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ABSTRACT 

In this thesis we formalise the Maximum Delay Convention 

of Catastrophe theory. 

We prove theorems concerning the genericity of the existence 

and uniqueness of lifts from the control spa.ce. to the ca.t~b-ophe 

manifold (see Chapter 1), according to the convention above 

mentioned. 

Our methods of proof involve the application of transversality 

theory in a new context: that of higher order tangent bundles. 
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1.0(1) 

CHAPTER I 

1.0. INTRODUCTION: 

1.0.1. On 'what is' and 'why' the problem 

The problem we want to tackle here is that of giving mathematical 

substance to the so called 'maximum delay convention', as it is now known 

in Catastrophe Theory Literature. 

We will briefly describe the general setting which will be considered 

here. Suppose we are given a state space X, a control space C, and a 

catastrophe manifold M, c X x C, that is the critical set of some generic 

function on X parametrized by C; the minima of the function form a sub

manifold M~ of M. Suppose we now imagine some Ifast' dynamic on X parametrized 

by C, for which the minima are attractnrs, causing Mh to become the attracting 

manifold of the fast dynamic. If we also impose some 'slow' flow ljJon the 

control space, then this will induce a lifted flow ~ 'near' the attracting 

manifold, M~, which will be continuous most of the time, but will exhibit 

'catastrophic jumps' when it comes to the boundary of M~. 

x 

c 

Our objective is to formalise 

this last state~nt, replacing 

the vague words 'fast', 'slow', 

'near', and 'catastrophic jump' by 

the requirement that the lifted 

flow ~ be on M~. We shall give 

definitions of lift and precise 

generic conditions under which we 

shall prove the existence and 

uniqueness of 1 i fts. 

The technical difficulties may be summarized as follows: it is 

generally accepted that when the 1 ift comes to the boundary of M"- then the 
I 
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state should 'jump to a neighbouring sink, the one into whose basin the 

original sink disappears' (see US], page 156). An inmediate objOection to 

this sentence is that it does not always make sense, since the 'original 

sink' may find itself in a separatrix, and not in the basin of a 'neighbouring 

sink'. A natural question arises, as to whether it 'generically' makes sense. 

That is, can we give it a precise meaning, by restricting ourselves to open-

* dense sets tr c 0', the space of all objects determi'ning the dynamics on X, 

parametrized by C (see Chapter 1, §2, for precise statements and Chapter 6 

* for a further discussion) and V c V, the space of all dynamics on C? Further-

more, can we prove the existence and uniqueness of a lift ~, under these 

circumstanr.es? These are the problems we address ourselves here. 

The picture below gives an idea of the present 

state of our research and also of our personal 

feelings on the subject, at the moment. 

~Je have completely solved the above question~ 

in the region marked A. We believe that to 

extend this to region B is just a matter of 

some more technical work. As to region C, 

in certain cases (see Chapter 6), we have 

well defined conjectures, whereas in other 

all that we can (vaguely) say is that 'generic thinking' suggests that those 

questions should be answerable though we can not foresee at the moment, precise 

methods for its solution. This is basically due to the lack of mathematical 

development in areas closely related to these problems. 

We would also like to comment on the relations of the questions above 

with catastrophe theory in a somewhat broader context. The central philosophical 

claim in qualitative dynamics is that observed processes in nature must be 



structurally stable, in the sense that they should 'remain', in,some w~, 

qualitatively the same, under small perturbations of whatever generates/ 

parametrizes them, otherwise they would not be observable. Suppose now 

that the lift ~, according to some convention, is 'generically' existent 

1.0(3} 

and unique. It seems reasonable to 'identify' ~ with the corresponding 

natural process under study, as far as the catastrophe theory method is 

concerned. Therefore, the solution of the questions proposed above would 

also allow one to consider in a precise mathematical context, through some 

'natural' definition of 'similarity' among lifts the question of gener;city -

with respect to cr/V - of the corresponding GLOBAL concept of structural 

stability. This seems, to my mind, a more satisfactory setting than a LOCAL 

concept (germ level) of structural stability. 

1.0.2: On how we deal with the prob1em~ 

We assume the dynamics on the 'fibres', X x {y}, y € C, to be given by 

* * some 0' € rJ , 0' open and dense in 0 (see 1-2 for precise statements) and then 

* defi ne V c:V, whi ch i s subs.~quently proven to be open and dense, such that, 

* for a~ fixed v € V the 'lift' $ exists and is unique. This appears to be 

the easiest approach to the problem formulated above. 

The main results are stated in Chapter 1, where we also fix notations. 

The solution corresponding to the case n = 1, 1 ~ r s 4, is contained 

* in Chapter 2-4. The proof that V ;s open and dense in V is based on transver-

sality methods centered around the Thorn Transversality Theorem on k-jet 

spaces; these are developed in Chapter 3 and applied in Chapter 4. Chapter 2 

* contains the proof that if v € V then ~ exists and is unique. 

Chapter 5 treats the case r = 1, n E ~. 

Chapter 6 contains some conjectures and concluding remarks. Each chapter 

is preceded by an introduction, where details of this general outline can be found. 
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1.1. DEFINITIONS: 

Throughout this work X = Xn will be a compact n-dimensional manifold, 

also referred to as the 'state space', C = Rr, with r ~ 5, the 'control space'. 

F denotes the set of all em functions f:X x C +m, given the COO Whitney 

topology. 

DEFINITION 1: , 

Mf = {(x,y) E X x clx is a critical point of·f ,f (x) = f(x,y)} y y 

DEFINITION 2: 

ITx and ITc are the prOjections X x C ~ X and C, respectively. 

x = IT It,1 f c f 

DEFINITION 3: -
We first remark that "3 an open and dense set f,* c F s.t. if f E F* then 

Mf is an r-manifold and Xf:M f +Rr has only elementary catastrophes as 

singularities; this result is basically the same as in (16],Chapter 8 and is 

proved in Prop. 0, Chapter 2. 

* We call f 'generic' if f E F 

DEFINITION 4: 

'"Let N be a differential manifold VS(N) is the space of CS vector fields 

on N, S E m; V(N) is the space of em vector-fields on N. 

Note:· 

general, the letter 'v' to designate vector fields. 

DEFINITION 5: 

M~ = {(x,y) E Mfl:3 chart (~,U) around x E X s.t 

(f ~ -1)11 (cf»{x»: lRn x Rn 
+ R is diagonal lzable to 

y 
n 2 
t QiXi' a

l
• = +1 if 1 ~ i s k, a. = -1 otherwise}. 

;=1 1 
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13 () ( -1 € X X C chart 4>,U s.t. fy4> )"(4)(X)) is degenerate}. 

DEFINITION 7: 

aMn = Mn _ Mn 
f . f f 

--- Note: Definitions above are the same --
if we substitute ':1 I by I ~ I, since 

the relevant defining properties do 

not change under diffeomorphisms 

(see [3], pg. 105). 

C_\R.J1-=2. DEFINITION 6: Let be a dyn.system on rio 

w[<p] (X)={Y€N\3{!n},tn\ s.t.l.!: <p(tn'x)=y~' 
R+ ('as n-+oo') n 

Let N as above, 9 a ~Riemannian metr'ic on TN(i.e. an element 9 € Coo{L2(TN»~ s 
compatible and pOSe definite everywhere; to put it more explicitly, 'fx € N, 

~ V € TxN, fixed, gx € L;(Tx .NJR), gx (v,v) ~ 0, gx(v,v) = 0 ~ v=O and(gx(v,v)~ 
is a norm compatible with the original one in TxN). Let f:N ~m. Set Vf(g) (x), 

or simply Vf(x), when there is no possible confusion, as the unique vector in 

This defines a vector field, Vf, on N, the gradient of f with respect to g. 
II 

(Vf{9» 

DEFINITION 8; 

Let v € V(N). 

S(v) = {x € Nlv(x) = 0 € TxN}. 

DEFINITION 9: 

Let N be compact, w the flow on N associated with v E V(N). 
y 

Let P be a fixed point of Wy • 



Define: 

{in }set [~v](P) = {x e NI~v(t,x) ~ P as t ~ {+ oo} } 
{ } { } 
{out} {- oo} 

We shall write {in } set (P) when it is clear enough what v is. 
{ } 

. {out} 

DEFINITION 10: 

1.1.(3) 

Let f:N ~R,N as in Definition 9, g fixed. We say that v e V{N) is 

subordinated to f if: 

(AI) S(v) = S(-Vf). 

(A2) v p e S(v), fixed, 

{in} set [~v](P) = {in} set [~-Vf](P). 
{ } { } 
{out} {out} 

DEFINITION 11: 

Given f:X x C ~m, generic, a family V = {vy} yeC'Vy e VeX) is said to be 

compatible with f iff, V y e C, fixed, Vy is subordinated to fy:X ~ R, fy:X ~ f(x,J 

[Note: the reason for Definitions 10 and 11 is that we want to abstract those 

properties of gradients whi~h we will use; that is, the nature of their sing. 

and ir)·sets] • . 
DEFINITION 12: 

If t is a dynamical system on N, define: 

w[~] (W) = U w[~] (x). 
xeW 

Write simply w(W}, if ~ is clearly fixed. 

DEFINITION 13: 

Let t be as above; then 

separatrices of ~ = {x £ NI~ nghd W ~ x s.t. w{W) = w(x)}. 

Write also sep ~. 

DEFINITION 14: 
# 

Y f: C is a bifurcation (X)int for f .. 3 x E X s. t. (x,y) E M~. Cf is the 

set of all such points. 



DEFINITION 15: 

Let f be given, V be a fixed compatible family. 

Suppose (x,y) E aM~. 

The local Maxwell set of f at (x,y) is. the germ at y of: 

'V 

Jf,x,y = {y € clx € sep ~}, 

1.1.(4) 

whereby ~~ we mean the flow generated on X (compact) by Vy € V. Please see 

page It·1.! for an ill ustrative exampl e. 

DEFINITION 16: 

The f Maxwell set at y is the germ at y of 

M ::: U J 
f,y (xi,Y)€M~ f,xi,y· 

t~e remark that the singularities (xi,y) of the gradient field on X, 

compact, are isolated. Therefore, the union, as above, is finite. 

DEFINITION 17: 

Set Af,y = Mf,y U Cf. Let y E C, V E V(C) =" {v E V(C) Iv is bounded}. 

Let W be the associated flow (defined on R x C, since v is bounded). Then, set: v 

non-zero orbit of y under v ~ 0y{v) = 0y = U wv(t,y) 
- t~ 
. t;O 

positive orbit of y under v = O;(vl, = 0; = t~+ wv(t,y}, 

:R + = {xElR I t>O}. 

£-orbit of y under v = 0y{E,V) = 0y(£) = LJ $ (t,y). 
\tl<£ v 
trO 

Note: We use the letter ~ for flows on X, and W for flows on C. 
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1.2. THE MAIN THEOREMS 

Let f be generic, f:X x C ~m; let V, compatible with f, be fixed. 

Let Ay = Af ,y. . (where a R-metric 9 has been fixed) 

Set Vf = {v € ~Iv satisfies HI and H2 ~:low} 

\ly € Cf ' Fixed, ~ an £ > 0, s.t. Ay n 0y(£) = 0. 

S(v) n Cf = 0. 

THEOREM 1: 

Let v € V
f

, 1JJ = lJJv be the flow induced by v on c. 3 a unique 1 ift cp, 

with the following properties: 

(I) 1R~)( r~n ___ cI>~~ Mn 

I~ 1 x 

+ mo Ie C ,1JJ , C 

; s commutative, 1R~ =' {t E: 1R I t ~ OJ 

(2) <1>1 {a} x Mn ~ 1-
~ Mn 

(3) Let (t,m) E: R~ x Mn be fixed. Then, :l € = E(t,m), E > 0, such that 
I\, I\, 

TIx <I>(t,m) E: inset (llxcl>(t,m», 'ft E: [t,t + E}. 
I\, I\, 

The implicit vector field is V~,y = llccl>(t,m}. 

(4) Define cI> by: cI> (t) = <p(t,m), m € M" fixed. Then: m m 

~ is left continuous at t, " (t,m) fixed; 
m 

<l>m is continuous at t. provided ~(t,y) I Cf , 

Y = ¥cm. Also,' {tl~(t,y} E Cf } is a set of isolated points. 
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THEOREM 2: 

* * Let r ~ 4, n = 1, f generic. :} V ,open-dense in V(C), V. c V
f

. 

THEOREM 3: 

Let r = 1, n E ~, f generic, V = {vy}' the (one-parameter) compatible 
. * family be generic in the sense of 113] (see Theorem A in §4). Then, 3 V , 

open-dense in VfC),s.t, "v E V*, fixed, 3 a unique lift ¢:m~ x Mn ~ Mn with 

properties as in Theorem 1 . 

. ~ 
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CHAPTER 2 

2.0. INTRODUCTION 

The aim, in this chapter, is to prove Theorem 1. 

In §1 we collect some simple results, some of which also for later 

reference; the main reason for setting these propositions apart is, however, 

that they are just technicalities, needed in the proof of Theorem 1 (§2), and 

'lIe felt that they might otherwise obscure that proof. 

l . , ' 
I' 

I : , , tit 

0 It,t,t.z,. 1:~t"!> ts 

(Pi = "'y( t;» 

In §2, we construct the lifting, ~. 

Lemmas 1/3 show how to construct ~ in 

____ leasy· regions, ; .e., where y does not 

7-

intersect Cf ; ;n picture, see wy{[O,to»' 
which we denote by Yl. 

Lemma 4 is a technical assertion about 

the set' {t } of tbad ' points. 
n 

Lemma 5 tells how to extend the lift 

to Po = Wy(to)· 

Lemma 6, which contains the central 

difficulty, shows how to uniquely do 

the j umpi ng. 

Finally, Lemmas 7 and 8 show how to 

inductively construct the rest of the 

lifting, extending first to Y2' then 

PI' then jumping again; to Y3' then P2' 

and so on. 

The 'jumps' at some of the Pl' might be 'trivial' ('amplitude zero'), but Note: 

this is irrelevant. 
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2.1. PRELIMINARY RESULTS 

We initially prove Pr~position 0, announced in Definition 3, Chapter 1; 

this generalizes Theorem 8.1 of [16] to the case where the state-space is an 

arbitrary n-dimensional compact manifold. 

PROPOSITION 0: 

Let Xn be a compact, Coo, n-dimensional manifold, F be the set of all C

F~~~ Xn x Rrtp R, with the COO Whitney topology, r € {1,2,3,4,5}.3an open-
* .. dense set f. c f such that Mf(see Definitio n 1) is a r-dimensional manifold 

andXfMf c Xn x Rr ~Rr has only elementary catastrophes as singularities, 

where a point (x,y) € Xn x Rr is an elementary catastrophe for Xf if 3 a 
n r n r r chart W for X x R at (x,y) s. t . .x -1: M .-1 c R x R -+ R has an 

(<!>xI) fllJ fllJ 

elementary catastrophe (as definition in [1], Chapter 7) at llJ(x,y). 

Proof 

We will initially prove two lemmas, from which the proposition easily 

~ J' by: n 

follows. 

First, we fix notation. Cover Xn 

with a finite number of charts, 

{U.".} so that ,.:u,. ~ B3(0) eRn. 
'11 

Let wi = 'i1
{B2(0». 

v. = ,:1(B (0» ,11 

iRn,o + R,O 
F • (x y) ... 7-jet at 0 0 
i· , x' ... f i (x«' ,y) - f i (x,y). 

7 
Let Filii {f € FI F 'I ~ Q on B1)( Rr }, where Q is the stratification of In as 

given in [16], Chapter 8. lNot.: wJ~~ Vi covers xn). 
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LEMMA 1 

fi is dense in f, for every fixed i. 

Proof 

Let h € f, and A be an open set in Coo(Xn 
x Rr JR) containing h.W.~ 

we can suppose that A = B~{h) = {g € fld(jky{p),jkh(p» < o(p), Vp € Xn x Rr }, 

where k is a positive integer, d is a metric on Jk(Xn x Rr JR), compatib(e with 

its topology, o:Xn 
x R

r +R+ a continuous fn, and J~(.,.), jk(.) are, respectively, 

the k-jet bundle, k-jet map [see [4] page 37]. 

Define o[i] = o/U.:U. x Rr +R+, and , , 
Bi = BO[i]{~;) = {fi € Coo{Ui x Rr JR)\d{jkfi(p),jkhi(p» < 

< o[i](p). V p € U. x Rr} 1 , 

wh.e~e. hi = hlu; x R
r
, by deF~nLt.ofL. 

B; is an open nghd (in Coo(Ui x Rr JR» of hi. 
-1 r r 

Now'~i : B3 x R + Ui x R induces (see: note (1), page 49, [4]) a 

-1 * 00 r 00 r . i i -1 (tfJ· ) :C (U.:~xR,R) -.. C (B3 xR ,R), glven by f + f 0 llJ· = f .• 
1 1 1 def.' 

Since-} ~i1 is a diffeomorPhis,m, (~i1) * is a homeomorphism (see note (2) page 49, [4] 

-1' .", ) . .. i -1 . co( r 
Therefqre, Ci = (lJJi l (Bi is an open nghd of hi: === h 1fJ; , 1n C 83 x R ,R). 

roo. r Let now t:B3 x R +R be a C bump functlon , s.t. t = 1 on B1 x R , 
. . r o s t s 1 everywhere and t = 0 outside B2 x R • 

Let r: (Cco
(B3 x Rr JR»4 + CClO(B3 x Rr JR) be given by: 

(a,b,c,d) ---lo> a + b (c-d), 

a continuous map. 

The set {fi € CClO(B3 x Rr ,R)lfi i Q on B1 x Rr} can be proven to be open 

and dense in {filfi € CClO(B3 x Rr ,R)}; the proof is just the same as in [16} 

Chapter 8, except that B1 x Rr and not Rn x Rf has to be expressed as a union 

of compact sets. 
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"" Therefore, we can choose 9· in this set, sufficiently close to h. and 
1 1 

so that: 

"" "" r{hi'~,9i,hi) = hi + ~(9i - hi) : 9i € Cia This is because 

r(hi,~,hi,hi) = hi· 

One then has: \ 9i : ~i outside B2 x Rr 

(9i = 9i inside B1 x Rr Therefore 9i n Q on B1 x Rr. 

Therefore gi = (~.)* g. = g. ~. € B
1
., and so 

1 1 1 1 

= 

LEMMA 2. 

outside Ui x Rr 

on U. x Rr 
1 

is in A n fi' as required. 

Let X C Vi x Rr be a compact. ff = {f € F1Fi ! Q on ~i(X)} 
is Ckt1 (hence C~) open. 

Proof 

'Givene:>o,3c5>Os.t. 
~----------------------------------------------------,. 

o 

i i ~ r -~ r 
where q = lfJi(p), f ,9 £ C (Ui x R ,R), fi,gi £ C (B3 x R ,R) as defined before. 

The distance ~, on the r.h.s., comes from the standard distance. in 

RS = Jk+1{Rn x Rr,R) in a canonical way (see [4J, pg.39). 



Proof of Claim: 

K «(orwt,pa.C.t) 

( ~.-')® 
'" 7" 

We first remark that "3 K, compact, T > 0, K:::> jk+lf i(X), also compact 

(jk+1f i is continuous), s.t. B-r(p) c K, Vp E: jk+1f i(X). 

I d d o 0 • k+ 1 i () k+ 1 r ~ n ee . glven P E: J f X c J (Ui x R ,R), ~ nghd Np and chart 

$p:Np ~ $hNp) c some RS, $p(Np) limited, w.l~o.g.; consider B~( )(p) c N 
POP P 

d ~ ok+1f i(X) . h fO' an cover J Wlt a lnlte number of such balls. Set 

U = l:J 0 0 B~(p.) (Pj) and construct A, 
J(flnlte) J 

k+l i + ' 
A:j f OK) ~R by p ~ d(p, C (U» > O. Let -r = min A(p) > 0, 

, ~k+lfi(v' 
• W"ete C~u.) metnS complement of U'. p € J N 

Now, ~pj(B~(pj){Pj» is compact; K =~ wpj (e) :::> U is compact, and BT(p) c K, 
'. J 

~p E: jk~lfi(X). This concludes the remark. 

~i1induces naturally a (~i1)~:Jk+1(Ui x Rr JR) ~ Jk+1(B
3 

x Rr JR) (see 

(3), pg.39, [4P. Since $1'1 is a diffeomorphism, so is (lPi1)® (see (3),pg.40, (41). 

In particular, (~ill~) is uniformly contiuous. on K, Therefore:l z.: Sot. 

-1 ® -1 ® \J d(P1,P2) < z.:~d«$i ) (P1)'(~i ) (P2}) < E, v(P1,P2) E: K x K. 

By taking ~ = min {l;,T} f.:, we get impl ication •• 

The proof of this lemma (and also of the rest of Proposition 0) now 

follows the same lines as those of the open lemmas in Chapter 8, [16] 
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Fix p E X. Fi is I. to Q at q = Wi(P). By continuity, Fi I Q in a nghd 
~ . 

of q, N, say, which we assume to be compact, w.l.o.g. This remains true for 
'V 

suff. small changes of F. and TF. on N; so, for suff. small changes in ., , 
jk+l fi on 'N. Since N is compact,~E > 0 s!t. d(jk+19i {q);jk+1fi (q»<E ~Gi i Q 

'V k 1 'V 
on N. Therefore, from the claim above, V~+N(f) c f~ = {h E flH. i Q on N} , u, , , 

-1 'V 
N = Wi (N). 

~ 'V 1'V 
Cover the compact X = Wi(X) by a finite number of N., N. = $: (N.), at 

i J NJ 1 J 
each stage choosing convenient E., 0., so that Vok+ N (f) c f,.j. Let J J ., . 

J J N 

~ = min. ~j' One has:V~:~(f) = 0vt~. c: 0V~~~Nj c: r;'F;j = F~. as 
J J J J 

required. o 

LEMMA 3: 
00 

Let X = U X
J
., a countable union of disjoint compacts Xj , \'/ith disjoint 

j=1 
r nghds y., X c V. x lR • J , 

f~ ='{f E FIF; ~ Q on $i(X)} is Ck+1 (therefore Coo) open. 

Proof 
k+l ( x. 

For each Xj ' construct OJ S. t. V cS • "X. f) c F ; J. Construct bump 
J J 

functions B.:Xn x:Rr -+ [0,1] s.t. B· == 1 on X., 8J. == 0 outside YJ'. Set 
J J J 

00 

\1 : Xn x rt -+ lR+ by \1 = 1 - L (1-0·)8·. 
j=l J J 

o 

LEMMA 4: 
is Ck+ 1 open. (Therefore em opt~ 
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Proof 

Follows easily, by expressing (see also Lenma 6, Chapter" 8, [16]) 

\ 
Vi x ~r as a (finite) union of sets with the properties of X as in Lemma 3. C 

Proof of Proposition 0: 

* f\ * Set F = F.. From the above lemmas, F is open and dense 
finite 1 

(in the Whitney COO top.). Let (x,y) € Xn x lRr be in M
f

, f E: F*, fixed 

(x y) V x 'Dr f . Set Mi M (r 
, E: i ~, or some 1. : = f / V i x R r = Mf n V i x R ). 

Now. Mi : . Mf ;lB1 x n{ = 1/Ji (M i l. and Hi is a r-submanifo 1 d. since 

r Fi i Q on B1 x m , from Theorem 8.1, ([16]). From this, Mf is an r-submanifold. 

Now, if (x,y) is singular for Xf' ~i(x,y) is singular for Xf.' hence an , 
elementary catastrophe (Theorem 8.1 of [16]), as required. 0 

Throughout the rest of this chapter, f: Xn x1Rr~5 ... JR will be a fixed 

function in F* (see Proposition 0 above), where Xn, compact, is given a 

Riemannian Metric 9 and V is a (fixed) family, compatible with f 

(see Definition II). '". 

~ We now show that, from a local point of view, and as far as gradients 

are concerned, one can assume that f: fI x JRr ... JR, rJ an open nghd of 0 E: oRn; 

we can actually prove the following: 

Remark 1: 

Suppose (x,y) E: Xn x mr,fy:Xn +R given by fy(X) = f(x,y) and vfy(g) 

the gradient field of f with respect to 9 (see Definition 7). Then:r chart " y 

(w = ~ x Ii U x ~r) for Xn x~r around (x,y), ~(x) = 0 € ~n, s.t. the 

vector field (on ~(U»: Z ~ (T 1 ~oV fy(9)o~-1). (i.e., just Vfy(g) on 
~- (Z) 

U 'transported' to ,(U) eRn by,) equals V(fy~-l)(gt)' where g, is a 

Riemannian metric on ,CU), with g.{O) being just the standard inner product ofRn 
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To see this, we first note that, if (~ = cp x I; U x Rr) is any chart, 

then v is equal to V(f cp-l}(g}, where 9 is the Riemannian ~etric on y cp cp 
ep(U} given by: 

gep(z} = g{ep-l(z» 0 (Tz$-l x Tz$:l). 

Indeed: gep(Z) (v(Z) ;w) = g~z)( (T 1 $ 0 Vfy{g) 0 $-l){Z) ;w) = 
T ep- (Z) 

= g(ep-1(Z»(Vfy(9)(ep-l(Z»;(TZep-1)w) = dfy($-l(Z)}. [TZ$-1(w)] = d{f.)lcfj<Z}.w 

If at Z = 0 one has that the matrix (with respect to the standard basis 

of lRn) of 9cp(O) , Gcp(O), is not the identity, then, by a further (linear) 

diffeomorphism, cp*(O + 0), one gets a new v, gradient of f ($-1$*-1) with 
o 9 *-1 T *-1 Y 

respect to 9cpep*' wlth Gcpep*(O) = [ep ] Gcp(O)[$ ] = I, for convenient 

* choice of ep. (This is so because G$(O) is symmetric, positive definite 

and therefore has only positive eigenvalues, being reducible to the identity 

- see pg. 310 [8]; the equality j comes from linear algebra}. 

Summarizing: in the propositions that will follow, concerning local 

analysis of gradients, there is no loss of generality in supposing 

f:lRn x lRr -+ lR, lRn endowed with a Riemannian metric g, g(O} = standard inner 

product of lRn • 

. Let (x,y) € M (= Mf ). We know that (via some chart ~-see Proposition O) 

fy (germ of) is right equivalent (see [.3] and [16]) to: 

either 

or 

(a) 
n 2 

h(x1,o. 0 ,xn}.= Z £ ox. , where Ei -= 
. 1 1 1 ,= 

+1 or -1 

(b) one of the polynomials which generates one of the 

elementary catastrophes. 

, 
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It follows that Vfy has isolated singularities. Since X-~y}) is the 

set of singularities of Vfy (see Definition 1), and Xn is compact, x-1({y}) 

is finite, \f y E lRr. 

We define #k:mr ~~ by setting #k(y) to be the number of elements in 

x-1{{y}} which correspond to case (a), with'E; = +1, if 1 s ; s k, E; = -1, 

if k' < i s n. Analogously, #s(y) is the number of elements in x-1({y}) 
n 

corresponding to case (b). #t = L #k + #5. We a.l so use the notations 
k=O 

'Bo(x)' = . {Xl E some Banacht \\xl-xl\ 
Do(x) _ ( It space, I( 

<, OJ, and acB(A) = set of accumulation 
~, oj 

So(x) ~ {. " ,,, = oj 

points of A in B, simply ac(A), when no confusion is possible. 

PROPOSITION 1: 
n 2 _ ~ + 1, if 1 < ; s k 

Let hex) = .L
1 

E; xi ' x = (x1,···,xn); Ei - l- 1, if k < ; s n. ,= 
Suppose ~ is a diffeomorphism oflRn, ~(O) = 0, ~ = h~, g a 

Riemannian metric on lRn,g{O) = standard inner product. 

:: 

Proof 

T Then D[(-Vll)(g)(O)] = -2A IkA, where 

I = k 

1. 0 . { a~i } 
, A =. { --- (O)}. 

ax. 
J 

Expanding ~ in Taylor Series around 0, we get: 

t(x) = A.x + higher terms. 
n n 2 

Hence p(x) = (ht)(x) = t E.( t ~~xJ.) + higher terms. 
, ;=1 1 j=1 ~ 
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n n 
Therefore, ~u (x) = 2 I:. I: {Eoao k a .. )x., so that: 

aXk j=1 ;=1 1 1 1J J 

n n n n n n 
(-Vu) (g}(X}r(-2 ~ ~ 

k=1 j=1 
.I: (Eihk1(x)aikaiJ,)xJ,; .•• ;2 I: I: I: (E,hk (x)a.ka .. )x.) + 
1=1 . k=1 j=1 i=1 1 n 1 lJ J 

(see [3] ,pg.248) + higher terms, 

where (hij{x» is the matrix inverse to (g .. (x». 
matrix of g(O) lJ 

Since, at 0, g .. (=g!',(O» = I, (h .. (O» = I Therefore we get lJ lJ' 1J 
n n n n 

(-VU)(9)(O) = (-2 I: I: (E oa .. a'l)x.; ... ; -2 I: I: (E.a'J.a . )xJo) + higher 
j=1 ;=1 1 1J 1 J j=l ;=1 1 1 1n 

Therefore D(-Vu){g)(O).x = _2AT IkA.x, as wanted. o 

... 
, . 

,. , 1/ . 0-. ~ • 

PROPOSITION 2: 

( ) Mk 1 9 let n be the germ at 0 of fo(f:R
n 

x R
r 

+ R) Let 0,0 € , w. .0. ; 

and 9 = fo nn(i.e •• the germ at 0 of fo nn:Rn )( R
r 

-to R}. nn be projection 

(on R"). 
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Then (r,g) ;s an universal unfolding of n (see [16] for the definition 

of universal unfolding). 

Proof 

As n has codimension 0 (see [16]), (O,n) is an universal unfolding of n. 

Let (s,h) be an unfolding of n. By definition of universal unfolding, 3 

. (0;¢;£), an unfolding morphism: (s,h) ~ (O,n). There also 3· a morphism, 
~~ ~ 
(0;~;£): (O,n) -+ (r,g): just define 0:x ~ (x,O), . 

lRn lRn x :n{ 
~ ~ 

<I> : ]R0 -+]Rr and £: {OJ ~ 0 € 1R • 
. {oJ . -+ 0 

~ ~ 

Thus (~0;~ ;£) is a morphism (s,h) ~ (r,g). Therefore, (r,g) is universal. -

COROLLARY: 

(r,g) and (r,f) are isomorphic (where, by abuse, we write also f for 

the germ of f at 0). 

Proof 

Since f is generic (we are again thinking of f as fromRn x Rr +R; 

as pointed out before, the~e is no loss of generality in this, since we are 
t . 

workjng with germs - see also Propostion 0), it is a 7-transversal unfolding 

of n. So (r,f) is an universal unfolding of n (see £16). Corollary follows 

from Theorem 6.9 of [16] and Proposition 2. o 

REt-t.ARK 2: 

{We fellow the notation of [16]~A consequence of this corollary is that ~ 
isomorphism, (0,~,€): (r,g) +(r,f), with,9 = f0 + €ITri We recall (from [16] 

that 0 and i are diffeomorphism germs. (germ eq~ation) If 0{x,y)=(01(~,Y};02(x.y~ 
then Our morphism "preserves fibres", i.e. llr " = lnr , or, equivalently, 

,2(x,y) = iCy}. To simplify things we use the notation ~ = ,1, when 

referring to the above ". 



2.1.(11) 

k Let 0 € M eMf' as in Proposition 2. Since X is not singular at 0, 

there is no loss of generality if we suppose that, in some (sufficiently 

small) nei~hbourhood of 0, Mf eRr. We shall assume this in Proposition 3 

below; this implies ~y(O) = 0, if y is small enough so that (O,y) € that 

neighbourhood (see also Remark 1, 2.1(6}/(7)} 

PROPOSITION 3: 

k let 0 € M ; fo = h~, h, ~ as in Prop~sition ·1; g = f0 + £~ and ~ as 

in Remark 2 (above). 

Then, for y near 0, 

D(-Vfy}(O} = _2MT IkM. where M = M(Y) = D~(O) {~t~ ($-1(y).0)}-1 
J 

Proof 

From the definition of g and properties of unfoldings and unfolding 

isomorphisms, the following (germ) equations hold: 

: i9y = fa 

. {gy =. Ay f~{y) <Py 

Now, h~ = fo = 9y = Ayf;(y)$y. 

We just abandon A
y

' sinC~\Ay~ ~~, t ~ t + ELY}, a translation, does not 

affect the gradient fiel d of f~(y). 

So, fq>(y) = h(~$~l}, and, by Proposition 1: 

DC -Vf,(y) )(0) = _2(C!}(,$;1 (01) D$;l (0) ) T Ik(04)(~~l(OpO$;l(O)) 
o 0 

-1 ap i -1 
and, since ~y (0) = {ax. (y,O}} , 

J . 
• 1 a~l , -1 -1 T ( () 3~·, -1( ) O}l-l) 

D(-Vfy)(O) = -2 (Ot(O)· £iij \f (y),O)} ) Ik 04> 0 {~. y, , 

as claimed. 
o 



2.1. (12) 

COROLLARY: 

Mk is open in M, V k(i.e., k = 0, •.. ,n). 

Proof 

Everything as above, Proposition 3 i~plies that, for y near O,O(-9f ){O} 
y 

has signature n-2k, hence (O,y) e: Mk c: M
f 

c: Rr 

for some (open in Mf ) neighbourhood of O. o 

REMARK 3: 

The openness of Mk can be also obtained as a consequence of the local 

stability of hyperbolic fixed points. {see Theorem 3, page 82, of [10]; the 
5 . 

point ;s that, when one has a r~parameter family of gradients of a generic 

f, an elementary proof, as above, is possible. 

PROPOSITION 4:. .. 
x ;s closed. 

Proof 

M is closed in Xn x R~because it is locally algebraic (with respect 

to suitable local co-ordinates). 

Given any closed k disk 0 c: JR
lt

, then X x 0 is compact, hence 

x-1{D) = M n (X x D) is compact, and hence x/x-l(D) closedand hence X is 

closed. o 



PROPOSITION S· . . 

Va 
I 

2.1(13) 

Suppose y 'Cf . Then It (see 2.1(8», is 

locally constant at y. 

Proof 

let #t(y) = ~, so that x-1(y) =' {m1, .•. ,m~}· 
As y is regular value for x,Ox(m ) is an 

~ 

isomorphism, i=l, ..• ,~. Hence, we can choose 

neighbourhoods V. of m., open in M, disJ'o;nt 
1 1 

from each other, s.t. X/Vi is a diffeomorphism 

on U
i
, open neighbourhood of y. Now 
~ 

M - Q V i is closed in M therefore (from 
1=1 2-

Proposition 4) X(M':' \.J V.) ;s closed . 
. 1 1 1= 

Set: 
~ ~ 

U = n u. - X(M - U V.). 
i=l 1 ;=1 1 

This is ~pen and ~ 0, s~nce y £ U. Now, if 

IV -1 '" '" '" m £ X (y),y £ U, then m £ V., some i; otherwise 
~ 1 1 

we would get m £ X(M - l-J V.), which implies 
'" ;=1 1 
m £ U. 

Hence, the elements in x-1(~) are precisely' {(X/V;)-l(y)} . where 
1=1, ••• ,1, 

(x/v;)-l stands for the inverse of the diffeomorphism X/V;; and so 

'" '" It(m) = ~, 'r/ y £ U. 
I. 

We remark that the above argument also shows that X-
1(U) = LJ (X/V i }-l(U). 

r 
o 
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COROLLARY 1: 

Suppose y , ef , k fixed. Then #k is locally constant at y. (k E" {O, •.. ,n}). 

Proof 

We first note that, if Ik = {i E {1'.~.'1}Kx/Vi)-1(y) E Mk}, then we can 

suppose, ViE Ik,{x/V,.)-1(U) C Mk, 1 Tho. k w .. o.g. 1S 1S so because M is open in M 

, 
j • 

COROLLARY 2: 

and (X/V;)-1 is a dif~o",orrh;sm . 

• • 0 The 

corollary follows ill'lmediately; in particular 

one also has: 

Suppose W n Cf = ~, W c C, path connected. Then #k, k = O, ••. ,n (and 

hence It) is constant on W. Moreover x-lew) ~ Wand Xk1(W) Xk~ Ware 

covering spaces for W [see [5]]. 

Proof 

If Yl'Y2 E W, take a path joining them, and cover it by (a finite number 

of) open sets such that #k is constant in each one of them {Corollary I}. 

Corollary - first part of it - follows by taking points in the intersections. 
R. 

Last part is a re-statement of the equalities x-leU) =0 (X/Vi)-l(U) and 
1 

o 

REMARK 4: -
If f:M~N, differentiable, M without boundary and compact, M and N of 

the same dimension, y regular value of f, then If-1(y} [in our case we denote 

1x-1(y) by It. omitting X from the notation] is finite and locally constant. 

(lx;l(y» Clk) (Xk) 
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This ;s a standard result in differential topology. In the above, i.e, 

Proposition 5, Corollary 1, we have just proved that this extends to our 

case, although M(Mk) is not necessarily compact without boundary. 

We now prove a 'local' proposition, which will be used in the proof 

of Theorem 1. 

PROPOSITION 6: 

Let m = (x,y) € Mn. Then, ~ neighbourhood W of m, in Mn, and a 

o ~ 0, s.t., ~ ~ = (~,~) E W fixed, Bo(~) c inset (~v](~)' v = - Vfy. 

Proof 

'. 

(R,~ 

( • • , ) \ 
q !1 

D 

2.2. PROOF 'OF THEOREM 1 

"> 

Fix (x,y) € Mn. ~ a small closed disk 

neighbourhood B of x s.t. 

(i) -Vfy has one generic fixed point 

in B. 

(ii) -Vf is transverse inwards to B. 
y 

These are open properties, and hence 
. 'V 

remain true, '::/ -Vfy' for y € some 

small neighbourhood D of y in C. Choose 

o > 0 s. t. B 0 c B, an d set 

W = Mn (0 x 80). Clearly Bo(X) c inset 
'V 'V • • 

[~ lex), mEW, proving our proposltlon. 
v 

Let V be a family compatible with f, and v € Vf .~ fixed. The symbol, 

will be used for the flow induced by v. 

LEMMA 1: 
Let m = (x,y) € Mn, to € R+, be fixed; suppose ~(t,y) ~ Cf , "t € (O,to]· 



2.2(1) 

Then, '3 a unique(continuous) ,t, -,t, "[0 t ] -+Mn t" f . 't'm - 't'm t" '0 ' sa 1 s yl ng : 
, 0 

(1}1 x4> = $ m y 

(2)1 

Proof 

Let t E [O,to] be fixed. We can 

construct U = Ut' neighbourhood of 

w(t,y): Wy(t), with U as 

in Proposition 5. In particular, 

tIt n Cf = 0. Then, W = U U
t tE [0, to) 

satisfies Corollary 2 of Proposition 

5, since each Ut can be assumed 

path-connected, so that 

x~l(W} ~ W is a covering space 

for W. 

Now, Wy is a path in..,W, with initial point y = x(m} and therefore, from 

the path lifting theorem in algebraic topology (see for instance [5], page 18) 

we conclude 3 unique path, say <Pm' in Mn, with: {l)1 X<I>m=Xn'm = Wy ('It E [O,to]) 

(2)1 ~m(O) = m 
o 

LEr.t1A 2: 

~m' given in lemma 1, also satisfies: 

(3)' For every fixed t E [O,to)' ;J.£ = £ (m,t), such that: 

'" '" nx+m(t) E inset (Rx<Pm(t», V t E [t,t+£;, where the implicit 

vector field is v,. Y = Ib+m (t). 



Proof 

2.2(2) 

Let t be fixed and Ut as in Lemma 1. 

From Corollary 1 to Proposition 5 and 

definition of Ut , we see (refer to [5], 

page 17) that Ut is evenly covered, where 

{(xn/V;)-l(ut)}. ' in the notation of 
lEIn 

Corollary 1, are the sheets over Ute So, 

for some fixed i E I , m € eX IV.)-l(u ) n n 1 t ' 

with (x Iv.)-l: 0a diffeomorphism n 1 

from Ut to a neighbourhood of m € Mn. The 

proof of the path lifting theorem referred 
'\, '\, '\, 

above tells us that ~m(t) = 0y(t), t suff. 
'\, 

small so that $ (t) € Ute 
. Y 

By taking a small~r Ut , if necessary, we can assume, by Proposition 6, 
,J '\, '\, '\, '\, '\, 

that :1 0 such that, v m = (x;y) € 0 (Ut ), Bo(X) Co in-set (x), where -Vf~ is 

the implicit vector field. 

Since ~ and TI are continuous, 3 E > 0 s.t.: m x 

with -Vf} as implicit vector field; but this is the same as if the vector field 

where ~t since V is compatible, and we are done. 
o 
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LEMMA 3: 

Let m = (xsY) E M
n 

and suppose 0; n Cf = 0. There exists a unique 

(continuous) lift ~m = ~msoo:R+ ~ Mn, satisfying (1)1, (2)1 as in Lemma 1, 

and (3)', V t E R+, as in Lemma 2. 

Proof 

Let t E R+ be fixed. Choose t > t, and define $ (t) = $ (t) 
o m m, t ' 

. 0 

~m t :[O,to] ~ Mn 
as in Lemma 1. Claim: $m(t) is independent of the choice 

, 0 

of to· To see this, let tl > t, tl r to' say tl > to. ~m,tl:[O,tI] ~ Mn 

. satisfies (1)1 and (2)1 

By unicity, in Lemma 1, 

on [O,t l ] and therefore so does $m,tl/[O,tol on [O,to]. 

$m t 1[0 t ] = $m t ' and som t (t) = 9 t (t). We 
'1 '0 ' 0 m, 1 m, 0 

remark that the above argument also shows that ~m = ~m t on 
, 0 

+ [0, tol, 'if to E R 

fixed. Therefore, ~m is continuous and satisfies (1)', (2)' and (3)', V t E R+ ~ 

to rrove th is, we note that, given t, we can choose t > t and use ct> :: ~ t 
o m m, 0 

on [O,t). If we now define W = '-1 Ut , Ut as in Lemma 1, we see that, using 
o tSR+ 

Corollary 2 of Proposition 5, x~l(W) ~ W is a covering space for W, and there

fore the unique lifting theorem from algebraic topology (see for instance, 

Theorem 5.1, in [5]) shows that ~ :R+sO ~ Mns rn ;s unique. m 

REMARK 1: 

Suppose v E Vf ,Y E Cf · 

o 

Then, ~ € > 0 s.t. It I S €, t ; 0 implies ~(t,y) ~ (Cf u Mf,y). This 

is an immediate consequence of property HI (see page 1.2(1» and of Definition 

17 (see page 1.1(4)] 



2.2(4) 

LEMt-i.A 4: 

Let y £ C, 0+ n C
f 
1~. Then 51 =' {t £ ~+lw tt) £ C

f
} =' {tn} ,where 

y, Y, . nEI 

either: (i) I = Z+ =' {O,l ••• } and t + ro as n + ro , or: (ii) I = {O,1, ..• ,N},N ~ ~ 
n 

[Note: this accounts for the last line of (4), Theorem 1, page 1.2(1)] 
Proof 

This is clear because {t } can not accumulate by 
n nEI 

our hypothesis H1 (page 1.2(1)). 

'- .... 

. ' 

LEMMA 5: 

let m £ M" = (x.Y). to £ JR+. "'y< to) £ Cf' ",/ t) j Cf' V t £ [o.~. 
~ 

Then, there exists a unique (continuous) function ¢Jm = ¢m,to:[O,tol ... t-1 » 

satisfying: 

......... '- ..... "'-:.-' .. 
, ". 
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(1)1, (2)1 and (4) in [O,to]; 

(3)1 in [O,to). 

Proof 

We first define $ in lO,t ). Let . - m 0 
'\J 

t € [O,to). Select t € (t,to)' and 

. . define $ (t) =. ~t(t), where m m, 
)1' . c.. 
'¥~tto)ECF- $m,t:: [O·,t)· + ~1n is constructed as in 

Lemma 1. 
One can show that the definition of ~ at t, as above, does not depend m 

'V 

on the choice of t (i.e.; ~m is:well defined), and that ~ is the unique . m 
". 

continuous function (i.e., ·(4) is valid) satisfying (1)1, (2)1 and (3)1 in 

[0, to). The proof of this isa repetition of arguments as in Lemma 3. 

Any accumulation point of a sequence 9 (t ), t + t- must 
I m-n n 0 

be one of the finite number of points in X-1
(y), by continuity 

of x. If we take disjoint balls B. about these points, 
]. 

(Xi,y), i = 1, ... ,r, then, for some tl < to' .m(t) is in just 

one of these balls, BjJ for tl < t < to and so every such 

accumulation point is {KJ.;Y), i.e .• (t) + (x.;y) as t + t- . . m J 0 

'So. (t ) = lim .m(t) is the unique way to make~m 
m 0 t+t-

o 

.1eft continuous at t . o 

Mgt~:. 
- d f\ d tho. b 'M~c Mn u M , or, equivalently, aM eM; lS lS so ecause 

M = [l:i Mk] u Md. and Mk is open in M (closed). Mi n ~ = D if i # j. 
k=O 

o 



x 
REMARK 2: 

-f.. 
'V 'V 

of m, W, with B (x) c in-set [@v](x) ( -
'V 'V 'V 
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d Let m = (x,y) € M , Y € Cf • Every-

thing as in Remark 1, we note that 
'V 

x , sep ~, y = ~(t,y), Itf ~ E. 

This is so because ~(t,y) i H = 
Y 

= U d Jx y' It I ~ e:, where 
(xr,y)€M i, 

x = xi' for some i, hence 

~(t,y) I Jx,y = {y' € Clx € sep ~y'}. 

If, on the other hand, m = (x,y) € Mn, 

the ~onstructions as in Proposition 6, 

2.1(15\, show that '3 a neighbourhood 
'V 

in-set [~y](x), by compatibility), 

where v = -Vfy' 't m = (x,y) € W. Therefore, by restricting W so that 
'V 'V 'V 'V '" '" '" II x-x II < 0, 'ti(x,y) € W, we get x € BcS(x) c inset [~y](x). Hence, if (x,y) € w 

~ '" is fixed, we can construct a neighbourhood Z of x, x € Z c Bo(x) c in .. set [~](x), 

'" . '" which impl ies w(Z) = x = w(x), so that x I sep ~,"i y € X (W), neighbourhood 

of y € C. So,"3 E > 0 5.;:, Vt with It I S E. X l sep 4J' ~ = ",(t,y); this E 

can of course be taken so that ",{t,y) I. Cf , 'it with It I . ~ E, since Cf is 
n 

closed (C
f 

= X(M -U Mk», and suits every m € x~l{y). 
k=O -1t-

From Remark 1 and above, we then conclude: if m = (x,y) € M , 

'" Y € C
f

, ~ s > 0 such that y = ~(t,y) I. Cf and x f. sep~, 'it with It' <; €, 

v d n 
except perhaps t = O. Al so x; I sep wy, v xi s. t. mi = (x; ,y) € M or M , by 

.. -I( ) constructlon; l.e., m; € X y. 
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REMARK 3: 

Let (x,y) € X X C be fixed. Then w[~_Vf ](x) = W[~yl(x), where ~y is 
u.{V''jJ~~c. y 

the flow generated by v on X. A trivial consequence of this, from the 
y 

definition of separatrices, is: sep ~-Vf = sep ~y. To show that equality, 
y 

we first note that, as weare dealing with a gradient field (see [3],249), 
" IV IV 

W[~_Vfyl(x) = {x}, where x is a critical point of. f y. Now, x € in-set 

IV * [~-Vf lex); if not, it would be possible to create a sequence" {xn} ~ x , 
y (X compact) 

'\j 

xn l B£(x), for some £ > a fixed, a contradiction, since in that case 
* * IV IV 

X € w(~), x r x. By compatibility, x E in-set [~ lex), and therefore y 

REMARK 4: 

Let y l C
f 

be fixed, {x.} be the set of singularities of -Vf , 
1 i€I Y 

. {x.} ,J c I, the set of minimums of fy• 
1 • J 1€ 

Proof 
. "-

Then sep ~-Vf 
y 

= X - LJ in-set (x.). 
. J 1 1€ 

IV . 

Let x € X, X = wI<P_Vf lex); X = ~" in-set(x i ), all xi hyperbolic, and 
y l€I 

the local form of a flow around a singularity easily imply x € sep "'~-Vf 
y 

iff ~ is not a minimum for f , from which the equality above follows 
y . 

irrmediately. 

LEMMA 6: - -Let m = (x,y) ~ M~, y ~ Cf ; let £ > 0, fixed, so that x l Sep ~ and 
'V Y = lP(t,y) l C

f
, Vt ~ 0, It I s £ - we know that such an £ does exist 

-;; 
(see last paragraph of Remark 2). There is a unique function 'm = $m,£: [0,£) ~ M 

satisfying (1)' in [O,E], (2)', (3)' in [0,£) and (4) in (0,£]. 



Proof 

Existence 

\ 

· . 
· . ;'<t> (t) · , , · . 
~ . m C~i 

!... t ~] "E " J C-

~A '11.. i lP~~ o/~. 
E • ] [ • J 

0 t E 0 t C. 

Picture of the two possible 

cases (Yl and Y2) and of the 

corresponding lifts, which are 

being dealt with together in 

the proof. 
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Let t Era,S]. We define $m at t by: 

<pm{t).= (W[~](x);~), with ~ = W(t,y). 

<Pm is well defined, from Remark 3. From 

Remark 4, x l sep ~ ~ = w[~](x) is y y 
a minimum for fy' hence (~,y) E Mn, 
IV 

Y = $(t,y), t 1 o. ~.lso <Pm(O) = (W[~Y] (x) ,y)=n~. 
"ft, 

so that ~m:[O,s] ~ M and (2)' is satisfied; 

X~m = Wy in [a,s] by construction. Now, 
IV 

x E in-set [~](x), from Remark 3' as . y , 
IV 

X = ITx<pm(t), x = ITx~m{O), we get that (3)' 

is verified at t = 0, just by taking s(m,O) 

to be s in the statement of this lemma. 

It remains therefore to prove that: 

(i) (3)' holds at t, T/ t E (O,e:); 

(ii) (4) holds at t, 'it E (O,s]. 

* * * * * n Let t E (O,e:] be fixed, ~m{t ) = m = (x ,Y ) [E M ], so that 

* * * * . x = n <p (t ) = w[1 *] (x), y = wet ,y). 
x m Y 

We adopt here, for the rest of this proof, the following simplifying 

notation: ~; is the flow generated by the gradient of f restricted to 

* * ~(t,y ) = $(t + t ,y). 
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Define $m* = $m*,£+"' from Lemmas 1 and 2, as the (unique)" continuous 

function satisfying X$m*(t) = $y*(t) and ~m*(O) = m*, with £+ = £ (m*,O) 

taken as constructed in Lemma 2, so that (3)' is valid for t = 0 and 

* * x = TIx$m*(O) € Bo(nx$m*(t» c in-set [~t] rtx~m*(t), 'f t € [0,£+), where 

compatibility was used in last step. 

/hl, :: lx, ':J) 

We claim that $m*(t) = $m(t + t*), ~t € [0,£+). 

Let s, fixed, be chosen so that: 

* * lI~o(s,x)-x II < 0/3 (I) , 
.... . . . ". 

C~ (S,");'f(~1"P By continuity of $m*' and reducing £ +, if . . 
t : .. '-. '1" 

; ~:.. ~ .:.l !~ 6/l 
.' ..,..c.. 

• : • I • • '< ~/3 
_ .. _. __ l~ ... ~ 

· , . i 
, • • I -<P~~( t) 

necessary, we can guarantee that: 

II nx<pm*( O} - IIx$m*{ t} II <0/3, 
II 

(II) 

x* 

Fina l1y, if ,+ is small enough, we can a150 
, . 
I • ,. • 

II .1.,'. 
<p",Lt·) >.:.; . I 

I 
., 

I ..... . , 

thM • fO) ".:·'~"l I + " ~ s fixed as above, tl < £ • ----~E~E~~i~)~~-4Jc 
;" ~ ':t. ~(t.j-:> This is 50 because the continuity of '" impl ies 

;i' ~j. that the family of gradient vector fields, 
[ ." 'A"j [ •. ) "{ f }. t' t Th f o t· ~ .. t t"'+Ei" 0 t c't. -'i/ w(t,y*) , 1S con lnous on. ere ore, 

assure: 

x. * * "~o(s,x) -~t (s,x) II < 0/3, (III). 

for fixed (s,x), the well known result (from o.J.e) of continuity on parameters 

implies (III). 

Le t t E: [0', £ +). (I) + (I I) + (I I I ) ~ II ~ ; ( s ,x) - nx «Pm* ( t) II < 6 ~ 

* * * (* )} ~ tt(s,x) E: in.set [~tJ nx~m*(t) ~nx«Pm*{t) = w[~tl ~t(5,X = 

* * * * = W[tt](x) ~«Pm*(t) = (W[~t](X); w{t,y » = (W[~~{t.y*)l(X};~(t,y }), 

last equality coming from Remark 3. 
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O * ~ n the other hand,.by definition ¢ (t + t ) = (W[~y](x);y), with 
~ m 

* * y = wet + t ~y) = w(t,y ), proving the claim. 

( *...J + * ~m* t) = ~m{t + t ), v t € [O,s ), t € (D,s] fixed, gives (i), and 

also shows ~m to be right continuous where .required by (ii). To see it is 

also left continuous, thus concluding existence, one just defines 

Wy-*(t) = Wy*(-t) (i.e., reverse the direction of W *), ~-* = ~-* - to be y m m ,s 
the corresponding lift (from Lemmas 1 and 2) and repeat exactly the same 

constructions as above to show that, if t € [O,s-), then ~ (t*-t) = ~-*(t). m m 
Uniqve,,~~ 

·1 ~ -
"-Suppose ¢m: [D,s] ~ M also satisfies the conditions in the statement 

~ . 

of this lemma. By (3) I at 0, =3 s > ° such that x = nx+m{O) € in-set [~] 
IV ~ ~ ~ 

(nx~m(t»,.t € [D,s), y = w(t,y), so that nx~m(t) = W[';Y](x) = nx~m(t). 
~ IV * ~ ~ IV * 

Therefore ~m = ~m on [D,s). Pick t € [D,s). Define: ~m*(t) = ~m(t + t). 

IV * ~ ~m* is continuous on [O,s-t ], and satisfies X~m* = Wy*' by hypothesis, with 
IV IV * * * * * * 
~m*(O) = ~m(t ) = ~m(t ) = m '. Set ~m(t) = ~m(t + t); ~m satic;fies the 

same properties as ~m* (~m as above is defined from existence. in this lemma). 
* IV * IV * 

Therefore, from unicity in,.}..emma 1, ~m =: +m* on [O,E-t 1; so 'm( t + t) = 

~ * * * "" * $m*(t) = ¢m(t) = $m(t -t) on [O,E-t ], hence $m = 'm on [t ,El and we are 

done. o 

LEMMA 7: 
Let m = (x,y) (M""; let Sl =. {tn} , as in Lerona 4, and, for each ns 

n€I 

construct E = E en) as in Remark 2. Set t = t + e:{n}. Then, if n ~ I is 
n n 

fixed: 

: { There exists a unique 4>~: [0. tnl +M1' such that 4>~(O) = m. and 

(*l i cl»n satisfies (l) I and (4) on [0, t n], (3) I on [Os tn)· 
m 
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Proof 

By induction. 

Step 1: (*) is true for n = O. 

We have to show there is a unique function cf>~: [0, to] -+;::, such that 

cf>~(0) = m, and cf>~ satisfies (I)' and (4) on [O,to]' (3)' on [O,t
o

). 

Existence: 

Define cf>~(t) = cf>m t (t), 
, 0 

(I) 

where ~m,to:[O,to) + M~ is obtained from Lemma 5 and $m(O),£(O) [0,£(0)) + M~ 

from Lemma 6, with m{O) = cf> t (t ) = cf>°(t ). (I) and (II) show that ~o is m, 0 0 mom 

well defined and, just from the statements of the lemmas referred to, it 

follows trivially that cf>~ satisfies {*}. 

Un i quet\e..s~ 

Let ~o: [O,t ] -+ ~ be another function satisfying (*). 
m 0 

~ - '" 1\1 
1L 0 Y 

Define cf>m(O),e;(O}: [O,e;(O)] -+M by ~m(O),e:{O) tt-to} = cf>m(t) , t £ 

f>m/['O' ,t ] =~ t by unicity in Lemna 5, hence ~(to) =cf>m t (to) = ,~{to}· 
o m, 0' . ' 0 

'" . "'0 "'-
So cf>m{O},e;(O){O) = cf>m{to = m{O). Therefore cf>m{Ole;{~) = 'm{O}e:(O)- by 

"'0 0 v -
unicity in Lemma 6, so that cf>m = cf>m' ~t £ [O,to] 



li"1 
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. . 
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Step 2: 

(*) is true for i E I =9 (*) is true for i + 1. 

By hypothesis, there is a unique function 
i - ~ 

~m:[O,ti] + M satisfying (*). Set m(i) = 

(x(i);y(i» = ~!(ti)' We are back to Step 1, \ t~ 
. : - . 

. . • M with Lerrmas 5 and 6 now applied m(i), y(i) = llJ(t.,y), with 

i f f~ if ~~ c (ti+l-ti)·(ti+l-ti) now treated as the new to.to: so 

! ~ L t i;: \J ~I lit that there is a unique cp~( i): [0, ti+l - til .. ~ 
satisfying the required properties. We define 

... 

q,i+l(t) = 
m q,~( t) , t E [O,ti ] 

¢~(i){t- 't), t E [t;,ti+11 

. +1 It is trivial to verify that ~l 
1ft 

satisfies {*}, since ¢i and ~o{.) do; the unicity of these two functions . m m 1 

imply the unicity of ¢~+1, as in Step 1. 0 

LEMMA 8: 

Let m = (x,y) E~. There is a unique function <Pm:R+ + M"ft.. satisfying 

( 1) 't (2)', (.3)' and (4), '1 t E lR + • 

Proof 

case 1 I =. {O,l, ••• ,N} • 

. By definition of I, '" (t) I ef , VtE [tN,oo). Letm(N) = (x(N);y(N» = 
y -

N + "'" = q,m(t
N
). We can then apply Lemma 3 to construct <Pm(N) = q,m(N),~~ + M , 

satisfying the conditions required there. 
+ ~ N.-

Define ¢m:R + M by: ¢m(t) =. ¢m(t), lf t E [O,tN] 

<Pm(N)(t -tN), if t E ttN'~) 

~ satisfies (1)', (2)', (3)' and (4) and is unique by construction, since 
m 
': and <Pm(N) have these properties (proceed as in Step 1, Lemma 7). 
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Case 2: I = 71.+ 

+ Let t € ~. Then t € [tn_l ,tn], some n. This is so because tn > tn_I' 

V n € Z+, and t "* 00 as n "* 00. Define <I> (t) = <l>mn(t). By definition, n m 
4>m(t) = 4>!(t), \It € ffi _l ,t;], i =:; n; but <I>:(t)/[O,t.] = <I>!(t), by unicity 

1 

of 4>~, hence 4>m :: <I>~ on [O,tn]. Therefore <l>m satisfies all required properties 

at t, 'if t € R+ fixed; to see this, just choose n such that t € [O,t) and use 
~ . n 

4> :: <l>n and Lemma 7. Let <I> be another function with the same properties, m m m 
and t be fixed. Then t E [O,t], some n, and by unicity in Lemma 7 . . n 
~ n ~ n 
4> 1[0 -t ]=<1> , hence 4> (t) = <I> (t) = <I> (t). 0 m 'n m m m m 

PROOF OF THEOREM 1 

Let (t,m) € lR+ x rl be fixed, <Pm constructed as in Lerrma 8; define 

<t>(t,m) = 4>m{t). The properties of $m as in Lemma 8 imply Theorem 1. 
D 
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CHAPTER 3 

3.0. INTRODUCTION - -
The reason why we could prove Theorem 1 was that we assumed hypothesis 

H (see Chapter 1). The question arises as to whether H is a generic property 

of vector fields. Our objective in Chapters 3 and 4 will be to prove Theorem 2, 

which affirmatively answers this question (see Chapter 1 for a precise statement). 

In Chapter 1 we introduce the functor Te, which generalises the tangent 

functor. Thus, TeM is the higher dimensional analogue of TM. In paragraph 2 (§2) 

we define the notion of eth expansion of a vector field v E Vk(Rr ),15e5 k, v[eJ. 

We then construct a submersion (off a certain set) S, such that: 

__ s_~> T~r 

commutes. 

This allows us to 'transfer' transversality theorems(§3) to a new context: 

we require instead that v[e]'be transversal to some submanifold of T~r. The 

reason for thinking a·bout this at all is that it turns out that the notion of .. 

transversality of v[e] is closely related to that of 'isolated intersection' 

of a vector field with a set, which we also define in §3. And this last 

notion as, on the other hand, the basic idea behind the sufficient conditions 

for the lifting as presented in Chapter 2. 

The following chapters, in which we prove, in certain cases, the 

genericity of the lifting property, will be dealing with the construction of 

the appropriate submanifold of some TiRr. 
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~ THE FUNCTOR Te 

We now define Te, from the category of Ck manifolds, k ~ e fixed, with 
Cs

, k e e s s s k, maps as morphisms, to the category of C - fibre bundles 

(vector bundles if e = 1), with Cs-e fibre bundle (vector bundle if e = 1) 

maps as morphisms: 
• 

Objects 

Morphisms 

Note: 

T1 coincides with T, the usual tangent functor; k = ro permitted. 

We will first give the definitions of TeM and Tef, and then proceed 

to show that they are well defined and satisfy the required properties. 

DEFINITION 1: 

k * * Let a.,I3: R ... M be C. We say that a. "e a iff ~ (<I>,U), chart for 

d
j

(:,..). dj{"'R)' °IJ M, a sufficiently diff. manifold,s.t. -~~-l (0) =~~ '(0), vi = l, ... ,m, 
dtJ dtJ 

* * V j = 0,1, ••• ,e, ci , a the germs of a.,a at O. 

DEFINITION 2: 

Let ~ denote the equivalence class generated by ~e above. (we will 

shortly show that ~ is an equivalence relation, independent of the choice e 
of chart). 

Call TeMthe set of all this equivalence classes. 

DEFINITION 3: 

Let M,N be Ck manifolds, f:M ~ N be CS
, e ~ s ~ k. 

Define Tef: reM'" TeN 
" .".... a ... fa 

where ~ is the equivalence class of the germ at 0 of f • and where 0 is a 

" representative of a genm in o. 
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PROPOSITION 1: 

~e is well defined, an equivalence relation, and does not depend on 

the choice of chart as in Definition 1. 

Proof 

The definition of ~e does not dep~nd on represent~tives: if aI' a1 are 

other representatives for a*, a*, then dJ(~~l)i (0) = dJ<*a);(O) = 
dtJ dtJ 

It is also clear that ~e is an equivalence relation. 

The rest of the proposition will result from: 

Claim: 
,.. .... 

If y:R ~ Rm is a Ck curve, j skis fixed, and 0 is a Ck diffeomorphism 

from a neighbourhood of yeO) into its image, then 

( I: 
lsqsj 

. , 

where 0j(h
1

, ..• ,h
q

) is an integer, which does not depend upon 0. 

This is a straightforward application of the composite mapping formula (see [1], 

1.4), which states: 

.oj(lty)i(tO) , = , 
€L{Rx ••• xR;R) ..... ..., 

j times 

E I: 
lsqsj (h1, ••• ,hq) 

as above 
q times 



Since 

m 
1: 

. . 1 
'l'···"q= 

d
j (0y). 
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(y{to»dx .••. dx. 
11 1 q 

,and using 

h 
the identifications l{t ) = j 0 dt 

D Sy( to »:( 1 ,. 0_' 

hS ti: 

s = 1, •.. ,q, one gets (*). (The integer 01(h1, ..• ,h
q

) is actually defined in 

[1](1.4), but we only need what is stated above). This proves the claim. 

* * Let now a , 8 be as in Definition 1, and (w,V) be another chart for 

M, a,(O) E V. 

We have 

f/J y 
,- ---, " 

dj(WC:);(O) = dj«wcp-:)(CPa»i(O) 
dtJ dtJ 

Note: -.,..,-

We are using the following definition of germ: let a:I 1 ~ M, 

8:1
2 
~ ~1, 1

1
,1

2 
open. We say a, 'V* 8~~open 1 c 11 n 12, 0 £ I, s.t. 

aCt) :: B(t) on I. 'V* is an equivalence relation, and we denote the 

* equiv'alence class of a, by a, • 

PROPOSITION 2: 

TeM, as in Definition 2, can be made into a ck-e, m(e+l) dimensional 

manifold, which has the structure of a fibre-bundle. 

Proof 

We now produce 'local bijections', as defined below, for TeM, from 

the charts on M. 

So, let (~,U) be a chart for M. 

o 



'" Define U =' {a € TeMla(O) = x € U}, 

'" '" 4> : U -+-:RID ( e+ 1) , by: 

-+- (~(a(O); d(~a)(O) 
dt 

, , , ... , 

where a is some representative for a* E ~. 

'" '" " 11 d f' d 'f * * * ~ s we e 1ne : 1 a "'e 8 and 8 represents B , then, by 

Proposition 1, 

l, ... ,m;j = O,l, .. "e 

Claim 1: 

'" '" 4> : U -+- et>(U) x R
me is a bijection. 

Proof of claim: 

Define y:(y;v1, ... ,ve} '" U, wher-e 

(Y;V~"'J"e) E cp(U} xRmx ••• XlRm , by se.llin.g: 
. 1 e j, 

a: I c lR -+- M to be t -+- et> - (y + L ~ tJ ) (I conveniently small) 
j=l J. 

'" 1 e -1· d de 
<fry: {y; v , ••• , v } -+- (4) et> (Y}J; d t f; ( 0) , • . ., ate f; ( 0) ) , 

" ' y 

• e vj j df; _ 1 de E; 
where~. t ... y + j:l j! t • so that dt( t) /t=O - y ..... dte( t) /t=O = ye. 

'" '" and therefore ~ = Id1et>(U}xRme. It ~s also easy to check that yet> = Id/~ 

'V, b " t ' d ~-1 Hence 4> 1S a lJec lon, an ~ = y. 
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""'-I let now (4),U), ($,V) be two charts for M, as before. $<I> is clearly 
e 'V'" 

a homeomorphism. We topologize T ~1 so that {(cp,U)}, (4),U) € atlas for ~', 

are homeomorphisms. 



Claim 2: 

'VV-I I\" I\" I\" I\" I\" I\" 

~ : ~(U n V) ~ $(U n V) is a Ck-e diffeomorphism. 

Proof of claim: 

1 1\,,"" "" 
Let (y;v , ... ,ve) € ~(U n V) = ¢(U n V) x ~e. 

'Y-1( 1 e Ale j j 
~ y;v , ... ,v) = a , where a:t ~ ~- (y + L ~), so that 

a = ~-1~, ~ as above. 

Therefore: 

j=l j! 

~l:(Y;Vl, ... ,ve) ~ (w~-l(y); :t ($~-l~)(O); ... ; de (~~-l~)(O». 
dte 

Now, by (*) (Proposition 1), one has: 
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Since the q in the formula above satisfies 1 ~ q ~ j ~ e, and $~-1 is Ck, 

it follows that ~-1 is Ck-e. So is its inverse, by an analogous argument, 

proving the claim. 
1\"1\,, k 

Therefore,' {(~,U)} generates a maximal C -e atlas on TeM, modelled on 

:Rm(e+l) • 

Finally, to see that TeM has indeed the structure of a fibre-bundle, 

we look at the diagram: 
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where lle: ~ + a(O), and llU is the natural projection; (~-1 x Id1~ is a 
'" . 

diffeomorphism, U = ll~\U), lle a submersion, hence TeM is a fibre bundle. 

Its fibre is Rme • C 

PROPOSITION 3: 

Tef is well defined (we refer to Definition 3), Cs-e differentiable, 

and, furthermore: T~ (idM) = id e . 
T M 

k If g:P + M, and g, Pare C, then 

e e e T (fg) = T f.T g. (f:M + N; dim M = m, dim N = r) 

Proof 

To show that Tef is well defined one just has to check, through 
* ~ ,.... -

(*) (3.1(2» that if e represents e E a, then fa = fee 
'U'U 

As for the differentiability, consider charts ¢,W, as below: 

By using (*) once more, we get: 

j a 1 e) ( y.:(a ,a , •• a + L L 
1 Isqsj his 

if j ~ 1, i=l, ... ,r 

and yO(ao, ... ,ae ) = 0(ao), where 0 = wf ¢-I, CS
, and y = ~yO, ... ,ye), 

. . j 
yj:Rm(e+l) +Rr , yj = (Yi,···,y~'···'Yr) 

e . ° dO t 1 Cs-e 
From this, T f 1S lmme la e y • 

e" ~" e e (") e 'd ° T ° + id • .a = a. Al so T f. T 9 Q = Now: T idM = 1 e' Slnce id·a M 
T M M 

. ~ e ~ 0 
Tef(~) = fga = T (fg~tas we wanted to prove. 
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REMARK 1: 

A quick look through definitions 1-3 shows that TIM is - just TM, 

and Tlf is just Tf. In Proposition 3 above, if we set e = 1, y.turns out 

to be given by: 

° 10 m a~L 1 m 
y:(a ,a) ~(~(a );.L ax~(ao)dxi(a ); ... ; L 

1=1 1 1 

= (0(ao); d0(ao)a l ), as it should be. 

Just to exemplify the case e ; 1, fix e = 2. 

Then, y is given by: y(aO,a1,a2) ~ (0(ao);d0(ao)al;d0(ao)a2+d20(aO~I,al» 

(Note: we use both the notations, dj~ and Oj0, with the same meaning). 

RE~lARK 2: 

We would like now to relate TeM with the jet-spaces: let X, Y be 

manifolds, Je(X,y) the manifold of e-jets from X to Y, defined in the usual 

way (see [4], page 37); then, setting X = R, Y = M and J:(R,M) = the subset 

of Je(R,M) constituted by the e-jets with source 0 £ R, one can easily check 

that TeM is diffeomorphic to J~(R,M). (This last set has the structure of a 

manifold: it is a submanifold of Je(R,M». 

REMARK 3: 

For the rest of this section, we consider only the case k = ~. for 

simplicity of exposition. 

REMARK 4: 

In our applica~ions, the man;f~ld M will sometimes appear, for a start, 

r e as a submanifold of R. Then one can view 'naturally"T M' as a submanifold 

of TiRr. We make these ideas precise. 

DEFINITION 2': - Suppose M c Rr is a smooth (C~)m-dimensional submanifold of Rr. 
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Define: TeM = (' iRrl ( * 
Cl e: T Cl 0) = X e: ~1, ~a e: a e:; such that a(I) c MI. 

This set can be given the structure of a manifold, as a submanifold 

of T1Rr, as follows: let x e: M be fixed; (0,U) be a chart forRr , 

0'U r r • c lR -+-lR t X e: U, s.t. 0(U n M) = 0(U) n (lRm 
x {O}~ 0 E Rm-r ; it ;s 

tVtV e tV 'V 
easy to check that 0(U n T M) = 0(U) n V, V a subspace of ~r(e+1), of 

dimension m(e+1). This shows that TeM is a smooth submanifold of TiRr, 

whose smooth differential structure is given by the max. atlas generated 
"'- tV 

by{(id,U)}UElRr 
open 

We now show that TeM and TeM are Ithe same 1 (take f = inclusion, in 

the next proposition); i.e. Definition 2 ~ Definition 2', 

PROPOSITION 4: . 
Let M be a smooth manifold, f:M +lR a smooth embedding. Then f induces 

a diffeomorphism from TeM to Tef(M). 

Proof 
~ 

Define h:TeM -+- TefCM) by: a -+- fa. Let x e: M, ("u) be a chart for 

M, x e: U; 0 = f<l>-1:<I>(U) -+- .lRr is an imnersion, hence ([41, page7) 3 open sets 

U' c 4>( U), <I> (x ) e: U' and V c:R
r , wi th 0( U1

) c V, and a diffeomorphi sm 

T:V ~ T(V) c ~r, s. t. 'T'/J/U' : Rm -+-.lRm 
x RT

-
m is the standard injection. 

"""" Set ~I = 4>-1(U 1 ) C U, W = <I>/W, and let (w,W) be a chart for TeM induced from 

(w,W), chart for M. 'T0(U 1
) = Tf(<I>-1(U'» = Tf(W) clRm 

x {OJ; by restricting 

V (neighbourhood of f( x» further, one can ~lI.Iarantee that V "\ f{M) c f(W), 

since feW) is open (in f(M»-f is a homeomorphism into its image. So, 

T(V n f(M» c:Rm x {OL Setting n = T/f(t·n n V, I = V n f(H), we therefore 

have that {n,l} is a chart for f(M), which generates {~,}}, chart for J!f(~), 
seen, as well as f(M), as a manifold on its own. We can assume, w.l.O.9, 

W = f- 1(V n f(M». Since T0 = Tf<l>-1 is the standard injection, we have 



nf$-l = identity/Ute Now, ~h~-l:~(~) cRr (e+1) ~Rr(e+1) is given by 

(note: a:I ~ M, a(O) = x E U'): 
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de $-1 '" 
($Q(O); ••• ; 7$a) (0» .., a 

dt 

'V de . 
n , (nfa(O); ... ; -7nfa) (0» = 

dt 

-1 de -1 de = (nf~ ¢Q(O); ... ; ~e nfw )(wa)(O» = (¢Q(O); ... ; ~~)(O» Therefore 
dt . dte 

'V~1 'V 'V 1 'V'V ~ 
nhll'- = id,l~(W). Therefore h/~I =?(- (id/1JJ(W»\jJ is a smooth diffeomorphism. 

Therefore h:Te~·1 ~ Tef(M) is a diffeomorphism. 

3.2. THE eth EXPANSION OF A VECTOR FIELD. -
In this paragraph we will, given a vector field v in Rr, define 

v[e] : lRr.~ T1Rr. We then construct a function S \'/hich makes the diagram 

below commutative. 

DEFINITION 4: 

The important point here is that S turns 

out to be a submersion off a certain set, 

and this allows us (see next paragraph) 

to prove transversality theorems for 

submanifolds of TiRr. 

_Let v E vk(lRr), x E lRr , 1 ..:; k ..:; 00. 

,. 
Let a: I -+ J.t{ be a sol ution of v through x, 1 -; e ~ k, and a be the 

* equivalence class, under 'Ve , of a , the germ of a at O. 

Define the eth expansion of v, v[e], by: 
_ _ ... .a. re...r v[e]:~ 7-1( 

" x---to)Q 
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In what follows we will be using the 'natural' identifications 

re...r..-l Rr(e+l) I' f. ( ) ~e ( » e-l r r ~ r r Be-1 
-.IK -= , ~ ~ \~ 0 , ••• , dt e 0 ~ and J (lR,lR)::::: R x. R)( r , r ' 

where B~~~ = A~-l(l) ~ ..• e A~-l(r), and each A~-l(i), i = 1, ... ,r, is the 

space of polynomials in r variables and with degree ~ e-l. Choose as 

coordinates for A~-l(i) the coefficients of the polynomials. 

We use the notation: 

v[e] (x) = (x;vo[e](x); ... ; ve-1[e](x», 

and vj[e] = (vl[e], ... ,v~[e]); when no ambiguity can result, we 

write v~ for v~[e]. 

PROPOSITION.5: --------------. 
Each v~ is a polynomial p~ in partial derivatives of v, of order 

, 1 

s j-l. 

Proof 

By induction. For j = 0, we just have v~ ~ vi. Assume that our assertion 

j _ d (j-1( ») _ is true for j - l, j ~·l. Then Pi - dt Pi at /t=O-

a . 1 ook 
= I: ax (P~- (a( t») -at< t) /t=O = 

k k 

d (j-l) ~ vk dX
k 

Pi ,proving the 

proposition. 

COROL! ~RY: 

Proof 

{P~} determines a map S, such that 
J 

r r e-l ( ) r(e+l) This is just the map: (x;v; ••• ) € R x R x Br,r ... x;v;* € R 

where * is determined by the polynomials in coordinates of Je-1ORrJRr) 

corresponding to the ones given in Proposition 5 above. 

cor.mutes 
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PROPOSITION 6: 

If v ; 0, then 5 is a submersion at v. 

Proof 

If v ; 0, then vA ; 0, f~r some A. We will now order a sub-base of 
-1 r r . j a 1. . (j j ) _ (0 e-l 

Je (R JR ). by setting qi = ~ • qJ = ql •.••• qr. q - x.q ••••• q ). 
~ 

Notice that by abuse of notation we are confusing an element of the 

base of Je- 1(Rr ,Rr) with the corresponding partial derivative of v, so that 

we can write 51 == P~. 
By induction, P~ 

o 0 
j = 0, Pi == vi = (vA) 

contains the term : 

== 

= 

Furthermore, 
j Pk, k ; i 

p~, V k, s < j 

j . a v. .. 
contains a term (vA)J ~ == (vA)J qi. Indeed: if 
a °v . a xA ; 
~ ; suppose our claim is true for j-l. Then Pi 
ax 

== 

+ ••• ) /t=O = 

j . a v. 
(v ) J --L + ••• , as wa n ted. 

A axJ 
}to 

1 do not contain q1· 

'" 
11 b" as. 1 t· 1 Also S(x;-) = (x;-). nence the Jaco lan matrlx aq 1S ower flangu ar, 

with either Its or powers of vA down the diagonal. Hence 1~~(v)1 ~ O. 

Hence 5 has maximal rank at v. Hence S is a submersion at v. 

COROLLARY: 

Let A = {a E Je- l (Rr ,Rr) I target of a = O}. 

Then SIAc is a submersion. 



3.3. SOME TRASVERSALITY THEOREMS: 

In order to prove that, for fixed generic f, 'most' flows in C = Rr 

can be uniquely lifted (as in Chapter 2), we \Jill need transversality 

theorems of the sort indicated in 3.§O. Proposition 7 below is a typical 

example of these; in Proposition 9 we show how it translates into the 

technical conditions related with the lifting theorems. 

Let A = {~ € T1Rr I da/dt{O) = ••• = dea/dte(O) = OJ. 

A as above, N c T1Rr a submanifold, n = S-l(N), 

B = {v\v[e] ~ N}, B = {vlje-lv;l\ nL 

PROPOSITION 7: 

Let N be a {closed) smooth submanifold of T1Rr. Suppose N n A = 0. 

Then,~ (open dense) a residual set (in the COO Whitney topology) 

co r r r il' \J Bee (R ,R ) ~ V (R ), s . t. v [ e] N , v V E B . 

Proof 

3.2(3) 

From the definitions of S, A and A, it follows immediately that SeA) c A. 

Hence N n A = 0 ~ S-l(N) n A = 0. Therefore, from Corollary on page (3.2(2», 

n is a' (closed) submanifold of Je-1(Rr ,Rr ). Hence B = {vlje-1V if' n} is ppen 

dense) residual in Cco(Rr ,Rr ), by Thorn's theorem ([4], (page 54) I (page 56~. The 

proof will be finished by showing that B c B. 

( ) .e-l ( ) Let v € B; choose (if possible) x s.t. v[e] x E N. So, J v X € n. 

Now, since je-l" n, one has, at x: v 

e 1 r e-l r r 
T x j - v ( T xR ) + T Y n = T Y J (R,R), ( * ) 

with y = je-lv(x) .. 

Now, 5 is a submersion, so that 
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T ( .e-1) r ( ELr x; J V, TiR + T,S Tyn) = Tv[e](x) (T ~ ), from (*). 
v[e] 

( -1 
Also S n) = S(S (N» c N. Therefore TyS(Tyn) c TS(y)N = Tv[e](x)N. 

Therefore, Tx(V[e])T~r + Tv[e](x)N = Tv[e](x) TlRr. This shows 

that v[e]~ N, Therefore V € B, as wanted. o 

PROPOSITION 8: 

Let Q be a (closed) submanifold of Rr, c = cod.Q ~ 1. Then, 3 e and ~ 

(open dense) residual B c Coo(Rr,Rr ) s.t. V[e](Rr ) n Te Q = 0, \f v € B. 

We first prove some lemmas: 

LEMMA 1: 

Let X,Y be smooth manifolds, W a closed subset of Y. 

Then {f € Coo(X,Y)jf(X) n W = 0} is open in the Whitney CO topology 

(hent;e in the ~/hi tney COO topology a s well). 

Proof 

Let U = {a € JO(X,Y)ly = target a t W}, V = JO(X,Y) - U. 

Let {oil be a convergent sequence of O-jets, 0i € V, 'f i , a = lim ai . 
1-+00 

Since target 0; € W, "i' and W is closed, target a € W, therefore a € V. 

Hence, U is open. 

Now, M(U) = {f ~ COO(X, Y) I jOf(X) c U} = If/( x, f(x» t U, Vx} = 

= {flf(x) n W = 0} is open in the CO ~:hitney Topology. 0 
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LEMMA 2: 

Let X,V be smooth, Wa submanifold of Jk(X,V), "a E I, some index set, 

cod(W ) > dim X, 'Ia , and W = I 'W closed a ~ a . 
aeI 

TW = {f E Cco(X,V)ljkf AWa , Va} is CO open (and so, CCO open). 

Furthermore, TW is open-dense if I is denumerable. 

Proof 
co k 

{g € C (X,J (X,V»lg(X) n W = 0} is open by Lemma 1. Now, 

. k f . kf . k co( ) co( k J : ~ J ,J:C X,V ~ C X,J (X,V» is continuous ([4] pg 46), and 

therefore {f E Cco(X, Y) Ijk f A W
a

, Va} = {fljkf(X) n W = 0} = 

"::; (J' k , -1 ( J Cl E COO (Y\ .1 k ('( v \ I (1 ( X' n \.i ..:: I~}) i - '" ,., 0..., 
I l .J ' ;) - \ I ., 'I ~, I It. ,..; I ~ t.,.l ;.i ... t , • 

Now TW = ~ TW ,TW = {flf ~w } , and each TW is residual from 
ae I a. a a. a 

Thorn's Theorem. co 
Hence TW is dense, since C (X,V) is Baire. o 

LEMft4A 3: ---
Q closed ~ TeQ closed, "e. 

Proof 

Assume (TeQ)c is not open, by absurd. Let ~ E (TeQ)c be such that 

ci n TeQ f 0, Y (:I containing ~. If x = a(O) I. Q, and since QC is open, 

there would 3 neighbourhood N of x with N n Q = 0 and so, by setting 

if = ~, we would have u' n TeQ = 0, v;i:h ~ E ti, a contr·~diction. So, we 
IV'\, 

must have x E Q. Let now U be a neighbourhood (in Rr) of x, s.t. (0,U)' 
'\, '" e '\, '" (see 3.1.(8» satisfies 0(U n T Q) = 0(U) n V, V as before (3.1(8». We 

'" '" have ~(a) E V, otherwi se 3 open W around ~H~) E V with W n V = 0 , therefore 
"'1 e "'", A e 
,,- (W) n T Q = 0, contradictory. Finally, 0(a) € V 9 a € T Q, contrary 

to assumption. Hence (TeQ)c is open (see also Remark 4 and Definition 2'; 

Proposition 4 was implicitly used). 0 
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PROOF OF PROPOSITION 8: 

Choose e so that e > r-c (*) 
c 

S t N - TeQ c . - -1 ( ) e" -1 e - n A , WI - S N; AQ = T Q n A = {a € Alx = a(O) € Q}; W
2 

= S (h
Q

). 

Since N n A = 0, WI is a submanifold of Je-~(Rr ,Rr) (see Proposition 7), 

with COd.(W1) = cod.(N) = c(e+l) > r (by (*)). 

With the usual identification J e-1(Rr JRr) ~ Rr x Rr x Be-1 we have 
r,r 

that Wz = Q x {OJ x B~:~, hence a submanifold (closed, if Q is closed) of 

Je-l(R~,Rr), with codimens;on (W2) = r + c > r. 

If Q is closed, so is TeQ (Lemma 3) and also W = WI U W2 = S-l(N U A
Q
} = S-l{TeQ:. 

Hence, setting B = TW = {v/je-lv mWa, a = 1,2} = (={v/je-lv(Rr ) n W = 0}), 

we get B open dense by Lemma 2. If Q ;s not closed, just apply usual Thorn ~ 

Theorem ([4], pag~ 54) to WI' W2 as above, to get the TW residual. 

DEFINITION 9: 

Let S eRr be a set, v E Vk(lt}, k ~ 1. Then, v has isolated intersection 

with S at x € R
r iff, given a:I -+ If, solution of v through x, 3 e: > 0 s.t. 

{tla(t) E. s, itl < e:, t ~ O} = 0. 

Notation: v t!\x S. If v~xS, V x, we say that v has the property of 
0-

isolated intersection with respect of S: vti'\ S. We write v i.b S if v t1\ xS 

for every x which is not singular for v(i.e. vex) r 0). 

PROPOSITION 9: 

Let Q as in Proposition 8.3 1.) c V(Rr ), open and dense in the COO ,;hitney 

to po logy, s. t. v t1:\ Q, " V € B. 

Proof 

Let e, B be chosen as in Proposition 8 above. Fix v £ Band Xo £ Q. 

Let U be a neighbourhood of Xo (in Rr ), ,: U -+ ,(U) a diffeomorphism s.t. 

+(U n Q) = t(U) n ijRm x {O}), where mFdim Q. Assume t(xo) = 0, wlog. Denote 

+'U n Q also by •• by abuse of notation. let:~ € le(U n Q) + tB € le(t(U n Q» 



'~;.~~---------_/ "' r%~ _ 

is a diffeomorphism, with inverse Te(~-l) (see 3.1(6), P~~t~3). 

Q is closed, v 11\ xQ is trivial if x i Q. Therefore we will prOVE 

theorem if we can show that v~x Q, Xo as above. Let a :1 ~ Rr be 
o 0 

solution of v through xo. We seek to find ~n E > 0 such that 

/."\ e m Now, ~o i T (~(u) n (R x ~ 

e -1/,'....) we would have T (~ )(90.
0 

= 

;0 = v[e](xo) E Te(U n Q) c 

contrary to the hypothesis 1 

withW= ~one has: llJ{Te(¢(1 

m m 
= ~(U) n (R x{O}) x (~~ 

Rr. 

Hence as W~o) = (CPao (0) : 

d(cpao) de (cpao) 
---t(0); ... ; e (0 

dt dt 

d(CPao)s de(CPao)s 3 s E: {m+ 1, ••• ,r} s. t. ( (0) ; ... ; e (0» ~ (0, .•. ,0). 
. dt dt . 1 

dJ{~~)s d(cpao>s dJ - (4)0.
0

) 
such that a = l/j!" J' (0) ~ 0, (0) = ••• = j-1 

dt dt dt 

Expanding (cpa) :1 ~R in Taylor Series around 0, one has: 
os. 

d(~a ) dJ(¢~o)s 
($0. ) :t ~ (cpa) (0) + 0 s{O)t + .•. + l/j! j (0) 

o s 0 s dt dt 
.. 
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~ 
Let 8s be a local diffeomorphism (i.e. 8s : Jopen ~ Bs(J}) of R, where 

o € J, 8s (0) = 0, and 8 (~a ) :t ~ tj. This is possible, because (~) is J' s 0 s ~o s 

determined. Define B:(x1,x2,···,xs,···,xr~ ~ (x1,x2, ... ,Bs(xs), ... ,xr)' 

8:U' =B (0) x ... xB£ (0) x JI x ... x B£ (0) ~ pr, J' c J open, 
"! s-1 r 

R+ . 
£i € 1 = 1, ... ,s-1,s+1, •.. ,r, chosen so that U~ c ~(U). Note that 

Finally, choose £ small enough so that (~O)«(-E,E» CUI. We have 

(8$a o}s (t) = 8s(~ao)s(t) = tj, t E (-E,E). Therefore (6$ao}(t) = O~t = 0 

(It I < E); since It I <E, t ~ 0 and a (t) E Q would imply (6¢a) (t) = 0, 
o 0 s 

we may conclude that ao(t) i Q, if {t ~ 0 , as wished. 0 
{~I < £ 

REMARK 6: 

The proof above also shows that:x € Q, v[e]{x} I. TeQ ~v I'f\xQa 

We give now a last example, in which we examine a situation where Q 

is not necessarily smooth. Our intention is to illustrate once more how to 

interrelate the concepts developed here with standard transversality theorems. 

From Levine's article, as in [14], we quote the following. 

(*) 'The set of maps in L(V,M,s) whose r-extensions are ~ to W on V is 

dense, provided that sJn-q) < s-r,(s> r)l' where q = cod(W), W is a C
s-r 

iIf 
differential submanifold of Jr(V,M), V and M ut least s differ~nt;able, 

n = dim V I • 

Note: The above is Theorem 1, in §.7 of [.14]. 
r The to"ology on L(V, M, s), wi th V = 1R , 11 = 1R, as in Proposition 

10 below, is the topology of uniform convergence of all partial 
th derivatives of orders s s, including the 0 (see §5, 5.3, of [14]). 
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PROPOSITION 10: 

Let Q be a Ck+1 submanifold of Rr , k ~ O. Let c = cod Q:>Oand. K> !.:.S. . 
e 

r -Then, 3 B c L(R ,R,k), dense, s. t., V V € B fixed, v~ Q. 

Proof 

Construct T-Q, C1, and set N = T~Q n $-l(Rr (k+l)_A), and n c Jk-1(R~,Rr) 

as in Proposition 8. We have q = cod(n) = (k+l)c, n of class C1. Now, 

the condition k > r-c implies r-c(k+l) < O. i.e. r-q < O. Applying (*) with . c 
Jto-

V = M = Rr
, s = k, r = k-l (hence s-r=l), W = n, we see th~ans, in our 

case, r-q < 1, which is just slightly less than we are requiring. So, 

B = {vljk-lv iJ\ ll} = {vljk-lv(Rr ) n n = 0} is dense; the last equality comes 

from cod n ~ (k+l)e > r, by hypothesis. As before, v € B -9 v [k](Rr ) n N :; 0. 

From Remark 6, v/l\xQ, V x satisfying vex) ;. 0, as wanted. o 

(Note: If Q is closed, as in Proposition 8, and if one wants to prove the 

analogue of Proposition 9 in the non-smooth case, one just has to extend 

(*) to the situatlon as in the remark in the proof of Proposition 8. We 

will be concerned, however, with the smooth case; we will proceed, in 

Chapter 4, to extend the Propositions and Definitions above in yet another 

direct; on). 

REMARK 7: 

Lemma 2 is not valid if one. removes the hypothesis cod W~ > dim X,V ~ , 
though this Fesult is mistakenly announced in [4], page 59. It does not hold 

even if the Wats are disjoint and I is finite, as the following counter

example shows. 

Let X = SI, Y = R, k :; 0, WI' W2 as in picture below, and f = O. 
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(Il f:L (51) I q"tc.. ... 
C ~1 ----5 

/ 

--------J ~ SI X lR-

Let fn = lin, V x ~ 51. Now, {fn} ~ f in the COO Whitney topology; 

fn i TW' V n (because, by construction, our W2 is such that the points 
;-:>see picture 

Pl,P2,···,Pn, •.. have coordinates (xn;Y
n

), where the first 

coordinate refers to 51, the second to R). Therefore TW is not open. 
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4.0 INTRODUCTION: ......... 
The purpose of this chapter is to show that the properties HI and H

2
, 

necessary for the 'lift' as in Chapter 2,are generically met in V(C). 

It is trivial to show that H2 is generic (see 4.5), so that we will 

concentrate our comments on the genericity of HI. 

In Section 1 we show that the genericity approach is necessary, since 

the required properties are not always met. 

In Section 2 we introduce some preliminary material, for later 

reference. 

Sections 3 and 4 are devoted to the proof of genericity of HI. 

Section 3 deals with the problem of 'avoiding' separatrices 

'immediately' after a 'catastrophe point'. This is in general a global 

problem. It can not be coped with if n > 1 and we use only that f is 

. generic (in the sense of [16]). This is because [16] gives us only a local 

description 'around' singularities. However, if n= 1, only the local 

problem arises, b~cause the'separatrices' reduce to singularities. There

fore, in 4.3, the restriction n = 1 is fundamental (though - see conjectures, 

Chapter 6 - generalizations of our methods may be possible). A denumerable 

closed union of (sufficiently high codimensiona1) submanifolds of TeC is 

built, and genericity is achieved through the transversality theory of 

Chapter 3. 

Section 4 deals with 'avoiding' Cf , just after meeting it, ~rom the 

point of view of our vector fields ~ ~ Vee). This is a problem independent 

of n. since it depends only on properties of Cf which do not depend on n. 

See 4.4.0 to a brief description of the methods used there. 

Section 5 shows H2 to be generic (one page), and Section 6 contains 

some final and brief technical remarks. 
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4.1. AN EXAMPLE -
Before we give the proof of genericity of conditions Hl~ H2 (l.2(5»~ 

we illustrate, through a particular example, what can go wrong. The vector 

field below violates Hl ; this is equivalent ,to the fact that its second 

expansion, v[2], is not transversal to a certain submanifold of R6. 

Since we just want to exemplify a local problem, let X = R. 

2 4 2 . 2 
let C = R , f: (x;Yl 'Y2)'-:' x - Yl x + Y2x, and v e VCR > ... 

X x C' '> R 

We wi 11 show: 

(1) v i. Vf (see 1.2(5» 

(2) ~ lift ~ with properties as in 

Theorem l. 

(the flow ~y on the state space is given 

by -'\If y). 

(1) Fix (i,y) € dMn
f • J = {y € R21x € sep t y}. We use the notation 

f,x~y 

J~- = J --. Now, sep ty is, in this case~ the set of points where fy 
x.y f,x,y 

has a maximum (see 1.1.(3». Therefore: 

. \.t -2i)1+ Y2. = OJ"' 
y c J- - ~ x max i mi ses f ~ j ---2 ' 

x~y Y l-12x + 2Yl > ,0 

(I) 1 
(II») This is just the green straight line (open at Y). 

For (x;y) • (1/2; 3/2, t'Y2 = Y1 - 1/2 
1), one gets • which (see picture) 

11 > 3/2 

is contained in ~.(3/2.1)' violating H1• 



(2) Suppose ~ such a lift. Let t = 0, m = (1/2; 3/2, 1) 
\~ .J 

From Theorem 1, (3),3e > 0 s.t. 

-~ Y 

4.1(2) 

1/2 = nx(~(O,m» E inset ITx($(t,m», \f t E [O,e), where the implicit 

vector field is -Vfy'Y = ITc(~,m» = ~(t,y)= (t,t) + y = (3/2 + t; 1 + t). 

Therefore, with fy = x4 - (3/2 + t}X2 + (l+t}x, it is easy to check that fy 

has a maximum at 1/2, ~ t > 0, so that 1/2 E in-set (*) ~ * = 1/2. Hence, 

for t[O,e),rrx(¢(t,m» = 1/2,therefore $(t,m) = (1/2, t+3/2,t+l) ~ Mn , a 

contradiction. 

The trouble with this example is that the orbit of v marked 'r' (see 

picture), after getting to P = (3/2;1), runs into J(~;P)' The way to see 

that this can not happen generically is to associate with each point, P in 

Cf , all the 'second-order equivalence classes' of curves through P and 

running into J(~;P). This has dimension 2, and as we let P vary in eft we 

get in a natural way a stratified union of manifolds in R6 ::: T~2. The higher 

strata has codim. 3, and therefore v[2] generically misses our stratification. 

It is then possible to show that when this happens no orbit (through some P) 

can run into J(.;P). 

These arguments will now be made precise, as we actually construct the 

required manifolds for a (generic) fixed f. We will also have to tackle the 

problem of avoiding ef , which does not present itself in the context of the 

above eXdmpl~. 

4.2. PRELIMINARY DEFINITIONS AND PROPOSITIONS -
Let f E C~(X x CJR) be generic, in the sense of Proposition 0 (1.2); 

let n • 1, r s 4. 
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Let ~n be the set of germs at ° of COGfv(\ct~of\.S F(1om..lR..h.to R,which is a. \cx.a.l . 
ring (see [16]), and m = mn it's maximal ideal. 2 Let n € m , and (c,h) an 

c n unfolding of n, h:R x R ,0 .. R,O. 

DEFINITION 1: 

Given (c,h) as above, we say that (c+d,g), as defined below, is 

(c,h) with d disconnected controls. (d ~ 0, an integer) 

Rnx R
C 

x Rd I "> Rn x RC
' "> R 

~ ~ w 

g: (x, y, w) :> (x,y) " ~(x,y). 

REMARK: --
It is easy to s~e ([16], pg. 39) that (c,h) is an universal unfolding 

of n iff (c+d,g) is. 

DEFINITION 2: 

The standard r-universal unfolding, (r,g), of n ;s the standard universal 

unfolding. (c,h), (where c = codimension n) of n with d = r-c disconnected 

controls. {For the definition of (c,h), see [16], pg.41; also r ~ c - see 

[16], 51}. 
'. 

We will have a particular intere6t in the §erms (justification below): 
3 4 5 x6 

nl (x) = X3 ; n2(x) = T ; n3(x} = T and n4{x) = T . 

After convenient choice of base fo~ m/J (see [17], pg 19), their standard 

universal unfoldings become: 
3 4 

gl(~;u}= lr + ux; 92(x,u,v)= T+ U 

2 5 3 2 
x ( ) x x x . T + vx;g3 x,u,v,W = T';' uT +vz- .;.wx, 

6 4 
g4(x,u,v,w,z) = i;+ u~ 3 2 

+vL +wL +z 3 ~- • 
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PROPOSITION 1: 

Let (x,y) ~;. aM'" c xn=1 x Rr 
~ f ' n = 1, r $ 4. There are diffeomorphism 

R 

i f 
R

n 
x :Rr ;(0,0) ---;>X~Rr ;(x,y) 

y I 

t
~O 

~ r 

___ r __ ~. ~~ Rr 

Proof 

(fibre preserving) germs y, r such that 

the diagram commutes and (r,g) is equal 

to (c,gc) with (r-c) disconnected 

controls, for some c € {1,2,3,4}. 

From Proposition 0 (Chapt~r 2) we know :3 some chart (~,U) (V., for 
1 

some i, in Proposition 0) around x e: Xn=l, til = (~; id): U x Rr 
-+- 4>(U) x Rr, with 

" '"' X x Rr Rn x Rr 

$(x,y) = .(0,0), wlog, s.t. the extension map F:~~U) x Rr 
-+- J~=1 induced by 

f~-1 is I\Q on U, where Q is the stratification of J7 as in [16], Chapter 8. 

So (see [16],pg 51), codn (= f~-I/R~oX{O}) :S r~ 4. Also, since n = 1, 

n is right equivalent to one of nc (c = 1,2,3,4) above. (Note: we should 
. 4 466 

consider + x4 ' - x4 ' X6 and - X6 ' but the distinction between the forms 

-to <!1 -. 
w~gns need not be .nade in this context - refer to Lermla 4.12 1n [16]). 

One also has ([16}, pg 51) that the germ of f$-l is a universal unfolding 

of n = n .~, t given by the right equivalence above. Therefore ([16], pg 43), 
c 

h • f~-I. (~-1 x Id) is a universal unfolding of n = nc~. Now, (r,g) = (c,gc) 

with (r-c) disconnected controls ;s also an universal unfolding of nc. (see 

remark in Definition I), and from Theorem &9 ([16]), (r,g) is isomorphic -

via some (".) - to (r,h). This allows us to write down the following 

diagram: 

o· 



nr 

1 
Id Rr a -----=;>-, , 

n . 
r 

(y = 0, wl 09) • 

4.2(3) 

)' 

~1~_\ 
The proposition then follows by taking 9 = f~-l(~-lI)~ and r :: , • 

y is clearly fibre preserving, from the commutative of the above diagram. 0 

REMARK 1: 

Md baM"-) :: 
f f sing Xf (see [17], pg.15). Also, . M; is closed in X x c. 

d ~ n k 
therefore Mf(:> aMfl :: Mf - UM 

o 
Indeed: Mk is open in M, k = O, ... ,n (2.1(1~) 

is closed in M and M is closed in X x C (see 2.1(12.». 

PROPOSITION 2: 

Let Sl(Xf) = singularity set of Xf (notation as in (41) [r~marklM~ = 

:>aMfl. Then, Sl(Xf) is either 0 or a cod. 1 submanifold of Mf • 

Furthermore, suppose one has defined ~1 .... J., (Xf) and it is a codimensioft. e 
submanifold of Mf ; then 51, •..• 1 (Xf> def. sing ~f/Sl, ... • 1(Xf) is either 0 or a 

. ' e+l · . e . 

cod (e+l) submanifold of Mf · 

In other words, one has a sequence Sl(Xf) J ••• :> ~, ... ,l.(Xf):;) .•• :> ~l, ... ,\('· 
e k 

each of which is a cod: l, ••• ,e •••• ,k-l (respectively) submanifold of Mf,the 

last set (~1, ••• ,~ (Xf» being either 0 or a codimension k subman1fol~ of "fa 

k 
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Proof 

Suppose SI (Xf ) ;. 0. Let m = (x ,y) € S1 (Xf) . From Propos i ti on 1, 3 

diffeomorphism germs (at 0) y,r , with 9 = fy = gc + (r-c) controls. Since 

y is a diffeomorphism, one has MJ~ = y-l(Mf ) (germ equation), and 

S1(X9) = y-l(SI(Xf»· 

Now (see [16], Lenma 7.6) Mg = MC 
x Rr - c , where MC = === M . 

9 9 9c 
Construct the map a:JR xJtc -+R x:R,c as in [17], pg 16; it is a 

ut nt 
m/J m/mJ 

diffeomorphism germ. One has the following diagram commuting ( h = fy(e-1 x 1). 

-1 I f ~ x RC x lRr - c a x '5> R x RC x ]Rr-c y 
,X x RC 

>1R 
U 

V V lRc 

'I e-1xI/M M =Mc~r-c Y/Mg 
:)Mf M =Mc x Rr - c 

h-->g g h h 

\ 
\ c c ---Xh=Xh x I X =x x I Xf 9 g 

i I t r ~r RC x 1Rr ... c ·>Rc x Rr- c 
')-

By computation (see [17], pg 20 for the case e = 2), one gets 

Co c a-1/MC lRe~ as .. Xk = Xg• h:..:.J 

c = 1: a 2 -_. ~., -a 

c = 2: (a,b) -..." (2a-3b2; -2ab + 2b3) 

C :: 3: 2 3 2 4 
(a,b,c)~ (3b-6c ; 2a-6be + 8e ;3be -2ac-3c ) 

c = 4: 
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Since a-I x I is a diffeomorphism, SI{Xh) = (e x I){SI{Xg» = (e x I)y-1{SI{Xf»; 

. ( ) -1 ( ) l.e: e x I y /S1(Xf} : 51 Xf -+ S1(X~ diffeomorphically. Now 

Xh = X~ x Id, so that S1(Xh) = S1(X~) x Rr-c. From *, by computation, one 

sees that a point in R
C 

is singular for X~ 'c = 1~2,3,4)~) a = O. That is, 

any case S1{X~) is a cod. 1 vector subspace of RC ••• 5
1

(Xh) is a cod.1 vector 

subspace of R
r 

0 Therefore the. chart (e x I) Y -1JMf takes r~f to Rr and 51 (Xf) 

to a cod. 1 subspace of RlJ.. Since m € 51(Xf)' this shows that 5
1
(Xf) ;s a 

. cod. 1 submanifold of Mfo 

c-1 I Xg ,.. 

! 
Since lIT] and I(;;)} are again diffeomorphism gems, one has, by the same 

method~ as above S1,1(Xn) x Rr-c 
= (e x I) y-l(S1,1(Xf» 

Ii c 1 
Sl(Xh-') 

Now Sl(~-l) are computed by discardingJL{;.e. setting a=O) from * (this 

eliminates folds as candidates) and investigating where the Jacobian drops 
-1 rank by one. This occurs iff b = 0 (c = 2,3,4). Therefore (e x I) y IMf 

r-c (C-l) r-c sends Sl,l(Xf) to Sl,l(~) x R = Sl,lh xR = cod.l subspace of 

Rc- l 
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c-l r-c r R x R = cod.2 subspace ofR J therefore Sl,l(Xf) is a codimension 2 

submanifold of Mfa The rest of the proof follows from the fact that 

setting: a = b = 0 9 Jacobian drops # c = 0; a = b = c = 0 ~ Jacobian 

drops~ d = 0 and a straightforward repetition of methods as above. 0 

PROPOSITION 3: ~i 
Given m = (x,y) E Md, 3 Z, neighbourhood of ~in x"'x Rr, s.t. 

r r\~1 r 
Z n ({xl x R ) n Mf is a submanifold of X x R 

Proof 

We have Xf = nr/Mf singular (Remark 1), therefore ~ v i 0 E TmMfcTm(X x ~r) 

such that TrnXf(v) = O/therefore TrnTIr(v) = O. Let (v1,v2' ••• ,vr ) be a base for 

( r (r {} r Tm {x} x R ) c Tm X x R ). TIx = TIr/ x x R is a diffeomorphism. Therefore 

TmITx is an isomorphism. 

PROPOSITION 4: 

If v(~O) 

one has: 

r 
= L a.v., then, TmTIx being isomorphic, 

111 

Tmllr(V) = Tm~(v) ~ 0, a contradiction. 

Therefore (v,v1' ••• ,vr ) are i.i. in Tm(X x Rr); 

so that: 
r r· 

TmMf + Tm({X} x R ) = Tm(X x R ), i.e. 

{x} x Rr i'\ M
f 

at m, hence i ... a nei ghbourhood 

Z of m; Therefore (from Theorem 4.! of [4~ 

Z n ({x} x Rr) n M
f 

is a submani fo 1 d of X x Rr'. 
o 

Let X be a LindelBf manifold (i.e. every open cover of X admits a 

denumerable subcover), Y a manifold, h:X + Y an immersion. Then heX) is a 

denumerable union of submanifolds of Y. 
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Proof 

Let x E X be fixed. From Proposition 2.10 of [4]~:3 neighbourhood U 
x 

of x s.t. h(U
i

) is a submanifold of Y. {Ux} admits denumerable subcover 

{Ui}~ h(x) =Vh(U i ) and each h(Ui ) is a submanifold of Y. 
1 

Note: h/Ux:Ux ~ h(Ux) is a diffeomorphism. (see [4]). 0 

rNOTATION:} We now fix notation through the following: 

REMARK 2: 

Fix f. Let 51 :==== 51 (Xf), ... '~1, ...• 1.: 51 (X ) be ~ • \ , ••• a 1. f 
k k 

as in Proposition 2. and define M: = ~l, ...• 1, -~1 ••••• 1, (e.,;k+l). Then 

e e+! 

{M~}e=l, •.. ,k-l is a stratification of M
d

(=51(X», in the sense that 
4- k-l 

Md = ~ M~ (disjoint). and each M~ is a cod. e submanifold of M
f

• with 

k-1 d d d . d 
.~ Mi = (Me - Me)' e=I, ... ,k-l. To check thls, let m E M1 = 51 - 51 I" 
l=e+l ' 

Then the c in 9c (Proposition 2) has to be 1, otherwise m E 51,1' and 

therefore the chart (e x I)y-1/Mf for Mf shows, as in Proposition 2, that M~ 

is a codimension 1 submanifoldof Mf • The proof for M: is similar. Now 

51 - 51,1 = 51' since our local charts in Proposition 1 show that 

- -( d d) _ ( ) _ _ ,k-, Md. . 
m € 51,1~ m E 51' therefore M1 - M1 - 51- 51-51,1 - 51,1 - '2 e' agaln 

a similar proof shows that the result holds for e ; 2, ... ,k-1. So that 

d d _ 
. {M} , Me - 51 1 elk 1 , ... , e= , ••• , - sr '------' 

d of M • 

e-times 

- S . 
1, ... ,1 is a stratification 

, , 

(e+l)times 
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REMARK 3: 

Proposition ~above is a straightforward consequence of the global 

fact that f is generic (Proposition 0 of Chapter 2), plus the local fact 

that at any given m € Mf , the stratification germ induced by Xf on the 

manifold germ of Mf at m is just the canonical stratification of 
2 k 

m 1m (k = 3, .•. ,6), ([17], pgs. 14/21), since we are dealing with n=1. 

It was to lexpect l that Proposition Z should hold anyway, since it 

is generic for maps Xf:Mf ~Rr to have the 51, ••. ,1 singularity occurring 

as k submanifold of Mf (see [4], Chapter VI, §5-Thom Boardman Stra~). 

4.3. CONSTRUCT,ING THE SUBMANIFOLDS CORRESPONDING TO Mf (see 1.1.(4» 
--- ,y-

We will be interested in patching together fibres consisting of 

e-tangent bundles of submanifold germs, over a submanifold of X x C. We 

,first need some definitions, to give the words- above a precise mathematical 

meaning. 

DEFINITION 3: 

, Let ~be a manifold. Two submanifolds tr and ~ are equivalent 

at p €~iff 3 N, neighbourhood of p in Z, s.t.~ n N = %2 n N. This 

is easily seen to be an equivalence relation. A submanifold germ of ~near 
p is one of these equivalence classes. Notation:~, where Q is some 

representati'le. 

~will denote the submanifold germ of (X x C) at m € Md, m • (x.Y). 

generated by" :8 Z n ({x} x Rr) n Mf , as given by Proposi tion 3 of 4.2. 



~-t-t"~lo(~ 

c=~7 

REMARK 4: 
~ 

We will call1l,m the I C-cross section of 

Mf at m' • 

DEFINITION 4; Define 

eA' ,.. f!r::I 
T (Q,p) ={ <l € T;;::..I 3 representative, 

~ A '" a:I ~ ~ , of <l , Q of Q,p s.t. a(I) c Q p~{O}: , 

REMARK 5: 
~ 

O e .A -1 - e * * ne can also use the definition T (Q,p) = TIe (p), where TIe' l~e:T Q ... Q, 

* /"".. induced by the representative Q of Q,p, can be defined in a natural way 

(see 3.1(5». It is easy to check that this definition is independent of 
~ 

representatives and that Te(67P) = Te(q:p). 

REM.~RK 6: 
~ e Ue/'. If Q is a submanifold of~, then T Q = T (Q,p), where Q itself 

P€Q 

is chosen as represtJntative, everywhere. This is irrmediate from Remark 5. 

DEFINITION 5: 

PROPOSITION 5: 

"e] and ~[e] (1 ~ i ~ r) are submanifolds of ~(X x e). of codimensions 

equal to 2(e+l) and 1+1+2e. respectively. 

, 
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Proof 

LetCl«(~~e:m[e] (mi[e]), m(e: M~)= (x,y), and, wlog, y = 0 € C =Rr. 

Our first aim will be to construct a local diffeomorphism, 

c· c.r06$·5e~ H : V ~ H(V) I V a neighbourhood 
\ of M F at W\. f"\ f'\ 
~ XxC,m XxC,m 

r=(J(''-l) 

of min X xC, wfth the property of 

straightening up Mf , i.e.: 

H(V n Mf ) = H(V) n (X x (linear subspace ofC:J) 

Let C' = Tm(xt}(Tm(Hf » C ToC ~ C (from now 

on we will not distinguish between 

ToC and C).Wlog, C' = {Y\Yr = OJ, since C' 

~1 is, in any case, a cod. 1 subspace of C. This 

is so because, m e: Md being arbitrarily fixed, Tm(X,> drops rank by precisely 

one. This is easy to check from the local forms as in "~(4.2{lt»· One gets 

the Jacobi ans: 

. , 
[)

4r, 

nd 3 • • 
• • • 

.I-2~ 

• • • • 

. , 

with the minors underlined 

having det. ~ 0, as wished 

<'t/ a ,b ,c,d) 

c1 C2 

L t C2 {I y - O} so thlt C = C1 x C2 (notation: y =(y~1'Y~2») e = Y Y1 = ... = r-1 - , 

Def; ne ~: Mf C X x C 

(x;Y1;Y2) 

.... X xC1 by 

-+ <x;y~. 

We claim that (with m e: H~}Tm ~ is an isomorphism. First, we note that if 

(v 'v' 'V 'v) E T {Mf } C T X • T C1 e T C2 = Tm (X x e), then vr = O. 
• 1·····' r-l' r m x Y Y 
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definition of e1). Since dim. (Tm(Mf» = r, it follows that Tm(nf ) = 

TxX' Tye1 ,. {O} = Tm(X x e1). ~ 

Let u f: Tm(X x e1). Therefore, w = (u;O) f: Tm(Mf ). Hence, if Ct 

represents w,a:I ~ Mf,a(t) = (ax(t};CtI (t);a2(t», one has 

(a~(O);ai(O);a2(O» = (~;O). 

Tm~ is surjective, hence an isomrophism, since dim Tm{Mf } = dim Tm(X x el,. 
p;ct" .. 2-

TmCMf } = Tm(X'X el
) 

)( 
--h.(V) 

M~ 
U 

:..--
~ ~ 

1=!u 
c.: 

From the Inverse Function Theorem. 3 neighbour~:

U of min X x e1 {whi ch has been confused 'ifi th 

Tm(X x e1) in picture, because we are drawing 

X linear), and 

h : U ~ h(U) eMf' 

smooth and such that h~ = id/h{U)t th = id/U. 

Set n1:x x e ~ X x C1 "(so that n1/ M =~) and n2:x )( C + e2 

f ( XiYl;Y2) +(X1;Y1) f (x'Yl'Y2) + Y2 

Note: . In the following M~ can be substituted everywhere by Md; wh!re 'codimension ' , 
appears set i = 1. 

M~ is a cod.(i+l) submanifold of X x C. so that ~ W. neighbourhood of m E M~ 
in X x C and n: W +~~1 s.t. neW n H~) = n(W) n A, where A is a cod.{i~l} 

1 i near subspace of Rr+l. 

Choose V, nei ghbourhood of min X )( C, sma 11 enough so that II c: (:1 and 

V c: U)( 62 c: X )( C. (see Picture (3) next page). 
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Define H: V· ---.... H(V) by: 
(X;Yl ;Y2) r-., ---~> (x ;Yl ;Y2 - ~rr2hrrl) (x;Y

1 
;Y

2
) 

• 
This is clearly smooth, since TI1 ,TI

2 
and h are. It is well defined, 

since V c U x C2• Let now: 0: H(V) .~ O(H{V» be defined by: 

(x;Y1 ;Y2) r ~ (x;Y1 ;YZ + (I1
Z

hI1
1
) (X;Yl ;Y

2
}), 

also well defined, since H{V) c U x e2, and smooth~ for the same reasons. 

Now 

= (x;Yl;Y2) therefore OH = I/H(V)' OH{V} = v. 

Also HO = I/ v ther'efore H is a diffeomorphism V -+H(tI} 

Furthermore, if (x;Yl;YZ) € Mf , then 

since,.h~ = I • 

H: (X;Yl ;Y2) _-.> (X;Y1 ;0). f.e·IH(V n Mf ) = H(V) n ex)C c1 'doni 

e 

The rest of the proof is quite simple. 

By rneansof n , plus a diffeomorphism 

to straighten M~(Md) as well, we will be 
1 

able to produce a local chart for 

Te{ X x C) sending In. i [e] ('Il[e]) to a 

~~.G linear subspace of Rr {e+l). the model 

U.CL for re(X x C). 
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We first remark that since H: V -i- H(V) is a smooth diffeomorphism, 

then T~:Te(V) + r(H{V» ;s also a smooth diffeomorphism (see Proposition 3. 

3.1('». 

Note: Te{V) ;s an open submanifold of Te(X x· e}, containing .~ 

Now, s; nce X ; s a man; fo 1 d,3 tyt, ,nei ghbourhood of x ; n X, and 

___ >-, <p(1L x C) c R x Rr. W.l.o.g., 

one can suppose H(V) c 'it x C (othen'lise reduce V conveniently). By abuse, 

denote <P/H(V) again by <p, so that, from now on, <P:H(V)---"-~ ¢H(V) c~ xRr. 
IV 

Let <p(a diffeomorphism)be defined in the usual way (see 3.1(~», i.e: 

We claim that: 
:Rr +1 
oJ 

e tjmes 

---9" <PH ( V) 
I r+l r+l' 

x lR x ••• x R , senc1s 

V v 

i.e. 
.~ '" e e m 

~. T H (T Vn',,,,. [e] , = 
, 1 

<pH(M~nV) x ({OJ x ~r-l x· {O})e 
, J .. . ' 

LHS . RHS 

Indeed: 
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'" e " so that ~.T H(a) = (~H(m);O, ... ,-O; ... ;O,-, .. -,O), as wanted 

RHS c LHS: Let"C = (~,vl, ••• ,ve) € 4>H(M~ n V) x ({O} x Rr - 1 x Hi})e, 

with Vs = (O;-; .•• ;-;O), s=l, .•. ,e. 

~-1("C) = a, where 6 is the equivalence class' of 

e I ~ X x C (I suff. small) 
Iv e v . t j 

t + ~-l(m + L -I--) (see 3.1(4». 
j=l j! 

Let (x,y) = ~-1(~) 

It is easy to check that B(I) c {x} x C1 x' {OJ 

'}i-l() " e ( e . -1 '" Therefore cp c = 6 € T HT V n m i [e]) wi th 6(0) = <t> tm). therefore 

'}J '\J 1 '\J e e 
<p(<t>- (1") = 1" € ~.T H (T V nTtt;[e]). 

Finally, denote nlV. (V c W) also by n • 

Then, we have: 

-1 -1 f' d ) n • H <t> x I x • • • x I: ~H \.M. n V x 
I. , 1 

({a} x Rr -1 ~. {O})e .... n(V}nA x ({O} x Rr - 1 {O})e 
e·times 

where A is·a linear subspace of Rr+l, of codimension 1+1. Therefore, the 

local diffeomorphism 

'" t = (nH-l~-l x Ie).~.TeH sends Te V nmi[el to a codimension (;+1+2e) linear 

subspace ofR(r+l)e, as we wanted to show. 0 

PROPOSITION 6: 

There is a denumerable open cover, ~ i 

such that, for every j: 

= {tAl . 
1 .. 1 J= , ••• ,n, •• 

of M~ (i fixed) 
1 

"j . X d{~) is a cod. i submanifold of C, where M~ :==== M1 n ~" 
"i : ==:::::::= f 1M; 



Proof 

c 

4.3{7} 

This is an immediate consequence of 

Proposition 4 plus the following facts: 

(1) M~ is LindelBf. This is so because X 

(compact, metriS therefore LindelBf) and 

C = Rr are LindelBf, and therefore so is 
d 

M;, a (topological) subspace of X x c. 

(2) Xf/M~ is a~ iftfllersion: M~ - s -s S -

d so that Xf has maximal rank on Mi. 

COROLLARY 

1, ... ,1 1, ... ,1 , , , , 
i times (i+1)times 

- sing •xf/ S 1, ... ,1 
i times 

-- 1, ... ,1 

i times 

o 

3 a denumerable open cover):o = V ~ = {~} of tid with the property 
1 

that N~ (as above) is a cod.; submanifold of C, '" ; ,j. Also Xflrf:M{ ... Ni 
is a diffeomorphism (see note to Proposition 4). 

REMARK 

W.l.o.g. ui can be supposed to be so small as to satisfy Proposition 1 

for sorr~ local diffeomorphism. _ 

Our next aim will now be to show that we can decomposelt[e] in a 

denumerable number of (sufficiently high codim.) subrnanifol~of ~C. For 

this we need some further definitions. 
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We recall that: 

DEFINITION 6: 

m i [e] = {a € rn; [e] I a ( 0 ) = m € M~}; n ~ Ie] = Te xf (1)> ~ [e] ) 

Note 1: It follows immediately that m[e] = Um~Ie],n[e] = un~[e]. 
•. 1 •• 1 
1 ,J , ,J 

m ; [e] = uon ~ [e], n. [e] = U n ~ [e]. • 
.. j 1 1 j 1_ 

~ e d 
'[e] :' {a € T (X x C)Ta(O) = m € (x,y) EM. a admits representative 

a:I + X x C such that a(I) c {x} x C}. ~;[e] and~{[e] are defined analogously. 

\. 

PROPOSITION 7: 

Note 2: m [e] c .p[e] c Te(X )( C) •• 

Note 3: It is easy to show that"[e]~i[e] ~~[e]) 
is a submanifold of ~(X x C) •• 

1nLi[el is a submanifold of Tee, ~ i,j fixed. Cod. C1l~[e]).e+i 

Proof 

The idea of the proof is to express lUe] as Ptmel), where P is 

defined below in a way which makes it easy to check that p{m~[el) a1l{rel 

is a subman1fold. 



Let P be given by the diagram: 

e times 

-P[e] 
G d ( , 

------~> M x :Rrx ••• x:Rr 

where G is defined as: e times 

G~Ie] ... Md x fRY' x ••• x Rr' 

""-1 . 
I I r 

R 

4.3(9) 

nc/{x} )( C 
where ,a represents ~ and 6: I ... C is given by I ~{x} x C > c. 

. , S 1-

(easy to check that definition ".ds of .represen.tatifes).It t.s 'eu!lto !thaw 
tt.o.'t G \.$ a. c1'ffeOM.Orph'~wt\. ANl 50. i' . ~ == G/~{le]: ~teJ~ Ml. •• ---1: 
Also, frO!" the. ,?oro 11 a ~y .~bove.' Xf/M~ :.~~ ... : N~ 1. s. "a. d i ~~eomorph i sm and so ; s 

. ',.J' . . .". 1 . . .' '" 
IARre and I-l~r:Ni x lRre 

c Rr x Rre to its image. rh~refore, P~ = I-1ftRr.(x,xI)Gr: 

~i'[e] -+P~~~[e]) is a diffeomorphism. , , 
Now, 11L1[e] is a submanifold Of~~[e], so that p{{1Q{re]) is a submanifold 

of ,.eC. 
It remains to prove that p~{~[e])= 1L{re]. (111e same argument as below 

also shows P(.e]) -1l.[e]). 



4.3(10) 

,.' (,<,~). e 
To see this, fix a €~ [e1(x{O) = ~ € M~~Gt~ ) = (m;~ (0); ... ; ~O», with 

dt dte 

B : I I a~{x} x C n . > C, i. e 0 B = Xflo 
c 

= TeXf(~)' therefo·re P~ (m1 [e] = re xf rm1 [e]) = 11. ~ (e}. 

Finally, since P~ is a diffeomorphism dim(tl~[e]) = dim (1R~[e]) = 
~. 1 1 

Prop.S dim (re(X x C» -(i+l+2e) = (r+l)(e+l)-(i+1+2e) = r(e+l)-(e+i). 

cod ta~ [e]) in reC is r(e+1)-r(e+l)+(e+i) = e+i. 0 

COROLLARY: 

Hence 

ll[e] is a denumerable union of submanifolds of Tee, each one of which 

has codimension ~ e+1. 

PROPOSITION 8: 

~[e], 1nL[e] are closed in Te(X x C), re{C), respectively. 

Proof 

First, we show that nt[e1 is closed in Te{X x C). Let I ~k~ , "'k = ~(O), 
be a sequence inl1t(e], converging to a € Te{x x C). Now, let (~,U) be some 

~ ,. ~ 

chart for X x C around m. U (def. as usual) is a neighbourhood of a in t (X x C~ 
. ~ . 

therefore ak € U for k suff. big, therefore mk € U
J 
therefore ~ -+ m, since U 

can be taken arbitrarily small. Now, with n,~, V as in Proposition 5, 

~:,.e(V) nlnCe] -+ ,(n(V) n A) x( {OJ x lRr - 1 x {OJ );, Ie suff. big 
,. ~ Ie . k 
ak -+ (n(mk};(O;v1;O}; ••• ;(O;ve;0» 

So t .. ( ~k) -+ (n(m);(O;v1;O); ••• ;(O;ve;O», therefore ~ € ~_herefore ~ €lIl[e}. 



~le] is shown to be closed in Te(X x C) in the same waY,therefore 

1tlle] clo~ed a>[e]. Now P = 'I-1,IJRr(Xf/Md 
It. I)G is a closed map, since 

4.3(11) 

d • Prop.7 
Xf:Mf -to C is closed (chapter 2) and ,., do:,edi~Mf I therefore P('m[e]) :n[e] 

is closed in TeC. o 
COROLLARY 

Let e ~ r be fixed. Then )l[e] is a denumerable closed union of 

submanifolds of Tee, each one of which has codimension ~r+1. 

Proof 

Use Proposition 7 and Proposition 8 above. 

PROPOSITION 9: 

Let e ~ r be a fixed integer. There is an open and dense set Be of 

vector fi el ds wi th the property that v [e] (Rr ) nll [e] = 0, V V € 8 • ~(1Rr). 
e 

Proof 

where A, S are defined as in Chapter 3. 

Since A~'C n A =_ 0, w~,c is a cod(e+i) > r submanifold of Je-lcr(,Rr} 

As in the proof of Proposition 8, Chapter 3, we have wi = Ni x· to} x B~: ' 

where N~ has lcodimension i in:Rr, and {OJ codimension r in It; therefore wi 
is a eOd.(r+') > r submanifold of Je-1(lRr ,Rr). 

Let \~ '= U (W~ \J w~ ,c) (denumerable), each w{ ,w~,e a sUbmanifold of 
.. 1 1 
1,J ~ . 

J1-1ORrJRr), with cod> r. 

Now W = V (S-l(A~) \,1 S-l{A~'c)} = V S-l(A~ u A~'c} = V S-l(~ [ell =-
i ,j 1 1 i ,j 1 1 i ,j 

S-lc U 1\.~ [e1 = s-l('tUe]), closed, from Proposition 8 above. 
i,j 
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dense by Lemma 2 in 3.3(2). Transversality with these relative dimensions 

means je-Iv(R
r
) n[4 j== 0, therefore je-lv. ( (R1t.) n W = 0, w~~ W2 5'(11.(8]). 

W~,c 
1 

:Rr 

Since je-lv! ~[el 
Je- 1(lRr ,Rr} ~ TE'lRr 

commutes (3.2(1», we therefore have v[e](~r) n1l[e) = 

=0, V V E B • 0 e 

PROPOSITION 10: 

Let B = Br , as above, v E B, Y E ef , arbitrarily fixed. Then3 t ) 0 

s.t. Mf,y n 0y(€) = 0. 

(Note: this accounts for part of HI; the 'rest' of HI' i.e., the 'Cf part', 

will be dealt with in 4.4, so that we will conclude that HI is generic). 

Proof 

Since n=1 it is easy to see that x E sep f-Vfy) ::::!II x is singular 

for (-Vfy). 
Therefore, if e: > 0 s.t.:~tnc«{Xt} x C) n Mf ) n 0y(e:) == 01t =I, •••• S' 

d over all t such that (xt,y) € M , then one also has Mf,y n 0y(e:) = 0. 

It suffices to prove * for a fixed m = (x,y) € Md, since {(xt'y)}t=l, ..•• s 

is finite. 
d ,.. ,.." .... 

Let m := (x,y) € M • (6) € n [r] J wi th B ( 0) = y ~ S = Xfl where Cl 

admits representative a:I + X x C s.t. a(I) c Z n ({xl x C) n Mf , Z some (open) 

neighbourhood of m in X x C (see Proposition 3). Since V = nc(Z n ({x} x C) ~ "f} 

is a submanifold of C (directly from Proposition 3), y E V, :3 (open) neighbourhood 

V~ (Z),wlog) of y in C and 
c 
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cp : V c:Rr --->' 4>( V) c:R 

V n Y >- 4>(V) n' f(Yl' ••• ,Yr ) € crY
r 

= 0: 

(\,{ 

'" 
Let us now consider y (= v[r]{y», where y:I ~ C be a solution of v through 

yeo) = y, with y(I) c V. Let 4>Y:·=== (<PY)l;"'; (4)Y)r). 

Proof 

dj(<PY)r(O) ~ 0, for some 1 ~ j ~ r (may be more than one j), 

dtj 

Suppose this is not so. Consider 

n(t) : «<PY)J(t); ..• ;(<PY)r_l(t);O); by supposition, n ~r <py therefore 

~ = ~. Hence ~ (= ~) admits representative $-ln, satisfying 

<t> -In (1) c V n Y {since ,,(I) c <p{V)n {{Yl' .•• 'Yr)~r = OJ}. Setting 

aCt} = (ax(t);4>- ln(t», we get a(I) c Z n ({xl x C) n M
f

, with y = ~ 
III .... 

. {x} 

so that .y € -n [r], a contradiction to the hypothesis of v € 8 (see 

Proposition 9). 

It follows from the claim that (~)r is j-determined (if j is the 

smallest integer for which the claim is true). In the same way as 1n 

Proposition 9 (3.3(3» it is easy to show that, wlog, we can suppose (~)r{t) = ~. 

for small enough t. Therefore, for conveniently small € and It I <~ 

(;V}(t) n {(Yl, ••• ,yr}IYr = O} = 0, hence 
tJ'O 

ftl<e 
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as we wished to show. o 
COROLLARY~ 

3 open and dense set, B c V (]Rr) , with the .property that, f Vv € B ,~ 

L 'r/ y € Cr) 

fixe d, "3 € > 0 s. t. Mf n 0 (€ ) = 0. ,y y 

,~. CONSTRUCTING THE SUBMANIFOLDS CORRESPONDING TO Cf : 

4.4.0 INTRODUCTION 

Let f:X ~ lRr-;> lR, (we won't be using that dim(X) = 1 in 4.4, see 4.0) 

L '!) compact, r s 4 ~ 5 fixed. We will now tackle the probl em of 

prov; n9 tha t hay; ng orb; ts wi th the property of I i so 1 ated ; ntersecti on' wi th 

respect to Cf(v~Cf) is a generic (open and dense) property of vector fields 
• n r 
1n JI\ • 

" To this purpose, we 'generate', from each of the different strata of 

C
f

, a 'denumerable union of submanifolds of Tr(Rr) ~ Rr {r+1). In order to be 

able to apply our earlier results (see Chapter 3) we need to do this in such 

a way that the following conditions are met • 

. (1) Each submanlfold has to have codimension bigger than r. 

(2) The union of all submanifolds must be closed; this union, 

in the notation we use in the proofs below, will be t~ sat 

C[r) (r = 1,2,3,4). 

(3) If v[r](Rr ) n C[r] = 0 (we will prove this to be generic) 

then v~Cf· 
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Before we give the formal proof, we would like to explain in a few 

words and in a very loose way how we have been led to the solution presented 

here; we feel that it is important not only to show that things work but 

also why they should. 

We first tried to define our union of submanifolds of TrORr ) by 

crushing, via Tr{Xf)' what we knew to be a closed subset of Tr(X x Rr), i.e. 

Tr(M~). This was good enough as far as condition (1) was concerned. But 

closeness failed. 

Our next attempt was directed towards • correcting' that definition. 

The idea would have been to work out the closure of each union of submanifolds, 

corresponding to each distinct strata, and perhaps try to 'close' those sets 

artificially. This, on one hand, proved to be an impossible task, since those 

closures were far too complicated; and, on the other hand, it seemed that 

the crushing process was too rough to preserve the property of isolated 

intersection. (i.e., one needs lifts to X x C to ~)g able to prove (3». 

We therefore abandoned the whole method althogether, and tried the 

following strategy: .. ~ 

" (I) Work out, on a case by case basis and 'up to the codimension 

required' [(r+1)] - hence satisfying condition (1) -, which 

conditions would be fulfilled if a curve a, through a 

point y = a(O) belonging to a certain str3ta of Cf , is to 

run into a smaller codimensional strata (or into tht$ S~~t&.). 

See appendix for details. 



(II) Try to show that if one has a sequence of curves {~l .... a 

(this is made precise later), through points Y
n 

= an(O) 

belonging to the smaller cod. strata referred above, with 

Yn .... Y, then the conditions set up in (I) are met by a. 

From an intuitive point of view, it seems likely that one 

would get away with this proof; besides, this would take 

care of closeness condition (2). 

4.4(2) 

(III) From the set err] cooked up by avoiding local conditions as 

in (I), prove condition (3). This is a reasonable conjecture 

since in a sense a certain 'converse' is true: if a curve runs 

into the smaller cod. strata (which is the basic non-trivial 
(.olld, ti o"s 

problem that can happen) then it satisf1esYas in (1). 

This idea works. It actually allows us to fulfill (3) and, at the 

same time, force at each stage the union of submanifolds corresponding to 

. ··each strata to 'c10se l the union of submanifolds r~lative to the strata of 

immediately smaller codimension, without ever having to work out its closure. 

Since we go 'up to the cod. 'required:- (r+l) , we are really exploiting to 

the limit the existing room in Rr {r+l) (r = 1, ... ,4). 

As to the way we present our results here, the solutions corresponding 

to r = 1, ... ,4 are given in succession. It turns out that the proofs are in 

a . certain way 'cumulative', each ne\,1 r presenting the problems of the preceding 

r with a further degree of complexity, plus a new problem, inherent to the new 

dimension •. 

Item (I) is explained in an appendix, since we do not want to mix up 

the intuition which led to the method with the proof that it works. The 

definitions 'generated' by (I) (those of the C~[el - see below - 1 s e s 4, 

i • 1 ••••• e. j €~) are given in the items 'A' of 4.4.1, •••• 4.4.4 below. 
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Items 'B' are essentially about (II); one needs, however, a certain amount 

of technical work to reduce the global problem to a number of local cases 

and then each one to canonical form. (III) is proved in items C. 

The case r=5 is not done here, mainly. because the amount of technical 

details would probably render it unbearably boring to read and to write, 

besides not throwing any specially new light into the problem. We remark 

that it is easy to work out (just use same methods as in append;x)what the 'intuitive 

conditions coming from (I) should be in this case, though,of course, we 

make no claims of having proved this case. 

4.4.1: The case r=l 

A. Definition of C[l] 

Let ~ be as in corollary to Proposition 6 (4.3(T». Since r = 1, one 

has r = r l' NI = {y j} , V j € ~ 

Set: CI[I] = TXNI) C T1QR) 

Note: here we view Nf as a ~-dim. manifold; Tl has the usual meaning 

Define: 

and • 
C[l] = 

B. Closedness of C[1] 

PROPOSITION 11: I 

C[l] is closed. 
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Proof 
IV IV 

If $ is chart for a manifold M, we re-all that ~(=~e) is a chart 

for TeM (see 3.1(4». Take ~ = I, the identity on R. Now, 
'V) r I(C[l] = Cf x {OJ c R , which is closed because Cf is closed; hence, the 

proposition is true. o 

.:: Generi city of v ~ Cf 

PROPOSITION 12: 

:3 open and dense set, B c V(R), s. t. :" V € B =7" v[l] OR) n C[l] = 0 

Proof 
. l' 

Define Vi = S- (Ci[l]) (see Chapter 3, for definition of S). Exactly 

as in Proposition 9 (4.3(lt», one sees that vi has cod. 2. Hence 

B =' {vljOv ~ Vi'~j} is open and dense and v € B ~ v[l]OR) n C[l] = 0, in 

a way similar to the above mentioned proposition. o 

Note: The case r=l is by far the most trivial case; the proof of theorems 

as above will be similar in the cases r = 2,3,4. We will give fuller 
, " 

details there. 

PROPOSITION 13: 

If v € B, as above,. then v /f\ Cf · 

Proof 

Let v € B be fixed. 

c =' {y.} . Let y € C
f

. Hence y = YJ" some j € N. Now, v[ll(R) " C[11 = , =9 
f J jEf' 

=7 V[l](Yt) :I;' (a solution of v through Yj) 

q[l] 

Therefore da/dt(O) ~ 0, 
I tl<£ 

and so 3 £ > 0 s.t.{ a(t)1 tlO} n {Yj} = " as wanted. 

o 



x 
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COROLLARY: 

If f:X x 1R +1R is generic, 3 open and dense set B c V(m)s.t. v € B =) 

~ v ~ Cf . 

4.4.2: The case r = 2: -
Let~= ~1 u~2 (see 4.3(f»), 'F-I = {ui1. 'r2 = {Uj } ,and 

JEfl 2 j~ 

recall that N~ = Xf/M~ (M1> is a submanifold of C = R2, Vi,j fixed. 

In this case N~, j fixed, is just a point, say NJ
2
" = {y.}, while Nj is a 

J 1 
submanifold Of1R2 of cod. 1, i.e., a I-dimensional submanifold. 

" ~ 

Let i and j be fixed. 

[Picture illustrates the 

case r=2 and i=2, showing 

how u{ n. Mf it is mapped 

into the cusp, in its standard 

form - see also the definition 

of 92' in 4.2(1)] 

rill\. 
We first recall (see Remark to Corollary in 4.3{~)} that ~ y,r, 

diffeomorphisms (corresponding to (j,i» making the above diagram commutative 

(for a precise statement, see Proposition 1, 4.2(1). These ar~ not. however, 

unique. this means that every definition which depends upon choosing y,r s.t. 

the diagram commutes must be shown to be independent of that choice. For 

the rest of 4.4, the letters y,f will be used for diffeomorphisms as indicated 

above. 
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We will give below a set of definitions which involve a choice of 

y,r; we prove then that they do not depend on the choice. 

DEFINITION 7: 

"" We first recall the definition of I. 

~ da d e ( 1) 
I : ~ € T'1{ ... ((l(0); "dt(0); ••• ; d~e(O» € lI{ e+ 

In this particular case, 
A 2 

I : a € T~2 + (a(O); ~~(O); d ~(O» € m
6 

dt 
~le now define, for fixed j: 

Ci[2] = T2 (N{) c T2 (R2) 

C~[21 = T2r 1-1((12[2]), 

where r corresponds to (j,2), 

Q2[2] =' {~1,···,x6)~6Ix1=X2=X4=O} 

C1 [2] = Y ci [2] 
Jdi ' 

C2[2] = U ~[2], and 
: j~ 

'. 

Xl 

• 



The rest of 4.4.2,A, will be devoted to proving independ~nce of 

choice in Definition 7. 

We will fix some notation, before we prove independence. 

4.4(7) 

Let gc be as in Definition 2 (4.2(1»)', and let g:R X:Rr -+- R be equal 

to gc + (r-c) disconnected controls. Let M~ be defined as in 4.2(l). 

DEFINITION 8: 

C.(c;r-c) = X (M~) 
1 9 1 I, 

r1~ 1,g, 
• .Md 
1 • e:r 'i corres-
pOAlding to g. 

REMARK 7: 

Let now f:R x ~r ~R be generic, m € M~ and u7 ~ m; and (Yl,rZ)' (Y2,r2) 
r ~ pic.T"re 

two pairs of local diffeomorphism making the diagram in 4.4C)} commute. 
n.\;atA,o",,: 3\ 

From Proposition 1, we know·that fYl ='gc + (r-c1}'disconnected controls. 
1 

Now. in 4.2(~)/(5) we have seen that yi1(Sl(Xf» = Sl(X~' yi1(Sl,l(Xf)) = Sl.1(X
91

), 

etc.. . Hence, from the definition, as in 4.2("H, we get immediately 

d "-1 d "1 - Yl (M. f) (all these are germ equations, but we are not interested in 
, g1 ' , r(it.~.(5j) 

making this explicit). By the commuta~iveness of the diagram, one therefore 
d' d d 

gets: r1{xg{Mi g )} = Xf(M i f} r2(xg(M i 9 » 
"1 I r. . I Z 

II ~ a"a\JQ~ ., 
r1(C

i
(c1;r-c1» ;~~~~~ rZ(C;{c2;r-c2})· 
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We have shown that 

(of course this is not defin~d on the whole of C;(c1;r-c
1
), since we are 

dealing with germs). 

Note that, if in particular c1 = c2' we have proved that if f
l

, f2 are two 

choices of diffeomorphism, as above, then: 

-1 .1 
r2 f J leaves, v i, fixed, the i-strata C;(c,r-c) INVARIANT 

C, (2.,0) 

RE~ARK 8: 

1 n Propos i t i on 6, ( 4 • 3 (b ) ) , 

u~ sufficiently small so that u~ 
'. 

1 n M:_1, V e). 

--

there is no loss of generality in taking 

n M~ = 0, e > i (this is because M~ is closed 
'I 
d 

Me,f 

This means that u1 contains points in M~,f (since~i is a cover of 

M~,f) but not in M:, e > i. Therefore, if f,y are diffeomorphic as above, 

tnis means that (from ~,4.4(~» y-l(U~} contains points in M~ g' but not in 
11, 

Md , e > i, So that one must have c=i, with g = 9c + (r-c) disc. con~s e,g , 
in Proposition 1 of 4.2(1}. 

So: if r,y are as above (corresponding to U~), then g ~ yf = 91 + (r-1) d.c. 
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We now prove a proposition from which independence of choice in 

Definition 7 will follow easily. We will make common practice to identify: 

Ty(Rr) ~ lRr. 

PROPOSITION 14: 

~ 

Proof 

, 

Let w: :R2~ be a(genn of a)diffeomorphism, 

leaving the sets Ci(2,O), i = 1,2 invariant. 
2 '\I 1 

Then T W leaves (1)- (Q2[2]) invariant. 

It suffices to show that T w(l,O) = (T , T ) with T = O. This is 
o U v da v 

A IV 1 
because a € r- (Q2 [2]), a(O) = ~, means F;u = F;,v = crt (0) = 0 and, since .,;; 

preserves C2(2,0), ~(O) = 0, therefore (W(F;»u = {~(F;,»v = 0, and therefore 

all that is left to prove is that (d{wa)u(O); ~)v(O))= T ~(dau(O); ~ v(O» 
dt dt 0 dt dt \\ 

satisfies d(pg)v(O) = 0. (Recall that r2w(~) = ~ I therefore 0 
dt 

'" 2 ~ 'd d d
2 

d
2 

I(T ~(a» = «w{t»u; {~(~»v; ~~)u(O); ~wa}v(0};--2C.~)u(O);~(~)y(O»; 
dt dt 

2 A IV -1 . "'( 2 A hence, to show that T ~(a) € (I) (Q2[21) or, equlvalently, I T ~(Q» E Q2[2], 

one has to prove that (~(~»u = (~(~»)v = ~~)v(O) = 0 - see the definition 

of Q2[2']). 

Suppose T w(l,O) = (T ~T ), with TV ~ O. By continuity of t + T~~, o u v c, 

* * * * 3 a > 0, £ > ° s.t.:Ttw(l,yv) = (TU,TV) satisfies lTv' > ITv/21 > 0, and 

"t * 
IT:' < 1 (2Tu> I (or else < n, n > 0, if TU = 0), so that I t~ I < N. for 

v 

some N € R, fixed, 
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Let X be constructed as in [17], X~ -+R2 , and 

b -+ (-3b 2 ; 2b 3) 

let . {~n} be a sequence in:R2, ~n ~ C1 (2,0), "n' ~n -+ (O,O). Choose 

bn (i 0, since ~n ~ C1(2,0)} s.t. x(bn) = ~n. By computation, one gets 

T~ (C1(2,0» ~{(a;- abn) \ a ~ ~}. Notice that bn -+ a as n -+ 00 (from the 
n 

definition of b , X and the fact that ~ -+ (0,0». In particular, notice n n 
n n ~n 

that, if (~u'~v} ~ T~ (C1(2,0», for each fixed n, then ~ = 1 .... CD as 

(;10) n ~~ ~l 

n .... oo • 

invariant. Hence, by the same arguments which led toe, if (T~'L~) € Tn (C1(2,0), 
. .. n 

for each n fixed, then IT~1 -+00 as n .... oo 

TV _ ~ 

Fa 

Finally, choose n sufficiently big so that: 

T ~ n n 

\ 

n \ ' 
,. ~ > N. I~nl < 6 andlbnl < e:. «TU,TV) E Tnn(C1(2,0». 

Taking ,a = 1, (li-bn) € T~ (C}(2,0», I~n\ < 0 
n 

Tp 1jI(1,-b) = (T*n; T*n) satisfies I T:~ 1 < 
"n' n. ~~ 'I T 

~ 0 i 0 v 

, hence, since I-bnl < £, 

N. But one also has 

T lIJ(T (C (2,O)) = T =tll(~ )(C1(2,0», because W leaves C1(2.0) invariant, 
~ tn 1 nn If' 'n 

and therefore (T*n, T*n) € T (C1(2,O»,therefore by our choice of n 
u v nn 

\T *~/T:n \ > N, a contradiction. Therefore Lv = O. o 
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~ Proof above is just saying that the reason why T $ has to send the 
~ 0 . 

·u-axis' into itself is that T; W sends T; (C1(2,0» to T~ (C
1
(2,0», 

n n n 
since W leaves C1{2,0) invariant, and, as it happens, 

. {T~ (C1(2,0»} and {Tn (C1(2,0»} 'converge' to the 'u-axis' as 
n n 

PROPOSITION 15: 

The definition of C~[2] above does not depend on the choice of i,y. 

Proof 

By Remark 8, and if r1'Y1' r2'Y2 are two choices, g(l) = Yl,f, g(2} :& "2~' 

then g(l) = g(2) = g2 with 2-2) = 0 aisc. controls. By Remark 7, ~ = f21 r
1 

leaves Ci (2,0) invariant, i = 1,2. 

. _ 2 'V_I j _ 2 'V -1 
let (~[2])1 - T rl·I (Q2[2]), (C2[2])2 - T r2·I (Q2[2). Now~ 

'" 'V '" T2r1.I-1(Q2[2]) = T2r2(T2(r2Ir1)(I-l(Q2[2]») T2r2(I-l(Q2[2]»~ as 
Prop.14 

wished. 

B. Closedness of C[2] 

The aim of the definitions which now follow is to provide the frame

work for reducing the proof that CI2!- is closed to a·number of local cases. 
(global) 

These are later reduced again to canonical form~. 

DEFINITION 9: 

We define below the total second bundle associated with (i~j). Tci[2] 
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TCiI2] = Ci [2] . 

TC~[2] = C~I2] u ( ~ d c4,1(m)[2]), where: 
JTl€U

2
nM

1 
• A j . 

C~,1{m)[2]=' {S c C1
o[2] 113(0) = Y= Xf(m)}, jo chosen 

so that m c U~ 

PROPOSITION 16: 

Definition of C~,1(m)[2] (and hence that of T~[2]) is independent of 

choice of jo. 

Proof: 
. jo jl jo d 

Let jo' j1 s.t. m c U1 ' m c U1 • Recall that'Xf/~l n M1 
\\ j , 

M ° j . 1 
diffeomorphically. Let B be a ball contained in u1

0 n u~l. 

j j 
°Mo .. No . 1 1 

j d 
P =: xf/Ml 

0 (~ n M1'> 
J 

Ml o ~ 

We c 1 a;m that {a w; th 13(0) = y I a € ~o [2]} = ~-~-W-i-th-B (-0-) -=-Y-I e-c -y2-P~} ~ 
Th 1 s 1 s true si nce [3 represent. a ~f a l~ r 3 a, represent. of a, s. tl 

s.t. 13(1) c NIO, 13(0) = ~ ( 1. S(I) c P, S(O) = y .1 
. 'p is open in N~O. 

,.. j 1 "" . Simflarly, {S c CI [2]r",()~)= .. proving the proposition. o 

PROPOSITION 17: (Reducing GLOBAL TO LOCAL) 

Suppose 8 c C[2], y = S (0) , V n c Ii and {Sn} -+- B € T2(R2)J Y :I S(O). n n n 
A 

Then, :J i c {l,2}, j c ~ and a subsequence {Sn(k)}' with Yn(k) = Bn(k)(O). 

which we will denote by {8k~(vk = Bk(O~ for s1mplici~'s sake. s.t.: 

· d Sk € Tq (2] t V k €.. and y £ x{~ n M1)· 

~ 
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Proof 

• (A) ( A jn S,nce Sn € C[2], choose in,jn) s. t. en E C. [2]. 
'n 

Recall th t IMjn ujR Md Mjn diffeom jn.. a Xf . = • n.; !> N; ; , t , s easy to see, 
'n 'n 'n n n 

jn A jn jn 
from the definition of C. [2] that e € C. [2]:;>y € N. 

'n n, n, n n 
j @ . 

Set mn = (Xf/M.n)-l(Yn). (in particular, m . € u~n n M~ ). 
'n n 1n 'n 

Now, (yn + y) -=7Y € Cf· Let Xfl(y) = {m1 , ••. ,mpl. F covers Md. 
4\ 
Cf 

j . 
Choose (is,js)' $ = 1, ... ,P, s.t. ms E u.s, where i = 1 or 2 according to 

's s 

d d 
whether ms E MI or M2· 

The following lerrrna wi.ll irrmediately imply Proposition 17: 

LEMMA: 
"" Everything as above (hence 8n E 

js "" js 
mn e: Ui ~ 6n E TCi [2] 

s s 

jn 
C. [2]), one has: 
'n 

PROOF OF LEMMA: 

Case 1: (i~ s 2.1. 

.... 

IIJ~ 
"',,-,= 'Z. 

------ -~ 

From ~ above and Remark 8, one gets is = 2. Since 
J s d • d _ 

ms E: Ui =2~ms E Mi =2' mn t Hi =2' ms - mn· 
s s n 

Therefore one can show, in precisely the same 
j j 

way as we did.in Propos~tion 15, that C2
n[2] = C2

s[2] 
,.. J s J s Hence, en E C2 [2] c Tei =2[2]. 

s 
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Case 2.1: i = 2 s 

Sn £ {S £ Cin[21. a(O) =-Yn = an(O)} = 

j j 
= C s (m )[2] c TC2

s{2], where this last equality 2,1 ~n 
U s 
2 

comes from Definition 9 (we are also using Proposition 16), 

where jo has been taken as jn. 

Ts Case 2.2 i = 1 
M S 

'" j j j 
/' MIn n U1 s is o~en ~n t.11

n . (with the induc~d topology) 
/.. Ii · J n J n J s J . 

~....--~,.;;\.~?; / therefore xf/Ml (Ml n U1 ) is open in N1
n (inck:C~ t~fOloS~) 

~ 2 jn jn jn js 
--_--- j--. let B be then a~ open set of R s. t. B n Nl . = xl~ (M1 n U

1 
). 

• C4 .... 2 J " J 
~~ 'Since a € T (N1

n), 3a € 8 s.t. $ (I) c N
1
", 

In" n n 
, j j 

8n(O) = Yn € B n Nl "; one gets an(l) c B n Nln, perhaps by reducing the 
j j j d j j j 

original I, if necessary. No~, Xf/Mln(M1n n U1
S) c Xf{M1 n Ul

s) = Xf(M1
S) = HIs. 

j "2 j j j 
Therefore SnCI) c N1s)therefore Sn € T N1

s = C1
s [21 c Te1

s [2]. 0 

LEMMA ~ PROPOS ITI ON 17: 
p • 

Initially, we claim: 3 N € ~ s.t. m" € V u~s, V n ~ N. Otherwise, 
s=1 s 

we would get a subsequence {m } of {m },contained in a compact, say K ~ ~ 
r . n ~ 

. P j 
(where K is some compact ball around y), hence converging to m i \.I U.s. 

s=1 1S 

So m L {ml, ••• ,mp} and y = Xf(m) , a contradiction. j 

Therefore, 3s € {I, ••• ,p} and subsequence {~} s.t. mk € u.s, "'t. 
. kElt 15 

A J s J 
From lenna, Bk ' lei (2), v k. This settles the first part of Proposition 17: 

5 

just take j • js' 1 = is· 
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As to the second part {mk} ~ m~{m1, ... ,mp} (same ~easons as above) 
J . 

and, since there is no loss of generality in supposing U.s two by two diSJ'oi~t 1:. .-~ -t- , ) 

;-u to . - J s-l s+ 1 '" p . s m. .' .i·V •. p U U,. u u,. u ••• u U. ,therefore m' {ml,···,m l,m l, ... ,m} 
T1 s-l s+1'p . s- s: p' 

j . . 

therefore mr ms € Ui :, therefore,by choice of (is,jsl, ms € M~ • 0 

(~;n,e 't,:lM)=\j) s 

PROPOSITION 18: ('G~5P'5 e>VNDL.E' CLO~E~ 'FO\"o'S C>Utolou:.': STANDARD FORM) 

. 2 
Let 9

2 
(see 4.2.(1): g2::R x R ~ R) denote the standard cusp (no 

(u,v;x) 
disconnected controls) and let {& } be a sequence in T2(R2) converging 

n niN 
" to a point a, ~ = a(O) = O. Suppose that, for each n, 

fixed, "3 Mn 
c M~ s.t.: (i) X92/Mn M

n ~ X Ir1n(M
n

)=N
m 

subman. g2 

is a di ffeomorph fsm; (i i) ~ E N
n and 

n r'\ 
C
1 

(2,0) 

(iii) represent~ an S.t. an(I) c Nn. Then dav(O) = O. 
dt 

Proof 

~ote: This proposition solves the non-trivial part of the proof that C[2] 

is closed; in Proposition 19 we show how to reduce the local cases to 

standard form] 

Construct elM: M = M9z +R2, X = XgZ(9/Ml-1 

as in [17] (pages 19/20)j one has: 
u v. u 2 X = (x ;X ), wlth: {x (a,b) = 2a-3b 

·f 3 
(see also 4.2{~» {xv(a,b) = -2ab+2b 

'~~-'r"1J' Since elM is a diffeomorphism (see [17), so 

e/MCM"') 
is e/Mn (M" is a submanifold of M). Now, 

X 1M" is a diffeomorphism, by hypothesis. Therefore, one has that 
~ 

det~xl "("). eLM" (M") + Nn is a diffeomorphism. 
Xn . elM'" n :X; . {(a,b) la-O} 
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Define: 

(an(t); b (t» = x-lea (t». Recall that a (I) c Nn therefore n n n n' 

a/M(Mn) = x-l(a(t» 
n 1\ 

therefore a (t) = 0 therefore a (t) = X (a (t)"b (t» = (-3b2(t)o2b3(t» n / n n n- 'n n' n 
ttl II \\ 

o {an(t»u (~n(t»v 
Therefore, 

'VI'. 2 3 2 
I(an)=(-3bn(O);2bn(O);-6(bn(0)b~(O»;-6{~ (O)b'{O)~-6(bn(0)b~(O)+(b~(O»2;6(2bn(O). 

~ l, 
dt .(b~(O» + b~(O)~~(O» 

We want then to show {dropping the O's}: 

(I) (II) 

da 
o dtu{O) 

This is easy, since (I) 9 bn ... o=;) fn . (-6~~) ... 0, as wanted. o 

PROPOSITION 19: 

C[2] is closed 1 n T2 (R2) • 

Proof 
; Let· {s} ,Y = 6n(0), be a sequence, with Sn € e[2], ~ n, converging 

n ndf n 

to some B € T2(R2),Y = a(O). We will show that a € C[2]. 

From Proposition 17 and its lenma, 3 subsequence {Bk.} k ~~, Yk = Sk<O) 
A js J 

with Bl€ Te i [2], v k €~. 
S 

Case 1: 

-:: 
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'V 'V~ ~ 
therefore (since I and T2 r-1 are continuous) I(r-1a) = lim ~(r-1ak.) E 

K-+ClO 

{(Xl'·· .,x6)lxl = x3 = Xs = OJ, therefore 3 represent. (r-1s) s.t. 

r-l(S(I» c C(l,l) 

j 
c Nl s, so that 

Case 2: 

\8 
Case 2.1: 3 subsequence, {Sr} ,with Yr = Br(D), of {Sk} s.t. 

. r~ k~ 
... J s Ll " ~ 
6r E: C2 [2], V r E: IN. If r ,,,{ are as usual, Clr = r Sr' then, by definition 

js 'V A . 

of C2 [2], lear) E: Q2[2] = {(x1,··.,x6)!x1 = x2 = x4 = O} therefore 

"'~ 'V" " j 
I(r S) = ~!: lear) E: Q2[2]) therefore B € C2

s [2] c C[2]. 

" I J js .. / 
Case 2.2: 3K E: ~ s.t. 6k E: ~ d C2 1(m)[21,V k ~ K, Yk = Sk(O} 

l11€U2
SMl ' 

. ., j j 
_ Let k ~ K fixed. Then 6k E: C2 ~1 (mk) [2], for some mk € U2 s n M~., where 

j' ,.. j j 
~~1(mk)[21= {S E C1°[211S(0) = Yk = Xf(mk)}w·;th jo s.t. mk E ulo. Therefore, 

. ,. • jo jo jo jo 
~ represent~ Sk of Sk s.t. Sk(I) c Nl · We recall that Xf/M1 : Ml +N1 

is a di ffeomorphism; henCE!)(g=yf -1 jo : y -1 (M~O) ... r-1(N~O)( c C1 (2 .0» , 
/y (Ml ) . 

diffeomorphically «f)I). Also.r ... 1(Sk(O)). = r-1(Yk) € r-l(N~O) «ii)') and, 

frill!. above. r-1sk( I) c r-1( N~O) (i i i) • ). 

. ~ } ,.. 
By considering the sequence {r Sk ; {~} which converges 

l"IN k~K 
2 -1 IrK k -1 j k -1 j 

to r-1s, by cont1nui~ of T r , and setting M =y (Mlo).N = r (Nl
O
). one sees 

that: 
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(i) I, (ii) I and (ii) I above . )(i),. (ii) and (iii) as in Proposition 18. Also, 
J J 

from Proposition 17, y € xf (M2
S

) = N2
s ) therefore r-1(y) = 0, i.e.,all 

conditions required in the hypothesis of Proposition 18 are met. Hence, 

d(r-1s) Ird r-J .0-
v,~= 0, therefore _'. I ( rIo) {( ) I O} dt ~ € x1,···,x6 xl = x2 = x4 = , 

" j 
so that tS) € C2 s [2] c C[2]. 

Since Cases: 2.1 and 2.2 cover all possibilities, case 2 is proved, 

so that Proposition 19 is proved. o 

..:.: Generi ci ty of v If) Cf 

PROPOSITION 20: 
~ 

3 open and dense set B c v(lRr) s. t. v € B =7> v[2] (:R2) n C[2] = 0 

Proof 

The proof is again very similar to that of Proposition 9 in 4.3{!!). 

One defines B~ = C~[2] n A, B~'c = C~[2] n AC, V~ = S-l(B~), v~,c = S-l(B~'C)' 
1 1 1 1 1 1 1 1 

j € Ii, i = 1,2 and A, S like .. def. in 3.2(3), 3.2(!). 

, We remark that, directly from their definitions, the ~[21 's are sub

manifolds of T2OR2) , T2r .1-1 being a chart which flattens then into a 

linear subspace of R6. They have all codimens1on > 2. 

Now since B~'c n A = 0, v~,c is a (cod. > 2) submanifold of J'OR2JR2) 

(8·dimensional, in this case). 

On the other hand analogously to Proposition 8, Chapter 3, we have 

V~ • N~ x fO} x ~4. Hence, since the codimension of NJ
1
: in R2 is > 0, we 

1 1 

have codimension (Vi) > 2. 

Setting V = ~ (Vi u Vi'c) (denumerable), and 8 = {vlj'v i\(vi and vi·C)~i.j: 
1,j 
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we get, in complete analogy with the referred above Proposition 9 in 4.3(lj)~ 

the required open and dense set. The proof that v[2] ~2} n C[2] = 0 follows 

in precisely the same way as the proof that v[e](mr } nll[e] = 0 follows, in 

that proposition, from the definition of B. 

PROPOSITION 21: 

\ 
,-
(reducing 

GLOBAL 
to 

LOCAL) 

Proof 

open neighbourhood of y in m2 s.t.: 

V n C
f 

= V n [t!J (X
f

{ U ~ 5 n ~1d) ~ 
5=1 ' 5 'J 

• 

o 

j 
lhs ::l rhs: let E;; e rhs; E;; e V and also E;; e Xf(U. s n ~1d) some 5 e' {l, .. ,pL 

's 
d Therefore E;; = xf(m), m e M ,therefore E;; e Cf • 

Suppose now that: 

lhs ¢ rhs, V V, open neighbourhood of y. Let Vn = B1/ney), Cn = Bl/n(y)· By 
. ' He"ce ... !J.~&l. d 

absurd hypothesis, 3Yn e(Vn ~)~J:. Yn I. Vn n [.lJ~ Since Yn,e Cf , Yn = Xf(mn},wt"".EM.t<Ic .. 
p j - • P J 

m i ~ (U
i
S n Md) (otherwise Yn e ['l), hence mn I L:J Ui

s
• Now 

n s=l s s=l s 

{m} c: C
1 

x X, compact. Let {m } .... m be a subsequence conve.,ing ~o m. 
n r p j J 

Immediately X em) = y, and also m i LJ U,s (otherwise, since the Ui
s 's are 

f 5=1 1 s s 

open, , above is contrad; cted) , Hence m t {mt , ... ,mpJ, a contradiction, 

therefore lhs c rhs. o 

COROLLARY: 
,P.I'Y js d 

V n C
f 

C ~ Af{U. n M }. 
s-l 1S 

(Vas above) 
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PROPOSITION 22: 

(Genericity of v i.f\cusp in STANDARD FORM: the 2-dimensional problem) 

Leto«t)= (C< (t);o( (t» be a Codcurve through ° €R2 
u v 

Suppose ~~v(O) 1 0 

v Then,"3 C7 ° s. t. : 

f c( (t)I'i~;e J n C( 2,0) = I'l 

Proof 

We first remark that C(2,0) = {(-3b2;2b3)(b ~ R}. Suppose that this 

proposition is false: ;i{t} , t ~ a as n ~ 00 s.t. a(tn) € C(2,0). Choosing n n 
ndl (t 10) 

bn conveniently, one has: n 

a(tn) = (-3b~;2b~), and W.l.o.g. bn 1 0, \fn (since if there is a subsequence 

'{t} with b = 0, then aCt ) = 0, ~r, tr·· ~ O,therefore da/dt(O) = 0, false; and r r ' r 
therefore we can just discard the (finite number of) nls for which bn = 0). 

Now b ~ 0 as n + co , since a(tn) ~ n(O) = 0 € :R2 as n ~ co. The','efore 
n 3 

2b 3 2bn -0 dav(O) da 
0= lim b = lim - ::-2- = Jim tn-O:= dt ""therefore d;(O) = 0, -

n-+oo n ~ 3b rl"+CO 2 ,dau(O} ).'l..constant 
n (tn~O, n) -3bn -0 dt J 

t -0 n 

a contradiction/therefore we ar~ done. o 

PROPOSITION 23: 

Proof 
v € B (as in Proposition 20) ~ v ~ Cf • 

Let 1 € C
f 

and v € 8 be fixed, and V ~ Y be as in Proposition 21. 

* * * * ;j £ s.t. 0 (£ ) c V. Therefore, 0y(£ ) n Cf = 0y(£ ) n (V n Cf ) = 
Y . 

* P Js d ) o (£ ) n (~Xf(U' n M ». If we prove that, for each choice of (is.js ' 
Y s=l's 

js d • ~ £s s.t. 0Y(£5) n Xf(U
is 

n M ) = 0, then, by choosing £ = min' {£ .El'···.Ep}, 
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Case 1: -

Case 2: 

-[i
5
-= 2-1 

Let r,Y as usual. 

one has that: 

Now, if B: I ~R2 is a solution curve of v through y, then 

0y(e:
s

): ; {Set) II tl < ES' It I ., Ol. It suffices therefore to show that: 

[3&s > 0 s.t •. {(r-1a){t)I It I < ES' It I ; O} "e(2,O) = .!]f8, 
Where a = r-1a , by definition. But, since v[21OR

2
) ne~S[21 =¢ ~ 

r r/~!.t~IQ2 [2])' 

~ ~( . ~) t Q2[2] =9 ~~V(O) ; 0, we are done, because Proposition 22=>~. 

COROLLARY: 

If f:X x R2 ... lR is generic, "3 open and dense B s. t. v ~ B ~ v it:\ Cfe 

4.4.3: The case r=3. 
-e e e. "l j j j b f Let r-=~1 ur-2 u '-3 (see 4.3(T», Ni' Mi' Ui as e ore. 



A. Definition of C[3] 
- --------=......:.-

DEFINITION 10: Define, for fixed j: 

Ci[3] = T3(Ni) c T3(~3). 
j • ~ ~-1 

C2[3] = T ,-.1 (Q2[3]) (r,y are diffeom. associated to (j,2», 

Q2[3] = {(x1'···,xI2 ) € R
12 \x1 = x2 = x

4 
= Xs = OJ. 

. 3 "'-1 C~[3] = T r.I (Q313~(r,y corresp. to (j,3», 

Q 3[3] = {(x1'···,x12 ) € R12(x1 = x2 = x3 = x6 = OJ. 

C.[3] = U C~[3] (i = 1,2,3) ; C[3) = ~1 C1[3). 

4.4(22) 

1 jdi 1 1= 

Note: r is a local diffeomorphism and therefore T3r is not defined 
'V_1 

on the whole of I (q2[3]). Therefore the r.h.s. of e is meant to 

3 ~-1 3 
mean {T r(·) I. ~ I (Q~[3]) and T r(') is defined}. A similar 
remark also applies for~the case r = 4. 
PROPOSITION 24: 

Let $: lR3 ~ be a germ of a diffeomorphism, leaving C.(2,1) (1 = 1,2) 
'" 1 

invariant. Then T3$ leaves I-1(Q2[J]) invariant. 

Proof 

and ~u{~) = ~v{~) = 0, since $ leaves C2(2,1) invariant. On the other hand, 

(d(tj,a)u/dt(0); d(lJn)v/dt(O); d(1Pa)w/dt(O» = T llJ (.{O); *,(0); ~(O». 
(O.O,Jw) ,I ,I 

.00 , , 
The vector (O,O,a'{O» can be identified {as in the usual tangent bundle 

w 
construction} with the equivalence class (under first tangency)of the curve 

yet), yu(t) = 0, yv(t) = 0, yw(t) = tw + a~(O)t. Since. leaves C2(2,1) 

invariant, (wv)u{t) = (~)v{t) = O,therefore T(O,O,t
w

} , (e) = (0;0;*)1 

therefore rl~(a) ! 1-1(Q2[3]), as wanted. 
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PROPOSITION 25: 

Let $:R~a(germ of a)diffeomorphism, leaving C;(3,0), i = 1,2,3, 
3 '" 1 invariant. Then T $ leaves Y- (Q3[3]) invariant. 

Proof 

We will show that T ~(1,0,0) = (T ;T ,T ) ~T = 0, and that o u v W--'w 
+ + + e + To$(0,1,0) = (TU;TV;TW)~TW = 0. The rest of the proposition is trivial, 

since $ preserves C3(3,0) (see also Proposition 14, 4.4(9». 

We initially prove i. Suppose TW ~ O. In the same (analogous) way 

<D **@*** as in 4.4(10), one shows: 6 > 0, EV,EW > 0 s.t. T~$(l,)v')w ) = (TU;TV;TW) 

satisfies IT*VIT:\ J * * * ® < N, N a fixed real, V t; , 'Sv and ~w <;. t. \~\<cS, Ilv t < EV 

* and I)w \ < EW· 

By computation, and using the )C(as in [17]) corresponding to 

g3,T~ (C1(3,0» = . {(~;-2Q cn + e;ac~ - ecn)1 a,B € R}, where . {~n} is a 
n 

sequence in ~3, ~ € C1(3,0), V n, ~ ~ (0,0,0) as n ~ ~ , b,c chosen so n· n n n 

that x(bn,cn) = ~n (hence bn,cn ~ 0, v'n, since ~n € C1(3,0». It is easy 

to prove that b ,c ~ O-as n +~. One also has {ac2
n - ec r.'C+ ° as n +~ } 11 0 n n n 

provided (a,S) ~ (0,0). Hence, if for each n, we choose (~~,1n:sn) = 'S" € T • 
v w tn 

. (C
1 
(3,0», then ~ ~"I ..... as n ... .. (I' (0,0,0» 

'~:I • 
Setting ~n = ~(~n)' {nn} ~ (0,0,0), since W leaves C3(3,0) invariant. 

Hence, by the same arguments which led to~ one has: if (T:'T~'T:) € Tnn (Ct (3.0», 

for each n fixed, then
ITn

" ~ ~ as n + ~ • 

IT: 
Finally, choose n sufficiently big so that: 
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h~l\ > N (where ('T~''T~,.r~)= 'Tn € Tn (C1(3,0»; I~ r <ol2c I < e: Ic21 ~ e: fT n n ~ n vt n w 
w @ 

, J 2@ (j) 
Take a= 1, B= 0, (1; -2cn;cn) € T~ (C1(3,O», with I~ 1<0 , 1-2c I < e: 

'-;on n n v 

i® *n *n* *@' 2 
and Ic I <e:w therefore T = (LU; 'Tn; Tn) = T~ W(1;-2c ;c } satisfies 

n ~ '-;on nn 

*n ,Ii *n j * V * IT Y IT W I < N. But also 't J1. E Tnn (C1(3,O»J theref~re IT"f IT~I > N, by 

choice of n, a contradiction. 

As fore, substituteQ), •.• ,@by, respectively: , E ;T~w{j.*;l;~*) = 
. u.., u w 

drop@; 

Note: 

Ic I < n 
e: • 
w' ~ = 0, e = 1; (~,l,-cn) € T~ (C1(3,0»; 

n 

The proof above is saying 

that the reason why T W o 
sends the I(U ~ v) plane' 

into itself is that T~ ~ sends 
n 

T~n(Cl(3,0) to Tnn~(tn)(Cl{3l0}}, 

since. leaves the cod. 1 strata 

C1(3,0) invariant and that {T~n(Cl(3,O»}" {T
nn

<C1(3,O)} converge to the 

'eu x v)-plane' as n +~. n 
PROPOSITION 26: 

The definition of C~[3] above does not depend on the choice of r,y. 

Proof 
-1 

Consider choices r1'Yl' r2 'Y2· Set W = r2 r1 and apply Remark 7 

and Proposition 24 above; arguments are as in Proposition 15. 0 
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PROPOSITION 27: 

Definition of c3[3] is independent of the choice of r,y. 

Proof 

Remark 7 and Proposition 25 and arguments as in Proposition 15. 0 

B. Closedness of C{3] 

DEFINITION 11: 

We define below the total third bundle associated with (i,j), TC~[3]. 
1 

T C
j 

[ 3] = Cj 
[3] 1 1 

TC~[3] = C~[3] u ( ~--i C~,l (m) [3]), where 
m€U

2
nM

1 

C~,1(m)[31 =··{i € C~O[311B(O) = y-= x,(m)}, 

jo 
where jo is chosen so that m € U1 . 

= C~[3] u (~j~ c~,2(m)[3] u ( ~~i~d c~,l(m)[3]), 
m€U3nM2 lTlEu3nM

1 

j A j 
C3,1(m)[3] = . {B € C1o[3]IS(O) = Y = Xf(m)}, jo chosen 

jo 
so that m € U1 • 

. j 
C~,2(m) {3] =' {S E: C2 °[3] I S(O) = Y = Xf(m)}, jo chosen 

jo 
·so that m E: U2 • 

PROPOSITION 28: 

The definition of C~,l {m} [3], as above, independent of the choice 

of joe 

Proof: 

16 it is easy to show that: 
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A jo . A 3 
{a € C1 [3]\S(0) = Y = Xf(m)} = . {a € T pls(o) = y} = 

A jl 
={s € CI [3]~(0) = y}, proving the proposition. o 

PROPOSITION 29: 

Definition of C~,I(m)[3] independs of choice of joe 

Proof 

As above. 

PROPOSITION 30: 

Definition of C~,2(m)I3] independs of choice of jo. 

Proof 
jo jl 

let jo,jl be st. m € U2 ' m € u2 . Let: 

• A j 
® C~,2(m) [3] (jo) = . {S € C2

o[3] Iy = a(O) = Xf(m)}, 

• A j 
® C~,2 (m) [3] (j 1) = . {B € C2 

1 [ 3] I y = a ( 0) = Xf (m) } • 

Note: ro' Yo; r I , Yl are diffeomorphisms corresponding to (jo,2); (jI,2), 

respectively. 
,.. 

" We ,want to show that (!) = ® ~ let a € 0. Therefore, 

B € r3ro ~-1(Q213]) = r3r1 (T3(rilro)(~-1(Q2[31») = T3rl(~-1(Q2[3]», by 
A jI ~ 

Propos i t1 on 24, therefore a E: C2 [3] I therefore (3 € rEJ , therefore G) c ®. 

Analogously, ®cc::J • 0 

PROPOSITION 31: 

UReduC1ng GLOBAL to LOCAL) 1 
A A A.-3 3 

Suppose that an € C[3], Yn = an(O), V n E::N, and' {an} + a € T-(R )'Y=S(O)-
,... 

Then, "3 iE%." {1,Z,3}, j € ~, and subsequence {ak} (see 4.402-» such that 
,... · j d 
Sk € Tei [3], V k € tt Furthermore, y € x(Ui n Mi )· 
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Proof 

Very similar to that of Proposition 17; the only difference is that 

the local cases below correspond to r = 3. 
A jn 

Again, choose (in,jn) s.t. Sn € Ci [3],.for each fixed n € N; 
n 

j j diff 
recall:x IM. n M. n · 

f'n 'n 
@j 

particular, m € M.n. 
n 'n 

jn 
>Ni :9 Yn' and set m n n 

Now, Y € Cf (see 4.4(12»; let Xf1(y) = {ml , ••. ,mp} and choose 

js 
(is,js)' s = 1, •.• ,p s.t. ms € U

is
' s = 1,2 or 3 according to whether 

Md 
rns € 1,2 or 3· 

LEMMA: 
js A js 

Everything as above, mn € U. ;> S € TC. [3] 
's n 's 

PROOF OF LEMMA: 

Case 1: 

In 

[in = 3:1 
.... jn 
Sn € C3 [3]. As in Case 1, Proposition 17, one sees that 

Case 2: 

i = 3, m :: m • 
s n s 

One therefore can show, wi th preci se 1y 

the same arguments as 
.... js 

Therefore Sn € C3 [3] 

j j 
in Proposition 27, that C3

n[3] = C3
s [3]. 

js 
c: TC i =3[3]. 

s 

A j 
8
n 

€ c2
n[3], Yn = 8n(0). 

We may discard is = 1, from Remark 8 above (see also ~ 

-a.bo--ve. ). 
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Case 2.1: i = 2 s 
"" _'1 '" 1 
6n € T-rn(I- (Q2[3])), where rn corresponds to 

(jn,2); hence r~ € '1-1(Ql[3]). n n . 

° 11 d fO d -1{) . -1 . lS we e lne on r y , Slnce r lS defined on n n S 

an = T3rs(T3(r;lrn)(r~1~n»' where r~n ~ I-1(Q2[31), hence 

,. 3,y 1 j js 
Bn € T rs(I- (Q2[3])) = C2

s[3] c TC;s=2[3]. 

Note: One can not write in general e , T3r (T3(r-1r ))(r~), 
- s s n n 

" i 

,. 3 ("'-1 a € T rn I (Q2[3])), since rs may not be defined on y. 
j j 

Otherwise, one would prove, via I, that C2r.[3] = C2
s [3], which 

is false. We just remark that, for the sake of notation, the 

fact that T3r is not"defined on the whole of r-1(Q2[3]) has 
s -

. been pushed to the background by Note in 4.4(24), and that one 

must therefore be aware all the time that for expressions like 

T3r (.) to make sense, T3r must be defined on (.). s s 

Case 2.2 i = 3 s 

,. ,. jn 
Sn € {S € C2 [3]16(0) = Yn = Xf(mn)} = 

j js 
C3~2(mn)[3] c TC3 [3], as wanted. 

j d 
Note: mn E Ui S =3 n M2, by the hypothesis of lemna, 
~ It .... {",,) S 

~ and hypothesis of Case 2, so that the equality 

above titen results by taking jn as the jo in Definition 

11 on page 4.4~). 



Case 3: 

Case 3.1 i = 1 s 

4.4(29) 

j j j 
As in Case 2.2 (of 4.4(1'1-}), ~·'1 n n U1 S is open in r-\n, 

j j j j 
therefore xf /M1

n (MIn n UI
S ) open in Nln. Set 

3 jn _ jn jn js 
B op~n ~ s.t. B n NI - xf /M1 (M1 n U1 ) 

In the same way as in Case 2.2{4.4(i~» (just substitute 2, by 3 whenever it 
~ 3 js js 

appears), one shows that en € T Nl c TCI [3] 

Case 3.2 

Case 3.3 

i = 2 s 
~ jn 
en € C1 [3], entO) = Yn' and hence 

~ ~ j 
Sn € . {e € C1

n[3]ls(O) = Yn = xf{mn)} = 
j j 

C2~I(mn)[3] c TC2
S[3] , as required. 

This last~qualitY results by taking.jn as the jo 

in Definition 11 (notice that mn € U~S=2 n M~ =1). 
s n 

as wanted. The equality results by taking jn as the jo in 
j d 

Definition 11; mn € ui
s=3 n Hi =1-
s n 

o 
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LEMMA -)PROPOSITION 31: 

Precisely equal to the proof that Lemma to Proposition 17 ~ Prop-

osition 17, eventually substituting 2.,. by 3 where necessary_ 0 

We now solve, in the next three theorems, the problems which arise 

in the proof that C[3] is closed, in their standard form. We will later 

(Proposition 35) show that these local problems can be reduced to the 

canonical formulation as below. 

PROPOSITION 32: 

Let 9 denote the standard cusp g2 (see 4.2(1), 92: :R2 
x ~'-+ R) 

with one disconnected control. I.e. g{x1,u,v,w) 

Let {~} ,F; =0. (0), be a sequence ; n T3(lR3), 
n nElN n n 

x4 x2 
= T + u-z +vx. ~cu5p/S t;uNOL.E 

CL05E5 FOLD'S 

eU)NOl-E: ,\-\E 
STANDARD r~M) 

[Clo~eJ~esS a.t 
C\lftp ~ l ~ n.e) 

converging to a point~, ~= 0.(0), with (u = ~v = O. 

Suppose that, for each n fixed, 3 M~ sukrnan"ro\ ~ rJ. Mt) ~,t. : 
. n n n n( n) d h· (1) xg/M :t-1 -+ N = Xg/M M is a iffeomorp 1sm • 

.... 
(11) ~n € Nn 

c C1(2,1). 

(111) :3 representative an € ~n 

s.t. an(I) c N
n 

Then: 

~(O) : ~(O) = o. 
dt dt 



c. 
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Proof 

Let elM: M ~ ~2, X : X (elM-I), as mentioned in the proof of 
92 . 92" 

Proposition 18.~~,:Mg2X ~ (see Lemma 7.6.0f [16], so that we can define 

a map Xl (X with 1 disconnected control) by the diagram: 

its image, Nn. Now: 

Like in Proposition 18, since 

I nn n n . Xg M : M ~ N ,M a submanlfold of 

t4~ pnd (elM) x lIMn are di ffeomorphi sms, 

one has Xn,l:=========xl /«9/M) x I){M"): 

(elM x I)(Mn) ~R3 ;s a diffeomorphism on 

(a,b,c) 
(e/M}"lx! 2 3 
----->~ (b;2a-3b ;-2ab+2bjc)~ 

Xg >(2a-3b2; _ 2ab + 2b3;c). 

Note that (elM )( I){M") c (a/M)( I)(Mt92)( Il) c {(a.b.c)la = O}. where 

the last step follows from the way elM is constructed; also 

b ~.I)lMi N~ (X l)-l(a (t» c (8/M)( I)(Mn) c 
n, n 

'4J 

c' {{a,b,clla = O} Define: an(t),bn(t),cn(t), 

t £ I, by (an(t),bn(t),cn(t}): X~!l(an(t». 

From observation above, an(t) = O. This allows us to rewrite an(t) as: 

Cn(t} = Xn,l(an(t);bn(t);Cn(t» = (-3b~(t);2b~(t);Cn(t» 
o 

Therefore. omitting the O's (see 4.4{1~)}: 



d(a ) d(a ) d2(a ) 
_ ...... n~v(a}; nw(a); 2 u(a); etc ... ) = 

dt dt dt 

2 3 2, I. c l • 
= (-3b . 2b • c • - 6b b I. 61:) b" n ' 

n' n' n' n n' ~ n, 

- 6(b bll + (b l )2). 6(2b + (b , )2 + b2 bll
)- cu. 

n n n' n - n n n' n' 
. 

.. 6(b bill + 3b ' bU
). 6(6b blb ll + 2b2b u, + 2(b , )3. Clll) lR12 

n I\. n n ' n n n n n n' n € • 

We want then to show: 

(1) 

2 -3b -+ a n 

2b3 
-+ a n 

: .» 

By computation, one sees that 

L 

A B 

.. 6b b I -+ a n n 

(II) 

c 

4.4(32) 

• 

We claim that 3 K,N € II s. t. Ib~1 < K, 'r/ n ~ N. This is so because 

lei = Ib~'. 16(b~)2 + 3d
2X> I s l' + r 
dt tends to a constant 

as n -+ .. 

Therefore -~ .. + O. And so does (1n) (-6t1nb~), as wanted. 
~ II ~as limited ~ t' 

Osee module 0 0 

4.4(1') [] 



PROPOSITION 33: ... 

(SwALLOW TA'L.!S BUNDLE . ., 
CLOse s Cu~P.& e,uNOL.E 

STANDARD F-ORM) 

le'o~ ~e.s,!a at SwaUcwi~',\ I ~ 
?e\\'\t: e~se iJ 

C,(3,O) 

C.z.C3,O) 
-:--:~L C~(3,O) 

" ~'" Oe ~ 

4.4(33) 

Let g3 denote the swallowtail (no disconnected 

controls), {a } ,an(O) = t,; sequence in ~(lR3), 
n nEli nJ 

. " converging to a, t,; = a(O) = O. Suppose that, for 

each n fixed: 

(i) t,;n € C2(3,0);. (ii) dan/dt(O) t!" T; (C2(3,0». 
n 

da () do. ( Then: 'at' 0 = dtW 0) = O. 

Proof 

Let X, corresponding to the swallowtail, be 

as computed from [17] (see 4.2(4): c = 3, bottom}. 

Choose c~s.t. X(O~O,c) = t,; (therefore c :I 0, n n n 

because ~n € C2(3,0». From the expression of X' 

c ~ 0 as n ~~, since ~ ~ O. Since X preserves 
~ 5Ca.(S'O)) n • 1lit.1it.a.. • n 
5~_the codimension 2 i.e,x ({(a,b,e)la = b = OJ) = 

.' c.jaO 

C2(3,0), we compute 

TE; (C2(3,0» = T X ({(a,b,e)la=baOl) = 
n (O,O,cn) 

='~(r;-2rcn;rc~)lr € Rl: n fixed. 

~ 
d(a ) d(a ) d(a ) '-

Since we know that ( n u(O); _..;.;n.....lv(O); n ,.(0» E a, V n 
I dt dt dt 

" '" Since {an} converges, I continuous, dean) 
-u(O) 

dt 

I 

= r ~ r IE R as n + 00. 
n 



constant 
Therefore 

d(a ) 
n w(a) 

dt 
= y.:'" t + 0 as n ... aD, and so does 

d(a ) 
---.;n~w ( 0) 

dt ' 

o 

"" therefore,by continuity of I, one has 

PBOPOSIIIQN 34· 

da {O)/dt = da (O)/dt = o. v w 

4.4(34) 

= In \ 
constant o 

o 

(5Wf\\. ... OW. TAU.' 5 
bUNDLE C.l.o5E::' 

raOL.o'5 'Q UNOL "E.', 
4!.Tf\NOPtAP ~ORM) 

Let 93 denote the standard swallowtail, as in Proposition 33. 
. A 3 ~ 

Let {an} '~n = an(O), be a sequence in T OR') converging 
nElN 

A 

(dosec:ltle~ ~t Sw~\jo(.j to a point a, Cl(O) = ~ = O. Suppose that, for each m, fixed, 
t -iil '$ <:poi.I\.t.; C01. '!te 2,., ] I 

v.J!3Mn, a submanifold of Md
1
,s:i.: .. ~ii) ~ £ Nn 

: n """'\ 
--....,....., l--i (.L)~(.h/M",:M"'''''N~~ IM,.(MW\)~5.a4~fF.; C

1
(3,0) 

~~ no! ;,) 

N I (i i i) 3 representa ti ve an of Ci s. t. a (I) c: Nn. Then : n n 
~~~-.:.~ , 

i 
~~(O) = o. 
i dt 

\ Proof 

(tlJtl;l\(t}1,-lt))i LetXbe as in Proposition 33,X. =X/e/M(Mn), a 
/ n 

,~~~b."Q... local diffeomorphism. Set: (an{t) ;bn(t) ;cn{t»~1);l~·n( t}} 

It follows iRltlediately that an{t):: O. This allows us 

to express, as before, 

Qn(t) as a function of bn(t) and cn{t):an(t) = xn(O;bn(t);cn(t» = 

= (3b (t) - 6c2(t); -6b (t)c (t) + Bc3(t); 3b (t)c2
n(t) -3C4

n(t». n n n n n n 

So that, omitting the O's, as before, one has 1c' '~n) = 
1st order expressions 

-(3b -6C2i-6b c +8c3
;3b C2_3c

4
; f3bn'-12CnCn'i-6(bnCn'+bn'Cn)+24Cn2Cn';3(bn'cn2+2bnCnC~)-12C~C 

n n n n n n n n« .. \ I' . 

( ~ ( ~ 
2nd order expressionsi 3rd order expressions) d(~) d{~) d(~) 

----n ...... u(O) n v n w{O) 
dt dt dt 
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We want therefore to show that: 

3bn - 6C~ -+ 0 

-6b C +8c3 
-+ 0 n n n 

;:. 

(I) 

[3(b'c2 + 2b c c') - 12c3
C I

] -+ 0 n n, n n n n n 

We first prove that cn -+ 0 as n -+ 00. If this is false, ;J subsequences 

{ck} of {cn} ande:> 0 s.t. Ickl > e: , 'i k. (ck = cn(k)' k E:N, to be 

more preci se) 

Now 1 im (-6b
k 

c
k 

+ 8C~) = 1 im (-2ck [( 3bk -6l~) +-2c~1l k~ k~ t 
o as k~ 

• 

(II) 

Therefore ,for k suff. big, ([ (3bk - 6C~ J.i'l~1F I C~ I, therefore '-2Ck n'l;" I ck II ~ I > £
3

, 

'" k suff. big~therefore lim (-6bkCk + 8C~) ~ 0, a contradictionjtherefore 
k~ 

c + 0 as n + CD 

n 

Now. by computation: 

o 
. ft 

r T· fixe d\ 
~ limit 

df.( ) '0 (nO U~ n) 
( I I) = n w ( 0) = - rft <.. ( 0 ) 

dt 7n n dt 

as wanted. 

PROPOSITION 35: 

C[3] is closed in T3(R3
). 

fixed 

f1i

:

it 
d)' d{c( ) 

+ n (0», therefore lim n w(O) = 0, 
dt n"oO dt 

o 
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Proof 
,... 

Let' {Sn} ,S CO) = Yn' be a sequence converging to some 
n~ n 

6 £ T3(J{3), S(O) = y, 8n € C[3], 'r/ n € ~ fixed. From Propositi~n 31 and 
,... , J 

its lemna. 3 subsequence H\\d!'Yk = 8k (0). such that h € ICi: [3]. 1'1 k € flo 

Let r,y as usual. As in case 1,(4.4(16», 

1 rv ~ ~ 
one shows that r- Bk{I} c C{1,2») therefore I(r Sk) € {(xl, ... ,x12)lxl=x4=x7=xlO=O:, 

rv 3 -1 'V ~ 
therefor~ by continuity of I and T r ,I(r B) ( {(·)lxl=x4=x7=xl0=0~h~~ce 3 

~ j 
representative r-1a of r-1a s.t. r-1S{I) c C(1,2»)therefore B{I} c NIs, 

,... j 
therefore a € C1

S[3] c C[3]. 

Case 2: 

o 
Case 2.1 :i subsequence,' {a} , 6 CO) = y , of' {Sk} ,such that 

r rdl r r k€fi 
A j 
Sr € C2 s(3], " r €~. Let r,y be as usual. By definition 

of C~S[3]. I(r~Br) € Q2[3] = {(xl.· ••• x12)lxl=x2sx4=xS=Ol 

'" ./f " . /l' ,. j 
Therefore I(r- B) = lim i(r- Br } ( Q2[3], therefore B € CZ

S[31 c C[3). 
r-+c» 

Case 2.2 
,. js js d 

;3 K E ~ s.t. Sk ( C2,1(mk)[3], some mk € U2 n M1, 

Vk ~ K, fixed. From the hypothesis, fixed k ~ K, one has 

ak € {e € c!o[3JIB(O) = Yk = Xf(~)} with jo s.t. ~ € u!o. 



Case 3: -

4.4(37) 

-:1 ,.. ED j 
Therefore, ~.Sk' representative of Sk' s·t· Sk(I) c N1°. 

jo jo j 
Recall thatxf/M1 : Ml -+-N1° is a diffeomorphism. Therefore 

. - -1( jO) -1 jo Xg=yf -1 Jo :y Ml -+- r (N1 ) (c C1{1,2» diffeomorphically 
/y (M1 ) 

((i)'). Also r-1(Sk(O)) = r-1(Yk) • r-l(N~O) ((i1)') and from e 

r-1Sk(I) c r-l(N~O) ((iii)'). 
/':'.. 

By considering the sequence {r-1sk} ~s in Case 2.2, 4.4(i~), one 
A J 

gets (same arguments as there) ~ € C2
s [3] c C[3], this time via 

Proposition 32 above. 

ts = 31 
Case 3.1. 

A j 
:3 subsequence fer} , Yr = area), such that Sr € C3

s [31 
r~ 

~ r € ~~ with r,y corresponding to (js,3), as usual, 
'\I /":' 

one gets I(\-ISr) € Q3[3] ={ (.) IXl=x2=x3=xS = O} J therefore 
'\I /],'. " j 
I(r- B) € Q3[3], therefore B € C3

s [3] c C[3] 

Case 3.2 
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----------------~--------~----~ d(r-16 ) d( -1 ) \ 
'That is: (r-l(y )} = (r-l(y) = 0 r u(O) = r 0 6r v(a) :: O.~ 

o r u - 0 r v dt dt 

Now, if r corresponds to (j ,3) we know, from Remark 7 in s 
4.4(1), that: 

(in that Remark r + r2, ro + r, i = 2, r = 3 and cI = 2, c
2 

= 3) 

Therefore, if ~ = (r-1)(y) a = (r-1)(6 ), and byS ~ above: 
r r ) r r la 

d(a ) d(a ) d(~ ) 
( r u(O); r. v(a); r w(a» = 

dt dt dt 

• 

c T ~ (C
2 

(3,0) ) 
r ' 

Also,by II' • since r~I(Yr} € C2{2,1) [Yr € ": .• Xf (M~), since 

Yr = Xf(mr ); see also Remark 7],'tr € C2(3,O}. 

Therefore, the conditions as in the hypothesis of Proposition 33 

are met by {~ }, hence dav{O) == daw(O) = 0, i .e". ~ 
r CIt dt 

d{r::Bl y (Ol " 1 d(r::BlW(Ol " 0 l We recall. from Proposition 31 

and its lemma. that y e x(M1=i
s

=3 l ,therefOre r-l(y) " (0.0.0). 

This. together with. (we don't need the whole of Proposition 33), 
,.. ~ ~1 j 

shows that S € T-r.I- (Q3[3] = C3
S[3] c C(3] 
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case 3.3: 
,.. j 

3 K € 1N s.t. ak e C3~1(mk)[3], ak(o) = Yk' some 
js d mk € u3 n MI , 

V k ~ K, arbitrarily fi'xed. 

The proof of Case 3.3 is entirely analogous to that of ca.se .2.2.. 
,.. A j 

(4.4(ll». For k ~ K fixed, Sk € {a € CI
o[3]ls(O) = Yk = Xf{mk)}, 

jo --::1 jo 
jo s.t. mk € UI · Hence, ~ representative Bk s.t: Sk(I) c N1 . One gets 

,~ . -1 jo -1 jo 
(as in 4.4( T»: Xg=Yf/y-1(M~O) : y (Ml ) ~ r (Nl ) diffeomorphically 

(r-1(N!O) c C1(3,O)) ((i)'); r-1(Bk(0)) € r-l[N~O) ([ii)') and r-12k(I) c 

1 j . 
c r- (N

1
o) «iii)') 

By then considering the sequence {nk} , ~k = nk(O), oK = ~-12K' 
k~,k~K 

and setting Mk = y-l(M~OI. Nk = r-l(N~OI. one gets (as in 4.4(\1)) 
a 

'1' . 
d(r- Slw(O) = 0, from Proposition 34, and r-1(y) = 0, since y € N~S, hence 

dt 
,.. js 
S £ C3 [3] c t[3] 0 

..£. Genericity of v tT\ Cf : 

PROPOSITION 36: 

:3 open and dense set of vector fields, B c VCR3),s.t. v € B ~ 

Proof 

The proof is analogous to that of Proposition 20: one sets 

B~ • ci[3] n A, B~'c = ci[31 n AC, v~ = S-l(B~), v~'C = S-l(B~'C). j £ W. 

1 • 1,2,3, A and S as before. 8 = {v I j 2v ii\ (v~ and Vi'C), ~ i,j} is 

then proved to have the required properties. o 



PROPOSITION 37: 1 (GLOBAL to LOCAL) I 
j 

Let Y E: Cf , ms,(is,js)' u;s, s = 1, ••• ,p as in 4.4(2T). 3 v, 
"S • 

open neighbourhood of Y inR3
, s.t. V n Cf ~ V n rVXf(u~S n Md)l. 

s=1 s 

COROLLARY: 
P j d 

V n Cf C U Xf{ U. S n M ). 
s=l 's 

Proof 

Same as that of Proposition 21. o 

4.4(40) 

1 
PROPOSITION 38: \" (Genericity of v ~ cusp in STANDARD FORM: the 3 dimensional 

problem) 

, (dou(O); ~~v(O» ~ (0,0). Then E > ° s.t • 
. dt 

{a(t)tltl <e, t ~ O} n e{2,l) = 0. 

Proof, 

.Let aCt) = (au(t);ov{t». If3 E > ° s.t. {a(t)I'tt < £, t ~ a} n C(Z,O) = ~ 

then our thesis would immediately follow from the fact that 'C(2,l) = C{Z,O) x R. 

Therefore our problem will be solved )f we show if: 

a = (a ,a ) is a curve in u v - , 
I 

,,2. a( 0) • 0. s. t. ( a~ ( 0) ; a~ ( 0) ) 
then 3£ > 0 s. t.{a(t) IItl<e, t;0}nC(2,O)ael 

I 

~ (0,0) (1) A-____ ~~~~ __________ ~ 

Case 1: Suppose day(O) ~ O. (II) Follows, from Proposition 22. 
dt 

.. -



4.4(41) 

Case 2: Suppose ~<-O) = 0, . dau(O) .,. O. In thi s case a (t) = 
dt . dt u 

-+0 
da 2 td I 

=--tJ(0) t+ OCt ).Therefore la (t)l!! 1/2 14(0)1 It I , for t 
dt u dt 

d
2 

2 3 sufficiently small. Also "'yCt) = ~(O) t + OCt) ; Therefore 
dt 

2 d2 d2 2 
lay(t)1 ~ 2Eft r, where E = I~(O)I )if ~(O) .,. 0, E = 1, if ~(O) = o. 

dt dt dt£:-

for some K > o. 

~ A. lau(t)II~) for some A € ]R+. Since ~(o) .,. 0, we also 
dt 

2 
Let & = 8/27K. Chouse El small enough so that 

(au(t),ay(t» € B&(O), '" Itl<El. Suppose that 

2 3 (au(t),ay(t» € ef , It! < E1· Then 27av(t) :: 8uy(t)/ 
M. 

therefore,since !a;(t}! s K21a~(t)I ,271a;(t)1 = 8Iu;(t) ~ 

C
F 

~ 27K2Ia~(t)l. If au(t) = O. this will lead to 

('L/vl-= 8.J) 8/27K2 ~Iau(t) I, a contradiction; hence au(t) =- 0 
C·"·"') ( cia 

therefore by" ay(t) :: O. Now, since ~(O) ~ 0, 3 £2 > 0 s.t. au(t) t- 0, 
dt 

~ t s.t. It I < E2· Choose e :: min {€1;£2}. 
t~O . 

"'t~ .. 
It follows from'faboye that if'ltl < E, then aCt) I. Cf = C{2,0), as required. 

t ~ 0 



4.4(42) 

PROPOSITION 39: (Genericity of v ~ Swallowtail in STANDARD FORM: the 

3 dimensional problem) 

Let a = (au ;av;aw) be a curve through ° £ lR3. 

Suppose that daw(O) 4 0. ~ r Then, ;:J e: > 0 s . t. 
dt 

'" . {a(t)1 It I < s, It I 1: O} n C(3,0) = 0. 

We first define C*(3,0) = f (U'V,w~I' 256W3_27v4+4U(32v2W+4u3w_~ 
l . _3uw2 - u2v2) : 0 ~ 

ag3 4 2 
This is obtained by multiplying (1) ax- (0) = x + ux + vx + W = 0 the 

2 
(g3 as in 4.2(1» (2) a 93(0) = 4x3 + 2ux + v = 0 

Dx2 

equations (1) and (2)(as in bracket~ by x2,x,1 and x3,x2,x,1, respectively, 

and solving the7x7 determinant for u,v,w. It follows immediately that 

* * C (3,0) ~ C{3,O). (it 1s actually true that C (3,0 ~ C(3,O), but this will 
:t:: 

not concern us here). So, i'f we substitute, in the statement of Proposition 39, 
* . C(3.0) by C (3,O), to get a Proposition 39 1

, say, then Proposition 39' ~ 

Proposition 39. We prove below Proposition 39 1
• 

'" Ws ... K( \J'2. ... .., ... )"" 
l~e first give some definitions: 

k 3 CD ' Cu = «u,v,w)eR Iv = ~u' !~i ~ 1, 

and 'II ~± kl u I (1+a.2)~.k ; R+: 

( . r. ed- part of the cone as f n 

picture; we didn1t draw the lower 

part of the cone) 
k 3 (i) Cv:{(u,v,w). tu - sv.131 s 1 •. 

w li>:t k I v I (1 + 82) It. k ( R +} 

(",1a part of the cone) 
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= 151 stands for Iso1id l
; lei 

for Icone l
• Finally, k k k 5C = 5Cu uSCv• The proposition will follow from 

some 1 emna s . 

LEMMA 1: 

Let k be fixed. 3 ~ = ~(k) S.t: B~(O} n sc~ n C*(3,0) = {Ole 

mote: This says that the intersection of the .red. Isolid l cone with the 

swa 11 ow ta i 1 i s 1 0 ca 11 y fl).J 
Proof 

* Substituting (j) and (]) in the expression for C (3,0), one gets: 

±256k3(1 + a2)3/2IuI 3 _ 27a4u4 + 4u.(±32a2u2klul(l+a2)~±4u3klul(1+a2)~ _ 

-3uk?!uI 2(1 + a2) _ a
2

u
4) = O. 

From this, we have k3u3 (A + luIB)~O, where IAI ~ 256 and B = B(k) is a 

positive constant (B(k? <"B(k) if kl > k). Therefore, by choosing u 

s.t. lui <i~~) (therefore luI < ~ff,), V k' ,. k), one guarantees that ® is 

satisfied iff u = 0 ( ~ v = W :a 0). If we take cS = 256/B(k}, then 

'0(0) n sc~ n C* (3,0) =' {O}, as wanted. 0 

LEMMA 2: 

Let k be fixed k * t = ~(k) s.t. BcS(O) n SC
v 

n C (3,0) :a" {OJ 

[Note: This says that the intersection of the w~ite 'solid' cone with the 

swallowtail is locally ,~ 
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Proof 

Analogously, one gets k
3
v

3 
(A + IvIB) with IAI ~ 256 and B = B(k) 

(B(k ' ) < B(k) if k' > k). Choosing ~ = 256/B(k), one again gets 

Br;(O) n C~ n C*(3,0) = {a}, V k' > k, therefore Br;(O) n sc~ n C*(3,0) = {a}. 

LEMMA 3: . 
With the same hypothes i s as those in Proposi.tion 39, 3 E: > 0, k E R+ 

such that {a(t) I It! < E:, t ~ a} c [B (0) n Sck - {a}], 
n 

Proof 

where n = min {o,r;} 
above 

[Therefore B (0) n SCk n C*(3,0) = {a}] 
n 

D 

Let a~ = C(; Ot); a~(O) = A, a~(O) = B. For small t, aw(t) ~ C/2, 

a~(t) $ 2A (or 0A >0, if A = 0), a~(t) $ 2B (or 8B > 0, if B = 0). For f 

fixed, lau(i) I = If~ a~(t)dt[ $ I2.A II ; analogously, lav(t") I < 12Btl and 

la",(t) I ;, I e/21 . It'!, i.e. lait) I ;, [! m~!27) (~(t) + a~(t) lit. Taking 

k =! :8, we have that, for small t, say I t\ < £1,one has 
A +B . 

Pw(t) I ~ k (a~(t) + a~(t»~, therefore (au(t);av(t);~(t» E sck; also 

aCt) E Bn(O), t small (It I < E:2, say), hence {a(t)1 It I <e:, e::: min {£l,EZ},tJ'q}c= 

c (8' (0) n SCk). ,Also aft) ,. 0, It I < E:, t ; 0, as a consequence of 
n s""~ t\t.at~ 

chw/dt(O) ~ 0: c may be taken so small as to satisfy aCt) -I ~Y'f;Y1tl< ;;~ t ~ o. 

LEMMAS(l + 2 + 3) =7 PROPOSITION 39: 
o 

Choose £ as in Lemma 3. {a(t) I It I < £} c B (0) n SCk - {a}. If 
t;fO n 

u(t)(ltl <E. t ~ 0) E C*<'3,0) then aCt) E [[C*(3.0) n B
ll

(O):nsCk)-{OjJ<With a(t) ~ o-
see above) contradicting Lemma 1 or Lemma 2. Hence 

* olt) I. C (3.0), th.refore a{t) I. C(3,O), V tf It I < £. 
~,.o 
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PROPOSITION 40: 

V € B (as in Proposition 36) -0 v t!E\ C
f

. 

Proof 

As in Proposition 23, we have to show that, for fixed (arbitrarily) 

y € ef , vl.!\~ Cf , and this reduces (see 4.4(ZO» to proving that 

vtl:\y Xf(U~S n M
d
) in a number of separate cases, i.e.: \ = 1,2 or 3. 

s 

case 1: lis = 1 I This is like case 1 ~f Proposition 23: Xf (U~S n Md) = N~S 
3 j j 

and v[3](R ) n C1
s [3] = " =:!!;)v~y N1

s • 

case 2: lis = 21 Let r,y as usual. Since r-1(Xf(U;S n Md))=X9=yf(y(U;S n Md)) c 

c C(2,1), one has that: 

Hence, it suffices to proveE9. Set a =r-1e, 
. . 

where 6: I +:R3 is a sol ution curve of v through y; v[3] (Gt~)nC~~): cR where. 
j 3'" ",~a . j 
~S[3] = T rI(Q2[3]), means ,~(a) I. Q2[3], since v[3](y) I. C2

s[3]. Therefore. 

since ~ = a(O) = r-1(s(0» = r-l(y) satisfies ~u =~ v = 0 and, by §g, 

(E;u;~v; dou(O); OOV(O» f. (0;0;0;0), one has (dau/dt(O);·dav/dt(O» f. 0; hence, 
dt dt-

by PropOSition 38.3€ > 0 s.t. -{a(t)1 It I < €, t ~ OJ n C{Z,I) = 0, which 1s~ 

CIte 3: ~ r,y as usual. As above, one has to prove only that 
~ . 

[:1£5 > 0 s. t. r-1( 0ies») n C(3.0) = ~ •. NOw v[3) (R3) n C;S[3) = ~ =7' 

(c..;tv;~; daw(O») ~ (0,0,0.0) t where S: I + R3 is a curve through y, 
dt 

m • r-1s. t = 0(0). Since E; = r-l{y) = (O,O,O).~{O) ~ a therefore by 
dt 

Propos 1 t1 on 39 one gets •• 0 
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COROLLARY.,;, 

If f:X x R3 + R is generic, 30pen and dense B s. t. v € B ~ v;i..C
r 

4.4.4: The case r = 4: 

A. Definition of C[4] 

DEFINITION 12: 
. . 

Define, for flxed 1: 

4 IV_I = T r.1 .(Q2[4]) (r,y corresponding to (j,2», 

( 20 Q2[4] = { x1,···,x20) € ~ IX1 = x2 = Xs = x6 = x10 = OJ. 

C~[4] = T4r.I-1.(Q3[4]) {r,y corresponding to (j,3», 

Q3[4] =' {(x1,···,x20) £ ~201xl = x2 = x3 = Xs = x7 = O}. 

C~ [ 4 ] :a T4r . 1-1 . (Q4 [ 4]) {r, y -+ (j, 4 ) ) , 

.. 

C(4) 

r ,l. 

Q4[4] =',{(x1,···,XzO) € lR20 \X1 = x2 = x3 = x4 = Xs = O} . 

:I V C~ [ 4] (. i = 1, •.. ,4). 
jdf 

· V C1[4] 
i-I 

We prove below that these definitions are independentof the choice of 

PROPOSITION 41: 

Let "': :R4,.!} be a diffeomorphism (a germ of), leaving Ci (2.2) (i-1.2) 

invariant. Then T4", leaves I-I (Q2[4]) invariant. 
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Proof 
A '" 1 Let a € 1- (Q2[4J~a{0) = ~ = (~ ,~ ,~ ,~~), ~ = ~ = O~(O) = 

u v w ~ u v ' dt 

2 
= ~(O) = d a (0) 

dt dl' 
• • 

d(wa)u(O); d(wa)v(O);.;.; d2(~)v(O); etc •• ). We would like to show that 
\ dt , I dt .J \ dt J 

• • • 
the expressions marked with a dot are O. By invariance of C

2
(2,2) one 

immediately gets ~u(~) = ~v(~) = O. 

The rest of the proposition follows from: 

Claim: ~ kl 1<2 

Let P ~ I(~) = (~u""'~z; ~(O); .. ; daz(O); d22U(O); .. ;d222(O);I~d~3-U~(O~) , 
dt dt dt dt dt ----...... 

d d3 16 A ~(O); •.• ; ~z(O» € R ,0( as above. 
dt dt 

3 ~~n n [ ~ Then, a sequence a,~· = a (0) where the symbol 13 1 in a denotes 

that the equivalence relation is "'~ such that: 

(1) P n • ~ ~) ~ P as n ... co. . 
e' 

. ~ 
(11) "n fixed, '3 representat,,-e cf cf a s. t. an( I) c: C1 (2,2). 

(hence ~n € C1(2,2); a condition like (i) in Proposition 32 is easily met - see 

construction below - but we will leave this implicit for simplicity's sake}. 

To prove this claim, set. an{t) = (a~(t);a~(t);~{t);~~(t», 

tn • an(O) and define: 

2 3 
net) 1: r + ~(O)t + .Jr ~(0)t2 + -\- ~(O)t3 
~ ~ dt 2. dt~~~ 3. dt 

(I) 

da 1 d2 2 1 d3 3 an< t) = t + -z(O)t + 'F --.g.z(O)t + 3T 7.jw(O)t • 
Z Z dt £1 dt£ • dt 

'. 



(II) 

n( 2 au t) = - 3bn(t) 

a~(t) = 2b~(t) 

~ 

4.4(48) 

V n € 1N, where b (t) = b (0) + b' (0) t + .1.. bU(O) t 2 + 
n n n. 2! n 

+ fr. b~"(0)t3}and bn(O),b~(O),b~(O),b~"(O) are 

defined below. 

Set bn(O) def. l/n, V n. One then chooses, for every n arbitrarily 

fixed, b~(O), b~(O) and b~"(O) s.t. (dropping the Q's): 

and 

2 n 
d CL (0) = -6 (b b " + (b,)2) = k (1) 
~ n n n 1 

3 n 
~(O) = -6 (b bitt + 3b'b") = k (2) 
dt~- n n n n 2 

3 n 
~(O) = 
dt 

6 (2(b,)3 + b2b llt + 6b bib") = k (3) 
n n n n n n 3 

This is done in the following way: choose b~ to be a real root of 

the equation: 6(b~)3 + 3b~kl + (k2/n + k3) = 0, and set b~ = -n/6 (k1 + 6(b~)2), 

b~' = -n/6 (k2 - 3nklb~ - 18(b~)3n). 

It is easy to check that with this choice (1), (2) and (3) are 

v.r1fied (by substit1tuion). . (V,.. 

By definition, (a~(t),a~(t» satisfy (a~;a~)(I) C: C1(2,0),therefore 

an(I) = (a",a,",o.n,an)(l) c;: C
1
(2,2),' since C

1
(2,2) = C

1
(2,0) xR2. . u v W Z I . 

'tv\' 



Also (4) 

and 

e-n e-n ~ 0 _ 
l:ou'l:ov 

d(a~) 
--c(0) = -6b b l ? 0 

dt n n 

d(an) 
__ v-t(O) = -6b2b I -, 0 

dt n n 

1 as n ~ 00 (see 4.4(32,», 

since b = 1/~~ 0 as n 
n ~ 00. 

Finally, one can check, by computation, that: 

d2(an) 
(- 2u (0) + 6(b l )2). Since Ibn

l I is limited. 
dt n 

= k1, \f n, and bn ~ 0 as n ~ 00, one has: 
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(see 

(1), ... ,(5) and Definitions (1) and (II) imply immediately that P + P as n + 00. 
n 

This proves the claim. 

. Now cons i der the sequence {~} n.it! . Since 1/1 is a (Coo) di ffeomorph ism 

'" '" _ /'iJ t\,~ ~ and I is continuous, IrlPa"-l + I(~~) as n + 00, since (a ) = 
"'-1 ) "'-1 ,,3 I (Pn + I (P): (a ) as n +~. Recall that 

'" A3 d(4?) d2(lJK;) d3CtIJa).co) I(lQ-) = (w (t), ... ,~z(~); u(O}; ... ; u(O}; •.. ; ~, •.• ) 
u _ dt dt dt 

In the same way as in Proposition 32 and (5) ahove, it follows that 

2 
d(~)u(O) = d{fa)v(O} = d (pa1v(O) = 0, as wanted, since $an(I) c C1{2,2), 

dt dt dt 

because ~ leaves C1(2,2) invariant. 
o 
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PROPOSITION 42: 

Let w~4~ a (germ of) a diffeomorphism, leaving C.{3,1), i = 
~ 1 

invariant. Then T4~ leaves I-1(Q3I4]) invariant. 

1,2,3, 

Proof 

This is very similar to the situation we had in Proposition 25. The 

difference here is that the main argument expioits now the invariance (under .~) 

of the cod. 2 strata, C2(3,1) -- there the invariance of C
1

(3,0) was behind 

the main line of the proof. 

Similarly to what was said in Note: (4.4(2,)}, the proof follows from 

the fact that ~ leaves the cod.2 strata, C2(3,1), invariant and that, if 

{E; } + ~ € C3(3,1) is a sequence with; € C2(3,1), then n _ n 

T
t 

(e2(3,1})" i 1I{(a,Q,Q,S}la, S € lR}. (i.e., the (u x Z) plane}, as 
n 

tn + E;. The rest of the proposition is trivial, following immediately from 

the i.nvariance of the strata of higher (cod.3) codimension, e3f3,l). (see 

third line of proof of Proposition 25). 

The technical details of the 'reduction to absurd proof I are very similar' 
• 

to those as in Proposition 25, so that we just verify t. (Note: t.is cCfrea~~1:~ 
in, ; :~... Proposition 25, -jus~e fact that: 

Tf;n eel (3.0» =' {(ai-Zacn +B;aZc~ - SCn) la. S € R}" ... It {(a.S.a) la. B • R}; 

as n +~; the contradictions obtained there, in the reduction to absurd proof, 

are a direct result of this). 

To work out what TE; (e2(3,1» is, we again refer to X' corresponding to 
n 

the swallowtail. C2(3,1} = (x x I) {(a,b,c,d)la = b = O} where 
23 4 234) X(O.O.c) = (-6c ;ac i-3c ), therefore X x I(O,O,c,d) = (-6c ,Be ;-lc ;d • 

By computation, one therefore gets: TE; (C2(l,1»)= {(~;-2~cn;~c~;a)lo , 8 ~ R , 
n 

~ere. for each tn' one chooses (cn,dn)s.t.(x x I) (O,O,cn,dn) = tn-
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~ote: cn ~ 0,,, n € ~0 Since ~n ~ ~ = (Q,O,O,*) (since ~ € C3(3,1)} as 

n +m, one has (-6C~}~OJtherefore cn ~ a as n ~ 00. Hence, 

T~ (C2(3,1»II~II{(a,O,Q,8)la, B €nn, as wanted. 
n . 

The conclusion is, therefore (similarly to Proposition 25), that T~~ 

leaves {(a,O,Q,B)la, B € m} invariant; this, together with the fact that ~ 

leaves C3(3,1) invariant, proves our proposition. 

PROPOSITION 43: 

Let W: R45 , as in Proposition 42, leaving C;(4,O} invariant, 
tV 

i =: 1,2,3,4. Then T4$ leaves 1-1(Q4[4-1) invariant. 

Proof 

Idea is, as it was in Proposition 42, similar to that in Proposition 25. 

Part of the proof follows trivially from the fact that w preserves C4(4,0} 

(see Proposition 14, 4.4.(~». The other part consists of a reduction to 

absurd argument, as in Proposition 25 and the details of which we will not 

write down explicitly, which depends (and follows irmnediately from) on the 

fact that Tt {C1(4,O}It ~ n{(B,a,y,Q)ia,B, y € R}, where. {~n} is a sequence 
4 n 

in ~ • t € C1(4,O}, \In, and E: + (0,0,0,0) as n ~ m. n n 

To work out T; (C1{4,0», one refers to X, corresponding to the butterfly 
n 

(see 4.2(4». C1(4,0) = x({(a,b,c,d)la = a}), where x: 

(O,b,c,d) + (4c-lOd2; 3b~12cd+20d3; 12cd2.5bd-15d4; 3bd2_4cd3+4d5). 
\.. J\ .\ .J 

\ ,~ 

U v w z 

3 - ad - yd }Ia,a, y € R}, 
n n 



where one chooses (b ,c ,d ) (n fixed) s.t X (O,b ,c ,d ) = ~ One n n n n n n n· 

can show (see note below) that ~ ~ (0,0,0,0) ~ d ~ ° therefore n n / 

T; (C1(4,0}) + {{B,~,y,O)1 ~,B,y € m}. 
n 
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The conclusion is that T~w leaves {(B,~,y,O)la,B,Y € m} invariant. 

This, together with the invariance of c4(4,0) (= {(O,O,O,O)}) under:;, 

proves the proposition. 

Note: Suppose ~ ~ (0,0,0,0), (b ,c ,d ) as above. By computation, one n n n n 
has ~ = -d {d (3u + 5d2) + 2v ), where v and u ~ ° as n ~ 00. An easy n n n n n n n n 
reduction to absurd argument shows that d f ° is impossible. n 

The following three propos;tion~ follow (in the same way as Propositions 

26 and 27 fo 11 owed from Propos i ti ons 24 and 25 '. + Remark 7 ;-: arguments as 

in Proposition 15) from Propositions ~1, 42 and 43, respectively: 

PROPOSITION 44: 

The definition of C~[4] is independent of choice of, r,y. 

PROPOSITION 45: ' 

,- The definition of C~'[4] is independent of choice of r, y. 

PROPOSITION 46: 

The definition of ~I4] is independent of choice of r, y . 

. ' .. ' .... 



B. Closedness of C[4] - ... 
DEFINITION 13: 

We define the total fourth bundle associated with (i,j)} TC{[4] 

TCi[4] 

TC~[4] 

= C{[4] 

= C~[4] u ("-j-i C~,1(m)[4]), where 
mEU2nM1 . 

j A jo 
C2,1(m)[4] = {S E C1 [4]ls(0) = Y = Xf(m)}, 

j 
where jo is chosen so that m E u

1
o. 

4.4(53) 

= C~[4] u (~.dC~ 2(m)[4]) u ("-j~ C~ 1(m)[4]), where 
mEU3nM2 ' mEU3nM1 ' 

• A j 
C~,l(m)[4] = {8 E C1o[1] Is(O) = Y = Xf(m)}, 

j 
where jo is chosen so that m E u1o. 

• A j 
C~,2(m)[4] = {8 E C2°[4]18(0) = Y = Xf(m)}, 

j 
where jo is chosen so that m E u2o. 

Cl[4] U ( \..j~ ct3(m)[4])u( \.j~ct2(m)[4]) U 

mEU4nM3 . mEU4nM2 
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PROPOSITION 47: 

The definition of c~.1(m)[41 independs of the choice of jo' 

Proof 

Identical to that of Proposition 28 .(4.4(.2.5»; just substitute 3 by 4 

whenever necessary. o 
PROPOSITION 48: 

Definition of C~'1(m)[4] independs of the choice of joe 

Proof 

As above. 

PROPOSITION 49: 

Definition of C~,1(m)[4] independs of the choice of joe 

Proof 

As above. 

PROPOSITION 50: 

Definition of C~,2(m)[4] independs of the choice of joe 

Proof 
jo jl 

Let jo,jl be s.t. m.~ U2 ' m € u2 • Let 

. j 
'8 C~,2(m)[4](jo) = {~ € C2°[4]16(0) = y = xf(m)}, 

jo 
jo chosen so that m €' U2 • 

. jl e C~,2(m)[4](51) = {a E C2 [411 e(O) = y = Xf{m)}, 

j1 
jl chosen so that m € U2 · 

Let.ro' Yo; r l , Y1 be as usual, corresponding to (jo,2); (jl,2), 

respectively. 
" " 4 1\1-1 4 4 -1 )"'-1 » Let B € 8. Therefore, B € T fo·l (Q2[4]) = T r1(T (r1 ro I (QZ[4] = 

:; b!1 T4r 1 <'I-1(Q2[4]), therefore e. C~1[4), therefore B .e. <!3)c El :analogous. 
Prop.41 

[] 
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PROPOSITION 51: 

Definition of C~,2(m)[4] independs of the choice of jo. 

Proof 

As above (Proposition 50). 

PROPOSITION 52: 
• 

Definition of c~,3(m)[4] independs of the choice of jo. 

Proof 

Analogous to that of Proposition 50 above. Just substitute 2 by 3 

everywhere, and use Proposition 42 instead of Proposition 41. C 

PROPOSITION 53: '(RedUCing GLOBAL to LOCAL») 
" " "4 4 Suppose that en € C[4])Yn = Sn(O), 'tin E1'I, and {en}niN -+ BE: T (R ),y =-

Then, ;J i € {1,2,3,4}, j E ~ and subsequence {Sk} , Yk = Sk(O), such that 
k~ 

ak € TC~[4], ~ k E~. Furthermore, Y E X (P~ n M~~. 
\\ MJ 

1 

Proof 
jn 

C. [4], for each n E~; recall that 
1n 

Set In particular, 

. d 
5 = 1,2,3 or 4 according to whether ms E M1,2,3 or 4· 

LEMMA: 
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PROOF OF LEMMA: 

As in Proposition 17, one easily shows that m = m n s' 

is = 4. With the same arguments which lead to the proof of 
j j 

Proposition 46, one shows that C4
n[4] = C4

s[4]) therefore 

A js js 
en € C4 [4] c TC4 [4]. 

Ca se 2: ( i n = 3] 
r 4· Lt· (S13) 

Cases is = 1 or 2 may be discarded (Remark 8 and ~ above). 

Case 2.1: is = 3 

A j 4 "'1 "l' "'1 
en € C3

n[4] = T rnoI- .(Q3[4]) therefore r~ Sn € 1- (Q~[4]~therefore 
~ 

an = T4rs(T4(r;lrn) (r~ISn))' [see note in 4.4(2g)], where 

~n £ r-1(Q3[4]); hence by Proposition 42, 

4 '" 1 j js 
an € T rs(I- (Q3[4]» = C3

s [4] c T3 [4]. 

~ase.202 is = 4 
A ,.. j j js 
Bn € {B € C3

n[4]IB(0) = Yn = Xf(mn}} = C4~3(mn)[4] c TC4 [41. 

js d [Note: mn € U
i 

=4 n t43, by the hypothesis of lerrma, 14- in 4.4(55), 
s 

and hypothesis of case 2]. Th~ equality above results by taking jn 

as the jo in Definition 13. 

Case 3: \; n . = 2 ) 

Case 1s = 1 may be discarded (Remark 8 ~ :~, in 4.4(S~)· 
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Case 3.1 

th f b P "t" 4· 1 ~ e: T4r (~-1 js js ere ore J y ropos 1 lon , ~n - 5 I (Q2 [4] )) = C
2 

[4] c TC
2 

[4]. 

Case 3.~: is = 3 

'" '" j . j j 
an e: {a e: c2

n
[4] 113(0) = Yn = Xf(mn)} = C3~2(mJ[4] C1C3

s [4]. This 

equality results by setting jn as the jo in Definition 13. Note: 

Case 4: 

js d 
mn e: Ui =3 n Mi =2· 

s n 

Case 3.3: 
~ 

i = 4 s 

[in = 11 
Case 4.1: is = 1 

As case 3.1 in 4.4(l9); just change 3 by 4 everywhere. 

Case 4.2: is = 2 

'" js js 
Analogously as before, we get Pn e: C2,1(mn)[4] c TC2 [4]. 

Case 4.3: is = 3 

"js js 
AnalQgously, one gets an e: ~3,1(mn)[4] c TC3 [4]. 

Case 4.4: i· = 4 s 

Again 

o 
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LEMMA -> PROPOSITION 53: 

Equal to the proof that lemma to Proposition 17 ~ Proposition 17, 

substitute 2 by 4, whenever it appears. o 

PROPOSITION 54: (cusP':=' eUNDLE. C.LOSES fOLO'S bUNOLE: 5T.--NOftRD fORM) I Let 9 denote the standard cusp 92:R x R +R with two disconnected 

[C\cMtdne.s,s controls~e.:(v,\I)x) ....... x2/2 + x4/2 + U'1-2/2 + v~ 
:d c.us.p's Let {~n} , ~n = an(O), be a sequence in T4(R4), converging 
S ur F~ceJ neN ,.. 

to a point, a = ~(O), with~= (~u;~V;~\,/;~Z)' ~u = ~v = o. 

Suppose that, for each n fixed, "3 Mn, submanifold of t1~, such that 

(i) Xg/Mn:Mn + Nn = Xg/Mn(Mn) is a diffeomorphism 

(ii) ~n E Nn 
c C1(2,2) 

(iii) ~ representative an € ~n' s.t. an(I) c Nn. Then 

2 
dau(O) = dav(O) = ~(o) = o. 
dt dt dt2 

In precisely the same way as done in Proposition 32 - with the only 

difference that we now have two disconnected controls - we can write: 
.' 

Qn(t) = Xn.2(O;bn(t) ;cn( t) ;dn (t» = (-3b~(t);2b~(t) ;cn( t) ;dn (t» I where 

I< = X2/(a/M x IL2 )(Mn), where X2 is defined by the diagram. 
"',2.. 'R 

x R2 

Therefore. omitting the O·s. as before (see Proposition 32). we have: 
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,.J(,f;\~) (3b2 2b3 d - 6b b'·6b2b'·C'od'· _ 6(b btl + b2). I V\ .. - = - n; n ; C;; '" 
IV. n n n n n n n n' n n n' 

wnere, like in Proposition 32, b (t), c (t)', d (t) are defined by x-I (ex (t» = 
n n n n,2 n 

= (an(t), bn{t), cn{t), dn{t». Hence, since 
,~ 

as n + 00. 

We want therefore to prove: 

2 (a) delu(O) ~ lim (-6b t b ) = 0 -3b + 0 n dt n-+oo n n 
==7> 2b3 

+ 0 (I) n (b) da.v{O) lim (6b'b2) = 0 = 
dt n~ n n 

2 
lim {2b +(b , )2 + b2bll

) = 0 (c) -4v(0) = 
dt fl'+<X> n n n n (II) 

(II) (a) and (b) have alre~dy been proved in Proposition 32. It remains to 

prove (c) ~ 

, By computation: 

d2{a ) d2(a ) 
_....;;.;;n-4<'1{O) = -b (0) n li{a) + 6b

n 
(0) (b

i
', (O» 2• 

dt2 n dt2 

d2{a ) 
Now bn(O) + 0 as n + 00, n u(O) tends to a constant as n~ and 

dt2. 

(b~(O»2 is limited (proved in Proposition 32). Therefore. 
2) . 2 d (a d ,a .. 

11m n v(O) = v(O) = 0, as wanted. 
~ dt2 dt2 
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PROPOSITION 55: 
r" -SwALLoW TAl L.! C; 

f>uNP\.-E CLoSES 

Cu~P'5 '1>VNPLE~ 
CANCN 'cftL fo'R~ 

Leg g3 denote the swallowtail, g = g3 + one disconnected 

control, {~n} , ~n = an(O), be a sequence in T4(R4), 
·ndJ 

~LOSEDNESS AT 
SwlrL1.CAN • TA 'L 's 
LIN S": cASE ~J 

Proof 

converging to ex ,~ = a.(O), ~u = ~v = ~w = 0. Suppose 

that for each n arbitrarily fixed, one has: 

(i) ~n E C2(3,1), (ii) dun/dt(O) E T~ (C2(3,1». 

Then: du "ett(D) = du /dt(O) .= O. n vI' w 

One first computes T~ (C2(3,1», as it was done in Proposition 33. 
n 

In order to do thi s, one consi ders the map'X x IR, where X corresponds to the 

swallowtail (see 4.2(~»,X x IR(O,O,c,d) = (-6c2; 8c3;-3c4;d). Choose 

cn,dn s.t.X x ~{O,O,cn,dn} = ~n (possible since'~n E C2(3,1}), for each n 

arbitrarily fixed. Now X preserves 2-dimens'ional strata, i.e. 

X x ~ {{(a,b,c,d}la = b = a}} = C2(3,1}, so that/by computation 
c~O 

T
t 

(C2(3, I)} = ',:, T ,x)C~ {(a ,b,c,d) I a=b=O}} ======= 
n ~ .. ,~ (O,O,cn,dn) cn~O, V n 

= {(r;-~rc~;s)lr.s £ R}. n' fixed. Since dan/dt(O) £ T
tn

(C2(3.1». \f n 

arbitrarily fixed, choose r = rn, S = sn so that dan/dt(O} = (rn;-2rnCn;rnc~;Sn)

Since t = (-6c2;8c3;_3c4;d ) + (0,0,0,*) as n + 00, cn + 0 as n + 00. 
n n n n n 

dean) 
Also u(O} = rn+ some constant JS n + 00 I therel:ore one gets 

dt 

[

d(an)v/dt(O) = -2rnC
2n 

+ OJ as n ~ 00, as wanted, precisely as in Proposition 33. 

d(an)wldt(O) = -rncn + a 
o 
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PROPOSITION 56: 

"" SwA LlOw·TA,l.' ~ f>uNt>LE. Let 9 denote the standard swa llowtai 1 93 with one 
c~S£s 

FOLO'S OONPLE:~TftNDARD Fo~M disconnected control (see 4. 2(.i )). i. e.: 

g(x,u,v,w,z) : ,x5
/5 + ux3/3 + vx2/2 + wx. Let 

[(.10 __ a.tswallou.:tall!s {an} • /;;n = an(O) be a sequence in T4(R4). 
line. : c...otse. 2.. J ndJ 

• A 

converglng to a point a ,~ = a(O), with ~ = ~ = ( = 
u V -w 

Suppose that, 'In arbitrarily fixed, 3 Mn, a 

manifold of M~, such that: 

() n n n n n 
i Xg/M:M + N = Xg/M (M ) is a diffeomorphism. 

(1i) ~ n € Nn 
c C1(3,1). 

(iii)'.3 representative o(Of~n s.t. an(l) c Nn. 

Then: dav{O) = daw{O) = o. 
dt dt ' 

Proof 

Construct Xl by the diagram: 

.-

where elM is again as outlined in [17], and corresponds to the swallowtail. As 

previously (see for instance 4.4(3J», set Xn,l = Xl/(e/M~I)(Mn), and define 

In(t), bn(t), cn(t) and dn(t) by X~~l(an(t» = (an(t); bn(t); cn(t); dn(t». 

Again an(t) = 0, by (iii), and one can write: 

cn(t) = Xn,l(O;bn(t);Cn(t);dn(t» = (3bn(t)-6C~{t);-6bn{t)Cn(t)+ac~(t); 

3bn(t)C~(t) - 3C~(t);dn(t». 

Omitting the O's from notation below, our problem is reduced to show that: 
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3b _6c2 -+- 0 n n 

d(a ) 
(a) n v(O) = (-6(b c'+b'c ) + 24c2c') + a 

dt n n n n n n 

-6b c +8c3 
-+- a n n n :~ d(a ) 

(b) n w(O) = (3(b,c2+2b c c') - 12c3c·) + a 
dt n n n n n n n 2 . 4 

(I) 3bn cn -3cn ->0 a.....------------..... (11) 

(I) ~(II)(b) has been proved :in Proposition 34. It remains to show that 

(I)~(II)(a). We have already shown (4.4(~5» that cn + a as n -+- ~ Since 

3b - 6t~ -+- 0, one also gets b -+- a as n +~, from (I). 
n ~ n 

o 
By computation, one has: 

d(a ) d(a ) 
(c) n v(O) = -2c (0). n u(O) - 6b (O)c'(O). 

dt n dt n n 

and 
d2 (a ) d2

(a ) 
---~n~u(O) ~ cn(O) n v(O) - 6bn(O)(C~(0»2. 

2 
d (a ) 2 

(d) n w(O) = -cn(O). 
dt2 dt2 dt2 

d(a ) 
Suppose we do not have lim n v(O) = o. 

n-+oo dt 

Hence, ;J £ > 0, and a subsequence such that' J d(ak)V(O)j> E , \I k l ~ 
. dt 

From (d): 

K = lim 
n-+oo 

+ C~O) 
o 

(from (c») 
lim 
fl'+CIO 

= 

d(alJ/ ~ ~(a «~(O) + 2c (0) ~ (0» ck(O» 
dtj 'If dt 

modulus 0 constant 
greater than 
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Hence, for all k sufficiently big, 

Again, by (c): 

d(a ) 

4K 
£ 

-2rk{DJ 
d{Q.k/a 

k '1(0) = . (0) - 6 k(O) ck(O) , 
dt dt 

V ~ ~ constant 1 imi te"d 

d(o. ) 
and therefore I k v(O)\ < £, for all k sufficiently big, a contradition. 

dt 

Hence (I)~ (II)(a). 

PROPOSITION 57: 

f,UTTER FL'I'S 'e>UNt>LE 

C'C~& 

SwAL.L..Ow:-rAll-'S '&UtJ!>LE ~ 

CftNON\c.A-L Foft.M 

(c \ 0 se.d raess At butter~l'j IS 

-pci.vd: ~ <:.:1. ~e. iJ 

. 

o 

Let g4 denote the standard butterfly (no disconn~ct~: 

controls), {~n} '~n = an(O), be a sequence 
n~ 

in T4(R4), converging to ~, ~ = 0.(0), ~ = 0 £ R4. 

For each fixed n, let X be as defined in [17], 

corresponding to the butterfly, and let ~n £ C3(4,O~, 

so that we can choose (uniquely) (o,o,o,c\,~ R) s.t . 

X(O,O,O,dn) = tn. Suppose that: 

dail(D) ~ [~n (1) ;~n (2) 1, where by thi s we mean the space generated 
dt 

by the vectors tn(l) and tn(2), with 

1 

-3d n 

tn(l) = 3d2 
n , t

n
(2) = 

_d3 
n 

a 

1 

-2d n 



Then daz(O) = 0. 
dt 

Proof 

Since G) is true, \tIe can choose, for every fi xed n r , n' 
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danCe) = (rn;sn - 3rndn;3rndn2 - 2s d ;s d2_r d3). 
dt n n n n n n Since ., it; )} converges, 

n n~ 

lim r = dau(O); lim (s - 3t~) = ~(O), hence lim s = dav(O) 
Jt+al n d t n-+oo n J n '\ d t n~ n d t 

fixed 0 
limit 

fixed fixed 

hence lim daz(O) = lim 0, as wanted. (fn' imdi ~ _/n d11m) i=t 
n n n n 

fl"+OO d t n-+oo ~ ~ o 

PROPOSITION 58: 

$UTTERFL'i'S ~UNOLE. 
CL~S£S 

CusP~s. eUN PL.S: .,. .... E 

STPrpJPARO fORM 

° 0 

Let g4 denote the butterfly, and let {~} ,~ = a (0) 
n n~ n n 

be a sequence in T4(R4), converging to a, t = a(~), 

t = 0. Suppose that, for each n fixed, 

[c lo~e~~e.~s at b\lJnterfl~~ (i) ~n £ C
2

(4.0) (i i) da/dt(O) £ T~ (C
2
(4.0». 

1>o\~t: Case. 2.- R! 

Then: daz(O) = ° 
dt 

Proof 

Let X be the one. corresponding to the butterfly (as in Proposition 57 

above) • x{O,O,c ,d ) = t , possible since ~n £ C2(4,O). n n n 

= (4c -lOd
2
n ; -12c d +20d~;12Cndn~Sd~;4d~-4Cnd~) 

\ n I \ n n .• ~ 

. . (~u)n (tv)n 

tends to (0.0.0.0) as n + m and: 



(~v)n = -3dnQ~u)n + 10/3 dh.
2
), if dnl 0, one would get a 

subsequence {dr } s. t. I dr I > e: , V r € N I therefore 
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l(E;v)rl ~ 31 dr l • I(;c)r + 10/3 d~1 > 3£3, V r sufficiently big, an absurd. 
OV 2 .-

Hence, dn + 0 as n + 00. As (4cn - 10d~ ) + ° as n + 00, one also has c
n

+ ° 
as n -t<lO. 

We work out T~ =v(O ° C d )(C2(4,0) = T(O ° d) x({(a,b,c,d) a=b=~ 
':on A , , n' n ' , C n' n 

:::~ =:::;r~== [~n (1) ;~n (2)], where ~n (1) = 

Cn10,,, n • 

1 

-3d 
'l 

3d'" 
n 

_d3 
n 

n and ~ (2):: 
n 

From (i i) above one therefore has) Y n, fi xed, da.n/ dt (0) = 

o 
1 

-2d 
t 

d
2 
n 

= (r ;-3r d + S ; 3r d
2 

- 2s d ; - r d3 + s d
2
), where s , rn € R. By the n n n n n n -n n n n n n n 

convergence in the hypotheses, lim rn = dau(O), and 
n~ dt o 

lim (-3f ~n + s ) = lim s = ~~V(O)Jtherefore lim(-rnd~+snd~) = ~~z(O) = 0 
~ n , n n-+-oo n n~ 

fixed limit [ 

PROpOSITION 59:. 

!UT1ERft.V' ~ ~UNt>L.E CL.OS~s 

fD~o'S SUNOt.E ~~tANi>ARO FoR. M 

[elo se.d Yles-s a.t $vtterF'~ 
'Pai.V\ t: C ci1se ~ 

Let 94 denote the standard butterfly, 

{~ } ,~= an(O) , be a sequence in r4
(R4) 

n nEN n 

converging to ~ , ~ = 0.(0), ~ = O. Suppose that, 

-V n fixed, -:J Mn, submanifold of M
d

, such that: 

(i) X94/Mn:Mn + Nn = X94/Mn(Mn) is a diffeomorphism. 

(i1) tn E Nr 
c C1(4,O) 

(i;;)3 representative an s.t. c(n(I) c N
n

• Then, daz/dt(O) = O. 
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Proof (of Proposition 59):· 

It is very similar to that of Proposition 34. One sets - / 
Xn - X a/M(Mn). 

where X corresponds to the butterfly, (an(t);bn(t);Cn(t);dn(t» = x~l (an(t»; 

an(t) = 0, expressing e(n(t) as: 

Cln(t) = xn(O;bn(t);Cn(t);dn(t» = (4cn(t) - 10d~(t); 3b
n
(t) - 12c

n
(t)d

n
(t) + 

20d~{t};12Cn(t}d~{t} - 6bn(t}dn(t}-15d~(t};4d~(t}-4Cn(t}d~(t} + 3bn(t}d~(t}}. 

Therefore the proof of proposition reduces to the proof bf: 

--
4c - lOd2 ~ 0 n n 

3b -12c d +20d3~ 0 n n n n 

12c d2-6b d -15d4~ 0 
20d4

d' +3(2b d d ' + b' d2) -4(c ' d +c d') --. 0 n n n n n n n n n n n 
~ J =9 v-n n n n n 

4d5-4c d +3b d2n~ a n n n n 
'---------(1) 

d(G\'z)n(o) 

hence, since ~ + (0,0,0,0), d + 0, as n + ~. n n 
". 

Then, by computation, we have: 

d(a ) 3 
----..;:z;;....;n ( a ) = - d 

dt ,/ n 

d(a ) 2 d(a) d(a ) 
( u nCO»~ - dn { v nCO»~ - dn ( w nCO»~. 

dt ~ t dt ~ ~ dt l,. 
o 

~(O) dav(O) daw(O) 
dt dt dt 

d(a ) 
so that z nCO) + 0 as n +~, as wanted. o 

dt 

PROPOSITION 60: 
4 4 C[4] is closed in T (R ). 

(II) 
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Let {e} * Y = Bn(O), be a sequence converging to some B € T4(m4),y= 6(0), 
n n~ n 

and en € C[4], V n € IN fixe~. From Proposition 53 and its lenma,;:1 subsequence 
,.. ,.. J

s {Bk} such that Bk € TC. [4], V k € }l.o 
k~ 's 

Case 1: tis = 11 
j j + j 

TCi
s=1[4] = C1

s [4] = T N1
s . With r,y as usual and as in case 1 of 

s 

(4.4{J') and 4.4(.3'», one shows that r-1Sk(I) c C(1,3) therefore 
'" <l' . I(r Bt ) c {(x1,.··x20)!x1 = x5 = Xg = x13 = xl7 = O} 

js ,.. 
As before (4.4(1')/(3'», one gets SCI) c Nl ' hence S € C[4]. 

Case 2: 

Case 2.1: -
,.. js v 
Br € C2 [ 4] , V r € IN. 

Proof 

As that of case 2.1 (as in 4.4(3'»; just substitute 3 by 4 whenever 

it appears. 

Case 2.2: 

Vk ~ K, fixed. 

Proof 

PreCisely as that of case 2.2 in 4.4(36); SUbstitute 3 by 4 whenever 

it appears and apply Proposition 54 instead of Proposition 32. 

Case 3: 
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case 3.1: - :3 subsequence {S} ,y = B (0), such that 
r r~ r r 

A js V 
Sr E C3 [1], V r E~; one gets) similarly as in case 3.1,(4.4[3i-», 

A js 
S E C3 [4] c C[4]. 

Case 3.2: 3 subsequence {B} , y = B (0), such that, V r, fixed, 
r rilN r r 

A . js js d A A j 
Sr E C3,2(mr ) [4], mr E U3 n M2• This means Sr E' {B E: C2°[4]IB(0) = Y

r 
= Xf(m

r
)} = 

IV 

{S E T4r r-1({(.) 1 x = x = x = x = x = OJ)} (note: JO is such that o 1 2 5 6 10 0 
j 

U 0).. . t" 1 mr E 2 ) 1.e. , n par 1 cu ar ; 

(r~l(Yr»u =.(r~l(Yr»v =.d(r~lBr)u(O) = d(r~IBr}v(O) = 0 ~ 
h • - dt dt 

Now, if r corresponds to (js,3), we know, from Remark 7,that: 

(in that remark, r + r
2

, ro + r, i = 2, r = 4, c1 = 2, c2 = 3) . 

. 
Therefore, with ~r = r-1(Yr)' cxr = r-1Sr' by 0 and ~ : 

d{a } d{a } dear) d(a ) 
( r u(O); r v(O); w(O) r z(o») E T~ (C3(.3,1» (as in 4.4~8)}. 

dt dt dt dt 5 r . 

-del,) da (a) Also byC, ~r E C2(3,1). By Proposition 55, it follows that (ff"\.J = dt" = O. 

j=j -1 
By Proposition 53, y EX.{Mi =3 S») therefore r (y) = (0;0;0;*). Hence 

B E T4r r:1(Q3[4] c C[4] 

Case 3.3: 
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'" 
By then cons; der; ng the ,sequence {elk} '~k = elk CO) It k ~ K, wi th 

j kd~ j 
-1 . k -Ie 0) k (-1 o)} ak = r Sk' and settlng M = Y Ml ,N = r (N1 . , one gets, from 

Proposition 56,~~v(O) = ~~W(O) = O,therefore B E C~S[4] c C[4]. 

o Case 4: -

Case 4.2: '3 subsequence' {8r} ,er(o) = yr ', such that for each fixed r, 
• 0 • rElJ 

A Js JS '. d 
Sr €.- C4,3(mr ) [4]. mr E U". /I M10 

A A jo 
This means Sr E' {S € C3 [4]}S(0) = Yr = Xf(mr )} = 

'" =' {S € T4roI-1(Q3[4]) ,S(O) = Yr = Xf(mr )}, where 
~~d j 

Q3[4] =' {(·})xl = x2 = x3 = x6 = x7 = O}~where jo is s.t. mr E u3
J

• 



, lRlt ' 

'- !if 
." -J 

-C"C!>,i) r rc 
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Therefore, we know that 

d(r-1s } 
o r '/(O} = 
dt 

d(r-1s } 
= 0 r w(O} = 0, 

dt 

\ d(r~ Sr} 
i.e. (0' E P , 

dt (n 
~ . 

II 

(w-ax;s missing; we actually draw the 
projection of C(3,1) on the (zxuxv) space) 

P as described in the pict,: 

-1 II) _ 
\. «(I roHP) is, where hr =r 0 ley r) € C3(3,l) 

Once we work out (II), we then use: 

. (-1 ) -1 ) 

The idea of the proof will 

to find out what 
(since y EXf(rn), rn E Hd

3}. r r r 

I .. ,d ro Sr . . d(ro Sr 
where \,. u (0) , •.. , z (0)) E P , by (I) 

dt dt 

Let er = r-1 ro(~r)= r-1(Yr). Let.:x be correspondent to the butterfly, and let 

dr be ;he unique number s.t. 'x(Q,Q,Q,dr ) = (-lQd~;2Qd;;-15d~j4~F~(it is easy 

to prove unicity). 

LEMMA (to case 4.2): 

\. (r-1r oHP) ~ [f;r (1) .f;r(2) • f;r(l) = 

Q 
1 
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PROOF OF LEMMA: 

The idea here is to exploit the invariance of the two dimensional 

strata, i.e:, the fact that (see Remark 7) r-1 r o(C2(3,1» ~ C2(4,O). As we 

have pointed out in Proposition 42, the proof will consist in considering 

sequences {h~ € C2(3,l) -+ h (€ C3(3,1») and {es} , eS = r-1 r (hs) € 
seN r r siN r 0 r 

( C2(4.0) -> er E C3(4.0) and showing that [\~(C2(3.1) -> ~. [T s(C2(4.0»-> 
~ . er 

: [~r(1)'~t(2)1~ (as above) as s -> ro; a reduction to absurd proof, using ~ 
4 -1 r'Prop· 14 

(and continuity of • € R -+ T.(r ro) - see also 4.4(0» easily proves (see 

Propositions 14 and 25) that Th (r-1ro)(p) = [~ (l),~ (2)]. 
r r r 

We first prove~. For this, we compute T h-(C2(3,1». Let n~ = 
hr 

n(u,v,w)(h~), where IT(u,v,w): (u,v,w,z) -+ (u,v,w). Since C2(3,l) = C2(3,O) x [z-axis] 
R4 -+ R3 

T s(C
2

(3.1» wi.l1 be generated by the (one dimensional) generator.1~(1). of 
hr . 

!ils (C
2

(3,O» and [~) = 1~(?).TO find ~ ~(1). consider X (corresponding to 

r._ . 1 
• 

the swallowtail), and let c~ be s.t. X (c~) = n~ (c~ € R
3
). Since h~'" hr = (O,O,O,*L 

then nS ... n = (0,0,0) {as s ~pO}J therefore cS 
-+ a as s -+ co, and c

S
r t- 0, V s, 

r r r 

h~ ( C2(3.1). ~ ~(1) is easily computed to be _~cs . ~ s 
r ~ ":" cr 

R3 =~3 x {O~). Therefore 

R4? 

) 

(c~)2 (c~)2 

a 
o 
o 
1 

o 

... p , 

(ider.tifying 

since 
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as s +~, since c~ + 0 (as. we have commented above, the whole argument is made 

precise by a reduction to absurd proof, as in Proposition 14 and 25, for example; 

we allow ourselves the somewhat loose use of 1+ " as above, in view of that) 

As to (§), we start by working out i s(C2(4,0)). Let X be the one 
er 

S (s s s s s s corresponding to the butterfly. Choose mr = ar , br , cr ' dr ), s.t. x(mr ) = ere 

Since e~ ~ C2(4,O), a~ = b~ = O. Now: x(O;O;C~;d~). = 

s 2 s s s 3 s s 2 s ~ IJ ~}5 S s 3 = (4C~ - 10(dr ) ; - 12crdr + 20(dr ) ; 12cr (dr ) - 15(dr)j'f~ .4cr (dr ) ),and one 

. gets T s (C2{4,0» as generated by 
er 

~~(1) 

since G) ~ c~ ~ 0, \/s. 

I 

-:-3ds 
r 

= 3(d~)2 
_(ds )3 

r 

° 
1 

& _2ds 
~s (2): r 
r (d~)2 

One can show that c~ + ° as s -+<xl, since e~ + er E C3(4,0), from which 

it easily follows that d~ + dr as s + co, hence @. (eNi oflrcof """'-O 
of letnma.) 

d(r-Ia ~l, 
From 1errma, r .' (0) 

dt 

223 = (rr;sr-3rrdr;3rrdr - 2srdr ;srdr - rpdr}j 

d(r-Ia) d{r-Ia) I 
therefore lim rr = . u(O), lim sr = v(O), since dr + 0 as r + ~,c1r"o 

r-+oo d t r-+<xl d t 
r-+ 00 .,.~~&, ) 
~e = r- (y ) + r-I(y) = (O,O,O,O),as r +~, and x(O,O,O,dr ) = er r r 

d(r-Ia
r

) 
Therefore lim z(O) 

dt 

1 . 

= lim (sr d; 
r-+m ~ ~ 

fixed 
1 imit 0 

- r d
3

) = ° J. r r 

fi xed \.: ° 
limit 

d(r- a). ~ 4 -1 ~ 
-- z(O) = 0 therefore I (T r (a» E Q4[41, 

dt ) 
1 4 A js 

Since r- (y) = 0 E R. So B E C4 [4] c C[4]. 

hence 
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We work out Te (C2(4,0) by using X corresponding to the butterfly, 
r 

as usual: Te (C2(4,0» = T(O 0 cd) x({(a,b,c,d)la = b = O}) =[~ (l);~ (2») 
r ' , r' r r r 

1 

-3d 
r 

E;r(2) = 3d
2 
r 

d
3 
r 

(Note: cr ~ O;~ r. since Yr £ Xf(M~» 
,D.bOVe. 

0 

1 

As Yr ~ Y. r -l(yr ) '7 0; it is. easy to show that cr,dr ~ o. Now, from ® , one has 

d(r-1a) d{r-1a) 
d R th f , . (0) 11'm 5 - M(O)', it follows that Sr' r £., i ere are 1m r r = - u, r - Y 

~ dt r-+<lO dt 

lim 
r-+co 

3 ,. js 
- r d) = a·therefore ~ € C4 [4] ~ C[4]. 

~r r~ ) 
constant 0 
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" "jo " j 
For k ~ K fixed, ek € {e € C1 [4]le(O) = Yk = xf(mk)}, jo s.t. m

k 
€ U

1
0. 

j 
Hence,.3 represent; Sk s.t. fok(I) c N1

o, so'that, as in case 3.3 (4.4(68)), 

j -1 . jo -1 jo 
one gets Xg=yg/y-l(M

1
0 ) : y (M1 ) ~ r (N1 ) diffeomorphically, 

r-1(Bk(O» • r-l(N~O) and r-1Bk(I) c r-l(N~O); so that. considering the 

sequence {~k} '~k = "k(O). with "k = r-1Bk and setting Mk = y-l(M~O},Nk = r-1(NJ

1
·O) 

k~k J 

" j 
as before, we have, from Proposition 59, daz/dt(O) = O;therefore e € C4

5 [4] c C[4]. 

o 

..£. Genericity of v~ Cf : 

PROPOSITION 61: 
44· 

~ open and dense set of vector fields. B c VOR }.s.t. v • B~v[41OR )nC[41=~ 

Proof 

Like the proof of Proposition 36; just sUbstitute 3 by 4 everywhere, 

and j2y by j3y in the definition of B. 0 

PROPOsITION 62: [(GLOBAL to LOCAL~ 
,Let y € Cf , m , (i ,j ), u.s, s=I, ... ,p as in 4.4{~1). 3 v, open, 

s s s's p j 
neighbourhood of y in R4, s. t. V n Cf = V n [l.) Xf(Ui s n M

d
)]. 

s=l s 

COROLLARY: 
p js d 

V n Cf C U Xf (u. n M ). 
s=l 's 

Proof: 

Same as that of Proposition 21. o 
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PROPOSITION 63: (Genericity of v;t\cusp in STANDARD FORM: the 4 dimensional problem)i , 

I (0,0,0). Then,j e: > ° s. t. {a,(t) I I tl < e: , t f O} n C(2,2) = 0. 

Proof 

Since C(2,2) = C(2,0) x R2, we see, like in' Proposition 38, that we 

will be done if we can prove: 

if a = ~a,u,a,v) is a curve in 

n2, 0.(0)=0, (a~(O) ;a~{O) ;a~'(O») f then 3 E > 0 s. t. {a ( t) I I t I < C , 

Case 1: 

Case 2: 

Case 3: .. 

:f (0,0,0) 
(1) 

r-t f o} n C(2,O) = 0 

Suppose ~V(O) f 0. (II) follows from Proposition 22. 

Suppose ~~v(o) = 0, ;~u(o) f O. (II) follows from Proposition 38 

2 
Suppose ~~ v(O) = ~~u(O) = 0, d 2 v(O) :f o. 

dt 

In this case au(t) = a~(O)t2 + ru(t). tru(t)\I~-PO as t + O. 

ay(t) =~~(Olt2 + ry(t), (ry(t)~~~O as t + O . 

.:/:0 
I 

From this, :3 £1 > 0 s.t. It I < £ ~ /ay(t)\ ~ I a~(Otl2\t2 and 

(I 1).1 

lC<u(t)\ s Kt
2, K= min1q1~(O); Ii· 

setting c = 2K/a:<O), we then have lau(t)1 s clav(t)l. Let £2 > 0 be 

s.t. la(t)1 < 27/8c2 (possible, since a is continuous and a(O) = 0). if It I < £2-
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* Let E = min {El;~2}. 

* Let t be s. t. I tl < E. Suppose t is s. t. aCt) € C(2,0). Then, 

n_;3 • 2 2 2 2 
OG\u(t) = 27 ~v(t) ~ 27/c .au(t) ~ therefore au(t) ~ 27/Bc or au(t) = 0. 

. * The first inequality is impossible, since It I < £ ~ £2. So, au(t) = 0 ) 

therefore Ctv(t) = O. But then, one can choose £3 s.t. !It I < £}=)<lv(t) ; 0, 

l't ; 0 ) 

because l<lv(t)1 ~ ICt~(0)/2 It2, t sufficiently small; hence, if 
I , 

r 0 

E = min {E*'£3} and 5/tl < £ , one concludes then that aCt) t C(2,0). This E 
t t ; 0 

settles case 3. o 

PROPOSITION 64 \ (Genericity of v(.I\ swallowtail in STANDARD FORM: the 4 dimensional 
L--------------------- problem) 

Let a = (au iaviawiaz) be a (C"') curve through ~ = a~O). I';u = f;y =:~w = 0 

R 

Suppose that (~v(O); ~~w(O» ; (O,O). Then, 

3 E > ° s.t . {a(t)1 It I < E, t ; O} n C(3,1) = 0. 

Proof • 

Since C(3,1) = C(3,O) x R, we will be done if we can show: 

if a = (~u,av,aw) is a curve 

in R3, through 0, with 

(a~(O);a~(O» ; (O,O) 
(1) 

Case 1: 
• 

the~3e: > 0 s.c. {a(t)lltl <e:.VO} n C(3.0) = 
(II 

Suppose a~(O) ; O. (II) follows from Proposition 39. 



_Case 2: Suppose a~{O) = 0, a~(O) t 0. 

leDllla 1: .. 

._ .. , 
" .. ,.,'. . 

, .. _... \ .. .... 

Let c, k as above be fixed. 

v 

I 
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Instead of proving (II), we will 

actually show that: 
F F > 0 s. t. {a( t) 1"1 ~~~£}n C*(3,0) = '=' 

* where C (3,0) is as defined in 4.4{4Z). 

(II)'~{II), since, as pointed out 

in 4.4(42), C*{3,O) ~ C(3,O). 

We define, given e,k € lR+, the sets: 

Rc =" {(u,v) E R2\u=aY,lal s e}~ 

R~ =" {{u,v,w) € m3\(u,v) E Rc}' 

pk = {(u,v,w) € m31w = ±k(u2+v2)}, 

= LJ pk , 
k'~k 

sp~ = Spk n R~. 

To prove (II)', we adopt a method 

similar to that used in the proof of 

Proposition 39. We first show that, 

( 1 

for n suff. small, B (0) n spk
cnC*(3,O)={( n " 

(see 4.4{4~», and then prove that, if 

ItJ < £, suff. small, £ ; 0, the orbit 

of a has to be inside Bn(O) n SP~ - {al 

(for convenient k, c € R). 

~n > 0(= n(c,k»,s.t. Bn(O) n SP~ n C*(3,O) =" {Ole 
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Proof 
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Set n = mini l;l/KJ, K = 256k
3

(C2+1)3 + 128k(C2+1)C + 16kC4(C2+1) + 

+ 12k2C2(C2+1)2 + 4C3 . 

.3 ) 3 k * Suppose (u,v,w £ R s.t. (u,v,w) £ Bn(O) n SPc n C (3,0). Substituting 

u = aV, w = ± k'(U2 + v2),With k' ~ k ,in the expression for C*(3,0) (see 

4.4(~L», one gets: 
o __ --------------------~A-------------________ __ 

V4(-27+V.~±256(k·)3v(a2+1)3±128ak·(a2+1)±4k·a3(a2+1)4~V-3a(k·)2(a2+1f~v_~3») = 0 

Now Iv.el = IvIl01~lvl(l256(k,)3v(a2+1)31+1128ak'(a2+1)1+14k'a3(a2+1)4o.v 1+ 

+(3a(k,)ta2+1)24av\+14a31) ~lv\.K, since k'~k, lal~ C and \ vi s 1 (since 

(u,v,w) € B (0». Hence, \v.01 < K1.K = 1 -therefore (-27 + v.0) f 0 "> 
n " 

therefore v = O;therefore u = v = O;therefore, from the expressior. of 

* C (3,0), w = 0. This proves the lemma. 

LEMMA 2: 
• 

. :3 k, C € R+, e: > 0, s. t. 
r • 
{a,( t) I It 1 < E:, t f O} 

Proof 

c [B (0) n SPck ~ {OJ]. 
n 

We first choose e:1 s.t • .31 c R~, where C = max. {1;4Io.~(O)I}: 

&J2YtO 

If o.~(O) ~ 0, choose e:l , s.t: la,u(t)1 = \a~(O)t + ru(t)1 s 12o.~(O)lt 
iG. 

fav(t)1 = I&~(O)\ + rv(t) I ~ lo.~(O}:t 

2 

'40.' (0)1 
Hence \au(t) I s I U 10. (t) \ . therefore \0. (t) Is Clo.v(t>i)" therefore 

a,~( 0)· V) U 

aCt) € R~'Vt s.t. It I < £1: 



If (l~ (0) = OJ choose £i s. t.: ~ lau (t) I :;; 12/a~ (0) It 

(lav(t)1 ~ la~(0)/2It 
. 
) therefore 
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k 8o."{O) 
We now choose £2 s.t. ~ c SP , where k = max{ w ,4}. 

(a ' (O))2+a ' (O))2 a ' {O)2+(x'{O)2 • 
u v u v 

If a~(O) r 0, choose £2' s.t.: t law{t)1 

la~ (t) I 
~ 2Ia~{O)lt2 

~ (a~(O»2 t2,la~(t)1 ~ (a~(O»2t2 
4 4 

Hence, Io.w(t) I 
2 2 ~ k)· therefore/o.w(t) I ~ . 

o.u(t)+o.v(t) 
3 

0.( t) € Rc' It/ < £2· 

If (l~(0) = 0, choose £2(0) s. t.: Jlaw(t) I :;; t2 1 ~ 

(1(l~(t)1 ~ (l~(0)2/4.t2.1(l~(t)1 ~ a~(0)2/4.~ 
~ aCt) € R~, It I < 82. 

Choose 8 3 s.t. ~ c Bn(O). This is possible because a{O) = 0, and 

a is continuous. 

Choose 84 s.t. It I < £4~ 100(t)1 r 0, possible because a~(O) ~ O. 

Set £ = min.{£1'£2'£3'£4}; this will do. 

Lenunas (1 + 2) -7 case 2 iRlllediately, therefore Proposition 64 is 

proved. 
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PROPOSITION 65: (Genericity of v (.l\ butterfly in STANDARD FORM: the 
4 dimensional problem) 

daZ/dt(O) "I O. Then3e > ° s. t.: {a(t) I It,1 < e:, t f O} n C(4,0) = 0. 

Proof 

The idea is very similar to that of Proposition 39 (see 4.4(4~). 
* 4 ' One first defines C (4,0) = {(u,v,w,z) € R \P(u,v,w,z) = O}, where 

P(u,v,w,z) is a polynomial in u,v,w and z, by multiplying 

l(l) 

, (2) 

a 94-/0 x (.) = x 
5 

+ u x 
3 

+ v x 
2 

+ wx + ~ 
2 2 4 2 a 9't fd x (.) = 5x + 3ux + 2vx + W 

(1) and (2) by x
3

, x2, x,1 and x4, x3, x2, x,l, respectively, and solving 

* the q x q determinant for u,v,w,z. It follows that C (4,0) ~ C(4,0). 

P(u,v,w,z) is a polynomial containing the following monomials, with 

coefficients in R (these coefficients are irrelevant - from a qualitative 
. .. 4522 3542 3223 pOlnt of Vlew - ln the proof): z ,w ,v z w,vzw ,v z,v w ;uvz , uw z ,uv WZ, 

2 3 222 2 224 3 2 3 3 322 4 4 3 5 2 526 6 2 uv W iU V Z ,U vzw ,u v WiU z W,u v Z,u v W iU VZW, u w ;U z ,U v WiU VZ,U W • 

As in Proposition 39, it suffices to prove a Proposition 65', obtained 
; * by substituting C(4,0) by C (4,0) in Proposition 65. 

We then give the following definitions: 

k 4 (!) ® 2 2 k @ 2 2 2~3 
Cu = 't(U'V'W'Z) € R I u = aw, v = a(u + w la, Z = ±k(u +v +w) ~ 

with lal s Iial s 1 

k 4® CD 22!aQ 222\11 CW(l)={(u,v,w,z)~ Iw = au, v - B(u +w) ,z = ±k(u +v +w ) , a and 151 s L 

k 4 ® ® 2 2~ ® 2 2 2~ c
v 

: {(u,v,W,z)€R Iv = aw, U = B(V +w ) ,z = ±k(u +v +w ) ,10.1 ,lei s I}. 

k 4 (f; @ 2 2~G) 2 2 2~11 cw(2)={(U'V'W,z)~ Iw = aV, U,- B(v +w ) ,z - ±k(u +v +w ) ,a ,lsi $ I} 
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This picture represents the region 

defined by (!) and @in R3 

A n/2 rotation around the v-axis 
r a .'.,,," '. 

gives. r~g.def. by CD and ® 
, 

A ll/2 rotation of the two above 

cases, around the w-axis, gives 

reg.def. by CZ) and {§)and (§) and ~, 

respectively. 

Therefore the complement of [(reg.def. 

4.4(81) 

We claim that if (u,v,w) € R3 then it 

belongs to one of the regions below, 

defined by the equations: 

CD.and @; ® and (3); ® and ® 
(2) and ~ (see picture and note below 

it for immediate geometrical intuitive 

proof) . 

To see this, suppose that (u,v,w) , 

«(£) and CD ) u (CD and 0). Immediate1.,: 
2 2 k Ivl > I(u + u ) 21. Suppose also 

(u,v,w) , (C[) and (§) u «Z) and (§j). 
Then lui> l(v2 

+ w2)~I. Therefore 
2 222 2 v + W < U < v - w}therefore 
2 2w < 0, absurd. 

From the above: 

k k k k k 
C = Cu u Cw(l) U Cv u Cw{2) 

{(u,v,w,z)€R4Iz=±k(u2+v2+w2)~} 

One further defines: 
k U k' k k Ie 

SCu = k'~k Cu and SCw{I)'SCV and SCw(2) 

analogously. 

Finally, 
k k k k k 

SC = stu u SCw(l) u SCv u SCw(2) = 

by ~ and (g) u (reg.def. by (!)and{g)] 
= reg.def. by (]Dis just the interior of 
the cone shown 1n above picture. 

;JP{{U'V'W'Z)dR~Z=±kl{U2+v2+w2)~.kl~k; 
by comment above. 

Also, one has that the complement of 
[(reg.def. byCZ)and~u(re8·def.~&(§)] 
= res.def. by(!)is the interior of above 
cone rotated by nJ2 around w-ax1s. 
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LEMMA 1: 

Let k be fixed.3 0u = 0u(k) s.t. : Bo (0) n sc~ n C*(4,0) = {OJ. 
u 

Proof 

By ~u~stituting CD, ® and ® in the polymial P, one gets, as in 
4.4(43), k w (A + lui B) <ID 0 ' where IAI ~ coef. of z4 in P, B(k) is a 

positive constant (B(k') < B(k) if k' > k). Therefore, by choosing 
4 Ii 

I I coef. of Z coef of t"T u IS. t. u < --.;;.~~~ (therefore I u I < • , 'V k' > k), one 
B(k) B(k ',) 

guarantees that ~ is satisfied iff u = O(~ v = w = Z = 0). Take 

0u = coef. of z4/B(k). 

Let k be fixed. Then: 

LEMMA 2: 

LEMMA 3: 

LEMMA 4: 

3 0v s.t. Bo (0)('\ sc~(,\ C*(4,0) = {O} 
v 

k * :3 6w ( 2 ) s . t. Bow (2) (O) (\ sew ( 2) f'\ c (4, 0) = {a} 

LEMMAS's 2,3 and 4 are proved as Lermna 1. 

LEMMA 5: 
. k * . Let k be fixed.3 6 = 6(k) s. t. B6(0) n SC n C (4,0) = {a}. 

Proof 

Immediate from Lemmas 1/4 above. 

LEMMA 6: 

.3 k € R+, € > O,s.t. {a.(t)l It I < e:, t 'f o} c ([B (0) I' SC
k

] - {O}). 

Proof 

Let a~(O) = D (; 0); a~(O) = A, a~(O) = B, aw(O) = C. For small t. 

a~(t) ~ OJ", a~(t) s 2A (or 6A > 0, if A = 0), a~(t) ~ 2B (or 68 > 0, if 8 • 0), 

~(t) s 2C(or 6c > O. if C = 0). Like in Lemma 3 (4.4(~~). one gets 
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. k 
therefore, by ®, a.(t) € SC , It I <E

1
. 

Choose E2 s.t. {a.(t) I It I <E2} c Bo{O), E3 s.t. a.{t) f 0 if 

Itl <£3' t 'I 0 (possible since a~(O) of 0), and E= min {€1,E
2

'€3}. This 

will do. 

LEMMAS 5 & 6 ~ PROPOSITION 65 1 ~ Proposition 65 immediately. 

PROPOSITION 66: 

v € B (as in Proposition 61) = ';> v r::t:\ C
f

. 

Proof 

o 

Just like Propositions 23 and 40. We have to show that, for fixed 

(arbitrarily~ y € Cf , vr:I\y Cf ' and this reduces to proving that 

v ~ Xf(U~S n M
d

) in a number of separate cases, i.e. is = 1,2,3 or 4. y 1S 

small j 

Case 1: \i s = Ii. . j 

This is like· cases 1 in Prop~sitions 23 and 40: Xf(U~S n Md) = N
1

S and 

V[4](R4) n C~S[4] = !D =:> vt1\y N~S. 
i 

Case 2: 

-1 js d js d) ( ) let r,y as usual •. Since r (Xf(U2 n M » =X 9=yf(Y(U2 n M) c C 2,2 , 

one has: 

\ E:s > 0 is s. t. r-1(O (e: » n C(2,2) = 1Il\ ~y(e:s} n Xf(U~S n Md) = ., J 
~~----------~Y~S~----------m * 

Hence, it suffices to prove I. 
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• • 4 . . blJ 
Let B: I +R be a solution curve of v through y,~ def. r- 1s. Now, 

4 J s '" .. . '" A ® j v[4](R) n C2 [4] ::::~ .. ' . means I(a) t Q2[4], since v[4]{y) I. C
2
s [4] 

Therefore, since ~= r-l{y) satisfies ~u = ~v = 0 and, by ® , we have 

(;u'~v,dau/dt(O), dav/dt{O), d2
av/dt2{O» 1" (0,0,0,0,0), it follows that 

(dau/dt(O), dav/dt(O), d2e(v/dt2(0» 1 (0,0,0) and hence by Proposition 

63, $ follows. 

Case 3: lis = 3 \ 

Let r,y as usual. It follows, as above, that 

~ e; s > 0 iss. t. r -1 ( 0 y ( £ s )) n C ( 3 • 1) = !ill::? -0/ E s ) n ; Xf ( U; s Co Md) = 9l 
. ~ 

The proof of $ ;s immediate from Proposition 64 and our hypothesis. 

Case 4: ~ 
Like cases above (see also case 3, 4.4(4$)1 follows directly from 

Proposition 65. o 

COROLLARY: 

If f:X ]I. R4~R is generic," 3 open and dense B s. t. v £ B~ v & Cf • 

4.4.5. Appendix to 4.4 

This is not an integral part of any proof in this thesis, as it was 

pOinted out in 4.4.0 {see 4.4.2, (I» we just show below what is the 

motivation behind the definitions of Qi[r] (r = 2,3,4, i = 2, ... ,r). 

Cusp's case: (Q2[r], r = 2,3,4) 

Cusp's equation: [27y2 = 8u
3 1 



4.4(85) 

As our curve (see 4.4.0,{r) a is constricted to a (0) = a (0) = 0 we 
u v ' 

will find {r+l}-2={r-l} conditions on a~,a~, etc., imposed by the supposition 

that a runs into the cod. 1 strata, since the total number of conditions one 

needs, from ;F\ considerations, is r+l. 

(0 disc. 
controls) 

{i} 

= a't 
~~(O) 

u 

+ a,lIt2 + 0 
u 3 

= a,lt + a,lIt2 + 0 
v v 3 

(i') in m ~ 27{a~)2t2 + 0
3 

= 0 , 

therefore 
I-a ~ =---"10 I 

Unique condition: !a~ = Of this generates the definition of Q2[2]. 

(1 disc. 
controls) 

,-

(2 disc. 
controls) 

substituting back a~ = 0 in (i), 

= alt + o(IIt2 + 0 
u u 3 

= a~t2 + 03 and (ii) in m ~8(a~)3t3 + 04 = 0 

substituting at = 0 in (ii): u 

Conditions: 

therefore 



Swallowtail's case: 

Swallowtail's equation: 

(actually contains it, but 

this isn't relevant here) 

4.4(86) 

Curve a satisfies 3 conditions, au(O) = av(O) = ~(O}/therefore we 

need (r+l)-3 = (r-2) conditions. 

a (t) = alt + a"t2 + 0 u u u 3 

(0 disc. (i) 
controls) 

av ( t) = a~ t + a~ t 2 + 03 ( i) i n el =7 2 56 (e(~) 3 t 3 
+ 04 = 0 I 

(1 disc. 
controls) 

(i i 1 

a (t) = a't + a"t2 + 0 ~ 
W W w 3 therefore~ 

Unique condition:ln~ = 0) + Q3[3] 

Substituting back in (i): 

au(t) 

avCt) 

aw(t} 

= al(t) + (lUt2 + 0 . u . u 3 
2 = a't + aUt + 0 'v v 3 

2 
= a~t + 03 

(ii) in • ~ 27(a~)4t4 + 05 = ° 
therefore~ 

Conditions: 1 n~ = n~ = 01 + Q3[4] -
Butterfly's case: (Q4[4]) Equ~tion: KZ4 + higher terms = 0 

B f nu(tl = n~t + O2 ' 

(i) J a (t) = a't + 0 , 
(0 disc. l w w 2 

av(t) = a~t + O2 

az(t) = a~t + 02 

controls) 

(il in e ~ K((l~l4t4 + Os = ° therefor~~ ~ 
Condition: (Q~ = ° 1 + Q4[4] 

-'-
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Note: Case r = 5: just go one step further in each of the above cases; 

for instance, in the one parameter family of butterflies 

we would getla~ = a~ = o! giving Q4[5] as 
\ 

4.5. H2(see 1.2(t» is generic 

PROPOSITION 67: 

Let f be generi c as before. -:3 an open and dense, '6l c V(lRr ) 

s. t. v En -~ S ( v) n C f = 0. 

Proof 

\~e have Cf = V N~, a closed denumerable union of cod i ~ 1 
1 ,J 

* submanifolds (see Propositionbin 4.3(6)). Set Cf 
" lRr~r 

= Cf x {o}~ , which is 
(\r 
lR 

therefore a denumerable (closed) union of manifolds with cod. (i+r) > r. 

Set l\. =" {v I jOy if\ (N~ x {OJ), Vi ,j}, open and dense from lemna 2 in 

(3.3(2,». Finally v € ~9jOV(X) = (x,v(x» , C;, ; .e. x E Cfv(x) ; 0, 

therefore S(v) n Cf = 0. 

4.6. CONCLUSIONS: 

PROPOSITION 68 lRr 

1/ :3 and open and dense (in V{C» setJt, s. t. v EJt:::::;> v satisfies 

HI and H2 in 1.2(1), Y r E "{1,2,3,4} fixed. 

Proof 

Follows immediately from Corollary in 4.3(1'il, Corollaries at the end 

of Sections 4.4.1 - 4.4.4 and Proposition 67 above. 
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PROPOSITION 69: 

Proof 

Letv€V(lRr).:lKs.t. Iv( )I<K· J m r 
J x, V X E Jr\. Consider the open 

set B1(v) ='{V'ld(~Ov,(x),;)ov(~:) < ~Vx).If Vi € 8
1
(v), then 

lX:~ I (x) r t ( x, V (x) r 
lv' (x) - vex) I < 1, V X € lR

r 
J therefore Vi € V(lRr ) 

THEORE~1 2: 

Let r ~ 4 be fixed, n = 1. 

* -- * ~ V, open and dense in V(lRr ) , V c V
f 

Proof 

Set V* = iA n V(lRr). By definition and Proposition 67, V* c V
f

• It 

is also immediate that V* is open and dense in V~r), from Propositions 68 

and 69. 



CHAPTER 5 

5.1. PROOF OF THEOREM 3 -
The 'purpose of this chapter is to prove Theorem 3 (see Chapter 1) 

LEMMA A: Let r = 1, n = 2, f generic (see Chapter 1); suppose that 

V = {Vy}' the (one-parameter) compatible family, is generic 
",,~.~ .... run .... 

in the sense of [12] (in particular, v € [K.SJ U L , 
2 Y . 1 

L1 = Ql u Q1 U Q2 U Q3 - see [12], pages 35, 19, 25, 9 and 26). 

* " * Then, 3 V , open and dense in V(e), s. t., V V € V , fixed, 3 
un; que 1 i ft <t>:lR~ x Mn -). Mn, wi th properti es as in Theorem 1. 

5.1(0) 

~Je would like to comment that the proof of the existence and uniqueness 

of the 1 i ft ; s exactly as before (Chapter 2) wi th the only di fference that, to 

perform the 'jumps' (see picture), we use a global description of the change 

of the phase space of vy ' 'around' a singularity of Xf' obtained as a direct 

consequence of [12]: see picture below. See 5.2 for a counter-example showing 

that f generic only is not sufficient. 

'jo c.. 
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We make these ideas precise: 

PROOF OF lEt1MA A: 

let X be a compact 2-dimensional manifold, v E VeX), x E X a saddle 

node of v (see [12], page 16); we can suppose, w.l.o.g., that the flow of 

v, around x (in a ball Bo(x) c X, which can locally be supposed to be R2), 

looks like (see [12]), Figure 1 below. 

In particular, there is a unique non-

trivial (i.e., f from x itself) orbit e -

which we will call 6 (x) - s.t. x is the 
a 

a-limit of 8. Also, a set K c S6{x), 

as in Figure 1, s.t., at every point x· of 

K, v(x') "enters ll Bo(x). (with "enters" 

defined in the obvious way). 

~Ie first establ ish some lemmas, before proving Lemma A. 

LEMMA 1: 

Let X, v, x as above, v = vy ' V =" {Vyl as in Lemma A. Then the w-limit 

of & (x) is a sink. a 

Proof" 

First, from Remark 3, in 2.2.(1), we know that the 

w-limit of 8 (x) is just a point, a singularity 
a 

of vy. Now, since V is generic, in the sense of 

[12], Vy € [K.S] u Qf u Qi u Q2 u Q3 (see [12]); 

from the definitions of these sets, one sees 
1 

immediately that Vy € Q1" 
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Hence, in particular, all other singular poi t f 
n s 0 v are hyperbolic 

(see:1),pg 19, of [12])and there are no saddle connectl.ons, Y " 
proving our 

leJlJ11a. 
o 

LEMMA 2: 

(i i) 

.. 

( 

Let X, v, x, V as in Lemma 1. Then ~ neighbour

hood N of x (W.l.o.g~, N J Bc(x) and a y £ ~+ s.t. 

Vy+t satisfies either [(i)+(ii)] or [(i)+(ii)') 

be low, T:/ t s. t. It J < y. 

(i) Vy+t has a unique singularity in N#t = o. 

Vy+t has two sing. points in N, one saddle and one node _ . . l.e., slnk or 

source - if t < 0; no sing. points in N, if t > o. 
(ii)1 As (ii) but with t < 0 and t > 0 interchanged. 

Proof 

From Lemma 3.l of [12], ~ N, neighbourhood of x, B, neighbourhood of 

Vy (in V(X)-3e.i",1:\te nota.f.crtofll2.1-,with the topology as defined in [12] 

and a function f:B ~ 1R s. t.~" V v e: B: 

(i) f( v) = 0 ~ t = 0 

(ii) fey) > 0 if v has two sing. in N, one saddle and one node; 

fey) < 0 if v has no sing. in N. 

Take y small enough so that Vy+t E B, V t s.t. It I < y, and also so 

that Vy+t has a saddle node on N iff t = 0 (Cf consists of isolated points). 

* Therefore f (t) = f{vy+t ) has no zeroes on (-y,O) and (O,+y). It has to 

change sign at 0, otherwise it is very easy to perturb the family so to 

avoid this intersection with L1 {this means it is non-transversal to EI , 

* * violating 2}, page 37, [12]). Therefore, either f > 0 if t < 0 and f < 0 

if t > 0 (which'1s (if» or f* < 0 if t < 0 and f* > 0 if t > 0 (Which is (1i)' 

proving the lemma. 0 
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. 2 
Let X,v,x,V, sex) E Mf (see 1.1(1» as in Lemna 1 above, f generic. 

From Proposition 6 (2.1(15» ~ neighbourhood W of sex) in M2 and at> 0 
"". 

s.t. Bo(x) c in-set ['P_\lf",,](X') ( = in-set [<I>v')(~)' by the definition of 
y . . y 

compatibility in 1.1(3»), V~ = (X',y) E W. Let U = U(s(x),W = 

= ~ in-set [~v""](~). 
mEW y 

LEMMA 3: 

Proof 

U, as defined above, is open in X x C. 

Let ~ be the C~flow induced on X ~ C by f, by 0(t(x,y) = 0[YJ(t.x)~ 

and'i' its time 1 di ffeomorphi sm. 

Set B, (W) = '--..-/ B& (x), open. It; s easy to check that 
m= (x,y) EW 

go 

u = l! w- k (~ Q~)) , he nce the 1 emma. 
k-l open 

LEMMA 4: 

n+ t venters B (x) on K (as in note previous to Lemma 1) 3 n E.I' s. · y+t 0 

V t wi th I tl < n. 

Proof 

Immediate, since K is compact and Vyl(X I
) is'continuous on x' and y' 

[J 
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LEMMA 5: 

LEMMA F;: .. 

Proof 

5.1(4) 

Given K as above (everthing as before), ~ 

a compact L, as in picture/s.t. 

* * x € L '9 X € in-set [¢v ] (s(x)). 
y 

L Proof 

Since in-set [~v ](s(x)) is an open submanifold 
- y 

of X, given x € ea(x) n Bc(x), 3 U c B,:(x), ieU
J 

'"' 

U c in-set [~Vy](s(x)). Therefore the region 

R, and ;n particular L, as claimed, is contained 

in this set(~ee p\c.tvre). o 

+ 3 z: € JR s. t. L x (y -l; ; y+ r;) c Lr. 

L x' {y} c U, by Lemma 5, and U is open, (;~ X x C), by lemma 3. Hence, 

* * 3 * for each (x ,y), x € L, a neighbourhood of (x ,y) contained in U. Their 

union covers the compact L"x {y}. Extract a finite sub-cover; it is easy to 

see that their union contains a set of the form L x (y-~;y+r;), as required. 

LE,MMA 7: 

Let e: = min {y,r;} (y,r; defined. in lemmas 2 and 6 above). Then 

ei ther [I] (x,y+t) € U , 

or (II] (x,y+t) € U , 

t € (O,+e:) 

t € (-c:,O). 

o 



Proof 
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Suppose that one has [(i)+(ii») satisfied 

in Lemma 2. Let t € (O,+E) be fixed. 3y 

L emna 2, v + t' t € ( 0 , +E ) (e: ~ y), has r:> . y 

singularities in Bo(x)(cN). Therefore 

the orbit of x (under v ) must leave y+t 
Bo{x). It has to do so outside K, and 

has therefore to cross L at a point (x*,y~t~. 
L~(~-f)yi'E.) t 

•
L /'jt I By Lemma 6, (x,y+t) € lJ; this is [11 . ... -~;...-----..----.*) t~(o. +t.) 
'j-t. C;J \j-tt.. Case [II] comes from supposing [(i)+(1i)l) 

satisfied ;n Lemma 2. o 

PROOF OF lEMr1A A: 

Construct, as before, an open and dense set V* s. t., Y V E: V* fixed, 

one has S(v) n Cf = ~ and, if y € Cf is fixed,;} E > 0 s.t. 0y(E) n Cf = f . 
* We want to show that, if v € V is fixed, then there is a unique lift 

~:R~ x Mn ~ M" satisfying the properties as in Theorem 1. 

A quick look at the proof of Theorem 1 shows that the only point where 

one needs more than the above hypothesis is in lemma 6. This is 'jumping' 

lemma, in the sense that one has already constructed 

I Moo 

" . 

$ up to rn, in lemmas 1~5 (see Chapter 2), and 
rno 

wants then to perform the 'jump' (see pi:ture) 

in a unique well-defined way_ 

~4e wi 11 therefore out 1; ne how the proof of Lenvna 6 

would go in the present situation. 
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Let m = (x,y) E: M
n, y E: Cf' If (x,y) E: Mn, 3 E > 0, s.t. x , sep ~ 

Y 

(see Lemma 6), as before, via Proposition 6 in 2.1(15), so that the proof 

of Lemma 6 is exactly the same. Assume therefore that m = (x,y) E Hd (see 

2.2(6), m = ~(t,~o)' say. We also assume, w.l.o.g., that v{y) > 0, so that 
Mn 

w ($ stands for the flow generated by v) .is strjctly crescent at t~ (see 
Yo (a) 

1.2(1) for the notation). 

From Lemma 2, above, ;3 neighbourhood N (~ Bo(x) and a y > 0 s.t. 

either [(i)+(ii)] or [(i)+(ii)'] hold, if It I < y. 

Suppose [(;)+(ii)l] holds. In particular, ~ sing. of v * in N, y 

v y* s.t. 0 < y-y*< Y . Therefore, since the x-component of ~(t~mo)' 
\ I 

(b) -n (~(t' ,m »), must be a singular point of vw(t' ) and since, for 0 < t-t' < ; 
x 0 'Yo (some sMa" \) 

we have, from (a), 

O.<.Wy (t) - Wy (tl) < Y 
I 0 , 0 

II 
Y 

it follows, from (b), that: 

In (cp(t',m » - xl> cS, V t' s.t. 0 < t-t' < t I therefore CPmo is not left 
x 0 II 

nx( CPt t,mo» 
continuous at t; this contradicts (4), 1.2(1), so that our supposition ;s 

fal see 

.' 

,. I 



Therefore, [(i)+(ii)] 

LEMMA B: 

holds. Since ~ is strictly crescent at y 

5.1(7) 

O,e v (y) > 0), 3 £ * > 0 s. t. 0 < t * < £ * ~ 

5> * * == 0 < ~y(t ) - ~y(O) < £, i.e. ~ (t ) € (y,y+s), 
\ - f Y 
:.y 

£, as in Lemma 7, given. By Lemma 7, 

* * x , sep ~~y(t*)' t E (0,£). This is 

precisely wh~t is used in the proof of 

Lemma 6 (see 2.2(1» and therefore we 

are done. o 

Let n be arbitrary, fixed, n €~, r = 1, V be C1 generic in the sense 

of Theorem A of [13] (see §4, page 579), everything else as in Lemma A. 

Suppose that v = Vy has, at x, a saddle node of type 2 with dim. (stable man.) = 

(n-1), dim. (centre man.) = 1 (see [13] 2.1.a, pg. 564 for these definitions). 

As before, 3 a unique non-trivial orbit 6a (X}(which is, in this case, the 

'expanding' part of the one-dimensional WC 
- see page 564 of [13] and picture 

below). Then the w-limit of6a (X) is a sink. 

Proof " 

This is the equivalent to Lemma 1 above in the n-dimensional case 

(n not necessarily equal to 2). This is an immediate consequence of (3) in 

the above mentioned theorem. That is, 

since the (V)-unfolding-unstable (denoted 

by ~, in notation of [13]) manifold of 

the saddle node (see 570, of [131, for 

this definition), has to meet the (V)

unf. stable of Sex) (i.e. associated to 

sex»~ transversally, as stratified sets 

(see 571 of [13] for the stratification 

of the saddle node) in particular the strata 8a(x) (corresponding to 
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Wu _ Wuu . S I 

o 0 1n oto s notation) has to meet the stable manifold of S(x) 
, {~} 

transversally; i.e., there can be no saddle node connectionsjtherefore Sex) 

is a sink. 
o 

PROOF OF THEOREM 3 

Lemma 2 as above carries on as in the case n = 2. (see (A) and (B) 

in 3.1, pages 569/570/ of [13~. Lemma 3 was not dependent on n. Lemmas 4+7 

admit the obvious generalizations, so that the proof of Theorem 3 is then 

carried in precisely the same way as outlined in the proof of Lemma A. 

Appendix: We prove an alternative version of Theorem 3. 

THEOREM 3.' 

As Theorem 3, but with the assumption that the family V = {vyl is 

generated by generic f substituted by the assumption that V is a C1 family 

of gradient vector fields. 

Proof 

One first writes down the 'natural' equivalences as follows: M = M 
def. v 

(to ~eplace old M = Mf > is the set of singularities of' {vy} , y £ C; Mk. the 

def ( set of hyperbolic singularities, s. t. dim (stable man.) = k; X ~Xv to 

replace old Xf} is the restriction of TIc to M, as before. From [12]/[13], 

one has that~' ;s a cod. n (i.e. 1 dimensional) sub-manifold of X x C, and 

the set C (critical values of X, as before) is a cod.l submanifold of C, v 
i.e., a set of isolated points, in our case (the 'fold' pOints). 

We remark that Proposition 1~ {in 2.1} carry out without any 

problems. The!'e Fore , the -rf'ooF -oF the hfting 



5.1(9) 

theorem in 2.2 can be repeated up to Lemma 6, as explained in the proof of 

Theorem 3 above; the rest can be carried out by repeating the proofs of 

Lemmas A, B above. These are absolutely the same; the only crucial detail 

is that the gradient character of the dynamics has to be re-used in Lemma 1, 

above, otherwise Remark 3 in 2.2(1) can not be ap~lied (as a matter of fact 

Lemma 1 is false if we drop the gradient hypothesis). o 
Note: 

Theorem 31 ;s perhaps a more 'natural ' one, in the sense that it deals 

only with one type of genericity. The imposition of 'gradient' may not be too 

restrictive. See comment 4, on page 98 of [6]. 

5.2. An ~xample 

The purpose of the example below is to show that, if n > 1, there ;s 

no hope that If generic ' , in the sense of [16] - i.e. in Thom's sense, would 

be enough, as far as proving theorems 1 and 2 (see Chapter 1) ;s concerned. 

The reason for this is that 'f-generic ' is a concept related with 

the singulari~~of -Vfy ' y € C, at a germ level, wherea~the 'separatrix' 

problem one has to deal with (in general)a global problem, if n > 1. 

Our example is a function f:T2 
x R ~R, generic, but such that the 

conditions necessary for the existence and uniqueness of ~ ;n the sense of 

Theorem 1 are not met. 

We draw fly , below, y € R fixed. o 0 
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He now sho", what happens when one increases the y; i.e., we will dravi 

some pictures to illustrate how f is defined to the tright' of Yo: 

To the left of Yo and to the right of y+e:, fy is defined so that the 

phase space is not altered. f is clearly generic. However ~ (mo = (xo'Yo)) mo 
can not be continued beyond m = (x,y), since x 'finds itself' in a 

separatrix. 
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CHAPTER 6 

In.this chapter we will make comments of a speculative nature. 

\'/e first would like to consider the problem of choice of tI, the space 

of objects determining the dynamics in the state space. This is a most 

important problem, because it deals \'1ith the question of deciding the context 

in which genericity (of those objects) is going to be considered. 

We recall that the possibil ities \-/e have been considering here are: 

(I) to look at ~ as a space of potential functions. 

(II) to look at d as a space of r-parameter families of 

gradient dynamical systems. 

As J. Guckenheimer has pointed out in [6], (I) and (II) are not equivalent, 

even at the local level; he shows this through an example, with n = 2, r = 3. 

He further comments 'Thorn assumes that one can pass from the bifurcation of 

gradient dynamical systems to the unfolding of their potential functions in 

studying catastrophes. The point which we raise here is that the maths of 

the situation is not sufficient to justify this assumption' (see [6], page 96). 

We show in Chapters 2-4 that, if n = 1, the potential function approach 

is completely justifiable, as far as the problem we considered is concerned. 

If n > I, however, genericity related to universal unfolding of potential 

functions at map-germ level is not sufficient, because the 'separatrix problem' 

is global, in the first place, and, even at a local level, the definitions of 

univer..sal Ut'\f. of m:tp'l:!erms relate to diffeomorphisms, and separatrices of 

gradients of potential functions are not 'preserved' under diffeomorphisms. 

This suggests that in this case, as we already did in Chapter 5, the 

context as in (II) should be considered. 
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The problems here· seem to be two-fold. First, one does not have at 

hand (as far as we know) a theory of bifurcation of r-parameter gradient 

dynamical' systems for r > 1, n arbitrary. Second, even if Soto's results 

([12],[13]) have a 'natural' generalization for r > 1, it is not clear that 

vector fields 'generic' in this sense would be well behaved with respect to 

the delicate transversality (of union of in-sets of saddles with {x}x C 

I type , sets) condition needed to generalize Theorem 2. 

The second comment we would like to make ;s that, in spite of the 

general observations as above, there ;s a case where we can solve the 

'separatrix problem' with;n the context of Chapter 2-4 (i.e. that of (I}), 

even if n > 1, r > 1. This is when, at points where 'jumps' have to be 

performed, one knows that the only s~patr;ces one has to worry about are 

'generated' ;n a neighbourhood of the jump point itself; i.e., there is no 

'global' sepatrix problem. 

u • 

[Cross section across L; notice that at any P the vector field enters 

R. ~Ie suppose that this happens for all L with non 0 intersection with 

V-see picture - so that no 'global' separatrix problem arises) 

L 
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From the picture above one sees that the set S one has to 'avoid ' 

is the ('locally generated ' ) 3 dimensional union of sections (as the one in 

picture) U·(2 dimensional). In general, we will have to 'avoid' a [(~+r)-l] 

dimensional manifold. In this case, it seems likely that invariant manifold 

theory will show that S is transversal to {x} x C. This would allow one to 

define the germ manifolds of 4.3 and hopefully proceed in the same way as 

there, solving the problem of 'avoiding separatrices' (which is the only one 

which depends upon n). 

Thirdly, one can remark that generically in ~, in some sense, it is 

reasonable to expect intersections of S, as above, with {x} x C to be 

transversa1; so that germ manifolds of codimension at least 1 could be defined, 

and the problem solved. The difficulty is how to express that condition 

mathematically and prove its genericity. 

Finally, we remark that ~he question of choice of ~ has been considered 

within the framework of the 'max.delay convention'; to other conventions would 

correspond other 'natural I choices. 
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