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Developing Homogeneous Isotropic Turbulence
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We investigate the self-similar evolution of the transient energy spectrum which precedes the
establishment of the Kolmogorov spectrum in homogeneous isotropic turbulence in three dimensions
using the EDQNM closure model. The transient evolution exhibits self-similarity of the second kind
and has a non-trivial dynamical scaling exponent which results in the transient spectrum having
a scaling which is steeper than the Kolmogorov k−5/3 spectrum. Attempts to detect a similar
phenomenon in DNS data are inconclusive owing to the limited range of scales available.

PACS numbers: 47.27.Gs,47.27.eb

INTRODUCTION TO TRANSIENT SPECTRA IN

TURBULENCE

Although a large amount of work has been done char-
acterising the properties of the Kolmogorov k−5/3 spec-
trum of three dimensional turbulence, rather less atten-
tion has been paid to the transient evolution which leads
to its establishment. This transient evolution is essen-
tially non-dissipative since it describes the cascade pro-
cess before it reaches the dissipation scale. Part of the
reason why this process has attracted relatively little at-
tention is that this transient evolution is very fast, typ-
ically taking place within a single large eddy turnover
time. It is thus of little relevance to the developed tur-
bulence regime of interest in many applications. Never-
theless, one may ask whether this developing turbulence,
as one might call this transient regime, displays any in-
teresting scaling properties. Previous studies of the de-
veloping regime in weak magnetohydrodynamic (MHD)
turbulence [1] suggest that this transient regime might
have non-trivial scaling properties: in this case it was
found that the establishment of the Kolmogorov spec-
trum is preceded by a transient spectrum which is steeper
than the Kolmogorov spectrum. This latter is, in turn,
set up from right to left in wavenumber space only after
the transient spectrum has reached the end of the inertial
range and started to produce dissipation.

Subsequent studies suggest that this behaviour, in par-
ticular the occurence of a non-trivial dynamical scaling
exponent, is typical for turbulent cascades which are fi-
nite capacity - meaning that the stationary spectrum can
only contain a finite amount of energy. The Kolmogorov
spectrum of three dimensional turbulence is in the class
of finite capacity systems, as we shall see below. There
are, however, examples of other turbulent cascades which
are not - infinite capacity cascades are common in wave
turbulence for example [2]. In addition to the MHD cas-
cade mentioned above, examples of non-trivial scaling
exponents in finite capacity cascades have been found in
developing wave turbulence [3, 4], Bose-Einstein conden-

sation [5, 6] and cluster-cluster aggregation [7]. Although
a possible heuristic explanation of the transient scaling in
the MHD context has been put forward in [8], this heuris-
tic relies heavily on the anisotropy of the MHD cascade
and does not seem readily generalisable to other contexts.
In general, the transient exponent is associated with a
self-similarity problem of the second kind [9]. From a
mathematical point of view, its solution requires solving
a nonlinear equation in which the exponent appears as
a parameter which is fixed by requiring consistency with
boundary conditions. It is probably unrealistic to expect
that there is a general heuristic argument capable of re-
solving such a mathematically challenging problem. This
is not to say, however, that particular cases may not be
amenable to heuristic arguments which take into account
the underlying physical mechanisms driving the transient
evolution rather than taking a purely mathematical point
of view.
This issue has not yet been studied in the context

of homogeneous isotropic turbulence. Investigations of
transient spectra in the classical Leith closure model
[10] have suggested, however, that the transient spec-
trum of developing homogeneous isotropic turbulence is
indeed non-trivially steeper than k−5/3 [11]. In this
work, we investigate the transient evolution of homo-
geneous isotropic turbulence using the Eddy-Damped
Quasi-Normal Markovian (EDQNM) closure model and
direct numerical simulation (DNS) of the Navier-Stokes
equation.
The transient spectrum might be expected to evolve

self-similarly. In other words there is a typical wavenum-
ber, s(t), which grows in time, and a dynamical scaling
exponent, a, such that

Ek(t) ≍ c s(t)a F (ξ) where ξ = k
s(t) . (1)

Here ≍ denotes the scaling limit: k → ∞, s(t) → ∞ with
ξ fixed and c is an order unity constant which ensures
that Ek(t) has the correct physical dimensions, L3 T−2.
As we shall see, if the exponent, (5 + a)/2, is greater
than 1, then the characteristic wavenumber diverges in
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finite time corresponding to a cascade which accelerates
“explosively”. The direct cascade in 3D turbulence is of
this type. The characteristic wavenumber is most easily
defined as a ratio of moments of the energy spectrum.
Let us define

Mn(t) =

∫ ∞

0

knEk(t) dk. (2)

Eq. (1) suggests that the ratio Mn+1(t)/Mn(t) is pro-
portional to s(t) so that we may define a typical scale
intrinsically by

sn(t) =
Mn+1(t)

Mn(t)
. (3)

A little caution is required: we must take n sufficiently
high to ensure that the moments Mn(t) used in defin-
ing the typical scale, converge at zero. Otherwise, the
integral is dominated by the initial condition or forcing
scale and does not capture the scaling behaviour. In this
paper, we mostly take n = 2, which turns out to be suf-
ficient for our purposes, although we will compare the
behaviour obtained for n = 2 and n = 3 in our numer-
ical simulations to assure the reader that the picture is
consistent.
We would like to emphasise that the self-similar tran-

sient dynamics which we study in this paper occur before
the onset of dissipation. This is in contrast to the tran-
sient dynamics describing the long time decay of homoge-
neous isotropic turbulence after the onset of dissipation
which are also believed to exhibit self-similarity. See [12]
for recent experiments and a review of previous work.
Some numerical results on the long time transient dy-
namics of the EDQNM model can be found in [13]. The
pre-dissipation transient occurs very quickly. Indeed, as
we shall see, the typical scale, s(t), in this regime di-
verges as s(t) ∼ (t∗ − t)b where t∗ is the time at which
the onset of dissipation occurs (typically less than a sin-
gle turnover time) and b < 0. For finite Reynolds num-
ber, this singularity is regularised by the finiteness of the
dissipation scale. The fact that, in the limit of infinite
Reynolds number, the typical scale can grow by an arbi-
trary amount in an arbitrarily small time interval as t∗

is approached explains the statement often found in the
literature that the Kolmogorov spectrum is established
quasi-instantaneously in the limit of large Reynolds num-
ber.

THE EDQNM MODEL

In this section we examine the self-similar solutions of
the EDQNM model [14]. The structure of the EDQNM
model can be obtained in different ways. One way is
starting from the Quasi-Normal assumption [15]. An-
other way is by simplifying the Direct Interaction Ap-
proximation [16] which was obtained by applying a renor-
malized perturbation procedure to the Navier-Stokes

equation. It is thus directly related to the Navier-Stokes
equation, unlike the Leith model which was heuristically
proposed to capture some features of the nonlinear trans-
fer in isotropic turbulence. However, recent work [17]
showed that the structure of the Leith model can be ob-
tained by retaining a subset of triad interactions involv-
ing elongated triads from closures like EDQNM. Since
EDQNM contains a wider variety of triad interactions,
it is able to capture more details of the actual dynamics
of Navier-Stokes turbulence, as for example illustrated in
[18]. At the same time it has the advantage over DNS
that much higher Reynolds numbers can be obtained.
The EDQNM model closes the Lin-equation by ex-

pressing the nonlinear triple correlations as a function
of the energy spectrum,

∂Ek

∂t
= T [Ek]− 2 ν k2 Ek (4)

where ν is the viscosity and T [Ek] represents the nonlin-
ear interactions between different scales. T [Ek] has the
form

T [Ek] =

∫

∆

dk1dk2Tk,k1,k2
k(k1k2)

−1 Ek2
(k2Ek1

−k21Ek),

(5)
where ∆ signifies that the region of integration is over
all values of k1 and k2 for which the triad (k, k1, k2) can
form the sides of a triangle and the interaction strength
of each triad, Tk,k1,k2

, is given by

Tk,k1,k2
=

k1
k
(θkθk1

+ θ3k2
)
1 − exp [−(µk + µk1

+ µk2
) t]

µk + µk1
+ µk2

.

(6)
where θ, θ1 and θ2 are the cosines of the angles opposite
to k, k1 and k2 respectively in the triangle formed by the
triad (k, k1, k2) and

µk = ν k2 + λ

√

∫ k

0

p2Ep dp, (7)

is the timescale associated with an eddy at wavenumber
k, parameterised by the EDQNM parameter, λ, which is
chosen equal to 0.49, [19]. For a full discussion of the
origins and properties of the EDQNM model see [20, 21].
We concern ourselves here only with the inviscid limit
where ν → 0.
If we substitute the scaling ansatz, Eq. (1) into Eq. (4)

with ν = 0 then, in the scaling limit, the nonlinear trans-
fer term becomes homogeneous of degree 3+3 a

2 in s and
one finds

ds

dt
=

√
c s

5+a

2 (8)

aF − ξ
dF

dξ
= T [F ] . (9)

Scaling alone does not determine the dynamical exponent
a. To determine a we may attempt to impose conserva-
tion of energy on the scaling solution to obtain a second
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constraint which will fix a. Let us go down this path,
at first naively, and then reconsider our argument more
carefully:

1. Forced case

If we consider forced turbulence, then energy is
injected into the system in a narrow band of low
wavenumbers (which necessarily lie outside of the
region of applicability of the scaling solution). The
total energy grows linearly in time (remember we
are interested in the dynamics before the onset of
dissipation):

∫∞

0
Ek(t) dk = ǫ t. If we use the scal-

ing ansatz, Eq. (1), differentiate with respect to
time and rearrange we obtain

ds

dt
= ǫ

[

(a+ 1) c

∫ ∞

0

F (ξ) dξ

]−1

s−a. (10)

Taken together with Eq. (8) we are led to expect

a = −
5

3
for forced turbulence. (11)

The same conclusion would be reached by dimen-
sional analysis of Eq. (1) under the assumption that
the sole parameter available is the energy flux, ǫ,
(having physical dimension L2T−3).

2. Unforced case

In unforced turbulence, the energy is supplied
solely through the initial condition which is taken
to be supported in a narrow band of low wavenum-
bers (which, again, lie outside of the region of ap-
plicability of the scaling solution). In extremis,
one could take Ek(0) = E0 δ(k). In the time
window of interest (before the onset of dissipa-
tion), the total energy remains constant in time:
∫∞

0 Ek(t) dk = E0. In this case, the scaling ansatz,
Eq. (1), immediately yields:

a = −1 for unforced turbulence. (12)

The same conclusion would be reached by dimen-
sional analysis of Eq. (1) under the assumption that
the sole parameter available is the initial energy, E0

(having physical dimension L2T−2).

Note that upon subsitution into Eq. (8) both cases,
Eq. (11) and Eq. (12), predict explosive growth of the
characteristic wavenumber. This is in line with expecta-
tions: it is widely believed that onset of dissipation in
the direct cascade is set by the large scale eddy turnover
time rather than the Reynolds number. This explosive
growth is the key to understanding why these arguments
for the value of the exponent a are flawed. In both cases
we assumed implicitly that the integral,

∫∞

0
F (ξ) dξ does

not diverge at its lower limit (it does not diverge at its

upper limit since F (ξ) decays exponentially for large val-
ues of ξ). In order to study this issue, let us assume that
F (ξ) has power law asymptotics near 0:

F (ξ) ∼ Aξ−x as ξ → 0. (13)

The exponent x is the spectral exponent of the tran-
sient spectrum. In the case that s(t) diverges in finite
time, then this assumption of power law asymptotics for
F (ξ) taken together with the scaling ansatz requires that
x = −a. To choose otherwise would result in the large
scale part of the energy spectrum either diverging or van-
ishing at the onset of dissipation, neither of which is ac-
ceptable. Both values of a = −5/3 and a = −1 thus
result in divergence of

∫∞

0 F (ξ) dξ rendering our argu-
ments inconsistent. In the latter (unforced) case, this di-
vergence is only logarithmic allowing us, perhaps, to hope
that it does not ruin the scaling argument completely. We
shall see from numerical measurements however, that the
unforced case looks much more like the forced case (see
Figs.1 and 2) from the point of view of the scaling part
of the spectrum and the exponent a = −1 seems to play
no role.
We have arrived at a conclusion which is unsurpris-

ing given the previous work on the analogous problem
in wave turbulence: the problem of the transient evolu-
tion of the Kolmogorov spectrum exhibits self-similarity
of the second kind [9] so the dynamical scaling exponent,
a, cannot therefore be determined from dimensional con-
siderations and we must either try to solve Eq. (9) as
a nonlinear eigenvalue problem and hope that it deter-
mines a or return to trying to solve the original kinetic
equation. We do the latter, necessarily numerically.

NUMERICAL MEASUREMENTS OF

TRANSIENT SPECTRA

We performed simulations of the EDQNMmodel in the
unforced case by integrating numerically Eq. (4), starting
from an initial spectrum,

Ek(0) = Bk4 exp
[

−(k/kL)
2
]

, (14)

with B chosen to normalize the energy to unity and
kL = 0.01. The initial Taylor-scale-Reynolds number is
of order 109 and the resolution is chosen 24 gridpoints per
decade, logarithmically spaced. A sequence of snapshots
of Ek(t) before the viscous dissipation became apprecia-
ble are shown in Fig. 1. To find the value of the dynam-
ical exponent we should find the value of a which gives
the best data collapse under the scaling ansatz, Eq. (1).
We defined the typical wavenumber, s(t), to be the ra-
tio, M3(t)/M2(t) of the third to the second moments of
the energy spectrum. To find the value of a giving the
best data collapse we used the minimization procedure
suggested in [22]. Only data with s(t) > 0.2 were in-
cluded in the minimization to allow the cascade an entire
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FIG. 1: Time evolution of the energy spectrum, E(k, t), of
the EDQNM model in the decay case. The main panel shows
snapshots of E(k, t) at a succession of times. The inset shows
the data collapsed according to Eq. (1) with a = 1.88 and
s(t) = M3(t)/M2(t).
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FIG. 2: Time evolution of the energy spectrum, E(k, t), of
the EDQNM model in the forced case. The main panel shows
snapshots of E(k, t) at a succession of times. The inset shows
the data collapsed according to Eq. (1) with a = 1.90 and
s(t) = M3(t)/M2(t).

decade of scales to forget the initial condition (which had
s(0) ≈ 0.02). This procedure gave 1.88± 0.04 where the
error estimate is the standard deviation of the distribu-
tion of minima obtained by bootstrapping the minimiza-
tion procedure on randomly selected subsets of the total
set of snapshots obtained from the numerical simulation.
The data collapse thus obtained, shown in the inset of
Fig. 1, is of high quality thereby supporting the scaling
ansatz.
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FIG. 3: Time evolution of the typical scale, sn(t), as defined
by Eq.(3), of the EDQNM model in the forced case for dif-
ferent choices of n. The main panel demonstrates that s2(t)
and s3(t) show the same qualitative behaviour with a finite
time singularity which is regularised by the onset of dissipa-
tion. The inset illustrates that the ratio s3(t)/s2(t) is approx-
imately constant as the typical scale (as measured by s2(t))
grows over several decades.

Corresponding results for the case of forced turbulence
are presented in Fig. 2. The simulation was forced by
keeping the energy in the first two wavenumber shells
fixed in time. Performing the same analysis on the data
as for the unforced case, the optimal data collapse (shown
in the inset of Fig. 2) occurs for a value of the dynamical
scaling exponent of 1.90 ± 0.05. This is consistent with
the value obtained for the unforced case.

As a final set of checks on the consistency of our nu-
merical simulations with the scaling hypothesis, Eq. (1),
Fig. 3 shows the evolution in time (for the forced case)
of the typical scale, sn(t) as defined in Eq. (3), for n = 2
and n = 3. The fact that s(t) diverges in finite time is
clearly evident from the main panel as is the fact that the
qualitative behaviour is the same regardless of the choice
of n. More quantitatively, the inset of Fig. 3 shows that
the ratio of the typical scales obtained by taking n = 3
and n = 2 is approximately constant over a large range
of values of s2(t). The typical scales obtained for differ-
ent values of n are therefore proportional to each other
in the scaling regime, s(t) → ∞ (the subsequent decrease
after s(t) ≈ 100 is due to the onset of dissipation). These
results justify our earlier comment that the scaling anal-
ysis is insensitive to the choice of ratio of moments used
to define the typical scale provided these moments are of
sufficiently high order.

Several remarks may be made. Firstly, although there
is no a-priori reason why this should be so, the transient
exponents measured for the forced and unforced cases are
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FIG. 4: Time evolution of the energy spectrum, E(k, t), in a
direct numerical simulation of the decay case. The main panel
shows snapshots of E(k, t) at a succession of times. The inset
shows the data collapsed according Eq. (1) with a = 1.47 and
s(t) = M3(t)/M2(t).

the same within our estimated range of uncertainty. This
is quite different from infinite capacity cascades where
constraints imposed by conservation laws result in dif-
ferent transient scaling exponents for the forced and un-
forced cases [23]. Secondly, the measured transient ex-
ponents are discernibly different from either of the naive
values argued in Eq. (12) or Eq. (11). This confirms our
expectation that the transient scaling is different from
Kolmogorov. Thirdly, the fact that a is larger than 5/3
means that the transient spectrum is considerably steeper
than the Kolmogorov spectrum. The latter is then set
up from right to left in wavenumber space after the on-
set of dissipation. This transition from the steeper spec-
trum to k−5/3 also evolves quasi-instantaneously in the
same sense as the pre-dissipation transient does. It very
quickly sets up the usual Kolmogorov spectrum over all
scales once the onset of dissipation has occured. This
spectrum then decays globally for all subsequent time as
detailed, for example, in [13]. The EDQNM equation is
therefore no different to any of the other finite capac-
ity cascades which have been investigated to date, all of
which showed this behaviour. The measured value of the
dynamical exponent is remarkably close to the value of
1.86 measured for the Leith model [11]. This is consis-
tent with recent arguments of Clark et al. [17] suggesting
that the Leith model can be obtained from rational clo-
sure models by keeping only a subset of the wavenumber
triads.

Given that we expect this kind of transient behaviour
to be generic, we close this study with an attempt to mea-
sure the corresponding dynamical scaling in a DNS of the
full Navier-Stokes equation. A classical Fourier pseudo-

spectral method is used to solve the semi-implicit form of
the Navier-Stokes equations with tri-periodic boundary
conditions, at a resolution of 10243 [24]. Full de-aliasing
is performed to remove spurious Fourier coefficients, time
marching is done with a third-order Adams-Bashforth ex-
plicit scheme, while the viscous term is solved implicitly.
The initial velocity conditions consist of a random gaus-
sian field whose energy spectrum is of the form of (14) al-
though with a peak at kL = 4.52 instead of 0.01. The re-
sults are shown in Fig. 4. Proceeding as described above,
we obtained a = 1.47±0.24. The result is therefore incon-
clusive as one might expect given the very short scaling
range available in DNS data (as compared to numerical
solutions of the EDQNM equation).

CONCLUSION

To summarise, we have investigated the self-similar
evolution of transient spectra in three dimensional turbu-
lence using numerical solutions of the EDQNM equation
and full DNS data. These transients develop before the
onset of dissipation and lead to the establishment of the
Kolmogorov spectrum. We argued that the self-similarity
is of the second kind allowing the transient scaling to
be anomalous in the sense that it cannot be determined
from dimensional considerations. This is supported by
numerical data for the EDQNM equation which gave a
transient exponent of 1.88 compared to the Kolmogorov
value of 5/3. Corresponding measurements for the DNS
data were inconclusive owing to the relatively short scal-
ing range available. Nevertheless we would expect, based
on our results, that a DNS at sufficiently high Reynolds
number would see a steeper transient spectrum. The
most relevant message from this work for turbulence re-
search is probably not the value of the transient exponent
itself, since few applications care about this early stage
regime. Rather it is the fact that such a non-Kolmogorov
scaling exists in the first place which serves as a reminder
that, while the k−5/3 scaling is quite robust when the en-
ergy flux through the inertial range is constant, it is not
the sole scaling law consistent with the transfer of en-
ergy to small scales in turbulence when the constant flux
requirement is relaxed.
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