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Chapter 6

INTRODUCTION

Ion Mobility Spectrometry (IMS) has become 
one of the most successful technologies widely 

used for detection and analysis of chemical sub-
stances (Eiceman & Karpas, 2005). This chapter 
introduces the potential application of a new gen-
eration of IMS, Field Asymmetric Ion Mobility 
Spectrometry (FAIMS), on greenhouse tomato 
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AbsTRACT

This chapter presents the initial studies on the detection of two common diseases and pests, the powdery 
mildew and spider mites, on greenhouse tomato plants by measuring the chemical volatiles emitted from 
the tomato plants as the disease develops using a Field Asymmetric Ion Mobility Spectrometry (FAIMS) 
device. The processing on the collected FAIMS measurements using PCA shows that clear increment 
patterns can be observed on all the experimental plants representing the gradual development of the 
diseases. Optimisation on the number of dispersion voltages to be used in the FAIMS device shows that 
reducing the number of dispersion voltages by a factor up to 10, preserves the key development patterns 
perfectly, though the amplitudes of the new patterns are reduced significantly.
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plant health monitoring and the processing of the 
collected data sets. A continuous experiment was 
performed using three identical glass boxes simu-
lating greenhouses and each glass box contains a 
tomato plant. One of the tomato plants was used 
as the health control and the others were infected 
with powdery mildew (Oidium neolycopersici) 
and two-spotted spider mites manually at the early 
stage of the experiment respectively. During the 
experiment, daily measurements were collected 
using a commercial FAIMS instrument. The post-
processing on the collected data sets indicates that 
e-nose can be used as a tool to monitoring tomato 
plant disease. The data processing techniques in-
clude, Principal Component Analysis (PCA), Grey 
Incidence (GI), a key technique in Grey System 
Theory (GST), and Hierarchical Clustering (HC).

bACKGROUND

IMs Instrument

IMS generally refers to the principles, techniques 
and equipments designed to analysing gaseous 
chemical substances based on the transport of 
ions in electric fields. The foundational studies 
of IMS started in late 1940s followed by the 
development of practical IMS instruments in the 
1970s (Eiceman & Karpas, 2005). IMS has been 
used as an inexpensive and powerful technique 
for the detection of many chemical compounds. 
For example, commercial IMS units are used at 
airports worldwide to detect explosives in carryon 

luggage for aviation security (Eiceman, 2002; 
Eiceman et al., 2004); tens of thousands of IMS 
units have been used by military on battlefield 
to determine chemical warfare agents (Eiceman, 
2002); IMS can also be used to characterise drugs 
(Lawrence, 1989). Over the last decades, the 
interests of scientific researchers and engineers 
have been shifted from the conventional IMS to 
FAIMS, also known as Differential Ion Mobility 
Spectrometry (DIMS) or Nonlinear Ion Mobility 
Spectrometry (NIMS) (Eiceman & Karpas, 2005; 
Shvartsburg, 2009).

Conventional IMs

Conventional IMS, also called linear IMS as linear 
voltage gradients were used in the IMS units, was 
based on the determination of the velocities of the 
ions (Creaser et al., 2004). The basic components 
of a conventional IMS unit include ionization unit, 
drifting tube and detection plate. General ioniza-
tion sources used in the ionization unit include 
corona discharge, photoionisaiton, electrospray 
ionisation, and radioactive source (Creaser et 
al., 2004). In the drifting tube, purified drift gas 
flows from the detection plate to the drafting 
tube entrance and a homogeneous electric field, 
which is generated by a series of charged rings 
of different voltages, is applied along the drifting 
tube to attract ions towards the detection plate. 
The electric field gradient can be alternated to 
allow the detection of both positive and negative 
ions generated in the ionization unit (Borsdorf & 

Figure 1. Structure of a simplified drifting tube (Borsdorf & Eiceman, 2006)
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Eiceman, 2006). Figure 1 illustrates the systematic 
structure of a simple drifting tube.

The sample molecules are taken into the func-
tional unit by carrier gas and the molecules are 
ionised to carry positive or negative charges when 
passing through the ionization unit. The ionised 
sample molecules and the non-ionised molecules 
are separated at the entrance of the drifting tube 
by the drifting gas flow and the electric field ap-
plied in the tube. The ions move towards the 
detection plate along the electric field gradient at 
random paths and hit the detection plate at differ-
ent times depending on their shapes, sizes and the 
strength of electric field gradient. When the ions 
hit the detection plate, weak current is generated; 
the strength of the current and the time of occur-
rence are recorded as the signature of the test 
sample. The current strength is proportional to 
the number of ions hit the detector.

Field Asymmetric Ion Mobility 
spectrometry (FAIMs)

A FAIMS unit consists of three major components, 
which are ionisation unit, filter and detector. 
Instead of using the electric field gradient gener-

ated by charged rings to attract ions towards the 
detection plate, DMS applies carrier gas to blow 
ions toward detection plate. A high-voltage asym-
metric waveform termed Dispersion Voltage (DV) 
or Separation Voltage (SV) is applied to a set of 
parallel electrodes perpendicular to the detection 
plate. The voltages operate at high frequency asym-
metric waveform and the time-voltage integrals 
above and below the time axis are equal. Figure 
2 illustrates the asymmetric voltage waveform 
(Borsdorf & Eiceman, 2006; Guevremont, 2003; 
Krylov et al., 2007).

Ions are separable due to the different mo-
bilities in different electric fields. As the voltage 
on the electrodes alternates, the ions oscillate 
along the electric field gradient depending on the 
applied voltage. The different mobilities in dif-
ferent electric field lead to displacement towards 
one of the electrodes. Ions with positive mobility 
dependence are displaced in a direction opposite 
to the ions with negative mobility dependence. 
Ions that hit the electrodes are neutralised and 
filtered out; ions reach the detection plate gener-
ate weak signals and the signals are recorded for 
processing. Figure 3 illustrates the possible move-
ments of ions in the filter region. (Borsdorf & 
Eiceman, 2006)

Apart from the DV, a Compensation Voltage 
(CV) can be superimposed with the asymmetric 
voltage waveform to restore ions that are displaced 
from the centre of the gap between two electrodes. 
A certain CV is only efficient for ions of specific 
characteristics, such as charges, masses and 
shapes. A scan of various CVs and DVs can pro-
vide a complete measure of different ions.

Figure 2. Asymmetric voltage waveform in FAIMS

Figure 3. Routes of ions in filter region
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The OwlStone® LoneStar FAIMS device used 
in the experiment applies a comb-like ion filter, 
which carries the asymmetric voltages, to increase 
the number of filter regions and hence increases 
the sensitivity of the device. One FAIMS collec-
tion circle normally takes about 5 minutes and it 
consists of a full scan of positive ions and a full 
scan of negative ions. The dimensionalities of the 
positive scan and negative scan are identical, the 
compensation voltages were applied at 512 steps 
in the range [-6V, 6V] and the dispersion voltages 
were applied at various scales of a constant voltage 
in the range [1%, 100%]. Figure 4 presents a typical 
reading collected by the LoneStar FAIMS device.

Tomato Plant Diseases

Tomato plants suffer from many kinds of pests 
and diseases, which may cause severe damages 
to the tomato fruits and reduce the tomato yields. 
This work concentrates the initial studies on 
the development of a common tomato disease, 
powdery mildew, and a major pest, spider mite.

Powdery Mildew

Powdery mildew, caused by the fungus Oidium 
neolycopersici, is one of the most common dis-
eased of tomato (both in greenhouse and fields) 
around the world. Powdery mildew can cause large 

damage on tomato production if not controlled 
properly, especially in the greenhouse tomatoes. 
The symptoms of powdery mildew are the white 
patches on the upper surface of leaves in early 
stages (few days after infection). The disease 
causes defoliation as the powdery spots develop 
into brown lesions. Severe infections can lead to 
premature senescence and significant reduction 
in fruit size, quality, and yield. Effective control 
of powdery mildew can be achieved by applying 
fungicides at early stages of the disease develop-
ment. (Jacob et al., 2008; Jones et al., 2001)

spider Mite

There are over 1500 species of spider mites 
around the world causing damages to hundreds 
of species of plants. They feed on plant cells and 
the symptoms are the typical small, yellowish, 
speckled feeding marks on leaves. Spider mites are 
tiny, usually less than 1mm. The most well known 
species of spider mite is Tetranychus urticae, also 
called glasshouse red spider mite or two-spotted 
spider mite. Spider mites are serious pests in to-
mato crops due to their great reproduction rate. 
They can cause severe damages to tomato plants 
and reduce the yields. If left uncontrolled, they 
can destroy a plant within a short period of time.

Figure 4. A typical FAIMS reading
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EXPERIMENT AT WARWICK

Initial studies on the early detection of tomato 
diseases and pests were carried out at the Engi-
neering School of the University of Warwick in 
2008. The objective of experiment was to study 
the development of powdery mildew and spider 
mites on tomato plants by measuring the chemi-
cal volatiles emitted by the infect plants using 
a FAIMS device. Three Espresso tomato plants 
were used in the experiment and the plants were 
provided by the Warwick Horticultural Research 
Institute. The plants were growing in a controlled 
greenhouse for 6 weeks since seedling and then 
moved into three glass boxes (150cm H, 50cm W, 
50cm D), namely Box 1, Box 2 and Box 3, in a 
controlled chamber. The tomato plants in the glass 
boxes were under different treatments. Box 1 con-
tains the plant which will be infected by powdery 
mildew; Box 2 contains the plant which will be 
infected by spider mites and Box 3 the plant which 
will be used as the health control. The glass boxes 
are specifically made for this experiment using 
glass panels and alloy frames to minimize the gas 
exchange with the external environment and the 
possibility of contamination. The Day and Night 
times in the chamber were set to be 16 hours and 
8 hours respectively. Continuous ventilation was 
provided to the glass boxes by pressured gas at 
equal flow rates. The ventilation was turned off 
one hour before taking measurements and switched 
back on after the measurements. The plants were 

watered manually when necessary. Each glass box 
has been fitted with a humidity and temperature 
logging device which saves the current humidity 
and temperature inside the box every 5 minutes. 
During the experiment, repetitive experimental 
readings were taken daily during the Day hours 
in the chamber. Figure 5 illustrates the systematic 
structure of the experiment.

PROCEssING TECHNIQUEs

As mentioned in the previous section, the data 
processing techniques presented in this work in-
clude Grey Incidence (GI), Hierarchical Clustering 
(HC) and Principal Component Analysis (PCA). 
PCA is used to extract the key information from 
a batch of collected FAIMS readings. GI and HC 
are used together to optimise the FAIMS data col-
lection process by reducing the amount of data 
to be collected.

Principal Component Analysis (PCA)

PCA is a common mathematical technique which 
is used to reduce the dimensionality of a data set 
consisting of a large number of variables, while 
retaining the variation of the original data set 
as much as possible. PCA transforms a dataset 
into a new system of coordinates linearly with 
the possibility of reducing the number of dimen-
sions. The first dimension of the new coordinates 

Figure 5. Systematic structure of the experiment
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system is called the first principal component, 
which retains the highest variations of the original 
data set; the second dimension retains the second 
highest variation, and so on (Jolliffe, 2002). The 
principal components are determined by follow-
ing four steps:

Step 1: subtract mean value

X X X' = −  (1)

where X  is the mean of a data set X, and X '  is 
the new data set.

Step 2: calculate covariance matrix

cov( )X
XX
N

T

=
−1

 (2)

where X is the matrix consisting of data sets, XT 
is the transpose of matrix X and N is the size of 
each data set.

Step 3: calculate eigenvectors and eigenvalues

Ax=λIx (3)

(A-λI)x=0  (4)

det(A-λI)=o  (5)

where A is the square covariance matrix derived in 
step 2, I is the identity matrix, λ is an eigenvalue 
and x is the eigenvector.

Step 4: reorder the eigenvectors based on their 
associated eigenvalues, highest to lowest, 
which represent the explained variance of 
the eigenvectors.

The matrix of the ordered eigenvectors repre-
sents the original data transformed into the new 
coordinate system. The eigenvector of the largest 

eigenvalue is the first dimension (the first principal 
component) in the new coordinate system and 
it accounts for the most information (variance) 
of the dataset; the eigenvector with the second 
largest eigenvalue is the second dimension (the 
second principal component) of the new coordi-
nate system; and so on. As the first few principal 
components usually account for the most infor-
mation (variances) of the original dataset, they 
could be used to represent the original dataset. 
For visualisation purposes, two or three sets of 
principal components with the most significance 
are normally selected to express the original da-
taset graphically.

In this work, PCA is used to reduce the com-
plexity of the FAIMS readings by extracting the 
first principal component from each measure-
ment and visualise the development trend of the 
complete dataset collected during the experiment.

Grey Incidence (GI)

GI is one of the key techniques under the scope 
of Grey System Theory (GST). GST is a series 
of techniques that initially appeared in the 1980s 
including Grey Equations, Grey Incidence, Grey 
Systems Modelling, Grey Prediction, Grey De-
cisions and Grey Control. The theory states that 
the information available is always uncertain 
and limited due to noise. After over 2 decades of 
development, GST had been applied successfully 
in various scientific areas, including industry, 
agriculture, economics, etc. (Deng, 1989; Liu & 
Lin, 2005).

As mentioned previously, the LoneStar FAIMS 
was used to collect data under 100 different disper-
sion voltages and it has the ability to operate under 
customised dispersion voltages. In this work, GI 
analysis is used to find the closeness between two 
signals collected at different dispersion voltages, 
represented by a single GI value. Higher similarity 
(closeness) levels would generate higher GI values, 
and vice versa. An upper triangular GI matrix can 
be generated to represent the similarities of all 
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possible pairs of signals. In the case of this work, 
the size of the GI matrix is 100 by 100 holding 
the effective GI values of 4950 pairs of signals.

The GI values can be calculated by the fol-
lowing steps. Assume that there exist two signals, 
each of n elements.

Y = (y(1), y(2), …, y(n))

X = (x(1), x(2), …, x(n))

where Y and X are the signals collected at different 
dispersion voltages.

Step 1

The first step is to find the initial image of each 
sequence using

Y’ = Y/y(1) = (y’(1), y’(2), …, y’(n)) = (y(1)/ 
y(1), y(2)/ y(1), …, y(n)/ y(1))

X’ = X/x(1) = (x’(1), x’(2), …, x’(n)) = (x(1)/ 
x(1), x(2)/ x(1), …, x(n)/ x(1))

where Y’ and X’ are the image sequences or the 
initial sequences of the original signals, Y and X.

Step 2

Find the difference sequences between the target 
sequence and the influencing factors using

Δ = X’ – Y’ = (Δ(1), Δ(2), …, Δ(n)) = (x’(1)− 
y’(1), x’(2) − y’(2), …, x’(n) − y’(n))

Step 3

Compute the global maximum and minimum 
differences using

M = max(max(Δ(j)))

m = min(min(Δ(j)))

Step 4

Calculate the incidence coefficients using Equa-
tion (6)

λ
ζ
ζ

( )
( )

k
m M
k M

=
+

∆ +
 (6)

where λ(k) represents the incidence coefficients 
of the kth element and ζ is a user defined factor 
in the range [0, 1] and generally taken to be 0.5.

Step 5

Calculate the GI using equation (7)

r
n

k
k

n
=

=∑
1

1
l( )  (7)

Thus the GI between the signals X and Y can be 
derived as

γ = (γ(1) + γ(2) + … + γ(n))/n

Hierarchical Clustering 
Analysis (HCA)

HCA is a powerful exploratory methods widely 
used in many disciplines. It consists of a set of 
statistical techniques which is capable of finding 
the underlying structure of objects and separating 
the objects into constituent groups. The grouping 
of objects is based on a multilevel hierarchical 
tree or dendrogram, which is constructed from 
the similarities or distances between the objects 
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(Almeida et al., 2007; Leung et al., 1999). In 
this work, HCA is performed using the built-in 
commands provided by the Statistics Toolbox in 
Matlab®. The HCA in Matlab® takes the follow-
ing three steps:

step 1: Find Dissimilarities 
(Distances) between Data Pairs

The distance of each data pair is represented by 
a numerical value and a distance matrix is used 
to hold the distances of all the data pairs. Similar 
data would generate lower distance. There exist 
many algorithms calculating distance under 
various metrics. Common distance metrics include 
Euclidean distance, city block distance (Manhat-
tan distance) and so on. Different algorithms 
generate different distance values. For example, 
the distance between points (1, 1) and the origin 
is 2  under Euclidean metric and 2 under city 
block metric (MathWorks, 2009). Application of 
various metrics may lead to distinct HCA results. 
In this work, the distance between the data pair 
is calculated using the GI instead of the conven-
tional metrics. We may call it the Grey metric. As 
the GI is a measure of the data closeness in the 
range [0, 1], the complement of GI, 1-GI, is a 
better representation of the distance and is used 
in the following procedures.

step 2: Group Data into a binary 
Hierarchical Cluster Tree

In this step, the distance matrix generated in Step 
1 is used by the linkage function to construct the 
hierarchical cluster tree. The linkage is an iterative 
program, it links single objects to each other in 
groups gradually. The first connection is the data 
pair of the highest similarity. Once the first group 
is constructed, the similarities between the new 
group and the remaining data need to be recal-
culated. The resulting hierarchical tree is usually 
illustrated using a dendrogram where each linkage 

step is represented by a U-shaped connection line 
and the height of the connection line represents 
the distance between the two objects connected. 
(MathWorks, 2009)

step 3: Determine Clusters

The hierarchical cluster tree generated in Step 2 
contains the completed cluster division informa-
tion. As the connection lines represent the distances 
between the connected nodes or sub-trees, by 
selecting the appropriate cut-off distance, the data 
can be divided into the desired number of groups. 
(MathWorks, 2009)

In this work, the HCA is used to group the 
signals collected under various dispersion volt-
ages based on their similarities. The signals in the 
same group are believed to have similar patterns 
and the entire group can be represented by one 
of the signals within the group.

REsULTs AND DIsCUssIONs

The tomato plants were moved in the dedicated 
glass boxes three days before the infection. Since 
then, repetitive measurements were taken every 
day. On the day of infection, the tomato plant 
in Box 1were infected manually by shaking the 
powdery mildew source (a tomato branch severely 
infected) over the plant for several seconds; thirty 
spider mites were handpicked using a small brush 
from the spider mite source (a pea plant used to 
feed the spider mites) and placed on the tomato 
plant. During the experiment, powdery mildew 
spots became visible on several leaves about 5 
days after infection. However, the 30 spider mites 
cannot be found after the day of infection and 
the signs of their survival and reproduction were 
not obvious either. The health control plant was 
healthy throughout the experiment.
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Disease Development Patterns

To discover the development trends of the powdery 
mildew and spider mites on the tomato plants, 4 
readings were selected from each set of the daily 

measurements and the PCA was used to extract 
the first principal components from the readings. 
The PCA results show that, on average, the first 
principal components carry about 51.43% vari-
ability; the second principal components carry only 

Figure 6. Development of the powdery mildew infected plant

Figure 7. Development of the spider mites infected plant

Figure 8. Development of the health control plant
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9.85% variability; the third principal component 
carry only 1.16% variability and so on. By plac-
ing all the first principal components together 
in the same graph, the development trend of the 
infection can be discovered. Figures 6, 7 and 8 
illustrate such trends of the three tomato plants.

In Figure 6, the powdery mildew infected plant, 
a clear increment pattern can be observed. The 
pattern can be divided into three periods, which 
are the healthy period, the development period 
and the stable period. On and before the day of 
infection (DoI), the healthy period, the values of 
the 1st PCs are about the same. After the infection, 
the development period, the 1st PCs fluctuate and 
follow a gradual increasing pattern, expect the 
data collected on the 1st day post infection (DPI), 
which is invalid due to instrumental errors. The 

increasing pattern may due to the development 
of the disease; the condition of the plant was get-
ting worse day by day. Since the 10th DPI, the 
stable period, the 1st PCs fluctuate around a con-
stant value. In these days the condition of the plant 
is severe and the relevant volatiles in the glass 
box reached a certain density.

The data of the spider mites infection plant 
illustrated in Figure 7 can be divided into three 
periods as well. During the healthy period, the 1st 
PCs are not stable and show distinct differences. 
After the infection, a weak increasing pattern is 
noticeable until the 12th DPI. From the 12th DPI 
onwards, the 1st PCs show a flat pattern.

In Figure 8, the health control plant, the data 
points form a gradual increasing pattern. This may 
be due to the fact that as the tomato plant grows 
the leaves at the bottom of the stem turn yellow 
and fall off eventually. The leaves turned yellow 
may emit volatiles different from those emitted 
by the healthy green leaves.

Dispersion Voltages Optimisation

As mentioned in the previous section, the dis-
persion voltages applied by the FAIMS can be 
set manually and a full scale scan (100 different 
dispersion voltages) takes about 5 minutes. By 
reducing the number of dispersion voltages, the 
scanning speed of the FAIMS can be increased 
dramatically. The GI is used to calculate the 

Figure 9. Grey incidence matrix

Figure 10. HCA dendrogram calculated using the GI distance matrix
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similarities between the signals collected under 
various dispersion voltages. Figure 9 illustrates 
the Gray Incidence matrix (similarity matrix) 
derived using all the data.

As the linkage procedure of HCA acquires the 
distance matrix rather than the similarity matrix, 
the complement of the GI matrix is used in the 
linkage procedure. Figure 10 illustrates the den-
drogram generated based on the linkage.

The original data was collected under 100 
different dispersion voltages. If we aim to reduce 
the number of dispersion voltages by a factor of 
10, we need to divided the 100 different dispersion 
voltages into 10 (100/10) groups base on the 
dendrogram and find a representative dispersion 
voltage for each group. Figure 11 illustrates the 
resulting clusters.

The first element of each group can now be 
used as the representative of that group. By ex-
tracting the signals collected under the selected 

dispersion voltages and perform the PCA again, 
patterns similar to the ones obtained from the 
original can be produced. Figure 12 illustrates the 
disease development pattern of the powdery mil-
dew infected plant generated using 10 dispersion 
voltages, instead of 100. The new development 
retains about 96% of the original pattern.

Table 1 summarises the performance of the 
HCA with the application of various numbers of 
dispersion voltages. The reduced number of dis-
persion voltages work well as it always retains 
over 90% of the similarities of the original devel-
opment patterns.

CONCLUsION

This chapter presents the initial studies on the 
responses of greenhouse tomato plants to two 
kinds of diseases and pests, the powdery mildew 

Figure 11. Clustering of dispersion fields

Figure 12. Disease development pattern generated using reduced number of dispersion voltages
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and spider mites, by measuring the chemical 
volatiles emitted from the tomato plants using a 
FAIMS device. Post processing of the collected 
data shows that clear increment patterns can be 
observed using PCA. This may be due to the 
development of the diseases.

Further analysis on the collected data using 
GI and HCA shows good results. By grouping 
the signals collected under the full FAIMS scan 
(100 various dispersion voltages) into various 
numbers of groups and selecting one representative 
dispersion voltage from each group, the amount of 
measurement can be reduce effectively by various 
factors. Statistical results show that reducing the 
amount of dispersion voltages by a factor between 
2 and 10 can always retain over 90% of the varia-
tion of the original development patterns.
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KEY TERMs AND DEFINITIONs

Field Asymmetric Ion Mobility Spectrom-
etry (FAIMS): Is a new technology for quick and 
accurate detection of a broad range of chemicals 
at low quantities (below part per billion) with high 
confidence. The FAIMS operates by applying 
high frequency asymmetric electric fields on the 
samples carried by appropriate carrier gas passing 

through the filtering channel. Ions are separable 
due to the different motilities under different 
electric fields. Ions that hit the electrodes in the 
filtering channel are neutralised and filtered out; 
those reach the detection plane generate weak 
signals, which are recorded as the fingerprint of 
the sample.

Grey Incidence (GI): Is one of the key tech-
niques under the scope of Grey System Theory 
(GST). It is an alternative way to measure the 
distances or similarities between data sequences.

Hierarchical Clustering Analysis (HCA): 
Is a powerful exploratory methods widely used 
in cluster analysis. It consists of a set of statisti-
cal techniques capable of finding the underlying 
structure of objects and group together objects 
that are ‘close’ to one another.

Principal Component Analysis (PCA): A 
common mathematical technique developed in 
1901. It can reduce the dimensionality of a data 
set by transforming it to a new coordinate system 
and retaining the dimensions of high variances. 
The first dimension of the new coordinate system 
holds the highest variation of the original data 
set and the second dimension retains the second 
highest variation, and so on.

Powdery Mildew: (Oidium neolycopersici): A 
type of common fungal disease around the world 
that affects a wide range of plants, including 
grapes, onions, tomatoes, and so on. It appears 
as dusty gray or white coating on leaf surfaces 
and other parts. It can cause large damage on fruit 
production if not controlled properly.

Spider Mites: Are tiny pests, usually less than 
1mm. There are over 1500 species of spider mites 
causing damages to hundreds of species of plants. 
The most well known species is Tetranychus ur-
ticae, also known as glasshouse red spider mite 
or two-spotted spider mite.


