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FINDING PLANTED PARTITIONS IN RANDOM GRAPHS WITH
GENERAL DEGREE DISTRIBUTIONS∗

AMIN COJA-OGHLAN† AND ANDRÉ LANKA‡

Abstract. We consider the problem of recovering a planted partition such as a coloring, a small
bisection, or a large cut in an (apart from that) random graph. In the last 30 years many algorithms
for this problem have been developed that work provably well on various random graph models
resembling the Erdős–Rényi model Gn,m. In these random graph models edges are distributed
uniformly, and thus the degree distribution is very regular. By contrast, the recent theory of large
networks shows that real-world networks frequently have a significantly different distribution of the
edges and hence also a different degree distribution. Therefore, a variety of new types of random
graphs have been introduced to capture these specific properties. One of the most popular models
is characterized by a prescribed expected degree sequence. We study a natural variant of this model
that features a planted partition. Our main result is that there is a polynomial time algorithm for
recovering (a large part of) the planted partition in this model even in the sparse case, where the
average degree is constant. In contrast to prior work, the input of the algorithm consists only of the
graph, i.e., no further parameters of the model (such as the expected degree sequence) are revealed
to the algorithm.
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1. Introduction. To solve various types of graph partitioning problems, spec-
tral heuristics are in common use. Such heuristics represent the input graph by a
suitable matrix and exploit the eigenvectors of that matrix in order to solve the com-
binatorial problem of interest. Spectral techniques have been used to either cope with
“classical” NP-hard graph partitioning problems, such as Graph Coloring or Max

Cut, or to solve various types of real-world “clustering problems” where the goal is
to recover a “latent” partition of the vertices of a graph. In the latter case there is
sometimes no objective function given that the desired partition is supposed to opti-
mize, but the partition has some particular meaning that depends on the application
context. For instance, a “cluster” could be a set vertices that span extraordinarily
many edges, the idea being that such a dense spot mirrors some kind of special re-
lationship among the vertices involved. Examples of such clustering problems occur
in information retrieval [5], scientific simulation [27], or bioinformatics [15]. An im-
portant merit of spectral methods is their efficiency (there are very fast algorithms
for computing eigenvectors, in particular in the case of sparse graphs/matrices) and
their versatility. In the present paper we deal with spectral methods for recovering a
latent but “statistically significant” partition in a sparse graph with a highly irregular
degree distribution.

Despite their success in applications (e.g., [26, 27]), for most of the known spectral
heuristics there are counterexamples known showing that these algorithms perform
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badly in the “worst case.” Thus, understanding the conditions that cause spectral
heuristics to succeed (as well as their limitations) is an important research problem.
To address this problem, quite a few authors have performed rigorous analyses of
spectral techniques on various models of random graphs. Examples include Alon and
Kahale [3] (Graph Coloring), Boppana [6] (Minimum Bisection), and McSh-
erry [24] (recovering a latent partition).

Since the random graph models studied in the aforementioned papers are closely
related to the simple models Gn,p and Gn,m pioneered by Erdős and Rényi, the re-
sulting graphs have a very simple degree distribution. In fact, the vertex degrees are
concentrated about a constant number of values. By contrast, the recent theory of
complex networks has shown that in many cases real-world instances of partitioning
problems have a considerably more involved degree distribution [1]. Since most spec-
tral heuristics are extremely sensitive to fluctuations of the degree distribution, this
means that most of the previous spectral methods simply fail on such inputs. For
instance, none of the algorithms from [3, 6, 24] can cope with heavily tailed degree
distributions such as those resulting from the ubiquitous “power law.”

Therefore, in the present paper we present and analyze a spectral heuristic for
partitioning random graphs with a general degree distribution (including, but not
limited to “power laws”). In fact, the result applies to sparse graphs, i.e., the case
that the average degree remains bounded as the number of vertices grows. This case is
both of particular algorithmic difficulty and of utmost practical importance, as many
real-world networks turn out to be sparse [1].

The present work is an extension of our prior paper [12] on the same subject.
The main difference is that in this paper we present an algorithm whose input consists
only of the graph that the algorithm is to partition. By contrast, the algorithm in [12]
requires further inputs (namely, parameters of the random graph model such as the
expected degree sequence), which generally will not be available in practice.

1.1. The random graph model and the main result. We consider random
graphs with a planted partition and a given expected degree sequence. The model
coincides with the one studied in [12] and is very similar to the model investigated
in [14]. It is based on the “given expected degrees” model of Chung and Lu [8],
modified so as to accommodate a planted partition. The model from [8] can be used
to obtain graphs with power law degree distributions, and the same is true for our
model. We refer the reader to [8, 14] for a detailed description of how to choose the
parameters of the model to obtain a power law distribution with a given exponent.

Let n > 1 be an integer, and let V = Vn = {1, . . . , n} be a set of nodes. The
random graph model has three parameters Φ, w, and V . The first parameter Φ
is a symmetric k × k matrix (φij)1≤i,j≤k with nonnegative entries, where k > 0 is
an integer. Furthermore, w = (wu)u∈V is an assignment of positive weights to the
vertices of the graph. Finally, V = (V1, . . . , Vk) is a partition of V into disjoint sets,
which we call the planted partition. For each u ∈ V , we let ψ(u) denote the index
such that u ∈ Vψ(u). For any two vertices u, v ∈ V , we let

(1) puv = φψ(u),ψ(v) · wu · wv∑
x∈V wx

.

We define the random graph Gn(Φ, w,V) as follows: the vertex set of the graph
is V , and for any u, v ∈ V the edge {u, v} is present with probability min{puv, 1}
independently of all others. Here we allow that u = v, i.e., the random graph may
contain loops. (This has some mild technical advantages. We let a loop contribute
one to the vertex-degree.)
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1684 AMIN COJA-OGHLAN AND ANDRÉ LANKA

We point out that the weight wu of each vertex u is related to its expected degree.
At the end of the second section we precise this dependence and show how one has
to choose the weights to obtain a concrete sequence of expected degrees.

The above model comprises a variety of random instances of clustering problems.
For example, we can generate random graphs with a planted 3-coloring: let k = 3, let
V1, V2, V3 be three arbitrary sets (the “color classes”), set φii = 0, and let φij > 0 for
i �= j. Further possibilities are graphs with a small bisection, in which case the Vi are
the two sides of the bisection, or graphs with subsets of vertices which are very dense
or very sparse.

The algorithmic problem that we deal with is recovering the planted classes Vi
(or large parts thereof) efficiently, given just the random graph G = Gn(Φ, w,V) at
the input. Hence, the algorithm does not receive any further parameters of the model
(e.g., the matrix Φ). Consequently, the algorithm does not know a priori what “type”
of clustering problem it is dealing with, i.e., whether the goal is to find a 3-coloring,
a good bisection, or something else.

Theorem 1. There exist
a. a deterministic polynomial time algorithm A and
b. for any α, ε, δ > 0, any integer k ≥ 2, and any k× k matrix Φ = (φij)1≤i,j≤k

with nonnegative entries numbers D = D(ε, δ,Φ) > 0 and n0 = n0(α, ε, δ,Φ)
such that the following is true. Suppose that n > n0, that w = (w1, . . . , wn) is a tuple
of positive reals, and that V = (V1, . . . , Vk) is a partition of V = {1, . . . , n} such that
the following six conditions hold:

C0. Let puv be as in (1). Then puv ≤ 1.
C1. The rows of Φ are pairwise linearly independent.
C2. For all u ∈ V , we have wu ≤ n1−ε.
C3. Let w =

∑
u∈V wu/n. We have wu ≥ ε · w for all u ∈ V .

C4. w ≥ D .
C5. |Vi| ≥ δn for all 1 ≤ i ≤ k.

Then with probability at least 1 − α, the algorithm A applied to the random graph
G = Gn(Φ, w,V) outputs a partition V ′

1 , . . . , V
′
k such that

k∑
i=1

|(Vi \ V ′
i ) ∪ (V ′

i \ Vi)| = O
(
n/w′ 0.97

)
, where

w′ =
1

n

∑
(u,v)∈V

puv =
∑

(u,v)∈V
φψ(u),ψ(v)

wuwv
wn2

is the expected average degree.

Let us briefly discuss the assumptions of Theorem 1. Conditions C0 and C1 are to
ensure that the partitioning problem is well posed. For if Φ has two linearly dependent
rows, then the two classes of the partition corresponding to these rows can be merged
into one class without changing the probability distribution. More precisely, suppose
that the first row is equal to α times the second row. Then by replacing the weights
wv for v ∈ V1 by αwv and the classes V1, V2 by V1 ∪ V2 and removing the first row
of Φ, we would obtain the same distribution on graphs as before but with one less
planted class. Condition C2 is to make sure that the (expected) maximum degree is
of lower order than n. Condition C3 states that the distribution of the vertex weights
must not exhibit an extensive lower tail, and C4 requires that the average weight
must be at least some (big enough) number D, which we will choose appropriately
in dependence of ε, δ, and Φ. Finally, condition C5 requires that all the classes must
contain a nonvanishing fraction of the vertices.
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Under these assumptions the theorem states that the planted partition can be
recovered with probability close to one, up to a number of O(n/w′ 0.97) misclassified
vertices. This number decreases as w′ grows, but it is linear in n if w′ remains bounded
as n→ ∞. This type of result is best possible, i.e., if w′ = O(1) as n→ ∞, then it is
in general impossible to recover the partition V1, . . . , Vk perfectly. For instance, with
high probability (w.h.p.) the random graph Gn(Φ, w,V) has n · exp(−Ω(w′)) isolated
vertices, which the algorithm cannot possibly partition correctly.

It may be possible to reduce the number of vertices that do not get classified
correctly further by combining spectral methods with combinatorial techniques (a
nice example of such an approach is the paper [3] on 3-coloring random graphs).
Nonetheless, in the present work we do not address this point. Instead, our main
contribution is that appropriate spectral methods can be applied to sparse graphs
with heavily tailed degree distributions.

To facilitate the further discussion, we say that the random graph Gn(Φ, w,V)
has a property P w.h.p. if the following is true. For any α, ε, δ > 0 and for any matrix
Φ, there are numbers D = D(ε, δ,Φ) > 0, n0 = n0(α, ε, δ,Φ) > 0 such that for all
n > n0, all weight distributions w, and all partitions V of V = {1, . . . , n} such that
C0–C5 are satisfied, the probability that P occurs in Gn(Φ, w,V) is at least 1 − α.
This means that the probability of P tends to one as n → ∞ uniformly w.r.t. w and
V , provided that the expected average degree w̄ exceeds some number D that depends
on ε, δ,Φ only. Hence, the average degree is allowed to remain bounded as n → ∞.
Throughout the paper we will use asymptotic notation (O(·), Ω(·), etc.) to refer to
the limit n→ ∞, while fixing δ, ε,Φ.

1.2. Related work. The general relationship between spectral properties of,
say, the adjacency matrix of a graph and clustering properties of the graph itself is well
studied. Usually, spectral heuristics (try to) exploit the fact that the desired partition
of the vertex set is reflected in the eigenvectors with the largest eigenvalues in absolute
value, and that these are separated from the remaining eigenvalues by a significant gap.
Phenomena of this type have been exploited in practice extensively. However, most
spectral heuristics have a terrible worst-case performance ([28] is a notable exception).
Since frequently the computational problems that spectral methods are applied to are
NP-hard, this is hardly surprising.

Rigorous positive results on spectral methods have been obtained in the context
of random graphs. This leads to provably efficient “average-case” algorithms for
clustering problems in situations where no purely combinatorial algorithms are known
to work (e.g., [2, 3, 6, 24, 20, 13]). In particular, [3] has lead to further results
[16, 17]. The reason for this may be that [3] is based on a rather flexible approach for
analyzing spectral properties of random graphs (based on ideas from [18]): spectral
properties are inferred directly from the global edge distribution, which in turn is
easy to analyze via nonconstructive counting arguments (“first moment method”).
We employ an approach of this type kind, too, but we need to enhance the spectral
methods of [3, 18] quite significantly because of the more general degree distribution
of the graphs that we deal with.

The upper tail of the degree distribution has a dramatic impact on spectral prop-
erties of the adjacency matrix. If the graph can be described as sparse (i.e., the
number of edges is linear in the number of vertices), then the eigenvalues induced by
partitions of the vertices are Θ(d̄), where d̄ is the average degree. But if there are
vertices of very high degree Δ (say, Δ = nα 	 d̄2 for some constant α > 0), then
these vertices will induce eigenvalues ±√

Δ 	 d̄ in the spectrum of the adjacency
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matrix. Hence, the dominant eigenvalues will not reflect the desired partition, but
just the upper tail of the degree distribution. We refer the reader to [25] for an excel-
lent discussion of this phenomenon. Therefore, “classical” spectral methods that rely
on the adjacency matrix (or something very similar) are extremely prone to heavily
tailed degree distributions and will simply fail in this case.

In the context of sparse Erdős–Rényi type graphs (e.g., Gn,p, where p = c/n for
some constant c) it is also true that the upper tail of the degree distribution affects
the spectrum (see [23]). However, the problem is easy to remedy by just deleting
the vertices of very high degree (say, more than 2np) as observed in [3]. Since the
number of these vertices is rather small (about n · exp(−Ω(np))), their removal is not
essential, as it does not affect the clustering properties of the graph significantly (at
least if the classes of the desired partition are of linear size). By contrast, in the
case of a degree distribution with a heavy upper tail this trick is not useful, because
significant parts of the graph may just be ignored. This implies that spectral methods
that are based on the adjacency matrix are inappropriate for graphs with heavy-tailed
degree distributions.

To cope with heavily tailed degree distributions, the Laplacian matrix has been
considered; see [7] for a nice exposition. It has also found its way into applications [26].
However, for randomly generated graphs the Laplacian is more difficult to handle
theoretically than the adjacency matrix. This is because the entries of the Laplacian
are mutually stochastically dependent. Even the Laplacian spectrum of Erdős–Rényi-
type graphs is rather difficult to analyze, particularly in the sparse case [10].

Clustering problems on denser random graphs (number of edges 	 number of
vertices) can be solved via the Laplacian even in the case of heavily tailed degree
distributions. In [14] it is shown that the singular values of a matrix similar to the
Laplacian mirror the partition in a random graph model similar to the one we deal
with in the present paper, provided that the expected average degree w′ exceeds log6 n
and that the weight parameters wu, u ∈ V , are given to the algorithms as additional
input. In the dense case the spectral analysis is relatively simple, as it can be reduced
to the “trace method” from [19]. This is the approach used in both [14] and [9].

The present paper builds upon our previous work [11, 12]. In [11] we studied the
Laplacian eigenvalues of sparse random graphs with a given expected degree sequence.
The random graph model is the same as in [9], where dense graphs were studied
via different methods. In the present paper we extend the methods from [11] to
graphs with a planted partition (see section 4). Furthermore, in [12] we presented an
algorithm for recovering a planted partition in the same setting as we consider in the
present paper, but with the additional assumption that the expected vertex degrees are
given to the algorithm as additional input parameters. This assumption is, of course,
rather artificial, but it is crucial for the analysis in [11]. Basically, in the present paper
we remove this assumption by utilizing the more sophisticated methods for analyzing
spectral properties of random graphs that we developed in [11]. We emphasize that
also in the paper [14] it was assumed that the algorithm receives further parameters
at the input (including the weight parameters wu for all u ∈ V ). Hence, the present
paper contributes the first algorithm whose only input is the graph that we wish to
partition.

In summary, the novel aspects of this paper are
- in comparison to [14] that we can deal with sparse graphs where the expected
average degree w′ remains bounded as the number n of vertices grows,

- in comparison to [12, 14] that only input is the graph that we need to parti-
tion, rather than the graph plus various parameters of the model, and



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINDING PLANTED PARTITIONS IN RANDOM GRAPHS 1687

- in comparison to [2, 3, 6, 24, 20, 13] that we can deal with graphs with heavily
tailed degree distributions.

1.3. Organization of the paper. In section 2 we introduce some notation and
collect a few results that we will need throughout the paper. Section 3 contains the
description of the algorithm. We also reduce the analysis of the algorithm (and thus
the proof of Theorem 1) to a result on the spectral properties of a random matrix
(Theorem 8 below). The proof of this result is the content of section 4.

2. Preliminaries and notation. We let ‖ · ‖ denote the l2-norm of a vector or
a matrix. Here by the l2-norm of a μ× ν matrix M we mean

‖M‖ = max
x∈Rν :‖x‖=1

‖M · x‖.

If M is a real symmetric ν × ν matrix with eigenvalues λ1 ≥ · · · ≥ λν , then ‖M‖ =
max{λ1,−λν}. We denote the transpose of a matrix (or vector) M as M t. Further-
more, we let 	1 denote the vector with all entries equal to one (in any dimension). If
ξ1, . . . , ξl are vectors, then 〈ξ1, . . . , ξl〉 denotes the space spanned by ξ1, . . . , ξl. We
will occasionally employ the Courant–Fischer characterization of eigenvalues.

Fact 2. Let M ∈ Rν×ν be a symmetric matrix with (real) eigenvalues λ1 ≥ · · · ≥
λν . Then for all 0 ≤ j < n

λj+1 = min
S

dimS=j

max
x∈S⊥
‖x‖=1

xtMx,λν−j = max
S

dimS=j

min
x∈S⊥
‖x‖=1

xtMx ,

where S ranges over subspaces of Rν and dimS is dimension of S.
If M = (mij)1≤i≤μ,1≤j≤ν is a matrix and X ⊆ {1, . . . , μ}, Y ⊆ {1, . . . , ν}, then

MX×Y denotes the minor of M induced on X × Y ; that is,

MX×Y = (mij)i∈X,j∈Y .

Furthermore, we let

sM (X,Y ) =
∑
x∈X

∑
y∈Y

mxy.

To simplify the notation, we usually write sM (i, Y ) instead of sM ({i}, Y ).
If X ⊆ {1, . . . , μ} and v = (v1, . . . , vμ)

t ∈ Rμ is a vector, then v|X signifies the
vector obtained from v by replacing the ith component of v by 0 if i /∈ X (1 ≤ i ≤ μ).
In addition, we let vX = (vi)i∈X . The difference between vX and v|X is that vX ∈
R|X|, while v|X ∈ Rμ.

Let G = (V,E) be a graph and u ∈ V . Then N(u) = NG(u) = {v ∈ V : {u, v} ∈
E} denotes neighborhood of u in G. Moreover, if X ⊆ V , then we let χX denote the
characteristic vector of X . That is, χX ∈ RV , and for v ∈ X the corresponding entry
χX(v) equals one, while for v ∈ V \X the entry χX(v) is zero.

We need the following Chernoff bounds on the tails of a sum of independent
Bernoulli variables [21, Theorems 2.1 and 2.8].

Fact 3. Let X be the sum of independent 0–1 random variables. Then for all
t ≥ 0 we have

1. Pr [X ≥ E [X ] + t] ≤ exp
(
− t2

2·(E[X]+t/3)

)
,

2. Pr [X ≤ E [X ]− t] ≤ exp
(
− t2

2·E[X]

)
.
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We also need a bit of notation concerning the random graph model Gn(Φ, w,V).
For U1, U2 ⊆ V = {1, . . . , n}, we define the volume as

Vol(U1, U2) =
∑
u∈U1

∑
v∈U2

φψ(u),ψ(v) · wu · wv
w · n .

Since any two vertices u, v of the random graph Gn(Φ, w,V) are connected with prob-
ability puv = φψ(u),ψ(v) · wu·wv

w·n independently, we have

Vol(U1, U2) = E [sA(U1, U2)] , where A is the adjacency matrix.

We denote the degree of vertex u by du. The expected degree of vertex u is denoted
by w′

u = E [du]. Clearly,

w′
u =

∑
v∈V

puv =
wu
w · n ·

∑
v∈V

wv · φψ(u),ψ(v).

We let

w′ =
∑
u∈V

w′
u/n

signify the arithmetic mean of the expected degrees w′
u. Let us point out that the

expected degree w′
u depends on all wv’s, all sets Vi, and the matrix Φ. Let us

summarize a few basic observations.
Fact 4. Suppose that (n,Φ, w,V) satisfy C0–C5 hold.
1. Let u1 and u2 be two vertices belonging to the same set of the planted partition.

Then wu1/w
′
u1

= wu2/w
′
u2
.

2. There is a number C = C(Φ, ε, δ) (independent of n) such that for all u ∈ V
we have 1/C ≤ w′

u/wu ≤ C.
3. The expected average degree of G equals w′.

Since wu/w
′
u is the same for all u ∈ Vi, we abbreviate

(2) Wi = wu/w
′
u = Θ(1), and we let W = w/w′ = Θ(1).

Instead of thinking of the “vertex weights” wu as being given, it may sometimes be
more natural to consider the expected degrees w′

u as given. Then the goal is to derive
the vertex weights (wu)u∈V that lead to the desired expected degree distribution
(w′

u)u∈V . To obtain such weights wu, one could choose k positive constants fi with
1 ≤ i ≤ k and set wu := fi · w′

u for each u ∈ Vi and each 1 ≤ i ≤ k. The fi are to
compensate the effect of the Wi above. We illustrate the way to find the fi’s by an
example.

Suppose we want to plant a small bisection. To this end, we set Φ = ( 1 0.5
0.5 1 ),

and let V = (V1, V2) be the planted partition. We also assume that we are given
the expected degree distribution (w′

u)u∈V . To simplify the following calculation, we
assume that the sum of the expected degrees on both side of the bisection is the same,
that is

(3)
∑
v∈V1

w′
v =

∑
v∈V2

w′
v =: D.

Our goal is to find factors fi and thus weights wu such that for u ∈ V1∑
v∈V1

1 · wu · wv
w · n +

∑
v∈V2

1

2
· wu · wv
w · n = w′

u



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINDING PLANTED PARTITIONS IN RANDOM GRAPHS 1689

is satisfied. As for v ∈ V1 (resp., v ∈ V2), we have wv = f1 · w′
v (resp., wv = f2 · w′

v);
the equality of

∑
v∈V1

1 · (f1 · w
′
u) · (f1 · w′

v)

w · n +
∑
v∈V2

1

2
· (f1 · w

′
u) · (f2 · w′

v)

w · n = w′
u

is needed. This is equal to

f2
1 ·

∑
v∈V1

w′
v +

f1 · f2
2

·
∑
v∈V2

w′
v = w · n,

and by (3)

(4) f2
1 ·D +

f1 · f2
2

·D = w · n.

For the right-hand side w · n, we get

w · n =
∑
v∈V1

wv +
∑
v∈V2

wv = f1 ·
∑
v∈V1

w′
v + f2 ·

∑
v∈V2

w′
v = (f1 + f2) ·D.

Plugging this into (3) we see that we just need to find positive numbers f1, f2 satisfying

(5) f2
1 +

f1 · f2
2

= f1 + f2.

Repeating the calculation above for some u ∈ V2 we get analogously

f1 · f2
2

+ f2
2 = f1 + f2.

This yields f2
1 = f2

2 . Since both are positive, we have f1 = f2. Using this we get by
(5) that f1 = f2 = 4/3. So, one may obtain the desired sequence of expected degrees
w′
u by setting wu := 4/3 · w′

u.
In the above bisection example we were able to find multipliers f1, f2 to adapt a

given expected degree distribuion. However, in other examples it is not possible to
achieve any prescribed sequence of expected degrees. To see this, suppose we plant an
independent set V1. Then Φ = ( 0 1

1 1 ). In this case it is impossible to model a sequence
where the sum of the expected degrees in V1 is larger than the sum of the expected
degrees in V2.

3. The algorithm.

3.1. Background: Representing graphs by matrices. In this section we
discuss various ways of representing a graph by a matrix. Apart from a few definitions,
the section serves purely didactical purposes: it is just meant to facilitate the reader’s
understanding of the algorithm, which we will describe in the next section. Therefore,
we will omit the proofs of a few statements, as none of them will be needed in the
proof of Theorem 1.

Recall that if G = (V,E) is a graph, then its adjacency matrix A = A(G) =
(avw)v,w∈V has entries

avw =

{
1 if v, w are adjacent,
0 otherwise.
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To illustrate the use of this matrix for graph partitioning purposes, let us assume that

(6)
the vertex set V has a partition V1, V2 into two (disjoint) sets of equal
size such that every vertex in Vi has exactly d neighbors in V3−i and
exactly 2d neighbors in Vi for i = 1, 2, where d ≥ 3 is some integer.

That is, V1, V2 is a “good bisection” of G. Let ξi = (ξi(v))v∈V = χVi be the vector
whose entries are one for v ∈ Vi and 0 for v ∈ V3−i and i = 1, 2. Then the following
vectors are eigenvectors of A:

1. 	1 = ξ1 + ξ2 is an eigenvector with eigenvalue 3d.
2. ξ1 − ξ2 is an eigenvector with eigenvalue d.

If all other eigenvalues of A are less than d (in absolute value), then it is easy to
recover the partition of V1, V2 from A. Namely, we just compute any eigenvector ξ
with eigenvalue d. Then ξ lies on the line spanned by ξ1 − ξ2. Hence, ξ is constant on
both classes V1, V2. Thus, if we let V

′
1 be the set of vertices v ∈ V whose corresponding

entry ξv is positive and V ′
2 = V \W1, then either V ′

1 = V1 and V ′
2 = V2, or V

′
2 = V1

and V ′
1 = V2.

Of course, the crucial property is that all but two eigenvalues of A are less than d
in absolute value. This property does not hold for all graphs that satisfy (6). However,
if G is chosen uniformly at random from the set of all graphs that satisfy (6), then
all but two eigenvalues of A are in fact O(

√
d) in absolute value w.h.p. This can

be shown via techniques from [18]. (Besides, (V1, V2) is the optimal bisection w.h.p.,
provided that d is sufficiently large.)

Let us now consider a slightly different (conceptually simpler) random graph
model. Namely, let V = {1, . . . , n} for some even integer n, and let (V1, V2) be any
partition of V into two sets of size n/2. Now, each edge {v, v′} is present in the
random graph G with probability 4d/n if either v, v′ ∈ V1 or v, v′ ∈ V2, and with
probability 2d/n if v ∈ V1 and v′ ∈ V2 independently of all other edges. Thus, the
expected number of neighbors that v ∈ Vi has in its own class Vi is 2d, and the expected
number of neighbors in the opposite class V3−i is d. This random graph model can
be expressed as G = Gn(Φ, w,V) by letting Φ11 = Φ22 = 4d, Φ12 = Φ21 = 2d, wv = 1
for all v, and V = (V1, V2). We consider d fixed as n grows.

Although the expected number of neighbors that each vertex has in V1, V2 is
as indicated in (6), the actual numbers vary. More precisely, for each v ∈ Vi the
number of neighbors in Vi (respectively, V3−i) is asymptotically Poisson with mean
2d (respectively, d). This implies that the maximum degree of the graph is as large
as Θ(lnn/ ln lnn) w.h.p., and for each fixed number 0 ≤ Δ = O(1) there are Ω(n)
vertices of degree Δ w.h.p.

Let us consider a vertex v of degree Δ = 4d2. Since d = O(1) as n → ∞, the
random graph G is sparse, and therefore the subgraph of G induced on v and its
neighbors is a star w.h.p. This implies that the spectrum of the adjacency matrix
A(G) contains the eigenvalues of the adjacency matrix of a star K1,Δ, which are

±√
Δ = ±2d. This exceeds the eigenvalue d that corresponds to the bisection V1, V2.

Hence, the bisection cannot be recovered by considering the eigenvector with the
second largest eigenvalue. In fact, the spectrum of A(G) contains eigenvalues ±√

Δ
for any fixed Δ > 4d2 as well. In other words, the upper tail of the degree distribution
clutters the spectrum of A wildly, so that it is not straightforward anymore to read
the partition off (see [25] for a comprehensive account).

As observed in [3], in the above model this problem is easy to fix. Let G′ be the
subgraph of G obtained by removing all vertices of degree larger than, say, 4d from G.
Then the eigenvector η with the second largest eigenvalue of A(G′) is “close” in the
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2-norm to the space spanned by 	1 and ξ1− ξ2 w.h.p. This implies that η can be used
to partition most vertices of G′ correctly (all but an O(1/d) fraction). Furthermore,
the number of vertices of degree bigger than 4d is less than n · exp(−Ω(d)) w.h.p.

The simple trick of just removing vertices of degree bigger than 4d works fine in
the above model, because the expected degree of any vertex in the graph equals 3d.
If, however, the degree distribution has a significant upper tail, then there may be
very many vertices with degree far higher than the average, and therefore removing
high degree vertices is not an option. (To obtain this type of graph in the Gn(Φ, w,V)
model, choose Φ and V as before, but let some weights wv be larger than one.)

Instead, we will use a different matrix to represent the graph. The basic idea is to
normalize the entry corresponding to an edge {v, v′} by (some function of) the degrees
of v, v′. More precisely, given a graph G = (V,E), we let M ′ =M ′(G) = (muv)u,v∈V
be the matrix with entries

m′
uv =

{
(dudv)

−1 if u, v are adjacent,
0 otherwise,

where dv is the degree of v. This is reminiscent of the normalized Laplacian, where
the normalization is by the geometric mean

√
dudv rather than the product dudv.

Using the latter has certain technical advantages in the present context. In any case,
the basic idea is to reduce the weight of high degree vertices, rather than to remove
them completely.

As we shall see in Theorem 8 below, the spectrum ofM ′ still mirrors the partition
V . More precisely, in the above bisection problem the partition V induces eigenvalues
of order 1/d. Furthermore, the normalization diminishes the impact of the high
vertex degrees on the spectrum. However, there is a new issue: vertices of very low
degree. The extreme example is an isolated edge e = {v, v′}. In the random graph
G = Gn(Φ, w,V) described above, there are Ω(n) isolated edges w.h.p. Each of them
yields a 2×2 submatrix ofM ′ whose eigenvalues are±1 and thus exceed the eigenvalue
of order 1/d that corresponds to the planted bisection. To resolve this problem, the
algorithm will not work with the matrix M ′, but with a minor M of this matrix
induced on the set of vertices whose degree is at least a certain value dm. As we shall
see, our assumption C3 from section 1.1 ensures that it is feasible to ignore low degree
vertices.

As far as the analysis of the algorithm is concerned, the matrices M ′ and M are
significantly more difficult to deal with than the adjacency matrix A. This is because
if G = Gn(Φ, w,V), then the entries of A are mutually independent random variables
(apart from the obvious dependency resulting from the fact that A is symmetric).
By contrast, the entries of M ′ are mutually dependent, because we divide by the
vertex degrees (which are, of course, random variables). Coping with this stochastic
dependence will be our main technical challenge.

3.2. Description of the algorithm. For the rest of section 3, we fix ε, δ > 0
and the k × k matrix Φ. We let D = D(ε, δ,Φ) and n0 = n0(ε, δ,Φ) be large enough
numbers and assume that n > n0 and that the weight distribution w and the partition
V = (V1, . . . , Vk) are such that w ≥ D. In addition, we assume that conditions C0–C5
hold.

The pseudocode for the graph partitioning algorithm is shown in Figure 1. Steps
1–4 of Algorithm 5 set up the matrix representation from the previous section. As
we pointed out there, in order to ensure that the spectrum of the matrix mirrors the
desired partition, it is necessary to remove vertices of “atypically low degree.” Instead
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Algorithm 5. Input: A graph G = (V, E) with vertex set V = {1, . . . , n}. Output: A partition
of V .
1. Compute d =

∑n
u=1 du/n and set dm = d / ln d .

2. Set up the matrix M ′ = (m′
uv)u,v∈V with entries m′

uv = 1/(du · dv) if
{u, v} ∈ E and m′

uv = 0 otherwise.
3. Let U = {u ∈ V : du ≥ dm}.
4. Obtain M from M ′ by replacing any entry m′

uv with (u, v) /∈ U × U by 0.
5. Compute the eigenvalues Λ1, . . . ,Λn of M and order them such that |Λ1| ≥

· · · ≥ |Λn|. Let 1 ≤ κ ≤ n be such that |Λκ| ≥ 1/dm
1.1 > |Λκ+1|. Compute

a family s1, . . . , sκ of mutually perpendicular vectors of �2-norm
√
n such that

si is an eigenvector of M with eigenvalue Λi for all 1 ≤ i ≤ κ.
6. Call Algorithm 7 with input (G, dm, s1, . . . , sκ) to obtain a partition of V .

Fig. 1. The graph partitioning algorithm, part 1.

of actually removing these vertices, step 4 of the algorithm just replaces the entries
in the rows and columns corresponding to these vertices by 0.

Since the algorithm does not know the expected vertex degrees in the random
graph Gn(Φ, w,V), it has to come up with a good “guess” of a lower bound on the
vertex degrees. This guess is dm = d̄/ ln d̄. To see that this makes sense, we need to
show that

dm � min
v∈V

w′
v = min

1≤i,j≤2
φij>0

min
u∈Vi

∑
v∈Vj

φij · wu · wv
w · n ,

i.e., we need to derive a lower bound on the minimum expected degree. By assumption
C3 we have wu ≥ εw̄ for all u ∈ V , and C5 ensures that |Vi| ≥ δn. Therefore,

∑
v∈Vj

φij · (ε · w)
2

w · n ≥ (δ · n) · φij · ε
2 · w
n

≥ δ · φij · ε2 · w = Θ(w).

Furthermore, we have the following lower bound on d̄. Remember that

w̄′ =
1

w̄n2

∑
(u,v)∈V×V

wuwvφψ(u),ψ(v).

Fact 6. If G = Gn(Φ, w,V), then d̄ ∼ w̄′ w.h.p. Consequently, w.h.p. d̄ = Θ(w),
dm > w2/3, dm > w′ 2/3, and dm ≤ (1 + o(1))w′/ lnw′.

Proof. Since d̄ is the average degree of G, nd̄/2 equals the total number of
edges. For any two vertices u, v, the edge {u, v} is present in G with probability
puv independently. Therefore, nd̄/2 is a sum of independent Bernoulli variables, and
hence the Chernoff bound implies that nd̄/2 ∼ E(nd̄/2) w.h.p. Hence, d̄ ∼ E(d̄) = w̄′

w.h.p. Since the matrix Φ remains fixed as n → ∞, we have w̄′ = Θ(w̄), and thus
d̄ = Θ(w̄) w.h.p. Hence, C3 entails that dm = d̄/ ln d̄ = Θ(w̄/ ln w̄), and dm > w2/3

and dm > w′ 2/3 w.h.p.
Having set up the matrix M , the algorithm proceeds to compute an orthogonal

family (s1, . . . , sκ) of eigenvectors whose corresponding eigenvalues exceed dm
−1.1,

i.e., are “big.” In the analysis of the algorithm we will see that these vectors are
closely related to the characteristic vectors of the classes V1, . . . , Vk. Roughly speaking,
we will see that the entries of (most) vertices that belong to the same class Vj are
essentially identical in all the vectors sj . On the other hand, for most pairs u, v of
vectors that belong to different classes there is at least one j such that the entries of
u and v in sj differ significantly.
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Algorithm 7. Input: The graph G along with vectors s1, . . . , sκ and a number dm. Output: A
partition of V .
1. Let P := {V }.
2. While there is V ′ ∈ P such that there exist s ∈ {s1, . . . , sκ} and l1 < l2 < l3

such that fV ′,s(l1) = fV ′,s(l3) = 1 and fV ′,s(l2) = fV ′,s(l2 + 1) = 0
3. set V ′′ := {v ∈ V ′ : s(v) < (l2 +1)/ ln dm} and replace V ′ in P by V ′′

and V ′ \ V ′′.
4. Output P .

Fig. 2. The graph partitioning algorithm, part 2.

In order to actually partition V we exploit this fact as follows. We start from the
trivial partition P = {V } and keep refining the partition iteratively as follows. For a
set V ′ ⊆ V and a vector s ∈ Rn, we define

(7) fV ′,s : Z → {0, 1}, l �→
⎧⎨
⎩1 if

∣∣∣∣
{
v ∈ V ′ :

l

ln dm
≤ s(v) <

l+ 1

ln dm

}∣∣∣∣ > n

dm
0.97 ,

0 otherwise.

We say that an integer l is a clusterpoint if fV ′,s(l) = 1. That is, l is a clusterpoint
iff there are “a lot” of vertices v ∈ V ′ such that their corresponding entry in s lies
in the “small” interval [ l

ln dm
, l+1
ln dm

). If l is not a clusterpoint, then we say that l
is a gap. Now, if the present partition P contains a class V ′ such that there is a
vector s ∈ {s1, . . . , sκ} such that V ′ has two clusterpoints that are separated by at
least two subsequent gaps, then V ′ gets replaced by the set V ′′ that corresponds to
the clusterpoints to the left-hand side of the gap and the set that corresponds to the
right-hand side. To be precise, the algorithm proceeds as shown in Figure 2.

Algorithms 5 and 7 have a polynomial running time. For steps 1–4 of Algorithm 5,
this is evident. The eigenvalue/eigenvector computation in step 5 can be carried out
in polynomial time within any numerical precision. (In fact, it can be shown that
in the random graph model Gn(Φ, w,V) each relevant eigenvector can be computed
via O(lnn) Lanczos iterations.) Furthermore, the main loop of Algorithm 7 gets
executed at most n times, because each time one partition class of P gets split into
two non-empty parts V ′′ and V \ V ′′, and the vertex set V has n elements. Since
all eigenvectors s(v) have 2-norm

√
n by construction (cf. step 5 of Algorithm 5),

the support of each function fV ′,s is a subset of (−√
n · lnn,√n · lnn). Hence, each

iteration of steps 2–3 of Algorithm 7 can be executed in polynomial time.

3.3. Proof of Theorem 1. In this section we show that Theorem 1 follows from
the following statement about the spectral properties of the matrix M , the proof of
which we defer to section 4. Recall the definition of the numbers Wi from (4).

Theorem 8. W.h.p. the following two statements hold.
1. For all 1 ≤ i, j ≤ k we have

	1t

‖	1t‖ ·MVi×Vj ·
	1

‖	1‖ = φij ·Wi ·Wj ·
√|Vi|·|Vj |
w · n · (1 +O

(
dm

−0.49
))
.(8)

2. For all 1 ≤ i, j ≤ k and any u, v with ‖u‖ = ‖v‖ = 1 and u ⊥ 	1 or v ⊥ 	1 we
have

(9)
∣∣ut ·MVi×Vj · v

∣∣ = O
(
1/w1.49 + 1/dm

1.5
)
= O(1/w1.49).

As φij and Wi remain constant as n → ∞, we often hide them (as in 1. above)
in the O(·).
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In section 3.4 we will establish the following lemma.
Lemma 9. Let k′ be the rank of the matrix Φ. If (8) and (9) hold, then M

has exactly k′ eigenvalues whose absolute value is Θ(1/w), whereas all the remaining
eigenvalues are O

(
dm

−0.49/w
)
in absolute value.

In combination with Theorem 8, Lemma 9 shows that step 5 of Algorithm 5
correctly identifies (without a priori knowing k′) the k′ eigenvectors with the dominant
eigenvalues. Since dm = d / ln d = Θ(w/ lnw) w.h.p. by Fact 6 the term 1/dm

1.1 is
smaller than the Θ(1/w) term and bigger than the O(dm

−0.49/w) term.
The following lemma describes the structure of the eigenvectors with the dominant

eigenvalues. It shows that these eigenvectors essentially result from the characteristic
vectors of the planted partition classes. In addition, the lemma shows that the eigen-
vectors are essentially constant on the planted partition classes. Furthermore, we will
see that for each pair of distinct classes Vj , Vj′ there is at least one eigenvector that
assigns significantly different values to these two sets. This will put us in a position to
prove that Algorithm 7 recovers an approximation to the planted partition as claimed
in Theorem 1 w.h.p.

Lemma 10. Let k′ be the rank of the matrix Φ. Let s1, s2, . . . , sk′ be mutually
orthogonal eigenvectors with the k′ largest eigenvalues in absolute value of M such
that ‖si‖ =

√
n for all 1 ≤ i ≤ k′. Let χ1, . . . , χk be the characteristic vectors of

V1, . . . , Vk. If (8) and (9) hold, then the unique decomposition

si = αi1 · χ1 + αi2 · χ2 + · · ·+ αik · χk + γi · ui,

with ui ⊥ χ1, . . . , χk and ‖ui‖ =
√
n has the following properties.

1. |γi| = O(dm
−0.49) for 1 ≤ i ≤ k′.

2. For each i ∈ {1, . . . , k′} and every j ∈ {1, . . . , k} there are at most O(n ·
ln4 dm/dm

0.98) vertices v ∈ Vj such that |αij − si(v)| ≥ 1/ ln2 dm.
3. For any two distinct indices 1 ≤ j, j′ ≤ k there is i ∈ {1, . . . , k′} such that

|αij − αij′ | > 1/
√
ln dm.

We defer the proof of Lemma 10 to section 3.5.
Proof of Theorem 1. The values of αij match the clusterpoints mentioned in

section 3.2. Lemma 10 entails that for most v ∈ Vj the entry si(v) deviates from αij
by at most 1/ ln2 dm. As the interval size in the functions fV ′,s used in Algorithm 7 is
1/ lndm (see (7)), the typical entries lie in two subsequent intervals, and the entries of
at most O(n · ln4 dm/dm0.98) vertices v ∈ Vj do not lie in these intervals. This shows
that in total no more than k ·O(n · ln4 dm/dm0.98) < n/dm

0.97 entries of si lie outside
of such intervals. As all intervals with ≤ n/dm

0.97 entries are gaps, each vector si has
at most 2 · k intervals that are clusterpoints.

For two different sets Vj and Vj′ there is at least one si such that the corresponding
clusterpoints have a distance of at least 1/

√
ln dm. Hence, the intervals belonging to

these clusterpoints are well separated (there are at least
√
ln dm− 4 intervals between

them). As we have at most 2k nongap intervals, there must be two consecutive
gaps. Therefore, Algorithm 7 splits Vj and Vj′ into different sets of the partition it
constructs.

Since we split each set between two gaps, it is impossible to cut some Vj “in the
middle.” Thus, the partition constructed agrees in large parts the planted partition.
The difference between the partition planted and the constructed one is bounded
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by the number of entries being far away from the clusterpoints, that is, k · O(n ·
ln4 dm/dm

0.98). By our choice of dm = d / ln d , this is bounded from above by

n/ d
0.97

. This completes the proof of Theorem 1.

3.4. Proof of Lemma 9. Let χ1, . . . , χk be the characteristic vectors of V1, . . . Vk
(i.e., the uth component of χi equals one if u ∈ Vi and 0 otherwise for all u ∈ V ).
Consider two unit vectors g and h from the space 〈χ1, . . . , χk〉 spanned by χ1, . . . , χk.
These vectors have decompositions g = a1 · χ1/‖χ1‖ + · · · + ak · χk/‖χk‖ and h =

b1 ·χ1/‖χ1‖+ · · ·+bk ·χk/‖χk‖, where
∑k
i=1 a

2
i =

∑k
i=1 b

2
i = 1. Since we are assuming

that (8) and (9) hold, we have

htMg =

k∑
i,j=1

bi · χti
‖χi‖ ·M · aj · χj

‖χj‖ =

k∑
i,j=1

bi · aj ·
	1t ·MVi×Vj ·	1√|Vi| · |Vj |

=
k∑

i,j=1

bi · aj · φij ·Wi ·Wj ·
√|Vi| · |Vj |

w · n · (1 +O
(
dm

−0.49
))

=

k∑
i,j=1

(
bi · aj · φij ·Wi ·Wj ·

√|Vi| · |Vj |
w · n

)
+O

(
dm

−0.49

w

)

=
1

w
· (b1 . . . bk

) · P ·

⎛
⎜⎝
a1
...
ak

⎞
⎟⎠+O

(
dm

−0.49

w

)
,

where

P =

⎛
⎜⎜⎜⎝
W1 ·

√
|V1|
n 0

0
. . .

Wk ·
√

|Vk|
n

⎞
⎟⎟⎟⎠

×

⎛
⎜⎝
φ11 . . . φ1k
...

. . .
...

φk1 . . . φkk

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎝
W1 ·

√
|V1|
n 0

0
. . .

Wk ·
√

|Vk|
n

⎞
⎟⎟⎟⎠ .(10)

AsWi, |Vi| > 0 for all i, the outer factors in (10) have full rank. Therefore, the rank of
P equals the rank of Φ, which is k′. Consequently, P has exactly k′ eigenvectors with
nonzero eigenvalues ν1, . . . , νk′ . As Wi, |Vi| /n = Θ(1), we conclude that ν1, . . . , νk′

are bounded away from 0 by some constant and that their absolute value is bounded
from above by some constant.

Let
(
e1 . . . ek

)t
and

(
f1 . . . fk

)t
be two orthonormal eigenvectors of P with

the eigenvalues ν1 and ν2. Set

g1 = e1 · χ1

‖χ1‖ + · · ·+ ek · χk
‖χk‖ and g2 = f1 · χ1

‖χ1‖ + · · ·+ fk · χk
‖χk‖ .
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Clearly, g1 and g2 are orthonormal as well, and the above computation yields

∣∣gt1 ·M · g1
∣∣ =

∣∣∣∣∣∣∣
1

w
· (e1 . . . ek

) · P ·

⎛
⎜⎝
e1
...
ek

⎞
⎟⎠±O

(
dm

−0.49

w

)∣∣∣∣∣∣∣
=

∣∣∣∣ 1w · ν1 ±O

(
dm

−0.49

w

)∣∣∣∣ = Θ

(
1

w

)
and

∣∣gt1 ·M · g2
∣∣ =

∣∣∣∣∣∣∣
1

w
· (e1 . . . ek

) · P ·

⎛
⎜⎝
f1
...
fk

⎞
⎟⎠±O

(
dm

−0.49

w

)∣∣∣∣∣∣∣
=

∣∣∣∣ 1w · 0±O

(
dm

−0.49

w

)∣∣∣∣ = O

(
dm

−0.49

w

)
.

Proceeding inductively, we obtain k′ orthonormal vectors g1, . . . , gk′ such that

(11)
∣∣gti ·M · gj

∣∣ =
{
Θ(1/w) for i = j,

O
(
dm

−0.49/w
)

for i �= j .

Similarly, the kernel of P yields k − k′ orthonormal vectors gk′+1, . . . , gk satisfying

(12)
∣∣gt ·M · gi

∣∣ = O
(
dm

−0.49/w
)

for any unit vector g ∈ 〈g1, . . . , gk〉. Note that 〈g1, . . . , gk〉 = 〈χ1, . . . , χk〉.
Let us order g1, . . . , gk′ by the sign of gti ·M · gi: let g1, . . . , gl be the vectors such

that gti ·M · gi > 0 and gl+1, . . . , gk′ be the vectors with gti ·M · gi < 0.
Let x be some unit vector from the space 〈g1, . . . , gl〉. Then there is a decompo-

sition x = a1 · g1 + · · ·+ al · gl with
∑l
i=1 a

2
i = 1. Hence,

xtMx =

l∑
i=1

a2i · gi ·M · gi +
l∑

i,j=1
i�=j

ai · aj · gti ·M · gj

= Θ(1/w) + l2 ·O (
dm

−0.49/w
)
= Θ(1/w).

Applying the second equality of Fact 2 with j = n− l and S = 〈g1, . . . , gl〉⊥, we get

λl ≥ min
x∈S⊥
‖x‖=1

xtAx = min
x∈〈g1,...,gl〉

‖x‖=1

xtAx = Θ(1/w).

Using the first inequality of Fact 2 with j = n − (k′ − l) and S = 〈gl+1, . . . , gk′〉⊥,
we also obtain λn−k′+l+1 = −Ω(1/w). Hence, M has (at least) k′ eigenvalues whose
absolute value is Ω(1/w).

We are left to show that the remaining eigenvalues are substantially smaller. To
this end consider an arbitrary unit vector x that is perpendicular to gl+1, . . . , gk′ . We
decompose x into x = a · g + b · h+ c · v, with g ∈ 〈g1, . . . gl〉, h ∈ 〈gk′+1, . . . , gk〉, and
v ⊥ g1, . . . , gk satisfying ‖g‖ = ‖h‖ = ‖v‖ = 1, and a2+ b2+ c2 = 1. As gt ·M · g > 0,
we have

xt ·M · x = a2 · gtMg + b2 · htMh+ c2 · vtMv + 2ab · gtMh

+ 2ac · gtMv + 2bc · htMv

≥ b2 · htMh+ c2 · vtMv + 2ab · gtMh+ 2ac · gtMv + 2bc · htMv
(12)

≥ −O (
dm

−0.49/w
)
+ c2 · vtMv + 2ac · gtMv + 2bc · htMv.
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As v ⊥ g1 . . . , gk, we have v ⊥ χ1, . . . , χk. By (9) for any unit vector u (and thus in
particular for g, h, and v),

∣∣ut ·M · v∣∣ ≤ k∑
i,j=1

∣∣utVi
·MVi×Vj · vVj

∣∣ = O(1/w1.49) = O(dm
−0.49/w).

Consequently,

xt ·M · x ≥ −O (
dm

−0.49/w
)
.

Since x was arbitrary from some (n+l−k′)-dimensional subspace, we conclude (us-
ing the second inequality from Fact 2 with j = k′−l) that λn+l−k′ ≥ −O (

dm
−0.49/w

)
.

Analogously, using the first inequality from Fact 2, we get λl+1 = O
(
dm

−0.49/w
)
.

Combining these two bounds, we conclude that M has n− k′ eigenvalues with abso-
lute value O

(
dm

−0.49/w
)
.

To complete the proof, we show that all eigenvalues are Θ(1/w) in absolute value.
Let x be some arbitrary unit vector. We decompose x into x = a · g + b · h + c · v,
where g ∈ 〈g1, . . . , gl〉, h ∈ 〈gl+1, . . . , gk〉, v ∈ 〈g1, . . . , gk〉⊥, ‖g‖ = ‖h‖ = ‖v‖ = 1,
and a2 + b2 + c2 = 1. Then similarly as above we get

xt ·M · x = a2 ·Θ(1/w)− b2 ·Θ(1/w) +O(dm
−0.49/w).

Hence, |xt ·M · x| = O(1/w), and thus Fact 2 gives the desired bounds on λ1 and λn.

3.5. Proof of Lemma 10. We start with the first assertion. Since si is an
eigenvector with eigenvalue Ω(1/w), we have∣∣uti · (M · si)

∣∣ = Θ(1/w) · ∣∣uti · si∣∣ = Θ(1/w) · ∣∣γi · uti · ui∣∣ = Θ(n/w) · |γi| .
On the other hand, since ui ⊥ χ1, . . . , χk, (9) shows

∣∣uti ·M · si
∣∣ = n ·

∣∣∣∣ uti
‖ui‖ ·M · si

‖si‖
∣∣∣∣ = n ·O

(
1

w1.49

)

Combining both bounds, we conclude that |γi| = O(w−0.49) = O(dm
−0.49), thereby

proving the first statement.
With respect to the second assertion, let v ∈ Vj be such that |αij − si(v)| ≥

1/ ln2 dm. Then clearly |γi · ui(v)| ≥ 1/ ln2 dm. As |γi| = O(dm
−0.49), we have ui(v) =

Ω(dm
0.49/ ln2 dm). Since u

t
i ·ui = n, there are at most n ·O(ln4 dm/dm

0.98) such entries
in ui. Hence, we have established the second claim.

To prove the third assertion, assume for contradiction that there are j, j′ ∈
{1, . . . , k}, with j �= j′ such that for each i ∈ {1, . . . , k′} the inequality |αij − αij′ | ≤
1/

√
ln dm holds. Consider the vector v = χj/ |Vj | − χj′/ |Vj′ |. This vector is almost

perpendicular to each si, because

∣∣vt · si∣∣ = |αij − αij′ | ≤ 1√
ln dm

.

Now let

v′ = v −
k′∑
i=1

vt · si
n

· si.
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Then v′ is perpendicular to each si (and almost parallel to v). Both v and v′ have
norm Θ(1/

√
n). Since v′ is perpendicular to s1, . . . , sk′ , it lies in the space spanned

by eigenvectors with eigenvalues O(dm
−0.49/w). Therefore,

(13) ‖M · v′‖ = O

(
dm

−0.49

w

)
· ‖v′‖ = O

(
dm

−0.49

w · √n
)
.

Furthermore, by the definition of v′ we have

‖M · v′‖ ≥ ‖M · v‖ −
k′∑
i=1

‖M · v
t · si
n

· si‖

≥ ‖M · v‖ −
k′∑
i=1

‖M‖ ·
∣∣∣∣vt · sin

∣∣∣∣ · ‖si‖
≥ ‖M · v‖ −O

(
1√

n · √ln dm · w
)
.(14)

In what follows, we will prove that ‖M · v‖ = Ω(1/(w · √n)). However, due to (14),
this contradicts (13). Therefore, we have established that for any j, j′ there is i such
that the |αij − αij′ | > 1/ lndm.

The remaining task is to prove that ‖M · v‖ = Ω(1/(w ·√n)). To this end, we set
η =M · v. For each l ∈ {1, . . . , k} we have

∑
u∈Vl

η(u) =
∑
u∈Vl

⎛
⎝ ∑
u2∈Vj

muu2

|Vj | −
∑

u2∈Vj′

muu2

|Vj′ |

⎞
⎠ =

	1t ·MVi×Vj ·	1
|Vj | −

	1t ·MVi×Vj′ ·	1
|Vj′ | .

By (8) this equals

∑
u∈Vl

η(u) =

(
φlj ·Wl ·Wj · |Vl|

w · n − φlj′ ·Wl ·Wj′ · |Vl|
w · n

)
· (1 +O

(
dm

−0.49
))

=
Wl · |Vl|
w · n · (φlj ·Wj − φlj′ ·Wj′) ·

(
1 +O

(
dm

−0.49
))
.

By Jensen’s inequality [22] for convex functions the term
∑

u∈Vi
η(u)2 is minimized

iff each η(u) equals the arithmetic mean of all η(u), u ∈ Vl, which is∑
u∈Vl

η(u)

|Vl| =
Wl

w · n · (φlj ·Wj − φlj′ ·Wj′ ) ·
(
1 +O

(
dm

−0.49
))
.

Therefore,

∑
u∈Vl

η(u)2 ≥ |Vl| ·
(
Wl

w · n · (φlj ·Wj − φlj′ ·Wj′ ) ·
(
1 +O

(
dm

−0.49
)))2

≥ |Vl| ·
(
Wl · (φlj ·Wj − φlj′ ·Wj′ )

2 · w · n
)2

.

Assumption C1 implies that there is l ∈ {1, . . . , k} such that φlj ·Wj − φlj′ ·Wj′ �= 0.
For if φlj ·Wj − φlj′ ·Wj′ = 0 for all l ∈ {1, . . . , k}, then otherwise columns j and
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j′ (and by symmetry also rows j and j′) of the matrix Φ were linearly dependent.
Hence, for this index l we get

∑
u∈Vl

η(u)2 ≥
(
Wl ·Θ(1)

w · n
)2

· |Vl| = Θ

(
1

w 2 · n
)

and

‖M · v‖ = ‖η‖ =

√∑
u∈V

η(u)2 ≥
√∑
u∈Vl

η(u)2 = Ω

(
1

w · √n
)
.

4. Proof of Theorem 8. In this section we consider ε, δ > 0 and the k × k
matrix Φ fixed. We let D = D(ε, δ,Φ) and n0 = n0(ε, δ,Φ) be large enough numbers
and assume that n > n0 and that the weight distribution w and the partition V =
(V1, . . . , Vk) are such that C0–C5 hold.

4.1. Outline of the proof. We will prove that for each pair (i, j) ∈ {1, . . . , k}2
the submatrix MVi×Vj has the two properties stated in Theorem 8 w.h.p. (note that
we also need to consider the case i = j). Since k is independent of n, the union bound
then implies that the two statements hold for all k2 block simultaneously w.h.p. For
the rest of this section we consider i, j fixed.

The matrix MVi×Vj seems very difficult to analyze, because its entries are depen-
dent random variables. The dependence of the entries results from the normalization:
remember that the entry corresponding to an edge {u, v} is (dudv)

−1, and the degrees
of the vertices are mutually dependent random variables (and they are also not inde-
pendent of the presence of the edge {u, v}). To deal with this problem, we will relate
MVi×Vj to a matrix M whose entries are mutually independent (apart from the fact
that M is symmetric if i = j). More precisely, M = (muv)u∈Vi,v∈Vj is the |Vi| × |Vj |
matrix with entries

muv =

{
1/(w′

u · w′
v) if {u, v} ∈ E,

0 otherwise,

where w′
u, w

′
v are the expected degrees of u, v. We analyzed the spectrum of M in a

previous paper [12], and we will build upon the result of this analysis (see Lemma 17
below).

Of course, relating MVi×Vj to M is not immediate, because in M the entries are
normalized by the expected degrees, whereas in MVi×Vj the normalization is by the
actual degrees. However, we will show that MVi×Vj and M are sufficiently similar
on a certain rectangle Rij × Cij ⊆ Vi × Vj , where basically Rij ⊆ Vi and Cij ⊆
Vj are the vertices whose actual degrees are sufficiently close to their expectations.
The vertices in Rij , Cij are called good and those in Vi \ Rij , Vj \ Cij bad. We
will see that the vast majority of vertices are good and that the matrix MRij×Cij

can be approximated sufficiently well by MRij×Cij . Furthermore, since the three
remaining bits M(Vi\Rij)×Cij

, MRij×(Vj\Cij), M(Vi\Rij)×(Vj\Cij) of MVi×Vj are fairly
small, we can bound their impact via elementary estimates (mostly based on the
Cauchy–Schwarz inequality).

More precisely, Rij ⊆ Vi and Cij ⊆ Vj are the result of the following process. We
let Δ denote a sufficiently large constant.

1. Let F = {u ∈ V : for all l : |sA(u, Vl)−Vol(u, Vl)| ≤ Vol(u, Vl)
0.51}.

2. Set R′
ij := Vi ∩ F and C′

ij := Vj ∩ F .
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3. While there is a vertex u ∈ R′
ij with

sA(u, Vj \ C′
ij) ≥ Vol(u, Vj) ·Δ/dm, let R′

ij := R′
ij \ {u}.

4. While there is a vertex v ∈ C′
ij with

sA(Vi \R′
ij , v) ≥ Vol(Vi, v) ·Δ/dm, let C′

ij := C′
ij \ {v}.

5. Repeat step 3 and step 4 until R′
ij and C′

ij remain unchanged.
6. Let Rij := R′

ij , Cij := C′
ij be the final outcome of the process.

Intuitively, the process does the following. The set F consists of all vertices u
such that the actual number sA(u, Vl) of neighbors of u in each class Vl of the planted
partition deviates from the expected number Vol(u, Vl) by at most Vol(u, Vl)

0.51. Since
Vol(u, Vl)

0.51 is slightly bigger than the standard deviation Vol(u, Vl)
0.5, we will be

able to show that F contains a very large fraction of the vertices. For all vertices
in F the degree du =

∑
l sA(u, Vl) will be sufficiently close to its expectation for our

purposes. However, it could be that some vertices in F have plenty of neighbors in
V \F . These vertices are difficult to deal with, and therefore we would like to declare
them bad as well. This is the purpose of steps 2–5. In step 2 we initialize R′

ij and
C′
ij ; think of this as declaring the vertices in Vi \ F and Vj \ F bad. Then, in step 3

we keep removing vertices u from R′
ij that have many neighbors in Vj \C′

ij , i.e., many
bad neighbors. For C′

ij we proceed similarly in step 4, and we keep repeating this
process until it stabilizes. Finally, all the remaining vertices are good.

To ease the notation, we abbreviate Rij by R, Cij by C, Vi\Rij by R , and Vj \Cij
by C . The first step of the process ensures that

|sA(u, V )−Vol(u, V )| ≤ 2 · Vol(u, V )
0.51

for all u ∈ R
and |sA(V, v)−Vol(V, v)| ≤ 2 · Vol(V, v)0.51 for all v ∈ C.

(15)

In section 4.4 we will prove the following lemma, which shows that the volumes
of R and C are small.

Lemma 11. W.h.p. the random graph G = Gn(Φ, w,V) has the following proper-
ties.

1. Vol(R , Vj) ≤ n/dm
4.

2. Vol(Vi, C ) ≤ n/dm
4.

3. Vol(R , C ) ≤ n/dm
8.

A consequence of Lemma 11 is that both R and C contain only few vertices. For
by the choice of dm (see Fact 6), we have w.h.p. for all u ∈ Vi and all v ∈ Vj :

(16) dm ≤ Vol(u, Vj) ≤ Vol(u, V ) = w′
u and dm ≤ Vol(Vi, v) ≤ w′

v.

Summing over all u ∈ R we get dm·∣∣R ∣∣ ≤ Vol(R , Vj) ≤ n/dm
4; whence

∣∣R ∣∣ ≤ n/dm
5.

As δ · n ≤ |Vi|, we get

(17)
∣∣R ∣∣ ≤ |Vi|

δ · dm5 ≤ |Vi|
dm

4 and |R| = |Vi| −
∣∣R ∣∣ ≥ |Vi| ·

(
1− 1

dm
4

)
,

because dm > 1/δ (see Fact 6 again). In the same way we get

(18)
∣∣C ∣∣ ≤ |Vj | /dm4 and |C| ≥ |Vj | ·

(
1− 1/dm

4
)
.

Now, we subdivide MVi×Vj into four parts MR×C , MR×C , MR×C , MR×C , which
we will analyze separately.

Lemma 12. W.h.p. the random graph G = Gn(Φ, w,V) has the following proper-
ties.
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1. 	1t ·MR×C ·	1 = φij ·Wi ·Wj ·((|R| · |C|)/w · n)·(1+O(1/dm0.49)) = Θ(φij ·n/w).
2. For any u, v with ‖u‖ = ‖v‖ = 1 and u ⊥ 	1 or v ⊥ 	1 we have∣∣ut ·MR×C · v∣∣ = O

(
1/w1.49

)
.

3. ‖MR×C‖ = Θ(1/w) .
Lemma 12 deals with the “large” blockMR×C ofM . Its proof is based on relating

MR×C to the “easy” matrix MR×C ; we defer the details to section 4.2.
The following Lemma 13 takes care of the remaining three blocks. The proof can

be found in section 4.3.1.
Lemma 13. W.h.p. the random graph G = Gn(Φ, w,V) has the following proper-

ties.
1. ‖MR×C ‖ = O(dm

−1.5).

2. ‖MR×C‖ = O(dm
−1.5).

3. ‖MR×C ‖ = O(dm
−1.5).

Proof of Theorem 8. With respect to the first item, we have

(19) 	1t ·MVi×Vj ·	1 = 	1t ·MR×C ·	1 + 	1t ·MR×C ·	1 + 	1t ·MR×C ·	1 + 	1t ·MR×C ·	1.
Item 1 of Lemma 12 gives for the first term

	1t ·MR×C ·	1 = φij ·Wi ·Wj · |R| · |C|
w · n ·

(
1 +O

(
1

dm
0.49

))
(17),(18)

= φij ·Wi ·Wj · |Vi| · |Vj |
w · n ·

(
1 +O

(
1

dm
0.49

))
.

Lemma 13 shows that the second summand in (19) is bounded by∣∣∣	1t ·MR×C ·	1
∣∣∣ ≤ √

|R| · ∣∣C ∣∣ · ‖MR×C ‖
(18)

≤
√
|Vi| · |Vj | /dm4 ·O(dm−1.5)

=
√
|Vi| · |Vj | ·O

(
dm

−2/w
)
,

as dm > w′ 2/3 by Fact 6. The same bound holds for
∣∣∣	1t ·MR×C ·	1

∣∣∣ as well as∣∣∣	1t ·MR×C ·	1
∣∣∣. Hence, we get

	1t

‖	1t‖ ·MVi×Vj ·
	1

‖	1‖ = φij ·Wi ·Wj ·
√|Vi| · |Vj |

w · n ·
(
1 +O

(
1

dm
0.49

))
+O

(
dm

−2

w

)

= φij ·Wi ·Wj ·
√|Vi| · |Vj |

w · n ·
(
1 +O

(
1

dm
0.49

))
.

To prove the second item of Theorem 8, we assume that u (from the theorem) is
perpendicular to 	1, which yields ut · (	1|R + 	1|R ) = 0. Hence,

(20)
∣∣∣ut ·	1|R∣∣∣ = ∣∣∣ut ·	1|R ∣∣∣ ≤ ‖u‖ · ‖	1|R ‖ ≤

√∣∣R ∣∣.
We can decompose u as u = a · 	1|R /‖	1|R‖ + b · ul, with ‖ul‖ = 1 and ul ⊥ 	1|R.

Clearly ul|R ⊥ 	1|R, too. Note that a2 + b2 = 1. Hence, we can bound |a| as follows:

(21) |a| =
∣∣∣∣∣ut ·

	1|R
‖	1|R‖

∣∣∣∣∣
(20)

≤
√∣∣R ∣∣

|R|
(17)

≤
√
2/dm

4 <
2

dm
2 .
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Let v be an arbitrary unit vector. Then Lemma 12 and Lemma 13 yield∣∣ut ·MVi×Vj · v
∣∣ = ∣∣∣ut ·MVi×Vj ·

(
v|C + v|C

)∣∣∣
≤ ∣∣ut ·MVi×Vj · v|C

∣∣+ ‖MR×C ‖+ ‖MR×C ‖

=

∣∣∣∣∣
(
a ·

	1t|R
‖	1t|R‖ + b · utl

)
·MVi×C · vC

∣∣∣∣∣+O
(
dm

−1.5
)

≤ |a| · ‖MR×C‖+
∣∣(b · utl) ·MVi×C · vC

∣∣ +O
(
dm

−1.5
)

(21)

≤ 2/dm
2 · ‖MR×C‖+

∣∣∣∣b · (ul|R + ul|R
)t

·MVi×C · vC
∣∣∣∣+O

(
dm

−1.5
)

b≤1

≤ ∣∣utlR ·MR×C · vC
∣∣+ ‖MR×C‖+O

(
dm

−1.5
)

ul|R⊥�1|R
= O

(
1

w1.49

)
+O

(
dm

−1.5
)
.

(Remember the difference between v|C and vC : we have MVi×Vj · v|C = MVi×C · vC .)
The case v ⊥ 	1 and u arbitrary can be handled analogously.

4.2. Proof of Lemma 12: The spectrum of MR×C. In this section we
analyze the spectrum of the matrix M with (essentially) independent entries and
relate this matrix to MR×C . In order to analyze the spectrum of M we build upon
results from [12].

Definition 14. A random n×m matrix X = (xuv) is a same-mean-matrix with
mean μ and bound b if the following conditions hold.

1. The entries xuv are independent random variables, apart from possibly the
trivial dependence induced by symmetry (i.e., xuv = xvu for all pairs (u, v)).

2. Each xuv can attain one of exactly two possible values, one of which is 0.
3. With probability one we have xuv ≤ b for all u, v.
4. E [xuv] = μ > 0 for all u, v.

The matrix M is a same-mean-matrix with mean

(22) μ = E [muv] =
1

w′
u · w′

v

· φij · wu · wv
w · n

(2)
=
φij ·Wi ·Wj

w · n = Θ

(
1

w · n
)

and bound

(23) b = (1/w′
m)

2,

where we let w′
m = minu∈V w′

u. By condition C3 on page 1684 and (2) we have
w′

m = Θ(w).
The following two lemmas are taken from [12]. Lemma 15 is a special case of

Lemma 8 in [12] (we set all ai := 1), whereas Lemma 16 is identical to Lemma 9 in
that paper.

Lemma 15. Let X be a same-mean-matrix with mean μ and bound b. Let
y1, . . . , yl be a set of mutually independent entries of X and Y =

∑l
i=1 yi.

If S ≤ c · ec · l · μ = c · ec · E [Y ] for some positive constant c, then

Pr [|Y −E [Y ]| ≥ S] ≤ 2 · exp(−S2/(2 · ec · E [Y ] · b)) .
Lemma 16. Let X be an n×m same-mean-matrix with mean μ and bound b and

N = n+m. Let R = {u :
∑

v xuv ≤ d · μ ·N} and C = {v :
∑
u xuv ≤ d · μ ·N} for

some arbitrary d > 1.
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If μ · n ·m > b ·N , then with probability 1−O(1/
√
N) we have

sup{∣∣u|Rt ·X · v|C
∣∣ : ‖u|R‖ = ‖v|C‖ = 1 ∧ (u|R ⊥ 	1 ∨ v|C ⊥ 	1)} = O(

√
b · d · μ ·N).

Combining Lemma 15 and Lemma 16, we obtain the following result for M.
Lemma 17. With high probability MR×C has the following three properties.
1. 	1t ·MR×C ·	1 = μ · |R| · |C| · (1 +O(1/dm)) = Θ(n/w).
2. |ut ·MR×C · v| = O

(
1/w′ 1.5

m

)
for ‖u‖ = ‖v‖ = 1 and u ⊥ 	1 or v ⊥ 	1.

3. ‖MR×C‖ = Θ(μ ·√|R| · |C|) = Θ(1/w).

Proof. We start with the first item. Clearly, 	1t ·MR×C ·	1 = sM(R, C) is bounded
above by sM(Vi, Vj). Using Lemma 15 with Y = sM(Vi, Vj), c = 1, and S = E [Y ] /dm
we get

Pr [|Y −E [Y ]| ≥ E [Y ] /dm] ≤ 2 · exp(−E [Y ] /(2 · e · b · dm2)
)

≤ 2 · exp(−E [Y ] /6) ,

as b ·dm2 = dm
2/(minu∈V w′

u)
2 ≤ 1 by (16). As E [Y ] = |Vi| · |Vj | ·μ = Θ(n/w) = ω(1),

we have that w.h.p.

sM(Vi, Vj) = μ · |Vi| · |Vj | · (1 +O(1/dm)).

This gives (together with (17) and (18)) that w.h.p. sM(R, C) ≤ μ · |R| · |C| · (1 +
O(1/dm)). To obtain a lower bound on sM(R, C), we use

sM(R, C) ≥ sM(Vi, Vj)− sM(R , Vj)− sM(Vi, C ).
By the construction of M, we have sM(R , Vj) ≤ b · sA(R , Vj). By Lemma 11,
Vol(R , Vj) ≤ n/dm

4. In the following calculation we show that w.h.p. all sets T ⊆
Vi (including R ) with Vol(T, Vj) ≤ n/dm

4 satisfy sA(T, Vj) < 2n/w. As |T | ≤
Vol(T, Vj)/dm ≤ n/dm

5, the number of such sets T is bounded above by(
n

n/dm
5

)
≤ (

e · dm5
)n/dm5

≤ exp
(
ln(e · dm5) · n/dm5

)
< exp

(
n/dm

4
) dm>w2/3

< exp
(
n/w2

)
.

Fix such a set T . We shall derive the concentration result from Fact 3. To this
end, we set X := sA(T, Vj) and t := n/w. As E [X ] = Vol(T, Vj) ≤ n/dm

4 < n/w8/3,
we have E [X ] + t/3 < 2t. Thus,

Pr [sA(T, Vj) ≥ Vol(T, Vj) + n/w] ≤ exp(−n/(4w)) .
Applying the union bound, we conclude that with probability > 1− exp(−n/(5w)) =
1− o(1) all sets T ⊆ Vi with Vol(T, Vj) < n/dm

4 satisfy

sA(T, Vj) < Vol(T, Vj) + n/w < 2n/w.

With high probability the same bound holds for sA(Vi, T ), with T ⊆ Vj . Hence, w.h.p.

sM(R, C) ≥ sM(Vi, Vj)− sM(R , Vj)− sM(Vi, C ) ≥ sM(Vi, Vj)− b · 4n/w
≥ μ · |Vi| · |Vj | · (1−O(1/dm))−O(μ · n2/dm

2)

≥ μ · |Vi| · |Vj | · (1−O(1/dm)) ≥ μ · |R| · |C| · (1−O(1/dm)).
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To prove the second item of Lemma 17, we use Lemma 16. Let p ∈ R. Then

sM(p, Vj) =
∑
q∈Vj

mpq =
∑

q∈N(p)∩Vj

1

w′
p · w′

q

≤ |N(p) ∩ Vj |
w′

m · w′
p

=
sA(p, Vj)

w′
m · w′

p

(15)

≤ 2 ·Vol(p, V )

w′
m · w′

p

=
2

w′
m

= O

(
w

w′
m

· 1
w

)
= O

(
w

w′
m

· n · μ
)

≤ K · μ · (|Vi|+ |Vj |)(24)

for K = O(w/w′
m). The same bound holds for the column-sum of v ∈ C. We

have μ · |R| · |C| = Θ(n/w). As M has bound b = 1/w′2
m = Θ(1/w2), the term

b · (|R| + |C|) is bounded from above by O(n/w2). Since w is large enough, the
inequality μ · |R| · |C| ≥ b · (|R|+ |C|) is true. Thus, the assumptions of Lemma 16 are
satisfied.

Let u be an arbitrary |R|-dimensional vector. We extend u to an |Vi|-dimensional
vector u′ by setting the additional coordinates of u′ to 0. We can do the same
for any |C|-dimensional vector v to obtain an |Vj |-dimensional vector v′. Clearly,
ut · MR×C · v = u′t · M · v′. We apply Lemma 16 with d = K to M. Any nonzero
coordinate in u′ belongs to R and by (24) also to R. Similarly, any nonzero coordinate
in v′ belongs to C. If ‖u‖ = ‖v‖ = 1 as well as u ⊥ 	1 or v ⊥ 	1, we obtain from
Lemma 16∣∣ut ·MR×C · v∣∣ = ∣∣u′t ·M · v′∣∣ = ∣∣(u′|R)t ·M · v′|C

∣∣ = O

(√
b ·K · μ · (|Vi|+ |Vj |)

)

= O
(√

1/w′2
m · w/w′

m · 1/(w · n) · 2 · δ · n
)
= O(

√
1/w′3

m).

The third item of Lemma 17 is a direct consequence of the previous two. To see
this, let x be a unit vector maximizing ‖MR×C · x‖ = ‖MR×C‖. For y = MR×C · x
we get

‖y‖2 = yt · y = yt ·MR×C · x = ‖y‖ · yt

‖y‖ ·MR×C · x;

whence ‖y‖ = yt

‖y‖ ·MR×C · x.
There are unique decompositions x = a · �1

‖�1‖ + b · u and y
‖y‖ = c · �1

‖�1‖ + d · u′, with
u, u′ ⊥ 	1 and a2 + b2 = c2 + d2 = 1. Thus, we get

‖MR×C‖ = ‖y‖ = ac ·
	1t

‖	1‖ ·MR×C ·
	1

‖	1‖ + bc ·
	1t

‖	1‖ ·MR×C · u

+ ad · u′t ·MR×C ·
	1

‖	1‖ + bd · u′t ·MR×C · u

= ac ·Θ
(
1

w

)
+ (bc+ ad+ ac) · O

(
1

w′
m

1.5

)
= O

(
1

w

)
.

Proof of Lemma 12. Using the notation of (22), we have to show that

	1t ·MR×C ·	1 = 	1t ·MR×C ·	1 = μ · |R| · |C| · (1 +O(1/dm
0.49)).

Let Dl be the |R|× |R|-dimensional diagonal matrix with the entries (w′
u/du) for

u ∈ R on the diagonal and analogous Dr for the vertices in C. Then we have that

(25) MR×C = Dl ·MR×C ·Dr.
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In order to show the first item of Lemma 12, we have to bound 	1t ·Dl ·MR×C ·
Dr ·	1. Recalling the process that we used to construct C, we see that (15) entails that
|du − w′

u| ≤ 2 · w′0.51
u for all u ∈ C. Therefore, we obtain for the diagonal entries of

Dr and Dl

w′
u

w′
u + 2 · w′0.51

u

≤w
′
u

du
≤ w′

u

w′
u − 2 · w′0.51

u

⇐⇒ 1− 2 · w′−0.49
u

1 + 2 · w′−0.49
u

≤w
′
u

du
≤ 1 +

2 · w′−0.49
u

1− 2 · w′−0.49
u

=⇒ 1− 2 · w′−0.49
u ≤w

′
u

du
≤ 1 + 3 · w′−0.49

u ,

because we are assuming that w′
u exceeds some sufficiently large constant.

As Dr (and also Dl) is a diagonal matrix, its norm equals the largest entry in
absolute value. Thus, we have ‖Dr‖ ≤ 1 + 3 · w′−0.49

m ≤ 2 and ‖Dl‖ ≤ 2, too. Let
Dr · 	1 = ar · 	1 + vr, with vr ⊥ 	1. Then 1 − 2 · w′−0.49

m ≤ ar ≤ 1 + 3 · w′−0.49
m and

‖vr‖ ≤ √|C| · 5 ·w′−0.49
m . In the same way we get for 	1t ·Dl = al ·	1t+ utl , with ul ⊥ 	1

that 1− 2 · w′−0.49
m ≤ al ≤ 1 + 3 · w′−0.49

m and ‖ul‖ ≤ √|R| · 5 · w′−0.49
m . We bound

(26) 	1t ·Dl ·MR×C ·Dr ·	1 = al · ar ·	1t ·MR×C ·	1 + al ·	1t ·MR×C · vr
+ ar · utl ·MR×C ·	1 + utl ·MR×C · vr

by considering each summand separately. Lemma 17 gives

al · ar ·	1t ·MR×C ·	1 =
(
1 +O

(
w′ −0.49

m

))2 · μ · |R| · |C| · (1 +O(1/dm))

= μ · |R| · |C| · (1 +O
(
w′ −0.49

m

))
(27)

and

∣∣∣al ·	1t ·MR×C · vr
∣∣∣ = al ·

√
|R| · ‖vr‖ ·

∣∣∣∣∣
	1t

‖	1t‖ ·MR×C · vr
‖vr‖

∣∣∣∣∣
vr⊥�1≤ 2 ·

√
|R| ·

(√
|C| · 5 · w′ −0.49

m

)
·O

(
1

w′ 1.5
m

)

= O
(√

|R| · |C| · w′ −1.99
m

)
= O

(
μ · |R| · |C| · w′ −0.99

m

)
,(28)

as μ = Θ(1/(w · n)) by (22), w = Θ(w′
m), and |R| , |C| = Θ(n). We get the same

bound (28) for |ar · utl ·MR×C ·	1| and |utl ·MR×C · vr|. Thus, (27) is the dominating
term in (26), and we get

	1t ·MR×C ·	1 (25)
= 	1t ·Dl ·MR×C ·Dr ·	1
(26)
= μ · |R| · |C| · (1 +O

(
w′ −0.49

m

))
(22)
= φij ·Wi ·Wj · |R| · |C|

w · n · (1 +O(w′ −0.49
m ))

= φij ·Wi ·Wj · |R| · |C|
w · n ·

(
1 +O

(
1

dm
0.49

))
.
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We come to the second item of Lemma 12. Let v ⊥ 	1 be a unit vector. Then
Dr · v = c ·	1/‖	1‖+ v′ for some v′ ⊥ 	1. As Dr ·	1 = ar ·	1 + vr, we get

c =
	1t ·Dr · v√|C| =

(ar ·	1t + vtr) · v√|C|
v⊥�1
=

vtr · v√|C| ≤
‖vr‖ · ‖v‖√|C| ≤ 5 · w′−0.49

m

and ‖v′‖ ≤ ‖Dr‖ ≤ 2. Invoking Lemma 17 and using w′
m = Θ(w), we get for any unit

vector u

∣∣ut ·Dl ·MR×C ·Dr · v
∣∣ =

∣∣∣∣∣ut ·Dl ·MR×C ·
(
c ·

	1

‖	1‖ + v′
)∣∣∣∣∣

≤ ‖Dl‖ · |c| · ‖MR×C‖ + ‖Dl‖ · ‖v′‖ ·
∣∣∣∣u′t ·MR×C · v′

‖v′‖
∣∣∣∣

v′⊥�1≤ 2 · w′ −0.49
m · O

(
1

w

)
+ 4 · O(w′−1.5

m ) = O

(
1

w1.49

)
.

Applying (25) once more, we obtain∣∣ut ·MR×C · v∣∣ = ∣∣ut ·Dl ·MR×C ·Dr · v
∣∣ = O

(
1/w1.49

)
.

The same bound can be obtained for u ⊥ 	1 and v an arbitrary unit vector. The
third item is an immediate consequence of items 1 and 2 of Lemma 12 (cf. the proof
of Lemma 17).

4.3. Proof of Lemma 13. We omit the proof for ‖MR×C ‖ = O(dm
−1.5), as it

is very similar to that for ‖MR×C‖ = O(dm
−1.5).

4.3.1. The spectrum of MR×C. Let ξ be some |C|-dimensional vector with

‖ξ‖ ≤ 1. We show that η =MR×C · ξ has an l2-norm bounded above by O(dm
−1.5).

We have ηu = 0 for u /∈ U by the construction of M , and for any u ∈ U we have

ηu =
∑

v∈N(u)∩C∩U

ξv
du · dv ;

whence

‖η‖2 =
∑

u∈R∩U

⎛
⎝ ∑
v∈N(u)∩C∩U

ξv
du · dv

⎞
⎠

2

.

Applying the Cauchy–Schwarz inequality, we obtain

‖η‖2 ≤
∑

u∈R∩U

⎛
⎝ ∑
v∈N(u)∩C∩U

ξ2v
du · dv

⎞
⎠ ·

⎛
⎝ ∑
v∈N(u)∩C∩U

1

du · dv

⎞
⎠

u,v∈U
≤

∑
u∈R∩U

⎛
⎝ ∑
v∈N(u)∩C∩U

ξ2v
dm · dv

⎞
⎠ · 1

dm

≤ dm
−2 ·

∑
u∈R∩U

∑
v∈N(u)∩C∩U

ξ2v
dv
.
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Since v ∈ C, v has at most Vol(Vi, v) ·Δ/dm neighbors in R . For v ∈ C we have
Vol(Vi, v) < Vol(V, v) < 2dv; otherwise (15) would be false. Thus, each term ξv/dv
for v ∈ C is counted at most 2dv ·Δ/dm times in the sum above. Therefore, we get

‖η‖2 ≤ dm
−2 ·

∑
v∈C

2dv · Δ

dm
· ξ

2
v

dv
≤ 2Δ · dm−3 ·

∑
v∈C

ξ2v ≤ 2Δ · dm−3.

Consequently, we have ‖MR×C · ξ‖ = ‖η‖ = O(dm
−1.5) for any ξ with ‖ξ‖ ≤ 1, which

implies the assertion ‖MR×C‖ = O(dm
−1.5).

4.3.2. The spectrum of MR×C . We postpone the proof of the following
lemma to the end of this subsection.

Lemma 18. Let G = Gn(Φ, w,V), and let U be the set constructed by Algorithm 5.
Then w.h.p. the following is true for all pairs U1, U2 of sets such that U1 ⊆ U ∩ Vi,
U2 ⊆ U ∩ Vj, Vol(U1, Vj) ≤ n/dm

4, and Vol(Vi, U2) ≤ n/dm
4:

there exist partitions

U1 = U1
1∪· U2

1∪· · · · ∪· U l1 and U2 = U1
2∪· U2

2∪· · · · ∪· U l2
such that for all p = 1, . . . , l, all u ∈ Up1 , and all v ∈ Up2 simultane-
ously,∑
p′≥p

sA(u, U
p′
2 ) ≤ du · 600

dm
and

∑
p′≥p

sA(U
p′
1 , v) ≤ dv · 600

dm
.

By Lemma 11, we can apply Lemma 18 to U1 = U ∩ R and U2 = U ∩ C . Let

R 1∪· · · · ∪· R l
(= U∩R ) and C 1∪· · · · ∪· C l (= U∩C ) be the partitions from Lemma 18.

To simplify the notation we write R≥p
for

⋃
p′≥pR

p′
and analogously R<p

, C ≥p
,

and C <p. Lemma 18 gives for u ∈ R p
and v ∈ C p∣∣∣{w ∈ N(u) ∩ C ≥p}∣∣∣ = ∑

p′≥p
sA(u, C p

′
) ≤ du · 600/dm

and
∣∣∣{w ∈ N(v) ∩R≥p}∣∣∣ ≤ dv · 600/dm.

(29)

Let ξ be some
∣∣C ∣∣-dimensional vector with ‖ξ‖ ≤ 1 and η = MR×C · ξ. Let

u be an arbitrary vertex from R . If u /∈ U , then ηu = 0 by the construction of M .
Otherwise, u ∈ U , and there exists a p such that u ∈ R p

. Each entry muv of MR×C
with v ∈ C \ U is set to 0. Such entries do not contribute to ηu. For any nonzero

entry muv we have v ∈ C <p or v ∈ C ≥p
. Thus,

ηu =
∑

v∈N(u)∩C <p

ξv
du · dv +

∑
v∈N(u)∩C ≥p

ξv
du · dv .

Further, since (a+ b)2 ≤ 2(a2 + b2), we obtain

‖η‖2 =
∑

u∈R∩U
η2u ≤ 2 ·

l∑
p=1

∑
u∈R p

⎛
⎝ ∑
v∈N(u)∩C <p

ξv
du · dv

⎞
⎠

2

+2 ·
l∑

p=1

∑
u∈R p

⎛
⎜⎝ ∑
v∈N(u)∩C ≥p

ξv
du · dv

⎞
⎟⎠

2

.
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We can bound the first summand as follows. As u ∈ R p ⊆ U , we have du ≥ dm.
Using the Cauchy–Schwarz inequality, we get

2 ·
l∑

p=1

∑
u∈R p

⎛
⎝ ∑
v∈N(u)∩C <p

ξv
du · dv

⎞
⎠

2

≤ 2 ·
l∑

p=1

∑
u∈R p

⎛
⎝ ∑
v∈N(u)∩C <p

ξ2v
du · dv

⎞
⎠ ·

⎛
⎝ ∑
v∈N(u)∩C <p

1

du · dv

⎞
⎠

≤ 2dm
−2 ·

l∑
p=1

∑
u∈R p

∑
v∈N(u)∩C <p

ξ2v
dv
.

If u ∈ R p
and v ∈ N(u) ∩ C <p, then there is p′ < p such that v ∈ C p

′
and u ∈

N(v) ∩R>p′
. Therefore, for each v in the sum above, the summand ξ2v/dv occurs at

most
∣∣∣N(v) ∩R>p′

∣∣∣ ≤ dv · 600/dm times; see (29). Hence,

2dm
−2 ·

l∑
p=1

∑
u∈R p

∑
v∈N(u)∩C <p

ξ2v
dv

≤ 2dm
−2 ·

∑
v∈C

ξ2v ·
600

dm
≤ 1200 · dm−3.

In a similar way we obtain the same bound for the second summand. Thus, ‖η‖2 =
‖MR×C · ξ‖2 ≤ 2400 · dm−3. Since this holds for all ξ, we conclude that ‖MR×C ‖ =

O(dm
−1.5).

4.3.3. Proof of Lemma 18. The following lemma is similar to Lemma 8 in
[11]. The proof can be done in the same way as in [11].

Lemma 19. Let G be a graph generated by our model. Then w.h.p. the following
holds for each 1 ≤ i, j ≤ k.

For any two subsets U ⊆ Vi and U
′ ⊆ Vj such that u = max{|U | , |U ′|} ≤

n
2 , one of the following two statements is true:
1. sA(U,U

′) ≤ 300 · Vol(U,U ′).
2. sA(U,U

′) · ln(sA(U,U ′)/Vol(U,U ′)) ≤ 300 · u · ln(n/u).
We assume that the assertion of Lemma 19 holds. Consider the following proce-

dure with Δ ≥ 600 to obtain a partition of U1 and U2 as desired:
1. Set U ′

1 := U1, U ′
2 := U2.

2. Set T1 = T2 = ∅.
3. While there is some u ∈ U ′

1 such that sA(u, U
′
2) ≤ du ·Δ/dm, add u to T1.

4. While there is some v ∈ U ′
2 such that sA(U

′
1, v) ≤ dv ·Δ/dm, add v to T2.

5. Set U ′
1 := U ′

1 \ T1, U ′
2 := U ′

2 \ T2.
6. Repeat 2–5 until |U ′

1| = |U ′
2| = 0.

We prove Lemma 18 by showing that the above procedure terminates w.h.p. To
obtain a contradiction, we assume the opposite, that at some point at step 6 we have
T1 = T2 = ∅, whereas U ′

1 and U ′
2 are nonempty. Then for all u ∈ U ′

1

sA(u, U
′
2) > du ·Δ/dm = sA(u, V ) ·Δ/dm
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and sA(U
′
1, v) > sA(V, v) ·Δ/dm for all v ∈ U ′

2. Hence,

sA(U
′
1, U

′
2) ≥ max{sA(U ′

1, V ), sA(V, U
′
2)} ·

Δ

dm
(30)

U ′
1,U

′
2⊆U≥ Δ ·max{|U ′

1| , |U ′
2|}.(31)

As n/dm
4 ≥ Vol(U1, Vj) ≥ Vol(U ′

1, Vj) ≥ |U ′
1| · dm, we have |U ′

1| ≤ n/dm
5 and analo-

gously |U ′
2| ≤ n/dm

5.
Letting u = max{|U ′

1| , |U ′
2|} and s = sA(U

′
1, U

′
2), we have u ≤ n/dm

5 and s ≥ Δ·u
by (31). We consider several cases to refute the existence of U ′

1, U
′
2 as above. In each

case we apply Lemma 19 to U ′
1, U

′
2.

1. Vol(U ′
1, U

′
2) ≤ u1.5/

√
n.

(a) Suppose the first condition of Lemma 19 holds. Then

300 · u1.5/√n ≥ 300 ·Vol(U ′
1, U

′
2) ≥ s

(31)

≥ Δ · u,

which is false, as n ≥ u and Δ ≥ 300.
(b) Suppose the second condition of Lemma 19 holds. Then

300 · u · ln(n/u) ≥ s · ln(s/Vol(U ′
1, U

′
2)).

The right-hand side is monotonically increasing in s for s > Vol(U ′
1, U

′
2).

We have s ≥ Δ · u ≥ Δ · u1.5/n0.5 ≥ Δ · Vol(U ′
1, U

′
2). Thus, we can

replace s by Δ · u to bound the right-hand side from below. Again, we
get a contradiction as Δ ≥ 600, as the following calculation shows:

300 · u · ln
(n
u

)
≥ Δ · u · ln

(
Δ · u

Vol(U ′
1, U

′
2)

)

≥ Δ · u · ln Δ · u
u1.5/

√
n
=

Δ · u
2

· ln
(
Δ2 · n

u

)
.

2. Vol(U ′
1, U

′
2) > u1.5/

√
n and s ≥ √

Vol(U ′
1, U

′
2) · n/dm.

(a) Suppose the first condition of Lemma 19 holds. Then

300 · Vol(U ′
1, U

′
2) ≥ s ≥

√
Vol(U ′

1, U
′
2) · n/dm

yields

Vol(U ′
1, U

′
2) ≥ n/(3002 · dm2),

which is false as n/dm
4 ≥ Vol(U ′

1, U
′
2), provided dm > 300.

(b) Suppose the second condition of Lemma 19 holds. Then

300 · u · ln
(n
u

)
≥ s · ln (s/Vol(U ′

1, U
′
2))

≥
√
Vol(U ′

1, U
′
2) · n

dm
· ln

√
n

dm ·√Vol(U ′
1, U

′
2)
.

The right-hand side of the inequality above is monotonically increasing
in Vol(U ′

1, U
′
2) as long as Vol(U ′

1, U
′
2) ≤ n/(e · dm)2, which is true by the
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assumption of Lemma 18. We replace Vol(U ′
1, U

′
2) by the smaller term

u1.5/
√
n and obtain

300 · u · ln
(n
u

)
≥ u0.75 · n0.25

dm
· ln

(
n0.75

dm · u0.75
)
.

As u ≤ n/dm
5 the right-hand side is monotonically increasing in n. We

decrease this term by using the lower bound u · dm5 on n:

300 · u · ln
(n
u

)
≥ u0.75 · (u · dm5)0.25

dm
· ln

(√
n

u
· (u · dm5)0.25

dm · u0.25
)

= u · dm0.25 · ln
(√

n

u
· dm0.25

)

=
dm

0.25

2
· u · ln

(n
u
·
√
dm

)
.

Again, we have a contradiction for dm large enough.
3. Vol(U ′

1, U
′
2) > u1.5/

√
n and s <

√
Vol(U ′

1, U
′
2) · n/dm.

By the definition of Vol(·, ·), we have

Vol(U ′
1, U

′
2) =

Vol(U ′
1, Vj) · Vol(Vi, U ′

2)

Vol(Vi, Vj)
.

Assume that Vol(U ′
1, Vj) is the larger factor in the enumerator. (If the second

one is larger, the contradiction can be derived analogously.) By the assump-
tion Vol(U ′

1, U
′
2) > u1.5/

√
n, we have

Vol(U ′
1, Vj) ≥

√
Vol(U ′

1, U
′
2) ·Vol(Vi, Vj)(32)

>

√
u1.5√
n

· dm · δn > u0.75 · n0.25 ≥ n0.25 · |U ′
1|0.75 .(33)

We show below that, by (33) w.h.p., also

(34) sA(U
′
1, V ) ≥ sA(U

′
1, Vj) ≥ Vol(U ′

1, Vj)/2

holds. Combining (34) with the assumption

sA(U
′
1, U

′
2) = s ≤

√
Vol(U ′

1, U
′
2) · n/dm

and (30), we obtain√
Vol(U ′

1, U
′
2) · n

dm
≥ sA(U

′
1, U

′
2)

(30)

≥ sA(U
′
1, V ) · Δ

dm
(34)

≥ Vol(U ′
1, Vj) ·

Δ

2dm
.

Plugging this estimate into (32), we get

√
Vol(U ′

1, U
′
2) · n ≥ Vol(U ′

1, Vj) ·
Δ

2

(32)
>

√
Vol(U ′

1, U
′
2) ·Vol(Vi, Vj) ·

Δ

2
;
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whence 4n/Δ2 > Vol(Vi, Vj). This is a contradiction for Δ ≥ 2, as we have
Vol(Vi, Vj) ≥ δn · dm > n.
We are left to show that (33) yields (34). Fix 1 ≤ w ≤ n/dm

5 and some set
W ⊆ Vi, with |W | = w and Vol(W,Vj) > n0.25 ·w0.75. Item 2 of Fact 3 yields

Pr [sA(W,Vj) ≤ Vol(W,Vj)/2] ≤ exp(−Vol(W,Vj)/8)

≤ exp
(−w0.75 · n0.25/8

)
.

There are at most
(
n
w

) ≤ (e · n/w)w sets W ⊆ Vi of size w. Hence, the union
bound entails that the probability of the existence of a set W with |W | = w
(w is still fixed) is at most

exp
(−w0.75 · n0.25/8 + w · ln(e · n/w)) .

For 0 < w ≤ n/dm
5 the exponent is convex, provided dm is large enough.

Evaluating at w = 1 and w = n/dm
5, we see that the exponent is at most

−n0.25/10. Hence, summing up over all possible values for w, we conclude
that the total probability is o(1). Thus, w.h.p. for all W (including W = U ′

1)
we have sA(W,Vj) ≥ Vol(W,Vj)/2.

4.4. Proof of Lemma 11. As a first step, we will show that w.h.p. Vol(V \
F, V ) = Vol(V, V \ F ) is bounded above by n/(2dm

4). To this end we partition the
vertices u ∈ V according to the numbers Vol(u, Vj): let

It,j = {u ∈ V : 2t · dm ≤ Vol(u, Vj) < 2t+1 · dm}.

Since Vol(u, Vj) is the expected number of neighbors of u in Vj , we have Vol(u, Vj) ≤ n,
and the choice of dm ensures that dm ≤ Vol(u, Vj) (see Fact 6). Thus, for each
j ∈ {1, 2} the partition I0,j , I1,j , I2,j, . . . features at most logn nonempty sets.

Fix j and t. Let u ∈ It,j , and let Xu be the 0/1 random variable indicating that
u /∈ F because the number of its neighbors in Vj is not sufficiently concentrated about
its expectation (i.e., Xu = 1 iff |sA(u, Vj) − Vol(u, Vj)| > Vol(u, Vj)

0.51). Then by
Fact 3 Pr [Xu = 1] is bounded above by

Pr
[
|sA(u, Vj)−Vol(u, Vj)| ≥ Vol(u, Vj)

0.51
]
≤ 2 · exp

(
−Vol(u, Vj)

0.02
/4

)
≤ 2 · exp(−(2t · dm)0.02/4

)
.

Consequently, the expected number of elements u ∈ It,j \F is at most E
[∑

u∈It,j Xu

]
,

which is bounded above by 2 · exp(−(2t · dm)0.02/4
) · n.

As the variance of
∑
u∈It,j Xu is at most linear in E

[∑
u∈It,j Xu

]
, Chebyshev’s

inequality entails that with probability 1−O(1/n)

∣∣It,j \ F ∣∣ =
∣∣∣∣∣
∑
u∈It,j

Xu

∣∣∣∣∣ ≤ 4 · exp(−(2t · dm)0.02/4
) · n.

By the union bound, with probability 1−O(log n/n) this bound holds for all 0 ≤ t <
logn and all j ∈ {1, 2} simultaneously.

In case dm ≥ log51 n, w.h.p.
∣∣It,j \ F ∣∣ = 0 for all t, j. Hence, F = V , both R and

C are empty, and Lemma 11 holds trivially.
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We proceed with the case dm < log51 n. Each u ∈ It,j \ F contributes

Vol(u, V ) = O(Vol(u, Vj)) = O(2t+1 · dm)
to Vol(V \ F, V ). Therefore, the total contribution to Vol(V \ F, V ) of vertices whose
number of neighbors in Vj is not concentrated about its expectation amounts to∑

t≥0

Vol(It,j \ F, V ) =
∑
t≥0

∑
u∈It,j\F

Vol(u, V )

≤
∑
t≥0

∣∣It,j \ F ∣∣ ·O(2t+1 · dm)

≤
∑
t≥0

4 · exp(−(2t · dm)0.02/4
) · n · O(2t+1 · dm)

≤
∑
t≥0

n/(2t+3 · dm4) = n/(4 · dm4).

(The third step holds, provided that dm is large enough. To see this, recall that

e−x
0.02 · x < 1/x4 for sufficiently large x. The same argument is used to obtain the

last step from the second last one.) Hence,

Vol(V \ F, V ) ≤
2∑
j=1

∑
t≥0

Vol(It,j \ F, V ) ≤ 2 · n/(4 · dm4) = n/(2 · dm4).

In summary, we have shown that with probability 1−O(log n/n)

(35) Vol(V, V \ F ) = Vol(V \ F, V ) ≤ n

2 · dm4 .

Assume for contradiction that either of Vol(R , Vj), Vol(Vi, C ) exceeds n/dm
4.

Then the construction process forR and C reaches a point where either Vol(Vi\R′
ij, Vj)

or Vol(Vi, Vj \ C′
ij) exceeds n/dm

4. At this point we have either

(36) Vol(Vi \R′
ij , Vj) > n/dm

4 and Vol(Vi, Vj \ C′
ij) ≤ n/dm

4

or

Vol(Vi \R′
ij , Vj) ≤ n/dm

4 and Vol(Vi, Vj \ C′
ij) > n/dm

4.

We refute (36) in detail; the second case can be ruled out analogously.
We interrupt our process at the first occurrence of (36). Let u be the vertex that

causes the interruption. Then we have

n/dm
4 < Vol(Vi \R′

ij , Vj) ≤ n/dm
4 + w′

u.

By C2 all expected degrees are O(n1−ε) for some ε > 0. As dm ≤ log51 n, we get

(37) n/dm
4 < Vol(Vi \R′

ij , Vj) ≤ n/dm
4 + O(n1−ε) = n/dm

4 · (1 + o(1)).

Since R′
ij ⊆ F , we have Vi \R′

ij = (Vi \ F ) ∪· ((Vi ∩ F ) \R′
ij); whence

n

dm
4

(37)
< Vol(Vi \R′

ij , Vj) = Vol(Vi \ F, Vj) + Vol((Vi ∩ F ) \R′
ij , Vj).
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As Vol(Vi \ F, Vj) ≤ Vol(V \ F, V ) ≤ n/(2 · dm4) by (35) we have

(38) Vol((Vi ∩ F ) \R′
ij , Vj) > n/(2 · dm4).

Any vertex u ∈ Vi ∩ F that gets removed from R′
ij in step 3 has (at the moment

of its deletion) at least Vol(u, Vj) ·Δ/dm neighbors in Vj \ C′
ij . Thus,

sA(Vi \R′
ij , Vj \ C′

ij) ≥ sA((Vi ∩ F ) \R′
ij , Vj \ C′

ij)

≥
∑

u∈(Vi∩F )\R′
ij

Δ ·Vol(u, Vj)
dm

=
Δ ·Vol((Vi ∩ F ) \R′

ij , Vj)

dm

(38)
>

Δ · n
2 · dm5 ,

whereas

Vol(Vi \R′
ij , Vj \ C′

ij) =
Vol(Vi \R′

ij , Vj) · Vol(Vi, Vj \ C′
ij)

Vol(Vi, Vj)

(36),(37)

≤ n2 · (1 + o(1))

dm
8 · Vol(Vi, Vj)

≤ n2 · (1 + o(1))

dm
8 · δn · dm

≤ n

dm
8 .

We apply Lemma 19 with U = Vi \ R′
ij and U ′ = Vj \ C′

ij . We have u =

max{|U | , |U ′|} ≤ Vol(U, Vj)/dm ≤ n/dm
5 · (1 + o(1)) < n/2. Rewriting the two

inequalities above, we get

sA(U,U
′) ≥ Δ · n

2 · dm5 , whereas Vol(U,U ′) ≤ n

dm
8 .

Clearly, the first item of Lemma 19 does not hold. Assume that the second one
holds. Then we have

Δ · n
2 · dm5 · ln Δ · dm3

2
< sA(U,U

′) · ln sA(U,U
′)

Vol(U,U ′)
≤ 300 · u · ln n

u
≤ 600 · n

dm
5 · ln dm

5

2
.

However, this is false for Δ > 2400 (remember that we are assuming that Δ exceeds
some large enough constant). Thus, w.h.p. (36) is false, and therefore Vol(R , Vj) ≤
n/dm

4.
Finally, the third item of Lemma 11 follows from

Vol(R , C ) = Vol(R , Vj) ·Vol(Vi, C )
Vol(Vi, Vj)

≤ n2

dm
8 · dm · δn ≤ n

dm
8 .
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