
MATHEMATICS OF COMPUTATION
Volume 70, Number 236, Pages 1661–1674
S 0025-5718(01)01275-3
Article electronically published on March 7, 2001

SIEVING FOR RATIONAL POINTS
ON HYPERELLIPTIC CURVES

SAMIR SIKSEK

To Shaheen

Abstract. We give a new and efficient method of sieving for rational points
on hyperelliptic curves. This method is often successful in proving that a
given hyperelliptic curve, suspected to have no rational points, does in fact
have no rational points; we have often found this to be the case even when our
curve has points over all localizations Qp. We illustrate the practicality of the
method with some examples of hyperelliptic curves of genus 1.

1. Introduction

By a hyperelliptic curve we mean a curve of the form

C : y2 = f(x),(1)

where f is a nonconstant polynomial in Z[x] with no repeated roots. We restrict our
attention to the case where the degree of f is even, though doubtless the methods of
this paper can easily be adapted to the case where f has odd degree, and presumably
with more trouble to other classes of algebraic curves. We are concerned with
finding rational points on (1), and with proving that there are no rational points
if this seems to be the case. Using what is essentially an algorithm due to Birch
and Swinnerton-Dyer, one can check whether equation (1) is everywhere locally
soluble; this is explained in Section 3. Trivially, this is a necessary condition for
the existence of rational points, and so we assume that equation (1) is everywhere
locally soluble. It is trivial to check if the points at infinity on (1) are rational, and
thus we may restrict our attention to points on the affine model. By computing the
real roots of f , we can write down a finite list of disjoint real intervals I1, . . . , Im
such that for any real number x we have that f(x) ≥ 0 if and only if x ∈ Ij for
some j. We let I be one of these intervals, and we look at rational points (x, y) on
the affine curve C, such that x ∈ I. We can write

x =
X

Z
, y =

Y

Zn
,
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where 2n = d is the degree of f and X , Y , Z are integers satisfying

X, Z are coprime integers, Z ≥ 1, and
X

Z
∈ I.(2)

Let F be the homogeneous binary form satisfying F (X,Z) = Zdf(X/Z). Then

Y 2 = F (X,Z).(3)

In this paper we use quadratic reciprocity to derive finite sets of congruences for
expressions of the form βX − αZ for suitably chosen pairs of integers α, β. It is
these congruences, gathered for many such pairs α, β, which will help us sieve for
solutions to (3) satisfying (2), which in turn correspond to rational points on (1).
In practice, we have often found that these congruences are “incompatible with the
curve” (a term explained later), and this leads to a proof of the nonexistence of
rational points on the curve. This is illustrated by the example in Section 4. Even
when the congruences derived are “compatible with the curve” they can still help
in finding rational points as in the example in Section 9.

The basic idea in this paper is motivated by Lind’s counterexample to the Hasse
principle (see [Sil], pages 316–318, or [Ca2], page 284). I am grateful to Nigel Smart
for many helpful discussions during the course of writing this paper, and to John
Cremona and the referee for pointing out many corrections and improvements in
both the presentation and contents of this paper.

2. Quadratic reciprocity

Suppose that α, β is a given pair of coprime integers such that

F (α, β) = γδ2,(4)

where γ, δ are nonzero integers, and γ is square-free and not equal to 1. We want
to derive information about the prime divisors of βX − αZ where (X,Z, Y ) is any
point on (3) satisfying the conditions (2). As we will see, this will allow us to write
down a finite set of congruences for βX − αZ.

Lemma 2.1. Suppose the triple (X,Z, Y ) satisfies (2) and (3). Suppose
pr|(βX − αZ), where p is a prime and r ≥ 1. Then γδ2 is congruent to a square
modulo pr.

Proof. Suppose that pr|(βX − αZ), where p is a prime and r ≥ 1. Since X, Z
are coprime, and α, β are coprime, it follows that there exists an integer λ, not
divisible by p, such that

X ≡ λα, Z ≡ λβ (mod pr).

Combining these congruences with the equations (3) and (4) we get

Y 2 = F (X,Z) ≡ λ2nF (α, β) = γδ2.λ2n (mod pr).(5)

The lemma now follows.

We need the following standard result from the theory of quadratic reciprocity.

Lemma 2.2. Suppose as above that γ is a square-free integer, γ 6= 0, 1, and let

N =
{
|γ| if γ ≡ 1 (mod 4),
4|γ| if γ ≡ 2 or 3 (mod 4).

Then there exists a unique subgroup H of (Z/NZ)∗ such that if p is any prime not
dividing N , then γ is a square modulo p if and only if the reduction of p modulo N
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is contained in H. Moreover H has index 2 in (Z/NZ)∗. Further −1 ∈ H if and
only if γ > 0.

Proof. The Lemma follows trivially from the definition and standard properties of of
the Kronecker-Jacobi symbol (see [Cohen], page 28). Using these same properties,
the subgroup H can be computed easily.

Before proceeding further, we set the following notations. If R is a unique
factorization domain, we denote by PC(R) the set of triples (X,Z, Y ) in R3 such
that X and Z are coprime and equation (3) is satisfied. Moreover we let

R(p) be the quantity sup {vp(βX − αZ) | (X,Z, Y ) ∈ PC(Zp)} ,

p1, . . . , pl be the distinct primes dividing N,

q1, . . . , qm be the distinct primes dividing 2δ which do not divide N and
whose reduction modulo N is not contained in H .

Finally we define B to be the set of all products pr11 · · · prll q such that

• 0 ≤ ri ≤ R(pi) for i = 1, . . . , l,
• q = 1 or q = qj for some j such that R(qj) ≥ 1.

Lemma 2.3. For any prime p dividing N we have R(p) ≤ 2vp(δ) + 1. It trivially
follows that the set B is finite.

Proof. Suppose first that p is odd. Now p divides N and hence it divides γ exactly
once. Suppose that (X,Z, Y ) ∈ PC(Zp) and let e = vp(δ), r = vp(βX − αZ). If
r ≥ 2e+ 2, then by equation (5) we get that

Y 2 ≡ p2e+1 × (p-adic unit) (mod p2e+2)

giving a contradiction. This proves Lemma 2.3 when p is odd.
Suppose now that p = 2. The proof is exactly the same as above in the case 2|γ.

So suppose that γ is odd. Since 2 divides N we must have that γ ≡ 3 (mod 4).
Thus if r ≥ 2e+ 2, then

Y 2 ≡ 3× 22e (mod 22e+2),

which implies that 3 is a square modulo 4 giving a contradiction. This completes
the proof.

We come now to our main theorem which gives us our possible congruences for
βX − αZ.

Theorem 2.4. Let I be an interval in R such that f(x) ≥ 0 for all x ∈ I. Let

ζ =

{
−1 if βw − α is strictly negative for all w in I,

1 otherwise.

Moreover suppose that (X,Z, Y ) is an integer triple satisfying (3) and (2). Then

βX − αZ ≡ ζPh (mod P.N)(6)

for some P ∈ B, and h ∈ H.
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Proof. We first note that βX−αZ cannot be zero for otherwise it is easy to deduce
that γ is a square, contradicting our assumptions. Write

|βX − αZ| = pr11 · · · p
rl
l M,(7)

where M is a positive integer coprime to N , and r1, . . . , rl are nonnegative. We
want to write down a set of possible congruences for |βX−αZ|. We begin by doing
this for M .

We claim that M satisfies one of the following congruences: either

M ≡ h (mod N)

for some h ∈ H , or

M ≡ hqj (mod Nqj)

for some h ∈ H and some qj satisfying R(qj) ≥ 1. To see this, suppose that q is a
prime dividing M . Recall that M is coprime to N and thus q does not divide γ.
By Lemma 2.1 we see that if q does not divide 2δ, then γ is a quadratic residue
modulo q and so by Lemma 2.2 the reduction of q modulo N is in H . Hence we
can write

M = qs11 · · · qsmm M ′,

where the reduction of M ′ modulo N is contained in H .
Recall that H is a subgroup of index 2 in (Z/NZ)∗. Thus if

∑
sj ≡ 0 (mod 2),

then the reduction of M modulo N is in H ; that is M ≡ h (mod N) for some
h ∈ H .

Otherwise M = qjM
′′ for some 1 ≤ j ≤ m, where M ′′ ≡ h (mod N) for some

h ∈ H . Thus M ≡ hiqj (mod Nqj), and as qj divides M and thus divides βX−αZ,
it follows from the definition of R above that R(qj) ≥ 1. This establishes our claim.

Next we observe from (7), again by the definition of R, that 0 ≤ ri ≤ R(pi) for
i = 1, . . . , l. Thus

|βX − αZ| ≡ P.h (mod P.N)

for some P ∈ B and h ∈ H .
The theorem now follows trivially in the case that w → βw − α has a fixed sign

over the interval I. Thus we may suppose that β is nonzero and α
β is contained in

I. But by assumption f(x) ≥ 0 for all x in I. Thus γδ2 = β2nf(α/β) ≥ 0, where
2n is the degree of f . Hence as γ, δ are nonzero it follows that γ is positive, and
so by Lemma 2.2 that −1 ∈ H . Thus multiplication by −1 simply permutes the
elements of H , and so

βX − αZ ≡ P.h (mod P.N)

for some P ∈ B and h ∈ H . This completes the proof of Theorem 2.4.

3. Local solubility I

Given a hyperelliptic curve C defined by equation (1), where as before f is a
square-free nonconstant polynomial in Z[x] with even degree, we would like to be
able to test whether C has points over all localizations of Q (by which we mean R
and Qp for finite primes p). Testing for the existence of real points is trivial; we
merely have to check that the polynomial f is not totally negative.

Recall that the genus of C is g = n−1, where 2n = d is the degree of f . Suppose
now that p does not divide 2∆, where ∆ is the discriminant of f . Then C has good



HYPERELLIPTIC CURVES 1665

reduction at p and its genus over the finite field Fp is still g. Thus by a Theorem of
Weil (the so-called Riemann hypothesis for function fields, see [Cal], page 342), we
know that we need only test that C (Qp) is nonempty for the finitely many primes
p which either divide 2∆ or satisfy p < 4g2.

Thus far everything is standard. Now we need a method of testing for a given
prime p whether or not C has points over Qp. Here we use an algorithm due to
Birch and Swinnerton-Dyer given in [Cre1]. The algorithm is stated on page 81 of
[Cre1] for the case d = 4. However, it is pointed out (page 82 of [Cre1]) that the
same algorithm works for any degree with essentially trivial changes. In fact the
algorithm does much more than just testing for local solubility.

Lemma 3.1. For any x0 ∈ Zp, and r ≥ 0, we can determine whether or not
there exists x ∈ Zp with vp(x − x0) ≥ r and f(x) = y2 for some y ∈ Zp. If ∆
is the discriminant of f and s = vp(∆), then this decision can be made in time
O
(
ps+1 log(p)2

)
.

Proof. The first part of the lemma is an elementary consequence of Hensel’s Lemma.
The details are given in the algorithm Zp-soluble in [Cre1], page 82, which is
originally due to Birch and Swinnerton-Dyer. The book does not give a complexity
estimate but it is not hard to supply one. Assume p is odd, the case p = 2 being
similar. The algorithm involves invoking a certain “subalgorithm” at most ps+1

times. In this “subalgorithm” one is required to decide if a certain p-adic integer
is a p-adic square; i.e., that its p-adic valuation is even, and that what is left after
the powers of p have been removed is a square modulo p. The estimate given in the
lemma is now clear once we recall that a Legendre symbol (ap ) can be computed in
O(log(p)2) (see [Cohen], page 31).

3.1. Computing R(p). We start by rephrasing Lemma 3.1 as follows:

Lemma 3.2. Given coprime integers α, β, a prime p and an integer r ≥ 0, we can
determine whether or not there exists (X,Z, Y ) ∈ PC(Zp) such that pr|(βX −αZ).
Again, if ∆ is the discriminant of f and s = vp(∆), then this decision can be made
in time O

(
ps+1 log(p)2

)
.

Proof. Suppose first that p does not divide α. Let g be the reverse polynomial to
f ; that is g(x) = xdf(1/x). It is then easy to show that there exists (X,Z, Y ) ∈
PC(Zp) with pr|(βX−αZ) if and only if there exists x in Zp such that vp(x− β

α ) ≥ r
and g(x) is a p-adic square. By Lemma 3.1 this decision can be made and in the
time stated.

If p divided α, then p does not divide β and we proceed similarly.

Corollary 3.3. Suppose α, β, γ, δ are integers satisfying (4), where α, β are
coprime, δ is nonzero, and γ is square-free and not equal to 0 or 1. Let p be a
prime. Then R(p) is effectively computable. If s is as in the previous lemma, then
this computation can be carried out in time O

(
(vp(δ) + 1) ps+1 log(p)2

)
.

Proof. It follows from the definition of R and the proof of Lemma 2.1 that R(p) =∞
if and only if γ is a p-adic square.

Suppose now that γ is not a p-adic square. Then we can simply continue testing,
for each r ≥ 0, if there exists (X,Z, Y ) ∈ PC(Zp) such that pr|(βX − αZ). The
greatest value of r for which the answer is yes is R(p), and thus R(p) is effectively
computable. It remains to prove the complexity estimate given. From equation (5),
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since γ is not a p-adic square, r ≤ 2vp(δ) if p is odd and r ≤ 2vp(δ) + 2 if p = 2.
The estimate can now be trivially deduced from the previous lemma.

4. An example

Consider the elliptic curve

E : Y 2 + Y = X3 −X2 − 929X − 10595.

This is the first curve in the tables of [Cre1] whose Mordell-Weil group is torsion-
free but whose Tate-Shafarevich group is nontrivial. In [Me,Si,Sm] the authors used
the method of further descents to show that all three nontrivial 2-coverings of E
have no rational points and thus that the curve has rank 0 and that the 2-primary
part of the Tate-Shafarevich group of the curve has order 4. This has also been
proved in [Ca3] using a different method. The results are in agreement with the
values predicted by the Birch and Swinnerton-Dyer conjectures. We show the same
result using our method which we claim is the simplest since, unlike the methods
used in [Me,Si,Sm] and [Ca3], it does not involve any number field arithmetic. The
2-coverings are

y2 = −4x4 + 4x3 + 92x2 − 104x− 727,
y2 = −108x4 − 4x3 − 76x2 − 112x− 31,
y2 = −229x4 − 135x3 − 238x2 − 84x− 8,

and were in fact generated by Cremona’s program mwrank; see [Cre1]. Let us
consider the first 2-covering above and denote it by C. Write

f(x) = −4x4 + 4x3 + 92x2 − 104x− 727,
F (X,Z) = −4X4 + 4X3Z + 92X2Z2 − 104XZ3 − 727Z4.

By considering the roots of f we see that f(x) is nonnegative if and only if x ∈ I,
where I = [−3.31353,−3.31277] (the end-points of the interval have been rounded
to five decimal places). Clearly C has no points at infinity and so it is sufficient to
show that there are no triples (X,Z, Y ) satisfying (2) and (3). We have program-
med the algorithms in this paper (including the ones to follow) using the package
pari/gp and ran them on a SGI workstation.

First we looked at all pairs of coprime α, β such that −100 ≤ α ≤ 100 and
0 ≤ β ≤ 100. We expressed F (α, β) in the form γδ2 with γ square-free, and noted
all the quadruples with |γ| ≤ 10. We found the following values.

α β γ δ
1 0 -1 2
−53 16 −1 2
−27 8 −1 58
−33 8 −1 838
−10 3 −7 1

5 2 −7 34
It took 17 seconds to produce this table, and only about 0.4 seconds for our program
based on the algorithm in Section 8 to show that there are no triples (X,Z, Y )
satisfying (2) and (3); hence C has no rational points. For illustration we do some
of the calculations explicitly. Suppose (X,Z, Y ) satisfies (2) and (3). Let us take the
second quadruple in the above table, that is α = −53, β = 16, γ = −1, δ = 2, and
determine the possible congruences for 16X + 53Z using the method in Section 2;
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we follow the notation of that section. Here N = 4 and H = {1}. Note that the
only prime dividing 2γδ = −4 is 2. Hence all the odd primes dividing 16X + 53Z
must be congruent to 1 modulo 4. Further our program tells us that R(2) = 1;
that is, the power of 2 dividing 16X+ 53Z does not exceed 2. However it is easy to
show that 4 does not divide 16X+ 53Z. Otherwise 4 divides Z, and by considering
the coefficients of F in Y 2 = F (X,Z) it follows that 16 divides Y 2 + 4X2. This
implies that 2 divides X contradicting the fact that X and Z must be coprime
(since (X,Z, Y ) satisfies (2)).

Thus |16X + 53Z| ≡ 1 (mod 4) or |16X + 53Z| ≡ 2 (mod 8). However since by
assumption (X,Z, Y ) satisfies (2), we know that Z ≥ 1 and X/Z ∈ I. It is easy
to see that 16x+ 53 is negative for all x ∈ I. Thus 16X + 53Z is negative. Hence
either 16X + 53Z ≡ 3 (mod 4) or 16X + 53Z ≡ 6 (mod 8), or equivalently either
Z ≡ 3 (mod 4) or Z ≡ 6 (mod 8). Similarly, using the first quadruple in the above
table, either Z ≡ 1 (mod 4) or Z ≡ 2 (mod 8). This contradiction shows that our
first 2-covering does not have any rational points.

Our program also showed that the second and third 2-coverings do not have any
rational points in a few seconds.

5. Solving a general inhomogeneous system

of linear equations over Z and Zp
We will need to solve systems of simultaneous inhomogeneous linear equations

over some principal ideal domain R which will be either Z or Zp (where p is some
prime). I am indebted to John Cremona for showing me how to do this using Smith
Normal Forms. Suppose our system is given by

Ax = b,(8)

where b ∈ Rm andA is anm×nmatrix with entries from R. By the standard theory
of Smith Normal Forms (see, for example, [Cohn], page 322), one can compute
invertible square matrices U, V of orders m and n, respectively, over R, such that
UAV has a diagonal submatrix in the top left-hand corner and zeros elsewhere; the
diagonal has entries di 6= 0 for i = 1, . . . , r, and di divides di+1 for i = 1, . . . , r− 1
(here r is the rank of A).

Lemma 5.1. With the notation as above, let S = UAV and b′ = Ub. Let
b′1, . . . , b

′
m be the entries of b′, and let ej be the element of Rn which has 1 in

the jth position and 0 elsewhere. Then equation (8) has solutions if and only if
di divides b′i for i = 1, . . . , r. If this is the case, let y0 be the (column) vector in
Rn with entries b′1/d1, . . . , b

′
r/dr, 0, . . . , 0, and let x0 = V y0. Then the general

solution to equation (8) is x = x0 +
∑n−r

j=1 kjxj for any k1, . . . , kn−r in R, where
xj = V ej+r for j = 1, . . . , n− r.

Proof. Write y = V −1x. Then Ax = b if and only if Sy = b′. The rest is now
trivial.

6. Inhomogeneous congruences

Later in this paper, we need to parametrize the solutions to systems of simulta-
neous congruences of the form

βiX − αiZ ≡ ci (mod di)(9)



1668 S. SIKSEK

for i = 1, . . . , n. Here αi, βi, ci, di are all integers. Each di ≥ 2 and each pair
αi, βi are coprime.

Lemma 6.1. Let A be the set of (XZ ) ∈ Z2 which satisfies the system of congru-
ences (9). Suppose A is nonempty. Then there exists vectors u, v, w ∈ Z2 such
that

A = {u + λv + µw : λ, µ ∈ Z} ,(10)

v and w being linearly independent. Moreover if we write

v =
(
v1

v2

)
, w =

(
w1

w2

)
(11)

and we let d = lcm(d1, . . . , dn), then d divides w2v1 − w1v2.

Proof. The lemma is elementary except perhaps for the last part. Let u, v, w be
as in the statement of the lemma. Let Bi (for i = 1, . . . , n) be the set of solutions
in Z2 to the single congruence βiX − αiZ ≡ 0 (mod di). Let B be the intersection
of B1, . . . , Bn. Clearly B has Z-basis v, w, and is a submodule of each Bi which
is in turn a submodule of Z2, all having rank 2. Thus the index of each Bi in Z2

divides the index of B in Z2. Now the latter index is w2v1 − w1v2, while for each
i, the former index is di (for this we need the assumption, made above, that each
pair αi, βi is coprime). The lemma now follows.

To parametrize the solutions to the system (9), we write X1 = X, X2 = Z and
then solve the simultaneous equations

βiX1 − αiX2 + diXi+2 = ci, i = 1, . . . , n(12)

using the method explained above in Section 5. It is clear that the n × (n + 2)
matrix with ith row βi,−αi, 0, . . . , 0, di, 0, . . . , 0, where the di is in the i+ 2 place
(i = 1, . . . , n), has rank n, and therefore its kernel has rank 2. Thus for (12), if it has
a solution at all we are able to write down vectors u′, v′, w′ ∈ Zn+2, with v′, w′

independent, such that X is a solution to (12) if and only if X = u′ + λv′ + µw′

for some λ, µ ∈ Z. We let u, v, w be the vectors in Z2 obtained from the first
two entries of u′, v′, w′, respectively. These can be taken to be the u, v, w in
the above lemma.

7. Local solubility II

It is apparent from above that we should be looking for triples (X,Z, Y ) which
satisfy (2) and (3) as well as a system of linear congruences such as (9). Clearly
a necessary condition for the existence of such solutions is that (9) should itself
have solutions. We assume that this is the case and that we have parametrized the
solutions as in Lemma 6.1. Another necessary condition is that for each prime p
there exists (X,Z, Y ) ∈ PC(Zp), such that(

X
Z

)
= u + λv + µw

for some λ, µ in Zp (where we abuse notation by letting Z∞ = R). We would like
to test whether this is the case for all primes p. We write v, w as in (11). If p =∞
or if p is finite and does not divide w2v1−w1v2, then it is clear that every element
of Z2

p can be written in the form u + λv + µw for some λ, µ ∈ Zp. However, we
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have made the assumption that C has points over all localizations of Q, thus it is
sufficient to check solubility only for the finitely many primes dividing w2v1−w1v2.

Then we want to ask for each prime p dividing w2v1 − w1v2, does there exist
λ, µ ∈ Zp such that if we let

X = u1 + λv1 + µw1,

Z = u2 + λv2 + µw2,

then min(vp(X), vp(Z)) = 0 and F (X,Z) is a p-adic square? We can answer yes
precisely when we can positively answer one of the following two questions:

1. Is there a solution to the simultaneous equations

x = εu1 + λv1 + µw1

1 = εu2 + λv2 + µw2

}
(13)

with x, λ, µ ∈ Zp and ε ∈ Zp\pZp such that f(x) is a p-adic square?
2. Is there a solution to the simultaneous equations

1 = εu1 + λv1 + µw1

pz = εu2 + λv2 + µw2

}
with z, λ, µ ∈ Zp and ε ∈ Zp\pZp such that F (1, pz) is a p-adic square?

Let us look at the first question. We can rewrite equation (13) in the form

(
u1 v1 w1 −1
u2 v2 w2 0

)
ε
λ
µ
x

 =
(

0
1

)
.(14)

We can solve this using the methods of Section 5. If this does not have a solution,
then we cannot answer Question 1 positively and we move on to Question 2. Sup-
pose (14) has a solution. Since w2v1−w1v2 6= 0, the rank of the matrix in (14) is 2.
Thus we can write down εj, λj , µj , xj ∈ Zp for j = 1, 2, 3, such that the solutions
to (14) are precisely those vectors which can be written in the form

ε
λ
µ
x

 =


ε1
λ1

µ1

x1

+ φ


ε2
λ2

µ2

x2

+ ψ


ε3
λ3

µ3

x3


for some φ, ψ ∈ Zp.

We now proceed as follows. We first write down a finite set S of “p-adic intervals”;
that is, subsets of Zp of the form x0 + psZp where x0 ∈ Zp and s ≥ 0. We require
that S satisfies the following: x is contained in one of the intervals in S if and only
if there exists φ, ψ ∈ Zp such that
• x = x1 + φx2 + ψx3,
• ε1 + φε2 + ψε3 is a p-adic unit.

Once we have S, we know that to answer our question we must check if there exists
x in some interval x0 +psZp in S such that f(x) is a p-adic square. For each interval
x0 + psZp in S we can use Lemma 3.1 to decide if it contains an x for which f(x)
is a p-adic square. Thus to answer Question 1 it is now sufficient to write down S.

Let s = min(vp(x2), vp(x3)). Let x′2 = x2/p
s and x′3 = x3/p

s. If x = x1 + φx2 +
ψx3, then ps|(x − x1) and (x − x1)/ps = φx′2 + ψx′3. Now if p does not divide



1670 S. SIKSEK

(ε3x′2 − ε2x′3) then for any values we wish to give to (x− x1)/ps and ε− ε1 we can
solve the simultaneous system

(x− x1)/ps = φx′2 + ψx′3,

ε− ε1 = φε2 + ψε3,

with φ, ψ ∈ Zp. Hence in this case S = {x1 + psZp}. If however p|(ε3x′2 − ε2x′3),
then we can write down ω in Z, such that εi ≡ ωx′i (mod p) for i = 2, 3. Thus
if x = x1 + φx2 + ψx3 and ε = ε1 + φε2 + ψε3, then ε − ε1 ≡ ω {(x− x1)/ps}
(mod p). Thus if p|ω and p|ε1, then S is empty and we are finished. If p divides ω
but not ε1, then S = {x1 + psZp} and we are finished. If p does not divide ω, then
we want (x − x1)/ps 6≡ −ε1/ω (mod p). Let t′ be the element of {0, 1, . . . , p− 1}
which is congruent to −ε1/ω modulo p, and let T = {0, 1, . . . , p− 1} \ {t′}. Then
S =

{
(x1 + pst) + ps+1Zp : t ∈ T

}
.

Question 2 can be decided in a similar manner and can be left for the reader to
verify.

Definition. We say that the system of congruences (9) is compatible with the
curve (3), if

1. The system has solutions (and thus a parametric solution which we can write
down as in Section 6),

2. If it passes the above test.
Otherwise, we say that the system of congruences is not compatible with the cur-
ve (3).

The following lemma is trivial.

Lemma 7.1. With notation as above, given a system of congruences (9), we know
1. We can test if it is compatible with the curve using the above method.
2. If the system of congruences is not compatible with the curve then there is no

triple (X,Z, Y ) satisfying (2) and (3) such that (X,Z) satisfies the simulta-
neous congruences.

8. The algorithm

Given an interval I such that f(x) is nonnegative for all x ∈ I, and a quadruple
(α, β, γ, δ) satisfying α, β are coprime, δ is nonzero, γ is square-free and not
equal to 0 or 1, and F (α, β) = γδ2.

Notation. Let B, N , ζ be as in Theorem 2.4. Define

G(α, β, I) = {(ζPh, PN) | P ∈ B, h ∈ H} .

We now restate the main result of Section 2.

Theorem 8.1. Let I be an interval in R such that f(x) is nonnegative for all x ∈ I.
Suppose (α, β, γ, δ) is a quadruple of integers satisfying the conditions above, and
let G(α, β, I) be as above. If (X,Z, Y ) satisfies (2) and (3), then there exists a pair
(u,M) in G(α, β, I) such that βX − αZ ≡ u (mod M).

Proof. This is simply a restatement of Theorem 2.4.

Suppose now that we are given an interval I such that f(x) is nonnegative for all
x ∈ I, and a set of quadruples (αi, βi, γi, δi), i = 1, . . . ,m, each satisfying the
usual conditions: αi, βi are coprime, F (αi, βi) = γiδ

2
i , δi is nonzero, and γi is
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square-free and is neither 0 nor 1. We have by the above theorem, for each i, a
finite set of pairs Gi = G(αi, βi, I), such that if (X,Z, Y ) satisfies (2) and (3), then
for each i, βiX − αiZ ≡ u (mod M) for some pair (u,M) ∈ Gi.

Now for each i we can fix a pair (ui,Mi) ∈ Gi and ask if there exists some
(X,Z, Y ) satisfying (2) and (3) such that

βiX − αiZ ≡ ui (mod Mi)(15)

for i = 1, . . . ,m. We do not know of a way which will always answer this ques-
tion. Rather we can attempt to show that the congruences are inconsistent: that
is, we can apply the method of Section 7 to test if the system of congruences is
compatible with the curve (3) (this term is explained at the end of Section 7). If it
is not, then the answer is clearly no. If it is compatible with the curve, then while
performing that test we will have parametrized the solutions to the simultaneous
congruences (15); we will have written down a triple of vectors u, v, w ∈ Z2 such
that any solution to the simultaneous congruences is of the form(

X
Z

)
= u + λv + µw(16)

for some λ, µ ∈ Z. We can then try small values of λ, µ ∈ Z and ask if these give
a pair X, Z such that F (X,Z) is a square in Z.

If we find that for each possible combination of the (ui,Mi) ∈ Gi the system of
congruences (15) is not compatible with the curve, then it is clear that there are
no triples (X,Z, Y ) satisfying (2) and (3). That this can happen is illustrated by
our example in Section 4.

If we are to follow this strategy, then we will have to look at d1 × d2 × · · · × dm
systems of simultaneous congruences, where di is the size of Gi. This number can be
enormous. In practice we aim to choose our quadruples (αi, βi, γi, δi) in such a way
that many of the γ’s have common factors. Now for each i, the integer γi divides
every M of every pair (u,M) in Gi. We rearrange the quadruples so that, as often as
possible, several consecutive γ’s have a common factor. We then do what is called
a “depth-first search”. Given a set of quadruples (αi, βi, γi, δi), i = 1, . . . ,m, and
the corresponding Gi, the algorithm below (which we write in pseudo-code) produces
a set of triples u, v, w ∈ Z2. The algorithm is designed so that such a triple is in
the output if and only if for some choice of (u1,M1) ∈ G1, . . . , (um, Gm) ∈ Gm, the
system (15) is compatible with (3), and this triple gives a parametric solution to
the system of congruences.

In the algorithm we think of Gi as an ordered list of pairs. Thus it makes sense
to speak of the FIRST PAIR(Gi), and the LAST PAIR(Gi). If (u,M) is in Gi
but is not the last pair, then we let the one after it be NEXT PAIR(Gi, (u,M)).
In the algorithm L is a sequence of pairs [(ui,Mi) : i = 1, . . . , r], where always
r = LENGTH(L) is at most ≤ m, the number of our Gi. We always have that each
(ui,Mi) is an element of Gi for i = 1, . . . , r. Further APPEND(L, (u,M)) appends
the pair (u,M) to end of L.

TEST(L) means test the system of congruences βiX−αiZ ≡ ui (mod Mi) with
i = 1, . . . , r for compatibility with the curve (3). If it is not compatible with the
curve then TEST(L) = 0, and otherwise TEST(L) = [u,v,w], where u, v, w
parametrize the solutions to the congruences in the usual way.
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INPUT: Interval I, quadruples (αi, βi, γi, δi), and Gi, i = 1, . . . ,m.
OUTPUT: A set of triples u, v, w ∈ Z2 (see Theorem 8.2 below).
1. BEGIN
2. L = [FIRST PAIR(G1)];
3. T = TEST(L); IF T = 0 GO TO STEP 5;
4. IF LENGTH(L) < m THEN L = APPEND(L, FIRST PAIR(Gr+1)) AND GO
TO STEP 3 OTHERWISE OUTPUT T;
(Compute the largest i such that L[i] 6= LAST PAIR(Gi) and let this be s)
5. s = m; f = 1;
6. WHILE s ≥ 0 AND f = 1 DO
7. IF L[s] 6= LAST PAIR(Gs) THEN f = 0 OTHERWISE s = s− 1 OD;
8. IF s = m THEN END;
9. L[s] = NEXT PAIR(Gs, L[s]); L = [L[i] : i = 1, . . . , s];
10. GO TO STEP 3;

Theorem 8.2. Given an interval I such that f(x) ≥ 0 for all x ∈ I, quadruples
(αi, βi, γi, δi) (i = 1, . . . ,m) satisfying the usual conditions, and the corresponding
Gi, the above algorithm produces a finite set of triples of vectors [u,v,w] (with
u, v, w ∈ Z2) subject to the following condition: a triple is in the output if and
only if there exists (u1,M1) ∈ G1, . . . , (um,Mm) ∈ Gm such that the system of
congruences (15) is compatible with the curve (3), and [u,v,w] give a parametric
solution to the congruences.

In particular, if there exists (X,Z, Y ) satisfying (2) and (3) then X, Z satisfies
equation (16) for some integers λ, µ, and some triple in the output [u,v,w]. If the
algorithm does not give any output, then there are no triples (X,Z, Y ) satisfying (2)
and (3).

Proof. Suppose for now that the first statement of the theorem holds. If (X,Z, Y )
satisfies (2) and (3), then by Theorem 8.1, there exists for each i a pair (ui,Mi) ∈ Gi
such that the simultaneous congruences (15) hold. Then these congruences have a
global solution on the curve and thus are compatible with it. Now the second part
of the theorem follows from the first.

Let us now come to the first statement. Consider a directed graph where the
vertices are the elements of Gi for i = 1, . . . ,m, and where vertices (u,M), (u′,M ′)
are connected by an arrow (u,M)→ (u′′,M ′′) if and only if there is some 1 ≤ i ≤
m−1 such that (u,M) ∈ Gi and (u′,M ′) ∈ Gi+1. We write [(u1,M1), . . . , (ur,Mr)]
for the path which starts with (u1,M1) ∈ G1 and finishes in (ur,Mr) ∈ Gr . What we
want in effect is for our algorithm to determine all paths [(u1,M1), . . . , (um,Mm)]
such that the corresponding system (15) is compatible with the curve (3). Now
we observe that if, for some r < m, the system of congruences corresponding to
the path [(u1,M1), . . . , (ur,Mr)] is not compatible with the curve, then neither
is any extension of it [(u1,M1), . . . , (ur,Mr), (ur+1,Mr+1), . . . , (um,Mm)] for any
elements (uj ,Mj) ∈ Gj with j = r + 1, . . . ,m.

What is now needed is merely to carry out a “depth-first search” of a directed
graph (see for example [AHU]) and it can safely be left for the reader to see that
our algorithm does exactly that (bearing in mind that the algorithm L records the
current path).
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The above algorithm minimizes the storage requirement. Essentially the only
storage is the input and final output. Also the fact that we choose and rearrange
our input so that successive γ’s often have common factors probably greatly reduces
the running time. To see this, suppose say that γ1 and γ2 have the common factor
l > 1. Suppose in the above algorithm that L = [(u1,M1), (u2,M2)] is given. Here
we must have that (ui,Mi) ∈ Gi for i = 1, 2. Then M1, M2 have l as a common
factor. It is then fairly likely that for each prime p dividing l, the simultaneous
pair of congruences (15) with i = 1, 2 will have exactly one solution, say x, z
modulo that p. We expect that roughly 50 percent of the time F (x, z) is not a
square modulo p, and that even if it is, our solution modulo p does not necessarily
lift to give us a p-adic point on PC(Zp). Thus when running our algorithm, we
have a good chance of not having to go any deeper at this stage and we simply
replace (u2,M2) with the next pair in G2 (or if (u2,M2) is the last pair in G2, then
we replace (u1,M1) by the next pair in G1 and we let L = [(u1,M1)]).

9. A second example

If our algorithm fails to prove the nonexistence of rational points on our hyper-
elliptic curve, or if indeed the curve does have rational points, then it may still
be useful to search for all rational points whose height is less than a certain given
bound. It is the purpose of this example to illustrate how the output from the
algorithm of the previous section may be used to speed up this search.

Consider the curve

y2 = x3 − 1063395x− 422075394

of conductor 3672. This curve comes from Cremona’s extended tables of elliptic
curves available via the World Wide Web from: http://www.nott.ac.uk/perso-
nal/jec/ftp/data. The conjecture of Birch and Swinnerton-Dyer predicts that it
has rank 1, and we content ourselves with finding one point of infinite order on the
curve. Cremona’s mwrank gives the following 2-covering:

Y 2 = −216X4 + 252X3Z − 315X2Z2 − 1476XZ3− 762Z4.

We define f(x) and F (X,Z) as usual. Note that f(x) is nonnegative if and only if
x ∈ I, where I = [−0.81295674,−0.81294900] (we have rounded the end-points of
the interval to eight decimal places). We did a search for quadruples α, β, γ, δ
as in the example in Section 4 but this time with range −200 ≤ α ≤ 200 and
0 ≤ β ≤ 200. We found the following values.

α β γ δ
−113 139 3 1
−13 16 −6 2
−5 6 −3 18
1 0 −6 6

As stated previously, we implemented all the algorithms in this paper in pari/GP.
Our main algorithm of Section 8 took 4.5 seconds to run and gave 4 triples [u,v,w],
which we give here as triples of row vectors:

[(421, 6), (36, 0), (24, 144)] , [(23, 66), (36, 0), (24, 144)] ,
[(1273, 6), (108, 0), (96, 144)] , [(71, 66), (108, 0), (96, 144)] .

In the notation of Lemma 6.1, the quantities |w2v1 − w1v2| are 432, 432, 1296,
1296, respectively. To get an idea of just how efficient our sieve is, we note that
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given (say) a very large square in R2, the proportion of (X,Z) ∈ Z2 in our square
which can be expressed in the form u + λv + µw for some integral λ, µ, where
[u,v,w] is one of our four triples is roughly 2/432 + 2/1296 = 1/162. In fact using
these four triples, it took our program roughly 4 minutes to search the region

−107 ≤ X ≤ 107, 1 ≤ Z ≤ 107,

and to find one point (X,Z, Y ) = (−2021077, 2486082, 168298146) on our 2-cover-
ing; here

(X,Z) = u− 67651v + 17264w,

where [u,v,w] is the second triple given above. Using the standard syzygy in
Section 3.6 of [Cre1] we get the point[

5580280211292650758
87420573910609

,
13180351117189258356213783626

817373361745081357273

]
on our original elliptic curve. By contrast, a program written by Cremona based
on more usual sieving ideas (as described in Section 3.6 of of [Cre1]) and running
on the same machine, took roughly 95 minutes to find the point on the 2-covering.

We point out that there are other methods/programs which can be used to
compute the generator above. For example, there is an (unpublished) experimental
method due to Cremona and Silverman ([Cre2]) for curves of rank 1 using Heegner
points and canonical heights. We would like to thank J. Cremona for running his
implementation of this method on the above example. The program, running on a
90MHZ Pentium, took just 79 seconds to find the point on the elliptic curve.
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