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REAL BOUNDS, ERGODICITY AND NEGATIVE SCHWARZIAN
FOR MULTIMODAL MAPS

SEBASTIAN VAN STRIEN AND EDSON VARGAS

1. Introduction and statement of results

Over the last 20 years, many of the most spectacular results in the field of
dynamical systems dealt specifically with interval and circle maps (or perturba-
tions and complex extensions of such maps). Primarily, this is because in the
one-dimensional case, much better distortion control can be obtained than for gen-
eral dynamical systems. However, many of these spectacular results were obtained
so far only for unimodal maps. The aim of this paper is to provide all the tools for
studying general multimodal maps of an interval or a circle, by obtaining

• real bounds controlling the geometry of domains of certain first return maps,
and providing a new (and we believe much simpler) proof of absense of
wandering intervals;
• provided certain combinatorial conditions are satisfied, large real bounds

implying that certain first return maps are almost linear;
• Koebe distortion controlling the distortion of high iterates of the map, and

negative Schwarzian derivative for certain return maps (showing that the
usual assumption of negative Schwarzian derivative is unnecessary);
• control of distortion of certain first return maps;
• ergodic properties such as sharp bounds for the number of ergodic compo-

nents.
We will give historical comments below the statements of the theorems.

There are many applications and potential applications of our bounds. For
example, it is clear that any future renormalization results for multimodal maps
(generalizing the unimodal results of Sullivan, McMullen, Lyubich, de Melo, Avila
...) would require real bounds. Our real bounds are one of the key ingredients in
the proof that Axiom A maps are dense within the space of real polynomials with
real critical points; see [7].

Let us now be more precise. Let M = [−1, 1] or M = S1, and let f : M → M
be a smooth map. This map is called multimodal if M has a partition into finitely
many subintervals on which f is strictly monotone. Without loss of generality, we
may and will assume that f(∂M) ⊂ ∂M . Let c1, . . . , cd be the critical points of f ,
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i.e., the points where f ′ is zero. Throughout this paper we will assume that f is
Ck outside these critical points, and that f is non-flat at these critical point, i.e.,
that for i = 1, . . . , d and x near ci we can write

f(x) = ±|φi(x)|βi + f(ci),

where φi is Ck, φi(ci) = 0 and βi > 1. Here k = 2 is enough for Theorems A, B(1)
and C(1), and k = 3 is enough for the remaining theorems. In fact, for Theorems
A, B(1) and C(1) it suffices to take k = 1 + Zygmund; see [17]. We denote the
class of such maps by Ak and note that A3 ⊂ A2 ⊂ A1+Zygmund.

If B is a Borelean set, we will denote its Lebesgue measure by |B|. We will also
use the following two definitions:

Definition 1. Let U, V be bounded intervals such that the closure of U is contained
in the interior of V . We say that V is an α-scaled neighbourhood of U if |U+| ≥ α|U |
and |U−| ≥ α|U | , where U+ and U− are the connected components of V \ U . We
also sometimes say that U is α-well-inside V .

Definition 2. An open interval I ⊂ [−1, 1] is called a nice interval if the forward
orbit of its boundary does not intersect I; that is, I ∩ f i(∂I) = ∅ for each i ≥ 0.

One reason to consider the concept of nice intervals is the fact that the domain
of the first return map of a nice interval I consists of a countable union of open
intervals, called return domains, whose boundaries are mapped into the boundary
of I. Moreover, two intervals in the backward orbit of a nice interval are nested or
disjoint. Intervals of the backward orbit of a nice interval are nice intervals too.

Let us now define a sequence of nice intervals around any point x ∈ M . Let
I0 = I be a nice interval containing x. In the Yoccoz partition, it is customary to
choose I to be an interval of the backward orbit of a component of M \ f−1(P )
where P is the set of fixed points of f , and then you can take for I0 the component of
M \ f−1(P ) containing x. But any other choice for I0 is also possible in this paper.
Next define inductively a sequence of nice intervals In containing x as follows. Let
φn be the first return map to In−1, and let In be the domain of φn containing x. If
x is not in the domain of φn, then we define In = In+1 = · · · = ∅. Of course, if x is
recurrent, then In 6= ∅ and if I0 is periodic, In = I0. We say that φn+1 : In+1 → In
is non-central w.r.t. x ∈ In+1 if φn+1(x) /∈ In+1. We say that f has real bounds at
x if there exists ξ > 0 such that In+1 is ξ-well-inside In whenever φn : In → In−1 is
non-central. By the second part of Theorem A, then all domains of the first return
map to In+1 are ξ′-well-inside In+1.

1.1. Real bounds. Our first theorem controls the geometry of the domains of first
return maps to nice intervals and can be used to show that first return maps to
arbitrarily small neighbourhoods of x are well-controlled.

Theorem A (Real bounds). For each f ∈ A1+Zygmund, there exist ξ0 > 0 and a
function ρ : R+ → R+ such that if x ∈ M and φ1 : I1 → I0 is non-central w.r.t. x,
then the following hold.

(1) If φn : In → In−1 is non-central w.r.t. x and n ≥ 2, then the interval In+1

is ξ0-well-inside In.
(2) If In+1 is ξ-well-inside In, then all domains of the first return map to In+1

are ξ′ = ρ(ξ)-well-inside In+1.
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We do not assume that x is recurrent, but note that if the interval In+1 is
empty, then we consider the statement in Theorem A to be trivially true. Let us
also remark that for any map f and any integer n, if x is a turning point of f , then
either In+1 is well-inside In or there exists a definite neighbourhood of In that one
can pull back to In+1 with bounded intersection multiplicity; see Lemma 2.

The constant ξ0 and the function ρ in the previous theorem are universal: they
only depend on the constant γ(f) associated to f defined in equations (1) and (2)
in Section 2. We note that γ(f) does not depend on the dynamics of f , but only
on the C2 norm of f , the number of critical points and their order.

We need to assume in part (1) of the previous theorem that n ≥ 2 (it is easy to
give a counterexample if n is allowed to be equal to 1).

We should emphasize that we do not use the non-existence of wandering intervals
in the proof of Theorem A. In fact, we obtain an independent proof for the non-
existence of wandering intervals:

Corollary of the proof of Theorem A (Non-existence of wandering intervals).
Let f ∈ A1+Zygmund and assume that J ⊂ M is an interval for which all iterates
J, f(J), . . . are mutually disjoint. Then {fn(J)}n≥0 converges to an (possibly one-
sided) attracting periodic orbit.

It is well known (and easy to show) that this implies the contraction principle:
for each δ > 0 there exists ε > 0 so that if J is an interval with |J | < ε and not
intersecting the immediate basin of a periodic attractor, then each component of
f−n(J) has length ≤ δ.

If for all n larger than some n0, φn+1 : In+1 → In is central w.r.t. x, then x is
contained in the periodic interval

⋂
In and (if

⋂
In is not a singleton) f is said to

be renormalizable (at x). Of course, in this case one can again apply Theorem A to
any nice subinterval of the periodic interval

⋂
In. So even if f is (infinitely often)

renormalizable, Theorem A is relevant. To be more precise,

Theorem A′ (Real bounds on arbitrarily small scales). For each f ∈ A1+Zygmund

there exists ξ0 > 0 so that for any non-periodic point x ∈M that is not in the basin
of a periodic attractor, either (1) or (2) holds.

(1) f is infinitely renormalizable at x of Feigenbaum-type: there exist an integer
p and nice periodic intervals Kn 3 x of period p2n for every n ≥ 0 such
that Kn+1 is ξ0-well-inside Kn. (Kn is nice, so fp2

n

(∂Kn) ⊂ ∂Kn.)
(2) There are arbitrarily small nice intervals I around x such that the return

domain J to I containing x is ξ0-well inside I.
Moreover, define in case (1) I = Kn and J = Kn+1, and in case (2) I ⊃ J :=
Lx(I). Then I, J are both nice intervals. If Ii ⊃ Ji and Ij ⊃ Jj are pullbacks of
I ⊃ J , then they are either nested or disjoint, and if Ji ⊂ Ij , then Ii ⊂ Ij .

Here, and throughout this paper, we denote by Lx(I) the component containing
x of the domain of the first entry map to I.

Real bounds as in Theorem A, but around recurrent turning points, were proved
previously by Martens in the negative Schwarzian unimodal case and by Vargas in
the case of C2 multimodal maps without inflection points; see [14], [23] and also
Shen’s paper [18]. If all branches of f are monotone and there is at most one critical
point (of inflection type), then such bounds were proved by Levin; see [8] and also
[10]. Levin’s proof (in particular Proposition 4 of his paper) does not seem to work
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if there are several critical points. The reason that inflection points complicate
matters considerably is that when a return domain J to an interval I is very small
compared to I, it still need not be well-inside I. If J contains a turning point,
one has symmetry, and this problem does not arise. Even if there are no inflection
points, our proof is quite different from previous proofs.

Non-existence of wandering intervals for one-dimensional maps was proved in a
series of papers by Denjoy, Guckenheimer, Yoccoz, de Melo & van Strien, Blokh &
Lyubich, Martens & de Melo & van Strien. For historical references, see [17].

1.2. Large bounds. In applications one often needs large real bounds, in particu-
lar for proving density of Axiom A; see [20] and [7]. If I is a nice interval containing
a non-periodic recurrent critical point c, then we say that J is a child of I if J is
a component of f−1(J ′) where J ′ is a diffeomorphic pullback of I, and J contains
a critical point c′ with ω(c) = ω(c′) 3 c, c′. If J1, J2 are two children of I, then
they are either disjoint or they lie nested. In the next theorem we give two ways
in which one can get large bounds. Parts (1) and (2) of Theorem B were proved
previously by Weixiao Shen in, respectively, [18] and [20, Proposition 4.1].

Theorem B (Large bounds). For any f : M → M in the class A3 the following
hold.

(1) For each C > 0, δ > 0 there exists N ′ so that if a nice interval I has at
least N ′ children K1 ⊃ K2 ⊃ . . . containing some critical point, and each
of its return domains to I is δ-well-inside I, then for I ′ = KN with N ≥ N ′
each of its return domains to I ′ is C-well-inside I ′.

(2) There exists a function ρ : R+ → R+ with ρ(ξ)→∞ as ξ →∞ such that if
In+1 is ξ-well-inside In, then each return domain to In+1 is ρ(ξ)-well-inside
In+1.

The proof of Theorem B(1) also shows that if x is a recurrent point and ω(x) is
a non-minimal set, then one can find for each ξ > 0, a nice interval I around x such
that the component of the first return map containing x is ξ-well-inside I. (One
can also argue as in the proof of Theorem A′ in [10].) (That a set X is minimal
means that each orbit in X is dense in X .)

As before, N ′ and ρ only depend on γ(f) from equations (1) and (2) in Section
2 and not on f .

1.3. Koebe and negative Schwarzian. One of the reasons real bounds are so
useful is because of the following distortion theorem. Parts (1) and (2) show that,
surprisingly, one can often use Koebe even if one does not have disjointness of
intervals.

Theorem C (Koebe and negative Schwarzian). Let f : M → M be in the class
A3. Then one has the following properties.

(1) [Improved Macroscopic Koebe Principle] For each ξ > 0, there exists ξ′ >
0 such that if I is a nice interval, V is ξ-well-inside I and x ∈ I and
fk(x) ∈ V (with k ≥ 1 not necessarily minimal), then the pullback of V
along {x, . . . , fk(x)} is ξ′-well-inside the return domain to I containing x.

(2) [Improved Koebe Principle] For each S > 0, δ > 0 and ξ > 0 there exists
K > 0 such that if J ⊂ T are intervals, with fn|T a diffeomorphism, fn(J)
ξ-well-inside fn(T ) and either
(i)
∑n−1

i=0 |f i(J)| ≤ S or
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(ii) fn(T ) ∩B0(f) = ∅ and dist(f i(T ),Par) ≥ δ, i = 0, . . . , n− 1,
then fn|J has bounded distortion, i.e., for any x, y ∈ J ,

|Dfn(x)|/|Dfn(y)| ≤ K.
Here B0(f) is the union of the immediate basins of the periodic (possibly
parabolic) attractors and Par is the set of parabolic periodic points of f .

(3) [Negative Schwarzian Derivative] For each critical point ci that is not in
the basin of a periodic attractor, there exists a neighbourhood Ui such that
whenever fn(x) ∈ Ui for some x ∈M and some n ≥ 0, then the Schwarzian
derivative of fn+1 at x is negative:

Sfn+1(x) < 0.

In part (1) no disjointness is required, and the pullback of I along {x, . . . , fk(x)}
can even meet a critical point an arbitrarily large number of times! In fact, in part
(1) it is enough to assume that f ∈ Ak=1+Zygmund. In part (2), note that the
period of periodic attractors and parabolic orbits of f is bounded; see [17]. In part
(2) one can choose K close to 1 if ξ is large.

The last part of Theorem C generalizes the results of Kozlovski [6] (which he
proved for unimodal maps) to general multimodal maps. Since this paper was
written, we have learned that Duncan Sands has used our bounds to obtain the fol-
lowing version of Theorem C(3): if all periodic points are hyperbolic and repelling,
then f is conjugate to a map with negative Schwarzian derivative.

1.4. Distortion control of first entry maps. From Theorem C we get that first
entry maps have bounded distortion:

Theorem D (Control of distortion). Assume that f : M → M is in the class
A3. Then for each ε > 0 and for each critical point ci there exists a nice interval
Vi of diameter < ε such that ci ∈ Vi and so that the first entry map Ψ to

⋃
Vi

is quasi-polynomial (more precisely, a composition of at most d maps of the type
L1◦f◦L2, where L1, L2 are diffeomorphisms of bounded distortion). If f is infinitely
renormalizable at ci, then one can take for Vi a periodic interval containing ci.

In Section 8 a more precise version of this theorem will be stated. It is important
to remark that the first return map to a single critical neighbourhood Vi0 need not
be ‘quasi-polynomial’ (Ψ is a composition of finitely many maps of type L1 ◦ f ◦
L2, where L1, L2 are diffeomorphisms of bounded distortion): the pullback of any
definite neighbourhood of Vi along a branch of the first return map to Vi0 can meet
a critical point an arbitrarily large number of times. So the situation is definitely
much more complicated in the multimodal case than in the unimodal case.

1.5. Ergodic properties. For the next theorem we define a partial ordering on
the set of critical points Cr: ci ≺ cj iff either ci ∈ ω(cj) or ci = cj . We then define
ci ∼ ck iff both ci ≺ ck and ck ≺ ci (so in this case ω(ci) = ω(ck)).

Theorem E (Ergodic properties). For any f : M →M in the class A3 the follow-
ing properties hold.

(1) Any minimal set X has zero Lebesgue measure: for any point x ∈ X there
are intervals Nn ⊂ Un such that

⋂
Un = {x}, (Un \Nn)∩X = ∅ and Nn is

ξ-well-inside Un, where ξ > 0 does not depend on n.
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(2) There are finitely many compact forward invariant sets X1, . . . , Xk such
that

⋃
B(Xi) has full measure in M . Here B(Xi) is the basin of Xi (i.e.,

B(Xi) := {y; ω(y) = Xi}). Moreover, either
• Xi is an attracting periodic orbit,
• Xi is a cycle of intervals containing a turning point and such that ω(x) =
Xi for a.e. x ∈ Xi, or
• Xi is a minimal set containing at least one recurrent critical point.

(3) For any set Y of positive Lebesgue measure with f(Y ) ⊂ Y , not intersecting
basins of periodic attractors and not containing intervals (up to measure
zero), there exists a minimal set X containing a critical point c such that
|Y ∩B(X)| > 0 and such that for the intervals Un ⊃ Nn 3 c from part (1),
|Y ∩ Nn|/|Nn| → 1.

(4) If Xi is not an attracting periodic orbit, then f|B(Xi) is ergodic with respect
the Lebesgue measure. The number of these Xi’s is bounded by the number
of equivalence classes of Cr/ ∼ that are minimal w.r.t. ≺ (see the definition
above).

From [17] it is known that the number of non-equivalent attracting periodic
points is bounded. Here we say that two periodic points p, q are equivalent if all
iterates of f are homeomorphisms on (p, q).

Theorem E sharpens the classification of measure-theoretical attractors and er-
godicity for smooth unimodal and multimodal maps obtained previously by Blokh
and Lyubich; see [2] and [12].

2. Some of the tools used in this paper

Definition 3. A sequence {Gi}li=0 of open intervals in [−1, 1] is called a chain if
Gi is the maximal interval such that f(Gi) ⊆ Gi+1, i = 0, . . . , l − 1. We shall also
call G0 a pullback of Gl along {x, . . . , f l(x)} for x ∈ G0.

We notice that for any chain {Gi}li=0, the boundary of Gi is mapped by f onto
the boundary of Gi+1. The multiplicity of intersection of a chain is the maximum
number of intervals from it that has non-empty intersection.

Let T ⊃ J be intervals and L,R the components of T \ J , and define C(T, J) =
(|T ||J |)/(|L||R|) to be their cross-ratio. Let T ′ ⊃ J ′ be components of f−1(T ) and
f−1(J). Then if f is C2 (in fact C1+Zygmund is enough) and has non-flat critical
points (in the sense defined in the introduction of this paper), then there exists
γ(f) > 0 (which does not depend on T ⊃ J) such that

(1)
C(T, J)
C(T ′, J ′)

≥
{

1− γ(f)|T | if T ′ does not contain a critical point,
γ(f) if T ′ does contain a critical point,

and

(2) |Df(x)| ≤ 1
γ(f)

|f(T ′)|
|T ′| for each x ∈ T ′;

see [17]. It will be convenient to assume that if M is an interval, f is also defined
on a 1/γ(f)-scaled neighbourhood M ′ of M and that the above inequalities even
hold if we take J ⊂M and T ⊂M ′.
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From equations (1), (2) we get (see [17])

Lemma 1 (Koebe distortion). Let {Gi}li=0 and {Hi}li=0 be chains such that G0 ⊃
H0 and such that Gl is a σ-scaled neighbourhood of Hl, for some σ > 0. If the
multiplicity of intersection of {Gi}li=0 is bounded by κ, then the following hold.

(1) G0 is an α-scaled neighbourhood of H0, where α > 0 depends only on σ, κ
and the constant γ(f) from equation (1).

(2) If Gi1 , . . . , Giν are the intervals of the chain {Gi}li=0 that contain critical
points with i1 < i2 < · · · < iν < iν+1 = l, then the maps

f ij+1−ij−1|Gij+1 : Gij+1 → Gij+1 , for any j = 1, . . . , ν

satisfy
|Df ij+1−ij−1(x)|
|Df ij+1−ij−1(y)| ≤ K

for any x, y ∈ Hij+1, where K <∞ depends only on σ, κ and the constant
γ(f) from equation (1).

(3) |Df l(x)| ≤ K ′ |Hl||H0| for all x ∈ H0

where K < ∞ depends only on σ, κ and the constant γ(f) from equations
(1) and (2).

Proof. For the first two statements, see [17]. The third assertion holds by the Chain
Rule, the second assertion and because of (2) applied to T = Hij , j = 1, . . . , ν. �

One of the main tools for obtaining Koebe space (which we need, together with
Lemma 3, in order to apply the previous lemma) is the following analogue of a fact
that is well known if the map is unimodal, non-renormalizable and has negative
Schwarzian derivative.

Lemma 2 (Existence of Koebe space). There exists ρ0 that only depends on the
constant γ(f) defined in equations (1) and (2) with the following properties. Let
I ⊂M be a nice interval and J1, J2 return domains (not necessarily different) to I
with return times r1, r2, respectively. Then there exists an interval Mi ⊃ I that is
a ρ0-scaled neighbourhood of either J1 or J2 and that contains at most 2b+1 + 2 of
the intervals f j(Jl), j = 1, . . . , rl− 1 and l = 1, 2. Here b is the number of turning
points of f .

Note that the assertion of the lemma does not exclude the possibility that the
Mi intersect (but do not contain) one or two of those intervals. If M is an interval,
and I is very close to a boundary of M , then it is possible that Mi contains a
neighbourhood (in the real line) of a boundary point of M (this is the reason why
we assumed that f is defined on a 1/γ(f)-scaled neighbourhood of M). This will
not cause any difficulties, because we will only consider pullbacks of Mi. It is
quite easy to prove a similar lemma for the case where we consider more than two
components of the return map to I.

Proof. Define the collections Bi = {f(Ji), . . . , fri(Ji)} and B = B1∪B2. Let Il,i be
the interval containing f l(Ji) in the pullback of I along {f l(Ji), . . . , fri(Ji)} and
define the collections Ci = {Il,i; l = 1, . . . , ri} and C = C1 ∪ C2.

Let us define integers mi, 1 ≤ i ≤ 2 and an interval Mm1 ⊃ fm1(Ji) which we
will pull backwards to get the scaled neighbourhood Mi of the statement. First
note that two intervals from the collection C defined above are either disjoint or
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coincide. Let fm1(Ji) be the smallest (shortest) interval from the collection B.
Then define Mm1 := L ∪ Im1,i ∪R, where L,R are intervals adjacent to Im1,i with
|L| = |R| = ρ′0|fm1(Ji)|. Here we can take ρ′0 = 1 if there are intervals from B on
both sides of Im1,i, but otherwise we can take ρ′0 = 1/γ(f) < 1 where γ(f) is such
that equations (1) and (2) hold for intervals inside a 1/γ(f)-scaled neighbourhood
of M .

Note that Mm1 ⊃ Im1,i is a ρ′0-scaled neighbourhood of fm1(Ji), and it contains
no other interval from Bi. Now consider the chain {Mt}m1

t=0 such that Mt ⊃ f t(Ji).
If the map fm1

|M0
: M0 → Mm1 is surjective, then, for 0 ≤ t ≤ m1, Mt does not

contain any interval from Ci except It,i (it may contain another interval from Cj,
j 6= i). So in this case it follows that the chain {Mt}m1

t=0 has intersection multiplicity
≤ 3. Applying Lemma 1 we get a constant ρ0 = ρ0(ρ′0) so that M0 is a ρ0-scaled
neighbourhood of Ji and so define Mi := M0. This proves the lemma in this case.

However, even if the map fm1
|M0

: M0 → Mm1 is not surjective, if 0 ≤ s, t ≤ m1

with s 6= t and Ms ⊃ It,i, then s < t. Indeed, otherwise Mm1 would contain at
least 2 intervals from Bi, which is not true.

Let us first deal with the case that J1 = J2 = I is a periodic interval of period
r = r1 = r2. By the previous remark if 0 ≤ s, t ≤ m1 with s 6= t and Ms ⊃ It,i, then
s < t. We claim that in this case Mm1 intersects It′,i where t′ = t+m1− s(mod r).
Indeed, if f s̃(It,i) ⊂ I for some 0 ≤ s̃ < m1−s, then f s̃+1(Ms) intersects f(I) ⊂ I1,
and so the claim follows. Hence, each interval Mt, t = 0, 1, . . . ,m1, contains at
most 3 intervals from C. In particular, this chain has intersection multiplicity ≤ 8
in this case.

Next consider the case that I is not contained in a maximal periodic interval
that is strictly contained in M . Consider those intervals Mn1 , . . . ,Mnζ from the
collection {Mt}m1

t=0 that are mapped by f strictly inside Mnj+1. Hence, for each
i = 1, . . . , ζ, f(∂Mni) consists of one point and Mni contains a turning point ci of
f such that the interval f(Mni) is bounded by f(ci) and f(∂Mni). Assume that
Mnj ∩Mnk 6= ∅, for some n1 ≤ nj < nk ≤ nζ . Then Inj ,i is not contained in Mnk .
Hence, if Mnj contains the turning point ck ∈Mnk mentioned above, then because
these intervals are pullbacks, Mnj ⊃Mnk , which contradicts the assumption made
in this paragraph. So Mnk contains a turning point of f that is not contained in
Mnj . Moreover, the boundary of Mnj is mapped by f inside f(Mnk). Now take
Mnj maximal, in the sense that Mnj ∩Mnk ⊃ Mni ∩Mnk , for each ni < nk. We
claim that Mnl∩Mnj ∩Mnk 6= ∅ does not happen for nl, nj < nk, nl 6= nj . Indeed,
since f(∂Mnj ) ∈ f(Mnk), otherwise f(Mnl) ⊂ f(Mnj ), it follows that Mnl ⊂Mnj .
But again this contradicts the assumption made in this section. It follows that the
multiplicity of intersection of the collection D := {Mn1 , . . . ,Mnζ} is at most equal
to 2. In particular, ζ ≤ 2b.

We claim that Mnζ−j contains at most j + 4 intervals from C. Indeed, first
observe that Mnζ contains at most 4 intervals from C; otherwise it would contain
at least 5 intervals, and therefore Mm1 would contain at least 2 intervals from C,
contradicting the definition of Mm1 . Let us proceed by induction on j and assume
that Mnζ−(j−1) contains at most j + 3 intervals from C. Then, if Mnζ−j contains
at least j + 5 intervals from C, the interval Mnζ−(j−1) would contain at least j + 4
intervals from C, a contradiction again.

This also implies that for nζ−j−1 < t < nζ−j , the interval Mt contains at most
j + 4 intervals from C. Since ζ ≤ 2b, we conclude that any interval Mt contains at
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most 2b+ 3 intervals from C. Next we claim that the multiplicity of intersection of
{Mt}m1

t=0 is bounded by 4b + 7. Indeed, notice that Mt contains It,i and that the
intervals I1,i, . . . , Im1,i are pairwise disjoint. So if Mt1 , . . . ,Mt4b+8 , have a point in
common, then one of these, say Mts , must contain at least 2b+ 4 intervals from C,
which again gives a contradiction.

Finally, we need to deal with the case that I might be contained in a (maximal)
periodic interval that is strictly contained in M . If the length of a nested chain of
intervals from D is at most 2, we still can argue as before and get that ζ ≤ 4b. The
multiplicity of intersection of {Mt}m1

t=0 in this case is at most 8b+7. If the length of
a nested chain of intervals from D is at least 3, then I is contained in an l-periodic
interval that contains at least 3 intervals from C. Let l be maximal such that I
is contained in a periodic interval with period l, and let T be the corresponding
maximal periodic interval containing I. Applying the proof of this lemma for the
periodic case together with Lemma 3 to f l|T , we get that the derivative of f l on T
is bounded by some universal number N . Let Ii be the shortest interval from C in
T . If there are intervals from C in both components of T \ Ii, then take mi = i and
Mm1 to be a 1-scaled neighbourhood of Im1 . If Ii has only elements from C in one
component of T \ Ii, then (since there are at least 3 intervals from C in T ) consider
the pullback of Ii by f−l or f−2l and thus obtain an interval Im1 from C in T and
a 1/M2-scaled neighbourhood of Im1 inside T that does not contain any interval
from the collection C. So now we can apply what we did before to f l|T . Since this
map has at most 2b − 1 turning points, we conclude that any interval Mt contains
at most 2b+1 + 2 intervals from C and the multiplicity of intersection of {Mt}m1

t=0

is at most 2b+2 + 5. Since Mm1 is a scaled neighbourhood of fm1(Ji), it follows
from Lemma 1 that M := M0 is a scaled neighbourhood of Ji, which satisfies our
statement. �

The previous lemma implies that pullbacks of Mi along Jj , . . . , f
rj (Jj) have

bounded intersection multiplicity:

Lemma 3. Let J be a return domain of a nice interval I with return time r.
Assume that T ⊃ I contains at most e of the intervals I1, . . . , Ir = I, where Ij are
the pullbacks of I with Ij ⊃ f j(J). Then the following holds. Let {Ti}ri=0 be the
chain such that Tr = T and Ti ⊃ f i(J). Then the multiplicity of intersection of
this chain is bounded by 2(e + b(e + 2)) + 1. In particular, if Tn1 , . . . , Tnν are the
intervals from {Ti}ri=0 that contain critical points, then ν ≤ 2(e+ b(e+ 2)) + 1.

Proof. As in the previous lemma we can assume that f is non-renormalizable (or
more precisely, that the smallest periodic interval containing I is equal to M). First
we prove that at most b(e + 2) of the intervals T1, . . . , Tr contain turning points.
Indeed, since f is non-renormalizable, if for 0 ≤ i1 < . . . < ij ≤ r the intervals
Ti1 , . . . , Tij contain the same turning point, then Ti1 ⊂ Ti2 ⊂ . . . ⊂ Tij . Therefore
Tr contains the intervals f r+i1−ij (J), f r+i2−ij (J), . . . , fr(J) and so j ≤ e+2. Since
f has b turning points we conclude that at most b(e+ 2) of the intervals T1, . . . , Tr
contain turning points. This implies that an interval Ti contains at most e+b(e+2)
of the intervals I1, . . . , Ir = I. Indeed, if for example Ti ⊃ Im and Im contains
a turning point, then Ti+1 might not contain Im+1. So each time an iterate of
Ti meets a turning point, one interval could be ‘lost’. So in total one can ‘lose’
b(e + 2) intervals. Hence, the intersection multiplicity of {Ti}ri=0 is bounded by
2(e+ b(e+ 2)) + 1. �
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By applying Lemma 2 to the case that J = J1 = J2, using the disjointness which
is provided by Lemma 3 for the pullback of Mi, we immediately get the following
distortion result from Lemma 1.

Corollary 1. Let I be a nice interval with return domain J , and denote the first
return map by φ : J → I. If |J |/|I| is close to 1, define K = J . Otherwise define
K = φ−1

|J (J). Then the restriction of φ to a definite neighbourhood of K is quasi-
polynomial: it can be written as a composition of at most d maps of the form
L1 ◦ f ◦L2 where L1, L2 have bounded distortion, f is the original map and d is the
number of critical points.

3. First return maps

In this section we are going to prove some important metric properties of indi-
vidual branches of a first return map. It will be fundamental later on, when we
will be pulling back Koebe space through many different branches. So, here we fix
a nice interval I with its first return map, and we will be in general analyzing the
action of φ in one return domain J ⊂ I.

Definition 4. Let J ⊂ I be a return domain, and let x ∈ J and m > 0 be such
that x, . . . , φm−1(x) ∈ J and φm(x) /∈ J . Then the fundamental domain of φ
containing x is the maximal interval D 3 x for which D,φ(D), . . . , φm−1(D) ⊂ J
and φm(D) ⊂ I \ J .

From this definition it follows that the intervals D, . . . , φm(D) are pairwise dis-
joint. If φ|J is monotone, then φm(D) is equal to a connected component of I \ J
and the above definition of fundamental domain coincides with the usual one.

Definition 5. Take α > 0 and let A be an interval in I and H a connected
component of I \ A. If |H | < α|A|, then we call H an α-small side of A in I;
otherwise we call H an α-big side of A in I (often we omit the reference to I if it
is clear).

Since we shall repeatedly introduce constants, we shall say that a constant α is
universal if it only depends on previous constants. Often we will omit constants
that are universal; for example, if V is an α-scaled neighbourhood of U with α > 0
universal, then we say that V is a scaled neighbourhood of U or also that U is well-
inside V . The same convention will be used for α-big sides and other analogous
situations.

Take a domain J on which φ is non-monotone. Notice that if φ|J is a composition
of maps with at most one turning point, then φ|J is special: φ(∂J) consists of just
one point in ∂I. Moreover, φ(J) is equal to φ(J \J ′) where J ′ ⊂ J is an interval and
J \J ′ consists of two intervals on which φ is monotone (whose endpoints are turning
points of φ|J and boundary points of J). In any case, if we denote by J1, . . . , J l

the domains of monotonicity of φ : J → I labelled from left to right, then J1, J l

are called the external branches of J , or the external intervals of monotonicity of
φ|J . When φ : J → I is surjective, then it is called orientation preserving (resp.
reversing) if it is so at least on both external branches (i.e., on J if φ is monotone).
So we do not need that φ is monotone for it to be orientation preserving. If φ : J → I
is not surjective, then this notion is simply not defined.

Lemma 4. There exists δ1 > 0 such that for any return domain J ⊂ I and any
fundamental domain D in J that is not contained in the immediate basin of a
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periodic attractor, D has at least one δ1-big side and φ(D) is contained in a δ1-big
side of D.

Proof. Let us prove this lemma by contradiction: assume that φ(D) is contained in
an α-small side of D, with α > 0 small. Then J has an α-small side, and φ(D) is
contained well-inside the interval M given by Lemma 2 (applied to the collection
consisting of just J). In particular, the pullback of a definite neighbourhood of φ(D)
is a definite neighbourhood V of D. But if α is small, this implies that φ(V ) ⊂ V
and (by the last property of Lemma 1 and Lemma 3), that |φ′(x)| < 1 for each
x ∈ V . Hence D is contained in the immediate basin of a periodic attractor of f ,
a contradiction. �

Fix δ1 as in the previous lemma.

Lemma 5. For each ξ > 0 sufficiently small, there exists δ2 > 0 with the following
property. Let J be a return domain of φ, let D be a fundamental domain in J and
k ≥ 1 be so that D, . . . , φk−1(D) ⊂ J while φk(D)∩J = ∅. If D is not δ2-well-inside
I, then the following hold

• J has at least one ξ-small side;
• there exists a maximal external interval of monotonicity Je ⊂ J of φ|J that

is adjacent to a ξ-small side H of J and such that D, . . . , φk−2(D) ⊂ Je,
and φk(D) ∩H = ∅;
• the intervals D, . . . , φk(D) lie ordered, each of the intervals D, . . . , φk−1(D)

has a ξ-small side; (by the previous lemma φi+1(D) lies in the δ1-big side
of φi(D) for i = 0, . . . , k − 1);
• if k ≥ 2, then φ|Je is orientation preserving;
• if both sides of J are ξ-small, then D ⊂ Je, φ|Je is orientation reversing

and k = 1.

Proof. Assume D is not well-inside I. Then J has at least one small side. LetM be
the interval given by Lemma 2 associated to the collection {J}. Using the properties
of this interval M it follows that all intervals of monotonicity of φ|J restricted to
φ−1
|J (J), except possibly the external ones, are well-inside I. If both sides of J are

small, then all non-external branches of φ|J are well-inside I. Moreover, φ−1
|J (J) is

well-inside J , whenever φ|J is not monotone and φ|J (∂J) ∈ ∂I is contained in the
closure of a big side of J .

Let us first consider the case that one side of J is big. If k = 1, then it follows
from the previous lemma that φ(D) is contained in the big side of J , completing the
proof of the lemma in this case. So let us assume that k ≥ 2. Then the boundary
point of J on the small side of J is mapped to the small side of J , because otherwise
φ−1
|J (J) and therefore D is well-inside I. So we may assume (if k ≥ 2) that D

intersects the interval Je of monotonicity of φ|J that is adjacent to a small side
of J and that φ is orientation preserving on this interval Je. If φ′|Je is universally
bounded, then it follows that D must be well-inside I, a contradiction. If this
derivative is not universally bounded, then by Lemma 3 it follows that φ(Je) ⊃ J
(and hence φ|Je has a fixed point). Since k ≥ 2, this implies that D is contained in
Je. Since each component of φ−1

|J (J) except the one contained in Je is well-inside
I, D, . . . , φk−2(D) ⊂ Je. By the previous lemma, for i = 0, . . . , k−1, φi(D) has at
least one δ1-big side that contains φi+1(D). It is sufficient to prove that for i > 0
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at least one side of φi(D) is small and that the other is � 1 big. Let U be the
interval connecting D with the fixed point p of φ|Je . Since D is not well-inside I,
D lies on the side Je \{p} that is not adjacent to the small side of J and, moreover,
φ(U) is large compared to U . Hence, from part (3) of Lemma 1 and Lemma 3 it
follows that φi+1(U) is also large compared to φi(U). This shows that one side of
φi(D) is small, and so the proof is completed in this case.

If both sides of J are small, then M contains a definite neighbourhood of I and
φ′|J is universally bounded. So adjacent fundamental domains associated to periodic
points of φ|J of period≤ 2 are of comparable size. From this it follows thatD is well-
inside I, except possibly if φ(D) ∩ J = ∅ (i.e. k = 1) and D intersects an external
domain Je of monotonicity of φ|J such that φ|Je is orientation reversing. �

Lemma 6. For each ρ > 0 sufficiently small, there exists δ3 > 0 such that if I is a
ρ-scaled neighbourhood of an interval V ⊂ I \J , then J is a δ3-scaled neighbourhood
of any component A of φ−k|J (V ) (where k ≥ 1 is arbitrary).

Proof. Let D be the fundamental domain containing A. If φ(D) is well-inside I,
then D is well-inside J . So if the assertion of this lemma does not hold, then k
is large and φ(D) is not well-inside I. From the previous lemma, it follows that
the disjoint intervals φ(D), . . . , φk−1(D), φk(D) lie ordered in I and that φi+1(D)
lies in the unique δ1-big side of φi(D) for i < k. Since φk−1(D) has a ξ-small side
(which contains φk−2(D)) and its δ1-big side contains V and since V is well-inside
I, the interval V is also well-inside the δ1-big side W of φk−2(D). But then we
can pull back W with intersection multiplicity ≤ 2 to a definite neighbourhood of
A, and so we are done. �

4. Visited domains and jumping times

Let I ⊂ M be a nice interval, and take a point x ∈ I that visits I infinitely
many times. Let us associate to x ∈ I the sequence of visited domains {Ji(x, I)}∞i=0

and the sequence of jumping times {ki(x, I)}∞i=0 defined by taking k0(x, I) := 0 and
inductively for all i ≥ 0,

φki(x,I)+j(x) ∈ Ji(x, I), 0 ≤ j < ki+1(x, I)− ki(x, I)

and
φki+1(x,I)(x) /∈ Ji(x, I).

If φki(x,I)+j(x) ∈ Ji(x, I) for all j ≥ 0, then we define ki+1(x, I) = ∞. Note that
ki(x, I) = ∞ can happen, for example, when x is eventually periodic or when f is
an infinitely renormalizable map and the forward orbit of x hits an interval which is
mapped into itself by the first return map to I. Note also that ki+1(x, I)−ki(x, I) >
1 corresponds to a ‘saddle-node cascade’. Unless necessary, we will denote the
visited domains and the jumping times without the dependence on x and I.

Lemma 7. Given a nice interval I and a point x ∈ I we consider its sequences
of visited domains and jumping times, {Ji}∞i=0 and {ki}∞i=0, respectively. Let us
assume that ki < ∞ for all i ≥ 0. Then for any ρ > 0 and any n > 0 there exists
i0 with 0 ≤ i0 ≤ n called the stopping time such that the following hold.

(1) For 0 ≤ i < i0, at least one side Hi of Ji is ρ-small and Ji+1 lies on the
other side Gi of Ji. So, only if both sides of Ji are ρ-small, Ji+1 is allowed
to lie in a ρ-small side of Ji.
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(2) For 0 ≤ i < i0, (Ji, Ji+1) ∩ (
⋃i
k=0 Jk) = ∅.

(3) One of the following properties holds:
• Property P1: both sides of Ji0 are ρ-big sides and i0 < n.
• Property P2: Ji0 has precisely one ρ-small side, and Ji0+1 is contained

in that side and i0 < n.
• Property P3 (and not P1 or P2): (Ji0 , Ji0+1) ∩ (

⋃i0
k=0 Jk) 6= ∅ and

i0 < n. In this case we define, for later use, t to be the largest integer
with 0 ≤ t < i0 and Jt ⊂ (Ji0 , Ji0+1).

• Property P4: i0 = n and so (Ji, Ji+1)∩(
⋃i
k=0 Jk) = ∅ for all 0 ≤ i < n.

In Statement (1) it is not claimed that Gi is a ρ-big side. It is useful to have
a graphic image to explain what Statements (1) and (2) of this lemma mean: the
intervals are visited in a spiral fashion spiraling ‘towards the center’. For example,
connect Ji and Ji+1 by a semicircle in the upper half plane. Statement (2) says that
one can draw these semicircles without intersections. Property P3 states that this
spiral structure is broken and Property P4 that the spiral structure is maintained
until the n-th visit. Because of the spiral structure of the intervals J0, . . . , Ji0 (and
maximality of t), if Property P3 holds for i0, then Ht ∩Hi0 = ∅ and Gt ∩Gi0 6= ∅.

Proof of Lemma 7. The proof of this lemma is essentially the definition of proper-
ties Pi. �

In the next lemmas we show that one can pull back space if the spiral structure
is preserved as in P4 (many visits to the same domain or a long cycle between two
visited domains is allowed), and that one gets space inside I anyway if P1, P2 or
P3 holds.

From now on fix ρ > 0 smaller than ρ0/2 (where ρ0 is given by Lemma 2), so it
makes sense to say that one of the properties Pi is satisfied.

4.1. Pulling back space.

Lemma 8. There exists σ1 > 0 such that if x ∈ I satisfies Property P4 with
i0 = n, and if all of the following properties are satisfied: (i) J0 = Jn has precisely
one small side, (ii) φ(J0) contains the small side of J0 and (iii) φ|J0 is not an
orientation reversing surjective branch (in the sense defined above Lemma 4), then
I is a σ1-scaled neighbourhood of the pullback U of Ji0 = Jn along {x, . . . , φkn(x)}.

Proof. Let i′0 > 0 be minimal so that Ji′0 = J0. We claim that the pullback of
Ji′0 along {x, . . . , φki′0 (x)} is well-inside I. So, in other words, we claim that it is
enough to consider the case that i′0 = n and so J0, . . . , Jn−1 are pairwise disjoint.

So let us assume this and prove the lemma in this case. Since P4 holds, we can
assume that J0, Jn−1, . . . , J1 are ordered in I from left to right. Note that U is
contained in a fundamental domain D0, which by Lemma 5 has space to its right
inside I. Analogously, φk1 (U) is contained in a fundamental domain D1 ⊂ J1,
which has space to its left inside I. It remains to show that there is space to the
left of U inside I.

Let M be the interval from Lemma 2 associated to the collection {J0, Jn−1}.
There are two possibilities.
Case 1. M is a ρ0-scaled neighbourhood of Jn−1. Then also J1 is well-insideM,
because J1 = Jn−1 or J1 is to the right of Jn−1. As we observed before, D1 ⊂ J1

has space on its left and if φ|J0 is an orientation preserving surjective branch, we
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can pull back this space to a space on the left of U inside J0 (see Lemma 6). If
φ|J0 has at least one turning point, because φ(J0) contains a small side of J0, it
must contain the big side of D1, and then we get that the pullback of D1 to x is
well-inside J0.
Case 2. M is a ρ0-scaled neighbourhood of J0. Let us consider the fundamental
domain Dn−1 ⊂ Jn−1 that contains φkn−1(U), and let M̃ be the pullback of M
by the extension of φ|Jn−1 . By the same reason as above, Dn−1 has space on its
left. Then V = φ−1

|Jn−1
(Jn) ⊂ Dn−1 has space on its left and it is well-inside M̃.

Now if V is well-inside I, using Lemma 6, we can pull it back to φkn−1(x), and
using the disjointness of J0, . . . , Jn−2 we get that U is well-inside J0 ⊂ I. If V is
not well-inside I and n > 2, we have that J1 is well-inside M̃ and has space to its
left. The same reasoning as in Case 1 can be applied. If V is not well-inside I and
n = 2, we also can apply the same reasoning as in Case 1 to pull back to U the
space on the left of V (or, of D1 in the case that k2 − k1 > 1). �

Lemma 9. For each ξ > 0 there exists ξ′ > 0 with the following property. Let
n > 0, and let {Ji}ni=0 and {ki}ni=0 be, respectively, the first n visited domains and
jumping times of some point x ∈ I. Assume that property P4 holds for n. Let
V ⊂ I with φkn+1(x) ∈ V and such that V is ξ-well-inside I. Then the pullback V0

of V along {x, . . . , φkn+1(x)} is ξ′-well-inside J0.

Proof. According to Lemma 6 the pullback Vn of V along {φkn(x), . . . , φkn+1(x)}
is well-inside Jn. Since P4 holds for n, there exists i1 ≤ n such that φi1(x) is the
first visit of x to Ji1 and such that

if n−i1 = 0 mod 2, then Ji1 = Ji1+2 = · · · = Jn and Ji1+1 = Ji1+3 = · · · = Jn−1

and

if n−i1 = 1 mod 2, then Ji1 = Ji1+2 = · · · = Jn−1 and Ji1+1 = Ji1+3 = · · · = Jn.

It is enough to show that the pullback Vi1 of Vn along {φki1 (x), . . . , φkn(x)} is
well-inside Ji1 , because the further pullback along {x, . . . , φki1 (x)} of Ji1 is disjoint
(φki1 (x) is the first visit to Ji1). If there exists an integer i1 ≤ i′1 ≤ n for which
φ
ki′1 (x) is contained in a fundamental domain of Ji′1 that is δ2 well-inside Ji′1 , then

it is enough to pull back this space along {φki1 (x), . . . , φki′1 (x)}. This means that
we may assume that φki1 (x), . . . , φki′1 (x) are contained in fundamental domains of
Ji1 , . . . , Ji′1 , respectively, that are not δ2 well-inside Ji1 , . . . , Ji′1 . This means that
we can apply Lemma 5 throughout the remainder of this lemma. In particular
φki1 (x), . . . , φki′1 (x) are all contained in fundamental domains of Ji1 , . . . , Ji′1 that
intersect the maximal external interval of monotonicity. Because of Lemma 6 it
is also enough to assume that i′1 − i1 is large. So let us assume for example that
i′1 − i1 ≥ 6 (we take i1 the largest possible with this property), so that Ji1 =
Ji1+2 = · · · and Ji1+1 = Ji1+3 = · · · (where · · · refers to intervals up to Ji′1 or
Ji′1−1). Then φki1 (x), φki1+2(x), . . . , φki′1−3(x) are all in an orientation preserving
external branch of the first return to Ji1 . We can assume that the pullback Vi′1−1 of
Vn along {φki′1−1(x), . . . , φkn(x)} is well-inside Ji1 and using Lemma 6 the lemma
follows. �
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Lemma 10. There exists σ2 > 0 such that if x ∈ I satisfies Property P1 or P2 for
some i0 < n, then the pullback of Ji0+1 along {x, . . . , φki0+1(x)} is σ2-well-inside
I. If i0 > 0, this pullback is σ2-well-inside J0.

Proof. If P2 holds, then Lemma 4 implies that I is a δ2-scaled neighbourhood of the
fundamental domain D containing φki0 (x). Obviously the same happen if P1 holds.
In either case it follows from Lemma 9 that the pullback of D along {x, . . . , φki0 (x)}
into J0 is well-inside I. If i0 > 0, we get it well-inside J0. �
Lemma 11. There exists σ3 > 0 such that if x ∈ I satisfies Property P3 for some
i0 < n, then I is a σ3-scaled neighbourhood of the pullback U ⊂ Jt of Ji0+1 along
{φkt(x), . . . , φki0+1(x)}.
Proof. In order to be definite assume that Jt is to the left of Ji0 . Let Gi0 be the
left side of Ji0 (it contains Jt), and let Ht be the left side of Jt (which is small
and contains Ji0+1). Consider the first return map ψ to Gi0 , and let D,D′ be the
fundamental domains containing x of φ and ψ, respectively. Then D′ ⊂ D and
D′, . . . , ψkt+1−kt−1(D′) are in Jt and ψ ◦ ψkt+1−kt−1(D′) ⊂ Jt+1. By Lemma 5 if
D′ is not well-inside Gi0 , then D′, . . . , φkt+1−kt(D′) lie ordered, and always lie on a
big side of the previous interval. This implies that there is space to the left of D′.
So it remains to show that there is space to the right of D′ in I. So we may assume
that both sides of Jt are small. But then it follows from the last part of Lemma 5
that D has space to its right inside I. Combined this shows that D′ is well-inside
I. �

The previous lemmas can be combined:

Proposition 1 (Part (1) of Theorem C). For each ξ > 0 there exists ξ′ > 0
with the following property. Let V be an interval ξ-well-inside I and x ∈ I such
that φk(x) ∈ V , for some k ≥ 1. Then the pullback of V along {x, . . . , φk(x)} is
ξ′-well-inside the return domain to I containing x.

Proof. If P4 holds, then the lemma follows from Lemma 9. If P1, P2 or P3 hold,
then this follows from the previous Lemmas 10 and 11. �
4.2. Corollary: There exist no wandering intervals. Of course this corollary
is not new (it was proved in different generalities by Guckenheimer, de Melo & van
Strien, Lyubich, Blokh & Lyubich and Martens & de Melo & van Strien. Let us
show that our methods provide a new (and we believe simpler) proof of this fact.

Proof of the Corollary. Let us introduce some notation. We call a finite partition
P of M nice if boundary points of partition elements are mapped into boundary
points. (Such a partition is generated by preimages of a finite number of periodic
orbits.) Denote by P(x) the element of the partition P containing x (this is unique
if x is not on a boundary of partition elements). Furthermore, denote by Lx(I) the
component of the domain of the first entry map to I containing x.

Let W be an interval such that all its forward iterates are disjoint and assume by
contradiction that W does not converge to a periodic orbit. Let z be an accumula-
tion point of fn(W ), take a nice partition P0, and let I0 = P0(z). (We can assume
that f has a nice partition. Indeed, if f has no fixed points, then by modifying
f on the wandering interval W we can construct a new map f̃ ∈ A1+Zygmund,
with possibly more turning points, with a wandering interval and with at least one
fixed point.) Note that infinitely many iterates of W are contained in I0 and that,
since all iterates of W are disjoint, every point in W simultaneously visits the same
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return domains of I0. We claim that there exists a constant ρ > 0 so that the first
iterate of W entering I0 is contained in a nice interval I ′0 that is ρ-well-inside I0.
Here I ′0 is a component of a nice partition P1 that refines P0.

Let us first show that this proves the corollary. From the claim it follows that
there exists a sequence of refining nice partitions P0,P1, . . . such that for each
n ≥ 0, the first iterate of W entering In = Pn(x) is contained in a component I ′n of
Pn+1 that is ρ-well-inside In. By pulling back this space (using Lemma 1) we get

LW (I ′n) is ρ′-well-inside LW (In).

Moreover, since I ′n contains the first entry of W to In and since both I ′n and In+1

are components of Pn+1,
LW (In+1) ⊂ LW (I ′n).

Combining this gives that for each n, W ⊂ LW (In) is nρ′-well-inside LW (I0). This
gives a contradiction with the compactness of the dynamical space M .

So let us prove the claim. Notice that as in Lemma 7 either one of the properties
P1, P2, P3 holds at some moment, or P4 holds forever, or W eventually only visits
one return domain.
Case 1. P1, P2, P3 hold. Then the previous two lemmas and Proposition 1 imply
that we can take for I1 a pullback of a domain of I0.
Case 2. P4 holds forever. If W keeps spiralling towards the center of I0 visiting
infinitely many different return domains in I0, then eventually it visits a domain
that is well-inside I0, and so again Claim 1 holds (using Proposition 1). So the final
two possibilities are that (during visits to I0) either W eventually only visits one
return domain J or that P4 holds forever and W eventually only visits two domains
J, J ′ in I0 both having one large side. Let us consider both of these possibilities
next.
Case 3. All iterates of W (entering I0) eventually visit only one return domain J
of the first return map to I0. So W eventually enters a periodic interval J ′ ⊂ J
(i.e., φ(J ′) ⊂ J ′ and φ(∂J ′) ⊂ ∂J ′). Let Q be the set of fixed points of φ : J ′ → J ′.
From Lemma 2, each component of J ′ \ φ−1(Q) that contains a turning point of
φ is well-inside J ′. This lemma also implies that |φ′| is universally bounded on J ′

and so all fundamental domains associated to fixed points of φ are well-inside J ′.
It follows that some iterate of W is contained in a component of J ′ \ φ−k(Q) that
is well-inside J ′ \ I0. By Proposition 1, the first iterate of W is contained in an
element of P1 where P1 is the refinement of P0 obtained by adding the periodic
points associated to Q and appropriate preimages by f .
Case 4. W eventually only visits two return domains J1, J2 of I0; then we argue
as follows. If either |J1|/|I0| or |J2|/|I0| is close to 1, then |φ′| is bounded on J1 or
J2, and so fundamental domains of φ : J1 → I or of φ : J2 → I are well-inside I,
and we can complete the argument as before. So assume that both these domains
do not occupy almost all of I0. Then consider the first return map to J ′ = J1. If
for this first return map, we are in Case 1 or Case 2, then we argue as before. If we
are again in Case 3, then consider the two domains J ′1, J

′
2 in J ′. If either |J ′1|/|J ′|

or |J2|/|J ′| is close to 1, then we are done as before. But if this does not hold, then
either J ′1 or J ′2 is well-inside I0 (here we use that |J1|/|I0|, |J2|/|I0|, |J ′1|/|J ′| and
|J ′2|/|J ′| are all away from one). This means that we can pull back this space as
before.

This completes the proof of the claim and of the corollary. �
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5. Theorems A and A
′
: Real bounds at arbitrary non-periodic points

Let I be a nice interval and x ∈ I be a recurrent point. Let us show that one has
real bounds around x (often one will take for x a critical point). Write I0 = I, let
φ1 be the first return map to I0, and let I1 be the domain of this map containing
x. Inductively one gets in this way a sequence of intervals In and first return maps
φn+1 to In such that In+1 is the domain of φn+1 containing x. We say that the first
return map φn+1 to In is non-central w.r.t. x (if clear we will omit the reference
to x) if φn+1(x) /∈ In+1. Of course either x is contained in a periodic interval or
otherwise there are infinitely many n’s for which φn+1 : In+1 → In are non-central.
If x is not recurrent, then In+1 might be empty, so the results below become trivial.

Lemma 12. Assume that In−1 is well-inside In−3. Then

(1) if φn−1 : In−1 → In−2 is non-central, then In is well-inside In−1;
(2) if In is ξ-well-inside In−1, then for each j ≥ 1, there exists ξ(j) > 0 such

that In+j is ξ(j)-well-inside In+j−1.

Proof. Let us first prove that (1) holds. Note that φn−1(In) is in a component of
In−2\In−1 because φn−1 : In−1 → In−2 is non-central and that φn−2◦φn−1(In) is an
iterate of In before it returns to In−1. Hence from Proposition 1 and the assumption
that In−1 is well-inside In−3 it follows that φn−1(In) is well-inside In−2. But this
implies that In is well-inside In−1.

Let us next prove (2). If φn is non-central, then φn(In+1) is an iterate of In+1

before it returns to In, and so we can again apply Proposition 1 and that In is well-
inside In−1 to conclude that φn(In+1) is well-inside In−1. This implies that In+1 is
well-inside In. If φn is central, we have that φn(In+1) ⊂ In and φn(In) ⊂ In−1 and
that In+1 is well-inside In follows immediately. �

Lemma 13. If φn : In → In−1 and φn+1 : In+1 → In are non-central returns, then
In+2 is well-inside In.

Proof. Take a point x ∈ In+1 ⊂ In such that φn+1(x) /∈ In+1 and φn(x) /∈ In.
Let k > 1 be the smallest integer such that φkn(x) ∈ In and consider i0 to be the
stopping time of x such that ki0 ≤ k.

First observe that, if there exists a fundamental domain D that is well-inside
In−1 such that φkin (x) ∈ D for some ki ≤ k, then from Proposition 1 it follows
that the pullback of D to x is an interval well-inside In−1. Because this interval
contains In+1 we get that In+1 is well-inside In−1, and this implies the lemma. So
we can assume that P1 and P2 do not hold. If Property P3 holds, it follows from
Lemma 11 that the pullback U ⊂ Jt (remember that t is the largest integer with
0 ≤ t < i0 and Jt ⊂ (Ji0 , Ji0+1)) of Ji0+1 to φktn (x) is well-inside In−1 and by the
same reasoning as before, now playing with U instead of D, we are done in the same
way. If Property P4 holds, we have that ki0 = k. Then if In satisfies the hypothesis
of Lemma 8, it follows that the pullback U ⊂ In of In along {x, φn(x), . . . , φkn(x)}
is well-inside In−1, and the same reasoning as before applies again.

So we assume from now on that ki0 = k, Ji0 = In, Property P4 holds for x but In
does not satisfy the hypothesis of Lemma 8. It means that In has two small sides,
or φ(In) does not contain a small side of In or φn|In is an orientation reversing
surjective branch.
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Then we set y = φn(x) and define the smallest s > 0 such that φsn(y) ∈ V , where
V = φ−1

n|In(J0(y)). If such a t does not exist, we set s =∞. From Lemma 7 we know
that one of the Properties P1, P2, P3 or P4 holds for y with ki0(y) ≤ s. If ki0(y) ≤ s
and one of the Properties P1, P2 or P3 holds, it follows from one of the situations
analysed above that the pullback of Ji0(y)+1 to y is well-inside In−1. Pulling back
once more to x we get an interval that contains In+2 and is well-inside In and the
statement follows in this case. Let us assume that P4 holds and ki0(y) = s, which
means that Ji0(y) = In.

We still need to consider two cases: (i) The visited domain Ji0(y)−1 lies between
In and J0(y). Then, because φsn(y) ∈ V , we have that P3 holds for z = φs−1

m (y)
(with ki0(z) = 2). So we can use Lemma 11 and get that φ−1

n|Ji0(y)−1
(V ) is well-inside

In−1, and we are done again. (ii) The visited domain Ji0(y)−1 is equal to J0(y),
which means that there is no visited domain between In and J0(y). We can assume
that J0(y) does not satisfy the hypothesis of Lemma 8; otherwise, this lemma would
imply that the pullback W of V to y is well-inside In−1. Then the pullback of W
to x would be well-inside In, which would imply that In+2 is well-inside In, and
the statement would follow. So we can assume that both In and J0(y) do not
satisfy the hypothesis of Lemma 8. But then we consider the first return map to
In whose domain In+1 (containing x) either satisfies the hypothesis of Lemma 8,
is well-inside In−1, or it has two small sides. In each of these situations we get the
required statement. �
Lemma 14. Let φm−1 : Im−1 → Im−2 be non-central, while for some n > m,
φk : Ik → Ik−1 is central for k = m, . . . , n − 1 and φn : In → In−1 is non-central.
Then In+1 is well-inside In.

Proof. By assumption φm = φm+1 = · · · = φn. Of course it is enough to show
that φn(In+1) is well-inside a component of In−1 \ In. Let us prove this. Since
φm = φm+1 = · · · = φn := φ, one gets that a component of In−1 \ In is mapped
by φj to a component of In−1−j \ In−j for j = 0, . . . , n−m, and all these iterates
are pairwise disjoint. So it is enough to show that φn−m(In+1) is well-inside a
component of Im−1 \ Im (note that φn−m(In+1) is an iterate of In+1 before it has
returned to In). Note that φm−1 : Im−1 → Im−2 and φm : Im → Im−1 are non-
central w.r.t. φn−mn (In+1), and the previous lemma implies that the return domain
to Im that contains φn−mn (In+1) is well-inside Im−1. It follows that In ⊂ Im+1 is
well-inside Im−1. Hence by Proposition 1 we get that In+1 is well-inside In. �
5.1. Proof of Theorem A. Let us assume now, for m > p, that φp : Ip → Ip−1

and φm : Im → Im−1 are non-central and prove the first statement. It follows
from Lemma 13 or 14 that Im+2 is well-inside Im. Because of this, if for n > m,
φn : In → In−1 is also non-central, Lemma 12 or 14 implies that In+1 is well-inside
In, and the statement follows.

Let us assume that In+1 is well-inside In and prove the second statement of the
theorem. Let J be a domain of the first return map φn+2 to In+1. If φn+1(J) ⊂
In+1, then the first part of the second statement holds because φn+2|J = φn+1|J .
If In+1 ∩φn+1(J) = ∅, then by Proposition 1 the first part of the second statement
holds because φn+1(J) is well-inside a domain of φn because it is a pullback of In+1

by some iterate of φn and In+1 is well-inside In. To prove that ξ′ tends to infinity
as ξ tends to infinity, one needs also to consider the situation that the pullback of
I along the orbit {x, . . . , φn(x)} has high intersection multiplicity. �
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5.2. Proof of Theorem A′. Let us first show that ω(x) contains a dense orbit.
To prove this we use a slight adaptation of a well-known argument showing that if a
map is transitive on a compact set X , then there is a dense subset of X consisting of
points with dense orbit in X . Since ω(x) is compact, there exists a collection of open
subsets Un of M such that

⋂
n≥1

⋃
k≥n Un = ω(x) and such that diam (Un) → 0.

By the definition of ω(x), for each non-empty open subset U, V intersecting ω(x)
there exists m ≥ 0 such that f−m(U) ∩ V 6= ∅. So

⋃
m<0 f

m(Un) ∩ ω(x) is dense
in ω(x) (and of course open). So by Baire, X =

⋂
n≥0

⋃
m<0 f

m(Un) ∩ ω(x) is
also dense, and in particular non-empty. Points in X have dense orbits in ω(x).
It follows that either x is eventually mapped to a periodic point y, or that ω(x)
contains a non-periodic recurrent point y.

Let us distinguish three cases.
(I) The point y is a non-periodic recurrent point, and there exist arbitrarily

small periodic intervals J around y. If x is not contained in the orbit of the
periodic intervals around y, then the domain of the first return map to a small
neighbourhood of x is empty, and the assertion is trivial. So we may as well assume
that y = x. Let φ be the first return map to J . Because of Lemma 2, φ : J → J has
good distortion properties (because the pullback of a definite neighborhood of J has
bounded intersection multiplicity). In particular, the derivative of φ is bounded by
some universal number. Let P be the set of fixed points of φ : J → J , and let Î0 be
the component of J \ φ−1(P ) containing x. It is not hard to see that if φ2(x) /∈ Î0,
then the domain Î1 of the first return map to Î0 containing x is well-inside Î0. If
φ2(x) ∈ Î0, then define Îi 3 x inductively as before. Either

(Ia) for each i, φ2i(x) ∈ Î0; in this case x is contained in a periodic interval
J1 ⊂ Î0 ⊂ J of period two, i.e., with φ2(J1) ⊂ J1 and φ2(∂J1) ⊂ ∂J1, or

(Ib) there exists (a minimal) k ≥ 0 such that φ2(x) /∈ Îk. As before, it is not
hard to see that this implies that Îk+1 is ξ0-well-inside Îk, with ξ0 universal.

In case (Ia), I := K0 := I0 and J := K1 := J1 are both periodic nice intervals of
φ-period 1, respectively 2, while in case (Ib) I := I0 and J := J1 are nice intervals.
The required properties hold for these intervals. To show that either (1) or (2)
from the statement of Theorem A′ holds, replace φ : J → J by φ2 : J1 → J1 in the
above if case (Ia) holds, and repeat the same argument. It follows that either f is
Feigenbaum-like at x (from some moment only case (Ia) occurs), or we can take
infinitely small nice intervals J ⊂ I with J = Lx(I).

(II) The point y is a non-periodic recurrent point, and the period of periodic
intervals Ji 3 y is bounded (so f is finitely often renormalizable at y). Then let
J be the smallest periodic interval containing y (possibly J = M), let φ be the
first return map to J and P be the set of fixed points of φ : J → J . Let I0 be
the component of J \ φ−1(P ) containing y. Then the sequence of return maps
φi+1 : Ii+1 → Ii around y (defined above) has infinitely many non-central returns
(because y is non-periodic), and so by Theorem A there exists ξ0 > 0 and arbitrarily
small nice intervals I ′ containing y such that all its first return domains are ξ0-well-
inside I ′. Notice that I = Lx(I ′) is nice, and that I is small if I ′ is small. Let z ∈ I,
and let t(z) > 0 be minimal so that z′ = f t(z)(z) ∈ I ′. Then Lz(I) is contained in
the pullback by f t(z) of Lz′(I ′). It follows that for each z its first return domain
Lz(I) to I is ξ′0-well-inside I. (Of course it is conceivable that the domain of the
first return map to I is empty, in which case the assertion of the Theorem is trivial.)
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(III) y is a (repelling) periodic point with period p. Let λ = Dfp(y) be its
multiplier.

Claim 1: There exists ξ0 > 0 and arbitrarily small nice intervals I ′ around
y such that each fundamental domain of RI′ restricted to Ly(I ′) is ξ0-well-inside
I ′. To see this, we first remark that there exist sequences zi ↑ y, z′i ↓ y of points
that are eventually mapped into periodic orbits O 63 y, respectively O′ 63 y. Here
we take zi, z′i so that fp(zi+1) = zi and fp(z′i+1) = z′i. If |λ| is not large, then
neighbouring fundamental domains are comparable in length, so the claim holds
for I ′ = (zi, z′j) regardless of the choice for i and j (provided they are large). If
λ < 0, then I ′ := (zi, fp(zi)) is the required nice interval: each fundamental domain
of RI′ is well-inside I ′ (because we assumed that |λ| is large, this is trivial). If λ > 0
is large, then choose j minimal so that |z′j − y| < |zi− y|. If |z′j − y| ≥ 10|zi+1− y|,
then take I ′ = (zi, z′j) and otherwise take I ′ = (zi+1, z

′
j). In both cases Ly(I ′) is

well-inside I ′, so again the claim holds.
Claim 2: There exists ξ1 so that provided we take I ′ sufficiently small, for

each z ∈ I ′ \ Ly(I ′), Lz(I ′) is ξ1-well-inside I ′. To see this, take two intervals
I ′ ⊂ I ′′ as above with I ′ well-inside I ′′ and so that for some t ≥ 1, f t : I ′ → I ′′

is a diffeomorphism. Some iterate z′ of z will enter I ′′ \ Ly(I ′′) before returning
to I ′. Since I ′ is well-inside I ′′, by Proposition 1, Lz′(I ′) is well-inside I ′′ (and
contained in the fundamental domain I ′′ \ Ly(I ′′)). If |λ| is not large, then Lz′(I ′)
is well-inside two neighbouring fundamental domains, and so it follows that Lz(I ′)
is well-inside I ′. If |λ| is large, then f t|I ′ has bounded distortion, and therefore
Lz(I ′) = (f t|I ′)−1(Lz′(I ′) is well-inside I ′.

Now taking I = Lx(I ′) the required statements hold (here we use that x is pre-
periodic, but not periodic, which implies that the return domains of I are pullbacks
of return domains to I ′ that are contained in I ′ \ Ly(I ′)). So this completes the
case that y is periodic.

The final part of the assertion of Theorem A′ holds because both I and J are
nice. �

6. Theorem C: Improved Koebe Principles

and negative Schwarzian derivative

Before proving Theorem B, we shall prove Theorem C. First we state and prove
an improved Koebe Principle. The usual Koebe Lemma applies to a situation when
one has an interval T0 ⊃ J such that fn|T0

is a diffeomorphism, and such that either,
in addition, T0, . . . , f

n(T0) are pairwise disjoint or that the Schwarzian derivative
of f is negative. In the following version we do not require that T0, . . . , f

n(T0) are
pairwise disjoint, have finite total length or even that fn|T0

is a diffeomorphism, but

only an upper bound for
∑n−1

i=0 |f i(J)|.

Proposition 2 (Koebe Principle requiring less disjointness). Assume that f is C2.
Then there exist constants K > 0 and a function O(ε) with O(ε)→ 0 as ε ↓ 0 with
the following properties. Let n be an integer and J an interval such that fn|J is a
diffeomorphism. Let T be a δ-scaled neighbourhood of fn(J) for some δ > 0 and
T0, . . . , Tn := T be the pullback of T along J, . . . , fn(J).
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• Let N ⊂ {0, . . . , n − 1} be the set of integers i for which Ti contains a
critical point and let ε = max |Ti|. Then for each x, y ∈ J ,

(3)
|Dfn(x)|
|Dfn(y)| ≤ exp

(
O(ε)

n−1∑
i=0

|f i(J)|
)
·
[

1 + δ

δ

]2

· exp

(
K ·

∑
m∈N

|fm(J)|
dist (fm(J),Cr)

)
.

(If there are no such integers i, then we take the sum
∑

m∈N above to be
equal to zero.) If f is C3, then there exists K̂ > 0 such that O(t) ≤ K̂t for
each t > 0.
• If fn|T is a diffeomorphism, then T is a δ′(ε,

∑n−1
i=0 |f i(J)|)-scaled neigh-

bourhood of J . Here δ′ is a function which is specified in the proof of the
proposition.

In the proof of this proposition we need to use the following cross-ratios; see [17].
Let j ⊂ t be intervals, and let l, r be the components of t \ j. Define

A(t, j) =
|t| · |j|

|l ∪ j| · |j ∪ r| and B(t, j) =
|t| · |j|
|l| · |r| ,

and if f|T is monotone, define

A(f, t, j) =
A(f(t), f(j))

A(t, j)
and B(f, t, j) =

B(f(t), f(j))
B(t, j)

.

It is well known that if f is C2, under the assumption stated above, see [17] and also
[22], there exists a function O(ε) with O(ε)→ 0 as ε ↓ 0, so that for any intervals j ⊂
t as above with f|t a diffeomorphism, A(f, t, j) ≥ exp(−|r| ·O(|l|)) and B(f, t, j) ≥
exp(−|t| · O(|t|)). If f is C3, there is even a universal constant C > 0 so that
A(f, t, j) ≥ exp(−C · |l| · |r|)) and B(f, t, j) ≥ exp(−C|t|2).

Proof. The main idea of this lemma appeared before in [22] (for example, equation
(2.5) in the proof of Theorem 2.3 in that paper); see also [5]. Let ε > 0 be such
that each interval T0, . . . , Tn has length at most ε. Take any point x in the interior
of J . The point x divides the intervals J into two intervals J−, J+. Similarly
split Ji := f i(J) into J+

i = f i(J+) and J−i = f i(J−) and also split Ti into T−i ⊃
J−i , T

+
i ⊃ J+

i . We either have

|fn(J−)|
|J−| ≥ |f

n(J)|
|J | or

|fn(J+)|
|J+| ≥ |f

n(J)|
|J | .

Without loss of generality, suppose the latter holds. Let ns < · · · < n1 < n0 := n
be the integers i such that T−i contains a critical point. Fix i ∈ {1, . . . , s} and take
r = J+

ni+1, l = T−ni+1 ∪ J−ni+1, j = {fni+1(x)} and t = l ∪ j ∪ r. Applying A to
t = l ∪ j ∪ r and j gives

A
(
fni−1−ni−1, l ∪ j ∪ r, j

)
≥ exp

(
−
ni−1−ni−1∑

k=0

|fk(r)| ·O(|fk(t)|)
)

≥ C0(ni, ni−1),
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where C0(a, b) := exp
(
−O(ε) ·

∑b−1
k=a |fk(J)|

)
. Using the definition of the cross-

ratio A, and that |t| ≥ |l|,

|Dfni−1−ni−1(fni+1(x))| ≥ C0(ni−1, ni) ·
|fni−1(J+)|
|fni+1(J+)| ·

|T−ni−1
∪ J−ni−1

|
|T−ni−1 ∪ J−ni−1 ∪ J+

ni−1 |
.

By the non-flatness of the critical points, there exists a universal constant K2 > 0
such that

|Df(fni(x))| ≥ |f
ni+1(J+)|
|fni(J+)| · exp

(
−K2 ·

|Jni |
dist(Jni ,Cr)

)
,

where Cr is the set of critical points. Also,

|T−ni−1
∪ J−ni−1

|
|T−ni−1 ∪ J−ni−1 ∪ J+

ni−1 |
≥

dist(Jni−1 ,Cr)
dist(Jni−1 ,Cr) + |Jni−1 |

≥ exp
(
−K3

|Jni−1 |
dist(Jni−1 ,Cr)

)
.

Combining all these inequalities,

|Dfn(x)| ≥ C0(0, n) · |f
n(J+)|
|J+| ·

|T−n0
∪ J−n0

|
|T−n0 ∪ J−n0 ∪ J+

n0 |

·
s∏
i=1

exp
(
−(K2 +K3) · |Jni |

dist(Jni ,Cr)

)
.

By assumption |f
n(J+)|
|J+| ≥

|fn(J)|
|J| . Hence, by the definition of δ in the statement of

the theorem, and by the disjointness of the orbit of J , we obtain

(4) |Dfn(x)| ≥ C0(0, n) · δ

1 + δ
· |f

n(J)|
|J | · exp

(
−K ·

∑
m∈N

|fm(J)|
dist (fm(J),Cr)

)
.

Let us now prove the reverse inequality. To do this, we consider the cross-ratio B.
Again, either

|fn(J−)|
|J−| ≤ |f

n(J)|
|J | or

|fn(J+)|
|J+| ≤ |f

n(J)|
|J | .

Suppose the first holds and take an interval V ⊂ J−. Since

B(fn, J−, V ) ≥ exp
(
−O(max

i≤n
|f i(J)|) ·

∑
|f i(J)|

)
≥ C0(0, n),

by taking V converging to J− we get that

|Dfn(x)| ≤ C0(0, n)
1

|Dfn(a)| .
(
|fn(J−)|
|J−|

)2

,

where a is the boundary point of J− that is not inside J . Using (4) (with x = a)
to bound |Dfn(a)| and using |f

n(J−)|
|J−| ≤

|fn(J)|
|J| , we get (3).

To prove the second part of the proposition, choose j, l, r ⊂ T such that l∪j = J ,
|fn(l)| = |fn(j)| and such that fn(r) is one of the components of fn(T \ J). As
before, A(fn, t, j) ≥ C0(0, n). Using the definition of A and δ then gives

|r ∪ j|
|j| ≥

|l ∪ j|
|j|
|r ∪ j|
|t| ≥ C0

2(1 + δ)
1(2 + δ)

.
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Since C0 = exp(−x) with x = O(ε)
∑n−1

i=0 |f i(J)| and exp(−x) ≥ 1 − x for x ≥ 0,
this gives |r||j| ≥

−2x+δ(1−2x)
2+δ . Since by the first part of this proposition, the length

of l ∪ j is at most 2 1
C0

[(1 + δ)/δ]2 times the length of j, the result follows. �

Let us now prove that the Schwarzian derivative of high iterates of f is negative.
In order to do this, we assume that f is C3 and prove the following proposition.

Proposition 3. Assume that f is C3. For each integer N , and each ξ > 0, δ > 0,
S > 0, there exists τ > 0 with the following property. Let n be an integer and J
an interval such that

∑
0≤i<n |f i(J)| ≤ S. Let Tn be a δ-scaled neighbourhood of

fn(J), and let T0, . . . , Tn be the pullback with Ti ⊃ f i(J). Let N ⊂ {0, . . . , n− 1}
be the set of integers for which Ti contains a critical point. Assume that

• #N ≤ N ;
• |fn(J)| ≥ ξ · dist(fn(J),Cr), where Cr is the set of critical points;
• |fn(J)| ≤ τ .

Then
Sfn+1(x) < 0 for all x ∈ J.

Proof. Since f is C3 and all its critical points are non-flat, there exists C > 0 such
that Sf(x) < C for all x, and there exists a neighbourhood U of Cr and a constant
C′ > 0 with

(5) Sf(y) < − C′

[dist(y,Cr)]2
for all y ∈ U.

Let ns < · · · < n0 = n be the integers m so that |fm(J)| ≥ ξ · dist(fm(J),Cr)
(for example, when fm(J) contains a critical point). Because of the composition
formula for the Schwarzian derivative, it suffices to show the following claim for
each i ≤ s.

Claim: Sfki(x) < 0 for any x ∈ fni+1+1(J) where ki = ni − ni+1, where
k0 = ns + 1 and ns+1 = −1.

Proof of Claim. Fix i, write n′ = ki and let us show that Sfn
′
(y) < 0 for any

y ∈ fni+1+1(J). By the composition formula for the Schwarzian derivative,

Sfn
′
(y) = |Dfn′−1(y)|2 ·

Sf(fn
′−1(y)) +

n′−2∑
i=0

Sf(f i(y)) · |Dfn′−1−i(f i(y))|−2

 .

From (5) this is at most

|Dfn′−1(y)|2 ·

 −C′
[dist(fn′−1(y),Cr)]2

+
n′−2∑
i=0

(
C · |Dfn′−1−i(f i(y))|−2

) .

Because of the assumptions and from the previous proposition, this is at most

≤|Dfn
′−1(y)|2 ·

 −C′ξ2

|fni−1(J)|2 + C′′
ni−1−1∑
j=ni

|f j(J)|2
|fni−1(J)|2


=
|Dfn′−1(y)|2
|fni−1(J)|2

−C′ξ2 + C′′
ni−1−1∑
j=ni

|f j(J)|2
 .
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Here C′′ depends on the cardinality of N , C and on ξ and S (through the exponen-
tial term in (3)). Provided |fn(J)| is sufficiently small, all |f i(J)|, 0 ≤ i < n, will
be small (because there are no wandering intervals). Because of this, and by the
bound for

∑
0≤i<n |f i(J)|, we get Sfn

′
(y) < 0 for y ∈ fni+1+1(J). Combining this,

and using that compositions of maps with negative Schwarzian again have negative
Schwarzian, completes the proof. �

6.1. Proof of Theorem C. Part (1) of Theorem C is already proved in Propo-
sition 1. Before proving part (2), let us prove part (3). According to Theorem A′

there are two cases:
Case 1. The critical point c is not in the basin of a periodic attractor (so

in particular non-periodic) and f is not of Feigenbaum type at c. According to
Theorem A′ there exists (an arbitrarily small) nice interval T containing c with the
property that each first return to T is well-inside T . (Here we use that c is not in
the basin of a periodic attractor.) Let Ly(T ) be the component of the domain of
this first entry map to T containing y (this set can be empty). Let V ⊂ T be Lc(T )
or if that is empty, let V be any neighbourhood of c that is well-inside T . Now
take any x so that, for some n, fn(x) ∈ V . We want to show that Sfn+1(x) < 0.
Let ñ ≤ n be minimal such that f ñ(x) ∈ T and either (i) one of the intervals in
the pullback of Lf ñ(x)(T ) along {x, . . . , f ñ(x)} contains a critical point or (ii) so
that f ñ(x) ∈ V . Since fn(x) ∈ V , such an integer exists. If (i) holds, then define
J = Lf ñ(x)(T ) and if (ii) holds, then define J = V . In both cases, J is well-inside
T , and one of the intervals in its pullback along {x, . . . , f ñ(x)} contains a critical
point. Take n̂ maximal with 0 ≤ n̂ < ñ such that f n̂(x) ∈ T (if n̂ does not exist,
let n̂ = 0). Let J0, . . . , Jñ and T0, . . . , Tñ be the pullbacks of, respectively, J and T
along {x, . . . , f ñ(x)}, and let n′ be minimal such that Jn′ contains a critical point.
Note that n̂ < n′ ≤ ñ ≤ n and that Tn̂ = Lf n̂(x)(T ). By the minimality of ñ,
none of the intervals T0, . . . , Tn̂−1 contains a critical point; moreover, Tn̂, . . . , Tn′−1

is pairwise disjoint and the same holds for Jn̂, . . . , Jn′−1. In particular, since J
is well-inside T , also Jn′ is well-inside Tn′ . Finally, by definition, Jn′ contains a
critical point. From all this and Proposition 3, it follows that Sfn

′+1(x) < 0.
If n′ = n, then we are done. If n′ < n, then define x′ = fn

′+1(x) and repeat
the argument. Since the composition of maps with negative Schwarzian derivative
again has negative Schwarzian derivative, we are done. This completes the proof
of part (3) of Theorem C in this case.

Case 2. The critical point c is of Feigenbaum type (as defined in Theorem A′).
Let {Ki}∞i=0 be a nested sequence of nice p2i-periodic intervals containing c. We
want to show that if fn(x) ∈ Ki+1 where i is large, then Sfn+1(x) < 0. For the
moment fix i and let n′ ≤ n be minimal such that fn

′
(x) ∈ Ki+1, and let n̂ ≤ n′

be minimal such that f n̂ ∈ Ki. Then n′ = n̂ + kp2i for some integer k. If k ≤ 2,
then the intersection multiplicity of the pullback of Ki along {x, . . . , f n̂′(x)} is at
most 3, and so we can apply the previous proposition, replacing n by n′ and taking
fn
′
(J) = Ki+1 and Tn′ = Ki (provided we take i sufficiently large). If k > 2,

then f n̂+(k−2)p2i(x) is contained in a fundamental domain Fi associated to the
repelling fixed point of fp2

i

: Ki → Ki in ∂Ki. Because of the corollary at the end
of Section 2, this fundamental domain is comparable in size to Ki (here we use that
f n̂+kp2i (x) ∈ Ki+1 and that Ki+1 is not small compared to Ki in this Feigenbaum
situation). Moreover, it is comparable in size to its two neighbouring fundamental
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domains Fi,l, Fi,r. So replacing in the proposition n by ñ := n̂ + (k − 2)p2i and
taking f ñ(J) = Fi and Tñ = Fi,l ∪ Fi ∪ Fi,r, we again obtain that Sf ñ+1(x) < 0
provided i is sufficiently large.

Part (2) of Theorem C now follows easily: let U be a nice neighbourhood of a
critical point as in part (3) such that fn(T ) ⊂ U . Since U is nice and fn|T is
a diffeomorphism, T, . . . , fn(T ) are either contained in U or outside U . Let s be
maximal with 0 ≤ s < n such that fs(T ) ⊂ U . If there exists no such s, then
T, . . . , fn(T ) are disjoint and the result follows from the previous proposition. If
there exists such an integer s, then fs+1 : T → fs+1(T ) has negative Schwarzian. By
a theorem of Mañé [13] any compact forward-invariant set not containing parabolic
or critical points, is hyperbolic. Combined, this implies that fs+1 : T → fs+1(T )
and fn−s−1 : fs+1(T ) → fn(T ) have bounded distortion, and we obtain part (2).
(In fact, one can derive this result of Mañé also from our real bounds.) �

7. Theorem B: Large bounds

Let us now prove large bounds. This will be done in the two propositions in
this section. If I is a nice interval containing a non-periodic recurrent critical point
c, then we say that J is a child of I if J is a component of f−1(J) where J ′ is a
diffeomorphic pullback of I and J contains a critical point c′ with ω(c) = ω(c′) 3
c, c′.

Let us first prove part (1) of Theorem B. It will be convenient to define Lx(J) to
be the domain of the first entry map to J containing x, and to define inductively
Li+1
x (J) = Lx(Lix(J)).

Proposition 4. For each C > 0, δ > 0 there exists N ′ such that if a nice interval
I has at least N ′ children K1 ⊃ K2 ⊃ · · · around some critical point, and has each
of its domains in I δ-well-inside I, then for I ′ = KN with N ≥ N ′ each of the first
return domains to I ′ is C-well inside I ′.

Note that because of Theorem A(1) there exist many nice intervals I such that
each of the domains of the first return map to I is δ-well-inside I for some δ > 0.

Proof. Assume that I is a nice interval as above, and let RI be the first entry map
to I. Let s(i) be such that Ki is a unimodal (or homeomorphic if d is an inflection
point) pullback of I under fs(i). Then fs(i)(Ki+1) is contained in a first return
domain to I. It follows that Ki+1 is δ′′-well-inside Ki for each i = 1, . . . , N .

Next consider a point u ∈ I ′ = KN in a return domain to I ′, and let fs be the
unimodal (or homeomorphic) map such that KN is a component of f−s(I) (this
is possible because KN is a child of I). Note that f(KN ), . . . , fs−1(KN ) do not
intersect I ′ = KN (otherwise, KN could not be a unimodal pullback of I). Let
v = fs(u) ∈ I. If v ∈ I ′, then I ⊃ K1 ⊃ K2 ⊃ · · · ⊃ KN := I ′ and since I ′ is very
deep inside I we can pull back this space through the unimodal map fs : I ′ → I. If
v /∈ I ′, then pick an integer i ∈ {1, . . . , N}, let RKi be the first entry map to Ki and
let xi = RKi(v). Then applying Theorem B(1) (taking I to be Ki and V to be Ki+1)
shows that Lxi(Ki+1) is well-inside Ki, and so by Koebe we get that Lv(Ki+1) is δ̃-
well-inside Lv(Ki). Hence LuLv(Ki+1) is δ̃′-well-inside LuLv(Ki). Since this holds
for i = 1, . . . , N , and since LuLv(K1) ⊂ I ′ and LuLv(KN) = LuLv(I ′) = Lu(I ′)
(because v /∈ I ′), it follows that Lu(I ′) is very deep inside I ′ when N is large. �
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Let J be a nice interval, and let J1 be its first return domain containing a critical
point c. Define Ji = Lic(J). Assume that k is maximal such that the first return
map φJi−1(c) ∈ Ji for 1 ≤ i < k and φJk−1(c) /∈ Jk, and define Cc(J) = Jk (so that
Cc(J) is the next non-central return in the cascade). In addition, we say that a pair
of nice intervals W ⊃ V is nice if no forward iterate of ∂V enters the interior of W .
Note that any pullback W ′ ⊃ V ′ of a nice pair W ⊃ V is again a nice pair.

Lemma 15. Let J ⊂ W be a return domain to W that contains a point c and
J ∩ U = ∅. Then any pullback of U that contains c is contained in Cc(W ).

Proof. No pullback of U can contain a boundary point of Cc(W ), because otherwise
U would contain a boundary point of W , a contradiction. �
Lemma 16. There exists a function ρ1 : R+ → R+ such that ρ1(ξ)→∞ as ξ →∞
with the following properties. Let W be a nice interval containing a critical point c
and let J = Lc(W ). Assume that either c is a turning point or that the first return
map φ : J →W is monotone. Let V be an interval that is ξ-well-inside W and such
that W ⊃ V is a nice pair. Let s > 0 and assume that fs(z) ∈ V (not necessarily
for the first time). Denote by Vi,Wi the pullback of V,W along f i(z), . . . , fs(z).
Then there exists 0 ≤ t < s and W 1

t with Vt ⊂W 1
t ⊂ Lft(z)W and such that

(1) Vt is ρ1(ξ)-well-inside W 1
t , and if t > 0, Vt ⊂Wt is a nice pair, and

(2) each pullback of W 1
t intersecting c is contained in Cc(W ).

Proof. Observe that by part (2) of Theorem C, there exists a function ρ̂ with
ρ̂(ξ) → ∞ as ξ → ∞ so that the pullback of V by any first entry map to W is
ρ(ξ)-well-inside its domain. So we can assume that z ∈ W . For simplicity assume
ξ′ := ρ(ξ) < ξ and that ξ is large.

Let 0 := t0 < t1 < t2 < · · · < tk = s be the integers such that f tj (z) ∈ W .
By the above observation Vtk−1 is ξ′-well-inside Wtk−1 . Hence, if f tk−1(z) /∈ J ,
then by the previous lemma all the required properties hold for t = tk−1, taking
W 1
t = Lft(z)(W ) and ρ1(ξ) = ρ̂(ξ). So from now on we assume that f tk−1(z) ∈ J ,

and let k′ ≥ 0 be minimal such that f tk′ (z), . . . , f tk−1(z) ∈ J . Let k′′ ≥ k′ be
minimal such that Wtk′′ ⊂ · · · ⊂ Wtk−1 = J ⊂Wtk = W . If Wtk−2 63 c, then define
k∗ = k − 2. If Wtk−2 3 c, k′′ > k′ and if there exists some i = k′, . . . , k′′ − 1 with
f ti(z) ∈Wtk−1 \Wtk−2 , then let k∗ be the maximal such integer (and otherwise leave
k∗ undefined). We can assume that J is not

√
ξ-well-inside W , because otherwise

the lemma also holds: if k′ > 0, then pull back once more (the required properties
hold for t = tk′−1 setting W 1

t = Lft(z)(W )), whereas if k′ = 0, simply set t = 0 and
W 1
t = W . This means that we can also assume that V ⊂W \ J (since V ⊂W is a

nice pair; otherwise V ⊃ J , and J would be ξ-well-inside W ).
Although we have no control over the distortion of φ : J → W , Lemma 2 gives

that φ : Wtk−2 → J is quasi-polynomial: it is the composition of at most #Cr maps
of the type L ◦ f , where L is a diffeomorphism with universal bounded distortion.

Claim: There exists a function ρ1 as above such that Vt̂ is ρ1(ξ)-well-inside Ŵ ,
where either (i) t̂ = tk′ and Ŵ = J or (ii) t̂ = tk′′ and Ŵ = Wt̂, or (iii) k∗ is
defined, t̂ = tk∗ and Ŵ = Lf t̂(z)(J).

This claim implies the lemma. If (i) holds, take t = tk′−1, W 1
t = Lft(z)(W )

if k′ > 0 and t = 0, W 1
t = Lz(W ) if k′ = 0. If (ii) holds, set t = tk′′−1, W 1

t =
Lft(z)(Wtk′′ ) if k′′ > 0 and t = 0, W 1

t = Lz(W ) if k′′ = 0. If (iii) holds, set t = tk∗

and W 1
t = Lft(z)(J). By the previous lemma, the required properties hold.
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In order to prove the claim we distinguish some cases.
Case I: φ : J → W is monotone (so k′ = k′′). For simplicity assume that φ is

orientation preserving (otherwise consider the 2nd iterate of φ) and p a (the) fixed
point of φ. Let us introduce some notation: set W−i := Wtk−i , V−i = Vtk−i . Let
W−i,± be the components of W−i \ {p}, labelled so that W−i,+ are all on the same
side of p as V .

Case I.1: The union (of two adjacent fundamental neighbourhoods) W0,+ \
W−2,+ contains a

√
ξ′-scaled neighbourhood of V . Then we are done (because their

pullback has intersection multiplicity bounded by 3).
Case I.2: Case I.1 does not hold, but |W−1,+ \W−2,+| ≥

√
ξ′|W−2,+|. Then

|W0,−| ≥ ξ′−2
√
ξ′

2
√
ξ′
|W−1,+| ≥ C1

√
ξ′|W−1,+| (because V is ξ′-well-inside W and Case

I.1 does not hold). It follows that Vti is C
√
ξ′-well-insideW for each i = k′, . . . , k−1.

Using this statement for i = k′+ 1, and pulling back once more, we get that Vtk′ is
ρ̂(C1

√
ξ′)-well-inside J .

Case I.3: |W−1,+ \W−2,+| ≤
√
ξ′|W−2,+|. Since φ : W−2,+ → W−1,+ is quasi-

polynomial, this gives φ′ ≤ C2

√
ξ′ on W−2,+. Hence, pulling back the external

ξ′-space of V1 in W−1, we get that V−1 is ρ1(ξ′)-well inside W−1,+ \W−3,+. As in
Case I.1 the claim follows.

Thus the first alternative in the claim holds in the monotone case.
Case II: c is a turning point. If c /∈ W−2, the 3rd alternative holds, whereas if

c ∈ W−2 both components of W−1 \W−2 are comparable in length. So if |W−1 \
W−2| ≥

√
ξ|W−2|, then Vti is

√
ξ-well-inside W−1 for i = k′′, . . . , k′, and either the

first or 3rd alternative of the claim holds. Otherwise |W−1 \W−2| ≤
√
ξ|W−2| and

exactly as in Case I.3, V−1 is very deep inside a component of W−1\W−3. Since the
intersection multiplicity of the pullback of this component along f tk′′ (z), . . . , f tk(z)
is bounded by 3 (here we use that Wtk′′ ⊂ · · · ⊂ W ), the 2nd alternative of the
claim holds. �

Proposition 5. For each ξ̃ > 0 there exists ξ > 0 such that if In+1 is ξ-well-inside
In, then each return domain to In+1 is ξ̃-well-inside In+1.

Proof. Take x ∈ In+1, and let t be its return time to In. Then choose the minimal
s > 0 such that fs(x) is in a return domain to In which, for simplicity, we still
denote by In+1, is ξ-well-inside In. Now let W 0

s := In, and Vs = In+1, and let
W 0
i , Vi, i = 0, . . . , s be the pullbacks of W 0

s and Vs containing f i(x). Note that V0

is the first return domain of In+1 containing x. Let s′1 be maximal with 0 ≤ s′1 < s
and such that W 0

s′1
contains a critical point (if none of the intervals W 0

0 , . . . ,W
0
s−1

contains a critical point, then set s′1 = 0). By part (2) of Theorem C, there exists
a function ρ̂ with limξ→∞ ρ̂(ξ) =∞ such that W 0

s′1
is a ρ̂(ξ)-scaled neighbourhood

of Vs′1 . If s′1 = 0, then x ∈ V0 ⊂ W 0
0 ⊂ In+1 and the proof is finished. If s′1 > 0,

let c′1 be the critical point in W 0
s′1

. Note that W 0
s′1
⊃ Vs′1 is also a nice pair. If

the branch of the first return map to W 0
s′1

around c1 is monotone, we set c1 = c′1
and s1 := s′1. If it has a turning point, let s1 ≤ s′1 be maximal for which W 0

s1

contains a turning point c1. Now let t1 and W 1
t1 be as in the previous lemma. So

Vt1 is ρ1(ρ̂(ξ))-well-inside W 1
t1 and W 1

t1 ⊃ Vt1 is a nice pair if t1 > 0. If t1 = 0,
this completes the proof. If t1 > 0, any pullback of W 1

t1 that intersects c1 is
contained in Cc1(W 1

s1 ). Repeating this construction inductively, we get a sequence
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t = t0 ≥ s1 > t1 > · · · > sκ−1 > tκ−1 ≥ sκ ≥ tκ = 0 and nice pairs W i
ti ⊃ Vti ,

i = 0, 1, . . . , κ− 1 (so that W i
ti is a pullback of In), such that

(1) for i = 1, . . . , κ, W i
si is a ρ̂((ρ1 ◦ ρ̂)i−1(ξ))-scaled neighbourhood of Vsi ;

(2) for i = 0, . . . , κ, W i
ti is a (ρ1 ◦ ρ̂)i(ξ)-scaled neighbourhood of Vti ;

(3) if W i
ti ,W

j
tj (i < j) both contain the same critical point c, then W j

tj ⊂
Cc(W i

ti).
Note that any pullback of In intersecting x is contained in In+1. Hence In+1 is
a (ρ ◦ ρ̂)κ(ξ)-scaled neighbourhood of V0 = Lx(In+1). So if κ is not large, the
proposition immediately follows. If κ is large, we will use a different argument: by
the last property there is a critical point c, and a sequence i(1) < i(2) < · · · < i(r)
(with r ≥ κ/(d− 1) where d is the number of critical points of f), such that

W i(1)
ni(1)

⊃ Cc(W i(1)
ni(1)

) ⊃W i(2)
ni(2)

⊃ Cc(W i(2)
ni(2)

) ⊃W i(3)
ni(3)

⊃ · · · ⊃W i(r)
ni(r)

⊃ Vni(r) ∪ {c}.

From the first part of Theorem A, it follows that for j = 1, . . . , r − 1, Cc(W i(j+1)
ni(j+1) )

is δ-well-inside Cc(W i(j)
ni(j) ). By the first part of Theorem B, it follows that

Lx(Cc(W i(j+1)
ni(j+1) )) is δ′-well-inside Lx(Cc(W i(j)

ni(j) )). Since this holds for j = 1, . . . , r−
1, Lx(W1) contains a (1+δ′)r−2-scaled neighbourhood of Lx(Wnir ). Note that V0 ⊂
Lx(Wnir ) (it is the pullback of Vnir ⊂Wnir containing x) and that Lx(Wn1 ) ⊂ In+1

(because Wn1 is a pullback of In). Hence In is a (1 + δ′)r−2-scaled neighbourhood
of In+1 = V0. This completes the argument if κ (and therefore r) is large. �

8. Theorem D: Bounded distortion

Let us state here a more complete version of Theorem D.

Theorem D′ (Control of distortion). There is ξ > 0 such that for any ε > 0
the following holds. Assume that c1 is a recurrent critical point that is minimal
w.r.t. the partial ordering ≺ on Cr, and let c2, . . . , ck be the collection of critical
points with ω(ci) 3 c1, i = 2, . . . , k. Then there exists a nice interval W1 3 c1
with |W1| < ε such that Wi := Lci(W1) are pairwise disjoint nice intervals and
orb +(c)∩W1 = ∅ for any critical point c ∈ Cr\{c1, . . . , ck}. If ci is non-recurrent,
then Wi ∩ orb+(ci) = ∅. If f is infinitely renormalizable at c1, then we can take
for W1 a periodic interval (with f q(∂W1) ⊂ ∂W1 where q is the period of W1).
Denoting the first entry map to W1 by ψ, the following properties hold.

(1) Let Vi 3 ci be the maximal interval such that ψ(Vi) ⊂ W1 is contained in
the return domain to W1 containing ψ(ci), i.e., Vi is maximal such that
ψ(Vi) ⊂ Lψ(ci)(W1). Then the first entry map Ψ to

⋃
Vi is a composition

of at most d maps of the type L1 ◦ f ◦L2, where L1, L2 are diffeomorphisms
of bounded distortion. (Here d is the number of critical points of f .)

(2) If f is infinitely renormalizable of Feigenbaum type at c1, then the period
q is of the form q = p2n. Let V1 ⊂ W1 be the maximal interval containing
c1 with period p2n+1. For i = 2, . . . , k, let Vi 3 ci be the maximal interval
such that ψ(Vi) ⊂ Lψ(ci)(V1). Then again the first entry map to

⋃
Vi is

a composition of at most d maps of the type L1 ◦ f ◦ L2, where L1, L2 are
diffeomorphisms of bounded distortion.

Proof. Let us first consider the case when f is not Feigenbaum-like at c1. Let
W1 ⊃ V1 3 c1 be neighbourhoods of c1 as in Theorem A′, case (2). Take W1 so
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small that each critical point that does not accumulate on c1 remains outside W1.
Then take Vi,Wi as above, and let si ≥ 0 be such that ψ|Wi = fsi . It follows that
the intervals Wi, . . . , f

si(Wi) are pairwise disjoint and Vi is well-inside Wi.
Now take x ∈M for which there exists the minimal t ≥ 0 such that f t(x) ∈

⋃
Vj .

So let us assume that f t(x) ∈ Vj0 , and define the chains {Vi}ti=0 and {Wi}ti=0 such
that f i(x) ∈ Vi ⊂ Wi, Vt = Vj0 and Wt = Wj0 . We claim that each critical
point is contained in at most one of the intervals from {Wi}ti=0. Indeed, if for
0 ≤ i1 < i2 ≤ t the intervals Wi1 and Wi2 contain the same critical point cl, then
Wi1 ⊂ Wi2 , and this would imply that f i1(x) ∈ Wi1 ⊂ Vl, which contradicts the
definition of t. Consider the intervals Wn1 , . . . ,Wnν from {Wi}ti=0 that contain
critical points. The previous theorem implies that (shrinking W1 if necessary) the
map f

nj+1−nj
|Wnj+1

(for 0 ≤ j ≤ ν − 1, take n0 = 0) has negative Schwarzian, and this

implies that the diffeomorphism f
nj+1−nj−1

|Vnj+1
has bounded distortion. Hence, the

first entry map to
⋃
Vi is a composition of at most d maps of the type L1 ◦ f ◦L2,

where L1, L2 are diffeomorphisms of bounded distortion.
If f is Feigenbaum-like at c1, then let W1 3 c1 be a neighbourhood of c1 as in

Theorem A′, case 1, i.e., of period p2i. Because W1 is periodic, Lψ(ci)(W1) = W1

and so we cannot proceed precisely as above. But because of Corollary 1 (at the end
of Section 2), for each z ∈ W1, Lz(V1) is well-inside W1. With this modification,
the proof goes as before. �

Theorem D simply follows from Theorem D′.

9. Theorem E: Measure of invariant sets and ergodicity

First let us prove the following result (which was proved previously in the nega-
tive Schwarzian unimodal case by Martens; see [14] and [17]).

Proposition 6. If f(Y ) ⊂ Y and Y has positive Lebesgue measure, then either
• there exists an interval H such that |H | = |H ∩ Y |, or
• for almost every y ∈ Y there exists a subset C = C(y) of the critical set of
f such that Ω := ω(c) = ω(c̃) for each c, c̃ ∈ C, each c ∈ C is recurrent, Ω
is a minimal set (every forward orbit is dense), fn(y)→ Ω as n→∞, and
limn→∞ rn(y)→ 0.

Here rn(y) is defined as follows. Let n be a positive integer, and let Tn(y) be the
maximal interval such that fn|Tn(y) is a diffeomorphism. Then rn(y) is the length of
the smallest component of fn(Tn(y) \ {y}).

Proof. Let us assume that the first alternative does not hold. Then Y does not
have full measure in any interval.

Claim 1: y cannot accumulate onto parabolic or fixed points of f . To prove
this we use an argument similar to the one given on pp. 482-483 of [9]. More
precisely, assume by contradiction that y accumulates onto a parabolic or fixed
point a. Let a have period s, and for simplicity assume that fs is orientation
preserving near a. Note that the period of parabolic points is bounded; see [17].
Let b 6= a be a periodic point for which there exists a sequence bn converging
monotonically to a (from the same side as y, f(y), f2(y), . . . accumulates) so that
fsn(bn) = b. Then [bn, bn+1] are fundamental domains of the periodic point a. Fix
n0 large, let fk(y) be the first visit to [bn0 , a], and let n be maximal such that



778 SEBASTIAN VAN STRIEN AND EDSON VARGAS

fk(y) ∈ [bn, bn+1] ⊂ [bn, a]. If n ≥ n0 + 1, then the pullback of [bn−1, bn+2] ⊃
[bn, bn+1] 3 fk(y) along {y, . . . , fk(y)} is disjoint. So the pullback of [b0, b3] along
{y, . . . , fk+s(n−1)(y)} has intersection multiplicity ≤ 3. Since [b1, b2] 3 fk+s(n−1)(y)
is well-inside [b0, b3] (the sizes of adjacent intervals fundamental domains associated
to a are of the same order), by letting n tend to infinity, and using that y is a
Lebesgue density point of Y , it follows that Y contains either [b0, b1] or [b2, b3].
(Note that the pullback of [b0, b3] to y might not be monotone, but that its image
under fk+s(n−1) contains one of the components of [b0, b3] \ fk+s(n−1)(y).) So in
this case, Y contains an interval and the claim is proved by contradiction. If on
the other hand, n = n0, then fk+s(n−1)(y) ∈ [b, b1] = [b0, b1], and then choose a
sequence Ui of adjacent fundamental domains associated to b with Ui → b as i→∞
and with b1 ∈ U0 ⊂ [b, b1]. If fk+s(n−1)(y) ∈ U0, then the previous argument can
still be used to prove that Y contains an interval (because U0 is well-inside [b0, b3]).
Otherwise let m be maximal such that y′ = fk+s(n−1)(y) ∈ Um, and so by iterating
y′ to successive fundamental domains of b, there exists k′ > k + s(n − 1) with
fk
′
(y) ∈ U1. Now we can pull back [U2, U0] 3 fk

′
(y) along {y, . . . , fk′(y)} with

intersection multiplicity ≤ 3 and as before obtain that Y contains an interval, by
letting n tend to infinity. This contradiction concluded the proof of Claim 1.

Claim 2: rn(y) → 0 for almost all y ∈ Y . (This fact is well known, but for
completeness we prove it again.) Indeed, if this is not the case, then there are δ > 0,
a subsequence ni, z ∈ Y and a Lebesgue density point y of Y with rni(y) ≥ δ and
fni(y) → z. If the orbit of y stays away from parabolic periodic points, then by
part (2) of Theorem C, and because y is a Lebesgue density point and Y is forward
invariant, Y contains (up to measure zero) a δ/2 neighbourhood of z, contradicting
that Y does not contain intervals.

Claim 3: Let y be a point of Lebesgue density of Y . Then ω(y) =
⋃
c∈C ω(c)

where C = C(y) is the set of critical points such that c ∈ ω(y). By definition
for each n there is a critical point c such that fn is a diffeomorphism on some
interval [a, y], such that fk(a) is a critical point c, and such that fn−k(c, fk(y)) is a
diffeomorphism. Since rn(y)→ 0 and since f has no wandering intervals, it follows
that both |c − fn(y)| and |fn−k(c), fn(y)| tend to zero when n tends to infinity.
Together this implies Claim 3.

Claim 4: If y and C = C(y) are as in Claim 3 and so that y is not eventually
mapped onto a critical point, then c ∈ ω(c′) for any c, c′ ∈ C. This follows from
the argument given in Proposition 3.3 of [9] (we use here that Y does not have full
measure in any interval). To prove this, let us first assume by contradiction that for
some c ∈ C there exists one or more critical points c′ ∈ C such that c /∈ ω(c′). Let
C ′ be the set of such critical points in C. Note that it is not impossible that c ∈ C′.
Define Ĉ = C \ C′. Let U be a neighbourhood of c such that each c′ ∈ C′ avoids
U . Let I be a small nice interval, containing c and well inside U , taken from the
partition generated by the fixed points of f and such that each first return domain
to I is well-inside I. This is possible by Theorem A. Now fix I throughout the
remainder of the proof of this claim and write I(c) = I. For each critical point c∗

such that c ∈ ω(c∗), let k ≥ 0 be the smallest integer such that fk(c∗) ∈ I(c), and
let I(c∗) be the pullback of I(c) along {c∗, . . . , fk(c∗)}. Then each return domain
to I(c∗) is also well-inside I(c∗). Now fix some c′ ∈ C′. Take arbitrarily small nice
neighbourhoods Uj of c′ from the partition generated by the fixed points of f . We
can take these neighbourhoods so that the forward orbit of their boundary points
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does not intersect I(c) and if kj ≥ 0 is minimal with fkj (y) ∈ Uj , then kj → ∞.
Let nj > kj be minimal such that

fnj(y) is in a component I(c̃) of Î = I(c) ∪
⋃
ĉ∈Ĉ

I(ĉ).

Let V 0
j , . . . , V

nj
j = I(c̃) be the chain along {y, . . . , fnj (y)}. Since kj is minimal and

I(c̃) is nice, V 0
j , . . . , V

kj
j are pairwise disjoint. Moreover, since the iterates of c′ ∈ C′

avoid U , by the minimality of nj , because rn(y) → 0 and the orbit of y does not
come close to critical points in the complement of C = C(y), fnj−kj : V kjj → Î is a
diffeomorphism onto I(c̃). From Claim 1 we can assume that ω(y) does not contain
fixed points of f and so fnj (y), j = 1, 2, . . . are all contained in closed intervals
W ′ ⊂ W ⊂ I(c̃) which are all properly contained in each other. By assumption Y
does not have full Lebesgue measure in any subinterval, and therefore the density
of Y in W is less than 1. Since fnj (y) ∈ W ′, since fnj−kj : V kjj → I(ĉ) is a

diffeomorphism, and since Vj , . . . , V
kj
j are disjoint, we get that the density of Y in

the pullback of W to y is also uniformly bounded away from 1. This contradicts
the assumption that y is a Lebesgue density point of Y and therefore proves the
claim.

Claim 5: For y as above, each x ∈ ω(y) accumulates on C. Indeed, assume
not. Take an arbitrary c ∈ C and take I(c) = In as in the proof of Claim 4, so
that the orbit of x never enters the neighbourhood I(c). Let I(c∗), c∗ ∈ C, be
the corresponding pullback of I(c). Then take partition elements Uj around x.
Defining kj , nj as in Claim 4 one gets again a contradiction.

Claim 6: Each point x ∈ ω(y) has an orbit that is dense in ω(y). Indeed, by the
previous claim iterates of x accumulate on some critical point c ∈ C. From Claim
4, they then also accumulate on any other critical point, and so ω(x) =

⋃
c∈C ω(c).

From Claim 2 the claim then follows.
From the previous claims the proposition follows. �

Assuming that X is a closed set that is forward invariant (f(X) ⊂ X), define

B(X) = {y; ω(y) ⊂ X}.

Proposition 7. Let X be a forward invariant set that is minimal. Then X has zero
Lebesgue measure and for each x ∈ X there exists a sequence of intervals Nn ⊂ Un
such that

⋂
Un = {x}, (Un \ Nn) ∩X = ∅ and Nn is well-inside Un. Moreover, if

Y ⊂ B(X) has positive Lebesgue measure, then X is equal to ω(c) for at least one
recurrent critical point c, and |Un ∩ Y |/|Un| → 1 as n→∞.

Proof. Take any point x ∈ X , and let W1 3 x be a nice interval such that all its
return domains are well-inside. Let Vi ⊂ Wi be the intervals given by Theorem
D′, and let ψ be the first entry map to

⋃
Vi. For a connected component J of the

domain of ψ, let ψ(J) ⊂ Vj0 and T (J) ⊃ J be the pullback of Wj0 . Because of the
choice of intervals Vi ⊂ Wi, see Theorem A′, if J1, J2 are connected components
of the domain of ψ such that if T (J1) ∩ T (J2) 6= ∅, then either T (J1) ⊂ T (J2) or
T (J2) ⊂ T (J1). Moreover, if J2 ∩ T (J1) 6= ∅, then T (J2) ⊂ T (J1). So let us take
a minimal component J in the sense that X ∩ J 6= ∅ and such that T (J) ⊂ T (J̃)
for any other component J̃ of D(ψ) for which X ∩ J̃ 6= ∅. Since X is compact this
can be done. Because of this minimality, T (J) contains at most 2b components J̃
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of D(ψ) with J̃ ∩X 6= ∅. Here b denotes the number of turning points of f . Each
one of these components J̃ is well-inside T (J) and T (J̃) = T (J). It is not hard
to see that this implies that there are intervals N ⊂ U such that U ⊂ T (J), N is
well-inside U and X ∩ (U \N) = ∅ and N ∩X 6= ∅. The choice for N depends on
the size and position of the components J̃ inside T (J); it is not obvious that N and
U are nice.

Since X is minimal, for each z ∈ X there exists the minimal s ≥ 0 such that
fs(z) ∈ U . In fact, we have that fs(z) ∈ N because X ∩ (U \N) = ∅. Because s is
minimal, the pullback z ∈ Ns ⊃ Us of N ⊃ U along {z, . . . , fs(z)} is disjoint. So
Ns is well-inside Us and X ∩ (Us \ Ns) = ∅ (here we use Lemma 1). So, taking a
sequence of W1 shrinking to a point of X we get a sequence Nn ⊂ Un as in the first
statement.

From the previous proposition, it follows that if Y ⊂ B(X) has positive Lebesgue
measure and X is minimal, then X is equal to ω(c̃) for at least one recurrent
critical point c̃ (which is in X). Take z = c̃, let Un ⊃ Nn 3 c̃ be as above, and
let C be the set of critical points c with ω(c) 3 c̃. Let y be a Lebesgue density
point of Y . From the previous proposition, there exists t such that f t(y) ∈ Nn. Let
U in ⊃ N i

n 3 f i(y), i = 0, . . . , t be the pullbacks of Un ⊃ Nn along {f i(y), . . . , f t(y)}.
From the properties of Un ⊃ Nn stated above, for i < j ≤ t with U in ∩ Ujn 6= ∅ one
either has U in ⊂ Ujn or U in is contained in a component of Ujn \ N j

n. Because of the
minimality of t, the first case is impossible. Since Un ∩X ⊂ Nn, for each critical
point c ∈ X there is at most one i ≤ t with c ∈ N i

n ⊂ U in. Moreover, U in ∩X ⊂ N i
n.

Because of the contraction principle, provided n is large, any critical point c that
is not in X is not contained in any interval U in. From part (2) of Theorem C and
since y is a Lebesgue density point of Y , there exists i(n) ≤ t and a critical point
c ∈ X for which c ∈ N i(n)

n such that |Y ∩ N i(n)
n |/|N i(n)

n | goes to one. �

From the previous theorems and Propositions 6 and 7, Theorem E follows.

Remark 1. It is not true that any Cantor set X with f(X) = X has Lebesgue mea-
sure zero. Indeed, assume now that ω(c) is a Cantor set, and that its basin B(ω(c))
has positive Lebesgue measure. We claim that in this situation, there is a Cantor set
X of positive Lebesgue measure with X ⊂ B(ω(c)) and f(X) = X . (Examples of
this situation are infinitely renormalizable maps, and non-renormalizable maps with
an absorbing Cantor attractor; see [4].) To prove the claim, let X0 ⊂ B(ω(c)) be
a Cantor set of positive Lebesgue measure, and let X1 be the closure of

⋃
f i(X0).

Then f(X1) ⊂ X1. Since X0 is a Cantor set and X0 ⊂ B(ω(c)), the set X1 is
closed, equal to

⋃
f i(X0)∪ω(c), and X1 has no isolated points. X1 contains no in-

tervals, because B(ω(c)) contains no intervals. Hence X1 is a Cantor set of positive
Lebesgue measure with f(X1) ⊂ X1. In order to find a Cantor set with f(X) = X ,
take X0 so that it lies in the range of f and add appropriate preimages of X1 to
the set. For examples, if f is unimodal, then we can define X to be the union of
X1 and all x so that for some integer n ≥ 1, x, . . . , fn−1(x) lies to the left of the
critical point, while fn(x) ∈ X1. Again X is a Cantor set of positive Lebesgue
measure, but now f(X) = X .
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