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We present the results of computer simulations giving a kinetic insight into the liquid-to-solid transition of a homopolymer chain
with short-range interactions. By calculating the absolute rates in each direction of the transition, using molecular dynamics
employing the forward flux sampling scheme, we provide the phase diagram based on purely kinetic data, and compare it with
the results from Monte Carlo simulations. Additionally, we present and discuss a remarkably simple and general relation between
the polymer topology and the folding pathway, and show that the eigenvalue spectrum of a matrix defined by non-bonded contacts
(the Laplacian matrix) provides an insight into the nonequilibrium ensembles of these trajectories. In particular, the Laplacian
matrix seems to identify a large fraction of configurations on the folding pathway at the free energy maximum that have a very
low probability of reaching the crystallized state. This implies that the eigenvalues of this matrix may be suitable additional
reaction coordinates to describe the folding transition of chain molecules.

The attractive hard-sphere chain has become well estab-
lished, and has been intensively studied, because of its surpris-
ingly rich phase behaviour, including multi-stage ! or direct?
folding and spontaneous symmetry breaking? to give chiral
structures. Although molecular dynamics simulations of this
model > have been carried out, there has been no quantita-
tive study as yet of the kinetics associated with these transfor-
mations. With the bonds between successive atoms restricted
such that the spheres are touching (or very nearly so), the only
relevant variables are the temperature (relative to the depth of
the attractive square well), the width or range of the square
well, and the length of the chain. (One can add terms that in-
fluence the chain stiffness, but this is not considered here). In
particular long chains with sufficiently long-ranged attractive
interactions (i.e. extending more than a few percent beyond the
hard-sphere diameter itself) exhibit a distinct two-stage fold-
ing sequence. On decreasing the temperature, the folding is
initiated by a continuous transition from an extended “random
coil” conformation to a compact “globule”. This transition is
analogous to the vapour-liquid phase transition in simple, non-
polymeric, systems. (We use the terminology “phase transi-
tion” loosely here, as it strictly applies only in the thermo-
dynamic limit of long polymers, or in a macroscopic system
of large numbers of finite-length polymers; the term “pseudo-
transition” is technically more appropriate for finite sized sys-
tems). At a lower temperature, called the freezing tempera-

Fig. 1 Two-dimensional illustration of the flexible homopolymer
chain. The hard-sphere atoms are indicated by black circles
(diameter o), and the range of the nonbonded interactions (y &
where y > 1) by red circles. Bonds (with neighbour separation

r < Xp0) are illustrated by blue lines, and nonbonded interactions
(separation r < Y o) by red lines.

1 Introduction

A very simple and general way to examine the underlying mi-
croscopic folding mechanisms of polymers and proteins is to
analyse the behaviour of a flexible polymer chain using com-
puter simulations. A minimalistic model of this kind!®, is

composed of identical bonded hard spheres with square-well
non-bonded attractions. This model is illustrated in Fig. 1, and
will be defined in detail in section 2.1.
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ture, this gradual collapse is followed by a strong first-order
transition from the globule to the crystalline state. This tran-
sition is characterized by a peak in the heat capacity, and a
doubly-peaked energy distribution function or (equivalently)
a free energy landscape with two energy minima separated by
a barrier. It is closely analogous to the freezing transition in
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simple systems. For the attractive hard-sphere chain, it has
been studied in computer simulations ':?; for the parameters
used, the free energy barriers were relatively small (compared
with thermal energies) and the transitions could be observed
to occur spontaneously on lowering the temperature. Conse-
quently, simple molecular dynamics (in which collisions oc-
cur between the particles, as will be described in section 2.3)
were sufficient to explore the relevant phenomena; no special
simulation techniques were necessary.

Much more recently, polymer chain models with short-
range interactions (extending just a few percent beyond the
hard-sphere diameter) have been studied by Taylor ef al.>,%.
In contrast to the situation described above, the collapse oc-
curs in a single step, from the random coil state to the crystal.
This is more characteristic of proteins than polymers. A simi-
lar phenomenon is observed in colloidal suspensions of spheri-
cal particles, whose attraction range may be much smaller than
the characteristic particle size. For non-polymeric spheres in-
teracting via the square-well potential, the liquid-vapour coex-
istence curve is known from simulation to become metastable
with respect to the solid-vapour coexistence line when the well
width is below 25% of the hard-sphere diameter®!?. More-
over, for the polymer chain, the transition was found>® to
be strongly first-order, with a very high barrier between the
two phases. The study of the equilibrium properties in the
vicinity of this strong transition was only possible due to the
use of advanced Monte Carlo (MC) simulation techniques:
bond-rebridging MC moves, which altered the connectivity
of the chain, combined with so-called “flat histogram” sam-
pling using the Wang-Landau technique''. More details of
these techniques will be given in section 2.2. These simula-
tions provided precise information about the equilibrium ther-
modynamics; however, they did not tell anything about the
realistic kinetics and the kinetic hindering effects associated
with the transition between low and high density states. One
of the main motivations to study polymer chains with short-
range attractions is that some features of their crystallisation
may mimic, in the fashion of a toy model, the crystallisation
of proteins, and a study of the dynamics of the final, structure-
forming, stages of this process is of great interest. Of course,
adopting a homopolymer as a starting point is a gross oversim-
plification of the heterogeneous interactions between amino
acids in a protein, and the next logical step would be to re-
place the set of uniform, short-ranged, non-bonded interac-
tions with a mixture of attractive and repulsive interactions
tailored to particular amino acid sequences. We note that con-
siderable recent progress has been made to represent proteins
using hard-sphere/square-well models of this kind '%.

There is a long history of computer simulations studying the
dynamics of polymer collapse, with much of the emphasis ly-
ing on the influence of solvent hydrodynamics '314. However,
this usually involves a non-equilibrium situation, initiated by a

quench (either a sudden change in temperature or solvent qual-
ity). Even a ‘slow’ quench on the simulation timescale is un-
physically fast in reality. The competition between crystalli-
sation and glassification as a function of quench rate has been
studied recently by molecular dynamics ', using a variety of
order parameters, to characterise the different states. The dy-
namics of the chain at equilibrium may be very different, and
this is the object of study here, in the vicinity of the transition
to the crystalline phase itself. Because of the height of the free
energy barrier for short-ranged attractions, the events of inter-
est will be rare, and this requires special dynamical simula-
tion methods, which weight the sampling towards those paths
that cross the barrier. Examples of these types of study are
much less common: for example, we are aware of studies of
the hydrophobicity-driven collapse of short chains using tran-
sition path sampling and the string method '®!7. In the present
study, we use Forward Flux Sampling '8-2°, which will be de-
scribed in section 2.3.

A variety of properties may be used to analyse the progress
of collapse and crystallisation, including the potential energy
and the radius of gyration of the polymer chain. However, an
interesting alternative, reflecting the geometry of the interac-
tions within the chain, is presented by the matrix of nearest-
neighbour contacts. The contact matrix is a minimalist ap-
proach to describing protein structure: its elements are defined
by contacts between pairs of amino acids. There have been
attempts to examine the statistical properties of contact matri-
ces?1:22, estimate its influence on the folding rate?3, or even
use it to construct a model of folding?*. Closely related to the
present study, the contact matrix has been used in molecular
dynamics simulations of competition between glassy and crys-
talline states of polymers !> and in exact enumeration studies
of their low-energy configurations?3. The attractive square-
well model employed here allows us to define the nonbonded
contacts in an unambiguous way, and examine how the matrix
is related to the folding dynamics in a very well characterised
system. We give the appropriate definitions in section 2.4.

The novel feature of the current work is that we use simu-
lation to calculate rate constants for the polymer crystallisa-
tion/melting transition, at the transition point itself, including
the regime in which these rates are exceptionally low, rather
than simply observing the response to a non-equilibrium per-
turbation in a brute-force simulation. Moreover, we check
these quantitative predictions of forward and backward rates
against the equilibrium thermodynamics, allowing us to iden-
tify any discrepancies with kinetic effects that are genuinely
due to the finite timescale of the trajectories themselves, rather
than being caused by an external driving force. In common
with other work, we examine the contact matrix as a method
for probing the geometry of the folding polymer, but we go
further in suggesting that it may be a way to discriminate be-
tween the fates of configurations near the top of the barrier.
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Following the description of our methods in section 2, we
present our results in section 3, and conclude with a discussion
in section 4.

2 Methods

2.1 Simulation Model

A range of simple simulation models have been useful in dis-
cussing polymer collapse. These include chains of atoms
which attract each other through a Lennard-Jones potential,
surrounded by an explicit solvent?®. Also of interest are mod-
els in which the monomers and solvent have only repulsive
excluded volume interactions, both on a lattice?”-28 and off-
lattice >, meaning that the collapse is driven solely by entropic
effects. Collapse of semiflexible polymers has been studied
using off-lattice Brownian Dynamics simulations with an ef-
fective solvent3?, and an interaction between the monomers
intended to represent, in an average way, the effects of solvent
quality. A comparison of models with, and without, explicit
solvent®! has highlighted some deficiencies associated with
replacing the solvent by effective interactions, although this
conclusion will depend on the details of the physical system
and the nature of the simplified model. As mentioned earlier,
the inclusion of hydrodynamic interactions may also change
the picture 3.

In this study, we follow Taylor et al.>,® and adopt the sim-
plest model that exhibits the effect of interest. The polymer is
represented by N = 128 hard spheres, with successive atoms
connected by bonds. The bonding potential is defined by a
narrow infinite square well

+o O0<rj<o
ub(rij) =<0 o< Tij < XpbO ,
too XpO <rij

forli—jl=1 (1)

where r;; is the distance between centers of two monomers
iand j =i+ 1, o is the diameter of the bead, and )y, is the
relative width of the nearest-neighbour bond. In the previous
MC studies® x, = 1, but for simple hard sphere dynamics, we
choose a slightly larger value x;, = 1.04; we have verified that
this makes very little difference to the equilibrium properties.

The nonbonded interaction between pairs of monomers is
given by the finite square well potential

+o0 0<r,‘j<6
uw(rij) =< —€ ©0<r;<xo ,
0 X0 <rij

forli—j|>1 (2

where ¢ is the depth, and ¥ is the relative width, of the square
well. In other words, all non-adjacent pairs of atoms in the
chain interact with this attractive potential. Taylor et al.>°

have determined that an all-in-one ‘protein-like’ crystallisa-
tion from the expanded state occurs for y < 1.06, and a two-
step ‘polymer-like’ mechanism via a liquid-like globule, for
x 2 1.06; we study the globule-crystal stage of the two-step
process for ) values in this vicinity. All beads have equal
mass m which we take equal to unity. Throughout, we work
in reduced units: 6 =1, € = 1 and kg = 1 (Boltzmann’s con-
stant) so T should be understood as the combination kgT'/€
etc. Corresponding real values, for monomer beads corre-
sponding to amino acids of the kind found in proteins, would
bem~2x10"2 kg, 6 ~6x1071%m, e ~7x 10722 J, and
a time unit ~ 107! s. We note that the idea of this model is
to simulate a polymer in a surrounding liquid (rather than a
vacuum), but with the explicit degrees of freedom associated
with the solvent atoms “integrated out”. The attractive wells
between monomers represent not only the direct interatomic
forces in a real polymer, but also the attraction of monomers
to each other relative to the solvent. In other words, kgT'/€
represents the solvent quality, with a high value corresponding
to a self-avoiding walk configuration in a good solvent, and a
low value generating collapsed states as seen in a poor solvent.
This approach (and an alternative one) to tuning the solvent
quality, have been used in simulations of the same model in
the presence of an explicit solvent of hard spheres3?. As we
shall see, the dynamical algorithm includes the effects of ran-
dom collisions which mimic the effect of solvent atom impacts
as well as providing a means of thermalizing the system.

2.2 Wang-Landau Sampling

As explained in section 1, standard Monte Carlo sampling
from, for example, the Boltzmann distribution, is not sufficient
to properly equilibrate the system in the presence of a large
barrier between the different phases. Some kind of weighted
ensemble must be sampled, to “flatten out” this barrier, and the
results are typically reweighed afterwards to calculate proper-
ties at any desired temperature. Moreover, it is important to
use a set of MC moves that allow efficient exploration of con-
figuration space in both the compact crystalline state, and the
disordered state. Accordingly, the statistical thermodynamics
of the above chain model are determined by the Wang-Landau
(WL) Monte Carlo (MC) method, using a move set consisting
of crankshaft, pivot, end-bridging, and regrowth moves; the
latter two being connectivity altering>3*. The regrowth move
consists of deleting and then regrowing up to 3 beads at either
end of the chain, using a configuration-bias algorithm to select
non-overlapping bead positions; this includes the possibility
of reversing the chain. This MC move set is used with the
WL algorithm !, after the manner of Ref. 5, to iteratively ap-
proximate the density-of-states function W (E), giving a well-
sampled set of configurations across the whole energy range.
This involves maintaining a table of values W (E), and accept-
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ing proposed moves using the criterion
Picc = min(1,W (Eoia) /W (Enew)) -

At each step a “visit histogram” for the new state H(E) is up-
dated H(E) — H(E) + 1, and the corresponding density-of-
states table entry is changed according to the standard pre-
scription W(E) — fW(E). This has the effect of down-
weighting the likelihood of visiting the same energy in future.
When the histogram of visited energies H(E) is sufficiently
flat, the modification factor f is reduced from its initial value
f =e=2.71828 towards unity by replacing f — /f, and the
histogram H (E) is reset to zero. In this case, the flatness crite-
rion was chosen to be min(H (E)) > 0.8H (E) where the latter
is the average over the sampled energies. This process is con-
tinued, progressively reducing the value of f until it reaches
a prescribed limit: typically 20-30 iterations, amounting to
more than 10! MC moves for each run in total, are needed.
By construction, this method converges towards a probabil-
ity distribution of states which is proportional to the inverse
of W(E), and the function W (E) itself is calculated along the
way. After convergence, thermodynamic quantities such as
the entropy S(E) and temperature 7' (E) can be obtained from
the microcanonical ensemble expressions

S(Ey=mW(E), T(E)"'=09S(E)/oE 3)
while the Helmholtz free energy and energy distribution func-
tion at any desired temperature T can be calculated from
F(E)y=E—-TWW(E), P(E)<W(E)exp(—E/T). (4)
From these measurements, the thermodynamic freezing tem-

peratures, T;, for a range of ) values, can be estimated, as
described in section 3.1.

2.3 Forward Flux Sampling

Now we turn to the dynamical simulations. In collision dy-
namics (CD), free flight of the spheres occurs between elastic
collisions in standard fashion333¢. Collisions occur at each
discontinuity in eqns (1), (2): repulsive impulses at a separa-
tion equal to the hard-sphere diameter o, attractive impulses
between bonded atoms at X0, and attractive impulses be-
tween non-bonded atoms at yo. All of these collisions con-
serve total energy and momentum. Additionally, thermal jolts
reselect the velocities of individual atoms from the Boltzmann
distribution at a prescribed temperature 7', and introduce a
stochasticity into the dynamics >, The time separation of the
jolts has a Poisson distribution with mean time 7 giving the
strength of the coupling (typically T = 0.1 in reduced units).
The dynamics of each individual trajectory therefore corre-
sponds to an equilibrium canonical ensemble at temperature

T; the non-equilibrium nature of the ensemble of trajecto-
ries results solely from the way that they are selected (or dis-
carded), according to the evolution of a chosen order param-
eter. The thermal jolts also serve the purpose of mimicking
the effect of collisions with surrounding solvent molecules, so
that the dynamics is in some way representative of the motion
of a polymer chain in a liquid, rather than in vacuum.

We choose, as the primary order parameter describing the
qualitative difference between the globule and crystal state,
the potential energy E of the chain. To study the ensemble of
trajectories crossing the barrier between these two states, we
use Forward Flux Sampling (FFS)'8-20. This method defines
a set of hyperplanes, or “interfaces”, dividing phase space or-
thogonal to this order parameter E. We denote these interfaces
by a symbol such as EI.A where the superscript labels the origi-
nal state (A for the crystal, B for the globule) and the subscript
is the interface number 0 <i < n.

FFS works in the following fashion, for each chosen value
of ¥ and T'. Recall that, in the vicinity of the transition temper-
ature 7 between the globular and crystalline states (as deter-
mined by WL simulations), the equilibrium probability distri-
bution function for the energy will have two peaks, of compa-
rable weight, one characterising state A and the other state B,
separated by an energy range with extremely low probability.
A set of configurations, characteristic of the equilibrium en-
semble at temperature 7 in state A, is used as a starting point.
State A is formally defined as all those configurations with
a potential energy E < E4, a value chosen such that only a
very small fraction of the corresponding peak in the probabil-
ity distribution lies outside this range. Dynamical trajectories
are initiated from these configurations. The “zeroth” energy
hypersurface Ef} is chosen such that E4 < Ej}, and that trajec-
tories originating from A only occasionally reach the energy
E{)‘. A sample of these configurations at Eg‘ (travelling in the
sense A — B) is taken for future use. A very long series of in-
dependent, equilibrium, simulations thereby generates a large
set of configurations at this energy (typically 8192), and at
the same time enables the calculation of the mean probability
flux through E4, which we call ®*(E4). If P* denotes the
probability of being most recently in state A (i.e. the weight
in the corresponding peak of the equilibrium probability dis-
tribution) then the fraction 4 (E)/P* simply represents the
inverse of the average time between crossings of Eg (in the di-
rection A — B) from simulations most recently in state A. The
subsequent stages of FFS generate trajectories leading from
each hypersurface, E£, to the next, Ef, |. Each trajectory starts
from a state previously stored at E;“, selected at random, and
is evolved in time according to the equilibrium dynamics de-
scribed at the start of this section, until it either reaches EﬁH
or falls back to E < E4. This procedure builds up a sample
of new configurations (again, typically, 8192 in our work) at

E{}F 1» while simultaneously allowing an estimate to be made of
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the fraction of partial pathways started from E{x which reach
Ef}H before they fall back to an energy E < E4. We denote
this by P(EZ, | | E): the conditional probability of reaching
the interface E{}H from E{‘. It is important that the equilibrium
collision dynamics includes a stochastic element, so that the
repeated sampling of starting points at each stage does not re-
sult in identical trajectories, but instead a set of equally valid,
but divergent, segments.

In this fashion, complete trajectories from A to B are built
up from equilibrium (but highly selected) trajectory segments,
and this allows us to calculate the rate at which this process
would occur in an equilibrium simulation:

n—1
Pap =¢A(E3)HP(Eé+1 |E}). )

i=0

All the quantities in this equation are known, except for k4, s,
the rate constant, which is the main object of the study. Equa-
tion (5) therefore computes the rate at which trajectories leave
state A, conditional on them subsequently reaching state B.
This is an appropriate measure of the rate constant when the
time taken to traverse the phase space between E6x and E}
is small in comparison to the average residence time in each
state. FFS is performed in both directions, i.e. studying trajec-
tories that take the system from globule to crystal, and from
crystal to globule, independently. This approach allows us to
focus on kinetic effects associated with each direction sepa-
rately, and is readily implemented in tandem with our stochas-
tic dynamics. The rate kg_,4 from globule to crystal is given
by an equation analogous to eqn (5). The above expression
for the rate is known to be relatively insensitive to the choice
of order parameter and also forms the basis for Transition In-
terface Sampling (TIS), the two methods differing in how the
probabilities P(EZ, | | EX) are calculated*’.

The interfaces in FFS are positioned using an empirical ap-
proach as follows. Energies ES‘ and Eg are chosen such that
the ranges E < E{)1 and E > Eg capture 99.9% of the corre-
sponding integrated densities P4 and P2. The boundaries of A
and B are then defined as EA = E{ — 50 and E® = EB + 50.
In order to reconstruct the full pathways we define an ex-
tra plane as Ef = Ef. Interface E2 | is placed such that
P(EB|E2 |)=0.9, i.e. to ensure that the last step in the tra-
jectory is associated with a high, but not overwhelming, prob-
ability. The remaining interfaces E{',...,E? , are chosen ac-
cording to the optimization scheme of Ref. 20. An analogous
procedure applies to interfaces Ef ,-.,EB. Typical examples
of the interface positions actually used in practice are given in
section 3.

A particular concern in FFS is to sample the starting con-
figurations in both the A and B states as thoroughly as possi-
ble. To avoid undersampling of the globule state B, 32 random
disordered chains are equilibrated, and the energy Ef is sam-

pled in parallel starting from these different chains. For the
crystallised state, it should be borne in mind that the start-
ing state, A, is not a perfect crystal, but an ensemble of states
at the phase transition temperature 7. Sampling of the crys-
tallized states A, for the A — B trajectories, was achieved as
follows. CD simulations started from different terminal points
of B — A trajectories, EZ, gave a set of distributions PIA(E ),
i=1,...,256. E{)‘ is then sampled in parallel starting from a
configuration belonging to the distribution PA(E) having the
lowest mean energy, and from 31 other configurations which
are separated from this state by a large number of MC moves,
including connectivity-altering moves, conducted at constant
temperature. This gives a total of 32 starting configurations for
sampling the first energy surface E()‘. Section 3.2 will discuss
the definition of state A consistent with this approach.

For values of ) at the upper end of the range of interest to
us, the barrier between states A and B is sufficiently low that
brute force (BF) collision dynamics gives good estimates of
the forward and backward rates. This is achieved by conduct-
ing equilibrium CD simulations at a chosen temperature, and
measuring residence times in the two states; the simulations
are typically long enough that 8192 barrier crossings are ob-
served. The distribution of residence times is then fitted to a
Poisson distribution, with the rate constants as parameters.

2.4 Laplacian Matrix

Further insight into the folding and unfolding process may
be obtained by studying structural details of the ensembles
of polymer configurations generated along the corresponding
FFS trajectories. The idea is to investigate a possible link be-
tween the topology of the interactions in the chain around the
transition state of crystallisation and the dynamical effects as-
sociated with folding and unfolding.

The simplest starting point is a matrix that describes the
contacts between polymer beads. The elements of the contact
(or adjacency) matrix are unity for atom pairs within interac-
tion range, and zero otherwise. Contact matrices have been
used to describe the equilibrium structure of proteins in terms
of amino acid contacts?!"?? and as a generator of order param-
eters for metadynamics simulations of atomic clusters3®. In
addition, the evolution of a crystallising polymer system has
been monitored through the time correlation function of the
contact matrix 13. An extension of this idea is the Laplacian
(or Kirchoff) matrix, which appears in algebraic graph theory,
particularly in discussions of the connectivity of graphs and
their spanning trees, and we adopt this definition here. As we
shall see later, this matrix has been used to discuss the dynam-
ical motions that give rise to protein folding3®*°, and vibra-
tional modes in colloidal systems*!, but we simply adopt it
here as a geometrical quantity.

For general interaction potentials, there is some subjectivity
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in defining what is meant by a ‘“contact”, but in the current
model the situation is simpler: adjacent atoms in the chain are
permanently bonded together, while non-adjacent atoms may,
or may not, be within the interaction range of the nonbonded
pair potential, uy (r;;) defined in eqn (2). Here we focus on
nonbonded contacts, in a sense combining the ideas discussed
in the previous paragraph. Our nonbonded Laplacian matrix
G is defined as follows:

—1 if|i—j|>1landr; < xo,

0 ifi—j|>1andr;; > xo,
Gij= 1|l J‘ ntr =X ©)

0 if|i—jl=1,

—YkizjGrj if]i—jl=0.

The non-zero off-diagonal entries are restricted to those atoms
that are not permanently bonded together, but are within inter-
action range of uy (r;;). In this matrix the diagonal elements
are defined to make the column and row sums zero; each di-
agonal element is equal to the number of nonbonded contacts
made by the corresponding atom. The matrix G is invariant
to any global translation or rotation of coordinates, and we fo-
cus on its eigenvalues, which are invariant to relabelling of the
atoms. This makes the eigenvalue spectrum of G also suitable
to describe the geometry of atomic clusters in which there are
no permanent bonds (noting that invariance to relabelling is
not a requirement for a chain molecule, in which the labels
denote the sequence number along the chain). The smallest
eigenvalue of G is zero, the largest eigenvalue will be denoted
7, and the sum of all the eigenvalues is exactly twice the num-
ber of interacting pairs of atoms, i.e. —2E.

It is convenient to define PA~2(y | E) as the probability dis-
tribution of ¥ at an interface E sampled by pathways started
from A, and P274(y | E) as the same quantity but sampled by
pathways started from B. Following the FFS simulations for
each y, these distributions are studied, on the energy hyper-
surfaces of interest.

3 Results

3.1 Wang-Landau Simulations

Twenty independent WL simulations were conducted at each
x. The inverse temperature, defined by eqn (3), was deter-
mined as a function of energy for each case, and averaged.
Typical results are shown in Fig. 2. In the vicinity of the phase
transition the curves adopt the characteristic “small-system
loop” form, and the freezing temperature TfWL may be esti-
mated by a Maxwell construction, in which a horizontal line
defines equal areas in the two sections of the loop. Thermo-
dynamically, the equal-area construction is equivalent to the
condition that the two phases have equal free energies, and is
one of the standard methods for accurate location of the tran-
sition temperature in finite-sized systems.

2.4
R

-400

-300

-200

Fig. 2 Inverse temperature, from eqn (3), vs energy in the vicinity of
the phase transition for y = 1.07. The graph forms a Maxwell loop
and indicates a first-order transition. Blue lines show the results of
twenty independent WL MC runs, while the red line represents the
average. The inset shows the results over the full range of energies.

An equivalent procedure is to observe doubly-peaked
canonical ensemble energy distributions P(E), defined in
eqn (4), as a function of 7, as typified by Figure 3. Away
from the phase transition, these distributions would consist
of a single peak, approximately Gaussian in form, around the
value of the average energy. Very close to the phase transition
temperature, the system spends time in both phases, giving
a doubly-peaked structure. For temperatures just below, and
just above, the precise transition temperature, one or other of
these peaks would dominate; the transition temperature TfWL
corresponds to equal weight in the two peaks. An advantage
of the Wang-Landau method is that it allows us to construct
these distributions, for any desired temperature, after the sim-
ulations are completed, from the density of states, according
to eqn (4). Also shown in Figure 3 is the free energy curve as a
function of energy, defined by F(E) = —T InP(E); this gives
a clear picture of the barrier to be crossed in the process of in-
terconverting the crystalline phase and the globule phase. The
phase diagram of TfWL vs X, determined from these results, is
shown in Fig. 4; it is quite similar to that of Ref. 6.

3.2 Barrier Crossing Rates

Figure 3 also shows a typical set of interface positions for the
FFS CD simulations in both directions, and the energy dis-
tributions given by the CD simulations in the states A and B;
these graphs must be scaled according to the folding and un-
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Fig. 3 Free energy F(E) (black) and energy distribution function
P(E) (green), obtained from WL simulations for the chain with

x = 1.07, and calculated for T = TfWL = 0.498 from eqn (4).
Vertical lines schematize the energies of energy hypersurfaces in the
configurational space used to generate folding (red) and unfolding
(blue) trajectories. Displayed also are energy distributions PA(E)
and PP (E) of states in the crystalline (blue) and globule (red)
phases, respectively. The probability axis is not shown.

folding rates** to compare with P(E). Tt is noticeable that
the CD simulations confirm a unique globule phase, B, and
we may identify a single energy distribution P2(E). However,
CD simulations initialized in different realisations of the crys-
tal phase did not explore as wide an energy range as the cor-
responding WL simulations. From this we infer that the crys-
tal phase (at the freezing temperature 7t) consists of a large
number of basins with slightly different mean energies, sep-
arated by kinetic barriers which cannot be overcome (at this
temperature) on a simulation timescale without the use of un-
physical MC moves. We therefore identify the crystal state
A as the state, reachable from other states within the distribu-
tion function PA(E) via constant temperature MC (including
unphysical moves), which has the lowest mean energy. This
is the rationale behind the selection of starting configurations
for the A — B trajectories, described in section 2.3. We should
re-emphasise that the aim here is to study the crystal phase at
the equilibrium transition temperature and not, for example, to
use the minimum-energy perfect crystal as our starting point
for unfolding trajectories. This inevitably complicates the ki-
netic analysis and, incidentally, violates the assumptions of
simple models such as the Zwanzig two-state picture of pro-
tein folding*}. We return to this in section 4.

The rate constants obtained from FFS simulations in both
directions are plotted against inverse temperature on a so-

0.56
—@—FFS
0.54f —4—BF ]
WL
0.52} :
— 0.5 ,/.
0.48}
0.4 :
0.4 : :
1.05 1.1 1.15 1.2

X

Fig. 4 Phase diagram with freezing temperatures TfWL, determined
from WL simulations by Maxwell construction, and TfFFS, TfBF,
determined from CD simulations by constructing chevron plots. The

errors are smaller than the symbol sizes.

called chevron plot, Fig. 5 (based on the assumption of
Arrhenius-like behaviour). Transition temperatures TfFFS, de-
fined dynamically by the equation k4_,p = kp_,4, are shown in
Fig. 4. These were slightly, but systematically, higher than the
corresponding WL transition temperatures by a small amount
AT = TFFS — TV = 0.005-0.012.

For the higher values )} > 1.15 studied in this paper, barrier
crossing could be observed directly, and rate constants were
calculated by brute force (BF) simulation. Transition tem-
peratures TfBF obtained in this way are also shown in Fig. 4
and were again comparable to, but slightly and systematically
higher, than the temperatures obtained in MC simulation. This
suggests that the discrepancy is due to a real dynamical (ki-
netic) effect rather than any deficiency of the FFS algorithm
itself. In Fig. 5 we indicate schematically the extent to which
the unfolding rate constant must be shifted to give the ob-
served shift AT, and we return to this in the Discussion of
section 4.

3.3 Laplacian Matrix

Here we examine the distribution of top eigenvalues 7y of the
nonbonded Laplacian matrix G at specific energies, along the
folding and unfolding FFS trajectories. We focus on the chain
with ¥ = 1.07 and T = T\¥* = 0.498, but similar results were
obtained for other attractive well widths, becoming even more
distinct with decreasing . For the purposes of discussion,
we denote the energy at the top of the free energy barrier as
E'nax, and we note that the penultimate interface in the folding

This journal is © The Royal Society of Chemistry [year]
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Fig. 5 Chevron plots with unfolding A — B and folding B — A rate

constants computed by FFS. The intersections give the transition

temperatures TfFFSA The schematic for ¥ = 1.06 indicates how much

TFFS
f

the unfolding rate would have to be shifted to bring into

agreement with TfWL (see discussion in section 4).

direction B — A was typically chosen to be E3—1 ~ Enax (see
Fig. 3). For the case discussed here, Epyax = —235

Along unfolding trajectories, we found that PA7E(y | E) is
unimodal (approximately Gaussian) at all interfaces E, with
the mean value of y growing with E, and that the conforma-
tions at any E with large ¥ have a more crystalline appear-
ance. Along folding trajectories, the distribution P24 (y | E)
at interfaces far enough from E,.x is also unimodal with simi-
lar properties. Fig. 6 shows three configurations taken from
both folding and unfolding trajectories, at the same energy
E = —176, which lies well on the globule side of the tran-
sition. The chosen configurations are representative of the en-
semble, in the sense that their largest eigenvalues Y are close
to the maximum of the corresponding distribution. Unsur-
prisingly, the unfolding trajectories retain more structure char-
acteristic of the crystalline starting state, and the distribution
PA7B(y| E) is shifted to higher y than P2=4(y | E). Inspec-
tion of the configurations shows that a near-crystalline core
can often be identified within the unfolding configurations,
typically with attached polymer tails or loops, whereas the
folding configurations are more disordered. Recall that, since
the energies are identical, the total number of contacts is the
same in all these cases, but they are arranged differently.

The distributions PA~2(y | E) and P24 (y | E) are quali-
tatively different in the region E ~ Ey,x, as shown in Fig. 7:
the latter becomes bimodal. The critical value separating these
two modes is denoted as ¥°; in this case ¥* = 11.9. The inset
Fig. 7(a) shows that pathways started from A, and reaching

Fig. 6 Configurations for the system with attractive well range

X =1.07,T = TVt = 0.498, at the globule-like energy E = —176.
Blue: permanent bonds, red: nonbonded contacts with r;; < x 0.
Top three configurations are from folding B — A trajectories, with
eigenvalue ¥y = 9.6; bottom three are from unfolding A — B
trajectories with eigenvalue y = 12.1. Close inspection of the
unfolding configurations reveals a better-ordered crystalline core.

these energies, do not sample the population of low-7 states
seen in Fig. 7(b). The microscopic reversibility of our dynam-
ics then implies that those folding B — A transition pathways
destined to go on to the crystalline state must cross Epax at
Y > ¥°. The main part of Fig. 7 presents a probability analysis
of all the 8192 B — A configurations at this interface: each
such configuration may be ascribed a probability of reaching
the crystalline state A, based on the ultimate fate of the ongo-
ing FFS trajectories spawned from it. In agreement with the
preceding analysis, this probability analysis shows that folding
pathways crossing Emax With ¥ < ¥© have almost no chance to
reach A. (Also, of course, the configurations with y > ¥ have
a crystallization probability much less than 1, but their chances
are overwhelmingly higher than those with ¥ < ¥° ). Inciden-
tally, the equilibrium distribution of 7 at this energy, obtained
by WL, shown in Fig. 7(c), is very similar to the nonreactive
Y < ¥° portion of Fig. 7(b). The FFS process leading up to
the energy Enax clearly enhances the weight of those trajec-
tories with high eigenvalues . Similar observations apply to
other eigenvalues near the top of the spectrum of G. It is im-
portant to emphasize that these differences in distributions are
expected. Although the individual trajectories are completely
microscopically reversible, and the starting configurations are
at equilibrium, the selection process of FFS at successive in-
terfaces makes the distribution of configurations further along
the trajectories a nonequilibrium one. The foregoing analy-
sis suggests that the eigenvalue ¥ of the nonbonded Laplacian
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Fig. 7 Crystallization probabilities for configurations on the folding
trajectory B — A at E = Epax With ¥ < ¥° (green) and v > ¥© (blue).
Insets show eigenvalue distributions: (a) PA™5(y | Emax) sampled
by pathways started in A; (b) P54 (y | Emax) sampled by pathways
started in B (the critical value ¥° = 11.9 is indicated); (c)

PWL(}/ | Emax), the equilibrium distribution, determined by
Wang-Landau Monte Carlo.

Fig. 8 Configurations for the system with attractive well range
matrix G is a good discriminator between the different ensem- X = 1.07, T = T;V: = 0.498, all from folding B — A trajectories,
bles of trajectories, in other words a good measure of incipient ~ near the free energy maximum £ = Emax. Blue: permanent bonds,
crystallinity. red: n(?nbonded contacts with r;; < yo. Top three configurations

Figure 8 shows typical configurations taken on the £ = Enmax have eigenvalue y = 10..8; bottom three have eigenvalue y = 12.8.

hypersurface, all from folding B — A trajectories, representa- The to? three ¢ onﬁgqratlons have almost no chance to f orm a

. . - BoA L. crystal; close inspection of the bottom three configurations reveals a
tive of the two peaks in the bimodal P* 7" (y | Emax) distribu- 2~ 00 1 crystalline core.
tion. As for Fig. 6, it is significant that typical ¥ > ¥* configu-
rations appear to have a compact crystal nucleus with attached
chains or loops, while for y < ¥ the same number of interac-
tions are typically arranged in a less well ordered cluster. We
note that similar configurations were observed by Zhou et al. >
in the vicinity of the phase transition.

4 Discussion and Conclusions

We have carried out a set of simulations of the crystallisation
of a single polymer chain, at and around the transition temper-
ature, to determine the forward and reverse rates, using the for-
ward flux sampling (FFS) method and, for suitably low barri-
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ers, direct molecular dynamics. The latter method determined
the rates directly, from average residence times in folded and
unfolded states, while the FFS results were obtained by com-
bining the initial flux with a product of conditional probabil-
ities for the reactive trajectories. A family of models was in-
vestigated, with different ranges of the attractive square-well
interaction between hard-sphere monomers. Rate constants
spanning more than 10 orders of magnitude were successfully
determined in this way.

A principal result of the study is that the top eigenvalue of
the Laplacian matrix G, based on non-bonded interactions or
‘contacts’ between monomers, is a good order parameter for
crystallinity in such studies. For the folding trajectories, a
clearly bimodal distribution of the top eigenvalue y of G has
been observed at the energy E ~ Ep,x corresponding to the
maximum in the free energy curve F(E), and this has been di-
rectly correlated with the propensity to crystallize. The branch
of this distribution corresponding to higher values of y has a
very good overlap with the distribution obtained from unfold-
ing trajectories and, correspondingly, the branch correspond-
ing to lower values of y has almost zero probability of crys-
tallizing. In fact, we have found similar results if the perma-
nently bonded pairs are included in the definition of G; also,
in practice, it makes little difference whether we define the di-
agonal elements as in eqn (6), or set them to zero. Also, the
distributions of some of the other eigenvalues of G appear to
show similar behaviour.

To compare with the thermodynamically-determined tran-
sition temperatures, from Monte Carlo simulations conducted
using connectivity-altering moves and the Wang-Landau den-
sity of states sampling method, the independently-determined
forward and reverse rate constants were compared on a
chevron plot. The kinetic transition temperatures were in
qualitative agreement with those determined by Monte Carlo.
However, the small systematic discrepancy between them cor-
responds to a substantial difference in the rate constants,
amounting to several orders of magnitude. There are two
possible explanations. One is that the physics of collision
dynamics, hindered by metastable basins acting as kinetic
traps, yields significantly poorer sampling than the MC sim-
ulation, which escapes the traps with the aid of connectivity-
altering moves cutting and reconnecting different segments of
the chain. This explanation would suggest the definition of
two transition temperatures, the effective kinetic and the ther-
modynamic transition temperature. Fig. 5 indicates schemat-
ically the extent to which the unfolding regression line must
be shifted to give the observed shift AT'; this could provide a
macroscopic quantitative measure of what we call here the ki-
netic hindering in the unfolding process. The other possibility
is that the FFS method itself suffers from a serious deficiency
in the way that forward and backward trajectories are sampled.
We cannot discount this, although the fact that brute force sim-

ulations in which long equilibrium simulations are carried out,
involving a large number of forward and backward transitions,
give similar discrepancies, would suggest that a physical ex-
planation of kinetic hindering is more likely. It is worth noting
that that the discrepancy between the dynamical and MC esti-
mate of the transition temperature was also observed by Zhou
et al.. The authors attributed this difference to the (slightly)
different models used in both of those simulations. By com-
paring our results with those of Taylor ef al. ®, we indirectly
verified this hypothesis by MC simulation, and we showed that
TfWL is higher for y, = 1.04 than for y, = 1.0. However, our
CD results suggest that the different transition temperatures
might also be caused by other factors. Hysteresis of this kind
is consistent with the rugged landscape of the folded basin,
and in protein folding it is typically taken as an indication of
the breakdown of the simple ‘two-state’ model. This is evi-
dently the case here, since the basic assumption of that model,
namely “the folding transition is well described by a single
folded state and a large ensemble of unfolded states”* is not
correct for the systems that we are studying here.

We emphasize that, although it is interesting to compare the
formation of glassy states with perfect crystals on quenching
polymer systems at various rates ', the systems being sim-
ulated here are intrinsically at equilibrium. Our study is, of
course, limited by the finite time taken in the individual trajec-
tories, and by the characterisation of the process by just two
order parameters (the energy, and the top eigenvalue of G).
To thoroughly test the origins of the difference between the
thermodynamic and kinetic phase diagrams would require a
more extensive investigation using a variety of different meth-
ods, which should shed more light on how other phenom-
ena including finite-time 4“4 non-stationarity 45 orinertia®® ef-
fects, or choice of reaction coordinate, are related to the sys-
tematic discrepancy violating ergodicity. One can imagine a
programme of research to identify all the free energy basins,
and transition pathways between them, which could be used
to construct a much more detailed kinetic model*’. It might
also be interesting to connect the phenomenon seen here with
examples of kinetic arrest in loop dynamics of DNA“® and
breathing modes of colloidal particles*’. These would all be
suitable topics for future study.

The contact matrix is not the only viable choice to discuss
polymer folding.. It is worth mentioning that two classes of
structure on surfaces E =~ Epx have also been identified by
Taylor et al.® using the radius of gyration (R,) as a second
reaction coordinate. We have also confirmed this in our own
simulations. The correlation between R, and y was tested and
found to be only weak in our case. An analysis similar to
that in Fig. 7 suggests that y has significantly better predic-
tive properties than R,. Another alternative, of course, is the
standard bond-orientational order parameter>® used in earlier
studies of crystal nucleation rates>!.
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Is there a deeper reason to study G, or its relatives? It is
tempting to try to associate G with dynamical modes that lead
to polymer folding and crystallisation. The Laplacian matrix
that includes all neighbour contacts (both bonded and non-
bonded), gives a rather general connection between the topol-
ogy defined by the interactions within a chain configuration
and its dynamical evolution, in the (somewhat crude) approx-
imation of an elastic network model. Indeed, in Gaussian
(Rouse-like) models of polymers, there is a very close con-
nection between the spectrum of eigenvalues of the Laplacian
matrix and the structure and dynamics of the polymer>>33,
This has been used in the discussion of proteins to identify
vibrational modes of oscillations 3%, and more recently in a
newly emerging field, looking at the low-frequency vibrational
modes in colloidal systems*!. Sadoc*’ tried to associate the
spectrum of G with dynamical modes that lead to folding and
crystallisation in more general non-Gaussian contact represen-
tations of proteins. Attempts have been made to correlate the
contact geometry with the folding rate®* or the folding pro-
cess itself2*. In this picture, the largest eigenvalue would be
associated with the highest frequency of vibration. However,
as pointed out above, we must not assume that ideas from pro-
tein folding will translate straightforwardly to polymer crys-
tallization, even in the ‘all-in-one’ limit of very short-ranged
attractions: the low-energy landscape may still consist of sev-
eral, kinetically separated, basins. The shortcomings of the
elastic network model must also be borne in mind. One may
hope to relate the Laplacian matrix to the vibrational modes
described by the Hessian or an analogous dynamical matrix,
which is commonly used to explore energy landscapes’, but
this would involve significant assumptions about the interac-
tions. Such an interpretation would not apply to the present
model, because of the discontinuous nature of the potentials.
In addition, for a more realistic model, it may be important to
distinguish between the strong interatomic bonds and weaker
non-bonded interactions. Even within the Gaussian model,
it has been shown that the inclusion of effects such as semi-
flexibility may make a significant difference in the properties
of molecules which have an identical Laplacian eigenvalue
spectrum based on the harmonic bond network>>. Nonethe-
less, our results clearly reinforce the view that this type of ma-
trix is a simple object capturing successfully important topo-
logical features of the polymer on its route to crystallization.
An extremely speculative interpretation of this, accepting that
the Laplacian acts as an analogue for the Hessian, would be
that the chain must approach the transition state in a confor-
mation which can explore higher frequency modes in order
to reach the collapsed/crystalline state. The corresponding
eigenvector describes this mode in “contact space”. The low-
frequency folding motion in itself is not sufficient, requiring
faster modes to be active such that local adoption of a crys-
talline structure can occur rapidly in response to the slower,

gross conformational collapse. Further investigation of the
possibility of a coarse-grained description of polymer fold-
ing, based on this approach, and using continuous potentials,
would be highly desirable.

To summarize, the transition of the homopolymer chain
from the disordered globule to the crystal state has been simu-
lated by dynamical forward flux sampling and brute force sim-
ulation. The forward and reverse rate constants, which span
more than ten orders of magnitude, have been determined. To
our knowledge this study represents the first quantitative cal-
culation of equilibrium collapse rates in a regime inaccessible
to brute force simulations. We have analysed, for the first time,
the eigenvalue spectrum of the Laplacian matrix correspond-
ing to the nonbonded interactions, at the top of the free energy
barrier. The top eigenvalue of this matrix yields important in-
formation regarding the forward and reverse trajectories in the
folding transition, which complements the potential energy as
an order parameter: specifically, it seems sensitive to the pres-
ence of a regular core, which acts as a nucleus in the crystalli-
sation process. Although the crystal state, at equilibrium with
the globule phase, consists of many metastable basins which
act as kinetic traps, the net effect can be described as a rela-
tively small shift in the effective transition temperature relative
to the true thermodynamic value.
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