
http://wrap.warwick.ac.uk/  

 
 

 
 
 
 
 
 
Original citation: 
Buffa, A. and Ortner, Christoph. (2009) Compact embeddings of broken Sobolev spaces 
and applications. IMA Journal of Numerical Analysis, Volume 29 (Number 4). pp. 827-
855. 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/43810  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
Publisher’s statement: 
This is a pre-copyedited, author-produced PDF of an article accepted for publication in . 
IMA Journal of Numerical Analysis following peer review. The definitive publisher-
authenticated version Volume 29 (Number 4). pp. 827-855. is available online at: 
http://imajna.oxfordjournals.org/content/29/4/827  
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see 
the ‘permanent WRAP url’ above for details on accessing the published version and note 
that access may require a subscription. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/43810
http://imajna.oxfordjournals.org/content/29/4/827
mailto:publications@warwick.ac.uk


IMA Journal of Numerical Analysis (2005) Page 1 of 27
doi: 10.1093/imanum/dri017

Compact Embeddings of Broken Sobolev Spaces
and Applications

ANNALISA BUFFA

Istituto di Matematica Applicata e Tecnologie Informatiche del CNR,
Via Ferrata 1, 27100 Pavia, Italy.

CHRISTOPH ORTNER

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK.

[Received on ]
In this paper we present several extensions of theoretical tools for the analysis of Discontinuous Galerkin
(DG) method beyond the linear case. We define broken Sobolev spaces for Sobolev indices in [1,∞),
and we prove generalizations of many techniques of classical analysis in Sobolev spaces. Our targeted
application is the convergence analysis for DG discretizations of energy minimization problems of the
calculus of variations. Our main tool in this analysis is a theorem which permits the extraction of a
“weakly” converging subsequence of a family of discrete solutions and which shows that any “weak
limit” is a Sobolev function. As a second application, we compute the optimal embedding constants in
broken Sobolev–Poincarè inequalities.

Keywords: discontinuous Galerkin method, broken Sobolev spaces, embedding theorems, compactness,
Γ -convergence.

1. Introduction

In this article, we develop several tools for the analysis of the discontinuous Galerkin finite element
method (DGFEM) which, in this generality, have only been available in classical Sobolev spaces. We
define broken Sobolev norms for Sobolev indices p∈ [1,∞) and prove several embedding theorems such
as broken Poincaré–Sobolev inequalities (see also [14, 5, 6]) and trace theorems; see Section 4. These
broken embedding theorems are based on combining the known results in classical Sobolev spaces and
the space of functions of bounded variation with a continuous reconstruction operator which maps any
DGFE function to a Lipschitz function. This operator is analyzed in detail in Section 3.

These results are then used to prove a compactness theorem for broken Sobolev spaces on succe-
sively refined meshes when endowed with suitable mesh dependent topologies. In our opinion, this
compactness theorem is the most important result of the present work.

Our original motivation to prove these results was to understand how one could use a DGFEM
to discretize energy minimization problems of the calculus of variations which occur in many areas
of applied mathematics. A possible idea was provided by Ten Eyck and Lew [21] which we briefly
motivate in Section 1.1 and analyze in detail in Section 6. The tools which we develop in Sections 3–5
allow us to give a rigorous convergence analysis for a general class of energy minimization problems.

As a second application we present a technique to prove that the constant in a broken embedding
inequality is the same as in its classical version, provided that the continuous version of the embedding
is compact. We demonstrate the technique at the example of the Poincaré–Sobolev inequality.

We anticipate that the tools and techniques which we develop in this paper will have numerous
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applications in the analysis of DGFEMs. For example, the embedding results can be useful for any
nonlinear problem where bounds on lower order nonlinear terms are required. The compactness results
may be useful for any problem where no “classical” analysis based on coercivity or an inf-sup condition
is possible (for example in the presence of multiplicity of solutions) and where only weak convergence
can be expected.

In the next two sections, we provide an introduction to our two targeted applications. We will use
notation which is not introduced until Section 2, but which is standard in the literature on DGFEMs.
Furthermore, we would like to stress that these sections are intended as an informal introduction and
therefore some statements are intentionally not made fully precise.

1.1 The variational DGFEM

Let Sk(Th) denote the space of possibly discontinuous, piecewise polynomial functions of degree k with
respect to a partition Th of a domain Ω ⊂ Rn with boundary ∂Ω = ΓD∪ΓN . Let Γint denote the interior
skeleton of the partition and let h denote the global and h(x) the local mesh size.

The basic problem of the calculus of variations is to minimize the functional

I (u) =
∫

Ω

f (x,u,∇u)dx+
∫

ΓN

g(x,u)ds (1.1)

over a set of admissible functions, say,

A =
{

u ∈ W1,p(Ω)m : u|ΓD = uD
}
,

where f : Ω×Rm×Rm×n →R and g : ΓN×Rm →R. Under suitable conditions on f and g, the existence
of minimizers follows from the direct method of the calculus of variations [8].

To discretize (1.1) by a conforming finite element method, one would construct a finite-dimensional
subspace Ah of A (by means of the finite element method) and aim to minimize I over Ah instead.
When f and g satisfy suitable conditions, one can then modify the direct method to prove the con-
vergence of discrete minimizers to a minimizer of the original problem. Such a technique completely
avoids the use of the Euler–Lagrange equations and is therefore particularly useful when they are not
available, or when it is known that the minimizers sought are singular and therefore may not satisfy
these equations [3].

The question which we wish to adress here, and in more detail in Section 6, is whether a similar
technique can be applied for the DGFEM. Naively, one might try to define a discrete functional as
follows,

Ih(uh) =
∫

Ω

f (x,uh,∇uh)dx+
∫

ΓN

g(x,uh)ds+
∫

Γint

h−1∣∣[[uh]]
∣∣2 ds+

∫
ΓD

h−1|uh−uD|2 ds, (1.2)

where ∇uh denotes the elementwise gradient of uh, [[uh]] denotes the jump of uh between two elements,
and h the local mesh size (see Section 2 for the precise definitions). The two latter terms would respec-
tively impose weak continuity across element interfaces and the Dirichlet boundary condition. However,
it turns out that this discretization is not convergent, which is due to fact that we used an inconsistent
discretization for the gradient. Since DGFE functions uh are not continuous, their distributional gradient
has a contribution from the jumps; more precisely,

〈Duh,ϕ〉=
∫

Ω

∇u ·ϕ dx−
∫

Γint

[[uh]] ·ϕ ds ∀ϕ ∈ C∞
c (Ω)m×n, (1.3)
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where [[uh]] is the jump of uh across the faces of Γint, which should be taken into account. In [21], Ten
Eyck and Lew used a lifting operator defined by∫

Ω

R(uh) ·ϕh dx =−
∫

Γint∪∂Ω

[[uh]] · {ϕh}ds, (1.4)

where {ϕh} is a suitable average (flux) of the bi-valued function ϕh on the skeleton, to define

Ih(uh) =
∫

Ω

f (x,uh,∇uh +R(uh))dx+
∫

ΓN

g(x,uh)ds+
∫

Γint

h−1∣∣[[uh]]
∣∣2 ds+

∫
ΓD

h−1|uh−uD|2 ds. (1.5)

Using our compactness result, Theorem 5.1, for motivation it was natural to arrive at the same discretiza-
tion. In fact, our theoretical results in Section 4 and 5 make it straightforward to prove convergence of
minimizers of Ih in Sk(Th)m to a minimizer of I in A ; see Theorem 6.1. The proof of this theorem
mimics the direct method (or rather a closely related technique known as Γ -convergence [4, 9]) where
our compactness results feature prominently. In addition, we do not restrict ourselves to the case p = 2
but will use more general Sobolev indices in our discretization. It will become clear that the appropriate
choice strongly depends on the properties of f and g.

We conclude this dicussion with a remark on the minimization problem (1.1). Depending on the
particular properties of f , the computation of minimizers to (1.1) is a largely unsolved problem. For
example, for typical stored energy densities of finite elasticity it is unknown whether a conforming
Galerkin finite element discretization of (1.1) converges [3, 16]. Our own analysis in the present work
only covers the case where f is convex in the third argument, and satisfies certain growth conditions,
which are insufficient to cover physically realistic stored energies (where f is at best polyconvex and is
infinite for certain gradients) and it can therefore only be considered an exploratory first step towards
the solution of the general model problem (1.1) by the DGFEM. However, we hope that the flexibility
of the discontinuous Galerkin method will allow us in the future to tackle some of the more difficult
problems in this class.

1.2 Optimal embedding constants

In Section 4 we prove several broken embedding theorems, such as the broken Sobolev–Poincaré in-
equality

‖uh− (uh)Ω‖Lq(Ω) 6 Ch|uh|W1,p(Th) ∀uh ∈ Sk(Th), (1.6)

where (uh)Ω = |Ω |−1 ∫
Ω

uh dx, and where p∈ [1,n) and q∈ [1,np/(n− p)]; see Lemma 4.1. The proofs
of these embedding inequalities are not sharp and do not give optimal constants, even if one would make
the effort to compute them explicitly.

Thus, in Section 7, we demonstrate a technique which allows us to determine the asymptotic be-
haviour of the constant Ch as h → 0, by comparing it to its classical counterpart

‖u− (u)Ω‖Lq(Ω) 6 C‖∇u‖Lp(Ω) ∀u ∈ W1,p(Ω). (1.7)

For example, if we define the broken Sobolev norm as

|uh|W1,p(Th) = ‖∇uh‖Lp(Ω) +α

(∫
Γint

h1−p∣∣[[uh]]
∣∣p ds

)1/p
,

(see also Lemma 2.2), then we can prove that, if α is small then liminfh→0 Ch >C, whereas, if α is large,
then limh→0 Ch = C. We obtain this result by rewriting the embedding inequalities as minimization
problems and then use techniques similar to those of Section 6.
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2. Discontinuous finite element spaces

Let H n−1 denote the (n−1)-dimensional Hausdorff measure and, for a set A ⊂ Rn, let dimHA denote
the Hausdorff dimension of A.

Let Ω ⊂Rn be a polyhedral Lipschitz domain. We divide the boundary ∂Ω into a Dirichlet boundary
ΓD and a Neumann boundary ΓN such that ΓN ∩ΓD = /0 and H n−1(∂Ω \ (ΓD∪ΓN)) = 0. Let (Th)h∈(0,1]
be a family of partitions of Ω̄ into convex polyhedral elements which are affine images of a set of
reference polyhedra. More precisely, we assume that there exists a finite number of convex reference
polyedra κ̂1, . . . , κ̂r, such that |κ̂i|= 1 for i = 1, . . . , r, and that for each κ ∈Th there exists an invertible
affine map Fκ and a reference element κ̂i such that κ = Fκ(κ̂i). The symbol h denotes the global mesh
size, i.e., h = maxκ∈Th diam(κ). Without loss of generality, we assume that h ∈ (0,1]. We will provide
further assumptions on the mesh regularity in the following section.

Throughout, we shall use the symbols ≈, . and & to compare quantities which differ only up to
positive constants which do not depend on the local or global mesh size, or on any function which
appears in the estimate.

2.1 Mesh regularity

In this section we propose a set of assumptions on the family of partitions (Th)h∈(0,1] which are required
in order to apply the theory developed in this paper. As it is standard in the finite element literature, we
define the set of (n−1)-dimensional faces Eh of the partition as follows:

Eh = {κ ∩κ
′ : κ,κ ′ ∈Th,dimH(κ ∩κ

′) = n−1}
∪{κ ∩∂Ω : κ ∈Th,dimH(κ ∩∂Ω) = n−1}.

Furthermore, we use Γint to denote the union of all faces e ∈ Eh such that dimH(e∩∂Ω) < n−1.
Let hκ = diam(κ) for all κ ∈ Th and he = diam(e) for all e ∈ Eh.We denote by h(x) the local mesh

size defined as a piecewise constant function defined as h(x) = hκ , x ∈ int(κ) and h(x) = he, x ∈ e.

Assumption 1 (Mesh Quality) We assume throughout that the family (Th)h∈(0,1] satisfies the follow-
ing conditions.

(a) Shape Regularity. There exist C1,C2 > 0 such that

C1hn
κ 6 |κ|6 C2hn

κ ∀κ ∈Th ∀h ∈ (0,1].

(b) Contact Regularity. There exists a constant C1 > 0 such that,

C1hn−1
κ 6 H n−1(e) ∀e ∈ Eh,κ ∈Th s.t. e ⊂ κ̄ ∀h ∈ (0,1].

In particular, we have he ≈ hκ under the above condition.

(c) Submesh Condition. There exists a regular, conforming, simplicial submesh T̃h (without hanging
nodes, edges, etc.) such that

1. for each κ̃ ∈ T̃h there exists κ ∈Th such that κ̃ ⊂ κ;

2. the family (T̃h)h∈(0,1] satifies (a) and (b); and

3. there exists a constant c̃ such that, whenever κ̃ ⊂ κ , then hκ 6 c̃hκ̃ .
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REMARK 2.1 The existence of a simplicial submesh is an entirely technical assumption which may be
tedious to verify in practise. We have included it since it seemed a fairly general assumption under which
we were able to prove the required results. We note also that in dimension n = 2,3 such a submesh can
be constructed under fairly mild assumptions on the partition Th [5, Corollary 7.3]. In fact, it seems
straightforward to generalize this proof to arbitrary dimensions. �

LEMMA 2.1 There exists a constant C, independent of h, such that

]{e ∈ Eh : e ⊂ κ}6 C ∀κ ∈Th ∀h ∈ (0,1].

Proof. Let κ ∈Th and let E ⊂ Eh be the set of faces contained in κ . Using Assumptions 1a, and 1b we
have

]E hn−1
κ ≈ ∑

e∈E
hn−1

e ≈ ∑
e∈E

H n−1(e) = H n−1(∂κ) ≈ hn−1
κ .

Upon dividing by hn−1
κ we obtain ]E ≈ 1. �

2.2 Broken Sobolev spaces and DGFE spaces

Let p ∈ [1,∞). We will use standard Sobolev spaces W1,p(Ω) and Lp-spaces Lp(Ω) with their corre-
sponding norms, with a self-evident notation. The broken Sobolev space W1,p(Th) is defined by

W1,p(Th) =
{

u ∈ L1(Ω) : u|κ ∈ W1,p(κ) for all κ ∈Th

}
.

The dual index is denoted by p′ = p/(p−1). The Sobolev index appearing in the Sobolev embedding
theorems (see [2]) is denoted by p∗ = np/(n− p) if p < n and p∗ = ∞ if p > n. We recall that W1,p(Ω)⊂
Lq(Ω), q ∈ [1, p∗]\{+∞}, and that this embedding is compact for all q < p∗ [2].

The subspace of discontinuous finite element functions of polynomial degree no higher than k is
defined as

Sk(Th) =
{

u ∈ L1(Ω) : u|κ ∈ Pk for all κ ∈Th

}
,

where Pk denotes the space of polynomials of degree k in Rn. For each face e ∈ Eh, e ⊂ Γint we denote
by κ+ and κ− its neighbouring elements. We write ν+,ν− to denote the outward normal unit vectors to
the boundaries ∂κ±, respectively. The jump of a vector-valued function ϕ ∈W1,1(Th)m and the average
of a matrix-valued function ϕ ∈ W1,1(Th)m×n with traces ϕ = ϕ± from κ± are, respectively, defined as

[[ϕ]] = ϕ
+⊗ν

+ +ϕ
−⊗ν

− and

{ϕ}= 1
2 (ϕ+ +ϕ−).

For u ∈ W1,p(Th)m, we define the broken Sobolev semi-norms:

|u|pW1,p(Th) = ‖∇u‖p
Lp(Ω) +

∫
Γint

h1−p|[[u]]|p ds,

|u|p
W1,p

D (Th)
= |u|pW1,p(Th) +

∫
ΓD

h1−p|u|p ds.

Next, we recall some important facts about the Banach space BV(Ω)m of functions of bounded
variation which contains the spaces W1,p(Th)m. The space is equipped with the norm

‖u‖BV = ‖u‖L1(Ω) + |Du|(Ω),
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where Du is the measure representing the distributional derivative of u and |Du|(Ω) is its total variation,
defined by

|Du|(Ω) = sup
ϕ∈C1

c (Ω)m×n

‖ϕ‖L∞ 61

∫
Ω

u ·divϕ dx.

The symbol C1
c(Ω) denotes the space of continuously differential functions with compact support in

Ω . Here and throughout, we use a · b to denote the usual euclidean inner product of either vectors or
matrices a, b of the same dimensions. Weak-∗ compactness of bounded sets and many other properties
of the space BV(Ω) will play an important role in our analysis.

The variation (distributional derivative) of a broken Sobolev function u ∈W1,p(Th)m is given by the
following formula which can be easily verified using integration by parts on every element of the mesh.

−
∫

Ω

u ·divϕ dx =
∫

Ω

∇u ·ϕ dx−
∫

Γint

[[u]] ·ϕ ds ∀ϕ ∈ C1
c(Ω)m×n. (2.1)

The following result is the starting point to lift results for the space BV to DGFE spaces.

LEMMA 2.2 There exists a constant C, independent of h and of p, such that, for all p ∈ [1,∞),

|Du|(Ω) 6 C |u|W1,p(Th) ∀u ∈ W1,p(Th)m ∀h ∈ (0,1].

Proof. The proof is a straightforward generalization of [17, Theorem 3.26] to the case p 6= 2. For the
sake of completeness, we include a brief sketch. The variation is bounded by

|Du|(Ω) 6 ‖∇u‖L1(Ω) +
∫

Γint

∣∣[[u]]
∣∣ds.

Since |Ω | < +∞, we have ‖∇u‖L1(Ω) 6 |Ω |1−1/p‖∇u‖Lp(Ω). We can use Hölder’s inequality and As-
sumption 1 to estimate∫

Γint

∣∣[[u]]
∣∣ds =

∫
Γint

h1/p′ h(1−p)/p∣∣[[u]]
∣∣ds

6

(∫
Γint

hds

)1/p′(∫
Γint

h1−p∣∣[[u]]
∣∣p ds

)1/p

.

(
∑

e⊂Γint

hn
e

)1/p′(∫
Γint

h1−p∣∣[[u]]
∣∣p ds

)1/p

By Assumption 1 as well as Lemma 2.1, we have

∑
e⊂Γint

hn
e . ∑

e⊂Γint

∑
κ∈Th
e⊂κ

hn
κ . ∑

κ∈Th

hn
κ ≈ |Ω |,

which gives the result. �
We conclude this section with an approximation result.

LEMMA 2.3 Suppose u ∈ W1,p(Ω)m for some p ∈ [1,∞), then, for each h ∈ (0,1] there exists uh ∈
S1(Th)m such that

‖u−uh‖Lp(Ω) + |u−uh|W1,p(Th) → 0 as h → 0.
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Proof. Since Ω is assumed to be a Lipschitz domain, it follows that C∞(Ω̄)m is dense in W1,p(Ω)m

and hence we may assume without loss of generality that u ∈C∞(Ω̄)m. For such a smooth function, this
result follows from standard polynomial approximation theory [7]. �

3. Reconstruction operator

As is the case in many works on discontinuous Galerkin methods, ranging from a posteriori error
estimation [12] to the proof of broken Poincaré type inequalities [5, 6, 14, 18], we require at several
points a continuous reconstruction operator. In this section we will make use of the assumption that
there exists a regular simplicial submesh of Th (see Assumption 1c).

Our goal is to define a family of quasi-interpolation operators Qh : Sk(Th)m → W1,∞(Ω)m and to
provide localized error estimates for Qhu−u in Lq norms, q ∈ [1,∞). Our results are more general than
previous ones in that we consider arbitrary Sobolev indices but weaker than those in [5], for example,
since we restrict ourselves to a fixed polynomial degree. In fact, our proofs do not carry over to arbitrary
W1,p(Th) functions in an obvious way since we make use of local inverse inequalities. The idea of using
quasi-interpolation operators was inspired by [15].

In order to simplify the notation, our discussion in this section is for scalar functions only. The
corresponding results for vector-valued functions follow trivially.

3.1 Local projection operators

Let us first introduce some notation for the submesh T̃h (see Assumption 1c). We denote by Ñh the set
of nodes of T̃h and by Ñ 0

h the subset of internal nodes. For every z ∈ Ñh, we define the star-shaped
patch

T̃z =
⋃
{κ̃ ∈ T̃h : z ∈ κ̃}, (3.1)

and we set hz = diam(T̃z). Due to the assumptions on the submesh T̃h, it is clear that T̃z contains a finite
number of elements which is independent of the mesh size.

Next, we establish the existence of linear maps πz : BV(Ω)→ R, z ∈ Ñh, such that

‖u−πz(u)‖L1(T̃z)
6 Chz|Du|(T̃z) ∀z ∈ Ñh ∀u ∈ BV(Ω), (3.2)

where C is independent of h and z. To achieve this, we have to distinguish between the cases when
z lies on the boundary ∂Ω and in the interior of the domain Ω . If z ∈ Ñ 0

h , i.e., z ∈ int(Ω), let Bz =
B(z,ρz), where ρz = minx∈∂ T̃z

|x− z|2 such that Bz ⊂ T̃z. From Assumption 1c it follows that ρz ≈ hz.
Setting πz(u) = (u)Bz (the mean value over the ball Bz) we obtain the following result. We note that our
construction as well as the proofs of the estimates are only minor modifications of the L2 case treated
by Verfürth [22, Lemma 4.1].

LEMMA 3.1 Let K ⊂ Rn be star-shaped with respect to the point x0 ∈ K and define

ρ1 = inf
x∈∂K

|x− x0|2 and ρ2 = sup
x∈∂K

|x− x0|2.

There exists a constant C, depending only on ρ2/ρ1 and on n such that

‖u‖L1(K) 6 C(ρ2/ρ1)
(
‖u‖L1(B) +ρ1|Du|(K)

)
∀u ∈ BV(K), (3.3)
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where B = B(x0,ρ1), and

‖u− (u)B‖L1(K) 6 C(ρ2/ρ1)ρ1|Du|(K) ∀u ∈ BV(K). (3.4)

Since the proof of this Lemma is technical we postpone it to the Appendix.
We note that Lemma 3.1 together with Assumption 1c (shape regularity of the submesh T̃h) imme-

diately implies (3.2) for interior nodes.
If z lies at the boundary, we define hz as before but we now set

ρz = inf
x∈∂ T̃z\∂Ω

|z− x|2.

Let B̃z = B(z,ρz)∩ T̃z = B(z,ρz)∩ Ω̄ . Repeating the proof of Lemma 3.1 verbatim we obtain

‖v‖L1(T̃z)
6 C

(
‖v‖L1(B̃z)

+hz|Dv|(T̃z)
)

∀v ∈ BV(T̃z). (3.5)

Since B̃z is not necessarily convex, we apply a further reduction to the first term on the right-hand side
of (3.5). Since ∂Ω is Lipschitz continuous, there exists a cone C with positive opening angle α , which
can be chosen independently of z, and apex 0, such that (z+C )∩B(z,ε)⊂ Rn \ T̃z for some ε > 0. Let
a ∈ Rn, |a|2 = ρz/2, be the direction of the axis of the cone C pointing into T̃z and define z′ = z + a.
It can be easily seen that B̃z is star-shaped with respect to z′ and that there exists a value r0 ∈ (0,1/2]
which depends only on α , such that Bz := B(z′,r0ρz) ⊂ B̃z ⊂ T̃z. Hence, we may define πz(u) = (u)Bz

again (but note that Bz is defined differently now) to obtain the following result.

LEMMA 3.2 For z∈ Ñh and u∈BV(Ω) let πz(u) = (u)Bz where Bz is defined as in the above discussion.
Then (3.2) holds with a constant C independent of the mesh size.

Proof. For interior vertices, we have already shown that (3.2) holds with a constant depending only on
hz/ρz, which measures mesh quality, and it remains to prove a similar bound for boundary vertices.

Using (3.5) with v = u−πz(u), we have

‖u−πz(u)‖L1(T̃z)
. ‖u−πz(u)‖L1(B̃z)

+hz|Du|(T̃z).

We now apply Lemma 3.1 with K = B̃z, B = Bz, h = ρz and ρ = r0ρz to obtain

‖u−πz(u)‖L1(B̃z)
. hz|Du|(B̃z).

Combining this estimate with the previous formula, we obtain

‖u−πz(u)‖L1(T̃z)
. hz|Du|(T̃z).

�

3.2 Construction and analysis of Qh

Finally, we are in a position to define and analyze the reconstruction operator. For each h ∈ (0,1] let
Qh : Sk(Th)→ W1,∞(Ω) be the linear operator defined by

Qhu = ∑
z∈Ñh

πz(u)λz, (3.6)
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where λz is the standard P1 nodal basis function on the mesh T̃h associated with the vertex z.
For later use we define for each z ∈ Ñh, κ ∈Th and e ∈ Eh:

Tz =
⋃
{κ ∈Th : z ⊂ κ}, Tκ =

⋃
{Tz : z ⊂ κ}, and Te =

⋃
{Tκ : e ⊂ κ}.

Furthermore, for A ⊂ Ω , we define the notation

Th∩A = {κ ∈Th : κ ⊂ A}.

Since T̃h is a submesh of Th, we have that Tz ⊃ T̃z, where T̃z was defined in (3.1). If we denote by Kκ

the number of elements κ ′ ∈ Th ∩Tκ , due to Assumption 1b (Contact regularity), it follows that Kκ is
bounded independent of h and of κ . Together with Assumption 1c this implies that

hz = diam(T̃z)≈ diam(Tz)≈ max
κ , z⊂κ

diam(Tκ)

and also
diam(Tκ)≈ min

κ ′⊂Tκ

hκ ′ ≈ hκ .

THEOREM 3.1 Fix p,q ∈ [1,∞). The reconstruction operator Qh defined in (3.6) satisfies the local
estimates, for all u ∈ Sk(Th),

‖u−Qhu‖Lq(κ) . h
n
q−

n
p +1

κ |u|W1,p(Th∩Tκ ) ∀κ ∈Th (3.7)

‖u−Qhu‖Lq(e) . h
(n−1)

q − n
p +1

e |u|W1,p(Th∩Te) ∀e ∈ Eh \Γint (3.8)

‖∇Qhu‖Lp(κ) . |u|W1,p(Th∩Tκ ) ∀κ ∈Th. (3.9)

Furthermore, for q ∈ [p, p∗]\{∞}, we have the global estimates

‖u−Qhu‖Lq(Ω) . h
n
q−

n
p +1|u|W1,p(Th) and (3.10)

‖∇Qhu‖Lp(Ω) . |u|W1,p(Th) (3.11)

where h denotes the global mesh size.

Proof. Fix q ∈ [1,∞). For each z ∈ Ñh we use Lemma A.1 to obtain

‖u−πz(u)‖Lq(T̃z)
≈ h

n
q−n
z ‖u−πz(u)‖L1(T̃z)

.

Our local projection result Lemma 3.2 gives

‖u−πz(u)‖Lq(T̃z)
. h

n
q−n+1
z |Du|(T̃z)

. h
n
q−n+1
z ‖∇u‖L1(Tz) +h

n
q−n+1
z ∑

e∈Eh∩Tz

∫
e

∣∣[[u]]
∣∣ds.

For the bulk term ‖∇u‖L1(Tz) we use Lemma A.1 and for the surface term we use Hölder’s inequality (as
in the proof of Lemma 2.2) to deduce

‖u−πz(u)‖Lq(T̃z)
. h

n
q−

n
p +1

z ‖∇u‖Lp(Tz) +h
n
q−

n
p +1

z

(
∑

e∈Eh∩Tz

h1−p
e

∫
e

∣∣[[u]]
∣∣p ds

)1/p

. h
n
q−

n
p +1

z |u|W1,p(Th∩Tz). (3.12)
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We now prove the local estimate (3.7). Using the fact that the hat functions {λz}z∈Ñh
form a partition

of unity, we have

‖u−Qhu‖q
Lq(κ) =

∥∥∥ ∑
z∈Ñh∩κ

(
u−πz(u)

)
λz

∥∥∥q

Lq(κ)
.

Rearranging terms, and recalling that ‖λz‖L∞(Ω) = 1 and that λz = 0 outside T̃z, we compute

‖u−Qhu‖q
Lq(κ) . ∑

z∈Ñh∩κ

‖u−πz(u)‖q
Lq(κ∩T̃z)

. ∑
z∈Ñh∩κ

‖u−πz(u)‖q
Lq(T̃z)

.

Using (3.12), we obtain

‖u−Qhu‖q
Lq(κ) . ∑

z∈Ñh∩κ

h
q( n

q−
n
p +1)

z |u|qW1,p(Th∩Tz)
.

Rearranging terms, using the definition of Tκ and recalling that the cardinality of Ñh ∩κ is uniformly
bounded,

‖u−Qhu‖Lq(κ) . h
n
q−

n
p +1

κ

(
∑

z∈Ñh∩κ

|u|qW1,p(Th∩Tz)

)1/q

. h
n
q−

n
p +1

κ |u|W1,p(Th∩Tκ ),

which concludes the proof of (3.7).
If e ∈ Eh∩∂Ω , then

‖u−Qhu‖Lq(e) 6 ∑
z∈Ñh∩e

‖u−πz(u)‖Lq(e∩T̃z)
.

The set e∩ T̃z is a union of faces of elements in T̃h. We can therefore use the local inverse estimate

‖u−πz(u)‖q
Lq(e∩T̃z)

. h−1
z ‖u−πz(u)‖q

Lq(T̃z)
,

after which proceed as above to obtain (3.8). The the third local estimate (3.9) follows along the same
lines.

To prove the first global estimate (3.10), we assume q∈ [p, p∗], q 6= ∞. It then holds that n
q −

n
p +1 >

0, and we set h∗ = h
n
q−

n
p +1 (recall that h is the global mesh size). We sum (3.7) (to power q) over

κ ∈Th, to obtain

‖u−Qhu‖q
Lq(Ω) . (h∗)q

∑
κ∈Th

(
‖∇u‖p

Lp(Tκ ) +
∫

Γint∩Tκ

h1−p|[[u]]|p ds

)q/p

. (h∗)q

(
∑

κ∈Th

[
‖∇u‖p

Lp(Tκ ) +
∫

Γint∩Tκ

h1−p|[[u]]|p ds
])q/p

,

where we used the fact ∑ |ai|α 6 (∑ |ai|)α for α > 1. Finally, we note that due to Lemma 2.1, each
element κ appears only in finitely many sets Tκ ′ and thus, taking the qth root, we obtain the result.

The second global estimate can be proved in the same way. �
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4. Broken embedding theorems

4.1 Poincaré inequalities

In this section, we prove broken Sobolev–Poincaré inequalities for any p ∈ [1,n). Similar results were
previously derived by Lasis and Süli for p = 2 [14]. The idea in our proof is the same as in the proof
of Theorem 3.1, to use the known results in BV(Ω) and in the Sobolev spaces W1,p(Ω) together with
local norm-equivalence and the reconstruction operator.

THEOREM 4.1 (SOBOLEV–POINCARÉ INEQUALITIES) Let p < n and let p∗ = np/(n− p). There
exists a constant CS such that

‖u− (u)Ω‖Lp∗ (Ω) 6 CS |u|W1,p(Th) ∀u ∈ Sk(Th)m ∀h ∈ (0,1]. (4.1)

In particular, it holds that

‖u‖Lp∗ (Ω) 6 CS

(
‖u‖L1(Ω) + |u|W1,p(Th)

)
∀u ∈ Sk(Th)m ∀h ∈ (0,1]. (4.2)

Proof. Let v = u− (u)Ω . It is easy to see that Qhw = w if w is a constant function. Hence, it follows
that Qhv = Qhu− (u)Ω and

‖v‖Lp∗ (Ω) 6 ‖v−Qhv‖Lp∗ (Ω) +‖Qhv− (Qhv)Ω‖Lp∗ (Ω) +‖(Qhv)Ω‖Lp∗ (Ω). (4.3)

For the first term on the right-hand side of (4.3) we use Theorem 3.1 to estimate

‖v−Qhv‖Lp∗ (Ω) . |v|W1,p(Th).

For the second term on the right-hand side of (4.3), we employ the Poincaré–Sobolev inequality for
W1,p(Ω)m, and (3.11), to obtain

‖Qhv− (Qhv)Ω‖Lp∗ (Ω) . ‖∇Qhv‖Lp(Ω) . |v|W1,p(Th).

For the last term, we note that ‖(Qhv)Ω‖Lp∗ (Ω) . ‖Qhv‖L1(Ω) and

‖Qhv‖L1(Ω) 6 ‖Qhv− v‖L1(Ω) +‖v‖L1(Ω)

. h|v|W1,1(Th) + |Dv|(Ω),

where we used Theorem 3.1 on the first term and the Poincaré inequality for BV(Ω) on the second term
on the right-hand side.

Using our estimate in Lemma 2.2, we deduce that |Dv|(Ω) = |Du|(Ω) . |u|W1,p(Th), and we can
combine our estimates to give the first result.

The second result follows immediately from ‖(u)Ω‖Lp∗ (Ω) . ‖u‖L1(Ω). �

4.2 Trace theorem

We first recall some facts about traces of functions of bounded variation. The following result summa-
rizes Theorems 1 and 2 in [11, Sec. 5.3].
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THEOREM 4.2 Let Ω be a Lipschitz domain in Rn. There exists a bounded, linear operator T : BV(Ω)m →
L1(∂Ω)m (we write Tu = u) such that∫

Ω

u ·divϕ dx =−
∫

Ω

ϕ ·dDu+
∫

∂Ω

(u⊗ν) ·ϕ ds ∀u ∈ BV(Ω)m ∀ϕ ∈ C1(Rn)m×n,

where ν is the unit outward normal to ∂Ω .
If u ∈ BV(Ω) then, for H n−1-almost every x ∈ ∂Ω , the identity

Tu(x) = lim
r→0

−−
∫

B(x,r)∩Ω

udx (4.4)

holds.

First, we notice that identity (4.4) immediately implies a Friedrichs inequality for BV(Ω), and
therefore, by Theorem 4.1, a broken Sobolev–Poincaré inequality with respect to a broken norm which
penalizes boundary values.

LEMMA 4.1 (FRIEDRICHS INEQUALITY FOR BV) Let u ∈ BV(Ω) and let ΓD be a subset of ∂Ω with
positive surface measure. Then, there exists a constant CF such that

‖u‖L1(Ω) 6 CF

(
|Du|(Ω)+

∫
ΓD

|u|ds
)

∀u ∈ BV(Ω).

Proof. We use the standard compactness technique to prove this result. For contradiction, suppose
that no such constant CF exists. Then, there exists a sequence u j ∈ BV(Ω) such that ‖u j‖L1(Ω) = 1
and |Du j|(Ω)+ ‖u j‖L1(ΓD) → 0 as j → ∞. Since ‖u j‖BV is bounded, there exists a subsequence (not

relabelled) and u ∈ BV(Ω) such that u j
∗
⇀ u in BV(Ω). Since this implies u j → u strongly in L1(Ω)

it follows that ‖u‖L1(Ω) = 1. Since the functional v 7→ |Dv|(Ω) + ‖v‖L1(ΓD) is convex and strongly
continuous, it is also lower semicontinuous with respect to weak-∗ convergence. Therefore, |Du|(Ω) =
0, which implies that u is constant in Ω . Since ‖u‖L1(ΓD) = 0 the trace of u at ΓD vanishes which means
that u = 0 and contradicts the assumption that ‖u‖L1(Ω) = 1. �

COROLLARY 4.1 (BROKEN FRIEDRICHS-TYPE INEQUALITY) Let p ∈ [1,n) and suppose that ΓD ⊂
∂Ω has positive surface measure. Then there exists a constant CBF , independent of h, such that,

‖u‖Lp∗ (Ω) 6 CBF
(
‖u‖Lp(ΓD) + |u|W1,p(Th)

)
∀u ∈ Sk(Th)m ∀h ∈ (0,1].

Proof. Using Theorem 4.1, Lemma 4.1, and Lemma 2.2, we obtain

‖u‖Lp∗ (Ω) . ‖u‖L1(Ω) + |u|W1,p(Th)

. ‖u‖L1(ΓD) + |Du|(Ω)+ |u|W1,p(Th)

. ‖u‖Lp(ΓD) + |u|W1,p(Th).

�
One may argue that, strictly speaking, Lemma 4.1 is a Poincaré-type inequality. However, we chose

to label it a Friedrichs-type inequality since it trivially implies

‖u‖Lp∗ (Ω) 6 C′
BF |u|W1,p

D (Th). (4.5)
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THEOREM 4.3 (BROKEN TRACE THEOREM) Let p∈ (1,n] and set q = p(n−1)/(n− p) (i.e., q satifies
(n−1)

p − (n−1)
q = 1− 1

p ). There exists a constant CBT , independent of h, such that

‖u‖Lq(∂Ω) 6 CBT

(
‖u‖L1(Ω) + |u|W1,p(Th)

)
∀u ∈ Sk(Th)m ∀h ∈ (0,1]. (4.6)

Proof. Summing qth powers of (3.8) over the faces on ∂Ω , we obtain:

‖u‖q
Lq(∂Ω) . ‖Qhu‖q

Lq(∂Ω) + ∑
e∈Eh,e⊂∂Ω

h
n−1− nq

p +q
κ |u|qW1,p(Th∩Te)

.

For the choice q = p(n−1)/(n− p) we have n−1−nq/p+q = 0 and furthermore, q/p > 1. The latter
property can be used to estimate

J

∑
i=1

|a j|q/p 6
( J

∑
i=1

|a j|
)q/p

Hence, we can estimate further,

‖u‖q
Lq(∂Ω) . ‖Qhu‖q

Lq(∂Ω) + ∑
e∈Eh,e⊂∂Ω

|u|qW1,p(Th∩Te)

. ‖Qhu‖q
Lq(∂Ω) +

(
∑

e∈Eh,e⊂∂Ω

|u|pW1,p(Th∩Te)

)q/p

. ‖Qhu‖q
Lq(∂Ω) + |u|qW1,p(Th).

The trace inequality (4.6) is obtained by employing the trace theorem (see for instance Theorem 6.4.1
in [13]) for Qhu, the continuity property of Qh and the estimate (3.11) of Theorem 3.1. �

5. Compactness in W1,p(Th)

In this section we will generalize the compactness properties of classical Sobolev spaces to broken
Sobolev spaces. This requires a consistent discretization of the gradient.

Using integration by parts on each element, it can be easily seen that the distributional derivative Du
of a broken Sobolev function is given by

〈Du,ϕ〉=
∫

Ω

∇u ·ϕ dx−
∫

Γint

[[u]] ·ϕ ds ∀ϕ ∈ C∞
c (Ω)m×n.

In order to use compactness properties of Lebesgue spaces, we construct a bulk-representation of the
jump contribution. To this end, we choose a polynomial degree l > 0 and then define the lifting operator
R : W1,p(Th)m → Sl(Th)m×n via∫

Ω

R(u) ·ϕ dx =−
∫

Γint

[[u]] · {ϕ}ds ∀ϕ ∈ Sl(Th)m×n. (5.1)

The polynomial degree l will later become a discretization parameter and can be chosen arbitrarily.

REMARK 5.1 We note that for the sake of the theory developed in this paper, the averages {ϕ} in the
right hand side of the definition (5.1) can be replaced by any linear flux ϕ̂ such that ϕ̂ = ϕ whenever ϕ

is continuous across all inter-element boundaries. �
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We first analyze the main features of the lifting operator. The left-hand side in (5.1) is an inner prod-
uct on a finite-dimensional space (cf. also Lemma A.2) while the right-hand side, for u ∈ W1,p(Th)m

fixed, is a linear functional on Sl(Th)m×n and hence R is well-defined. Next, we prove the boundedness
of R in different broken Sobolev spaces.

LEMMA 5.1 Let p ∈ [1,∞). There exists a constant CR such that

‖R(u)‖Lp(Ω) 6 CR

(∫
Γint

h1−p|[[u]]|p ds

)1/p

∀u ∈ W1,p(Th)m ∀h ∈ (0,1].

Proof. For each u ∈ W1,p(Th)m and for each ϕ ∈ Sl(Th)m×n we have∫
Γint

[[u]] · {ϕ}ds 6
∫

Γint

∣∣h−1/p′ [[u]]
∣∣ ∣∣ h1/p′{ϕ}

∣∣ds

6
(∫

Γint

h1−p|[[u]]|p ds
)1/p( 1

2p′

∫
Γint

h
(
|ϕ+|+ |ϕ−|

)p′ ds
)1/p′

.

We can further bound the second term in the last estimate by∫
Γint

h
(
|ϕ+|+ |ϕ−|

)p′ ds 6 2p′−1
∫

Γint

h
(
|ϕ+|p′ + |ϕ−|p′

)
ds

. ∑
κ∈Th

∫
∂κ

h|ϕ|p′ ds

. ∑
κ∈Th

∫
κ

|ϕ|p′ dx.

Thus, we have shown that∫
Γint

[[u]] · {ϕ}ds 6 C
(∫

Γint

h1−p|[[u]]|p ds
)1/p

‖ϕ‖Lp′ (Ω) (5.2)

∀u ∈ W1,p(Th)m ∀ϕ ∈ Sl(Th)m×n,

where C depends only on the mesh quality and on p. Using the inf-sup condition of Lemma A.2 we
obtain the result. �

THEOREM 5.1 (COMPACTNESS IN W1,p(Th)) Let p ∈ (1,∞). For each h ∈ (0,1] let uh ∈ W1,p(Th)m

such that
sup

h∈(0,1]

[
‖uh‖L1(Ω) + |uh|W1,p(Th)

]
< +∞. (5.3)

Then there exists a sequence h j ↓ 0 and a function u ∈ W1,p(Ω)m such that

uh j
∗
⇀ u in BV(Ω)m, and

∇uh j +R(uh j) ⇀ ∇u in Lp(Ω)m×n.

Proof. From Lemma 2.2 it follows that ‖uh‖BV is bounded. Hence, there exists a subsequence (which
is not relabelled for notational convenience) and a function u ∈ BV(Ω)m such that uh

∗
⇀ u in BV(Ω)m.
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Using the boundedness of the penalty term and applying Lemma 5.1 we also see that ∇uh and R(uh) are
bounded in Lp(Ω)m×n which implies their weak compactness. Upon extracting a further subsequence
(again not relabelled), we obtain

∇uh ⇀ Fa and R(uh) ⇀ Fj,

as h → 0, where Fa,Fj ∈ Lp(Ω)m×n. We show now that Duh converges to Fa + Fj in the sense of
distributions. Since ∇uh ⇀ Fa, we only need to show that the jumps generate Fj in the limit, i.e., that

−
∫

Γint

[[uh]] ·ϕ ds →
∫

Ω

Fj ·ϕ dx ∀ϕ ∈ C∞
c (Ω)m×n. (5.4)

To this end, we add and subtract a function ϕh ∈ Sl(Th)m×n, then use the definition of R(uh) and subtract
ϕ again. This procedure gives

−
∫

Γint

[[uh]] ·ϕ ds = −
∫

Γint

[[uh]] ·
{

ϕ −ϕh
}

ds−
∫

Γint

[[uh]] · {ϕh}ds

= −
∫

Γint

[[uh]] ·
{

ϕ −ϕh
}

ds+
∫

Ω

R(uh) ·ϕh dx

= −
∫

Γint

[[uh]] ·
{

ϕ −ϕh
}

ds+
∫

Ω

R(uh) · (ϕh−ϕ)dx+
∫

Ω

R(uh) ·ϕ dx.

Using Lemma 5.1 it follows immediately that, if we choose ϕh in such a way that ‖ϕ −ϕh‖L∞ → 0, for
example ϕh = (ϕ)κ in κ , then the first and second term tend to zero as h → 0. Since R(uh) converges
weakly to Fj, it follows that Duh converges to Fa +Fj in the sense of distributions. Since Duh converges
also to Du in the sense of distributions, it follows that Du = (Fa +Fj)dx. Therefore, the singular part of
Du is zero, and hence u has a weak derivative ∇u = Fa +Fj ∈ Lp(Ω)m×n. Poincaré’s inequality implies
that u ∈ Lp(Ω)m and hence u ∈ W1,p(Ω). �

LEMMA 5.2 (COMPACT EMBEDDINGS) Under the conditions of Theorem 5.1 it also holds that

uh j → u in Lq(Ω)m ∀q : 1 6 q < p∗, and (5.5)
uh j → u in Lq(∂Ω)m ∀q : 1 6 q < q∗, (5.6)

where q∗ = (n−1)p/(n− p) if p < n and q∗ = ∞ if p > n.

Proof. For the proof of strong Lq convergence (5.5) it is sufficient to use the compactness of the
embedding BV(Ω)m ⊂ L1(Ω)m and use Riesz’ interpolation theorem to lift the strong convergence to
the Lq spaces indicated. To make this precise, suppose that uh j

∗
⇀ u in BV(Ω)m, then uh j → u strongly

in L1(Ω)m. Furthermore, if ‖uh j‖L1 + |uh j |W1,p(Th) is bounded then, by (4.2), ‖uh j‖Lp∗ is bounded and,
by Theorem 5.1, u ∈ W1,p(Ω)m ⊂ Lp∗(Ω). Hence, using Riesz’ interpolation theorem, we can estimate

‖u−uh j‖Lq(Ω) 6 ‖u−uh j‖
(1−θ)
Lp∗(Ω)‖u−uh j‖

θ

L1(Ω) 6 C‖u−uh j‖
θ

L1(Ω)

for some θ ∈ (0,1). The right-hand side in this inequality tends to zero.
Unfortunately, the trace operator presented in Theorem 4.2 is not compact and thus, we must revert

to using the continuous reconstruction operator Qh to prove the second result. From (3.8) it follows that,
for each face e ⊂ ∂Ω ∩Eh,

‖uh−Qhuh‖q
Lq(e) . h

n−1− nq
p +q

e |uh|qW1,p(Th∩Te)
. (5.7)
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We prove (5.6) only for q ∈ [p,q∗), where q∗ is defined as above, the other cases being an immediate
consequence of the statement for, e.g., q = p. Set α = n− 1− nq/p + q > 0. Summing (5.7) over the
faces on the boundary, we obtain:

‖uh−Qhuh‖q
Lq(∂Ω) . hα

∑
e⊂∂Ω

|uh|qW1,p(Th∩Te)
.

Since q > p we can use ‖ · ‖`q 6 ‖ · ‖`p , and Assumption 1b, to deduce that

‖uh−Qhuh‖q
Lq(∂Ω) . hα

∑
e⊂∂Ω

|uh|qW1,p(Th∩Te)

. hα

(
∑

e⊂∂Ω

|uh|pW1,p(Th∩Te)

)q/p

. hα |uh|qW1,p(Th).

This implies that
‖uh−Qhuh‖Lq(∂Ω) → 0 as h → 0. (5.8)

Since the trace operator from W1,p(Ω)m to Lq(∂Ω)m is compact [2, Theorem 6.3] and Qhuh is bounded
in W1,p(Ω)m, it follows that Qhuh → u in Lq(∂Ω)m and therefore, by virtue of (5.8), uh → u in Lq(∂Ω)m.
�

6. Variational DG approximation of minimization problems

Let Ω be a domain in Rn with boundary ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = /0 where ΓD has positive surface
measure. Let f : Ω ×Rm ×Rm×n → R be a Carathéodory function, i.e., measurable in its first and
continuous in its second and third argument. Suppose, further, that f satisfies the p-growth condition

c0(|F |p−|u|r +a0(x)) 6 f (x,u,F) 6 c1(|F |p + |u|q +a1(x)) (6.1)

where ai ∈ L1(Ω). We furthermore require that p ∈ (1,∞), that r < p, and that r 6 q < p∗. Let g : ΓN ×
Rm → R be a Carathéodory function which satisfies the growth condition

|g(x,u)|6 c2(|u|r +a2(x)), (6.2)

where a2 ∈ L1(ΓN) and r is the same index as in (6.1).
We define the functional I : W1,p(Ω)m → R by

I (u) =
∫

Ω

f (x,u,∇u)dx+
∫

ΓN

g(x,u)ds, u ∈ W1,p(Ω)m. (6.3)

Fix uD ∈ W1,p(Ω)m and define the set of admissable trial functions A to be the closed, affine subspace
of W1,p(Ω)m given by

A =
{

u ∈ W1,p(Ω)m : u|ΓD = uD
}
,

We consider the problem of finding a minimizer of I in A . If f is convex in its third component then
the existence of minimizers follows from the direct method of the calculus of variations; see for example
Theorems 3.1, 3.4 and 4.1 in [8]. Note in particular that, if either m = 1 or n = 1, then convexity of
f in its third argument is a necessary and sufficient condition for I to be sequentially weakly lower
semicontinuous [8, Theorem 3.1], which is a necessary condition for the direct method to apply to our
problem. However, if min(m,n) > 2 then a more general notion of convexity should be allowed. [8]

Before proposing a discretization strategy, we summarize the most important technical facts about
(6.3) which we use in the convergence proof.
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LEMMA 6.1 Let f and g be Carathéodory functions which respectively satisfy the growth conditions
(6.1) and (6.2).

(i) If u j → u strongly in Lq(Ω)m and Fj → F strongly in Lp(Ω)m×n then∫
Ω

f (x,u j,Fj)dx →
∫

Ω

f (x,u,F)dx, as j → ∞.

(ii) If u j → u strongly in Lr(ΓN)m then∫
ΓN

g(x,u j)ds →
∫

ΓN

g(x,u)ds as j → ∞.

(iii) If u j → u strongly in Lq(Ω)m, Fj ⇀ F weakly in Lp(Ω)m×n, and if f is convex in the third
argument, then ∫

Ω

f (x,u,F)dx 6 liminf
j→∞

∫
Ω

f (x,u j,Fj)dx.

Items (i) and (ii) follow from Fatou’s Lemma while item (iii) is an application of [8, Theorem 3.4].
We now turn to the discretization of the functional (6.3). To this end, we chose a polynomial degree

l > 0 and then define the lifting operator R : W1,p(Th)m → Sl(Th)m×n as in (5.1). The lifting R(u) is a
bulk representation of the jump contribution to the distributional gradient of u. The polynomial degree
l is a method parameter and can be chosen arbitrarily.

We propose the following discrete functional

Ih(uh) =
∫

Ω

f
(
x,uh,∇uh +R(uh)

)
dx+

∫
ΓN

g(x,uh)ds (6.4)

+
∫

ΓD

h1−p|uh−uD|p ds+
∫

Γint

h1−p∣∣[[uh]]
∣∣p ds,

and our discrete problem is to find a minimizer of (6.4) among all possible vector fields in Sk(Th)m.
In the tradition of the literature on discontinuous Galerkin finite element methods, we chose to label
this variational method VIP-DGFEM (variational interior penalty discontinuous Galerkin finite element
method). We note that the fourth term in (6.4) weakly imposes the Dirichlet boundary condition and it
is therefore not necessary to impose this condition on the approximation space.

Essentially the same DGFE discretization (with p = 2 but allowing a more general definition of the
flux) was defined by Ten Eyck and Lew [21] for applications in finite elasticity. We refer to their paper
for a linearized stability analysis and very promising numerical results. An error analysis for smooth
solutions of the Euler–Lagrange equations was given in [18].

Note that, despite its appearance, (6.4) is in fact fairly straightforward to implement. The definition
of the lifting operator (5.1) allows the construction of R(uh) locally in each element, taking into account
only the degrees of freedom on the edges of the element. For example, if R(uh) is chosen to be piecewise
constant (which is sufficient to obtain convergence) then

R(uh)|κ = |κ|−1
∫

∂κ\∂Ω

[[uh]]ds ∀κ ∈Th. (6.5)

Our first step in the analysis of (6.4) is to prove that families with bounded energies are bounded in
the broken W1,p-norm.
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LEMMA 6.2 (COERCIVITY) Suppose that the energy densities f and g satisfy respectively (6.1) and
(6.2). Then there exists a constant C, independent of the mesh size, such that

‖u‖p
W1,p(Th) 6 C (Ih(u)+1) ∀u ∈ Sk(Th)m ∀h ∈ (0,1].

Proof. Let u ∈ Sk(Th)m. By the growth hypotheses (6.1) and (6.2) and the Trace Theorem 4.3, we have

Ih(u) > c0

(
‖∇u+R(u)‖p

Lp(Ω)−‖u‖r
Lr(Ω)−‖a0‖L1(Ω)

)
−c2

(
‖u‖r

Lr(Ω) + |u|rW1,r(Th) +‖a2‖L1(ΓN)

)
+
∫

Γint

h1−p|[[u]]|p ds+
∫

ΓD

h1−p|u−uD|p ds.

Since r < p, for any ε > 0, we can estimate

‖u‖r
Lr(Ω) . ‖u‖r

Lp(Ω) 6
ε

p/r
‖u‖p

Lp(Ω) +
1

ε(p/r)′
. ε

−1 + ε‖u‖p
Lp(Ω).

Treating the term |u|rW1,r(Th) in a similar fashion, we obtain

Ih(u)+C(ε) > c0

(
‖∇u+R(u)‖p

Lp(Ω)− ε‖u‖p
Lp(Ω)− ε|u|pW1,p(Th)

)
+
∫

Γint

h1−p|[[u]]|p ds+
∫

ΓD

h1−p|u−uD|p ds.

An application of the broken Friedrichs inequality, Corollary 4.1, gives

Ih(u)+C(ε) > c0

(
‖∇u+R(u)‖p

Lp(Ω)− ε(1+2p−1Cp
BF)
(
‖u‖p

Lp(ΓD) + |u|pW 1,p(Th)

))
+
∫

Γint

h1−p|[[u]]|p ds+
∫

ΓD

h1−p|u−uD|p ds.

To shorten the notation, in what follows, we rename ε = ε(1 + 2p−1Cp
BF). For a given δ ∈ (0,1], we

estimate the first and last terms on the right-hand side respectively by

‖∇u+R(u)‖p
Lp(Ω) > δ‖∇u+R(u)‖p

Lp(Ω) > 21−p
δ‖∇u‖p

Lp(Ω)−δ‖R(u)‖p
Lp(Ω), and∫

ΓD

h1−p|u−uD|p ds >
∫

ΓD

|u−uD|p ds > 21−p
∫

ΓD

|u|p ds−
∫

ΓD

|uD|p ds,

and hence deduce

Ih(u)+C(ε) > c0

(
(21−p

δ − ε)‖∇u‖p
Lp(Ω)−δ‖R(u)‖p

Lp(Ω)− ε

∫
ΓD

|u|p ds

)
+
∫

Γint

h1−p∣∣[[u]]
∣∣p ds+

∫
ΓD

|u|p ds

We now fix δ = 1
2c0 Cp

R

, where CR is the constant appearing in Lemma 5.1, so that penalty integral

dominates δ‖R(u)‖p
Lp(Ω). Finally, we obtain

Ih(u)+C(ε) > c0(21−p
δ − ε)‖∇u‖p

Lp(Ω) +(1/2− c0ε)
(∫

Γint

h1−p∣∣[[u]]
∣∣p ds+

∫
ΓD

|u|p ds
)
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which provides the required bound after choosing, e.g., ε = min{1/4c0,2−pδ} and then applying Corol-
lary 4.1. �

Together, Lemma 6.2 and Theorem 5.1 establish the compactness of any family of DGFEM func-
tions uh for which Ih(uh) is bounded. This allows us to use a direct method related technique (namely
Γ -convergence; see [10, 9]) to prove the convergence of discrete minimizers to a minimizer of I in A .

THEOREM 6.1 (CONVERGENCE) Suppose that f and g are Carathéodory functions which respectively
satisfy (6.1) and (6.2) and that f is convex in its third argument.

For each h ∈ (0,1], let uh ∈ argminSk(Th)mIh. Then, there exists a subsequence h j ↓ 0 and u ∈
BV(Ω)m such that uh j

∗
⇀ u. Any such accumulation point u is a minimizer of I in A (in particular,

u ∈ W1,p(Ω)m) and satisfies

uh j → u in Lq(Ω)m ∀q < p∗, (6.6)

∇uh j ⇀ ∇u in Lp(Ω)m×n, (6.7)

Ih j(uh j)→I (u) and (6.8)∫
ΓD

h1−p
j |uh j −uD|p ds +

∫
Γint

h1−p
j |[uh j ]|

p ds → 0, (6.9)

as j → ∞. If f is strictly convex in its third argument then, in addition,

|u−uh j |W1,p
D (Th j )

→ 0 as j → ∞.

If the minimizer is unique, then the entire family uh converges.

Proof. By the growth condition (6.1), any family (uh) which is bounded in W1,p(Th)m has bounded
energy Ih(uh) and conversely, by Lemma 6.2, if Ih(uh) is bounded then ‖uh‖W1,p(Th) is bounded as
well.

From the compactness result, Theorem 5.1, we therefore deduce the existence of a subsequence
h j ↓ 0 and of a limit point u ∈ W1,p(Ω)m such that uh j

∗
⇀ u in BV(Ω)m.

Assume now that (uh j) is any minimizing sequence for Ih j converging weakly-∗ to some u ∈
BV(Ω)m. From the boundedness of the energy and the broken Friedrichs inequality, we can again
deduce the boundedness of |uh j |W1,p(Th j )

and therefore can employ Theorem 5.1 to deduce that u ∈
W1,p(Ω)m as well as

∇uh j +R(uh j) ⇀ ∇u weakly in Lp(Ω)m×n. (6.10)

Lemma 5.2 implies (6.6).
Since the boundary penalty terms, ∫

ΓD

h1−p
j |uh j −uD|p ds

are bounded, using also Lemma 5.2, it follows that

‖u−uD‖Lp(ΓD) 6 ‖u−uh j‖Lp(ΓD) +‖uh j −uD‖Lp(ΓD) → 0

as j → ∞ and hence u ∈A .
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Lemma 5.2 also implies the strong convergence of uh j to u in Lr(∂Ω)m, and therefore, it follows
from Lemma 6.1 (ii) that the surface integral converges, i.e.,∫

ΓN

g(x,uh j)ds →
∫

ΓN

g(x,u)ds as j → ∞.

As a consequence, using (6.10) and Lemma 6.1 (iii), we deduce that

I (u) 6 liminf
j→∞

[∫
Ω

f (x,uh j ,∇uh j +R(uh j))dx+
∫

ΓN

g(x,uh j)ds

]
.

To see that u ∈ argminA I , fix v ∈A and let vh ∈ Sk(Th)m converge strongly to v in the ‖ · ‖Lp∗ (Ω)
as well as the | · |W1,p(Th)-norm (see Lemma 2.3). From Lemma 6.1 (using also the Trace Theorem 4.3)
we therefore obtain Ih(vh)→I (v), which allows us to estimate

I (u) 6 liminf
j→∞

[∫
Ω

f (x,uh j ,∇uh j +R(uh j))dx+
∫

ΓN

g(x,uh j)ds

]
6 limsup

j→∞

Ih j(uh j) 6 limsup
j→∞

Ih j(vh j) 6 I (v).

Since v was arbitrary it follows that I (u) ∈ argminA I . By choosing v = u we find that all inequalities
are equalities from which we can infer that Ih j(uh j) → I (u) and that the penalty terms converge to
zero as h j → 0, i.e. that (6.9) holds. As a consequence we also have R(uh j)→ 0 strongly which implies
(6.7).

If f is strictly convex in its third argument then the theory of Young measures shows that weak
convergence together with convergence of the energy implies strong convergence. For example, the
proof of Theorem 3.16 in the monograph of Pedregal [19] can be immediately adapted to give our
result. See also Lemma A.3 in the appendix.

The last point follows from a straightforward uniqueness argument. �

7. Optimal embedding constants

In this final section, we present a second application of the compactness results of Section 5. Under
suitable conditions we shall deduce that, in the limit as h → 0, the optimal embedding constant in
the broken Sobolev–Poincaré inequality (4.1) is the same as the embedding constant for the classical
Sobolev space. We demonstrate the technique only on the example of the Sobolev–Poincaré inequality,
but we believe that it should apply to any compact embedding of a Sobolev space. Throughout this
section, we take m = 1.

Unfortunately, our results are incomplete for the particular broken semi-norm which we have chosen.
Instead, we analyze the equivalent norm

|u|W1,p
1 (Th) = ‖∇u‖Lp(Ω) +α

(∫
Γint

h1−p|[[u]]|p ds
)1/p

, (7.1)

where α is some fixed positive constant.
From norm equivalence in R2 it follows immediately that | · |W1,p(Th) and | · |W1,p

1 (Th) are equivalent;
more precisely, there exists a constant cα > 0 such that

cα |u|W1,p(Th) 6 |u|W1,p
1 (Th) 6

1
cα

|u|W1,p(Th) ∀u ∈ W1,p(Th) ∀h ∈ (0,1]. (7.2)
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We can now study the Poincaré constants of the newly defined broken semi-norm. Fix p ∈ (1,∞),
q ∈ [1, p∗), and let V = {v ∈ L1(Ω) : (v)Ω = 0}. From (7.2) it follows that we can replace | · |W1,p(Th)
by | · |W1,p

1 (Th) in (4.1) to obtain

‖uh− (uh)Ω‖Lq(Ω) 6 Ch(p,q)|uh|W1,p
1 (Th) ∀uh ∈ Sk(Th), (7.3)

which is the discrete counterpart of the Sobolev–Poincaré inequality

‖u− (u)Ω‖Lq(Ω) 6 C(p,q)‖∇u‖Lp(Ω) ∀u ∈ W1,p(Ω). (7.4)

We begin by noting that the optimal constants Ch(p,q) and C(p,q) in (7.3) and (7.4) are, respectively,
given by

1
C(p,q)

= inf
u∈W1,p(Ω)∩V
‖u‖Lq(Ω)=1

‖∇u‖Lp(Ω) (7.5)

and
1

Ch(p,q)
= inf

uh∈Sk(Th)∩V
‖uh‖Lq(Ω)=1

|uh|W1,p
1 (Th).

In particular, the latter can be viewed as a discretization to the minimization problem defining C(p,q)
and we can therefore employ a similar type of analysis as in Section 6 to obtain the following result.

We note for future reference that both infima 1/C(p,q) and 1/Ch(p,q) are attained. This statement
is trivial for the latter and, for the former, it follows from the fact that the set over which we minimize
in (7.5) is weakly closed in W1,p(Ω).

PROPOSITION 7.1 There exists a constant α̂ > 0 such that

lim
h↓0

Ch(p,q) = C(p,q), if α > α̂, and

liminf
h↓0

Ch(p,q) > C(p,q), if 0 < α < α̂.

Proof. We begin by investigating the case where α is large. Suppose that uh ∈ Sk(Th)∩V , h ∈ (0,1],
that ‖uh‖Lq(Ω) = 1 and that |uh|W1,p

1 (Th) =Ch(p,q)−1. From Lemma 2.3 and norm-equivalence it follows

that |uh|W1,p(Th) is bounded and hence we can extract a subsequence uh j converging weakly-∗ in BV(Ω)
and strongly in Lq(Ω) to a function u ∈ W1,p(Ω). In particular, ‖u‖Lq(Ω) = 1 and we have

‖∇u‖Lp(Ω) 6 liminf
j→∞

‖∇uh j +R(uh j)‖Lp(Ω)

6 liminf
j→∞

(
‖∇uh j‖Lp(Ω) +‖R(uh j)‖Lp(Ω)

)
.

If α is sufficiently large (e.g., if α > CR) it follows from Lemma 5.1 that

‖∇u‖Lp(Ω) 6 liminf
j→∞

|uh j |W1,p
1 (Th j )

and therefore liminfh↓0 Ch(p,q)−1 > C(p,q)−1. From Lemma 2.3 we obtain limh↓0 Ch(p,q) = C(p,q).
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Now assume that α is small. Let u∈W1,p(Ω)∩V such that ‖u‖Lq(Ω) = 1 and such that ‖∇u‖Lp(Ω) =
C(p,q)−1. For each h ∈ (0,1] let uh be defined by

uh(x) = (u)κ ∀x ∈ κ ∀κ ∈Th.

Clearly, uh ∈ Sk(Th)∩V and ‖uh − u‖Lq(Ω) → 0 as h ↓ 0. Furthermore, we can bound the seminorm
|uh|W1,p

1 (Th) in terms of ‖∇u‖Lp(Ω) as follows.

α
−p|uh|pW1,p

1 (Th)
= ∑

e⊂Γint

h1−p
e H n−1(e)|(u)κ+ − (u)κ−|p

. ∑
e⊂Γint

hn−p
e
[
|(u)κ+ −π|+ |(u)κ− −π|

]p
, (7.6)

for any π ∈ R.
We construct π in a similar fashion as the local projection operators in Section 3.1. Fix e = κ+ ∩

κ− ∈ Eh. Assumption 1 implies the existence of z ∈ e and ρ ≈ he such that B(z,ρ)⊂ K := κ+∪κ−. In
particular, K is star-shaped with respect to z. Hence, we can set π = (u)B and use Lemma 3.1 to deduce
that

|(u)κ+ −π|+ |(u)κ− −π|. h−n
κ+‖u−π‖L1(κ+) +h−n

κ−‖u−π‖L1(κ−) . h−n+1
e ‖∇u‖L1(K).

Upon taking p-th powers, and applying Jensen’s inequality, we obtain[
|(u)κ+ −π|+ |(u)κ− −π|

]p
. hp−np

e ‖∇u‖p
L1(K) . hp−n

e ‖∇u‖p
Lp(K).

Combined with (7.6) and the contact regularity assumptions, this gives

α
−p|uh|pW1,p

1 (Th)
. ‖∇u‖p

Lp(Ω) = C(p,q)−1.

In summary, we have obtained that there exists a constant α̃ which is independent of h such that

α
−1|uh|W1,p

1 (Th) 6 α̃C(p,q)−1.

Hence, for α < 1/α̃ it follows that

Ch(p,q)−1 6 |uh|W1,p
1 (Th) 6 αα̃C(p,q)−1 < C(p,q)−1,

and, as a consequence, we obtain that liminfh↓0 Ch(p,q) > C(p,q).
Finally, we note that if the latter property holds for a specific α = α ′ then it also holds for all α < α ′

and hence the proposition follows. �

REMARK 7.1 We conclude our analysis of optimal Sobolev–Poincaré imbedding constants with a re-
mark on a modification of the seminorm | · |W1,p(Th). If we redefine it as

|u|W1,p(Th) =
(
‖∇u‖p

Lp(Ω) +α

∫
Γint

h1−p∣∣[[u]]
∣∣p ds

)1/p
,

with Sobolev–Poincaré constant C̃h(p,q) then we can obviously use the construction of a recovery se-
quence for the | · |W1,p

1 (Th)-seminorm in the proof of Proposition 7.1 to deduce that, if α is sufficiently

small, then liminfh↓0 C̃h(p,q) > C(p,q). However, we have a gap for large α .
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For sufficiently large α we can deduce from Proposition 7.1 that

limsup
h↓0

C̃h(p,q) 6 21/pC(p,q),

which is a good bound but not optimal. Setting a = ‖∇uh‖Lp and b = (
∫

Γint
h1−p|[[uh]]|p ds)1/p in the

following inequality,
(|a|+ |b|)p 6 (1+ ε)|a|p +Bε |b|p,

where Bε depends only on ε and on p, we can strengthen this result to

lim
α→∞

limsup
h↓0

C̃h(p,q) = C(p,q).

However, we are unable to prove that limsuph↓0 Ch(p,q) = C(p,q) for any sufficiently large (but fixed)
α . In fact, our numerical experiments suggest that this is not the case. �

A. Appendix

A.1 Proof of Lemma 3.1

This proof is a modification of the proof of [22, Lemma 4.1]. Throughout, we set γ = ρ2/ρ1.
Using the local approximation of BV functions by smooth functions (cf. [11, Sec. 5.2.2]), there

exists a sequence u j ∈ BV(K)∩C∞(K) such that u j → u strictly in BV, i.e., u j → u strongly in L1 and
|Du j|(K) → |Du|(K) as j → ∞. Hence, we can assume without loss of generality that u ∈ C∞(Ω)∩
W1,1(Ω).

We write
‖u‖L1(K) = ‖u‖L1(B) +‖u‖L1(K\B).

Let Σ be the unit sphere in Rn and, for each σ ∈ Σ , let x0 + r(σ)σ ∈ ∂K. For the second term, we
compute

‖u‖L1(K\B) =
∫

Σ

∫ r(σ)

ρ1

tn−1|u(tσ)|dt ds(σ)

6
∫

Σ

∫ r(σ)

ρ1

tn−1∣∣u(tσ)−u(ρ1σ)
∣∣dt +

∫
Σ

∫ r(σ)

ρ1

tn−1∣∣u(ρ1σ)
∣∣dt ds(σ)

=: S1 +S2.

To obtain a bound on S1, consider

S1 =
∫

Σ

∫ r(σ)

ρ1

tn−1
∣∣∣∫ t

ρ1

∂ru(rσ)dr
∣∣∣dt ds(σ)

6 ρ1
1−n

∫
Σ

∫ r(σ)

ρ1

tn−1
∫ t

ρ1

rn−1|∂ru(rσ)|dr dt ds(σ)

6
1
n

ρ1
1−n(ρn

2 −ρ1
n)
∫

Σ

∫ r(σ)

ρ1

rn−1|∂ru(rσ)|dr ds(σ)

6
ρ1

n
(γn−1)‖∇u‖L1(K\B).
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For S2, we estimate

S2 =
1
n

∫
Σ

(
r(σ)n−ρ1

n)|u(ρ1σ)|ds(σ)

6
ρ1

n

∫
Σ

[
ρn

2
ρ1n −1

]
ρ1

n−1|u(ρ1σ)|ds(σ)

=
ρ1

n
(γn−1)

∫
Σ

ρ1
n−1|u(ρ1σ)|ds(σ)

=
ρ1

n
(γn−1)‖u‖L1(∂B).

We bound ‖u‖L1(∂B) as follows:

‖u‖L1(∂B) =
∫

Σ

ρ1
n−1|u(ρ1σ)|ds(σ)

=
∫

Σ

ρ1
n−1
∣∣∣∫ ρ1

0
∂r

[( r
ρ1

)n
u(rσ)

]
dr
∣∣∣ds(σ)

=
∫

Σ

ρ1
n−1
∣∣∣∫ ρ1

0

[( r
ρ1

)n
∂ru(rσ)+

nrn−1

ρ1n u(rσ)
]

dr
∣∣∣ds(σ)

6
∫

Σ

ρ1
−1
∫

ρ1

0
rn∣∣∂ru(rσ)

∣∣dr ds(σ)+n
∫

Σ

ρ1
−1
∫

ρ1

0
rn−1|u(rρ1)|dr ds(σ)

6 ‖∇u‖L1(B) +
n
ρ1
‖u‖L1(B).

Combining all our estimates, we obtain

‖u‖L1(K) 6 ‖u‖L1(B) +
ρ1

n
(γn−1)‖∇u‖L1(K\B)

+
ρ1

n
(γn−1)‖∇u‖L1(B) +(γn−1)‖u‖L1(B)

= γ
n‖u‖L1(B) +

ρ1

n
(γn−1)‖∇u‖L1(K)

which gives (3.3).
To obtain the second result, we note that the Poincaré inequality on balls takes the form (see [1],

where this is proved for arbitrary convex sets)

‖u‖L1(B) 6 ρ1‖∇u‖L1(B) ∀u ∈ W1,1(B),(u)B = 0. (A.1)

Thus, (3.4) follows immediately from (3.3).

A.2 Auxiliary results

LEMMA A.1 Let (Th)h∈(0,1] be a family of partitions of Ω satisfying Assumption 1. Then, for each
p,q ∈ [1,∞], there exists a constant C > 0, independent of h, such that for any κ ∈Th

h
− n

p
κ ‖v‖Lp(κ) 6 Ch

− n
q

κ ‖v‖Lq(κ) ∀v ∈ Sk(Th) ∀h ∈ (0,1].

Moreover, for any κ̃ ∈ T̃h

h
− n

p
κ̃

‖v‖Lp(κ̃) 6 Ch
− n

q
κ̃
‖v‖Lq(κ̃) ∀v ∈ S1(T̃h)+Sk(Th) ∀h ∈ (0,1].
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Proof. Let κ ∈ Th, κ̂ its corresponding reference element and Fκ : κ̂ → κ the associated mapping.
We set J = |det∇Fκ |. Since Fκ is bi-Lipschitz we have C−1hn

κ 6 J 6 Chn
κ for some constant C which is

independent of κ . From the area formula (cf. [11]), we have∫
κ

|u|p dx =
∫

κ̂

J|u◦Fκ |p dx ≈ hn
κ

∫
κ̂

|u◦Fκ |p dx.

Using norm-equivalence in finite-dimensional spaces, we obtain

∫
κ

|u|p dx ≈ hn
κ

(∫
κ̂

|u◦Fκ |q dx

)p/q

≈ hn−np/q
κ

(∫
κ

|u|q dx

)p/q

.

The first equivalence follows by taking the p-root.
The second equivalence is proved with the same technique, after noting that, given v ∈ S1(T̃h) +

Sk(Th) then v|κ̃ is a polynomial of degree k. Thus the previous reasoning applies. �

LEMMA A.2 Let Sk(Th) be defined as in Section 2 and let the mesh-family satisfy Assumption 1. Then,
for each p ∈ [1,∞), there exists a constant C, independent of h, such that

inf
u∈Sk(Th)

sup
v∈Sk(Th)

∫
Ω

uvdx
‖u‖Lp(Ω)‖v‖Lp′ (Ω)

> C > 0.

Proof. For a given u∈Lp(Ω) set v = |u|p−2u so that
∫

Ω
uv = ‖u‖Lp(Ω)‖v‖Lp′ (Ω). At the discrete level, if

u ∈ Sk(Th), the choice v = |u|p−2u is not allowed, in general. Instead we set v = Πk(|u|p−2u), where Πk
denotes the L2-projection onto Sk(Th) (note that this is a projection element by element) and therefore

‖Πku‖2
L2(κ) =

∫
κ

uΠkudx 6 ‖u‖Lp′ (κ)‖Πku‖Lp(κ) ∀κ ∈Th.

Using Lemma A.1, we obtain

‖Πku‖Lp′ (κ) 6 CΠ‖u‖Lp′ (κ) ∀κ ∈Th,

where CΠ is independent of h and κ . Moreover, by the definition of Πk, it holds that
∫

Ω
uΠkvdx =∫

Ω
uvdx for all u ∈ Sk(Th). A possible value for the constant C in the statement is therefore given by

1/CΠ . �
The last result which we prove in this appendix allows us deduce strong convergence of a sequence

from its weak convergence together with convergence of a strictly convex energy. This result is well-
known and the proof is a straightforward adaption of [19, Theorem 3.16]. However, we did not find a
precise statement suited for our specific needs and therefore prefer to give a sketch of the proof.

LEMMA A.3 Let f : Ω ×Rm×Rk be a Carathéodory function satisfying the growth condition

| f (x,u,v)|6 c(1+ |u|q + |v|p)

and such that f (x,u, ·) is strictly convex for a.a. x ∈ Ω and for all u ∈ Rm.
If u j → u strongly in Lq(Ω)m and v j ⇀ v weakly in Lp(Ω)k, and if

lim
j→∞

∫
Ω

f (x,u j,v j)dx =
∫

Ω

f (x,u,v)dx,

then v j → v strongly in Lp(Ω)k.



26 of 27 A. BUFFA & C. ORTNER

Proof. The proof requires the machinery of Young measures which we cannot introduce at this point.
A nice introduction is given in [20]. Suffice to say that Young measures give a more precise description
of weak limits and, when the functional (6.3) is extended in a suitable way, it becomes continuous under
weak convergence.

Let (µx)x∈Ω be the Young measure generated by (a subsequence of) (v j) j∈N. Then (δu(x)⊗µx)x∈Ω

is the Young measure generated by the pairs (u j,v j) j∈N. Using the assumptions of the Lemma, and [20,
Corollary 5.7] we can estimate

lim
j→∞

∫
Ω

f (x,u j,v j)dx =
∫

Ω

f (x,u(x),v(x))dx

=
∫

Ω

f
(

x,u(x),
∫

Rk
zdµx(z)

)
dx

6
∫

Ω

∫
Rk

f (x,u(x),z)dµx(z)dx

=
∫

Ω

∫
Rm⊗Rk

f (x,z′,z)d(δu(x)⊗µx)(z′,z)dx

= lim
j→∞

∫
Ω

f (x,u j,v j)dx.

Thus, equality must hold in the inequality of line three, which means that

f
(

x,u(x),
∫

Rk
zdµx(z)

)
=
∫

Rk
f (x,u(x),z)dµx(z) for a.a. x ∈ Ω .

By assumption, f (x,u(x), ·) is strictly convex for a.e. x and hence µx = δµx = δv(x).
Now, we can use [20, Corollary 5.7] again, to deduce that

lim
j→∞

∫
Ω

|v j|p dx =
∫

Ω

∫
Rk
|z|pµx(dz)dx =

∫
Ω

|v|p dx,

and therefore v j → v strongly in Lp (see also [20, Lemma 5.8]). �
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