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ANTICHAINS OF MONOMIAL IDEALS ARE FINITE

DIANE MACLAGAN

(Communicated by Michael Stillman)

Abstract. The main result of this paper is that all antichains are finite in
the poset of monomial ideals in a polynomial ring, ordered by inclusion. We
present several corollaries of this result, both simpler proofs of results already
in the literature and new results. One natural generalization to more abstract
posets is shown to be false.

1. Introduction

Throughout this paper, S = k[x1, . . . , xn], where k is a field. Our main result is
the following theorem:

Theorem 1.1. Let I be an infinite collection of monomial ideals in a polynomial
ring. Then there are two ideals I, J ∈ I with I ⊆ J .

If the monomial ideals were all principal, this would be Dickson’s Lemma, or
a special case of the Hilbert Basis theorem. The theorem is not true if the word
“monomial” is omitted. A simple counterexample is the collection of ideals {〈x−a〉 :
a ∈ k} where S = k[x] and k is a infinite field.

Although the statement of Theorem 1.1 may appear to be purely algebraic,
monomial ideals are highly combinatorial objects. In particular, the above theorem
can be restated as follows:

Theorem 1.2. Let L be the poset of dual order ideals of the poset Nn, ordered by
containment. Then L contains no infinite antichains.

A special case of interest is Young’s lattice, which consists of the set of all
partitions ordered by containment of Ferrers diagrams. Noting that a partition can
be considered to be a finite order ideal in N2, we consider the generalized Young’s
lattice of finite order ideals in Nn ordered by inclusion.

Theorem 1.3. All antichains in the generalized Young’s lattice are finite.

In the next section we give some corollaries of Theorem 1.1. Some of the corollar-
ies have appeared in the literature before, but Theorem 1.1 allows us to simplify the
original proofs, and provides a common framework for finiteness results involving
monomial ideals. In Section 3 we give an application to SAGBI bases which was
the motivating example for this paper. In Section 4 we outline an example which
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shows that one natural generalization to more abstract posets is false, and lastly in
Section 5 we give a proof of the theorem.

2. Corollaries

In this section we give several corollaries of Theorem 1.1.
The first corollary is a new proof of a basic result in computational algebra. A

fundamental notion in Gröbner basis theory is that of an initial ideal of an ideal
in a polynomial ring S. Given a term order ≺ (a total order on monomials in S
satisfying certain conditions), we define the initial term of a polynomial to be the
largest monomial with respect to ≺ occurring in the polynomial. The initial ideal
in≺(I) of I with respect to ≺ is the monomial ideal generated by the initial terms
of all polynomials in I. The following theorem appears in [2] and [5], and is well
known.

Corollary 2.1. For a given ideal I ∈ S there are only finitely many distinct initial
ideals in≺(I).

Proof. The monomials of S outside in≺(I) form a k-basis for S/I. If there were
infinitely many initial ideals, then Theorem 1.1 would give a proper inclusion of
k-bases.

Given an Nd grading on S, we can define the Hilbert series of a homogeneous
ideal by

HS/I(t) =
∑
b∈Nd

(dimk(S/I)b)tb

where tb =
∏d
i=1 t

bi
i .

Corollary 2.2. There are finitely many monomial ideals with a given Hilbert series
with respect to a given grading.

Theorem 1.2 is also true when Nn is replaced by a finitely generated submonoid
(such as the lattice points inside a rational cone).

Corollary 2.3. Let M be a finitely generated submonoid of Nn. Let R = k[M ] =
k[ta1 , . . . , tad ] be its monoid algebra. A monomial ideal in R is an ideal generated
by elements of the form tb ∈ R for some b ∈ Nn. Then in any infinite collection I
of monomial ideals in R there are two, I, J ∈ I, such that I ⊆ J .

Proof. Consider the map φ : k[x1, . . . , xd] → R given by φ : xi 7→ tai . For a
monomial ideal I ⊆ R, we define Iφ = 〈xa : φ(xa) ∈ I〉. Then Iφ ⊆ Jφ ⇒ I ⊆ J , so
the result follows from applying Theorem 1.1 to the set Iφ = {Iφ : I ∈ I}.

A similar corollary relates to A-graded algebras, where A is a d× n matrix with
entries in N. An A-graded algebra is a k-algebra R generated by x1, x2, . . . , xn
with an Nd grading (given by deg xi = ai, where ai is the ith column of A) such
that dimkRb = 1 whenever b ∈ NA (the image of the map π : Nn → Nd given by
π : ω 7→ Aω) and equals 0 otherwise. See [7, Chapter 10] for details of A-graded
algebras.

Corollary 2.4. Let R be an A-graded algebra. Let I be an infinite collection of
ideals of R which are homogeneous with respect to the A-grading. Then there are
two ideals, I, J ∈ I such that I ⊆ J .
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Proof. R is isomorphic to S/I for some binomial ideal I. Any element of S/I which
is homogeneous with respect to the Nd grading can be written as m + I where m
is some monomial in S, so homogeneous ideals of R lift to monomial ideals in S.
Containment in S implies containment in R, so the result follows.

A trivial example of an A-graded algebra is k[x1, . . . , xn] with A the n × n
identity matrix. Then Corollary 2.4 reduces to Theorem 1.1.

3. Application to SAGBI bases

Let T = R[c1xa1 , . . . , cnx
an ] be a monomial subalgebra of R[x1, . . . , xd], where

R is a Principal Ideal Domain. A strong SAGBI (Subalgebra Analogue to Gröbner
Bases for Ideals) basis for T is a collection {k1x

b1 , . . . , kmx
bm} such that any el-

ement cxl ∈ T can be written as cxl = r
∏m
i=1(kixbi)φi for some φ ∈ Nm and

r ∈ R.

Definition 3.1. Given a matrix A ∈ Nd×n, we define a map π : Nn → Nd by
π : y 7→ Ay. Let NA ⊆ Nd be the image of π. For b ∈ NA let Pb = conv(π−1(b)).
Since π−1(b) is a finite set, this is a convex polytope. We call Pb the fiber of A over
b. A fiber over b is atomic if there do not exist b1, b2 ∈ Nd with b1 + b2 = b such
that Pb = Pb1 + Pb2 , where the addition is Minkowski sum.

Atomic fibers were defined by Adams et al. in [1], where they proved that there
are only a finite number of atomic fibers for a given matrix A. They used this result
to construct a finite strong SAGBI basis as follows:

Theorem 3.2 (Adams et al. [1]). Let T = R[c1xa1 , . . . , cnx
an ] and let A =

[a1, . . . , an] be the d× n matrix with columns the ai. Then {kbxb : Pb is an atomic
fiber of A} is a strong SAGBI basis for T , where kb = gcd({cu = cu1

1 . . . cull : u =
(u1, . . . , un) ∈ π−1(b)}).

The proof of the finiteness result in [1] was constructive but complicated, us-
ing convex geometry techniques. Theorem 1.1 gives a much simpler, though non-
constructive, proof of this result.

Corollary 3.3. For a given matrix A ∈ Nd×n, there are only a finite number of
atomic fibers.

Proof. For b ∈ NA, let Ib = 〈xu : Au = b and u is a vertex of Pb〉. Then the fiber
over b is atomic if and only if Ib is not contained in any Ib′ for b 6= b′. If there
were an infinite number of atomic fibers, then {Ib : Pb atomic} would be an infinite
antichain of monomial ideals, contradicting Theorem 1.1.

Corollary 3.3 can be generalized as follows:

Definition 3.4. Let M be a monomial ideal of S, and A ∈ Nd×n a matrix. Then
the (M,A) fiber over b ∈ NA is the set {u : Au = b and xu /∈ M}. An (M,A)
fiber over b is atomic if there do not exist b1, b2 ∈ NA with b1 + b2 = b such that
for all u in the (M,A) fiber over b there are u1, u2 in the (M,A) fibers over b1, b2
respectively such that u = u1 + u2.

To see that this definition is a generalization of an earlier one, we first need
another definition.
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Definition 3.5. Given a matrix A ∈ Nd×n, we define its vertex ideal, VA, by

VA =
⋂
≺
in≺(IA)

where the intersection is over all term orders ≺, and IA is the toric ideal corre-
sponding to A (see [7] for details on toric ideals).

Note that this is a finite intersection by Corollary 2.1. Since the standard mono-
mial of A-degree b of an initial ideal of a toric ideal corresponds to a vertex of Pb,
and each vertex of Pb is standard for some initial ideal, the set of standard mono-
mials of VA is exactly {xu : u is a vertex of PAu}. Thus Definition 3.1 is Definition
3.5 with M = VA.

Corollary 3.6. There are only finitely many atomic (M,A) fibers for given M and
A.

The proof is the same as for Corollary 3.3. Of particular interest is the case
M = (0). In that case, being atomic corresponds to the nonexistence of b1, b2
such that each lattice point in π−1(b) is a sum of lattice points in π−1(b1) and
π−1(b2), as opposed to the original definition, where only the vertices need be sums
of lattice points in the two smaller fibers. This is a strictly stronger requirement.
The following example shows that a fiber can be atomic with respect to this stronger
definition without being atomic in the original sense.

Example 3.7. Let A be the following matrix:
1 1 1 0 0 0
0 3 2 1 0 0
5 0 2 0 1 0
0 2 1 0 0 1

 .

Let

b1 = (1, 3, 5, 2)T and b2 = (5, 10, 10, 6)T .

We have

π−1(b1) = {(1, 0, 0, 3, 0, 2)T ,

(0, 1, 0, 0, 5, 0)T ,

(0, 0, 1, 1, 3, 1)T}

and

π−1(b2) = {(0, 0, 5, 0, 0, 1)T ,

(1, 2, 2, 0, 1, 0)T ,

(2, 3, 0, 1, 0, 0)T}.

Now Pb1+b2 = Pb1 + Pb2 , so b1 + b2 is not atomic in the first sense. However
(1, 1, 4, 2, 2, 2)T ∈ π−1(b1 + b2), but cannot be written as the sum of lattice points
in Pb1 and Pb2 . This example is based on an example of Oda [6] for lattice polytopes.
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4. Poset formulation

From the second formulation of the theorem, it is natural to suspect that this
is in fact a general theorem about posets. Two properties of the poset Nn which
lend themselves to finiteness results are that Nn has no infinite antichains, and
that it satisfies the descending chain condition. Such posets are known as well-
quasi-ordered. The following example consists of a poset which has no infinite
antichains or infinite descending chains such that the poset of dual order ideals
under containment contain an infinite antichain. This example appears in [3], but
was discovered independently by George Bergman, from whom I learned it.

Example 4.1 (G. Bergman [3]). Let X be the set {(i, j) : i, j ∈ N, i < j}. Set
(i, j) ≺ (i′, j′) if and only if j < j′ and either i = i′ or j < i′. It is straightforward
to check that X is a partially ordered set.

Note that any chain descending from (i, j) can have at most j − 1 members less
than (i, j), so there are no infinite descending chains of elements of X . To see that
all antichains in X are finite, suppose Y is an antichain in X , and let j0 be the
smallest j such that (i, j) ∈ Y , occurring in the pair (i0, j0) ∈ Y . Then (i, j) ∈ Y
implies i ≤ j0, as otherwise j0 < j, and then (i0, j0) ≺ (i, j). If there are two pairs
(i, j), (i, j′) ∈ Y , with j < j′, then (i, j) ≺ (i, j′), so there is only one pair of the
form (i, j) ∈ Y for each value of i. But this means there are at most j0 +1 elements
in Y , so all antichains in X are finite.

Because there are no infinite descending chains or infinite antichains each dual
order ideal in X can be represented by its finite antichain of minimal elements.
One dual order ideal is contained in another exactly when each element of the
finite antichain of minimal elements of the first dual order ideal is greater than
some element of the finite antichain of minimal elements of the second.

For fixed l > 0, let Sl = {(k, l) : k < l} ⊆ X . Then Sl is the finite antichain
of minimal elements of a dual order ideal of X . Suppose the dual order ideal
determined by Sl2 is contained in the one determined by Sl1 . From above, we
must have l1 < l2. But then there is no element of Sl1 less than (l1, l2) ∈ Sl2 , a
contradiction. So the Sl form an infinite antichain of dual order ideals of X .

Theorem 1.2 can, however, be generalized in the following way:

Theorem 4.2 (Farley, Schmidt [4]). Let P and Q be two posets with no infinite
antichains that satisfy the descending chain condition. If the posets of dual order
ideals of P and of Q, ordered by inclusion, have no infinite antichains, then the
same is true for the poset of dual order ideals of P ×Q.

5. Proof of the main theorem

In this section we give the proof of Theorem 1.1.
We first prove Theorem 1.3. The generalized Young’s lattice is isomorphic to

the poset of artinian monomial ideals under inclusion, via the map taking an order
ideal to its complement, so we prove the theorem in that setting.

Lemma 5.1. Let I be an infinite collection of artinian monomial ideals (primary
to the maximal ideal). Then there are two ideals, I, J ∈ I such that I ⊆ J .

Proof. Suppose I consists of an infinite number of artinian monomial ideals, which
are noncomparable with respect to inclusion. Choose I1 ∈ I. Since I 6⊆ I1 for
I ∈ I \ {I1}, each I ∈ I \ {I1} contains some of the finite number of standard
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monomials of I1. There are thus an infinite number of ideals in I which contain
the same set of standard monomials of I1. Call this collection I1. Let J1 be the
intersection of the ideals in I1. We will now build a strictly ascending chain of
monomial ideals. Suppose Ik and Jk have been chosen. Choose an ideal Ik+1 ∈ Ik.
We can again find an infinite collection of ideals in Ik which have the same non-
trivial intersection with the standard monomials of Ik+1. Let Ik+1 be this collection,
and let Jk+1 be the intersection of the ideals in Ik+1. We have Jk+1 ) Jk, since
Jk+1 contains some standard monomials of Ik+1, so in this fashion we get an infinite
ascending chain of monomial ideals in S, which is impossible.

Corollary 5.2. Let I be an infinite collection of artinian monomial ideals. Then
there is an infinite chain I1 ) I2 ) . . . of ideals in I.

Proof. Since S is Noetherian, I contains maximal ideals. There are only finitely
many maximal ideals by Lemma 5.1, so set I1 to be a maximal ideal in I containing
an infinite number of ideals of I, and repeat, setting I = {I ∈ I : I ( I1}.

Proof of Theorem 1.1. Every associated prime of a monomial ideal is a monomial
prime, of which there are only a finite number. We can thus restrict to an infinite
collection of I all of which have the same set of associated primes, which we will also
call I. Now for each ideal in this set we find an irredundant primary decomposition,
writing the ideal as the intersection of monomial ideals primary to an associated
prime in such a way that each associated prime is used only once. Let Iτ be the
primary component of I primary to the monomial prime Pτ = 〈xi : i 6∈ τ〉, where
τ ⊆ [n]. For a fixed τ either {Iτ : I ∈ I} is finite, so there is an infinite number
of I ∈ I with the same Iτ , or we can apply Corollary 5.2 to the polynomial ring
k[xi : i 6∈ τ ]. In either case we get an infinite collection Iτ = {Ik : k ≥ 1} of ideals in
I such that I1τ ⊇ I2τ ⊇ . . . , where the inclusions need not be proper. Since there
are only a finite number of associated primes, by appropriate restrictions we can
find a sequence {Ik : k ≥ 1} such that I1τ ⊇ I2τ ⊇ . . . for each τ such that Pτ is an
associated prime. But since Ik is the intersection of the Ikτ , where τ ranges over
all associated primes Pτ of Ik, this means that I1 ) I2 ) . . . , where the inclusions
are proper, since the Ik are all distinct.
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