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Abstract

A series of dibromomaleimides have been shown to be very efficacious at insertion into peptidic disulphide

bonds. This conjugation proceeds with a stoichiometric balance of reagents in buffered solutions in less than 15

minutes to give discrete products whilst maintaining the disulphide bridge and thus peptide conformation. The

insertion is initiated by disulfide reduction using a water soluble phosphine, tris(2-carboxyethyl)phosphine

(TCEP) which allows for subsequent substitution of the two maleimide bromides by the generated thiols.

Reaction of salmon calcitonin (sCT) with 2,3 dibromomaleimide (1.1 excess) in the presence of TCEP (1.1

equivalent) in aqueous solution at pH 6.2 gives complete production of a single conjugate which requires no

work up. A linear methoxy poly(ethylene glycol) (PEG) was functionalized via a Mitsunobu reaction and used

for the successful site specific and rapid pegylation of sCT. This reaction occurs in 15 minutes with a small

stoichiometry excess of the pegylating agent to give insertion at the disulphide with HPLC showing a single

product and MALDI-ToF confirming conjugation. Attempts to use the group in a functional ATRP

polymerization initiator led to polymerization inhibition. Thus in order to prepare a range of functional polymers

an indirect route was chosen via both azide and aniline functional initiators which were converted to 2,3

dibromomaleimides via appropriate reactions. For example, the azide functional polymer was reacted via a

Huisgen CuAAC click reaction to an alkyne functional 2,3 dibromomaleimide. This new reagent allowed for the

synthesis of conjugates of sCT with comb polymers derived from PEG methacrylic monomers which in addition

gave appropriate cloud points. This reaction represents a highly efficient polymer conjugation method which

circumvents problems of purification which normally arise from having to use large excesses of the conjugate.

In addition the tertiary structure of the peptide is efficiently maintained.



Introduction

Conjugation of synthetic polymers to proteins and peptides is a well established method to enhance properties of

native biomolecules and aid the introduction of polymer based therapeutics.1-2 The covalent attachment of

poly(ethylene glycol) (PEG) chains, pegylation, in particular have been well documented to yield conjugates

often with improved solubility, stability and plasma half-lives.3-19 The early, and probably still the majority of

reports, describe the targeting of lysine residues due to their relative abundance, with a range of simple

chemistries, including activated esters, which are now commonly employed for bioconjugation.20-22 This

approach often results in isolation of a statistical mixture of conjugated species. Targeting of cysteine residues

has been explored as an alternative and a number of reagents have been developed to selectively target this

thiol-containing residue. N-Substituted maleimide,23-27 pyridyl disulfide,28-30 and acrylic31-32 functional polymers

have been explored for conjugation at cysteine. However, free cysteine residues are relatively rare in proteins

and other biomolecules, although they can be introduced by genetic engineering or by the reduction of disulfide

bridges.33-34 The latter approach has the inherent problem that if the reducible disulfides are essential for

maintaining protein structure, shape, stability and bioactivity is lost. Brocchini et al. developed an elegant, but

rather elaborate approach, to overcome this whereby reduced disulfides are re-bridged using a three-carbon

linker.35-36 This has the obvious advantage that the tertiary structure of the protein is largely maintained as well

as the site-selective incorporation of functionality, such as PEG.37

Baker et al. recently reported the development of a range of different functional maleimides for cysteine

modification and conjugation.38-39 Dibromomaleimides were shown to be efficacious and fast reacting disulfide

re-bridging agents, installing a rigid two carbon linker. In addition, dibromomaleimides have an added

advantage that the formed linker is potentially cleavable in a reversible manner under intracellular-like

conditions to rejuvenate the native polypeptide in its reduced state. This same team reported the development of

new substituted maleimides, dithiomaleimides, which are less susceptible to side reactions with reducing agents,

such as TCEP, and have been shown to have potential for in situ bridging protocols.40 The development of

controlled radical polymerization (CRP) techniques such as ATRP,41-42 RAFT43 and NMP44 have enabled the

ready synthesis of well-defined α-functional polymers for bioconjugation under undemanding experimental 

conditions. Herein, we report on the study of dibromomaleimide functional polymers for applications in protein

disulfide bridging, which are synthesised by ATRP.

Results and discussion

We focussed on the modification of salmon calcitonin (sCT), a 32-amino acid hormone secreted by C-cells of

the thyroid in mammals and by the ultimobranchial glands in submammals. This is currently used for the

treatment of a range of bone conditions including post-menopausal osteoporosis, Paget’s disease and

hypercalcaemia.45 This polypeptide contains a disulfide bridge (Cys1-Cys7) that can be reduced to give two

sulfhydryl functionalities as targets for re-bridging conjugation with dibromomaleimides. Our initial

experiments involved disulfide bridging using the commercially available 2,3-dibromomaleimide (1) (Figure 1).



Figure 1. One-pot reduction of the disulfide bridge of sCT, followed by re-bridging using

dibromomaleimide.

The disulfide bridge of sCT was reduced in the presence of tris(2-carboxyethyl)phosphine (TCEP) and the

reaction monitored by RP-HPLC, ring opening is observed by a large shift in retention time due to the formation

of two relatively polar thiols, giving a very convenient analytical handle (Figure 2). Following complete

reduction of the disulfide bridge the reaction pH was adjusted to 6.2 and 2,3-dibromomaleimide (1.1

equivalents) was added. Immediately upon addition, the solution turned pale yellow, in accordance with

previous observations for dithio-bridged maleimides40 and after 10 minutes an aliquot was removed for RP-

HPLC analysis.

Figure 2. RP-HPLC analysis of sCT disulfide-bridging with 2,3-dibromomaleimide following reduction of

the disulfide bridge of sCT.

Analysis of the reaction mixture revealed the complete consumption of the reduced sCT and the appearance of a

new single peak (blue trace), ascribed as the bridged product, moving to longer retention time due to

consumption of the two cysteine residues and conjugation of the maleimide. MALDI-ToF-MS showed the

expected mass gain of 95.04 Da due to disulfide bridging of the maleimide (Figure 3). No traces of either native

or reduced sCT were observed by MALDI-ToF-MS, in agreement with RP-HPLC, evidence of highly efficient

bridging with no observable side-reactions. Trypsin digest of (2) and analysis by MALDI-ToF-MS revealed that

the disulfide-containing fragment was the only modified species and circular dichroism revealed that the

structural integrity of the peptide had been maintained following modification (see Supporting Information).



Figure 3. MALDI-ToF-MS analysis of native sCT (red trace) and maleimide-bridged sCT following

sampling after 10 minutes.

In order to demonstrate the viability of this reaction for polymer bioconjugation, a linear PEG-chain with α-

functional dibromomaleimide functionality was synthesised40 using a modified Mitsunobu reaction.46 This

functionalised PEG5000 chain (3) was conjugated to reduced sCT under identical reaction conditions as with 2,3-

dibromomaleimide (1), (Figure 4).

Br2Mal PEG sCT.tif

Figure 4. sCT disulfide re-bridging using the dibromomaleimide-functional linear PEG5000 chain.

As before addition of the dibromomaleimide-functional PEG5000 chain gives an immediate pale yellow colour,

indicative of the bis-thio bridged maleimide. Analysis after 15 minutes by RP-HPLC revealed the complete

disappearance of the reduced polypeptide as well as the formation of a new single species with retention time at

approximately 18 minutes (Figure 5).



Figure 5. RP-HPLC analysis of the disulfide-bridging of sCT using a dibromomaleimide-functional PEG

chain following reduction with TCEP.

MALDI-ToF-MS analysis showed a distribution of peaks around the expected mass (~ 8.5 kDa) upon

conjugation of the PEG5000 chain to sCT (3431 Da) (Figure 6). A number of PEG-derived distributions were

observed, with the predominant peaks corresponding to the sodiated conjugate and smaller peaks attributed to

the protonated conjugate (Figure 6 and ESI).

Figure 6. MALDI-ToF-MS of the reaction mixture after 15 minutes, showing the formation of the

monoconjugated sCT-PEG5000 species, around 8.5 kDa as expected.

Despite successful functionalisation of PEG with dibromomaleimide using modified Mitsunobu conditions, both

the efficiency and isolated yield were relatively low, with the requirement of column chromatography for

purification of the final product. Thus, a strategy was devised to synthesise α-functional polymers by atom 

transfer radical polymerization (ATRP). Since each chain is grown from the initiator in this case, the synthesised

polymer inherently contains the initiator-derived functionality. The dibromo-maleimide functionality was

investigated as a novel end-group for the synthesis of maleimide-functional polymers. Since unfunctionalized



maleimides are well documented as highly reactive substrates in radical polymerizations,47-49 the dibromo

derivative was analysed as a viable functionality for the synthesis of functional polymers. Polymerization using

standard ATRP conditions of PEG-methacrylate using ethyl 2-bromoisobutyrate was carried out in the presence

of dibromomaleimide alongside a control reaction conducted as a reference (Figure 7).

Figure 7. ATRP polymerization of PEGMA in the presence and absence of the dibromomaleimide

functionality.

Large differences in the polymerization rates were observed (Figure 8). Polymerization in the absence of 3,4-

dibromomaleimide proceeded as expected, with linear first order kinetics observed. However, polymerization in

the presence of 3,4-dibromomaleimide was retarded in comparison with the blank polymerization.

Figure 8. First order kinetic plot for the polymerizations of PEGMA475 using [ethyl 2-

bromoisobutyrate]:[Cu(I)Br]:[Lig]:[PEGMA475] = 1:1:3:20, toluene/PEGMA475 2:1 (v/w), 60 °C in the

absence (blue data) and presence of 3,4-dibromomaleimide (1) (1 eq. with respect to initiator) (red data).

Thus the direct polymerization using dibromomaleimide-functional initiators was abandoned as a viable route

and alternative strategies investigated. Two post-polymerization modification50 routes were investigated for the

introduction of the dibromomaleimide functionality, firstly an azido-functional initiator (5, Figure 9) was

synthesised for further transformation using CuAAC. A second strategy was devised whereby aniline-functional

polymers were synthesised in order to introduce the maleimide functionality using a condensation reaction with

dibromomaleic anhydride, followed by ring closure via acid-promoted dehydration (6, Figure 9).



Figure 9. ATRP initiators employed in this study for the post-polymerization incorporation of

dibromomaleimide functionality.

The azide-functional initiator (5) was synthesised as described previously51 and was employed for the

polymerization of oligo(ethylene glycol) methacrylates by ATRP. Polymers synthesised using this initiator have

been shown to maintain an apparent 100 % of the azido chain end functionality,51 an essential requirement for

efficient post polymerization modification.

Figure 10. Polymerization of oligo(ethylene glycol) methacrylates using azide-functional initiator (7).

Polymerization of oligo(ethylene glycol) methacrylates has emerged as a popular route for the synthesis of

thermoresponsive polymers52-53 and protein conjugates.32,54 Tri(ethylene glycol) methacrylate (TEGMEMA) was

homopolymerized and copolymerized in a 1:1 molar ratio with di(ethylene glycol) methacrylate (DEGMEMA)

using initiator (5) by ATRP (Figure 10) to synthesise azide-functional polymers (7) and (8). Following

purification, the polymers were isolated as colourless oils and the presence of the α-azido functionality 

confirmed by IR-spectroscopy (ESI). A dibromomaleimide-functional terminal alkyne was synthesised and the

functionality installed to the polymers by CuAAC (Figure 11) and the presence of the new end-group confirmed

by 13C NMR, along with the loss of the characteristic signal from the azide observed by IR-spectroscopy. The

thermoresponsive nature of polymers (7) and (8) were investigated (ESI), with the cloud points of showing little

or no change following end-group modification.55

Figure 11. Installation of dibromomaleimide functionality to α-azido functional polymers using CuAAC. 



A second strategy was also investigated as a route to dibromomaleimide functional polymers using boc-

protected aniline initiator (6). Oligo(ethylene glycol) methacrylate was homopolymerized and copolymerized

with DEGMEMA by ATRP using the protected aniline initiator (6) in order to synthesise α-functional polymers 

(16) and (17).

Figure 12. Polymerization of oligo(ethylene glycol) methacrylates using initiator (10) as a route to α-Boc-

protected polymers.

Following purification and isolation, the boc-protecting group was removed by treatment with TFA and the

obtained aniline converted to a dibromomaleimide-functional polymer following heating in the presence of

dibromomaleic anhydride (Figure 13). Each of the post-polymerization modification steps were monitored by

1H and 13C NMR, with deprotection of the boc-group and functionalisation with dibromomaleic anhydride

monitored by the shift of the aromatic protons and compared to synthesised model compounds (ESI).

Figure 13. Post-polymerization modification of poly(oligo(ethylene glycol)) methacrylate by deprotection

of the boc-protecting group to yield an α-aniline functionality, followed by treatment with dibromomaleic 

anhydride to furnish the dibromomaleimide end-group.

Following successful incorporation of the dibromomaleimide functionalities to the aniline- and azide-functional

pre-polymers, conjugation to sCT was investigated. As previously, the disulfide bridge of sCT was reduced in

the presence of TCEP and monitored by RP-HPLC. Following complete reduction of the disulfide, polymer (10)

was added in a buffered solution at pH 6.2.



Figure 14. sCT disulfide re-bridging using dibromomaleimide functional polymer (10).

As previously, an immediate change in solution colour to pale yellow was observed40 and analysis by RP-HPLC

20 minutes following addition of the polymer showed a complete loss of the signal corresponding to reduced

sCT, along with the formation of a broad peak from the conjugate.

Figure 15. RP-HPLC analysis of the disulfide-bridging of sCT using polymer (10) following reduction of

the disulfide bridge with TCEP.

Similarly, the conjugation of the dibromomaleimide-functional polymer synthesised via the aniline route was

investigated. Following reduction of sCT using TCEP, polymer (16) was added in a buffered solution at pH 6.2

and the characteristic yellow colour was observed immediately. RP-HPLC analysis of the reaction mixture

showed the loss of the signal corresponding to the reduced polypeptide, as well as the formation of the broad

conjugate peak (ESI). These bioconjugation reactions demonstrate the power of this approach for the re-bridging

of generated cysteine residues derived from reduced disulfides. The ability to rapidly (<30 minutes) and

quantitatively modify polypeptides with equimolar amounts of dibromomaleimide functional polymers holds

great promise for the development of a new class of bioconjugates. Timescales for conjugation have been

dramatically reduced relative to commonly employed protocols and purification of products have been

simplified due to a reduction in the required amounts of conjugating polymer.



Summary

In this study, we report disulfide re-bridging of salmon calcitonin using dibromomaleimide functional polymers.

Direct incorporation of dibromomaleimide into synthetic polymers using ATRP was not possible due to an

interfering effect of the functionality. As a consequence, two post-polymerization modification approaches were

explored and successfully employed in order to install the dibromomaleimide group to the α-terminus of OEG-

based polymers. In both cases, the polymers were successfully conjugated to salmon calcitonin via the re-

bridging of the disulfide in a one pot system with equimolar equivalents of the peptide and polymer in a matter

of minutes. Both routes serve as viable approaches to disulfide-bridging agents for polypeptides and proteins,

although the N-phenyl maleimide derivatives have further advantages as both stable and cleavable linkers

following controlled maleimide hydrolysis.56 This approach has clear benefits over currently employed

techniques since little or no purification of macromolecular species is required due to the stoichiometric nature

of the reaction.
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