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The Lavrentiev gap phenomenon is a well-known effect in the calculus of variations, related to
singularities of minimizers. In its presence, conforming finite element methods are incapable of
reaching the energy minimum. By contrast, it is shown in this work that, for convex variational
problems, the non-conforming Crouzeix–Raviart finite element discretization always converges
to the correct minimizer, and that the discrete energy converges to the correct limit.
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1. Introduction

The Lavrentiev gap phenomenon is a well-known effect in the calculus of variations, related to
singularities of minimizers. In its presence, conforming finite element methods are incapable of
reaching the energy minimum, and consequently the numerical solutions converge to the wrong
limit. The goal of this paper is to demonstrate that a standard non-conforming finite element
method is succesful in approximating certain problems within this class.

Possibly the most well-known instance of the Lavrentiev phenomenon is the example discovered
by Manià [22]. Suppose we want to minimize the functional

J (u) =
∫ 1

0

u6
x(u3 − x)2 dx (1.1)

over the space W1,1(0, 1), subject to the constraints u(0) = 0 and u(1) = 1. The infimum is zero and
it is attained for u(x) = x1/3. The interesting feature of (1.1) is that the infimum of J over Lipschitz
functions is strictly positive. This effect is commonly known as the Lavrentiev gap phenomenon,
named after the first known example, in the work of Lavrentiev [19]. Manià’s example is readily
modified so that J becomes coercive in W1,p(0, 1) for some p > 1. Moreover, it was shown by
Ball and Mizel [6] that the effect can even occur for uniformly elliptic integrands. Foss, Hrusa, and
Mizel [17] gave a two-dimensional example where the integrand is autonomous and convex. This
important class of problems is the focus of the present work.

The interest in the Lavrentiev phenomenon is due to its connection to the regularity of mini-
mizers, as well as its relevance in mathematical models of solid mechanics [3, 4].

Let Ω be a connected bounded polyhedral Lipschitz domain in Rn, n > 2; let W : Rm×n → [0,+∞],
m > 1, be a convex stored energy density, and let f ∈ L∞(Ω)m. For v ∈W1,1(Ω)m, we define

J (v) =
∫
Ω

[
W (∇v)− f · v

]
dx. (1.2)

Given g ∈ W1,∞(Ω)m and relatively open sets Γi ⊂ ∂Ω with |Γi| > 0, i = 1, . . . ,m, we define the
admissible set

A =
{
u ∈W1,1(Ω)m : u(i) = g(i) on Γi, i = 1, . . . ,m

}
; (1.3)

here and througout we use superscripts to denote components of a vector-valued function. For
future reference we set Ap = A ∩W1,p(Ω)m, whenever p ∈ [1,∞].
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The aim of this work is the numerical solution of the minimization problem

u ∈ argminJ (A1). (1.4)

To guarantee the well-posedness of (1.4), we need to add an additional assumption on W . We
shall assume throughout that W has superlinear growth; more precisely, we assume that there exists
a convex function φ : [0,∞)→ [0,∞) such that

W (ξ) > φ(|ξ|) ∀ξ ∈ Rm×n and lim
s→∞

φ(s)/s = +∞. (1.5)

Assumption (1.5) allows us to extract weakly convergent subsequences from families of Sobolev
functions with bounded energy.

Under the above conditions we have the following basic existence result. Its proof is a straight-
forward application of the direct method of the calculus of variations (see [13, Sec. 3.4.1.1] for a
similar result which is readily generalized). Alternatively, it can be obtained as a consequence of
Theorem 4.1.

Proposition 1.1 There exists at least one solution to (1.4).

The example given by Foss, Hrusa and Mizel [17] shows that under the conditions stated above,
it is possible that the minimization problem (1.4) may exhibit the Lavrentiev gap phenomenon

inf J (A∞) > inf J (A1). (1.6)

For the numerical solution of the minimization problem (1.4), (1.6) means that the energy of a
solution to (1.4) cannot be approximated from a conforming finite element space. This effect will be
explained in Section 3 where it is shown that the P1-finite element method (P1-FEM) converges to
the global minimizer in A1 if and only if inf J (A∞) = inf J (A1). The main reason for this result
is simple. If (uh)h∈(0,1] is a family of discrete minimizers then uh ∈ W1,∞(Ω)m, and hence (1.6)
makes it impossible that J (uh)→ inf J (A1).

To overcome this difficulty, several methods have been proposed in the literature. While they
differ in specific details, all methods use the same basic principle. First, one introduces a ‘regularized’
energy Jε : A1 → R which is continuous in the strong W1,1-topology. It follows that Jε can
be approximated from a conforming finite element space, say Pc

1(Th)m (see Section 2.2 for its
definition), where Th denotes a finite element grid with global mesh size h. One then aims to prove
that approximate minimizers of Jε, which can in principle be computed numerically, converge to
a minimizer of J as ε ↘ 0. In this way one obtains convergence results of the following type: for
any sequence εj ↘ 0 there exists a sequence hj ↘ 0 such that minimizers of Jεj in A ∩ Pc

1(Thj )m
converge weakly to a minimizer u of J in A1, and Jεj (uhj )→ J (u). Methods of this type include
the penalty method of Ball and Knowles [5, 18] and its extension to polyconvex integrands by
Negron–Marrero [23], the element-removal method of Li [20, 21], the truncation method of Bai and
Li [2], and the L1-penalty method of Carstensen and Ortner [11].

The main advantage of these methods is their generality, as they are in principle appropriate for
very general classes of minimization problems. However, they all share the same drawback, namely
that the relationship between ε and h is entirely unkown a priori. All methods cited above are very
sensitive to the choice of ε and h, and it is therefore difficult to devise robust algorithms which
can compute the sequence (εj , hj) and the corresponding minimizers [11]. For a more extensive
discussion of numerical methods for computing singular minimizers see [4].

The novel contribution of the present work is the identification and analysis of a standard
numerical method, the Crouzeix–Raviart finite element method [12] (CR-FEM) which does not
require a regularization parameter. It should be noted from the outset that this method will
not be succesful for general variational problems but is restricted to (minor extensions of) the class
described above. This follows immediately from the fact that in one dimension the CR-FEM reduces
to the conforming P1-FEM, which is unable to approximate, for example, the Manià problem (1.1).
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As explained earlier, the main difficulty for the P1-FEM is that J (vh) → J (v) may fail for
some v, independent of the choice of the approximating sequence vh ∈ Pc

1(Th). However, for the
non-conforming CR-finite element space CR(Th) (see Section 2.2 for its definition) one can define
an interpolation operator Ih : W1,1(Ω)m → CR(Th)m which satisfies∫

T

∇v dx =
∫
T

∇Ihv dx ∀T ∈ Th. (1.7)

Jensen’s inequality immediately implies that∫
T

W (∇Ihv) dx =
∫
T

W
(
|T |−1

∫
T

∇v(y) dy
)

dx 6
∫
T

W (∇v) dx ∀T ∈ Th,

from which one easily obtains

lim sup
h→0

J (vh) 6 J (v) ∀v ∈W1,1(Ω)m.

Property (1.7) is the crucial ingredient in the proof of convergence of the Crouzeix–Raviart finite
element method for (1.4) (see Theorem 4.1).

Possibilities and challenges for extensions of this analysis will be discussed in the conclusion.
Finally, it should be noted that the use of non-conforming finite element methods was first proposed
by Ball [4].

2. Preliminaries

This section is intended to fix the notation and to state some auxiliary results.

2.1 Function spaces

Let A be an open subset of Rn. We use Lp(A) and W1,p(A) to denote the standard Lebesgue and
Sobolev spaces and equip them with their usual norms. The space of distributions is denoted by
D′(A) [1]. The distributional gradient operator is denoted D, while the weak gradient operator
is denoted ∇. The spaces of continuously differentiable functions with compact support in A are
denoted Ck0(A).

In addition, we will also require the space of functions of bounded variation [15]. A function
u ∈ L1(Ω) belongs to BV(Ω) if its total variation,

|Du|(Ω) = sup
ϕ∈C1

0(Ω)

‖ϕ‖L∞=1

∫
Ω

udivϕdx,

is finite. BV(Ω) equipped with the norm ‖u‖BV = ‖u‖L1+|Du|(Ω) is a Banach space. We shall make
use of two crucial properties of the space BV(Ω). First, elements of BV(Ω) may be discontinuous and
therefore non-conforming finite element spaces are contained in it. Second, BV(Ω) is compactly
embedded in L1(Ω), i.e., if K is an index set and if supk∈K ‖uk‖BV < +∞ then there exists
u ∈ BV(Ω) and a sequence (kj) ⊂ K such that

ukj → u strongly in L1(Ω); (2.1)

see [15, Section 5.2.3].
For example, we can use this compactness property to prove the following Poincaré–Friedrichs

inequality.

Lemma 2.1 There exists a constant Cp such that

‖u‖L1(Ω) 6 Cp
(
|Du|(Ω) +

m∑
i=1

∣∣∣ ∫
Γi

u(i) dx
∣∣∣) ∀u ∈ BV(Ω)m. (2.2)
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Proof. Suppose, for contradiction, that there exist uk ∈ BV(Ω) such that ‖uk‖L1 = 1 but
|Duk|(Ω)+

∑m
i=1 |

∫
Γi
u

(i)
k dx| 6 1/k. Due to the aforementioned compactness result, we can assume,

without loss of generality, that uk → u strongly in BV(Ω)m, and that | ∫
Γi
u

(i)
k dx| → 0 for all i.

Since the trace operator is continuous from BV(Ω)m to L1(∂Ω)m [15, Sec. 5.3, Thm. 1], it follows
that

∫
Γi
u(i) ds = 0, i = 1, . . . ,m. Since |Du|(Ω) = 0, u is constant in Ω, and Theorem 2 in [15,

Sec. 5.3] shows that u = 0. Hence, we have arrived at a contradiction to our assumption that
‖uk‖L1 = 1. �

In order to guarantee that families with bounded energy only have accumulation points in
W1,1(Ω)m, we have imposed superlinear growth of W in (1.5). This is related to the Dunford–
Pettis criterion for compactness in the weak topology of L1(Ω)m [14, Th. IV.8.9]. Namely, if
(vj)j∈N ⊂ L1(Ω)k and if

∫
Ω
φ(|vj |) dx is bounded then (vj)j∈N is precompact in the weak topology

of L1(Ω)k. This result follows from the equi-integrability of the family (vj)j∈N which is an immediate
consequence.

Lemma 2.2 Suppose (vj)j∈N ⊂ L1(Ω)k, and supj∈N
∫
Ω
φ(|vj |) dx < +∞, then there exists a subse-

quence jr →∞ and v ∈ L1(Ω)k such that vjr ⇀ v weakly in L1(Ω)k.

In order to deduce strong convergence from weak convergence, we will use the following result.

Lemma 2.3 Suppose thatW is strictly convex. If Fj ⇀ F weakly in L1(Ω)m×n and if
∫
Ω
W (Fj) dx→∫

Ω
W (F ) dx, then Fj → F strongly in L1(Ω)m×n.

Proof. The result follows immediately from [26, Theorem 3(i)] upon noting that strict convexity
of W implies that (F (x),W (F (x))) is an extremal point of the epigraph of W for a.a. x ∈ Ω. �

2.2 Finite element spaces

In this section, the finite element spaces used to discretize (1.4) are described briefly; see [7, 8] for
further detail.

Let (Th)h∈(0,1] be a family of uniformly shape-regular partitions of Ω̄ into closed simplices T
such that hT := diam(T ) 6 h for all T ∈ Th. As usual, we require that Th has no hanging nodes in
2D, no hanging nodes or edges in 3D, and so forth. Let Eh denote the collection of n−1 dimensional
faces of elements and let N c

h denote the set of all corners of elements. The collection of interior
faces is denoted by E int

h . For each face E ∈ Eh we set hE = diam(E). Uniform shape regularity of
the family (Th)h∈(0,1] implies the existence of a constant c > 0, independent of h, such that

chnT 6 |T | 6 hnT ∀T ∈ Th, and chn−1
E 6 |E| 6 hn−1

E ∀E ∈ Eh. (2.3)

We assume furthermore that for every h, the partition of the boundary induced by Th respects the
sets Γi, i = 1, . . . ,m, i.e., up to a set of surface measure zero each of these sets can be written as a
union of faces in Eh.

The space of all piecewise affine functions relative to the partition Th is denoted

P1(Th) =
{
v ∈ L1(Ω) : v|T is affine ∀T ∈ Th

}
.

The space of continuous P1-finite element functions is denoted

Pc
1(Th) = P1(Th) ∩ C(Ω̄).

Let Πh : C(Ω̄)→ Pc
1(Th) denote the nodal interpolation operator defined by

(Πhv)(z) = v(z) ∀z ∈ N c
h .

Let N nc
h denote the collection of all barycenters of faces,

N nc
h =

{|E|−1
∫
E
xds : E ∈ Eh

}
,
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and let CR(Th) denote the first-order Crouzeix–Raviart finite element space,

CR(Th) =
{
vh ∈ P1(Th) : vh is continuous in N nc

h

}
.

Since elements of CR(Th)m may be discontinuous we now use ∇vh to denote the element-wise
gradient of vh ∈ CR(Th)m. We also require a notation for the jumps across interior faces. If
E = T+ ∩ T− ∈ E int

h and if v±h denote the traces from T±, and ν± the outer unit normals to T±,
we set

[vh] = v+
h ⊗ ν+ + v−h ⊗ ν−,

where (a⊗ b)ij = aibj . It follows that |[vh]| = |v+
h − v−h |, where | · | denotes the Frobenius norm of

a matrix or the `2-norm of a vector. With this notation, the distributional gradient of a function
vh ∈ P1(Th)m can be written as

〈Dvh, ϕ〉 = −
∫
Ω

vh · divϕdx =
∫
Ω

∇vh : ϕdx−
∫
∪Eint

h

[vh] : ϕds ∀ϕ ∈ C1
0(Ω)m×n. (2.4)

For each z ∈ N nc
h let Ez ∈ Eh be the unique face which contains z. The interpolation operator

Ih : W1,1(Ω)m → CR(Th)m is defined via

Ihv(z) = |Ez|−1

∫
Ez

v ds ∀z ∈ N nc
h .

This operator was originally defined by Crouzeix and Raviart [12] and already used in a similar
manner as we will use in the present work. We summarize its most important properties for our
purpose in the following lemma.

Lemma 2.4 Let v ∈W1,1(Ω)m, then

‖v − Ihv‖L1(T ) 6 CahT ‖∇v‖L1(T ) ∀T ∈ Th ∀h ∈ (0, 1], (2.5)

where Ca = 1/2 + 1/n. Furthermore, it holds that∫
T

∇v dx =
∫
T

∇Ihv dx ∀T ∈ Th ∀h ∈ (0, 1]. (2.6)

Proof. The first result is fairly standard and follows from the usual arguments for estimating
interpolation errors. The constant Ca = 1/2 + 1/n which is independent of the mesh quality can
be found in [24].

To prove (2.6), we observe that

|Ez|−1

∫
Ez

v ds = Ihv(z) = |Ez|−1

∫
Ez

Ihv ds,

and hence, ∫
T

∇v dx =
∫
∂T

v ⊗ ν ds =
∫
∂T

Ihv ⊗ ν ds =
∫
T

∇Ihv dx,

using the fact that ν is constant on each edge of T . �

3. Conforming Finite Element Methods

The purpose of this section is to show under which conditions conforming finite element methods
converge to the global minimizer in A1, and to illustrate why they fail in the presence of the Lavren-
tiev phenomenon. The results contained here are well-understood by experts in the field (though
not explicitly stated in the literature) and are included primarily for the purpose of motivating the
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subsequent analysis of non-conforming methods. Throughout this section, we make the simplifying
assumption that W is continuous, i.e., that it cannot take the value +∞.

Let (Th)h∈(0,1] be a uniformly shape regular family of finite element meshes as described in
Section 2. With slight abuse of notation, we use Πhg to denote the piecewise affine boundary
function with nodal values g(z), z ∈ N c

h ∩ ∂Ω. We define the set of admissible functions for the
conforming P1-FEM as

Ac
h =

{
vh ∈ Pc

1(Th)m : v(i)
h = Πhg

(i) on Γi, i = 1, . . . ,m
}
.

The P1-FEM is to find
uh ∈ argminJ (Ac

h). (3.1)

It is easy to see that (3.1) has at least one solution, and it is fairly straightforward to obtain the
following weak convergence result.

Theorem 3.1 Assume that W is continuous in Rm×n, and that the Lavrentiev phenomenon (1.6)
does not occur. For h ∈ (0, 1] let uh be a solution of (3.1); then there exists a sequence hj ↘ 0 and
u ∈ argminJ (A1) such that uhj ⇀ u weakly in W1,1(Ω)m and J (uhj )→ J (u), as j →∞.

If #argminJ (A1) = 1 then uh ⇀ u weakly in W1,1(Ω)m. If W is strictly convex, then uh → u
strongly in W1,1(Ω)m.

Proof. We begin by proving an upper bound on J (uh). Let vk ∈ A∞ such that J (vk)↘ J (A1).
Lemma 2.2 in [11] states that, for all v ∈W1,∞(Ω)m,

‖Πhv‖W1,∞ 6 C‖v‖W1,∞ , ∀h ∈ (0, 1],
Πhv → v strongly in L∞(Ω)m, as h↘ 0, and

∇Πhv(x)→ ∇v(x), as h↘ 0, for a.e. x ∈ Ω.
(The first and second result is established using standard interpolation error analysis. The third
result is a consequence of Rademacher’s theorem.) Since W is globally continuous, it follows that,
for any fixed k, W (∇vk) ∈ L∞(Ω) and W (∇Πhvk) is uniformly bounded in L∞(Ω), for h ∈ (0, 1].
The pointwise convergence of ∇Πhvk together with the dominated convergence theorem, and the
strong convergence of Πhvk in L∞(Ω)m then imply that

J (Πhvk)→ J (vk) as h↘ 0 ∀k ∈ N.

Upon extracting a suitable diagonal sequence we find a family wh ∈ Ac
h such that

J (wh)→ inf J (A∞) = inf J (A1) as h↘ 0. (3.2)

Suppose now that uh ∈ argminJ (Ac
h), then J (uh) 6 J (wh) 6 C1 for some C1 ∈ R. Using also

(2.2) and the fact that g ∈ L∞(Ω)m, we have∫
Ω

φ(|∇uh|) dx 6 C1 + ‖f‖L∞‖uh‖L1

6 C1 + Cp‖f‖L∞
(‖∇uh‖L1 + |∂Ω|‖g‖L∞

)
6 C2(1 + ‖∇uh‖L1),

for some C2 > 0. Since φ is convex and |∇uh| is integrable, we can use Jensen’s inequality to
estimate

|Ω|φ(|Ω|−1‖∇uh‖L1

)
6 C2

(
1 + ‖∇uh‖L1

)
.

Since φ is superlinear, it follows that ‖∇uh‖L1 is uniformly bounded. Hence, we obtain

‖uh‖L1 +
∫
Ω

φ(|∇uh|) dx 6 C3 ∀h ∈ (0, 1],
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for some constant C3 ∈ R. In particular, Lemma 2.2 implies that (uh)h∈(0,1] is precompact in the
weak topology of W1,1(Ω)m, and that there exists u ∈ W1,1(Ω)m and hj ↘ 0 such that uhj ⇀ u,
weakly in W1,1(Ω)m.

To show that u ∈ A1 we use the fact that the trace operator is bounded from W1,1(Ω)m to
L1(Ω)m, and hence, for i = 1, . . . ,m,

0 = u
(i)
h −Πhg

(i) ⇀ u(i) − g(i) weakly in L1(Γi).

Since J is lower-semicontinuous, and using (3.2), we can estimate

J (u) 6 lim inf
j→∞

J (uhj ) 6 lim sup
j→∞

J (uhj ) 6 lim sup
j→∞

J (whj ) = inf J (A1). (3.3)

It follows that u ∈ argminJ (A1) and that J (uhj )→ J (u).
The remaining statements follow from standard arguments; they are contained, for example, in

the proof of Theorem 4.1. �

Remark 3.1 If Ac
h ⊂ A∞, which essentially requires that Πhg = g for all h ∈ (0, 1], then it follows

from Theorem 3.1 that the P1-FEM (3.1) converges to the original minimization problem (1.4) if,
and only if, the Lavrentiev phenomenon (1.6) does not occur. See also [11, Sec. 2] for a more
detailed discussion of this fact.

Remark 3.2 The classical condition which is usually employed in order to avoid (1.6) is to impose
the same growth on W from above and below, e.g.,

c0(|F |p − 1) 6W (F ) 6 c1(|F |p + 1) (3.4)

for some p ∈ (1,∞). Namely, if (3.4) holds then J is continuous in the strong topology of W1,p(Ω)m

and density of smooth functions implies that inf J (A1) = inf J (Ap) = inf J (A∞).

Remark 3.3 The proof of Theorem 3.1 suggests that, to understand the conforming P1-finite
element method in the general case, we should study the lower semicontinuous envelope of the
restriction of J to A∞. This is defined, for v ∈ A1, by

J̄∞(v) = inf
{

lim inf
j→∞

J (vj) : vj ∈ A∞ and vj ⇀ v weakly in W1,1(Ω)m
}
.

By definition, J̄∞ is sequentially weakly lower-semicontinuous A1. Furthermore, since J was also
lower semi-continuous, it follows that J (v) = J̄∞(v) for all v ∈ A∞. Hence, there exists a mini-
mizing sequence from A∞, and therefore, the direct method of the calculus of variations guarantees
the existence of at least one minimizer u of J̄∞ in A1.

Viewing the Lavrentiev phenomenon as a relaxation problem is not a new idea [10]. How-
ever, there seems to be no general representation for J̄∞ available and therefore this option
was not exploited here. One interesting remark can be made, however. Assume again that
uh ∈ argminJ (Ac

h). Provided that Ac
h ⊂ A∞ holds, it can be shown by repeating the proof

of Theorem 3.1 almost verbatim that, for some seqence hj ↘ 0, uhj ⇀ u weakly in W1,1(Ω)m

and J (uhj ) → J̄∞(u) = inf J̄∞(A1). This shows that, in some sense, the conforming P1-FEM
approximates the wrong problem.

4. Non-Conforming Finite Element Methods

Let (Th)h∈(0,1] be a uniformly shape-regular family of partitions of Ω and let CR(Th)m denote the
Crouzeix–Raviart finite element spaces as described in Section 2.2. We can extend the definition of
J to elements of CR(Th)m by

J (vh) =
∫
Ω

[
W (∇vh)− f · vh

]
dx,



8 of 15 C. ORTNER

but note that ∇vh now denotes the piecewise gradient.
Since CR(Th) is not a subspace of W1,1(Ω) we need to take care in defining the set of discrete

admissible functions. For the sake of simplicity we shall use

Anc
h =

{
Ihv : v ∈ A1

}
. (4.1)

It can be easily seen that

Anc
h =

{
vh ∈ CR(Th)m :

∫
E

(v(i)
h − g(i)) ds = 0 for E ∈ Eh, E ⊂ Γi, i = 1, . . . ,m

}
.

The resulting CR-FEM is to compute

uh ∈ argminJ (Anc
h ). (4.2)

Using the facts that W grows superlinearly, and that Anc
h is non-empty, it is easy to show that 4.2

has at least one solution.

Theorem 4.1 For each h ∈ (0, 1], let uh be a solution to (4.2); then there exists a subsequence
hj ↘ 0 and u ∈ argminJ (A1) such that, as j →∞,

uhj → u strongly in L1(Ω)m,

∇uhj ⇀ ∇u weakly in L1(Ω)m×n, and
J (uhj )→ J (u).

If #argminJ (A1) = 1 then the entire family converges to the unique minimum. If W is strictly
convex then ∇uh → ∇u strongly in L1(Ω)m×n.

The proof of Theorem 4.1 mimics the convergence proof for the P1-FEM given in Section 3.
However, we have used a number of tools such as Poincaré inequalities or the extraction of weakly
convergent subsequences which are not readily available for elements of the space CR(Th). As a
matter of fact, once these technical prerequisites are established, and bearing in mind the projection
property of the CR-interpolant (2.6), the proof of Theorem 4.1 is a straightforward matter.

We begin with the elementary observation that the total variation of a CR-function can be
bounded by the L1-norm of its piecewise gradient.

Lemma 4.1 There exists a constant Cg such that

|Dvh|(Ω) 6 Cg‖∇vh‖L1 ∀vh ∈ CR(Th)m ∀h ∈ (0, 1]. (4.3)

Proof. Recalling (2.4), we obtain

|Dvh|(Ω) 6 ‖∇vh‖L1(Ω) +
∫
∪Eint

h

∣∣[vh]
∣∣ ds.

Thus, we need to bound the norm of the jumps in terms of ‖∇vh‖L1 only. Let E = T+ ∩ T− ∈ E int
h

with midpoint z, and let x ∈ E, then

|[vh(x)]| = |v+
h (x)− v−h (x)| 6 |v+

h (x)− vh(z)|+ |vh(z)− v−h (x)| 6 hE |∇v+
h |+ hE |∇v−h |,

and consequently∫
E

∣∣[vh]
∣∣ds 6 hnE(|∇v+

h |+ |∇v−h |
)
6 hnT+ |∇v+

h |+ hnT− |∇v−h | 6 c−1

∫
T+∪T−

|∇vh|dx,

where c is the shape-regularity constant from (2.3). Upon summing over E ∈ E int
h , we obtain (4.3)

with Cg = (n+ 1)/c+ 1. �
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Combining Lemma 4.1 and Lemma 2.1, we obtain the broken Poincaré-Friedrichs inequality

‖vh‖L1 6 C ′p
(
‖∇vh‖L1 +

M∑
i=1

∣∣∣ ∫
Γi

v
(i)
h ds

∣∣∣) ∀vh ∈ CR(Th)m ∀h ∈ (0, 1], (4.4)

where C ′p = CpCg, which can be applied to vh = wh −Πhg and immediately implies

‖wh‖L1 6 C ′′p
(
1 + ‖∇wh‖L1

) ∀wh ∈ Anc
h . (4.5)

Finally, before adressing the proof of Theorem 4.1, we demonstrate that ‘weak’ limits of Crouzeix–
Raviart functions are weakly differentiable. This result and its proof are inspired by [9, Theorem
5.1].

Theorem 4.2 Suppose that uh ∈ CR(Th)m, h ∈ (0, 1], satisfy

sup
h∈(0,1]

‖uh‖L1(Th) +
∫
Ω

φ(|∇uh|) dx < +∞; (4.6)

then there exists a sequence hj ↘ 0 and u ∈W1,1(Ω)m such that

uhj → u strongly in L1(Ω)m, and (4.7)

∇uhj ⇀ ∇u weakly in L1(Ω)m×n. (4.8)

If uh ∈ Anc
h for all h ∈ (0, 1], then u ∈ A1.

Proof. Using Lemma 4.1, it follows that ‖uh‖BV is uniformly bounded. Hence, we can use the
compactness theorem for the space BV(Ω)m (see Section 2.1 or [15, Sec. 5.2.3]), to deduce the
existence of a subsequence hj ↘ 0 and of u ∈ L1(Ω)m such that

uhj → u strongly in L1(Ω)m.

In particular, this implies (4.7).
Next, we show that u is weakly differentiable. We use (4.6) to extract a further subsequence

(not relabelled) to obtain an F ∈ L1(Ω)m×n such that ∇uhj ⇀ F weakly in L1(Ω)m×n. We need
to prove that Du = F in the sense of distributions (or measures). To see this, fix ϕ ∈ C1

0(Ω)m×n,
and use (2.4) to obtain

〈Duhj , ϕ〉 =
∫
Ω

∇uhj : ϕdx−
∫
∪Eint

hj

[uhj ] : ϕds. (4.9)

For the first term on the right-hand side, we have∫
Ω

∇uhj : ϕdx→
∫
Ω

F : ϕdx. (4.10)

Furthermore, since
∫
E

[uhj ] ds = 0 for all E ∈ E int
hj

, we can estimate the second term via∣∣∣ ∑
E∈Eint

hj

∫
E

[uhj ] : ϕds
∣∣∣ 6 ∑

E∈Eint
hj

∣∣∣ ∫
E

[uhj ] :
(
ϕ− (ϕ)E

)
ds
∣∣∣

6
∑

E∈Eint
hj

∫
E

∣∣[uhj ]∣∣ds hE‖∇ϕ‖L∞
6 hj‖∇uhj‖L1 ‖∇ϕ‖L∞ → 0.



10 of 15 C. ORTNER

Combining this result with (4.9) and (4.10), we obtain

Du = lim
j→∞

Duhj = F

in the sense of distributions. This implies that u is weakly differentiable and that F = ∇u.
To prove that u ∈ A1 we need to show that u(i) = g(i) on Γi, for i = 1, . . . ,m. Owing to the

fact that BV(Ω) is not compactly embedded in L1(∂Ω), this turns out to be slightly tricky. First,
we show that u(i)

h |Γi → g(i)|Γi in the sense of measures. If ϕ ∈ C1
0(Rn), then∣∣∣ ∫

Γi

(u(i)
h − g(i))ϕds

∣∣∣ 6 ∑
E⊂Γi

∣∣∣ ∫
E

(u(i)
h − g(i))(ϕ− (ϕ)E) ds

∣∣∣
6 h‖u(i)

h − g(i)‖L1(Γi)‖∇ϕ‖L∞(Rn).

Since ‖u(i)
h − g(i)‖L1(Γi) 6 C‖uh − g‖BV, which is uniformly bounded, we obtain said convergence.

In the second step, we show that ej := uhj − u → 0 in a similar sense. To this end, we extend
ej by zero to all of Rn to obtain a new function ēj ∈ BV(Rn)m. Since ēj → 0 strongly in L1(Rn)m

we have 〈Dēj , ϕ〉 → 0 for all ϕ ∈ C1
0(Rn)m×n. Moreover, as in (2.4), we have

〈Dēj , ϕ〉 =
∫
Ω

∇ej : ϕdx−
∫
∪Eint

hj

[ej ] : ϕds−
∫
∂Ω

(ej ⊗ ν) : ϕds. (4.11)

We already know that the left-hand side, as well as first and second terms on the right-hand side
of (4.11) converge to zero, and hence it follows that∫

∂Ω

(ej ⊗ ν) : ϕds→ 0 ∀ϕ ∈ C1
0(Rn)m×n. (4.12)

Combined with the previous step we obtain that, for ϕ ∈ C1
0(Rn),∫

Γi

(u(i) − g(i))ϕds = lim
j→∞

{∫
Γi

(u(i) − u(i)
hj

)ϕds+
∫
Γi

(u(i)
hj
− g(i))ϕds

}
= 0.

Taking ϕ to be a mollified version of (u(i)−g(i))/|u(i)−g(i)|, and using the fact that Ω is a Lipschitz
domain, we finally obtain that u(i) = g(i) a.e. on Γi. �

Proof of Theorem 4.1. The proof of Theorem 4.1 is split into three parts. First, we complete
the proof of the elementary but crucial approximation property which we have already outlined
in the introduction. Second, we prove pre-compactness of numerical solutions. Finally, we use
lower-semicontinuity of convex functionals to prove that any limit point is a minimizer.

Step 1: Upper Bound (Approximation). Let v ∈ A1 with J (v) < ∞, and let Ihv be the
Crouzeix–Raviart interpolant of v. Then, by definition, Ihv ∈ Anc

h . Since ∇v is integrable, we can
use the mean value property (2.6) and Jensen’s Inequality to deduce∫

T

W (∇Ihv) dx =
∫
T

W
(
|T |−1

∫
T

∇v(y) dy
)

dx 6
∫
T

W (∇v) dx.

Summing over T ∈ Th, we obtain∫
Ω

[
W (∇Ihv)− f · Ihv

]
dx 6

∫
Ω

[
W (∇v)− f · v + f · (v − Ihv)

]
dx 6 J (v) + ‖f‖L∞‖v − Ihv‖L1 .

From the interpolation error estimate (2.5) we can deduce the bound

J (Ihv) 6 J (v) + hCa‖f‖L∞‖∇v‖L1 , (4.13)
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and in particular, that
lim sup
h→0

J (Ihv) 6 J (v) ∀v ∈ A1. (4.14)

Step 2: Compactness (Stability). Suppose now that, for h ∈ (0, 1], uh ∈ argminJ (Anc
h ). Due to

the growth condition (1.5) and the upper bound (4.13), we have∫
Ω

φ(|∇uh|) dx 6 C1(1 + ‖uh‖L1), (4.15)

for some constant C1 ∈ R. We apply Jensen’s Inequality on the left-hand side of (4.15) and the
broken Poincaré–Sobolev inequality (4.5) on its right-hand side to deduce

|Ω|φ(|Ω|−1‖∇uh‖L1) 6 C1(1 + C ′′p (1 + ‖∇uh‖L1)) 6 C ′1(1 + ‖∇uh‖L1).

The superlinear growth of φ implies that ‖∇uh‖L1 6 C2 for some constant C2 <∞. Inserting this
information back into (4.15), we find that there exists a constant C3 ∈ R such that

‖uh‖L1 +
∫
Ω

φ(|∇uh|) dx 6 C3 ∀h ∈ (0, 1].

We can now employ Theorem 4.2 to deduce the existence of a subsequence hj ↘ 0 and of u ∈ A1

such that

uhj → u strongly in L1(Ω)m, and (4.16)

∇uhj ⇀ ∇u weakly in L1(Ω)m×n. (4.17)

Step 3: Lower Bound (Convergence). As an immediate consequence of (4.16) and (4.17), and
the convexity of W we have [13, Theorem 3.4]

J (u) 6 lim inf
j→∞

J (uhj ).

Recalling (4.13), we therefore obtain

J (u) 6 lim inf
j→∞

J (uhj ) 6 lim sup
j→∞

J (uhj ) 6 inf J (A1),

which shows that u ∈ argminJ (A1) and that J (uhj )→ J (u).
Suppose now that the minimizer u is unique. To obtain the convergence of the entire family

(uh)h∈(0,1] as h ↘ 0 we note that we could have started the proof with an arbitrary subsequence.
Thus, if there were any subsequence of (uh)h∈(0,1] which is uniformly bounded away from u in the
L1-norm, we would immediately arrive at a contradiction.

Finally, if W is strictly convex then the minimizer is indeed unique and, using Lemma 2.3, we
deduce strong convergence of the broken gradients. �

5. Computational Examples

We test the nonconforming finite element method on a modified version of the example given by
Foss, Hrusa and Mizel [17]. Let n = m = 2 and define, for α > 0 and p ∈ (1,∞),

Wα,p(F ) =
(|F |2 − 2 detF

)4 +
α

p
|F |pp,

and f ≡ 0, where |F |pp =
∑2
i,j=1 |Fij |p. We denote the resulting functional Jα,p. To see that Wα,p

is convex, note that F 7→ (|F |2−2 detF ) is a non-negative quadratic form on R2×2 and that s 7→ s4

is monotone and convex.
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u(A)

B

u
C

A u(B)

u(C)

Fig. 1. Boundary conditions in the Foss–Hrusa–Mizel example: the portion A,B,C of the boundary of Ω are,
respectively, deformed into u(A), u(B), u(C).

Let Ω be the semi-circle
Ω = {|x| < 1, x2 > 0},

with boundary ∂Ω = A ∪B ∪ C where

A = {x2 = 0, x1 < 0}, B = {x2 = 0, x1 > 0}, and C = ∂Ω ∩ {|x| = 1},
and define

A =
{
u ∈W1,1(Ω)2 :u(1)|A = 0, u(2)|B = 0, and u(x) = (cos(θ/2), sin(θ/2)

)
for x ∈ C},

where x = r(cos(θ), sin(θ)). Admissible functions can be interpreted as deformations of the semi-
circle Ω into a quarter circle (cf. Figure 1).

The idea of the example is that, for α = 0, the minimizers of J in in A1 and A∞ can be
computed explicitly,

u := argminJ0,p(A1) = r1/2
(

cos(θ/2), sin(θ/2)
)
,

ū := argminJ0,p(A8) = r11/14
(

cos(θ/2), sin(θ/2)
)
.

The corresponding energies are J0,p(u) = 0 and J0,p(ū) = (2/7)6π, and hence the minimization
problem minJ0,p(A1), exhibits the Lavrentiev gap phenomenon. Note also that, since ū ∈ A8, and
since A∞ is dense in A8 and J0,p continuous in W1,8(Ω)2, it follows that J0,p(ū) = inf J0,p(A∞).

However, W0,p does not have superlinear growth, and in fact, the CR-FEM solution is unstable,
that is, the CR-FEM minimizers are unbounded in the L1-norm as h↘ 0. However, upon observing
that u is also the solution of Laplace’s equation under the boundary conditions defined through A,
we see that

Jα,2(u) = J0,2(u) + α
2 ‖∇u‖2L2

= (J0,2(u)− J0,2(ū)) + J0,2(ū) + α
2 ‖∇u‖2L2

6 (2/7)7π + Jα,2(v) ∀v ∈ A∞.
Thus, the Lavrentiev gap phenomenon persists for α > 0 and p = 2, with global minimizer u.

5.1 Example 1

For the first numerical experiment, we set α = 1, p = 2, and solve the minimization problem using
both the CR-FEM and the P1-FEM. The radial components of the solutions are shown in Figure
2(a) where we see a significant gap. The convergence rate for |J (uh) − J (u)| is plotted in Figure
2(b). Since the exact solution has an r1/2 singularity at the origin, we can at best expect an O(h)
convergence rate for the energy. This is precisely the rate observed in the experiment.
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Fig. 2. (a) Comparison of exact, P1-FEM and CR-FEM solutions for the modified Foss–Hrusa–Mizel example with
α = 1 and p = 2. (b) Convergence rate of the energy for the CR-FEM solution.

5.2 Example 2

In the second experiment, we choose α = 1/10 and p ∈ {2, 3, 4, 6}, and try to predict in which
cases the the resulting minimisation problem exhibits a Lavrentiev gap. To this end, we solve the
problem both with the CR-FEM and the P1-FEM and, in Figure 3, plot the difference in energy
against the number of elements in the mesh. Since we expect convergence rates (though possibly
fairly low rates) for both methods, we should be able to observe a flattening of the curves for those
problems where a Lavrentiev gap occurs. For p = 6 we clearly observe a convergence rate, which
suggests that no Lavrentiev phenomenon is present in this problem. This is consistent with (though
it does not follow from) the results in [17]. For p = 2, we see the beginning of a flattening effect,
which indicates that this problem possesses a Lavrentiev gap. This is again consistent with [17] and
the discussion at the beginning of the section.

In the cases p = 3, 4, however, it is not clear Figure 3 whether the curves flatten or converge to
zero. This difficulty is resolved in [24], where an adaptive mesh refinement algorithm for variational
problems exhibiting the Lavrentiev phenomenon is formulated and analyzed.

Conclusion

For a small but important class of variational problems we have identified a numerical method,
which is convergent even in the presence of the Lavrentiev phenomenon, and which does not require
any regularization procedures. To conclude, we discuss various possibilities to extend the analysis
in this paper.

A natural question to ask is, whether the analysis can be extended to stored energies of the type
W (x, u, F ). It was already indicated in the introduction that this is not always possible. If the
coupling between the variables u and ∇u is too strong (as in Manià’s example), then the CR-FEM
may fail. It should not pose great difficulties, however, to extend the analysis in the present paper
to stored energies of the type W (x, u, F ) where

W̃ (F ) + a(x) 6W (x, u, F ) 6 C(b(x) + |u|q + W̃ (F )),

where W̃ has superlinear growth, and where q is sufficiently small (in relation to W̃ ), so that certain
embedding results can be used to control the term |u|q.
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Fig. 3. Prediction of Lavrentiev gaps for the modified Foss–Hrusa–Mizel example with α = 1/10 and p ∈ {2, 3, 4, 6}.
Here, uh denote the CR-FEM solutions and ūh the P1-FEM solutions. The singularities in the exact solutions prevent
a sufficiently rapid convergence using uniform mesh refinement so that a reliable prediction of the Lavrentiev gap
cannot be made in all cases.

Another interesting question is whether the analysis can be extended to other non-conforming
numerical methods. For example, it is straightforward to extend the convergence proof to the
variational discontinuous Galerkin finite element method [9, 25]. To see this, simply note that the
lower bound (lower-semicontinuity) is provided by the analysis in [9], while for the upper bound
(approximating sequence) the Crouzeix–Raviart interpolant can be used, provided the discontinuous
Galerkin finite element mesh is simplicial and contains no hanging nodes.

In fact, the interior penalty parameters of the discontinuous Galerkin finite element method
provide an additional flexibility, so that that one may even attempt to explicitly control the function
space in which to solve the minimization problem. For example, Foss [16] has given an example of
a minimization problem where the the infimum of the energy in Ap depends continuously on the
parameter p. It would be interesting to see whether, by adjusting the penalty term to have p-growth
[9], the discontinuous Galerkin discretization converges to the solution in the correct function space.
Establishing a rigorous theory for this case is, in all likelihood, a formidable challenge.

Finally, the most important extension, namely to quasi-convex or poly-convex integrands is
completely open. It is fairly clear, however, that the Crouzeix–Raviart finite element method does
not provide sufficient freedom to construct approximations which respect determinant constraints.
One can easily construct examples (simply by trial and error) for which mean values of determinants
are not preserved. This would, however, be necessary to extend the theory presented in this paper.
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