concentrates on. 

The idea that living cells and molecular complexes can be viewed as potential 
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machinic components dates back to the late 1950s, when Richard Feynnian delivered 

his famous paper describing --siib-microscopic" computers. More recentlY. sevend 

papers [2.7,52] (also see [5,36.64]) have advocated the realisation of inassivelY 

parallel computation using the techniques and chemistry of molecular biology. The 

development of existing silicon-based computers was only made possible by the in- 

vention of the transistor, which facilitated for the first time electronic manipulation 

of silicon. We may draw an interesting parallel between this historical precedent and 

the development of molecular-scale computers. Although the concept dates back to 

the late 1950s, only now do we have at our disposal the tools and techniques of 

molecular biology required to construct the prototype molecular computers. In [2], 

Adleinan described how a computationally intractable problem, known as the 

rected Harniltonian Path Problem (HPP) iniglit be solved using inolecular nietliods. 

Recall that the HPP involves finding a path through a graph that visits each ver- 

tex exactly once. Adleman's method employs a simple, massively parallel raudom 

search. The algorithiii is not executed on a traditional, silicon-based computer. but 

instead employs the "test-tube" technology of genetic engineering. By representing 

information as sequences of bases in DNA molecules, Adleman shows how existing 

DNA-inanipulation techniques may be used to quickly detect and amplify desirable 

solutions to a given problem. 

How can we combine a flask of DNA with biological tools to solve a hard 

inathematical problem? Adleman's experiment proceeds as follows. The first stage 

created a flask of DNA molecules, each molecule encoding a potential solution to 

the problem. With reference to the HPR for example, each strand encoded a path 

(ilot iwcessarilY Hamiltonian) through the graph. Given every DNA molecule that 

cilcodes a pntli of length n, for a graph with n vertices. we can be sure that every 
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possible solution is present, some legal, but most illegal. Once the entire solution 

space was present in a flask the DNA computer really came into its own. A(Ilenian 

used a small set of biological tools to -sift" out DNA that encoded illegal solutions. 

These are those paths that do not visit every vertex, or paths that visit a particular 

vertex more than once. At the end of the sifting process, he was left only witli 

strands that encoded legal solutions. 

Of course, for DNA computers. each individual operation. for example, ex- 

tracting DNA strands, can take minutes or even hours to perform. This cost of a 

computational step, when compared to that of supercomputers capable of executing 

a trillion operations a second, looks unimpressive. However, the real power of DNA 

computers lies in their inherent parallelism - each operation is performed not on one 

single DNA strand, but on every strand in the flask sMultancously. The fastest 

supercomputers in existence today are capable of executing around a trillion opera- 

tions a second. DNA computers have the potential to execute more than a thousand 

trillion operations per second, as well as being a billion times more energy- efficient 

and requiring a trillionth of the space needed by existing storage media. Nature. 

has information compression down to a fine art - over forty 1 Mb floppy discs are 

required to store the genome of a single fruit fly [74]. 

The rest of this thesis is organized as follows. 

* In chapter 2 we explain the structure of the DNA molecule and describe a vari- 

ety of laboratory techniques for its manipulation. This provides an important 

foundation for the work presented in subsequent chapters. 

e In chapter 3 we review the models of DNA computing. A summary of this 

chapter appears in [35]. In particular. we describe the novel parallel filtering 
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model, proposed by us in [7]. Although the earlier papers of Adlenian 

and Lipton [52] motivated such work, our parallel filtering model is the first 

to provide an elegant, general framework for the expression of algorithms for 

various NP-complete problems. In chapter 2 we propose a basic taxonomy of 

models of DNA computation, and describe an archetypal model within cacli 

category. We then describe in detail the common features of the so-called 

filtering models. This provides a foundation for a description of the operations 

within the parallel filtering model. In contrast to earlier work, where only 

a single algorithm is generally detailed, we describe several algorithms for 

NP-coniplete problems within the parallel filtering model. We also describe 

in detail an example of a constructive model, due to Ogibara and Ray [61], 

within which we may describe the simulation of Boolean circuits using DNA 

manipulation techniques. 

o In chapter 4 we consider various issues arising from the implementation of 

theoretical models of DNA computing. In particular, we explain in detail the 

implementation of the models described in chapter 3. This implementation is 

also described in [7,34]. We highlight several important problems with exist- 

ing implementations, and describe an implementation of the parallel filtering 

model. We argue that the parallel filtering model provides a greater degree of 

error- res is tance than those previously proposed. 

* In chapter 5 wc describe experimental investigations of the implementation 

described in chapter 4. Although these experiments are still at a preliminary 

stagc, they have already highlighted several important factors to be taken into 

consideration when designing and implementing models of DNA computation. 
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Our investigations are far inore rigorous than those previously described. 

we perform numerous control and optirnisation experiments. ýV(, describe the 

lessons to be drawn from such experiments, and suggest several potential tech- 

niques for reducing errors in future empirical studies. In particular, we show 

how reliance on error-prone techniques such as PCR and hybridisation extrac- 

tion may be obviated. We also describe a novel technique for the read-out of 

the final result of a DNA computation. This technique is sufficiently general 

to allow it to be included in the implementation of any theoretical model. 

e In chapter 6 we consider the complexity and viability of DNA computations. 

Such issues have, to date, been largely underestimated in the literature. We 

argue that existing analyses of models of DNA computation are flawed and 

unrealistic. In order to obtain more realistic measures of the tinie and spin, 

complexity of DNA computations we describe a new strong model, and re- 

assess previously described algorithms within it. We review the search for 

"killer applications": applications of DNA computing that will establish the 

superiority of this paradigm within a certain domain. A summary of this 

chapter appeared in [6]. 

e In chapter 7 we summarise this thesis, give some concluding remarks and 

suggest several open problems in the field of DNA computation. 
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Chapter 2 

DNA structure and 
0 

manipulation 

2.1 Introduction 

Ever since ancient Greek times, man has suspected that the features of one genera- 

tion are passed on to the next. It was not until Mendel's work on garden peas was 

recognised (s(, (, [38,75]) that scientists accepted that both parents contribute mate- 

rial that determines the characteristics of their offspring. In the early 20th century, 

it was discovered that chromosomes make up this material. Chemical analysis of 

clironiosoines revealed that they are composed of both proteM and deoxynbonucleic 

a(-'/, (/, or DNA. The question was, which substance carries the genetic information? 

For many years, scientists favoured protein, because of its greater complexity rela- 

tive to that of DNA. Nobody believed that a molecule as simple as DNA, composed 

of only four subunits (compared to 20 for protein) could carry complex genet1c 

inforillat. 1011. 
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It was not until the early 1950s that most biologists accepted the evidence 

showing that it is in fact DNA that carries the genetic code. However, the ph. ysicýd 

structure of the molecule and the hereditary mechanism was still far from clear. 

In 1951, the biologist James Watson moved to Cambridge to work with ýi 

physicist. Francis Crick. Using data collected by Rosalind Franklin and Maurice 

Wilkins at King's College, London, they began to decipher the structure of DNA. 

They worked with models made out of wire and sheet metal in attempt to construct 

soinetliiiig that fitted the available data. Once satisfied with their model, they pub- 

lished the paper [78] (also see [77]) that would eventually earn them (and Wilkins) 

the Nobel Prize for Physiology or Medicine in 1962. 

2.2 The structure and manipulation of DNA 

DNA (deoxyribonucleic acid) [1,76] encodes the genetic information of cellular or- 

ganisms. It consists of polymer chains, commonly referred to as DNA strands. 

Each strand nlay be viewed as a chain of nucleotides, or bases, attached to a sugar- 

phosphate "backbone". An n-letter sequence of consecutive bases is known as an 

, a-iner or an oligonucleotide of length n. 

The four DNA nucleotides are adenine, guanine, cytosine and thymine, com- 

moilly abbreviated to A, G, C and T respectively. A schematic representation of 

the structure of each ii-Licleotide is depicted in figure 2.1. 

Each strand has, according to chemical convention, a 5' and a 3' end, thus 

any single strand has a natural orientation. This orientation (and, therefore, the 

notation used) is due to fact that one end of the single strand has a free (i. e., 

unattached to another ilucleotide) 5' phosphate group, and the other has a free 3' 

deoxyribose hydroxl group. The classical double helix of DNA (figure 2.2) is formed 
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Figure 2.1: Structure of adenine, guanine, thyinine and cytosine 

when two separate strands bond. Bonding occurs by the pairwise attraction of bases; 

A bonds with T and G bonds with C. The pairs (A, T) and (G, C) are therefore 

known as cony1cmentary base pairs. The two pairs of bases forin hydrogen bonds 

between each other, two bonds between A and T, and three between G and C (figurc, 

2.3). 

In what follows we adopt the following convention: if x denotes an oligonu- 

Figure 2.2: Structure of* double-stranded DNA 
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Hydrogen bonds 

5, 

Figure 2.3: Detailed structure of double-stranded DNA 

cleotide, then xx denotes the complement of , r. The bonding process, known as 

anneaNng, is fundamental to our impleinentation. A strand will only anneal to its 

complement if they have opposite polarities. Therefore, one strand of the double 

lielix extends froin 5' to 3', and the other from 3' to 5', as depicted in figure 2.2. 

2.3 Operations on DNA 

All niodels of DNA computation apply a specific sequence of biological operations 

to a set. of strands. These operations are all commonly used by molecular biologists. 

Notv that some operations are specific to certain models of DNA computation. 
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2.3.1 Synthesis 

Oligonucleotides may be synthesised to order by a machine the size of a inicrowave 

oven. The synthesiser is supplied with the four nucleoticle bases in solution. which 

ýtre combined according to a sequence entered by the user. The instrument makes 

millions of* copies of the required oligonucletide and places them in solution in a 

sinall vial. 

2.3.2 Denaturing, annealing and ligation 

Double-stranded DNA may be dissolved into single strands (or denatured) hy heat- 

ing the solution to a temperature determined by the composition of the strand [17]. 

Heating breaks the hydrogen bonds between complementary strands (figure 2.4). 

Sliwe aG-C pair is joined by three hydrogen bonds, the temperature required 

to break it is slightly higher than that for an A-T pair, joined by only two hy- 

drogen bonds. This factor must be taken into account when designing sequences to 

represent computational elements. 

AnneaNng is the reverse of melting, whereby a solution of single strands is 

cooled, allowing coinplementary strands to bind together (figure 2.4). 

In double-stranded DNA. if one of the single strands contains a discontinuity 

one nucleotide is not bonded to its neighbour) then this may be repaired by 

DNA hgase [18]. This allows us to create a unified strand from several bound 

toý-))-ctller by their respective complements. 

2.3.3 Hybridisation separation 

ScPandion by h., ybridisation is an operation central to early models of DNA computa- 

tion, and Hic extraction from a test tvibe of any singIc strands containing a 
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Figure 2.4: DNA nielting and annealing 

specific short, sequelice (e. g., extract all strands containing the sequence TAGACT). 

If we want to extract single strands containing the sequence x we first create many 

copies ()f'lts complement, Tx. W(ý atlach to these oligoliucleotides a biotin molecule' 

which blild III turil to a fixed inatrix. If we pour the. contents of the test tubc 

over this inatrix, strands containing x will anneal to the anchored complementary 

strands. Washing the inatrix removes all strands that did not anneal, leaving only 

strands containing x. These may then be removed from the iliatrix. However, we 

describe problems with hybridisation extraction in section 4.4. 

2.3.4 Gel electrophoresis 

Gcl ('IC(tT'01)110? -CSZ'S is an important technique for sorting DNA strands by size [18]. 

Electroplioresis is the movement of charged molecules in an electric field. Since 

DNA carry negative cliarge, when placed in an electrical field they tend 

to inigrafe towards the positive pole. The rate of migration of a molectile in an 

Solution depends oil its shape and electrical charge. Since DNA itiolectiles 
'This process is referred to its "hmtlllý-Iatloll". 
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Gel 

DNA Buffer 

Electrophorese FIT 

DNA separates into bands 
11 Smallest 

Electrostatic gradient 

Figure 2.5: Gel electrophoresis process 

have the same charge per unit length, they all migrate at the same speed in an 

aqueous solution. However, if electrophoresis is carried out in a gel (usually made 

of agarose, polyacrylamide or a combination of the two) the migration rate of a 

molecule is also affected by its sZze 2- This is due to the fact that the gel is a 

dense network of pores through which the molecules must travel. Smaller molecules 

therefore inigrate faster through the gel, thus sorting them according to size. 

A simplified representation of gel electrophoresis is depicted in figure 2.5. 

The DNA is placed in a well cut out of the gel, and a charge applied. 

Once the gel has been run (usually overnight), it is necessary to visualise the 

results. This is achieved by staining the DNA with the fluorescent dye ethidium 

bromide and tlwii viewing the gel under ultraviolet light. At this stage the gel is 

usually photographed for convenience. 

One such photograph is depicted in figure 2.6. Gels are interpreted as follows; 

each lane (1-7 in our example) corresponds to one particular sample of DNA (we 

use the term tube in our abstract model). We can therefore run several tubes on the 

same gel for the purposes of comparison. Lane 7 is known as the marker lane; this 

contains various DNA fragments of known length, for the purposes of calibration. 
1) Migration i-me of a strand is, Hiversel, v proportional to the logarithm of its molecular weight 

[62]. 
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DNA fraginents of the same length cluster to form visible horizontal bands, the 

longest fragments forming bands at the top of the picture, and the shortest at the 

bottoin. The brightness of a particular band depends on the an-iount of DNA of 

the corresponding 1(,, ngtli present in the sample. Larger concent rations of DNA 

absorb more dye, and therefore appear brighter. One advantage of this technique 

is its sensitivity - as little as 0.05/ig ofDNA in one band can be detected as visible 

fluorescence. 

Figure 2.6: Gel electrophoresis photograph 

The size of' fragments at various bands is shown to the right, of the marker 

lanc, and is ineasured in base pairs (h. p. ). In our example, the largest I)and resolvalAc 

by Hie gel is 2036 b. p. long, and the shortest 134 b. p. Moving right to left, (tracks 

is a series of PCR, reactions which were set up with progressively diluted target 

DNA (134 b. p. ) to establish the sensitivity of* a reaction. The dilution of* each tube 

is evident froin the fading of the bands, which eventually disappear in lane 1. 

2.3.5 Primer extension and PCR 

The DNA polymcmscs perform several functions, including the repair and duplica- 

tion of DNA. Given a short. primcr oligoinicleotide, p in the presence of nucleotide 
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5' A T A G A G T T 3' 
1 1 1 

3' T C A 5' 

5' AT AGA GT T 3' 
1111111 (b) 

3' TAT CT CA 5' 

Figure 2.7: (a) Primer anneals to longer template (b) Polymerase extends primer in 
the 5' to 3' direction 

triphosphates, the polymerase extends p if and onlY if p is bound to a longer templatc 

oligoiiucleotide, t. For example, in figure 2.7(a)), p is the oligonucleoticle TCA which 

is bound to t, ATAGAGTT. In the presence of the polymerase. p is extended by a 

complementary strand of bases to the 3' end of t (figure 2.7(b)). 

Another useful inethod of manipulating DNA is the Polymerase Chain Reac- 

tion, or PCR. [59,60]. PCR is a process that quickly amplifies the amount of DNA 

ma given solution. Each cycle of the reaction doubles the quantity of each strand, 

giving an exponential growth in the number of strands 

2.3.6 Restriction enzymes 

Restrichon endonucleases [79, page 33] (often referred to as restriction enzymes) 

a specific sequence of DNA, known as a restrwhon site. Any double- 

sh-andcd DNA that contains the restriction site within its sequence is cut by the 

enzyme at that pOijjt3 For example, the double- stranded DNA in figure 2.8(a) is 

cut by restriction enzyme Sau3AI, which recognises the restriction site GATC. The 

resulting DNA is depicted in figure 2-8(b). The resulting cleavage gciienites either 
:, In 1-cillitY, mll. v cortaill (Inzymes cut specifically ýit the restriction site, but -we take thl's factor 

into jwcount wheii , (, I(, (-tiiig an ciiz. vine. 
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Sau 3AI 

f 

5' GG AT GAT C GGT A 3' 
IIIIIIIIIIII (a) 

3' CCT ACT AGCCAT 5' 

5' GGATGATCG GT A 3' 
11111111 (b) 

3' CCTACTAG CCAT 5' 

Figure 2.8: (a) Double-stranded DNA being cut by Sau3AI (b) The result 

"blunt" or "sticky" (cohesive) ends, a feature that we will utilise later. 

2.3.7 Cloning 

Once the structure of the DNA molecule was elucidated and the processes of tran- 

scription and translation were understood, molecular biologists were frustrated by 

the lack of suitable experimental techniques that would facilitate more detailed ex- 

ainination of the genetic inaterial. However, in the early 1970s, several techniques 

were developed that allowed previously impossible experiments to be carried out 

(sce [19,62]). These techniques quickly led to the first ever successful cloning ex- 

periments [45,55]. 

Cloning is generally defined as "... the production of multiple identical copies 

of a single gene. cell, virus or organism. " [67]. In the context of molecular compu- 

tation, cloning therefore allows us to obtain multiple copies of specific strands of 

DNA. This is achieved as follows. 

I. The specific sequence is inserted in a circular DNA molecule. known as a 

, tl(, (: to7-, producing a recombinant DNA molecule. This is performed by cleaving 

both Hic double-stranded DNA and the target strand with the some 

restriction Shice the vector is double-stranded, restriction with 
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DNA molecule 

Protein molecules 

Figure 2.9: Schematic representation of the M13 phage structure 

suitable enzymes produces two short single-stranded regions at either end of 

the molecule (referred to as "shcky" ends. The same also applies to the target 

strand. The insertion process is depicted in figure 2.10. The vector and 

target are both subjected to restriction, then a population of target strands is 

introduced to the solution containing the vector. The sticky ends of the target 

bind with the sticky ends of the vector, integrating the target into the vector. 

After ligation, new double-stranded molecules are present, each containing the 

ilew target sequence. 

In what follows, we use the M13 bacteriophage as the cloning vector. Specif- 

ically, we use the M13mpI8 vector. which is a 7,249 b. p. long derivative of 

M13 constructed by Messing et al. [81]. 

Bacteriophages (or phages, as they are commonly known) are viruses that 

infect bacteria. The structure of a phage is very simple, usually consisting of 

a single-stranded DNA molecule surrounded by a sheath of protein molecules 

(the capsid) (figure 2.9). 
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St(Md to be IRSerred (target DNA) 

Add 
hgase 

Figure 2.10: Insertion of target strand into vector DNA 

2. The vector act, as a vehicle, transporting the sequence into a host cell (usually a 

bacterium, such as E. cohl. In order for this to occur, the bacteria inust be made 

compOent. Since the vectors are relatively heavy molecules, they cannot be 

introduced into a bacterial cell easily. However, subjecting E. coli to a variety 

ofliot and cold "sliocks" (in the presence of calcium, amongst other chemicals) 

allows the vector molecules to move through the cell membrane. The process 

ofintroducing exogenous DNA into cells is referred to as transfOrmation. One 

problem with t rails f'Orii i at, ion is that it is a rather inefficlent process; the best, 

we can hope for is that around 5% of the bacterial cells will take up the 

vector. In order to improve this situation, we may use a technique known as 
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M 13 phage 

M 13 DNA 
Pilus 

(a) Bacterium 

C 
00 M 13 molecules 
10 

M13 DNA molecules 

C 00 00 

00 
0 00 

0 
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Figure 2.11: M13 phage infection cycle 

clectroporation. A high voltage pulse is passed through the solution containing 

the vectors and bacteria, causing the cell membranes to become permeable. 

This increases the probability of vector uptake. 

3. The vector multiplies within the cell, producing numerous copies of itself (in- 

cluding the inserted sequence) - 

The infection cycle of M 13 proceeds as follows. The phage attaches to a ptlus 

(an appendage on the surface of the cell) and injects its DNA into the bacterium 

(figure 2.11 (a)). The M13 DNA is not integrated into the DNA of the bacterium, but 

vs still replicated within the cell. In addition, new phages are continually assembled 

within and released froin the cell (figure 2.11(b)), which go oil and infect other 

hacteria (figure 2.11(c)). ýVlleii sufficlent copies of the specific sequence have been 
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(a) Culture of infected cells (b) Centrifuge to (c) Add PEG to phage suspension 
remove cells then centrifuge 

M 13 phage 

M 13 
suspension 

phage suspension 
Pelleted cell.,. 

NMI 3 DNA 

Protein 
Phenol 

7M13 

DNA 
(g) Resuspend M 13 (f) Remove acqueous (e) Add phenol to (d) Resuspend phagc 
DNA in small volume layer, add ethanol, remove protein shcath in huffer 

then centrifuge 

Figure 2.12: Preparation of M13 DNA froin infected culture of hacteria 

inadc, the single-stralided M13 DNA may be retrieved froin the iiiedium. The 

process by Which this is achieved is depicted in figure 2.12 (also see [57]). Once a 

sufficielit, volume of' infected culture has been obtained we centrifuge it, to pellet the 

bacteria (i. c., separate the bacteria froin the pliage particles). We then precipitate 

the phage particles with polyethylene glycol (PEG), add plienol to strip off the 

protein coats and then precipitate the resulting DNA using ethanol. 

2.4 Summary 

We described liere the basic structure of DNA and the methods by which it inay be 

manipulated in the laboratory. These techniques owe their origin to, and are being 

colistantly improved by the wide interests of molecular biologists working in modern 

areas such as Hic Hunian Genoine project and genetic engineering. In chapter 4 we 
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show how these techniques allow us to implement the various DNA computational 

models described iii the following chapter. Adleman used a small subset of these 

techniques (hybridisation extraction, PCR and gel electrophoresis) in [2]. Although 

other molecules (such as proteins) may be used as a computational substrate in the 

future, the benefit of using DNA is that this wide range of manipulation tecliniques 

is already available. The same is not true for proteins. In this chapter we extend 

the range of operations available, and introduce the use of primer extension and 

restriction to destroy unwanted strands, first detailed by us in [7]. In chapter 5 

we show for the first time how the cloning procedure described in section 2.3.7 

may be used to construct a final read-out (solution sequencing) procedure. This 

technique is sufficiently general to allow it to be incorporated into the experimental 

implementation of any abstract model of DNA computation. In the next chapter 

we describe several such models. 
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Chapter 3 

Models of DNA computation 

The major purpose of this chapter is to describe our "parallel filtering" model of 

computation which abstracts and generalises the type of computation exemplified 

by Adleinan's inspirational experiment [2]. A detailed description of this model 

appeared in [7]. Our model is placed in the general context of other models which 

have appeared in the literature either at the same time as or since our model was 

developed. Our review of these models appears in Current Opinion %n Biotechnoloqy 

[35]. 

3.1 Introduction 

We, may describe abstract models of computation without necessarily considering 

their implementation. In [321, for example, for the sake of emphasising what is 

inherently parallelisable within problems. the authors disregard constraints of im- 

plementation. However, in what follows we are naturally constrained by what is 

fI easible in the intended mode of implementation; in this case. what is possible in 

the inolecular biology laboratory. We consider models that all operate upon sets 
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of strings. It is generally the case that, a DNA computation starts and ends with 

a single set of strings. An algorithm is composed of a sequence of operations upon 

one or more set of strings. At the end of the algorithm's execution, ýi solution to tlic 

given problem is encoded as a string in the final set. We use the term compulotiowd 

sul). 5trate to describe the substance that is acted upon by the implementation of a 

model. In chapter 3 we explain the structure of the DNA molecule in detail. 

DNA is the underlying computational substrate of all models described, as we sliall 

see, we may naturally assume that all abstract models operate on strings over a four- 

letter alphabet, JA, G, C, TI. Of course, the operation set within a model is also 

constrained by the availability of various molecular manipulation techniques. The 

implementation of abstract operations will largely determine the success or failure 

of a model. Most of the models described in this chapter use abstract operations 

common to the others, such as set union. However, even though models may utilise 

similar operations (e. g., removal of a string from a set), the chosen implementation 

inethod may differ from model to model. Details of implementation may impact in 

various ways: 

1. The volume of DNA required (analogous to space in complexity theoretical 

terms) to perform the computation may vary by exponential factors. 

2. Each operation takes a certain amount of time to implement in the laboratory. 

and so the sequence of operations performed determines the overall time com- 

plexity of the algorithm. Thus, the techniques chosen have a direct bearing 

on the efficiency of a DNA-based algorithm. In addition, the time taken to 

construct the initial set of strings and read-out the final solution may be very 

time-consuming and must also be taken into account. 
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Each laboratory technique has associated with it a non-zero error rate. Some 

techniques are far more error-prone than others, so the choice of laboratory 

techniques directly affects the probability of success of a DNA-based algorithin. 

In this chapter we describe various abstract models of DNA computation. We 

introduce a basic taxonomy of these models, and describe an archetypal example 

From each category. We, begin by describing early work of Adleman and Lipton. 

which provides a foundation for later models. We then describe our generalisMion 

oftheir models, showing how DNA-based algorithms may be applied to a variety of 

NP-complete probleins. We then describe the work of Reif and others, who show 

that the addition of an extra splicing operation to the basic sets defined by Adleman 

and others establishes the Turing- comp let eness of models of DNA computation. We 

then describe a third model which emulates Boolean Circuits, due to Ogihara and 

Bay [61]. We conclude the chapter with a description of the rather more speculative 

self-assembly model. 

3.2 Models of DNA computation 

The models arc characterised by the nature of the operations within them, and fall 

into three natural categories: 

o Filtering 

0 Splicing 

e Constructive 

The major models are listed in table 3.1 according to the category in which they lie. 
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F?, 'ltC TI'TI, Y Sp / ic ing Coiistructive 
Adleman [2] Reif [66] Ogihara/Ra 

,v 
[61] 

Lipton [52] Freund /Kari / PAun [21] Baum/Boneh [11] 
Amos/ Gibbons/ Hodgson [7] Guarmeri/Fliss/Bancroft 

ý': 
N 

Karp/Kenyon/Waarts [48] Winfree/Yang/Seenian [80] 
Liu/Guo et al. [53] 
Roweis/Winfree et al. [69] 

Table 3.1: A taxonomy of models of DNA computation 

3.3 Filtering models 

In all filtering models (motivated by Adleman [2] and contemporaneously gener- 

alised by Lipton [52] and Amos et al. [7]), a computation consists of a sequence of 

operations on finite multi-sets of strings. It is normally the case that a computation 

begins and terminates with a single multi-set. Within the computation, by applying 

legal operations of a model, several multi-sets may exist at the same time. We define 

operations on multi-sets shortly but first consider the nature of an initial set. 

An initial inulti-set consists of strings which are typically of length O(n) 

where n is the problem size. As a subset, the initial multi-set should include all 

possible solutions (each encoded by a string) to the problem to be solved. The point 

here is that the superset is supposed, in any implementation of the model, to be 

relatively easy to generate as a starting point for a computation. The computation 

then proceeds by filtering out strings which cannot be a solution. 

For example, if the problem is to generate a permutation of the integers 

n then the initial multi-set might include all strings of the form pjiIPV2 ... POn 

wli(, i-(, each lik may be any of the integers in the range [1 
... n] and Pk encodes the 

info rination -position k". Here, as will be typical for inany computations, the inulti- 

set, has cardinality which is exponential in the problem size. For our example of* 

finding a permutation, we should filter out, all strings in which the saine integer 
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appears in at least two locations Pk. Any of the remaining strings is then a legal 

solution to the problem. 

We, now describe the important features of the various filtering models. 

3.3.1 Adleman 

Adleman [2] provided the impetus for recent work through his experimental solution 

to the Hamiltonian Path Problem. This solution, however. was not expressed within 

a formal model of computation, and is therefore described later in section 4.3. In 

[52], Lipton considered Adleman's specific model and showed how it can enconipass 

solutions to one other NP-complete problem. Here we summarise the operations 

within Adleman's subsequent unrestricted model [3]. All operations are performed 

on sets, of strings over some alphabet a. 

* ., wpmýatc(T., S). Given a set T and a substring S, create two new sets +(T, S) 

and - (T, S), where + (T, S) is all strings in T containing S, and - (T, S) is all 

strings in T not containing 

0 7tlCrg('(TI 7 
T2.... 

7 T,, ) - 
Given set TI, T2 7 .... T, , create U (TI, T2 7 ... 7 TO :::::::: Tl U 

T2 U 
... 

Tn 
- 

* detect(T). Given a set T, return true if T is non-empty, otherwise return 

alse. 

For example, given ce =fA, B, C1, the following algorithm only returns true 

if the initial multi-set contains a string composed entirely of 'A's: 
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Input(T) 

-(T, B) 

(T, C) 

Output (detect (T)) 

In [3] Adlenian describes an algorithm for the 3- vertex- coloura b i1i ty problem. 

In order to obtain a proper colouring of a graph G= (V. E) colours are assigned 

to the vertices in such a way that no two adjacent vertices are similarly coloured. 

The problem of whether 3 colours are sufficient to achieve such a colouring for an 

arbitrary graph is NP-complete [33]. We now describe Adleman's algorithm in 

detail. 

The initial set, T, consists of strings of the form C1 i C2 i ... ) Cni where c, 

fri, gi, bil and n -- IVI. Thus each string represents one possible (not necessarily 

proper) colouring of the given graph. We assume that all possible colourings are 

represented in T. The algorithm proceeds as follows: 

(1) hiput(T) 

(2) for i=I to n do begin 

(3) T,. + (T, ri) and Tbq i- - 
(T, ri) 

(4) Tb + (Tbg, bi) and T. 4- - 
(Tb_q, bi) 

(5) for all j such that < i, j>CE do begin 

Tr ý- - (Tr, Tj) 

(7) Tq (Tg 
i 9j) 

(8) Tb (Tl,, bj) 

end for 
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T ý- merge (T,, T9, Tb) 

(11) end for 

(12) Output (detect (T)) 

At Step I we input all possible colourings of the graph. Then, for cw-h vertex 

v'I, cV we perform the following steps: split T into three sets, T, Tg, Tb, where T, 

contains mily strings containing r., T. contains only strings containing gi and Tb 

contains only strings containing b, (Steps 3-4). Then, for each edge < i, j>EE, we 

rernove from these sets any strings containing c7 = ej (i. e.. those strings encoding 

colourings where adjacent vertices Z and J are coloured the same) (Steps 5-9). Then, 

these sets are merged, forming the new set T (Step 10), and the algorithm procceds 

to the next vertex (Step 11). After the colouring constraints for each vertex have 

been satisfied, we perform a detection (Step 12). If T is non-empty then any string 

in T encodes a proper 3-vertex-colouring of G. 

3.3.2 Lipton 

Lipton [52] described a solution to another NP-complete problem, namely the so- 

If zability problem (SAT). SAT may be phrased as follows; given a finite called ,; at?, 's 

set V= ý7)1, V2, ---, Vnj of logical variables, we define a Itteral to be a variable., vi, 

or its complement, ýF, 7- If vi is true then mi is false, and vice-versa. We define a 

3 
clausc, C. to be a set of literals jv3 

,v.... , v3 1. An instance. 1. of SAT consists J121 

of a set of clauses. The problem is to assign a Boolean value to each variable in I- 

such tImt ; it least one variable in each clause has the value true. If this is the case 

we inay say that I has been ,; atl',, 4ftcd. 

Although Lipton does not explicitly define his operation set in [52]. his solu- 

27 



tion may be phrased in terms of the operations described by Adleman in [3]. Lipton 

employs the Tnerge, separate and detect operations described above. The hiltial set 

T contains many strings., each encoding a single n-bit sequence. All possible ii-hit 

sequences are represented in T. The algorithm procceds as follows: 

(1) Create initial set, T 

(2) For each clause do begin 

(3) For each literal vi do begin 

(4) if vi=xj extract from T strings encoding vj=I else 

extract from T strings encoding vi=O 

(5) End for 

Create new set T by merging extracted strings 

(7) End for 

(8) If T non-empty then I is satisfiable 

The pseudo-code algorithm may be expressed more formally thus: 

(1) lilput(T) 

(2) for a=I to III do begin 

for b=I to I C,, I do begin 

(4) if v'=., i. j then Tb ý- +(T, v' bb 

else Tb + (T, v' b 

(5) end for 

T ý-- 7rtci, g(, (TI, T2, 
..., 

Tb) 

end for 

(8) Output (dvtet (T)) 

.) 
Cý 



Step I generates all possible n-bit strings. Then, for each clause C,, - 
aa va . 11) 11 

(Step 2) we perform the following steps. For each literal v' (Step V1 2-, ---ýb 

. 3) we operate as follows: If v' computes the positive form then we extract from T b 

all strings encoding I at position v', placing these strings in Tb. If v' computes the bb 

negative forin we extract from T all strings encoding 0 at position v'. placing tll(,,,; (, b 

strings in Tb (Step 4). After 1 iterations, we have satisfied every variable in clause 

C,,. We then create a new set T from the union of sets T1, T2,. ... Tb (Step 6) and 

repeat these steps for clause C,, +I (Step 7). 

If any strings remain in T after all clauses have been operated upon then I 

is satisfiable (Step 8). 

3.3.3 Amos, Gibbons and Hodgson 

A detailed description of our parallel filtering model appears in [7]. This model 

was the first to provide a formal framework for the description of DNA algorithms 

for aily problein in the complexity class NP. Lipton clainis soine generalisation of 

Adlenian's style of computation in [52], but it is difficult to see how algorithms for 

different problems may be elegantly and universally expressed within his model. Lip- 

ton effectively uses the same operations as Adleman, but does not explicitly describe 

the operation set. In addition, he describes only one algorithm (3SAT), whereas in 

subsequent sections we show how our model provides a natural description for any 

NP-coniplete problem through many examples. 

As stated in section 3.3. within our model all computations start, with the 

construction of the initial set, of strings. Here we define the basic legal operations 

on ,; (, t, s within the model. Our choice is determined by what we know can be 
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effectively implemented by very precise and complete chemical reactions within the 

DNA implementation. The operation set defined here provides the power we clalin 

for the model but, of course, it might be augmented by additional operations in the 

future to allow greater conciseness of computation. The main difference between the 

parallel filtering model and those previously proposed lies in the implementation of 

the removal of strings. All other models propose separation steps, where strings 

are conserved, and may be utilised later in the computation. Within the parallel 

filtering model, however, strings that are removed are discarded, and play no further 

part in the computation. 

e rernove(U, jSjj). This operation removes from the set U. in parallel, any 

string which contains at least one occurrence of any of the substrings S, 
* 

unzon(ýUjj, U). This operation, in parallel, creates the set U which is the set 

union of the sets Ui. 

o copy(U, jUjj). In parallel, this operation produces a number of copies, Uj, of 

the set U. 

9 ., 4elect(U). This operation selects an element of U at random, if U is the empty 

set then empty is returned. 

From the point of view of establishing the parallel time- complexit ies of algorithms 

within the model, these basic set operations will be assumed to take constant-time. 

However, this assumption is re-evaluated in chapter 6. 

3.3.4 A first algorithm 

\, Vc uow provide our first, algorithmic description within the model. The problem 

ýsol\ý(, (l is that of geiierating the set of all permutations of the integers I to n. The 
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initial set and the filtering out of strings which are not permutations were essentially 

described earlier. Although not NP-complete, the problem does of course have 

exp orient ial- sized input and output. 

The algorithmic description below introduces a format that we utilise else- 

where. The particular device of copying a set (as in COPY (U-, f UI 
- 
U2 

7---- 
Un 1)) f0l- 

lowed by parallel remove operations (as in remove(Ui, Ipj 7ý Z. Pkil)) is a very useful 

compound operation as we shall see in several later algorithmic descriptions. Indeed, 

it is precisely this use of Parallel Filtering that is at the core of most algorithms 

with in the model. 

9 Problem: Permutations 

Generate the set P, of all permutations of the integers 11,2.. 
.., nj. 

9 Solution 

9 Input: The input set U consists of all strings of the fOrM PIZIP2Z2 ... Pn in 

where, for all j, pj uniquely encodes "pos1tion 3"' and each tj is in 

11,2,... 
, nj. Thus each string consists of n integers with (possibly) many 

occurrences of the sarne integer. 

o Algorithm 

for j=I to n-I do 

begin 

COPY (Ui I Ul, U2, 
---, 

Un 1) 

for i=112ý.. ., n and all k>I 

in parallel do remove(Ui� ýpj 7ý Z-Pkil) 

11111011(f Ul, U2 
..... 

U7,1. U) 
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end 

Pn-U 

o ComplcxZ'ty: O(n) parallel-time. 

After the j*th iteration of the for loop, the computation ensures that in the. surviving 

strings the integer ij is not duplicated at positions k>J in the string. The int (,, (, Y(, r 

, t,, may be any in the set 11.2.. nj (which one it is depends in which of the sets (, Tj 

the containing string survived). At the end of the computation each of the surviving 

strings contains exactly one occurence of each integer in the set f 1,2,. .., nj and 

so represents one of the possible permutations. Given the specified input, it is easy 

to see that P, will be the set of all permutations of the first n natural numbers. 

As we sliall see, production of the set P,, can be a useful sub-procedure for other 

computations. 

3.3.5 Algorithms for a selection of NP-complete problems. 

We now describe a number of algorithms for graph-theoretic NP-complete problems 

(s(, (, [33], for example). Problems in the complexity class NP seem to have a natural 

expression and ease of solution within the model. We describe linear-time solutions 

although, of course, there is frequently an implication of an exponential number of 

processors available to execute any of the basic operations in unit time. 
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The 3-vertex-colourability problem. 

* Problem: Three colouring 

Given a graph G= (V, E), find a 3-vertex-colouring if one exists, otherwise 

return the value empty. 

e Solution 

9 Input: The input set U consists of all strings of the form PlClP2('2 P11 ('11 

where n= IVI is the number of vertices in the graph. Here, for all 1.1), 

uniquely encodes "position i" and each ci is any one of the "colours" 1, 

2 or 3. Each such string represents one possible assignment of colours 

to the vertices of the graph in which, for each i, colour ci is assigned to 

vertex i. 

o Algorithm 

for j=1 to n do 

begin 

COPY (Ui f Ul 
i 

U2 
i 

U3 1) 

for i=L 2 and 3, and all A: such that (3, k) CE 

in parallel do remove(Ui, Ipj 7ý ZiPkZj) 

11111011 (1 Ul, U2 
ý 

U31 
i 

U) 

end 

S(, I(, (. t(U) 

o Complexity O(n) parallel time. 
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After the. 7'th iteration of the for loop, the computation ensures that in the remain- 

ing strings vertex j (although it may be coloured 1.2 or 3 depending on which of 

the sets Ui it survived in) has no adjacent vertices that are similarly coloured. Thus. 

when the algorithm terminates, U only encodes legal colourings if any exist. Indeed. 

every legal colouring will be represented in U. 

The Hamiltonian Path problem. 

A Hamiltonian path between any two vertices u, v of a graph is a path that 

passes through every vertex in V- ju, vj precisely once [33]. 

9 Problem: Hamiltonian path 

Given a graph G= (V, E) with n vertices, deterinine whether G contains a 

Hamiltonian path. 

e Solution 

e Input: The input set U is the set P,, of all permutations of the integers 

from 1 to n as output from Problem: Permutations. An integer Z 

at position Pk in such a permutation is interpreted as follows: the string 

represents a candidate solution to the problem in which vertex i is visited 

at step 

e Algorithm 

for 2<i<n-I and 1'. k such that (j, k) ýE 

in parallel do remove (U, fjpiA-, I) 

1((t (U) 
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For j=l to n do 

ýOpy, 

T 
, 

T 
I 

T 
ý 

remove from Tr 
j=green, j=blue 

For each edge fj, k) For each edge Ij, k) 
In parallel In parallel 

remove from remove from 
Tr k=red 

IT9 
k=green 

Uselect 

Figure 3.1: 3-colouring algorithm flowchart 

remove from T 
j=red, j=green 

remove from T 
j=red, j=blue 

For each edge Jj, kj 
In parallel 

remove from 
Tb k=blue 
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0 Complexity Constant parallel time given P, 

In surviving strings there is an edge of the graph for each consecutive pair of vertices 

in the string. Since the string is also a permutation of the vertex set it must also 

be a Hamiltonian path. Of course, U will contain every legal solution to the problem. 

The Subgraph isomorphism problem. 

Given two graphs G, and G2 the following algorithm determines whether G2 

is a subgraph of GI. 

9 Problem: Subgraph isomorphism 

Is G2 =: (V2, E2) a subgraph of G, = (VI, El)? By fV17V2ý- 
-- , 

V. 1 we denote 

the vertex set of G1, similarly the vertex set of G2 is f U1, U2 i ... , ut I where, 

without loss of generality, we take t<s. 

o Solution 

9 Input: The input set U is the set P, of permutations output from the 

Permutations algorithm. For I<<t an element PItIP2Z2 ... Psts Of 

P, is interpreted as associating vertex pj Cf Ul - U2, ---- Ut I with vertex 

Zj IE JVI) V2. v, 1. The algorithm is designed to remove any element 

which maps vertices in I'l to vertices in V2 in a way which does not reflect 

the requirement that if (p, pt) c El then (Z,. Zt) c E2. 
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Algordhm, 

for 3=1 to t-I do 

begin 

COPY (U, f Ul 
7 
U2 

7 .... 
ut 1) 

for all 1, <I<t such that (pj, pi) G E2 and (zj z j) ý E, 

in parallel do remove(Uj, fpIO) 

union (f Ul, U2, Ut 1, U) 

end 

select (U) 

9 Complexity 0 (IV, 1) parallel time. 

for any remaining strings, the first t pairs pit, represent a one-to-one association of 

the vertices of G, with the vertices of G2 indicating the subgraph of G, which is iso- 

inorphic to G2 - If select (U) returns the value empty then G2 is not a subgraph of GI- 

The Maximum clique and maximum independent set problems. 

A clique Ki is the complete graph on i vertices [33]. The problem of finding 

a maximum independent set is closely related to the maximum clique problem. 

* Problem: Maximum clique 

Given a graph G= (V, E) determine the largest Z' such that Ki is a subgraph 

of G. Here K, is the complete graph on i vertices. 

* Solution 

e In parallel run the subgraph isomorphism algorithm for pairs of graphs 
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(G, Ki) for 2<Z<n. The largest value of t for which a non- empty 

result is obtained solves the problem. 

o Complexity O(IVI) parallel time. 

A maximum independent set is a subset of vertices of a graph such that 

no two members of the set are adjacent [33]. 

* Problem: Maximum independent set 

Given a graph G= (V, E) determine the largest z such that there is a set of Z 

vertices in which no pair are adjacent. 

9 Solution 

Run the maximum clique algorithm on the complement of G. 

Complenty: O(IVI) parallel time. 

The above examples fully illustrate the way in which the NP-complete prob- 

lenis have a natural inode of expression within the model. The mode of solution 

fully emulates the definition of membership of NP: that instances of problems have 

candidate solutions that are polynomial tinic verifiable and that there are generally 

an exponential number of candidates. 

3.3.6 Sticker model 

In [69] the authors introduce the so-called shcker model. Unlike previous models., 

the sticker model has a memory that can be both read and written to, and employs 

rcusable DNA. At present, this model is of theoretical interest, since considerable 

practical difficulties exist in its implementation. Each string is composed of k bits. 

cm-oded bY a substring of some defined length. In order to set, bit i to 1. we 
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anneal to each string the complement of the sequence representing bit i. However, 

if we wish to clear a bit (i. e., set it to zero) we must remove the annealed strand. 

This can only be done by heating the solution in which the strands are suspended. 

resulting in all hydrogen bonds being broken and all bits being cleared. 

3.4 Splicing models 

Since any instance of any problem in the complexity class NP may be in 

ternis of an instance of any NP-complete problem, it follows that the multi-set op- 

erations described earlier at least implicitly provide sufficient computational power 

to solve any problem in NP. We do not believe they provide the full algorithmic. 

computational power of a Turing Machine. Without the availability of string edit- 

ing operations, it is difficult to see how the transition from one state of the 'Eiring 

Machine to another may be achieved using DNA. However, as several authors have 

recently described, one further operation, the so-called splicing operation, will pro- 

vide full '17uring computability. Here we provide an overview of the various splicing 

models proposed. 

Let S and T be two strings over the alphabet a. Then the splice operation 

consists of cutting S and T at specific positions and concatenating the resulting 

prefix of S with the suffix of T and concatenating the prefix of T with the suffix 

of S (figure 3.2). This operation is similar to the crossover operation employed by 

, genctic algoritlinis [37,50]. 

Splicing sYstenis date back to 1987, with the publication of Tom Head's 

scininal paper [43] (see also [44]). In [21], the authors show that the generative 

I power of finitc c. 'rtc7ulcd sphci7q] systems is equal to that of Turing '-Machines. See 

[22] for a review of splicing systeins. Z-ý I 
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T 

s/ aS 
(b) 

T' I 
Figure 3.2: (a) Two strings, S and T (b) The result of ., 4pNcc(S, T) 

3.4.1 Reif's PAM model 

In [66], Reif within his so-called Parallel Associahve Memory Model describes a 

Parallel Associahve Matching (PA-Match) operation. The essential constituent of 

the PA-Match operation is a restricted form of the splicing operation which we 

denote here by Rspltcc, and describe as follows. If S --= SlS2 and T= TT2, then 

the result of RspItce(S, T) is the string ST2 provided S2 = T1, but has no value if 

S2 7ý TI - 
Leading results of Reif [66], made possible by his PA-Match operation, con- 

ccrii the simulation of nondeterministic Turing Machines and the simulation of Par- 

allel Random Access Machines (specifically CREW PRAMs). We can capture the 

spirit of his Turing Machine simulation through the Rsplice operation as follows. 

The initial hihe in the simulation consist, s of all strings of the form S, Sj where Si 

and Sj are ciwodings of conf zgw-ations of the simulated nondeterministic Turing 

, Nlýichiiies and such that S., follows frorn Si after one (of possibly many) machine 
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cycle. By a configuration lien, we meým an instantaneous description of the Tur- 

ing Machine capturing the contents of the tape. the machine state and which tape 

square is being scanned. If the Rsplice operation is now performed betNveen all pairs 

of initial strings, the tube will contain strings SkSI where S1 follows from Sk after 

two machine cycles. Similarly., after t repetitions of this operation the tube will 

contain strings SS, where S,, follows from S,, after 2t machine cycles. Clearly. if 

the simulated Turing Machine runs in time T, then after 0(logT) operations the 

simulation will produce a tube containing strings SSf where S, encodes the initial 

configuration and Sf a final configuration. Other papers have also addressed the 

problem of Turing Machine simulation (see [14,68,13], for example. and [22] for a 

review of some of these models). 

3.5 Constructive models 

An important area of enquiry that is outstanding is the quest for algorithins which 

proceed through poly nomial- sized sets of strings (i. e.. volumes of DNA). It is clear 

that the naive, filtering approach will not sustain such algorithms, since they rely 

upon the existence of an exponent ial- sized initial set of strings. If such algorithnis 

are to be realized then they must be phrased within a constructive model of DNA 

computation. Such algorithms will gradually construct solutions to the given prob- 

lem rather than isolating them from a large initial multi-set. 

3.5.1 Ogihara and Ray's Boolean circuit model 

Boolean circuits, are an important Turing- equivalent model of parallel computt- 

tion (s(, (, [25, -11]). An n-input bounded fan-in Boolean circult may be viewed 

as a directed, m-lyclic graph. S. with two types of node: n i7ipvt node s with in- 
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Figure 3.3: Boolean circuit for the three-input majority function 

degree (i. e., input lines) zero, and gate nodes with maximum in-degree two. Each 

input node is associated with a unique Boolean variable xi from the input set 

Xn = (XI, X2, ... ) Xn). Each gate node, gi is associated with some Boolean function 

fi E Q. We refer to Q as the circuit basZs. A complete basis is a set of functions that 

are able to express all possible Boolean functions. It is well-known that the NAND 

function provides a complete basis by itself, but for the moment we consider the 

common basis, according to which Q=fA, V, -, I In addition, S has some unique 

output node, s, with out-degree zero. An example Boolean circuit for the three-input 

majority function is depicted in figure 3.3. 

The two standard complexity measures for Boolean circuits are stze and 

depth: the size of a circuit, S, m, is the number of gates in S; its depth, d, is 

the number of gates in the longest directed path connecting an input vertex to an 
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output gate. The circuit depicted in figure 3.3 has size 8 and depth 3. 

In [61], Ogihara and Ray describe the simulation of Boolean circuits withina 

model of DNA computation. The basic structure operated upon is a tube, U. which 

contains strings representing the results of the output of each gate at a particular 

depth. The initial tube contains strands encoding the values of each of the input-s X, 

In what follows, Q= IA. Vj. For each z. I <- % <- m. a string u[fl is fixed. 

The presence of o, [Z] in U signifies that gi evaluates to 1. The absence of (7[1] in U 

signifies that gi evaluates to 0. The initial tube, U. (i. e.. a tube representing the 

inputs X, is created as follows: 

for each gate , i,, i do 

if I then U ý- UU 

end for 

The simulation of gates at level k>0 proceeds as follows. We denote by ii 

Mid Z2 the indices of the gates that supply the inputs for g,. 

(1) Illplit(u) 

(2) for A: =1 to d do 

for each gate gi at level A: in parallel do 

if g, computes V then do 

(5) if (or[ZI] (E U) or ((7[Z2] C U) then UUU or[Z] 

(6) else if g, computes A then do 

if (or[Zl] c U) and (9[t2l C U) then U ý- UUo, [Z] 

end for 

end for 
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At step (1) the initial tube, U, is created. Then, for each circuit level k>0 

(step 2), the gates at level k are simulated in parallel (steps 3-8). The simulation 

of each gate gi at level k is achieved as follows. If gi is an V-gate. the string u[i] 

is made present' in U (i. e., gi evaluates to 1) if either of the strings representing 

the inputs to gi is present in U (step 5). If gi is an A-gate, the string cr[i] is made 

present in U (i. e., gi evaluates to 1) if both of the strings representing the inputs to 

g, are present in U (step 7). The simulation then proceeds to the next level. 

At the termination of the computation, Ogihara and Ray analyse the contents 

of U to determine the output of the circuit. This analysis is described in more detail 

in section 4.7, where we provide full details of the model's biological implementation. 

3.5.2 Winfree, Yang and Seeman 

Of even greater speculation is the use of DNA self-assembly as a computational 

model. The construction of unusual DNA molecules has a long history [56,72,73]. 

Such molecules include knots [24], Holliday junctions [29], double cross-overs [30] 

and octahedra [82]. The construction of such objects relies upon the creation of 

branched DNA molecules known as junctions (figure 3.4). Since these objects do 

not occur naturally, they must be engineered in the laboratory. In order to determine 

the specific sequences to assign to components of branches (i. e. single strands of 

DNA) a technique known as sequence symmetry iiiiniiiiisation [71] is used. This 

assigns sequences to various components such that when placed in solution they 

hYbridise to forin the desired structure. 

In [80]. Winfree ct al. propose as a computational tool the tendency of DNA 

'The process by which this is achieved is described iii detail in ; (, (-tion 4.7. 
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structures to self-assenible. They show that the self-assembly of DNA molecules 

into two dimensional sheets or three dimensional solids is a powerful model, capable 

of universal computation by virtue of the fact that it simulates a one-dimensional 

cellular automaton. Although of great theoretical interest, experimental investiga- 

tions of the power of self-assembly are still at a very preliminary stage. In [80], 

Winfree ct al. show that, in principle, the two dimensional self-assembly model is 

experiment ally implement able. 

3.6 Summary 

In this chapter we described our parallel filtering model [71, which was essentially the 

first model follmving Adlenian's seiiiiiial experiment in which solutions to the AIP- 

complete problems could be elegantly expressed. We also observed that ail extension 
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of the model to acquire full Turing computability is easily achieved through the 

addition of the splicing operation. We also placed our own work in the general 

context of the literature on abstract models of DNA computation. Most of this liýis 

appeared since our work, or is at best contemporaneous. 

Although several theoretical models of DNA computation have been de- 

scribed in this chapter, their potential for physical realisation is unclear. Out of all of 

the models previously described, only that of Adleman [2] has been successfifflY iin- 

plemented in the laboratory. The difficulty of physical implementation varies greatlY 

between models, although the models that use standard laboratory techniques (i. e., 

filtering models and some of the constructive models) may be easier than others to 

implement. The realisability of more speculative models, such as the splicing and 

self-assembly models is still an open problem. We consider implementation issues 

in the following chapter. 

46 



Chapter 4 

Implementation issues 

4.1 Introduction 

This chapter provides an introduction to the laboratory implementation of abstract, 

models of DNA computation. We concentrate in particular on a full description 

of two filtering models (Adlenian's and parallel filtering). and on one constructive 

model (Ogiliara and Ray's Boolean circuit model). We highlight the practical im- 

pleinentation problems inherent in all models, and suggest possible ways to alleviate 

these. 

4.2 Initial set construction within filtering models 

As stated insection 3.3, all filtering models use the same basic method for generating 

the initial set, of strands. An essential difficulty in all filtering models is that initial 

imiltl-set, s generally have a cardiiiality which is exponential in the problem size. It 

would be too costly in time, therefore, to generate these individually. What we do ill 

practice is to construct an initial solution, or tube, containing a polynomial number 
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of* distinct strands. The design of these strands ensures that the exponentially 

large initial multi-sets of our model will be generated automatically. The following 

paragraph describes this process in detail. 

Consider an initial set of all elements of the form PI ýl 
- P2 42 

..... Pnkn. This 

may be constructed as follows. We generate an oligonucleotide (commonly abbiv- 

viated to oligo) uniquely encoding each possible subsequence piki where I<Z<n 

and I< ki < k. Embedded within the sequence representing pi is our chosen restric- 

tion site. There are thus a polynomial number, nk, of distinct oligos of this form. 

The task now is how to combine these to form the desired initial multi-set. This 

is achieved as follows. For each pair (piki, pi+lki+, ) we construct an oligo which 

is the concatenation of the complement of the second half of the oligo representing 

pi k, and the complement of the first half of the oligo representing p, -+ I ki + 1. We also 

construct oligos that are the complement of the first half of the oligo representing 

pjkj and the last half of the oligo representing p, k,. There is therefore a total of 

27tk+l oligos in solution. 

The effect, of adding these new oligos is that double- stranded DNA will be 

forined in the tube one strand in each will be an element of the desired initial set. 

The new oligos have, through annealing, acted as "splints" tojoin the first oligos in 

the desired sequences. These splints may then be removed from solution (assuming 

that they are biotinylated). 

4.3 Adleman's implementation 

Adlenian utilised the incredible storage capacity of DNA to implement a brute- 

algorithin for the directed Hamiltonian Path Problem (HPP). Recall that the HPP 

finding a path through a graph that visits each vertex exactlY The 
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Figure 4.1: Instance of the HPP solved by Adlenian 

instance of the HPP that Adleman solved is depicted in figure 4.1, with the unique 

Hamiltonian Path (HP) highlighted by a dashed line. 

Adleman's approach was simple: 

1. Generate strands encoding random paths such that the Hamiltonian Path 

(HP) is represented with high probability. The quantities of DNA used far 

exceeded those necessary for the sinall graph under coils ideration, so it is 

likely that, many strands encoding the HP were present. 

2. Remove all strands that do not encode the HP. 

3. Check the remaining strands encode a solution to the HPP. 

The individual steps were implemented as follows: 

Stage 1: Each vertex and edge was assigned a distinct 20-mer sequence of 

DNA. This implies that strands encoding a HP were of length 140 b. p. Sequences 

representing edges act as 'splints' between strands representing their endpoints. Iii 

fornial terins, the sequence associated with an edge i --* j is the 3' 10-mer of the 

SO(PINICIC represcilt Ing"' v, followed by the 5' 10-iiier of the sequence representing vj. 
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These oligonucleot ides were then combined to form strands encoding random paths 

through the graph. Fixed amounts (50 PMOI) of each oligonucleotide were mixed 

together in a single ligation reaction. At the end of this reaction, it is assumed 

that a strand representing the HP is present with high probability. This approach 

solves the problem of generating an exponential number of different paths using a 

polynomial number of initial oligonucleotides. 

Stage 2: PCR was first used to massively amplify the population of oligonu- 

cleotides encoding paths starting at vi and ending at V7. Next, strands that do not 

encode paths containing exactly n visits were removed. The product of the PCR 

amplification was run on an agarose gel to isolate strands of length 140 b. p. A series 

of affinity purification steps was then used to isolate strands encoding paths that 

visited each vertex exactly once. 

Stage 3: Graduated PCR was used to identify the unique HP that this prob- 

lem instance provides. For an n-vertex graph, we run n-I PCR reactions, with 

the strand representing vj as the left primer and the complement of the strand rep- 

resenting vi as the right primer in the ith lane. The presence of molecules encoding 

the unique HP depicted in figure 4.1 should produce bands of length 40,60,80,100, 

120 and 140 b. p. in lanes 1-6 respectively. This is exactly what Adleman observed. 

The graduated PCR approach is depicted in figure 4.2. 

Adleman's experiment was remarkable in that it was the first to demonstrate 

in the laboratory the feasibility of DNA computing. However, we note that it was 

performed on a single problem instance with just one HP. No control experiments 

were performed for cases without Hamiltonian Paths. The final detection step is 

problematic, due to the reliance on the error-prone PCR procedure. In addition, the 

use of affinity purification is also error-prone, which may mean that the experiment 
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Figure 4.2: Graduated PCR 

will not successfully scale up. We consider these issues in later sections. 

4.4 Evaluation of Adleman's implementation 

We describe later how the various multi-set operations described in the previous 

section may be realised thorough standard DNA manipulation techniques. However, 

it is convenient at this point to emphasise two impediments to effective computation 

by this means. The first hampers the problem size that might be effectively handled, 

and the second casts doubt on the potential for biochemical success of the precise, 

implementations that have been proposed. 

Naturally. the strings making up the multi-sets are encoded in strands of 

DNA iii all the proposed implementations. Consider for a moment what volume 

of DNA would be required for a typical NP-complete problem. The algorithms 
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mentioned earlier require just a polynomial number of DNA manipulation steps. For 

the NP-complete problems there is an immediate implication that an exponential 

number of parallel operations would be required within the computation. This in 

turn implies that the tube of DNA must contain a number of strands which is 

exponential in the problem size. Despite the molecular dimensions of the strands, 

for only moderate problem sizes (say, n, 20 for the Hamiltonian Path problem) the 

required volume of DNA would make the experiments impractical. As Hartmanis 

points out in [42], if Adleman's experiment were scaled up to 200 vertices the weight 

of DNA required would exceed that of the Earth. Mac D6naill also presents an 

analysis of the scalability of DNA computations in [23], as do Linial and Linial [51], 

Lo et al. [54] and Bunow [20]. 

We note that [9] have described DNA algorithms which reduce the problem 

just outlined, however, the "exponential curse" is inherent in the NP-complete 

problems. There is the hope, as yet unrealised (despite the claims of [11]) that for 

problems in the complexity class P (i. e. those which can be solved in sequential 

p olynomial- time) there may be DNA computations which only employ polynomial- 

sized volumes of DNA. 

Now we consider the potential for biochemical success that was mentioned 

earlier. It is a common feature of all the early proposed implementatzons that the 

biological operations to be used are assumed to be error-free. An operation cen- 

tral to and frequently employed in most models is the extrachon of DNA strands 

containing a certain sequence (known as removal by DNA hybr%disation). The most 

important problem with this method is that it is not 100% specific', and may at 

times inadvertently remove strands that do not contain the specified sequence. Adle- 

'The actual specificity depends on the concentration of the reactants. 
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man did not encounter problems with extraction because only a few operations were 

required. However, for a large problem instance, the number of extractions required 

may run into hundreds, or even thousands. For example, a particular DNA-based 

algorithm may rely upon repeated "sifting" of a "soup" containing many strands, 

some encoding legal solutions to the given problem, but most encoding illegal ones. 

At each stage, we may wish to extract only strands that satisfy certain criteria (i. e., 

they contain a certain sequence). Only strands that satisfy the criteria at one stage 

go through to the next. At the end of the sifting process, we are hopefully left only 

with strands that encode legal solutions, since they satisfy all criteria. However, 

assuming 95% efficiency of the extraction process, after 100 extractions the proba- 

bility of us being left with a soup containing (a) a strand encoding a legal solution, 

and (b) no strands encoding illegal solutions is about 0.006. Repetitive extraction 

will not guarantee 100% efficiency, since it is impossible to achieve the conditions 

whereby only correct hybridisation occurs. Furthermore, as the length of the DNA 

strands being used increases, so does the probability of incorrect hybridisation. 

These criticisms have been borne out by recent attempts [46] to repeat Adle- 

man's experiment. The researchers performed Adleman's experiment twice; once on 

the original graph as a positive control, and again on a graph containing no Hamil- 

tonian path as a negative control. The results obtained were inconclusive. The 

researchers state that "At this time we have carried out every step of Adleman's 

experiment, but have not gotten (sic) an unambiguous final result. 

Although attempts have been made to reduce errors by (1) simulation of 

highly reliable purification using a sequence of imperfect operations [48], and (2) 

application of PCR at various stages of the computation [16], it is clear that reliance 

on affinity purification must be minimised, or, ideally, removed entirely. In [7], we 
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(lescribe one possible error-resistant model of DNA computation th; it removes the 

need for affinity purification within the inain body of the computation. It is proposed 

that affinity purification be replaced by a new enzymatic removal technique. 

In [49], Kurtz et al. consider the effect of problem size on the initial concen- 

trations of' reactants and analyse the subsequent probability of a correct solution 

being produced. They claim that, without periodic amplification of the Nvorking so- 

hitioii, the concentration of strands drops exponentially with time to --homeopathic 

levels". One proposal to reduce strand loss during computations is described in 

[531. Rather than allowing strands to float free in solution, the authors describe a 

surface-based approach, whereby strands are immobilised by attachment to a sur- 

face (glass is used in the experiments described in [53], although gold and silicon are 

other possible candidates. ) The attachment chemistry is described in detail in [40]. 

This model is similar to that described in [7], in that it involves selective destruction 

of specific strands, although in this case Exonuclease is used to destroy unmarked 

rather than marked strands. Preliminary experimental results suggest that strand 

loss is indeed reduced, although the scalability of this approach is questionable due 

to the two dimensional nature of the surface. 

4.5 Implementation of the parallel filtering model 

Here we describe how how the set operations within the Parallel Filtering Model 

described iii section 3.3.3 may be implemented. 

4.5.1 Remove 

rcmOvc(t T, IS, 1) is implemented as a composite operation. comprised of the follow- 

ilig: 
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Figure 4.3: Implementation of destroy 

o mark(U, S). This operation inarks all strings in the set U which contains at 

least oile occurrence of the substring S. 

9 dc. stroy(U). This operation removes all marked strings from U. 

? n. wýk(U, S) is implemented by adding to U many copies of a primer corre- 

sponding to 9 (figure 4.3(b)). This primer only anneals to single strands containing 

the subsequence S. We then add DNA polyinerase to extend the primers once they 

have annealed, making double-stranded only the single strands containing S (figure 

1.3(b)). 

We inay then destroy strands containing S by adding the restriction en- 

zYme SauMl. Double-stranded DNA (i. e. strands marked as containing S) is cut 

at, the restriction sites embedded within, single strands remaining intact (figure 

1.3((-)). We iim. v then remove all intact strands by separating on length using gel 
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elect rop horesis. However, this is not strictly necessary, and leaving the fragineiaed 

strands in solution will not affect the operation of the algorithm. 

4.5.2 Union 

We may obtain the union of two or more tubes by simply mixing their contentsý 

together, forming a single tube. 

4.5.3 Copy 

We obtain i "copies" of the set U by splitting U into i tubes of equal volume. We 

assume that, since the initial tube contains multiple copies of each candidate strand, 

each tube will also contain many copies. 

4.5.4 Select 

We can easily detect remaining homogencous DNA using PCR and then sequence 

strands to reveal the encoded solution to the given problem. One problem with 

this method is that there are often multiple correct solutions left in the soup which 

imist be ; (, (Iiieiiced using nested PCR. This technique is only useful when the final 

solution is known in advance. Also, the use of PCR may introduce an unacceptable 

level of error in the read-out procedure. A possible solution is to utilise cloning. 

We describe this approach in inore detail in chapter 5. 

Although the initial tube contain multiple copies of each strand, after many 

ruinovc operations the volume of material may be depleted below an acceptable 

empirical level. This difficulty can be avoided by periodic ampli cation 1). fi I N, P CR 

(this nmY also be performed after coPy operations). 
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4.6 Advantages of our implementation 

As we have showii. algorithms within our model perform successive --filtering" op- 

erations, keeping good strands (i. e.. strands encoding a legal solution to the given 

problem) and destroying bad strands (i. e., those that do not). So long as the. op- 

erations work correctly, the final set of strands will only consist of good s(Autioiis. 

However, as we have already stated, errors can take place. If either good strands are 

accidentally destroyed or bad strands are left to survive through to the final set then 

the algorithm will fail. The main advantage of our model is that it doesn't repeatedly 

use the notoriously error-prone separation by DNA hybridisation method to extract 

strands containing a certain subsequence. Restriction enzymes are guarantecd [15, 

page 9] 2 to cut any double-stranded DNA containing the appropriate restriction 

site, whereas hybridisation separation is never 100% efficient. Instead of extracting 

, tao.,; t strands containing a certain subsequence we simply destroy them with high 

probability, without harming those strands that do not contain the subsequence. 

Even if, in reality, restriction enzymes have a small non-zero error rate associated 

with them, we believe that it is far lower than that of hybridisation separation. 

Another advantage of our model is that it minimises physical manipulation of tubes 

during a computation. Biological operations such as pipetting, filtering and extrac- 

tion all lose a certain amount of material along the way. As the number of operations 

increases, the material loss rises and the probability of successful computation de- 

cays. Our implementation uses relatively benign physical manipulation, and avoids 

certain "lossy" operations. 

2 "New England Biolab,, provides a color-coded 1OX NEBuffer with each restriction endomicleam, 
to ensilre optimal (100%) activit. v. " 

57 



Circuit level 

0 

I 

2 

Figure 4.4: Boolean circuit simulated by Ogihara and Ray 

4.7 Ogihara and Ray's implementation 

In this section we describe the laboratory implementation of the abstract Boolean 

circifit model described in section 3.5.1. The circuit simulated in [61] is depicted in 

figure 4.4. 

Each gate gi is assigned a sequence of DNA, a[fl. of length L. beginning with 

a specific restriction site, C. Each edge Z -ý I is assigned a sequence (,,, j that is 

the concatenation of the complement of the 3' L/2-mer of or[fl and the complement 

of the 5' L/2-iiier of c, [A. In this way, c,, j acts as a --splint", between gi and gj iff 

both (T[i] and u[j] are present. However, we later highlight a case where this strand 

design does not hold. 

The simulation of gates at level 0 (i. e., the construction of the initial tube) 

proceeds as follows. Begin with a tube of solution containing no DNA. For each input 

g, ik, x, that evaluates to 1, pour into the tube a population of strands representing 

(T[i]. If X, evaluates to 0, do not add or[Z] to the tube. 

\Vc now consider the simulation of gates at level k>0. The simulation of 
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V-gates differs from that A-gates, so we first consider the case of a V-gate, gj. at 

level k. 

First. pour into the tube strands representing 9[j]. Then, for each edge 

3' pour into the tube strands representing eij. Allow ligation to occur. If 

strands representing either of the inputs to gj are present, the edge strands will 

cause strands of length IC to be formed, consisting of the concatenation of t1w 

sequence representing the gi with the sequence representing gj. This process is 

depicted in figure 4.5(a). These strands are then separated out by running the 

solution on a polyacrylamide gel. These strands are then cut with a restriction 

enzyme recognising sequence E. This step leaves in solution strands of length C 

that correspond to gj (i. e.. g, evaluates to 1). 

We now consider the simulation of a A-gate, gj at level k. Again, pour into 

the tube strands representing (7[j]. Then, for all edges Z --ý 3 pour into the tube 

strands representing ei, ]-. Allow ligation to occur. If strands representing both of 

the hiputs to gj are present, the edge strands will cause strands of length 3L to be 

forined, consisting of the concatenation of the sequence representing the first input 

to ! b, the sequence representing gj and the sequence representing the second input 

to gj (s(, (,. figure 4.5(b)). Note that this splinting only occurs if the polarity of the 

edge splints is designed carefully, and we consider this in the next section. The 

strands of length M are again separated out by a gel and cut with the appropriate 

restriction enzyme. This step leaves in solution strands of length L that correspond 

to q. (i. e., g., evaluates to I). 

If k=d, we onlit the gel electrophoresis and restriction stages, and simply 

the solution oil a gel. If the output gate, s, is an V-gate, the output of the 

(-i, -(.. jjit, is I iff length 2L strands exist in solution. If ., 4 is an A-gate. the output of 
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Figure 4.5: (a) Splinting for V-gate (b) Splinting for /\-gate 

the circuit is 1 iff length 3L strands exist in solution. 

4.7.1 Experimental results obtained 

In [61], Ogiliara and Ray report attempts to simulate the circuit previously described 

using the techniques of molecular biology. Their implementation is as described in 

the previous section. The results obtained were ambiguous. although Ogiliara and 

Ray claim to have identified the ambiguity as being caused by pipetting error. 

4.7.2 Evaluation of Ogihara and Ray's implementation 

We consider the time complexity of Ogihara and Ray's model in chapter 6, but here 

we concentrate on one particular aspect of the model's practical implementation. 

The major problem lies in the design of strands to represent edges in the given 

circuit. As we have seen from the small example depicted in figure 4.4, careful 

thought imist, go into the design of edges incident to A-gates if correct splinting is to 

occur. It is not, clear that there exists a method for correct sequence design in the 

, uýeilcral This problem could hamper efficient and error- resistant simulation of* t 

Boolean circuits within this model. 
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4.8 Summary 

In this chapter we showed how various abstract models of DNA computation inaY 

be realised in the laboratory. By describing Adleman*s inspirational experiment. 

we highlighted several important flaws in his approach. The implementmion of our 

parallel filtering model described in this chapter provides a greater degree of error- 

resistance than those previously proposed, including Adleman's. By replacing the 

hybridisation separation technique with our own novel enzymatic removal procedure. 

we removed a major cause of errors from the implementation of DNA computations. 

We then described Ogihara and Ray's implementation of their Boolean circuit model. 

and considered its applicability in the general case. 
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Chapter 5 

Experimental results 

5.1 Introduction 

In this chapter we describe the results of an experimental implementation of the 

parallel filtering model. In particular, we concentrate on testing the efficiency of the 

implementation of the remove operation, which is central to our model. We test this 

operation in the context of an implementation of the 3COL algorithm described in 

chapter 2. Although we have not yet advanced to the stage of fully implementing 

this algorithin, the results obtained are promising. More importantly, we describe 

the implications of our results for future experiniental investigations of DNA-based 

algorithms. The major contribution of this chapter is to highlight potential problems 

with such i nip lenient at ions. We describe several impediments to efficient and error- 

resistant implementation of models of DNA computation, and suggest possible ways 

to alleviate these. In particular, we concentrate on the problem of final read-out. 

that is. the inethod of obtaining a final solution at the end of the execution of a 

DNA-based algorithin. We argue that this problern has been largely ignored in the 
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literature, and suggest a general read-out strategy (the cloning method) that iimly 

be employed by any implementation, regardless of the abstract model. 

5.2 Experimental objectives 

The primary objectives of the experiments detailed in this chapter are as follows: 

1. To first ascertain optimal experimental conditions. 

2. To test the implementation of the remove operation. We do this by performing 

a sequence of removal experiments, comprised of primer annealing, primer 

extension and restriction. 

3. To test the error-resistance of a sequence of removal operations that would 

occur during an actual algorithmic implementation. 

5.3 Experimental overview 

Before attempting to solve an instance of 3COL, it is first necessary to ensure that 

we can execute repeated removal of strings containing a target sequence. Only then 

can we be confident of our claims for the efficiency of the removal method. In what 

follows, we assume that the problem instance to be solved is the graph, G= (V. E) 

depicted in figure 5.1. Notc that this graph is not 3- vertex- colourab le, since it 

is important to demonstrate a lack of false positive results before attempting to 

implement the algorithin on a graph that is 3-vertex-colourable. This approach 

differs markedly from that of Adleman [2], who only carried out a single experiment 

oil a rather contrived graph with a known solution. 

63 



4 

V5V6V7V8 

Figure 5.1: 3COL instance to be solved 

Binding site (20 b. p. ) 

A/ 

Restriction site (4 b. p. ) Colour site (6 b. p. ) 

Figure 5.2: Oligonucleotide structure 

5.4 Encoding colourings in DNA 

We construct, ail initial library of (not necessarily legal) colourings in the following 

manner. For each vertex v, CV we synthesise a single oligonucleotide (or oligo) to 

represent each of vi=red, vi=green and vi=blue. The structure of these strands is 

depicted in figure 5.2. 

With reference to figure 5.2, each oligo (apart from those representing v, 

and vs) is composed of the following: 

a unique 20-hase binding site. within which is embedded a -I-Imso restriction 
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Figure 5.3: Library construction 

site, GATC 

2. a 6-base colour identification site. The sequences chosen to represent "red", 

"green" and "blue" are AAAAAA, GGGGGG and CCCCCC respectively 

3. a unique 20-base binding site 

- Oligos representing vi and V8 are 34 bases long (8-base binding section, 6-base colour 

section and 20-base binding section). The initial sequences chosen to represent each 

vertex colouring are listed in table 5.1. Note that restriction sites are underlined 

(e. g., GATC) and colour sequences are depicted in bold. The melting temperature 

(T,, ) of each strand is specified in the final column. 

All sequences described in this thesis were originally designed by hand. This 

process is laborious and prone to error, and we anticipate that one component of 

future work will be concerned with the implementation of a software package to 

automate the sequence design process. The sequences were then checked with the 

Microgenie [65] package to check for common subsequences and hairpin loops. 

We now describe how the initial library is constructed from these oligos. In 

order to reduce to a minimum the number of oligos to be synthesised, we reject the 

splZnttng method described in [2,52] in favour of an overlapping approach. 

Sequences representing odd-numbered vertices run in the 3' -ý 5' direction. 

Sequences representing even-numbered vertices run in the 5' -ý 3' direction (see 
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Colouring Sequence TM 

vi = red OCTCTGCTAAAAAATCTTGATTTCACAGCATGGT 74.1 
vi = green GCTCTGCTGGGGGGTCTTGATTTCACAGCATGGT 83.1 
V1 blue GCTCTGCTCCCCCCTCTTGATTTCACAGCATGGT 82.5 
V2 red CGTCATAGGATCACCATGCTTTTTTTACCATGCTGTGAAATCAAGA 81.5 
V2 green CGTCATAGGATCACCATGCTCCCCCCACCATGCTGTGAAATCAAGA 88.4 
V2 blue CGTCATAGGATCACCATGCTGGGGGGACCATGCTGTGAAATCAAGA 88.4 
V3 red ACCATGGTGATCCTATGACGAAAAAATGCTGCTAAGACGAAGAGTT 80.9 
V3 green ACCATGGTGATCCTATGACGGGGGGGTGCTGCTAAGACGAAGAGTT 86.6 
V3 blue AGCATGGTGATCCTATCACGCCCCCCTGCTGCTAAGACGAAGAGTT 86.7 
V4 = red GTAGGTGTGATCCAGTGGTTTTTTTTAACTCTTCGTCTTAGCAGCA 79.2 
V4 = green GTAGGTGTGATCCAGTGGTTCCCCCCAACTCTTCGTCTTAGCAGCA 86.0 
V4 = blue GTAGGTGTGATCCAGTGGTTGGGGGGAACTCTTCGTCTTAGCAGCA 86.0 
V5 = red AACCACTGGATCACACCTACAAAAAAGGTCTTCGGCGGCAATCTAC 83.7 
V5 = green AACCACTGGATCACACCTACGGGGGGGGTCTTCGGCGGCAATCTAC 89.9 
V5 = blue AACCACTGGATCACACCTACCCCCCCGGTCTTCGGCGGCAATCTAC 89.9 
V6 = red GTAGGTGTGATCCAGTGGTTTTTTTTGTAGATTGCCGCCGAAGACC 83.8 
V6 = green GTAGGTGTGATCCAGTGGTTCCCCCCGTAGATTGCCGCCGAAGACC 89.5 
V6 = blue GTAGGTGTGATCCAGTGGTTC. GGGGGGTAGATTGCCGCCGAAGACC 89.5 
V7 = red AACCACTGGATCACACCTACAAAAAACACTGACAAGACCTTTGCTT 80.8 
V7 = green AACCACTGGATCACACCTACGGGGGGCACTCACAAGACCTTTGCTT 87.4 
V7 = blue AACCACTGGATCACACCTACCCCCCCCACTGACAAGACCTTTGCTT 86.8 
V8 = red GCGGAATTCCTCTGCTGATCTTTTTTAAGCAAAGGTCTTOTCAGTG 81.9 
V8 = green GCGGAATTCCTCTGCTGATCCCCCCCAAGCAAAGGTCTTGTCAGTG 89.1 
V8 = blue GCGGAATTCCTCTGCTGATCGGGGGGAAGCAAAGGTCTTGTCAGTG 89.1 

Table 5.1: Sequences chosen to represent vertex/colour combinations 
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Figure 5.4: Structure of strands in initial library 

S' 

figure 5.3). We now describe the structure of the binding sections of strands repre- 

senting eveii-numbered vertices. The "left-hand" binding section of strands repre- 

senting v, (where n is even) is the complement of the "right-hand" binding section 

of strands representing v, -,. 
Similarly, the "right-hand" binding section of strands 

representing 7), is the "left-hand" binding section of strands representing v, +,. 

We also construct a single biotinylated oligo, corresponding to the comple- 

ment of the "right-hand" binding section of strands representing v8. This allows 

us to purify strands encoding colourings away from the splint strands. The use of 

hybridisation extraction does not cause a problem at this stage, since the process is 

only performed mice, rather tliaii repeatedly during the main body of a computation. 

We then pour all oligos into solution. When all oligos have annealed we 

expect, to obtain many double strands of the form depicted in figure 5.3. Vertex 

and colour sections each occupy a distinct subsection of each strand. It is clear froin 

the structure of these strands that the sequence encoding a particular vertex/colour 

combination depends not only on the vertex in question, but on whether or not the 

vertex number is odd or even. For example, sections colouring v, "red" have the 

sequence AAAAAA, as expected. However, due to the overlapping nature of the 

strand construction technique, sections colouring V2 have the sequence TTTTTT. 

This iiiinor complication does not present a problem, and, knowing the sequence 

ý,, s,; 1glied to eacli vertex/ colour combination it is a trivial task to derive the sequences 

()f' tlic appropri; itc primer. The primer ,,, (, (Iueiices are listed iii table 5.2. 
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Primer Sequence TM 

v, = red GCTCTGCTAAAAAATCTT 51.1 

V, = green GCTCTGCTGGGGGGTCT 66.8 

V1 = blue GCTCTGCTCCCCCCTCTT 65.8 
V2 = red AGCATGGTAAAAAAAGCA 55.8 
V2 = green AGCATGGTGGGGGGAGC 71.5 
V2 = blue AGCATGGTCCCCCCAGCA 71.5 
V3 = red CTATGACGAAAAAATGCT 52.6 
V3 = green CTATGACGGGGGGGTGCT 67.2 
V3 blue CTATGACGCCCCCCTGCT 67.4 
V4 red GAAGAGTTAAAAAAAACC 47.7 
V4 green GAAGAGTTGGGGGGAACC 63.3 
V4 blue GAAGAGTTCCCCCCAACC 63.3 
V5 red ACACCTACAAAAAAGGTC 51.1 
V5 green ACACCTACGGGGGGGGTC 68.2 
V5 blue ACACCTACCCCCCCGGTC 49.3 
V6 red CAATCTACAAAAAAAACC 49.3 

V6 green CAATCTACGGGGGGAACC 64.0 
V6 blue CAATCTACCCCCCCAACC 63.9 
V7 = red ACACCTACAAAAAACACT 48.7 

V7 = green ACACCTACGGGGGGCACT 66.7 

V7 - blue ACACCTACCCCCCCCACT 65.4 
V8 = red CTTTGCTTAAAAAAGATC 48.9 

V8 = green CTTTGCTTGGGGGGGAT 66.6 

V8 = blue CTTTGCTTCCCCCCGAT 66.7 

Table 5.2: Sequences of primers 
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5.5 Materials and methods 

We now describe in detail the 32 experiments carried out during this particular 

phase of the project. A summary of these is given in table 5.3. The results of 

these experiments are listed in the next section - here we describe only the materials 

and methods used. We represent the order of experimental execution in figure 5.5. 

Each process box is labelled with the numbers of the experiments carried out at that 

stage. Note that the only cycle in the flowchart occurs while attempting to remove 

strands containing a certain sequence. This is necessitated by the need for control 

and optiniisation experiments in order to establish optimal (or near-optimal) exper- 

imental conditions. Specific conditions are detailed in the experiniental protocol in 

appendix A. 

Experiment 1. Oligos and Reagents 

All the tile oligos were resuspended to IOOpmoles/pl in distilled water, then di- 

luted to produce two mastermixes, the first containing all the oligos and the other 

containing only red oligos. The final concentration in each case was 2.5pmoles 

each oligo/pl. The primer oligos were resuspended to lOOpmoles/pl stocks and also 

diluted to 30plnoles/pl PCR working stock. The biotinylated primer (V8) was re- 

suspended to 200piiioles/pl and stored in 20/jl single use aliquots. All oligos were 

stored at -20'C. A 5xPolymerase/Ligase buffer was made up (based on the require- 

nients for 2nd strand cDNA syntliesis). 

Experiment 2. Library construction 

Two hybridisation reactions were set up. one containing a full set of colouring oligos 

and the other a control containing only red colouring oligos. The products were 
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No. Summary of expertmental objective 
1 Resuspension of oligos 
2 Creation of initial library 
3 Amplification of initial library 
4 Purification of product of Experiment 3 
5 Check to ensure correct hybridisation 
6 Test of specificity of Experiment 5 
7-8 Cloning and sequencing to ensure correct library cmistruction 
9 Removal experiment I 
10 Amplification and purification of test library subset 
11 Removal experiment 2 
12 Removal experiment 3 
13 Test of ability of Sau3A to digest dsDNA 
14-15 Control experiments using Mbol rather than Sau3A 
16 Removal experiment 4 
17 Removal experiment 5 
18 Removal experiment 6 
19 Removal experiment using Klenow (7) 
20 Removal experiment 8 
21 Removal experiment 9 
22 Test of multiple removals 
23-24 Oligo redesign 
25 New initial library construction 
26-29 New initial library amplification 
30-31 PCR control experiments for new library 
32 Removal experiment 10 

Table 5.3: Summary of experimental objectives 
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Figure 5.5: Flowchart depicting experimental cycle 
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labelled ALL and RED 

Experiment 3. Amplification of template ALL 

Hybridisation product ALL was amplified by PCR between V8 and a mixture of the 

three v, primers. The primary aim was to generate a working stock containing a 

mixed population of colourings. The amplification was also used to confirin that the 

oligos had annealed correctly and that the polymerase/ligase step had repaired the 

gaps between oligos to produce double-stranded tile chains of the correct length. 

PCR template concentration and MgC12 concentrations were titrated in order to 

optimise PCR, conditions. 

Experiment 4. Purification Of VI-V8 PCR product 

The 10 best samples producing bands in Experiment 3 were pooled and gel puri- 

fied on 2% agarose. The -200 b. p. fragment was extracted using the Qiagen gel 

extraction kit. The PCR product was ligated into aT cloning vector and used to 

transform stored competent bacteria. Several thousand clones were produced. 12 

were grown up, miniprepped and sequenced (Experiments 7-8). 

Experiment 5. PCR between V2 and V8 

The alin was to check that all three colourings Of V2 were present in the amplified 

chain produced in Experiment 3. This was done simply by using v8 and either red. 

or blue specific V2 primers in a standard detection PCR reaction. 

Experiment 6. PCR from RED template (from Experiment 2) 

This control experinient was set up to check the specificity of the PCR (1(, t(, (-t, ion 
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step (to make sure the colour-specific primers did not cross- reac t. giving false po,, i- 

tive results). The RED hybridisation product from Experiment 2 was diluted 1/10 

and colour- specific detection PCRs set up for vi, V2, V3 and V4. 

Experiments 7-8. Sequencing of clones from Experiment 4 

8 clones were sequenced using either universal or reverse primers. 

Experiment 9. Exclusion experiment 1 

This initial control experiment was designed to test the ability of the proposed Taq- 

based primer extension/ Sau3A digestion method of excluding specific sequences 

from a mixed population of cliains. Template prepared in Experiment 4 was bound 

to Dynabeads, denatured and then split into two. One half was treated with the 

intention of excluding all but one vertex colouring, the other was used as a control 

and taken through the procedure without adding any exclusion primers. Following 

SaOA digestion, the surviving DNA was harvested from the beads by EcoRl di- 

gestion. Detection PCR reactions were set up to detect specific vertex sequences 

within each of the samples. The untreated half was intended as a positive control 

for the detection PCR step. 

Experiment 10. Amplification and purification of the RED template 

A red-oilly template was prepared by PCR from the RED hybridisation product 

(Experiment, 2) using v, = red and 7)8 primers. The PCR product was gel purified 

and extracted using ýi Qiagen gel extraction kit. 
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Experiment 11. Exclusion experiment 2 

This was a repeat of Experiment 9 with various modifications intended to inci-(,; t,,,, (, 

the stringency of the exclusion step (amount of template reduced. primer concen- 

tration increased, annealing temperature reduced, number of cycles increased). The 

RED control template was also taken through the procedure as a PCR. specificity 

control. 

Experiment 12. Exclusion experiment 3 

Conditions were modified further to'favour exclusion. An additional control was in- 

cluded to test the ability of the Sau3A to destroy double-stranded sequences. This 

sainple was bound to the Dynabeads, washed, but not denatured, and then taken 

through tli(, procedure as double-stranded template. which should have been com- 

pletely destroyed by the exclusion procedure. 

Experiment 13. Sau3A control 

This control was used to assess the ability of Sau3A to digest double-stranded DNA. 

Serial dilutions were inade from template ALL. IpI of each dilution was digested 

using IOU SauM at 37'C for one hour, in a total volume of IOIA. IpI of each 

digest, and undigested controls, were used as template in standard V1-V8 detection 

PCR reactions. 

Experiments 14-15. Control experiments using Mbol to digest targeted 

sequences. 

Experiment 13 w; is repeated using Albol (a So, u3A isoschizomer which has the same 

specilficity for double stranded DNA). 
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Experiment 16. Exclusion experiment 

Experiment 12 was repeated, substituting Mbol for Sau3A. 

Experiment 17. Exclusion experiment 5 

Fresh vj-v8 template was prepared and purified, then used in an excluslon experl- 

ment as in Experiment 12. Digestion was carried out overnight using 50U eiiz. yine. 

Experiment 18. Exclusion experiment 6 

Template prepared in Experiment 17 was diluted 1/10 and 11-d bound to Dynabeads. 

denatured and washed. A V2 exclusion was set up, using Taq in the primer extension 

reaction as usual. The beads were resuspended every 10 cycles and a 3jLl aliquot of 

beads removed at roughly 20 cycle intervals, up to a maximum of 85 cycles. Mbol 

digestion of each aliquot was carried out overnight at 37'C in a rotating oven (to 

keel) the beads in suspension) using 50U (a huge excess) of enzyme. V2 detection 

PCR, s were set up from each of the digested samples. 

Experiment 19. Exclusion experiment using Klenow 

In this experiment, Kleilow was substituted for Taq in the primer extension step. 

The idea was to overcome the problem of the beads settling out while cycling in the 

PCR, block, which may have accounted for the Inefficiency of the reaction. To do 

this the tubes were incubated in a 37'C rotating oven for 3 hours. Detection PCR 

was carried out as normal and the products run out alongside the samples from 

Experiment 18. 
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Experiment 20. Exclusion experiment 8 

This was a Taq-based exclusion, using modified cycling conditions. The ALL teni- 

plate froiti Experiment 17 was diluted 1/10, and bound to the dynabeads. denatured, 

washed, and split in to three. Three single exclusion reactions were set up, one (, ýirh 

for the V2 colours (in this way the three templates acted as PCR controls for each 

other). 

Experiment 21. Exclusion experiment 9 

Experiment 20 was repeated with modifications to primer extension conditions aini- 

ing to favour the annealing of red primers. 

Experiment 22. Multiple tile exclusion 

This was the first attempt to exclude more than one tile at a time. It was thought 

that expanding the experiment in this way may increase the efficiency of the exclu- 

sion reactions by reducing the overall level of template available at the detection 

PCR step. 

Experiments 23-24 Oligo redesign 

New oligos were designed to replace the V3 oligos in the existing chain. By slotting in 

oligos with inodified characteristics, it was hoped that the principle of the exclusion 

technique could be shown to work (even if it was not possible to execute a full 

algorithiii). The basic design features of the new oligos were as follows: 

* The regions of overlap with o, -) and V4 were conserved so that the new oligos 

could be incorporated into the old chain. 

o The c()Iour signatures -, N, (, re increased from 6 to 10 nucleotides in length to 
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increase stability. 

* The three colour sequences shared no base homology. i. e.. they were different 

at each individual base. 

9 All the oligos were checked for runs of bases., homologies, hairpins etc. 

* Primer T,,,, were as close as possible to each other (so that primers could be 

used in combination under optimal conditions). and all around 60'C. This, Nvas, 

achieved by maintaining a GC ratio of 50% for each primer. 

The new sequences are described later in this section. 

Experiment 25. New full-length chain preparation 

Three new full-length chains were prepared containing either red green or blue new 

V3 in a backbone of the original red tiles vj. V2. V4,, V7 and V8. By omitting tile green 

and blue tiles in the backbone of the molecule we hoped to avoid any interactions 

between blue CCCCCC and green GGGGGG sequences, which could lead to the 

formation of hairpins in the full length molecule. The construction method was 

exactly as Experiment 2. 

Experiments 26-29. New chain amplification 

Each of the new chains were amplified and purified separately to produce both 

biotinylated and non-biotinylated products. The non-biotinylated products were 

cloned for sequencing, (unfortunately the sequencing reactions failed and there was 

, lot ellough time to repeat them). The biotinylated products were used in the con- 

trol and exclusion optimisation experiments. 



Experiments 30-31. PCR control experiments for the new tile chains 

The three new tile chains containing either the red, green or blue V3 were assessed 

separately. Serial dilutions were made from each template (down to a dilution of 

10-8). PCR, reactions were then set up in order to determine the limit of detectioii 

for each template. For subsequent control and exclusion reactions templates 

were used at a concentration -10fold above the limit of detection. It was hoped tli; o 

by balancing the initial amount of template used in the experiments, any partMI ex- 

clusion (as seen previously) would be sufficient to reduce the level of template below 

the limit of PCR detection, giving a negative result (i. e., showing that exclusion liad 

been successful). PCR conditions were optimised to ensure that there was no cross 

reaction between the new coloured sequences, and Mbol digestion times were as- 

sessed to ensure complete digestion of double-stranded DNA at these concentrations. 

Experiment 32. Final exclusion experiment 

Red, green and blue templates were mixed in roughly equal proportions (based on 

their PCR detection limit in Experiment 30. ) The mixed template was bound to the 

Dynabeads and prepared in bulk before splitting into four tubes. Red, green and 

blue V3 exclusions were set up in separate reactions, alongside a no exclusion control. 

Following AIbob digestion, detection PCR reactions were set up to determine the 

relative levels of each V3 in each of the exclusion samples and control. 

5.6 Results obtained 

Experiment 3. The iiiajor product of -200 b. p. was detectable at all teiiiplate 

concent rations, though -ver, N' failit ýlt 1/1000 dilution. M9CI2 concentration had verY 
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little effect on PCR efficiency. Optimal conditions appeared t, o be at 2m-M 

using the template diluted to 1/10. In all cases the product appeared slightlY silialler 

than expected, though it was not clear if this was a gel artifact or a problem with 

the library oligo assembly. 

Experiment 5. All three vertices were found to be represented in the chain popu- 

lation (assuming no cross reaction had occurred) 

Experiment 6. The PCR products were faint but in each case appeared to he 

colour specific. There was also a step-wise reduction in the size of the PCR. product 

from v, through to V4,, showing that the PCR reactions were vertex-specific and that 

the majority of colourings had assembled in the correct order. 

Experiments 7-8. It was clear that there was fairly high sequence variability 

amongst the clones. They showed a number of vertex assembly patterns and chain 

lengths. Some could be explained by PCR mis-priming during the chain aniplifica- 

tion step, yielding products with a v, sequence at both ends (These products would 

not cause problems in the exclusion experiments since they were not biotinylated, 

would not bind to the dynabeads, and would be removed during the washing step. 

One feature common to all the clones was the absence of sequences representing v. 7, 

and v(;. Looking at the oligo sequences it was clear that the problem was due to 

identical overlapping regions between v., and and V6 and V7. making two chains 

possible. the shorter of which seemed to forni predominantly. In this sinall selection 

of clones it looked like the vertex colourings were represented equally anion-st the n 

chains. 



Experiment 9. The detection reactions showed that the PCR I)roducts froin eaull 

sample were of equal intensity for each vertex tested, showing that exclusion under 

these conditions had failed. 

Experiment 11. The PCR results showed that the detection step was specific, but 

that the exclusion steps had not reduced the amount of targeted sequence. 

Experiment 12. Detection PCR results showed that the PCR was specific (RED 

control), but that the exclusion steps had not worked, and also that Sa? L3A had 

failed to destroy the double-stranded control. This implied that the exclusion ex- 

periments were failing clue to incomplete Sau3A digestion of the marked sequence 

Experiment 13. Comparisons of the two sets of samples showed that digestion 

with Sau, 3A inade no difference to the detection limit of the PCR reactions. As a 

further control, the products of the above reactions were gel purified and split in two. 

One half was digested with Sau3A and visualised alongside the other (undigested) 

control oil 2% agarose. The undigested DNA ran as a distinct band, whereas the 

digested half appeared as a high molecular weight smear. 

Experiments 14-15. An overnight 37'C digestion using 20U of enzyme was found 

to completely destroy the template (i. e.. to reduce the level of template below the 

hinit, of PCR. detection). 

Experiment 16. Nothing could be concluded froin this set of reactions since the 
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positive PCR controls failed. 

Experiment 17. The positive and negative detection PCR controls woi-ke(l. but 

all other reactions failed. The problem seemed to be due to inefficient liýtrvesting of 

the excluded template from the Dynabeads prior to detection PCR. To ,, -(, t round 

this problem an un-biotinylated v8 primer was ordered. Using this primer, detection 

PCRs could be set up directly from template bound to the Dynabeads. 

Experiment 18. The results of this experiment gave the first evidence that tli(, 

exclusion method could work. The intensity of the specific PCR product band de- 

creased with increased number of exclusion cycles, although the exclusion never 

reached completion. The template was still detectable after 85 cycles of pruner ex- 

tension. 

Experiment 19. The use of Klenow produced the same effect as -30-40 cycles of 

Taq based exclusion (i. e., exclusion was not complete), showing that Klenow offered 

ilo advailtage over Taq. 

Detection PCR showed specific exclusion Of V2 = green and V2 = blue sequences, 

hut not V2 = T-ed. The gel is depicted in figure 5.6. A summarised interpretation 

of this gel is presented in table 5.4. 

Lanes 1-3 show the result of the removal of strands encoding V2 = red. Lane 

1, corresponding to V2 = red should be empty, but a faint band is visible. Lanes 

2 and 3, corresponding to V2 = green and V2 = blue primers respectively, contain 

normal length product,, showing that strands not containing the sequence V2 = red 

wore not removed. 
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144 

Figure 5.6: Visualisation of gel resulting froin Experiment 20 

We believe that the incomplete removal Of 7)2 = red strands is due to the 

sequence chosen to represent red (AAAAAA). Because adenine only forms two 

hydrogen bowls with thymine, the optinitim annealing temperature between strands 

and red primers is lower than that for green (CCCCCC) and blue (GGGGGG) 

primers. We believe a simple inodification to the encoding sequence (described 

later) will solve this problem. 

Lanes 4-6 show the result of the removal of strands (ý11(, 0(11119 '1ý2 

Lane 5, corresponding to the 712 ,: g7, cc? i, primer is empty, showing that no strands 

containing that sequence were present. Lanes 4 and 6, (! ori-esl)oiidlllg tO 7)2 :: -- 

411(l 7)2 P"iners respectively, contain normal length product, showing that 

strands not containing the sequence V2 = g7-CCn were not removed. 

Lanes 7-9 show the result of the removal of strands encoding 1'2 -7-- 

Lane 9, corresponding to the 7)2 = bluc primer is empty, showing that no strands 

colitailling that sequellce. Were present. Lanes 7 and 8, corresponding to V2 `ý-- "ý(] 
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Lane Excluded PCR Primer :::: 
T Result 

I V2=red 

[ 

+ 
2 V2=red = gr V2=greein + 
3 V2=blue + 
4 V2=red + 
5 V2=green V2=green 
6 V 2=blue + 
7 V2 red + 
8 V2=blue V2=green + 
9 V2 blue 

10 None V2 red 
11 (PCR -ve V2 green 
12 control) V2 blue 

Table 5.4: Interpretation of figure 5.6 

and V2 = green primers respectively, contain normal length product, showing that 

strands not containing the sequence V2 = blue were not, removed. 

The streaks visible at 74 and 18 b. p. are due to the presence of primer dimers 

and free primers respectively. 

Experiment 21. Evidence of exclusion was seen again, but in all cases it was 

incomplete. 

Experiment 22. There was evidence of specific exclusion (the intensity of tar- 

geted sequences reduced) but the process was incomplete. There seemed to be a 

basic problem with the method in that it used the enzymatic removal process to 

target and destroy specific sequences, followed by an incredibly sensitive technique 

to detect, them. 
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Experiment 32. The PCR failed to produce any product from any of the samples. 

including the positive control. This was probably due to loss of the template during 

the washing steps, reducing its concentration below the limit of detection. There 

was no time to repeat this final experiment. 

5.7 Implications of results 

In this section we describe the lessons to be drawn from the experimental results 

. just described. The purposes of this section are twofold: firstly. we hope that other 

experimentalists in the field may be made aware of various subtle aspects of the im- 

plementation of models of DNA computation. We have found that the requirements 

of DNA-based algorithmic experiments are often far stricter than those of -tradi- 

tional" investigations in molecular biology. For example, it is rare that molecular 

biologists are required to sequence a heterogeneous population of DNA strands, yet, 

for any non-trivial problem, this task is inevitably required as the final step of the 

implementation of a DNA-based algorithin. We hope that these (often non-obvious) 

impediments to efficient and error-resistant implementation of models of DNA com- 

putation will be made apparent in the following section. The second purpose of 

this section is to suggest possible refinements to our original implementation, with 

a view towards completely redesigning the laboratory protocol. 

Ensure appropriate control and optimisation experiments are performed 

We quickly found that a major component of the work was comprised of finding 

optimal experimental conditions'. Factors to be taken into account included strand 

concentration, salt coil ceiltn it loll, restriction enzyn-le concentrat loll, annealing tem- 
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perature and number of cycles. Due to the unusual nature of the experiments. we 

found that the system was far more sensitive to experimental conditions than is 

normally the case. 

We, also carried out extensive control experiments (Experiment 6) to eiisure 

the specificity of the PCR detection step (i. e., to ensure that strands were iiOl 

removed without this being done explicitly). Also, control experiments 14-15 proved 

the inefficiency of the Sau3A restriction enzyme, and quickly told us to iise Albol 

(this is described in detail in a later section). 

Ensure that the initial library is constructed cleanly before proceeding 

A fundamental prerequisite for correct algorithmic implementation is that the initial 

library of strands be constructed as expected. This is especially important for 

algorithms within filtering models, since we must be absolutely sure that every 

possible solution to the given problem is represented as a strand. Whilst describing 

their attempt to recreate Adleman's experiment, Kaplan et al. [46] acknowledge the 

difficulty of obtaining clean generation of the initial library. 

There are several potential problems inherent to the construction of an initial 

library by the annealing and ligation of many small strands. Incomplete or irregular 

ligation can result in shorter than expected strands. We check for this in Experiment 

3, and observe that the majority of the product is of the expected length. 

Since our 3COL algorithm operates within a filtering model, it is essential to 

ensure that all possible colourings are represented with roughly equal probabilit. y. 

, Altliough it is not necessary to ensure a completely even distribution of colourings in 

sollition, it is important that there is no significant bias towards some rather than 

others. In addition to checking the length of the product. we rigorously ensure that 
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there is sufficient variability within the initial library by cloning a sample into E. 

coh. and sequencing their DNA (Experiments 7-8). If we had sin-iply relied upon 

nalve length checking, we would not have spotted the fact that all initial st rands 

were missing the sequences for V5 and V6. Apart from this problem, we observed the 

desired degree of variability. 

Correct strand/primer design is vital 

In [2] Adleman originally suggested using random sequences to represent vertices 

within the given graph. He explained this choice by stating that it was unlikely 

that sequences chosen to represent different vertices would share long commoii sub- 

sequences, and that undesirable features such as hairpin loops would be unlikely to 

occur. The selection of random sequences was also supported by Lipton in [52]. 

Since the publication of [2] and [52], the use of random sequences has been 

called into question [10,58]. It is clear that for any non-trivial problem, careful 

thought must go iiito the design of sequences to represent potential solutions if 

we are to avoid the problems described above. As stated earlier, as the project 

progresses we intend to implement a software package to automate this process. 

Once we had designed our sequences by hand, we checked them with the 

Microgenie [65] sequence analYsis package for common subsequences and hairpin 

loops. Unfortunately, this package is now acknowledged to be rather dated. and 

it failed to alert us to several potential problems with the sequences. The most 

sigilificant problein was that the first half of the V4 sequences was identical to the 

first lialf of the V6 sequences, and likewise for V5 and V7 sequences. This was leading 

to the formation of shorter than expected strands. with sequences representing 

and v(; missing. The cýuise of this problem is unknown. though we believe it, was 
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Colourzng Sequence TM 
V3 red AGCATGGTGATCCTATGACGGAAGGCGTAATGCTGCTAAGACGAAGAGTT 83.4 
V3 green AGCATGGTGATCCTATGACGAGGACAAGTGTGCTGCTAAGACGAAGAGTT 83.0 

_V3 
blue AGCATGGTGATCCTATGACGCTTCTGTAGCTGCTGCTAAGACGAAGAGTT 82.2 

Table 5.5: Redesigned sequences 

probably due to the fact that the sequences were designed and (more importantly) 

transcribed by hand. It is possible that we would not have noticed this problem had 

we not carried out careful checking procedures (Experiments 7-8). 

The second major problem was due to the sequences chosen to represent 

vertex colours. We made a completely arbitrary decision to represent "red" by 

AAAAAA, "green" by CCCCCC and "blue" by GGGGGG. In retrospect, it is 

clear that this was a bad choice, for two main reasons. The first concerns the red 

and blue primers. It is clear that, in solution, these primers are complementary, 

and are just as likely to anneal to one another as they are to the target sequences. 

Obviously, this will greatly reduce the efficiency of the removal operation. The 

second problem concerns the melting temperatures of the primers. Because the T,,, 

of the red primers was far lower than that of the green and blue primers, we observed 

incomplete removal of red sequences (Experiment 20). As a result of these problems, 

we redesigned the strands, the modifications being detailed in the description of 

Experiments 23-24. 

Given the cost of redesigning and reordering every oligo, we decided to con- 

centrate instead on the V3 sequence. We believe that once we can show that the 

removal procedure works reliably for a single vertex then it will be applicable to all 

vertices, once the appropriate strands have been redesigned. The new sequences are 

given in table 5.5. 
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PCR can introduce problems 

lt is unrealistic to assume that our enzymatic method removes 100% of the targeted 

strands. We must therefore be prepared to accept that a small proportion of target 

strands will be left in solution. Normally, this residue would be undetectable, but 

the repeated use of PCR can quickly amplify this trace amount. causing failure 

of the algorithm being implemented. Experiment 22 confirmed that our removal 

method worked, but the use of PCR as a detection method was far too sensitive for 

our purposes. Kaplan et al. [47] confirm our belief that PCR is a major source of 

errors. 

Biotinylated strands can introduce problems 

Quite apart from the problems with biotinylation described in section 4.4, it became 

clear from our investigations that this can cause other significant difficulties. We 

found that, the attached beads "settled out" in solution, dragging strands to the 

bottom of the PCR block and affecting the efficiency of the process. We attempted 

to overcome this problem in Experiment 19 by incubating the tubes in a rotating 

ovell. 

Restriction enzymes are often not as effective as they are claimed to be 

Although various claims are made for the efficiency of restriction enzymes. in reality 

they have a noii-zero error-rate associated with them. We found that Sau3A was 

completely ineffective at cleaving double-stranded DNA (Experiment 13 , but Mbol 

worked perfectly well (Experiments 14-15). This may have been due to the fact that 

Sau3A i,, -; inefficient at cleaving de novo synthesised DNA. 
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Selection is non-trivial 

A second major problem is that of final read-out: for any non-trivial combinatorial 

problem, we would expect the final tube to contain a heterogeneous population of 

strands, 'raditional sequencing techniques are useless each encoding a final solution. 'I 

in this situation, since they rely upon the homogeneity of the sample. Techniques 

such as nested PCR are of limited use, due to the potentially large number of different 

strands iii the population. Unfortunately, this problem has been largely ignored in 

the literature, and the few papers reporting empirical results have described read- 

out procedures of limited use (e. g., Adleman's graduated PCR approach). Such 

techniques are only useful for small control experiments, since the use of PCR is 

inherently error-prone. 

5.8 Redesign of implementation 

It is clear that there are several flaws in the experimental approach described in 

section 5.3. However, these problems only came to light after extensive and rigor- 

ous control experiments had been carried out, so we are confident that the major 

impediments to effective implementation of our model have been identified. We now 

describe a refinement of our laboratory implementation which we believe will yield 

successfUl results. 

As stated in the previous section. the fundameiltal problem with our ap- 

proach is that, we us(, the enzymatic removal technique followed by an incredibl. N 

sensitive detection step (PCR). Since it is unrealistic to assume that the enz. vinatic 

removal step 1,, 100% specific, wv must desensitize the system so that ,; Ingle "inissed" 

sti-ands an, undet, ectable. tvithout desensitizing to such a degree that we losc expcr- 
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mental precision. 

As we have already stated., the final read-out stage is crucial. What is i, (, - 

quired is a general read-out procedure that may easily be applied within any (, x- 

perimental implementation, regardless of the model of computation. In this section 

we describe such an approach that carries the additional benefit of removing Hie 

sensitive PCR, technique from the implementation. 

5.8.1 The cloning implementation 

In this section we describe a cloning method that we believe will provide an effective 

and error-resistant method of final read-out. The fundamental difference between 

this and previous approaches is that we use M13 DNA to encode solutions, rather 

than synthesised DNA. We may perform removal, restriction, sorting by gel clec- 

trophoresis, etc. on these strands as usual, but, unlike synthesised DNA, they may 

then be transfected into E. coh prior to the read-out stage. This allows us to pick 

individual clones and sequence their DNA, revealing the final result, without relying 

upon PCR for detection. 

The new implementation comprises three main stages (depicted in figure 5.7): 

1. Set-up 

2. Computational 

3. Read-out 

Set-up stage 

The initial librar. v of strands is constructed exactly as described in Experiment 2. 

The strands niv desiluiled such that tli(,, N can he ligated into a double stranded DNA 
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Figure 5.7: Summary of the new cloning approach 
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Colo urling Sequence Trn 

VI GCTCTGCTGAGCýTCTCTTC; ATTTCACAG('ATGGT 
: 7- 

76.5 
V3 r e- (I ACCATGGTGATCCTATGACGGAAGGCGTAATGCTGCTAAGACGAAGAGTT 83.4 
V3 green AGCATGGTGA'I'('CTATGACýGAC; GACAAGTGTGCTGCTAAGACGAAGAGTT 83.0 
V3 blue A(; CATGGTGAI'(ýCTATGACGCTTCTGTAGCTGCTGCTAAGACGAAGAGTT 82.2 

_V8 
GCGGAATTCCTCTGCAGATCTTTTTTAAGCAAAGGTC'TTC, "F('AGTG 80.3 

Table 5.6: Redesigned sequences for cloning procedure 

IN 
Vector Pst digestion Insertion Sacl digestion Vector 

Figure 5.8: Insertion of library strands into M13 vector 

vector (M13rnpI8) which, upon DNA transfection of a suitable bacterial host (E. 

coh., generates single stranded DNA bacteriophage clones, each of which encodes a 

single solution. In order to perform the ligation, we redesign the v, and V8 sequences 

to include a unique restriction site (GAGCTC (SacI) for v, and CTGCAG (Pstl) 

for v8). It is clear that the use of two different restriction enzymes prevents the 

formation of long chains containing multiply repeated sections. The new sequences 

for v, and V8 are listed in table 5.6. For the purposes of testing the procedure. we 

do not require there to be colour sequences within the v, and V8 sequences (recall 

that, in section 5.7 we propose testing our new approach by removing only on V3)- 

We perform restrictions on the library and vector strands. We then inix t lie 

two together and allow ligation. The ligation is depicted in figure 5.8. The vectors 

are then introduced into E. coli as described in section 2.3.7. 

Each done is represcilted as a single bacteriophage plaque (a zone of infec- 
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tion) on a lawn of the bacterial host. Tens of thousands of plaques caii be 

on a single lawn of bacteria and a hundred such lawns can be prepared froin a sin- 

gle ligation. Suitable dilutions are used to prevent plaques from overlapping. thii. s 

ensuring that only a single vector is introduced into each bacterium. Note that, this 

method provides an effective mechanism for reliably producing many copies of the 

target strands, since the error-prone PCR method is not used. 

The plaques are pooled and single stranded DNA isolated as described in 

section 2.3.7. These single strands provide the substrate for oligonucleotide primer 

annealing, subsequent DNA polymerase extension of double strands and restric- 

tion enzyme digestion of any such double stranded DNA. This removes any illegal 

solutions, as described previously, and constitutes the computational stage. 

Read-out stage 

We perforin the final read-out by transfecting E. coli with the remaining strands. 

Since only intact bacteriophage DNA molecules are capable of transfecting the host 

bacterium, we can be confident that any clones produced contain sequences repre- 

senting legal solutions to the problem. The final collection of plaques are individ- 

ually picked, then the DNA is isolated and subjected to standard DNA sequencing 

reactions in order to obtain the solution to the problem. 

5.9 Summary 

In this chapter we described the results obtained from preliminary iiiv(,,, tigat, ions 

of the implementation of our parallel filtering inodel. We decided, at this stage. 

t, () (lenionstrate the efficacy of our enz, vinatic removal technique before attempting 

a flill algorithmic implementation. The results obtained Nv(, i-(, ambiguous, though 
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promising. More importantly, we have, though our own investigations, identified 

several potential impediments to effective implementation of all existing models 

of DNA computation. These problems only came to light due to the fact that 

we performed numerous control and optimisation experiments, an approach that 

seems to be unique in the literature. We hope that the community will be able to 

draw lessons from our investigations, and that this will aid in the development of 

improved laboratory protocols in the future. In particular, we highlighted problems 

with final read-out of solutions after the termination of a DNA-based algorithm, and 

described a novel cloning approach that is general enough to be employed within 

any experimental implementation. 
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Chapter 6 

An analysis of DNA 

computation 

This chapter addresses questions concerning the complexity and viability of DNA 

computations. The work described was presented at the International Conference 

on Bio-Computing and Emergent Computation [6]. 

6.1 Introduction 

In this chapter we examine complexity issues in DNA computation. We believe 

that these issues are paramount in the search for so-called "killer applicat ions"' ., 

that is, applications of DNA computation that would establish the superiority of 

this paradigm over others in particular domains. An assured future for DNA com- 

putation can only be established through the discovery of such applications. We 

demonstrate that current measures of complexity fall short of reality. Consequently. 

N%, (, define a more realistic model, a so-called strong model of computation which 

provides better estimates of the resources required by DNA algorithms. We also 

95 



compare the complexities of published algorithms within this new model and the 

weaker, extant model which is commonly (often imPlicitlY) assumed. 

6.2 Motivation 

Following the initial promise and enthusiastic response to Adleman's seminal work 

[2] in DNA computation, progress towards the realisation of worthwhile computa- 

tions in the laboratory has become stalled. One reason for this is that the compu- 

tational paradigm employed by Adleman, and generalised by the theoretical work 

of others [52,66], relies upon filtering techniques to isolate solutions to a problem 

from an exponentially sized initial solution of DNA. This volume arises because all 

possible candidate solutions have to be encoded in the initial solution. As Hartnia- 

nis points out in [42], the consequence is that, although laboratory computations 

should work for the smallest problein sizes, the experiments do not realistically scale 

because vast amounts of DNA are required to initiate computations with even mod- 

est problem size. For example, Hartmanis shows that a mass of DNA greater than 

that of the earth would be required to solve a 200-city instance of the Hamiltonian 

Path Problem. 

If practitioners of DNA computation insist on this mode of computation, 

there can be no hope of discovering so-called killer applications, that is, applications 

of DNA computation that would establish the superiority of this paradigm over 

others in particular domains. An assured future for DNA computation can only be 

established through the discovery of such applications. 

It is not, inherently the case that exponentially sized volumes of DNA need 

be used in DNA computation. Indeed, polynomially sized computations have been 

(at leist in theory) described (e. g., in [61]). Clearly, if exponentially sized volumes 
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are to be avoided, then an alternative algorithmic paradigm to that emploYe(I 1) 
.y 

Adleman in [21 is required. Such a successful paradigm is always likely to einulate 

traditional computations which construct individual solutions rather than sift them 

out of a vast reservoir of candidates. It might still be argued that the --exponential- 

(mrse'" could not, even then, be avoided for the so-called NP-complete problems 

[31]. If' an exact solution is required for any of these, then (employing anY ext; mt 

algorithm) exponential sequential running time is required. A DNA computation. 

in seeking to reduce this to sub-exponential parallel running time, will certainly 

require an exponential volume of DNA. However, in general, no-one sensibly seeks 

exact solutions to the NP-complete problems. In traditional computation, we either 

employ heuristics to obtain approximate answers or use randomised methods to 

obtain exact solutions with high probability. These revised algorithmics lead to 

solutions within polynomial sequential time. Such a view should also be taken for 

these problems within DNA computation, that is, we should use algorithms which 

do not, inherently require exponential resources. 

It is unlikely to be enough, in the quest for killer applications, to simply have 

polynoinial-voluined computations. We ought, at the same time, to ensure tliat, the 

vast potential for parallelism is employed to obtain rapid computations. The view 

taken by the silicon-based parallel computing community [32] is that efficient parallel 

algorithms, within the so-called Parallel Random Access Machine (P-RAM) model 

of computation, should have polylogarithmic running time (and use a polynomial 

number of processors). Problems for which such solutions exist define the complexity 

class NC. If DNA computation is to compete within this domain, then we should 

clearly also look for polylogarithi-nic running times within p olynomially- volumed 

computations. 
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At the present time, no-one has described (even theoretically) DINA coni- 

putations which run in polylogarithmic time using a polynomial volume of DNA. 

The discovery of such solutions might well provide candidates for "killer applica- 

tions". Regardless of the problem considered, it is unlikely to provide a "killer 

application" unless the computational resources required for a DNA computation 

(the product of the running time and volume of DNA required) match those needed 

for a conventional computation (the product of the running time and the number of 

processors used) - For such a combination of resources, the DNA computation might 

well provide feasible solutions for problem sizes far greater than can be achieved by 

conventional computation. 

It is clearly crucial, especially when judging the candidacy of a proposed 

DNA computation for the role of "killer application", to have a firm grasp of the 

computational resources that it requires. In this chapter we review claims that have 

been made concerning the complexity of DNA algorithms. We conclude that these 

clainis are often unrealistic, or simply not true. It also the case that there is not 

an agreed model of computation in the literature within which we may agree what 

the required resources are for any particular computation. This chapter attempts 

to address these issues in a realistic way. 

'Raditional computational complexity theory [4,31] is concerned with quan- 

tifying the resources (generally hme and space) needed to solve computational prob- 

lenis. Meaningftil analysis of the complexity of algorithms may only take place in 

tile context of an agreed model of computation, or machine model. Many different 

machine models have been proposed in the past, including the Deterministic Turing 

Machine, Boolean circuit [25,41] and P-RAM [28,32]. The nascent field of DNA 

computing also suffers from the problem of proliferation of machine models. Several 
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models have been proposed., within which we may construct algorithms for the solu- 

tion of computational problems. However, complexity analyses of algorithms within 

different models of DNA computation are meaningless, since there are no uniform 

definitions of the concepts of time and space. Furthermore, if we are to compare 

a DNA-based model with a more traditional machine model, we require a waY of 

demonstrating equivalence between the two. 

In this chapter we analyse the complexities of algorithms within a commonly 

employed model of DNA computation. We argue that this model. which we call 

the weak model, is actually inadequate from the point of view of obtaining rcab'stic 

complexity results. This leads us to define a new strong model within which we 

reassess some clainis that have been inade concerning complexity of computations. 

The chapter is organised as follows. In section 2 we recall the weak model of 

DNA computation first explicitly described in [7] although not so named there. We 

explain the shortcomings of this model and introduce the strong model, allowing us 

to make meaningful comparisons between DNA-based and more traditional models 

of DNA computation. In section 3 we discuss assumptions made about certain 

fundamental operations within models of DNA computation. We argue that such 

assumptions are false, and demonstrate the implications for the complexity analysis 

of various extant models. In section 4 we review the current search for the "killer 

application", the one application that will establish a niche for DNA-based models 

of computation. We argue that the basis for such a quest is flawed, and suggest a 

potentially more fruitful line of enquiry in the light of the strong model. 
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6.3 Weak and strong models 

Attempts have been made to characterlse DNA computations using traditional mea- 

sures of complexity, such as time and space. Stich attempts, however. are misleading 

due to the nature of the laboratory implementation of the computation. We first 

examine these algorithms from a time complexity standpoint. Most extant models 

quantify the time complexity of DNA-based algorithms by counting the number of 

"biological steps" required to solve the given problem. Such steps include the cre- 

ation of an initial library of strands, separation of subsets of strands, sorting strands 

on length, chopping and ligating strands. 

Within these models, operations such as those described above are consid- 

ered to be atomic actions performed in constant time. This assumption is patently 

false. In this section we rigorously define the time complexity of various laboratory 

operations, so that an accurate assessment of various DNA-bas-ed algorithms may 

be inade. 

6.3.1 The weak model 

Here we recall [7] the basic legal operations on sets within what we now refer to 

as the weak model. The operation set described here is constrained by biological 

feasibility, but all operations are currently realisable with current technology. 

9 re7nove(U, jSjj). This operation removes from the tube U, in parallel, any 

string which contains at least one occurrence of any of the substrings Si. 

anion(jUjj. U). This operation, in parallel, creates the tube U which is the 

,; (, t union of the tubes Ui. 
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COPY(U. JUjj). In parallel, this operation produces a number of copies. U,. of 

the tube U. 

* select(U). This operation selects an element of U uniformly at random. if F 

is the empty set then empty is returned. 

From the point of view of establishing the parallel time complexities of al- 

gorithms wit1iin the model, these basic operations are assumed to take constant 

time. This assumption has been commonly made by many authors in the literature 

[7,52.61]. However, these operations are frequently implemented in such a way 

that it is difficult to sustain this claim. For example, the unton operation consists 

of pouring a number of tubes into a single tube, and this number is usually, in some 

way, problem size dependent. Assuming that in general we have a single laboratory 

assistant, this implies that such operations run in time proportional to the problem 

size. 

Obviously, in the general case, a single laboratory assistant may not pour 

n tubes into one tube in parallel, nor may s/he split the contents of one tube into 

n tubes in parallel. This observation, if we are to be realistic in measuring the 

complexity of DNA comp ut at ions, requires us to introduce the following constant 

time atomic. operation: 

e pour(U, U'). This operation creates a new tube, U, which is the set union of 

the tubcs U and U' 

As we have observed, the pour operation is a fundamental component of all 

compound operations. It therefore follows that more realistic analyses of the time 

complexities of algorithms may be obtained by taking this operation into consider- 

atioll. 
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6.3.2 The strong model 

In what follows we refine the weak model Just described. We assume that the initial 

tube (which takes at most linear time to construct) is already set up. 

The pour operation is fundamental to all compound operations within our 

weak model. We, must therefore reassess the time complexity of these operations. 

The T*CrnOVC, operation requires the addition to U of 

1. z tubes containing primers, and 

2. A tube containing restriction enzymes 

This operation is inherently sequential, since there inust be a pause hetween 

steps I and 2 in order to allow the primers to anneal correctly. Therefore, the 

remove operation takes 0(1) time. Creating the union of i tubes is an inherently 

sequential operation, since the technician must first pour U, into U, then U2, and so 

on, up to Uj. Rather than taking constant time, the union operation actually takes 

0(0 time. It is clear that the copy operation may be thought of as a reverse-union 

operation, since the contents of a single tube U are split into many tubes, jUjj. 

Therefore, copy takes 0(1) time. 

6.4 Complexity comparisons in the weak and strong mod- 

els 

In this section we compare time complexities for algorithms previously described [7] 

within botli the weak and strong models. In particular, we examine in detail the 

problem of gencratin- a set, of permutations. This will 1 characterise the general form 

of comparisons that, can he made, so that we merely tabulate comparisons for other 
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algorithms (table 6.1). 

* Problem: Permutations 

Generate the set P, of all permutations of the integers f 1.2,. ... nj- 

9 Solution 

Input: The input set U consists of all strings of the form POIP2Z2 ... Pnzn 

where, for all J, pj uniquely encodes "position j" and each Zj is in 

11,2,... 
, nj. Thus each string consists of n integers with (possibly) many 

occurrences of the same integer. 

9 Algorithm 

for j=I to n-I do 

begin 

COPY (U, I UI) U2... 
1 
Unj) 

for i=I, 2, ... )n and all k>I 

remove (Ui, fpj :AZ, Pk Z 

union (f Ul, U2,.. 
., 

U, I., U) 

end 

Pfl, -U 

o Complexity O(n2) parallel-time. 

In [7] the authors claimed a time complexity for this algorithm of 0(n). ýVe 

justify the new time complexity of O(n2) as follows: at each iteration of the for loop 

we perform one copy operation. n remove operations and one union operation. The 

rcitiocc operation is itself a compound operation, consisting of 2n pour operations. 

The cop, q and union operations consist of n pour operations. 
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Algorithm Weak Strong 
Three colouring 0 (n) 
Hamiltonian path 0(1) 0 (n) 
Subgraph isomorphism 0 (n) O(n 2) 

Maximum clique 0 (n) O(n 2) 

Maximum independent set 0 (n) O(n2) 

Table 6.1: Time comparisons of algorithms within the Weak and Strong models 

Similar considerations cause us to reassess the complexities of the algorithms 

described in [7], according to table 6.1. 

Although we have concentrated here on adjusting time complexities of algo- 

rithms described in [7], similar adjustments can be made to other work. An example 

is given in the following section. 

6.5 Analysis of the Boolean circuit model 

The authors of [611 claini real-time simulation of the class NO [63] in time propor- 

tional to the depth of the circuit. Recall that NO defines the class of problems of 

size Ti. solved by bounded fail-in circuits of O(logn) depth and polynomial size. We 

point. out that, with a single laboratory assistant, this estimate of the time coni- 

plexity should be proportional to the size of the circuit. Thus. the claim of poly- 

logarithmic running thile (with, incidentally, a polynomial volume of DNA) in the 

weak model translates to polynomial running time in the strong (realistic) model. 

Essentially, the simulation does not harness the massive potential for parallelism 

that DNA offers. We now justify this claim. 

Ogihara and Ray claim that set-up "requires only one step" - 
Given the 

inherent sequentialitY of the pour operation, this statement is clearlY false. An 
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n-input Boolean circuit with 0(1) set-up time requires n technicians. We now 

consider the simulation of gates at level 1>0. We omit detailed discussion of the 

implementation (described in section 4.7), and concentrate purely on the number 

of pour operations required at each level. Let ZI i i2 i ... ý i" be the indices of gates at 

level 1-I, and il, j2 i ... A those of the gates at level 1. After amplifying the contents 

of the working tube, for each s, 1<s<b the operation pour(U, o-[j, ]) is executed. 

This takes s time. Now U contains many copies of the strand representing each gate 

at level 1. In order to simulate the operation of some gate G, two "linker" strands, 

representing the inputs to G,, are poured. This takes 2s time. Ogihara and Ray 

claim that they only require O(d) ligation steps during the course of the simulation. 

However, we believe that in the general case it is more meaningful to talk in terms 

of O(m) pour operations, even if we discount set-up time. 

Despite these remarks, Ogihara and Ray's work is important because it es- 

tablishes the Turing-completeness of DNA computation. This follows from the work 

of Fischer and Pippenger [27] and Schnorr [70], who described simulations of Tur- 

ing Machines by combinational networks. Although a Turing Machine simulation 

using DNA has previously been described by Reif [66], Ogihara and Ray's method 

is simpler, if less direct. 

6.6 Summary 

In this chapter we have emphasised the r6le that complexity considerations are likely 

to play in the identification of "killer applications" for DNA computation. We have 

examined how time complexities have been estimated currently within the literature. 

We have shown that these are often likely to be inadequate from a realistic point of 

view. In particular, many authors implicitly assume that arbitrarily large numbers 
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of laboratory assistants are available for the mechanical handling of tubes of D. NA. 

This has often led to serious under-estimates of the resources required to complete 

a computation. 

We have proposed a so-called strong model of DNA computation, which we 

believe allows realistic assessment of the time complexities of algorithms within it. 

This inodel, if the splice operation is trivially included, not only provides realistic 

estimates of time complexities, but is also Turing- complete. 

We believe that success in the search for "killer applications" is the only 

means by which there will be sustained interest in DNA computation. Success is 

only a likely outcome if DNA computations can be described which will require 

computational resources of similar magnitude to those required by conventional 

solutions. At present, we believe that no realistic estimates of time complexities of 

DNA computations have been made, despite the claims of some authors. However, 

if, for example, we were to establish polylogarithmic time computations using only 

a polynomial volume of DNA, then this would be one scenario in which "killer 

applications" might well ensue. In this case, we might imagine that the vast potential 

for parallelisation would yield feasible solutions to very inuch larger problem sizes 

than could be achieved using existing, silicon-based parallel machines. 

106 



Chapter 7 

Conclusions 

This doctoral thesis is the first ever to be written solely on the subject of DNA- 

based computation. As such, it is appropriate to address a broad spectrum of issues 

and problems. Although several of these issues remain unresolved, we hope that 

the work presented provides clarification and suggests potentially fruitful lines of 

enquiry iii the future. 

In chapter 2 we presented a comprehensive review of extant models of DNA 

computation, in the course of which we described the novel parallel filtering model. 

This inodel provides a generalisation of the motivating work of Adleman and Lipton, 

and facilitates the elegant expression of algorithins for a varietY of NP-complete 

problems. We described several such algorithms within the parallel filtering model. 

We also described the work of Reif and others, who show how the addition of 

a splicing operation to existing models of DNA computation provides full Turing- 

computability. We then described a model for the DNA-based simulation of Boolean 

Circuits, due to Ogillara and Ray. 

In chapter 4 we considered the practical implementation of models of DNA 
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computation. In particular, we showed how the models described in chapter 2 may 

be implemented in the laboratory, concentrating in particular on the implementation 

of the parallel filtering model. We point out practical difficulties in implementing 

extant models and argue that our proposed implementation of the parallel filtering 

model provides a greater degree of error-resistance than those previously described. 

In chapter 3 we explained the structure of the DNA molecule, and described 

most of the common laboratory techniques for its manipulation. This review pro- 

vides a foundation for subsequent chapters. In particular, we concentrated on the 

cloning procedure, since it is fundamental to the work presented in the second half 

of chapter 5. 

At this time, the empirical basis for being optimistic about the future of 

DNA computation is rather slim. Much more work needs to be done to develop 

error-resistant and scalable laboratory computations. This implies improved em- 

pirical techniques and algorithmic designs. The pressure to develop more efficient 

and accurate laboratory techniques will not only benefit researchers in DNA com- 

putation, but will also yield positive "spin-off" benefits for molecular biologists. As 

many authors have demonstrated, it is not difficult to design algorithms within a 

variety of models which, on a naive basis, appear to be realisable. The fact is that 

it is a difficult matter to design experiments that are likely to be successful in the 

laboratory. In chapter 5 we described the results of a preliminary implementation 

of the parallel filtering model. Although early results are promising, the main con- 

tribution of this chapter is to highlight several potential difficulties in implementing 

models of DNA computation. We describe a clonzng approach that removes re- 

Hance upon error-resistant techniques such as PCR and hybridisation extraction, 

and allows easy final read-out of solutions to the given problem. This technique is 
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sufficiently general to allow it to be integrated into any filture implementation. 

In chapter 6 we considered the complexity and viability of* D-NA computa- 

tions. Such issues have, to date, been largely underestimated in the literature. We 

argue that existing analyses of models of DNA computation are flawed and unreal- 

istic. In order to obtain more realistic measures of the time and space complexity 

of DNA computations we describe a new strong model, and reassess previoiisIly de- 

scribed algorithms within it. An important area of enquiry that is outstanding is 

the quest for algorithms which proceed through polynomial-sized volumes of DNA. 

In principle, this ought to be possible for problems which can be solved by conven- 

tional computers in a time which is polynomial in the problern size. Success in this 

area would give real hope for solving problems with very large problem size through 

the exploitation of the potentially massive parallelisni offered by the biochemistry 

of DNA. Such applications would therefore constitute "killer applications": applica- 

tions of DNA computing that will establish the superiority of this paradigin within 

a certain domain. 

We have therefore identified the following open problems in the field of DNA 

cornputation: 

e Does there exist a class of problems for which DNA computers will out-perform 

conventional, silicon-based machines? 

e Can methods be developed to reduce the error-rate of commonly-used biolog- 

ical operations? 

e Can tbe tecliniques and models developed be integrated into a general- purpose 

computer? 

e Can naturally-occurring biological processes suggest novel algoritlimic tech- 
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niques and approaches? 

Although we believe that there is great potential for DNA computing, the 

field is still at a very early stage. It is unlikely that DNA computers will be used for 

tasks like word processing, but they may ultimately find a niche for solving large- 

scale intractable combinatorial problems. Although the basic operations required 

for DNA computers already exist, the problem of automating, miniaturising and 

integrating them into a general-purpose desktop DNA computer is unlikely to be 

solved in the near future. We hope that this thesis contributes to this long-term 

goal by stimulating realistic investigations in the future. 
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Appendix A 

Laboratory Protocol 

A. 1 Initial library construction 

Resuspend oligos in distilled water to a final stock concentration of 100pmol/pl. 

Prepare a stock mixture containing all 24 oligos at 2.5pmol/pl each. Prepare hy- 

bridisation mixture containing: 

9 2jA oligo mix (5pmol, -3X 1012 copies) 

o lo/A 5x Polig buffer 

o 34/d distilled water 

5x Polig buffer: 

e 250iilM Ris. Cl pH 7.8 

e 450niM KCI 

o 25111M M9CI2 

9 50iiiM (NH4)2SO4 
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o 20mM DTT 

In a PCR block (with heated lid) denature at 95'C 5 minutes. then allow to 

cool at 2 'C/mIn to 52'C and continue to incubate at 52'C for I hour. Chill on ice 

then add: 

9 Ipl E. coli DNA polymerase I (IOU) 

9 IpI E. coli DNA ligase (10U) 

9 lpl 10rnM dNTPs 

9 lpl 20mM B NAD 

Incubate for 2 hours at 16'C. Store at -20'C. 

A. 2 Amplification of hybridisation product 

Dilute hybridisation product 11-0 in water. Use this as the PCR template. Set up T-0- 

PCR reaction: 

o 10pl 10 x PCR buffer 

41 4/A 50mM M9CI2 

o 30pinol vi = red 

9 30pliiol vi = green 

9 30pniol vi = blue 

9 30pinol T)-8 

e 2//l lOmM dNTPs 
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o template 

o 5U Taq polymerase 

Cycle at: 94'C 2'(95'C 15s. 48'C 15s, 72'C 30s) x 35.72*4'. Purify major band of' 

-200bp on 2% agarose and extract using QIA kit. Elute in 50*1 water. 

A-3 Capture of biotinylated product 

2x Binding and washing (2 x B&W) buffer: 

9 lOmM Tris. Cl pH 7.5 

e ImM EDTA 

9 IM NaC1 

Wash 20pl Dynabeads with 20pl of 2x B&W buffer. Resuspend in 20/il 

B&W buffer. Add 11LI from a yl-0 dilution of PCR product (ie. a inaxiin-tim of 

0.06 pmol) plus 19pl water to the washed beads. Incubate for 15 ininutes at rooin 

temperature. keeping the beads in suspension by gently tipping the tube. 

A. 4 Melting the DNA duplex 

Using a magnet, capture the beads and remove the supernatant. Wash the beads 

once in 200*1 1x B&W. Resuspend the beads in 50*1 freshly prepared O. IM NaOH 

and incubate at room temperature for 5 minutes. Collect the beads and remove the 

supernatýmt, - 
kATash the beads once with 200/A O. IM NaOH. then three times with 

200*1 1x Taq PCR, buffer. 
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A-5 Removal of illegal sequences 

Resuspend the beads in 15*1 10 x Taq PCR buffer and 45pl water then split the 

sample into three. Add 500pmol of the appropriate primers to each tube. (a teni- 

plate: primer ratio of roughly 1: 8000). Add M9CI2 to 2mM, dNTPs to 200uM. 5U 

Taq polymerase and make each tube up to 50pl with water. In a heated lid PCR, 

block cycle at 95'C I' (45'C 2', 72'C V) x 30,72'C 10'. Resuspeild the ho; ids 

about every 5 cycles. Wash the beads three times in 200*1 1x REact 2 buffer, then 

resuspend in 50jtl Ix REact 2 buffer plus 50U MboI. Incubate OIN at 37'C in a 

rotating oven to keep the beads in suspension. Wash the beads three times in 200/A 

Ix Taq buffer then resuspend in 50/-tl 1x Taq. For subsequent rounds of exclusion 

repeat, using appropriate primers. 

A. 6 Identification of result 

Using an aliquot of the beads (1-5pl) as template amplify between one of the three 

coloured primers for ol and the v-8 primer. 

Basic PCR mix: 

* 5/il 10 x PCR, buffer 

e 2niM M9CI2 

30piilol specific colour primer 

9 30piiiol T)-8 primer 

9 200iiM dNTRs 

e 1-5/il template 
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e 5U Taq 

9 water to 501A 

Cycle at 94'C 2', (94'C 15s, 48'C 15s, 72'C 30s) x 30,720C 5'. Run 20pi 

of the PCR product on 2.5% agarose. A positive result indicates that the sequence 

was present in the mix. 
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Appendix B 

Glossary 

Affinity purification See hybridisation extraction. 

Aliquot Small sample taken from a larger solution. 

Annealing TheJoining of two complementary strands of DNA, forming a double 

strand. The opposite of denaturing. 

Bacteriophage (abbrev. phage) A virus that infects bacteria. 

Base Organic compound found in nucleic acids. The four bases found in DNA are 

adenine (A), guanine (G), cytosine (C) and thyrnine (T). 

Biotinylation The attachment of magnetic beads (Dynabeads) to the end of a 

shigle strand of DNA. 

Cloning The insertion of a DNA sequence into a vector. After transfer of this 

recombinant molecule into a suitable host (e. g., E. coh). the resulting colony 

(.. ojj, sjst,, -,, of that all contain the recombinant DNA molecule. 

Complement, complementary See Watson-Crick complement. 

116 



DNA (deoxyribose nucleic acid). The genetic material of all cellular organisms. 

Two complementary single strands of DNA form the famous double-liefix 

structure. 

Denaturing The heating of a solution of double-stranded DNA to break the li. v- 

drogen bonds joining them, yielding single strands. The opposite of anneal- 

ing. 

Digestion The cleaving of double-stranded DNA by a restriction enzyme. 

E. coli Bacterium commonly used in cloning experiments. 

Extension The addition of nucleotides to a primer. Directed by DNA poly- 

merase. 

Gel electrophoresis A process by which a solution of strands of DNA is sorted 

according to length. 

Hybridisation extraction Technique for removal from solution of strands con- 

taining a specific sequence. Biotinylated primers complementary to the 

target sequence are added to the solution, which then anneal to strands con- 

tailling the sequence. A magnet is then used to draw out the beads with the 

targeted strands attached to them. 

Killer application An application of a particular mode of computation that es- 

tablishes its superiority over others in a particular domain. 

Lawn A flat surface (usually a petri dish) covered with a bacterial culture. 

Ligase Aii eiizyme that catalyzes ligation. 

Ligation Tli(,, j()Illillg of two lhicm- molecules of DNA. 
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M13 A particular bacteriophage commonly used in cloning experiments. 

NC Nic's Class. Named after the computer scientist Nic Pippenger. Efficient paral- 

lel algorithms, within the so-called Parallel Random Access Machine (P- R ANI) 

model of computation, should have polylogarithmic running time (and use a 

polynoinial number of processors) Problems for which such solutions exist 

define the complexity class NC. 

NP The class of problems that can be solved in polynomial time by a nondeter- 

ministic computer. See also NP-complete. 

NP-complete A problem is NP-complete if it can be reduced in polynomial time 

to any other problem known to be NP-complete. NP-complete problems 

are characterised by an exponential-sized search space, and are therefore re- 

ferred to as intractable. 

Nucleotide The b ase- sugar- phosphate group found in nucleic acids. See also base. 

Oligonucleotide A chain of nucleotides. 

PCR Polyinerase Chain Reaction. A technique for massively amplifying an initial 

sample of DNA. 

Plaque A region of infection oii a lawn of bacteria. 

Polymerase Ali enzynie that synthesises a new strand of DNA complementary 

to an existing DNA template. See also PCR. 

Primer A short, complementary oligonucleotide used to iiiitiate synthesis of a 

iiew DNA strand. See also PCR, polymerase. 
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Restriction enzyme An enzynie that recognises and deaves double-, traii(led DNA 

at a specific restriction site. 

Restriction site A short, specific sequence in double- st randed DNA that is recog- 

nised and cleaved by a restriction enzyme. 

Strand See oligonucleotide. 

Týransfection The transformation of a bacterium with DNA isolated from a virus 

(e. g., a bacteriophage). 

Transformation The introduction of exogenous DNA into cells. 

Turing machine Named after Alan Turing. A finite state automaton with an 

unbounded memory. An abstract machine that is used to define the concept 

of computability. A function is computable if it can be proved that there exists 

a Turing machine to evaluate it at any given point. 

Vector A DNA molecule (e. g., a bacteriophage) into which foreign DNA se- 

quences may be inserted. The vector may then be cloned into a suitable 

host. 

Watson-Crick complement Named after the co-discoverers of the structure of 

DNA, James Watson and Francis Crick. Two strands of DNA are comple- 

mentary if one is able to form a perfect hydrogen-bonded duplex with the 

other, according to the rilles of base pairing (i. e., A ý-4 T, and G ýý C). For 

example, the sequences AGGCT and TCCGA are complementary. 
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