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ABSTRACT

In this thesis we formalise the Maximum Delay Convention
of Catastrophe theory.

We prove theorems concerning the genericity of the existence
and uniqueness of lifts from the control space to the ca,ta.strop’r\e
manifold (see Chapter 1), according to the convention above

mentioned.

Our methods of proof involve the application of transversality

theory in a new context: that of higher order tangent bundles.
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CHAPTER I

1.0. IMTRODUCTION:

1.0.1. On 'what is' and 'why' the problem

The problem we want to tackle here is that of giving mathematical
substance to the so called 'maximum delay convention', as it is now known
in Catastrophe Theory Literature.

Ye will briefly describe the general setting'which will be considered
here. Suppose we are given a state space X, a control space C, and a
catastrophe manifold M, ¢ X x C, that is the critical set of some generic
function on X parametrized by C; the minima of the_function form a sub-
manifold M* of M. Suppose we now imagine some ‘fast' dynamic on X parametrized
by C, for which the minima are attractors, causing M“‘to become the attracting
manifold of the fast dynamic. If we also impose some ‘slow' flow Yon the
control space, then this will induce a 1ifted flow ¢ 'near' the attracting
manifold, Mé, which will be continuous most of the time, but will exhibit

'catastrophic jumps' when it comes to the boundary of Méﬁ

Our objective is to formalise
X A | this last statement, replacing
» the vague words ‘'fast', 'slow’,
'near', and ‘catastrophic jump' by
the requirement that the lifted
b flow ¢ be on M™ We shall give
definitions of 1ift and precise

generic conditions under which we

;EL shall prove the existence and

uniqueness of 1ifts.

The technical difficulties may be summarized as follows: it is

generally accepted that when the 1ift comes to the boundary of M™ then the
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state should 'jump to a neighbouring sink, the one into whose basin the
original sink disappears' (see [15], page 156). An immediate objection to

this sentence is that it does not always make sense, since the ‘original

sink' may find itself in a separatrix, and not in the basin of a 'neighbouring
sink'. A natural question arises, as to whether it 'generically' makes sense.
That is, can we give it a precise meaning, by restricting ourselves to open-
dense sets 0? c 0, the space of all objects determining the dynamics on X,
parametrized by C (see Chapter 1, §2, for precise statements and Chapter 6

for a further discussion) and V* c V, the space of all dynamics on C? Further-
more, can we prove the existence and uniqueness of a 1ift ¢, under these

circumstances? These are the problems we address ourselves here.

The picture below gives an idea of the present
state of our research and also of our personal

feelings on the subject, at the moment.

s on &

Wle have completely solved the above questions
in the region marked A. We believe that to

extend this to region B is just a matter of

- N W’

. §\\\\\\\\\Y

422%;5 some more technical work. As to region C,

N

in certain cases (see Chapter 6), we have

|
®
o
o~
ut
"

well defined conjectures, whereas in other
all that we can (vaguely) say is that 'generic thinking' suggests that those
questions should be answerable though we can not foresee at the moment, precise
methods for its solution. This is basically due to the lack of mathematical
development in areas closely related to these problems.
We would also like to comment on the relations of the questions above
with catastrophe theory in a somewhat broader context. The central philosophical

claim in qualitative dynamics is that observed processes in nature must be
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structurally stable, in the sense that they should ‘remain’, in some way,
qualitatively the same, under small perturbations of whatever generates/
parametrizes them, otherwise they would not be observable. Suppose now

that the 1ift ¢, according to some convention, is 'generically' existent

and unique. It seems reasonable to 'identify' ¢ with the corresponding
natural process under study, as far as the catastrophe theory method is
concerned. Thereforé, the solution of the questioﬁs proposed above would
also allow one to consider in a precise mathematical context, through some
'natural' definition of 'similarity' among 1ifts the question of genericity -
with respect to 0/V - of the corresponding GLOBAL concept of structural
stability. This seems, to my mind, a more satisfactory setting than a LOCAL

concept (germ level) of structural stability.

1.0.2: On how we deal with the problem.

We assume the dynamics on the 'fibres', X x {y}, y ¢ C, to be given by
some O € 0’, Or open and dense in 0 (see 1-2 for precise statements) and then
define V* c V, which is subsequently proven to be open and dense, such that,
for any fixed v é V* the '1ift' ¢ exists and is unique. This appears to be
the easiest approach to the problem formulated above.

fhe main results are stated in Chapter 1, where we also fix notations.

The solution corresponding to the case n =1, 1 < r < 4, is contained
in Chapter 2-4. The proof that U* is open and dense in V is based on transver-
sality methods centered around the Thom Transversality Theorem on k-jet
spaces; these are developed in Chapter 3 and applied in Chapter 4. Chapter 2
contains the proof that if v e V* then ¢ exists and is unique.

Chapter 5 treats the case r = 1, neN.

Chapter 6 contains some conjectures and concluding remarks. Each chapter

is preceded by an introduction, where details of this general outline can be found.
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1.1. DEFINITIONS:

Throughout this work X = X" will be a compact n-dimensional manifold,

r

also referred to as the 'state space', C =R, with r < 5, the 'control space’'.

F denotes the set of all C” functions f:X x C +R, given the C” Whitney
topology.
DEFINITION 1:

Me = {(x,y) e X x C|x is a critical point of-fy,fy(x) = f(x,y)}

DEFINITION 2:

Hx and HC are the projections X x C >~ X and C, respectively.
Xg = T/Me

DEFINITION 3:

- We first remark that 3 an open and dense set F? c Fs.t. if f e F* then
Mf is an r-manifold and Xf:Mf >R has only elementary catastrophes as
singu]arities; this result is basically the same as in [16], Chapter 8 and is
proved in Prop. 0, Chapter 2.
We call f 'generic' if f ¢ F*

~

DEFINITION 4:

'Let N be a differential manifold VS(N) is the space of C° vector fields
on N, s ¢ N; V(N) is the space of Cw_veCtor-fields on N.
Note:.

In the case N =IRr, we identify VSGRr) = CS(RrJRr). We will use, in
general, the letter 'v' to designate vector fields.
DEFINITION 5:

M: = {(X,y) € MflEB chart (¢,U) around x € X s.t

(fy ¢-1)" (o(x)): R" x R" = R is diagonalizable to

n
T auxl, a, = #1 if 1 1 s k, a; =-1 otherwise}.
=1 Vi i i

i
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Mg = {(x,y) € X x C]3 chart (¢,U)s.t. (fy¢'1)"(¢(x)) is degenerate}.

n_un _ W0

Note: Definitions above are the same

oM

if we substitute '3 ' by 'V', since

the relevant defining properties do

not change under diffeomorphisms

l/z/ (see [3], pg. 105).
’/’//, ‘ rL.z DEFINITION 6: Let be a dyn.system on .

w[®](x)= {yeNIB{t },t oo s.t. 11m @(t sX)=y:

oy e

DEFINITION 7:

Let N as above, g a ® Riemannian metric on TN(i.e. an element g ¢ Cw(Lz(TN)),
compatible and pos. definite everywhere; to put it more explicitly, ¥x ¢ N,

: 2 _ - L
Vve TxN’ fixed, g_ € LS(TX,NJR), 9, (vov) 2 0, gx(v,v) 0% v=0 and(gx(v,v)

X
is a norm compatible with the original one in TxN)‘ Let f:N > IR. Set Vf(g) (x),
or simply Vf(x), when there is no possible confusion, as the unique vector in

TxN s.t.:
g, (V(x)30) ="df (w), Vuwe TN

This defines a vector field, Vf on N, the gradient of f with respect to g.
(Vf(g))
DEFINITION 8:
Let v ¢ V(N).
S(v) = {x e NJv(x) =0 ¢ T, N}.

DEFINITION 9:

Let N be compact, ¢, the flow on N associated with v e V(N).

Let P be a fixed point of Qv’
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Define:

?nFa[%um={x€m%um)+put+ {+ ©} }

{ 1}
{out} {- }
We shall write {in % set (P) when it is clear enough what v is.
{out }

DEFINITION 10:

Let f:N -~ R,N as in Definition 9, g fixed. We say that v e V(N) is
subordinated to f if:
(A1)  S(v) = S(-vf).
(r2)  Vp e S(v), fixed,
{in } set [o,1(P) = %1n i set [9_c1(P).

{ 1} |
{out} {out}

DEFINITION 11:

Given f:X x C >R, generic, a family V = {vy} yeC?Vy € V(X) is said to be
compatible with f iff, V y e C, fixed, vy is subordinated to f :X R, f :x + f(x,)
[Note: the reason for Definitions 10 and 11 is that we want to abstract those
properties of gradients whigh we will use; that is, the nature of their sing.
and ip-sets]. |

DEFINITION 12:

If ¢ is a dynamical system on N, define:

wiel(W) = U wlel(x).

XeW
Write simply w(W), if @ is clearly fixed.
DEFINITION 13:

Let & be as above; then

separatriéés of ®= {x e NJAnghd W > x s.t. w(W) = w(x)}.
Write also sep 9.

DEFINITION 14:
y € C is a bifurcation pint for fe= Ax e X s.t. (x,y) € Mg. Ce is the

set of all such points.
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DEFINITION 15:

Let f be given, V be a fixed compatible family.
Suppose (x,y) e aM?.
The local Maxwell set of f at (x,y) is the germ at y of:

"
J = {y ¢ C|x € sep <I>:)\I,},

fax,y
whereby %’ we mean the flow generated on X (compact) by Vy e V. Please see
page &41.1 for an illustrative example.

DEFINITION 16:

The f Maxwell set at y is the germ at y of
Mo, = ) 49 :
f.y (x.,_y)eMd a5y
i f
We remark that the singularities (xi,y) of the gradient field on X,

compact, are isolated. Therefore, the union, as above, is finite.

DEFINITION 17:

Set A C Let ye C, v e V[C) = {v e V(C)|]v 1ic bounded}.

et Rey " Mey Y Cer
Let wv be the associated flow (defined on R x C, since v is bounded). Then, set:

non-zero orbit of y under v =0 (v)y =0 = U v.(t,y)
) y Y tRr Y
t#0
+ +
T 3 = = = t.y),
positive orbit of y under v Oy(v)‘ 0, t\jf ¥, (t.y)

R" = {xeR|t>0}.

e-orbit of y under v = 0 (g,v) = 0 () = U v, (tsy).
y .y !t'(e
t#0

Note: We use the letter & for flows on X, and ¢ for flows on C.



1.2.(1)

1.2. THE MAIN THEOREMS

Let f be generic, f:X x C +R; let V, compatible with f, be fixed.

Let Ay = Af y* (where a R-metric g has been fixed)
Set Ve = {ve V(C)|v satisfies Hy and H, below}

Hy: Wy e G Fixed, dane>o0, s.t. A, 0 Oy(e) =p.
H2: S(v) n Cf = f.

THEOREM 1:

A ———— S————;

Let v € Uf, P = wv be the flow induced by v on C. 3 a unique 1ift ¢,

with the following properties:

is commutative, ]R; = {t ¢ R|t = 0}

(2) ¢/{0} x.l‘—d.ﬁ = I-Tf
i M
(3) Let (t,m) e ]R; x M" be fixed. Then, 3 € = e(t,m), € > 0, such that
. '.\‘ '\' |
n, ¢(t.m) e inset (M o(t.m), Vit e [t,t+€).
" "
The implicit vector field is v'}\,,,y = I[ch(t,m).
(4) Define O by: cpm(t) = ¢(t,m), m e M7 fixed. Then:
o is left continuous at t,V (t.m) fixed;

o is continuous at t, provided y(t,y) ¢ Ce>
y = Jm. Also, {t|p(t,y) e Cc} is a set of isolated points.’
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THEOREM 2:

- * *
Let r <4, n =1, f generic. v, open-dense in V(C), V. c V
THEOREM 3:

£

Let r

1}

1, n e N, f generic, V = {vy}, the (one-parameter) compatible
. *
family be generic in the sense of [13] (see Theorem A in §4). Then, 3 V ,
. —
open-dense in V(C),s.t, Yv e V , fixed, 3 a unique Tift ¢iR; x M" 5> M' with

properties as in Theorem 1.
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CHAPTER 2

2.0. INTRODUCTION

The aim, in this chapter, is to prove Theorem 1.

In 81 we collect some simple results, some of which also for later
reference; the main reason for setting these'propositions apart is, however,
that they are just technicalities, needed in the proof of Theorem 1 (§2), and

we felt that they might otherwise obscure that proof.

In §2, we construct the 1ifting, ¢.

1ﬂt=(¥>3)'
X ¢m‘_~t) Lemmas 1/3 show how to construct ¢ in
4%&“0 'easy' regions, i.e., where y does not
[/
t ' .
$u q¥$"} M intersect Cc; in picture, see wy([O,to)),

V. which we denote by v,.

Lemma 4 is a technical assertion about

N
.
.-
LR 4
N
.

| \ ¢%§t3\ the set {tn} of 'bad' points.
4f/// : : Lemma 5 tells how to extend the Tift
: : n(-tll) =
~:},4? to Py = ¥ (t,).
' o (L Lemma 6, which contains the central
[ )
i ‘P difficulty, shows how to uniquely do
b
I ¢ R £ - " the jumping.
L7 5 .
. Is/éﬁ C  Finally, Lemmas 7 and 8 show how to
T - 7K e y .
Y4 \[% '?",'b‘ﬂ"' B/ inductively construct the rest of the
G { f? Ik | _ Tlifting, extending first to y,, then
T o Thh Lt s P,» then jumping again; to v, then P,,
and so on.

(P'i = wy(ti))

Note: The 'jumps' at some of the P, might be ‘trivial’ ('amplitude zero'), but

this is irrelevant.
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2.1. PRELIMINARY RESULTS

We initially prove Proposition 0, announced in Definition 3, Chapter 1;
this generalizes Theorem 8.1 of [16] to the case where the state-space is an
arbitrary n-dimensional compact manifold.

PROPOSITION O:

Let X" be a compact, ¢”, n-dimensional manifold, F be the set of all C*
Functions X" x R4 R, with the C Whitney topology, r e {1,2,3,4,5}. 3an open-
dense set F% c F such that Mf(see Definitio n 1) is a r-dimensional manifold
and )cP'Mf c X" xR" > R" has only elementary catastrophes as singularities,
where a point (x,y) € Xn x R is an elementary catastrophe for X¢ if 3 a

chart P for X"x R' at (Xx,y) s.t. x R M 4 cR"x R'> R' has an
~ (¢xI) fiy f

elementary catastrophe (as definition in [1], Chapter 7) at y(x,y).
Proof
We will initially prove two lemmas, from which the proposition easily
| follows.
First, we fix notation. Cover X"

with a finite number of charts,

{U 05} so that ¢ :U, > B4(0) < R".
Let w; = ¢71(8,(0)).
v, = 937 (8,(0))
by = 5 x 1
-1

£ = U, x R'3f; - £ oy

Set then:
FyiBg R +J

¥

n by:

R",0 * R,0
: -jet at 0 o
Fiz(%y) +7-Je O e lonty) - ).
7
Let Fy = {f e l=||=1 & Q on Byx R" ), where Q is the stratification of J, as

given in [16], Chapter 8. [Note: wlog,\) U; covers xn),
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LEMMA 1
F]. is dense in F, fo,r- every fixed i.
Proof
Let h ¢ F, and A be an open set in Cm(xn X Rr,R) containing h.W.log,
we can suppose that A = B:;(h) = {g « F]d(G*y(p),i*n(p)) < 5(p),¥p e X" xR"},
where k is a positive integer, d is a metric on Jk(Xn X Rr,R), compatible with
its topology, §:X" x R +R+ a continuous fn, and Jk.(.,.), jk(.) are, respectively,

the k-jet bundle, k-jet map [see [4] page 37].
Define 8[i] = &/U:U; xR »R', and

B; = Byrqy(h') = {f ¢ C°(u; x R"R) A% ()50 (p)) <
| < §&[i1(p). VpeUiXRr}'

where h' = h{'ui x Rr,lby definition.

B, is an open nghd (in c°°(u1. X Rr,R)) of h'.

NOW.‘P?! By % R - u; = R" induces (see: note (1), page 49, [4]) a

-1.* o o . ] i -1 -
(v;1)":C”(Uyx R°R) » C°(B5 x R"R), given by f' ~ ' o y; AL

Since:: ;p'i'l is a diffeomorphism, (q;;l)* is a homeomorphism (see note (2) page 49, [4]
= (wih" (8,) is an open nghd of h,: s b vl in C(B, x R*,R)
Therefore, C; = (‘pi ) ( ;) s an open ng jo== PN 3 .
Let now %;:83 xR +>RbeacC bump function , s.t. £ = 1 on B1 er,

0<¢gs '1 everywhere and £ = 0 outside B‘z x R'.
Let T: ((:""(B3 X Rr,R))4 > Cm(B3 X Rr,R) be given by:

(a,b,C,d) —> a +b (C-d),

a continuous map. ,
‘ L r r
The set {f; ¢ C (B xR R)|F; & Q on B, xR'} can be proven to be open

and dense in {filfi € Cm(B3 x R',R)}; the proof is just the same as in [16]

Chapter 8, except that B1 x R’ and not R" x R" has to be expressed as a union

of compact sets.
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n
Therefore, we can choose 9 in this set, sufficiently close to h; and

so that:

n, n
P(hi,E,gi,hi) = h; + E,(gi - hi) c== g; € C;. This is because
P(hi’g’hi’hi) = h

One then has: g; = h, outside B, x R"

i 2
9; = 9, inside B, xR" Theref B, x R
j =95 1 erefore g, n Q on 1 R .
Therefore g (w ) 9; = 95 ¥; ;» and so
- h  outside U x R
© is in A n F,, as required.
(c) g; onl;x R" ) g
LEMMA 2.
Let X c Vs xR be a compact. F§ = {f ¢ FIFi % Qon wi(x)}
is K+1 (hence C~ ) open.
Proof

Let f ¢ F§. We will produce an open neighbourhood of f contained in F?.
Let d be a metrfc on Jk+1(ui X RrJR), compatible with its topology.
Claim: | )

“Given € >0, I &> 0 s.t.

d(F<" 1 (), #¥ g1 (p)) < s (X* 11’ (9,51, () <e, Vpex

where 9 = y.(p), ol e ¢°(u; x R",R), f;,9; ¢ C"(By x R",R) as defined before.
The distance d, on the r.h.s., comes from the standard distance in

R® = k+10R X R.JR) in a canonical way (see [4], pg.39).
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Proof of Claim:

4+
T (BARIR)

We first remark that 3 K, compact, T > 0, K > jkﬂfi(x), also compact

(%16 4s continuous), s.t. B_(p) < K, Vp « 61 (x).
Indeed: given p ¢ jk+1f1(x) c Jk+1 (U]. X RF,R), 3 nghd Np and chart
3 S - ) :
‘pp’Np > %Np) < some R”, wp(Np) limited, w.1.0.9.; consider Bg(p)(p) c Np

+ 0 .
and cover jk+1f1(x) with a finite number of such balls. Set

u=J B (p:) and construct A,
j(finite) &(Py) 3

i .
| A:jk+1f (X) +R' by p > d(p, C (U)) > 0. Let T = min A(p) > O,
. ' , .k+1f-i(x)
® where (-(u)m complement of W. P € J .

y .t -1 -
Now .(B .y (P2 [15 compact; K ={J ¥,; (8) > U is compact, and B_(p) < K,
! l"PJ( g(pj) {F3) pat Y P T

vp € jktlfi()(). This concludes the remark.

-1

¥; " induces naturally a (tb;-'l ® k+d(

) :d u; x Rr,R) + Jk+1(B3 X Rr,R) (see

(3), pg.39, [4:9. Since 1])171 is a diffeomorphism, so is (\p;.'l)@(see (3),pg.40, [4]1).
1)®

In particular, (‘P; is uniformly contiuous on K, Therefore 4 T s.t.

alpypy) < e %o 070 ) <60 Vibpapy) € K x k.

of claim
By taking & = min {z,t} &, we get implication®. il

The proof of this lemma (and also of the rest of Proposition 0) now

follows the same lines as those of the open lemmas in Chapter 8, [16]
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Fix p e X. . is RtoQat q= u)i(p). By continuity, F, & Q in a nghd

n, .
of q, N, say, which we assume to be compact, w.l.0.g. This remains true for
n,

suff. small changes of Fi and TFi on N; so, for suff. small changes in

Jk+1 ~ . v . k+1

i f; on N. Since N is compact,3¢e > 0 s.t. d(J g (a);3° f. (q))<e =§G 3Q
n

on N. Therefore, from the claim above, V5 N(1’) = {h ¢ F|H A Qon N} s

n : ~ 1A
Cover the compact X = wi(x) by a finite number of Nj, NJ. = 1111-1(Nj), at
k+{ N'

each stage choosing convenient €5 53., so that Vg N (f) Let
J
N
§ = min. §.. One has: V (f) f\v‘g"\}l ﬂvléﬂN' nF J - , as
J j ’ j J
required. 0

LEMMA 3:
LR o

Let X = U XJ, a countable union of disjoint compacts X , with disjoint
j=1

nghds Yis X< Uy x R'.

F)i( = {f ¢ F|F1. # Qon w.i(X)} is Ck+1 (therefore C) open.

Proof

X,
For each X ., construct GJ s.t. Vlgﬂx (f) c FiJ. Construct bump
37

functions Bj:Xn xR" » [0,1] s.t. Bj =1on XJ., B. = 0 outside Yj. Set

LM <D SR by u=1- 2 (o558,

[e'e] x.
X
v"j"l(f) f\ v"“1 () < /;\1 = F

9

F. = F.13 is ¢kl open. (Therefore C” open)
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Proof

Follows easily, by expressing (see also Lemma 6, Chapter 8, [16])

\
r . . . . '
U,i xR as a (finite) union of sets with the properties of X as in Lemma 3. O

Proof of Proposition 0:

* M\ *
Set F = : Fi' From the above lemmas, F is open and dense
finite

(in the Whitney € top.). Let (x,y) « X" xR  be in M, f e F', fixed
r . i, - r
(x,y) € V; xR, for some i. Set M :— Mf/Vi xR" = Mg 0 (V. xR).

Now, M1.:—.=..—‘= Mfi/Bl xR~ wi(M1), and Mi is a r-submanifold, since

F1. # 0 on B1 ><1Rr, from Theorem 8.1, ([16]1). From this, Mf is an r-submanifold.

Now, if (x,y) is singular for Xg \pi(x,y) is singular for Xg » hence an
i

elementary catastrophe (Theorem 8.1 of [16]), as required. 0
Throughout the rest of this chapter, f: x" x]RrsS_)]R will be a fixed

function in F* (see Proposition O above), where Xn, compact, is given a

Riemannian Metric g and V is a (fixed) family, compatible with f

(see Definition 11). .

- We now show that, from a local point of view, and as far as gradients
are concerned, one can assume that f: ¥ xR" +R, © an open nghd of 0 ¢ R";
we caﬁ actually prove the following:
Remark 1:

Suppose (x,y) e x" ><1R"',fy:xn -+ R given by fy(x) = f(x,y) and ny(g)

the gradient field of fy with_respect to g (see Definition 7). Then 3 chart
(p=¢xI;uU x R") for X" x R around (x,y), ¢(x) = 0 e R", s.t. the

vector field (on ¢(U)): Z ~—=> (T¢"1(Z) ¢oV fy(g)oq,'l). (i.e., just ny(g) on

U 'transported’ to ¢(U) <R" by ¢) equals V(fy¢'l)(g¢). where g, is a
Riemannian metric on ¢(U), with g¢(0) being just the standard inner product of R"
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To see th‘is, we first note that, if (y = ¢ x I; U er) is any chart,
then v is equal to V(fy ¢'1)(g¢), where g¢ is the Riemannian metric on

o(U) given by:

95(2) = 9(671(2)) o (1,671 x T 7).

indeed:  9y(Z) (AD)s0) = (T ; @0 ¥, (8) o 67)(D)iw)

= olo7HD(vF () (6™ ()3 (1070 = af (671D Ty D) = (e 4 N D)

If at Z = 0 one has that the matrix (with respect to the standard basis
of R") of g¢(0), G¢(0), is not the identity, then, by a further (linear)
diffeomorphism, ¢*(0 + 0), one gets a new v, gradient of fy(¢'1¢*'1) with
respect to 9o with G¢¢*(0) = [¢*'1]T G¢(0)[¢*'1] = I, for convenient
choice of ¢*. (This is so because G¢(0) is symmetric, positive definite
and therefore has only positive eigenvalues, being reducible to the identity
- see pg. 310 [8]; the equality 8 comes from linear algebra).

Summarizing: in the probositions that will follow, concerning local
analysis of gradients, there is no loss of generality in supposing |
fR" x R" + R, R" endowed with a Riemannian metric g, g(0) = standard inner
produbt of R".

Let (x,y) € M (= Mf). We know that (via some chart y-see Proposition 0)

fy (germ of) is right equivalent (see [.3] and [16]) to:

n

- 2 -
either (a) h(xl,...,xn) = 1‘:1 €5%X5 where e = +1 or -1
or (b) one of the polynomials which generates one of the

elementary é:atastrophes.



2.1.(8)

It follows that ny has isolated singularities. Since x'%@y}) is the
set of singularities of ny (see Definition 1), and X" is compact, x-l({y})
is finite, ¥y ¢ R".
We define #k:R" >N by setting #k(y) to be the number of elements in
1({y}) which correspond to case (a), with ey =+, if 1< <k, e, = -1,
if kK < 1 < n. Analogously, #s(y) is the number of elements in yx 1({y})

n
corresponding to case (b). #t = I #k + #s. We also use the notations

k=0
Bg(x) = "{x' e some Banach| ||x'-x|| <, 0}, and acB(A) = set of accumulation
Ds(x) 'a t W space ‘ U} S, 0}
SS(X) = { ] ‘ ] = 0}

points of A in B, simply ac(A), when no confusion is possible.

PROPOSITION 1:

2 L i+l ifl1<isk
Let h(X) = Zl si xi » X = (xl""’xn)’ ei - 1- 1, if k <1i<n.
1

=3

Suppose & is a diffeomorphism of R", (0) = 0, u=he, g a
Riemannian metric on R",g(0) = standard inner product.

Then D[(-¥u)(g)(0)] = -ZATIkA, where

o
k=] 1 R (0)}

Proof

Expanding & in Taylor Series around 0, we get:

o(x) = A.x + higher terms.

Hence, u(x) = (h?)(x) = Z €; ( 2 qux )2 + higher terms.
i=1
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5u n n
Therefore, — = ' .a. )X, :
re, = (x) =2 R _§ (g a, a1J)xJ, so that:

k j=1 i=1 !
(-7 . n n n n n n
- =(=2 X . . .. 50 . . . .
u) €g)(X)=( 2k=1 j§1 1_El(emkl(X)aﬂ(au)xJ, 32 A jzl 1.__2__11(s1l1km(X)¢'a\1|g1u)xJ) 4
(see [31,pg.248) + higher terms,

where (hij(x)) is the matrix inverse to (g..(x)).
matrix of g(0) R

]
Since, at O, gij(=g;j(0)) =1, (hij(o)) = 1 Therefore we get

n n
1)xj;...; -2 ¥ I (e.a,.a, )x.) + higher

n n
(-vu) (o) (0) = (-2 Iz (e.a..a & SR

=1 =1 1 W

Therefore D(-Vu)(a)(0).x = ~2A" I A-x, as wanted. ]

PROPOSITION 2:
n r
Let (0,0) € Mk, w.1.0.g; let n be the germ at 0 of fo(f:R xR +R)

2o r .
and g = f nn(i.e., the germ at 0 of f I R" xR +R), T be projection

(onR").
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Then (r,g) is an universal unfolding of n (see [16] for the definition
of universal unfolding). |

Proof

As n has codimension 0 (see [16]), (0,n) is an universal unfolding of n.
Let (s,h) be an unfolding of n. By definition of universal unfolding, 3
,(gﬁ;S)’ an unfolding morphism: (s,h) + (0,n). There also 3 a morphism,
n Y n,
(9;93€): (0,n) » (r,g): just define P:x > (x,0),
R" R" xR"
0 r v
t:R" >R and €: {0} - 0 ¢R.
{0} »0

ol

VIRV
Thus (22;3$ ;) is a morphism (s,h) > (r,a). Therefore, (r,g) is universal. =
COROLLARY:

(r,g) and (r,f) are isomorphic (where, by abuse, we write also f for
the germ of f at 0).

Proof

Since f is generic (we are again thinkina of f as from R" x R" -+ R;
as pointed out before, there is no loss of generality in this, since we are
working with germs - see also Propostion 0), it is a 7-transversal unfolding
of n. So (r,f) is an universal unfolding of n (see [16]). Corollary follows

from Theorem 6.9 of [16] and Proposition 2. 0

REMARK 2:
(We fcllow the notation of [16])A consequence of this corollary is that :;

isomorphism, (@,9,e): (r,g) =(r,f), witth;= P + EHLJ We recall (from [16)

[
that @ and ¢ are diffeomorphism germs. (germ equation) If ﬂ(x,y)=(ﬂ1(x,y);ﬂ2(x,y»
then our morphism "preserves fibres", i.e. IIr g = Eh}, or, equivalently,

ﬂz(x,y) = $(y). To simplify things we use the notation ¢ = ﬂl, when

referring to the above §.
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Let 0 ¢ Mk c Mf, as in Proposition 2. Since x is not singular at 0,
there is no loss of genefa]ity if we suppose that, in some (sufficiently
small) neiahbourhood of 0, Mf cR". We shall assume this in Proposition 3
below; this implies §y(0) = 0, if y is small enough so that (0,y) e that
neighbourhood (see also Remark 1, 2.1(6)/(7))

PROPOSITION 3:

Let 0 ¢ M; £ = ho, h, 0 as in Proposition 15 g = fp + c_and ¢ as

in Remark 2 (above).
Then, for y near 0,

D(-ny)(O) = oM I M, where M = M(y) = Da(0) { (¢'1(y) 0)}

Proof

From the definition of g and properties of unfoldings and unfolding

jsomorphisms, the following (germ) equations hold:

.Egy = fo
fo, =2y T5(y) %
Now, he = fo = gy = )\yf$(y)¢y.
We just abandon xy, sincexxyﬂR +R, t>t+ e(y), a translation, does not

affect the gradient field of‘F$(y).

So, f$(y) = h(¢¢;l), and, by Proposition 1:
D(-Th5,y)(0) = -2(Ba(85 (@)oo (O 1,.(02(61 (0108} (0))

i3 0
and, since D¢ 1(0) {—QL-(y,O)} -1

D(-vf,)(0) = -2 (De(0) {-9— CACRO N Ik(DQ(O){g%-(cb“l(y) onh,

as claimed.
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COROLLARY:
MK is open in M, Vk(i.e., k = 0,...,n).
Proof

Everything as above, Proposition 3 implies that, for y near O,D(-ny)(O)

has signature n-2k, hence (0,y) € Mk c M c R"
for some (open in Mf) neighbourhood of 0. 0
REMARK 3:

The openness of Mk can be also obtained as a consequence of the local
stability of‘hyperbolic fixed points. (see Theorem 3, page 82, of [10]; the
point is that, when one has a ¢?parameter famfly of gradients of a generic
f, an elementary proof, as above, is possible.

PROPOSITION 4:

x 1s closed.

Proof

n

M is closed in X" x R'" because it is locally algebraic (with respect

to suitable local co-ordinates).
Given any closed k disk D c:EgL, then X x D is compact, hence
x'l(D) =M n (X x D) is compact, and hence X/X'I(D) closedand hence x is

closed. : 0
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EROPOSITION 5:

Suppose y ¢ Ce- Then #t (see 2.1(8)), is
locally constant at y.

X Proof

Let #t(y) = 2, so that X'l(y) ='{m1,...,m£}'
As y is regular value for x,Dx(mz) is an

isomorphism, i=1,...,2. Hence, we can choose
neighbourhoods Vi of m., open in M, disjoint
from each other, s.t. X/Vi is a diffeomorphism

on Ui, open neighbourhood of y. Now

2

M- (,) Vi is closed in M therefore (from
i=1

Proposition 4) X(M - \,J V:) is closed.

i=1
Set:

f\u —x(M-Uv)
i=1

This is open and # P, since y ¢ U. Now, if

me X (y),y e U, then m e Vs, some i; otherwise

we would get m e X(M - l.J Vi), which implies

. i=1
me U
, 1 ) _ 1,0
Hence, the elements in X 1(y) are precisely {(X/Vi) ()} . where
Lt PEREE LT

()(/\11.)"1 stands for the inverse of the diffeomorphism X/V.; and so
n, n
#t(m) = 2,V ye U
-1 _ -1
We remark that the above argument also shows that X (u) = (r)(X/Vi) (u).

a
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COROLLARY 1:

Suppose y ¢ Ces k fixed. Then #k is locally constant at y. (k € {0,...,n}).

Proof
We first note that, if I ={ie {1,.;.,2}KX/Vi)'1(y) € Mk}, then we can
suppose, Vi ¢ Ik,(x/vi)'l(u) c Mk, w.1.0.g. This is so because M is open in M
WX and (x/vi),"1 is a diffeomorphism.
The
coroliary follows immeciately; in particular

one also has:

X () = xHw 0wk = uv,) L) -
jel

U (x /V.)'l(u), where X, = x/uK.
. k' "1 k M
1€Ik gd

COROLLARY 2: |
Suppose W n C. = @, W < C, path connected. Then #k, k = C,...,n (and

- - X
hence #t) is constant on W. Moreover x 1(W) X5 W and xkl(w) —57 W are
covering spaces for W [see [5]].

Proof
If Yys¥y € W, take a path joining them, and cover it by (a finite number

of) open sets such that #k is constant in each one of them (Corollary 1).
Corollary - first part of it - follows by taking points in the intersections.

. - -1
Last part is a re-statement of the equalities ¥ 1(U) =‘I)(x/Vi) (U) and

X ) = U (/v 7). » 0
1eIk

REMARK 4:
Erama————
If f:M—>N, differentiable, M without boundary and compact, M and N of

the same dimension, y regular value of f, then #f'l(y) [in our case we denote

#1(y) by #t, omitting x from the notation] is finite and locally constant.
(1 () (#K) (%)
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In the above, i.e,

Proposition 5, Corollary 1, we have just proved that this extends to our

case, although M(Mk) is not necessarily compact without boundary.

We now prove a 'local' proposition, which will be used in the proof

of Theorem 1.

PROPOSITION 6:

Let m = (Xx,y) € M?.  Then, ;3 neighbourhood W of m, in M, and a

n,
§ 60, s.t., ¥ m= (%Y) ¢ W fixed, Bs(?{) e inset [9,1(X), v = - v,

Proof

Mrbrdp

A

Kl
L ¢

2.2. PROOF OF THEOREM 1

Let V be a family compatible with f, and v € VF',,fixed.

will be used for the flow induced by v.

LEMMA 1:

Fix (x,y) e M". 3 a small closed disk
neighbourhood B of x s.t.
(1) -ny has one qeneric fixed point

in B.
(ii) -ny is transverse inwards to B.
These are open properties, and hence
remain true, ¥ -Vfc)i;, for ; € some
small neighbourhood D of y in C. Choose
§ > 0 s.t. B'd c B, and set
W=Mn(Dx BG)' Clearly Bs(x) c inset

N
[@V](;), m ¢ W, proving our proposition.

The symbol ¢

Let m = (X,y) € M, t, ¢ RY, be fixed; suppose y(t,y) ¢ Ce» Vt e 0,t,1.
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Then, 3 a unique(continuous) O = O ¢ :[O,to]-+Mn, satisfying:
>0

(1) Xby = ¥y

i
3

(2)' 4 (0)

Let t ¢ [O,to] be fixed. We can
construct U = ut, neighbourhood of

P(t,y )= wy(t), with U as

in Proposition 5. 1In particular,

U, 0 Ce=9. Then, W= \_J u,
te[O,to]

satisfies Corollary 2 of Proposition

5, since each Ut can be assumed

path-connected, so that

- X
an(W) ~2» W is a covering space

for W.

Now, ?y is a path in W, with initial point y = x(m) and therefore, from

the path 1ifting theorem iﬁ algebraic topology (see for instance [5], page 18)
we conclude 3 unique path, say ¢m’ in M", with: (1)° x¢m=xn¢m = "’y (Vt e [0,t°])

(2)" ¢.(0) = m q

LEMMA 2:

> 9iven in Lemma 1, also satisfies:

(3)' For every fixed t ¢ [0,t), 3 € =€ (m,t), such that:
A n .
,t+€, where the implicit
Lon(t) ¢ inset (Lo (t)), V t e [t,t+e}, whe p

vector field is vyg y= k4, (%}.
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Proof X

~ Let t be fixed and U, as ih Lemma 1.
$tt) € inset(T, & (%)) t

From Corollary 1 to Proposition 5 and

definition of Ut, we see (refer to [5],
m™  Page 17) that Ut is evenly covered, where
{(Xn/vi)—l(ut)} , in the notation of
iel
n

Corollary 1, are the sheets over U So,

.
- - -1
for some fixed i « In’ me (anvi) (ut),

///////’ with (xn/Vi)'lz———————- Pa diffeomorphism
from Ut to a neighbourhood of m ¢ M".  The
proof of the path 1ifting theorem referred

n AN v
\ . above tells us that ¢m(t) = ﬂy(t), t suff.
¥, (£)

sm;]] so that wy(%) € Ut'

By faking a smaller ut, if necessary, we can assume, by Proposition 6,
that = & such that, VR‘I) = (?(J;}I) e (ut), BG(?Z) < in-set (',\('), where _ny is
the implicit vector field.

Since ¢, and I, are continuous, 3 e > 0 s.t.:
v o N
|t-t] < e==?llnx¢m(t) - Hx¢m(t)|l <& , wherem= (x,y) =
N " n " .
=¢,(t) = 0 (wy(t)) e P (U), x = Mé,(t)s and, so:

n,
inset sf) ,
n,
Mo t)

h

Mg, (t) e Bg(X) =2 M (t)

with -ny as implicit vector field; but this is the same as if the vector field

where gy, since V is compatible, and we are done.



2.2(3)

LEMMA 3:

Let m = (x,y) ¢ M" and suppose 0; n Cf = P. There exists a unique
. . + . .
(continuous) Tift ¢m = ¢m’wiR > M, satisfying (1)', (2)' as in Lemma 1,
and (3)', Yt e ]R+, as in Lemma 2.

Proof

Let t ¢ R' be fixed. Choose t, > t, and define ¢ (t) = ¢ . (1),
. >"o

¢

n.t :[O,to] > M" as in Lemma 1. Claim: ¢m(t) is independent of the choice
L o .

. . n
of to. To see this, let t1 > t, t1 # to’ say t1 > to. ¢m,t1'[0’t1] + M

: : . ' '
satisfies (1)' and (2) on [0,t1] and therefore so does ¢m,t1/[0,t0] on [O,to].

By unicity, in Lemma 1, ¢ = ¢ , and so (t) = ¢ (t). We
mt /10,1 = %m,t .t mt,

remark that the above argument also shows that %y = 0t ON [O,tol,v t, € Rt
’"o

fixed. Therefore, ¢m is continuous and satisfies (1)', (2)' and (3)', ¥t e'Rf;

to frove this, we note that, given t, we can choose t > t and use ¢_ = ¢
(] m m,to

on [0,t ). If we now define W=\ U, U, as in Lemma 1, we see that, using

Corollary 2 of Proposition 5, X;I(w)-+ W is a covering space for W, and there-
fore the unique 1ifting theorem from algebraic topology (see for instance,

Theorem 5.1, in [5]) shows that ¢mﬂR+,0 + M", m is unique. 0

REMARK 1:

Suppose V « VF s Y € CfQ
Then, 3 €>0s.t. [t] se, t#0 implies ¥(t,y) ¢ (CpuMe ). This

is an immediate consequence of property H1 (see page 1.2(1)) and of Definition

17 (see page 1.1(4)]
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LEMMA 4:

Let y € C, 0; nCc # ﬂi Then S, = {t einlyy(t) € cf} f.;t“}nel’ where

either: (i) I = zt = {0,1...} and tn +~oas n>o,or: (ii) I = {0,1,...,N}, =T

[Note: this accounts for the last line of (4), Theorem 1, page 1.2(1)]
Proof -

This is clear because {tn} can not accumulate by
nel

our hypothesis H1 (page 1.2(1)).

LEMMA 5: ‘(
| * 0,t).
Let m e Mn = (X:.y)s to eR, ll’y(to) € Cf’ wy(t) ‘ cf’ tel tO)

'?
. : : i = :[0,t 11,
Then, there exists a unique (continuous) function ¢ ¢m,t0 [0,t,}

satisfying:
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(1)', (2)* and (4) in [0,t ];
(3)' in [O,to).
Proof

We first define O in [O,to). Let

" n
t e [O,to). Select t e (t,to), and

define ¢m(t) = ¢m %(t), where

b o o
‘9 (%Jec o %:[O,t) > M" is constructed as in

Lemma 1.
One can show that the definition of ¢m at t, as above, does not depend

n,
on the choice of t (i.e.g O is ‘'well defined), and that O is the unique
continuous function (i.e:;‘(4) is valid) satisfying (1)', (2)' and (3)' in

[O,to). The proof of this is a repetition of arguments as in Lemma 3.

Any accumulation point of a sequence ?m(tn)’ t - t; must
be one of the finite number of points in X—l(y), by continuity
of x. If we take disjoint balls B, about these points,
(%x5,y), 1 =1,...,r, then, for some t; < t_, ¢ (t) is in just
one of these balls, Bj’ for ty < t < to and so every such
accumulation point'ié ij;y); i.e. ¢m(t) > ij;y) as t » t;.

" So ¢ (t ) = lim_ ¢m(t) is the unique way to make %
t+t

left continuous at to

Note:

‘;F'c M v Md, or, equivalently, aM"c Md; this is so because

= [LnJ Mk] u Md, and Mk is open in M (closed), Mol =pifi# 3. i
k=0
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REMARK 2:
X

Let m = (x,y) ¢ Md, y € Cf. Every-
thing as in Remark 1, we note that

n
- X £ sep oy, y = Y(t,y), [t <.

This is so because y(t,y) ¢ l‘1~y =

t] <€,
(x ,y)emd x A It] < ¢, where

X = Xs» for some i, hence

t, J = {y* ).
v(t,y) ¢ %,y {y' € C|x € sep % }
If, on the other hand, m = (x,y) € M7,

/"'Y\’ \C . .
( ) £ the constructions as in Proposition 6,
-E. o) -’-E ) / 3 . |
2.1{5', show that 3 a neighbourhood
n N

of m, W, with B (;) c in-set [@V](x) ( = in-set [@S;](x), by compatibility),

n n Ny
where v = -Vfn, Vm = (x,y) € W. Therefore, by restricting W so that _

n N LAY
Ix-x]| < &, Y(x,y) ¢ W, we get x ¢ B (x) c inset [Qy](x) Hence, if (X,y) ¢ W
is fixed, we can construct a neighbourhood Z of x, x ¢ Z < B (x) c in-set [¢w](x),

’\J
which implies w(Z) = w(x), so that x ¢ sep m Y y e X (w), ne1ghbourhood
of y ¢ C. 503 e>Ost Vtw1th lt] = e. xésepdfy,y-w(t,y) this €
can of course be taken so that w(t,y) ¢ Cf,Vt with [t] < e, since C. is
closed (Cf = x(M - §~) Mk)), and suits every m ¢ Xy 1(_y)

k=0

. "
From Remark 1 and above, we then conclude: if m = (x,y) e M,
n,

ye cf,§ c > 0 such that y = ¥(t,y) ¢ C; and x £ sep &, Wtwith [t] <=,

_ d n
except perhaps t = 0. Also x; ¢ sep &y, in s.t. my = (x;.y) « M"or M, by

. -1
construction; f.e., m; € X (y).
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REMARK 3:

Let (x,y) € X x C be fixed. Then w[® 1(x) = w[® 1(x), where & is
. -vf y y
1¥ydyec y
W
the flow generated by v.y on X. A trivial consequence of this, from the

definition of separatrices, is: sep ®_ge = sep Qy. To show that equality,
y
we first note that, as we are dealing with a gradient field (see [3],249),

v n
Wie_ge 1(x) = {x}, where x is a critical point of,fy. Now, X ¢ in-set

y .
n

*
[@_Vf 1(x); if not, it would be possible to create a sequence'{xn} > X,

y (X compact)

’\J L3 - - L
X ¢ Be(x), for some € > 0 fixed, a contradiction, since in that case
n

n,
x* e w(x), x* # X. By compatibility, x e in-set [@y](x), and therefore

n
wie ] (x) = {x}.

REMARK 4:
Let y £ C; be fixed, {xi}iel be the set of singularities of -ny,
'{xi} , J ¢ I, the set of minimums of fy. Then sep & . =X - S_g in-set (xi).
ied y je
Proof

\

’b . .
Let x € X, x = W[ g 1(x); X = :;{ 1n-set(xi), all x, hyperbolic, and
y

the local form of a flow around a singularity easily imply X e sep f@_vfy

iff : is not a minimum for fy, from which the equality above follows

immediately.

LEMMA 6:

e —o———

Let m = (X,Y) € Mm; y € Cf; let ¢ > 0, fixed, so that x ¢ Sep Qy and

v - ch an € does exist

y = ¥(t,y) ¢ Ces vt#0, |t] <e - we know that su € .
(see last paragraph of Remark 2). There is a unique function ¢ = ¢, . : [0,e] + M

satisfying (1)' in [0,e], (2)': (3)' in [0,6) and (4) in (0,8].
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Proof

Existence

e et e

Let t ¢ [0,€]. We‘define ¢h at t by:
, " LN

plt) = (WIgyl(x)3y), with y = y(t,y).

¢

- is well defined, from Remark 3. From

Remark 4, x ¢ sep @y X = w[@y](x) is

a minimum for fy, hence (%,9) e M,

Y = WLy, tF 0 P50 .(0) = (wo,1(x),y)n
so that ¢ [0,€] > M" and (2)' is satisfied;

X = wy in [0,e] by construction. Now,

- %
m

n,
in-set [@y](x), from Remark 3; as

Hx¢m(t), X = Hx¢m(0), we get that (3)*
is verified at t = 0, just by taking €(m,0)

to be € in the statement of this lemma.

It remains therefore to prove that:
Picture of the two possible (i) (3)* holds at t, \ft,e (0,e);
cases (y1 and y2) and of the (ii) (4) holds at t, WVt ¢ (0,e].
corrgsponding 1ifts, which are
being dealt with together in

the proof.
* * * *
Let t* e (0,e] be fixed, ¢m(t Y=m = (x,y ) [e M"], so that
* * * * :
- = N = t Y ).
X Hx¢m(t ) W[éy*] (x), ¥y =¥(t .,y

We adopt here, for the rest of this proof, the following simplifying

notation: @I js the flow generated by the gradient of f restricted to

¢Hd3=¢“+tiﬂ-
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Define ¢ , = ¢m*’€+', from Lemmas 1 and 2, as the (unigue) continuous
function satisfying x¢m*(t) = wy*(t) and ¢m*(0) = m*, with e’ = ¢ (m*,O)
taken as constructed in Lemma 2, so that (3)' is valid for t = 0 and

* . *
X = deam*(O) € BG(Hx¢m*(t)) < in-set [&,]1 I ¢ ,(t), Yte [0,s+), where

compatibility was used in last step.

We claim that ¢m‘*(t) = ¢m(t + t*), Yt e [0,s+).
Let s, fixed, be chosen so that:

* *
lle (s.x)-x"|| < &/3 (1)
(S,A);‘i’(t,f)) By continuity of ¢ x> and reducing s+, if

necessary, we can guarantee that:

I 0ms(0) = Mo ()l <873,  (11)

(QW);()’) | b (0 X* Yt e [0,eh)
TN m* Finally, if § is small enough, we can also
"‘*" - " assure:
o™ L Ko legls.x) -of (sl <s73, (1),
i - '
(p';.(o)r . \:"; . _ s fixed as above, |t] < €',
g 9L ;"' Wty e This is so because the continuity of ¥ implies

r £ NY?” that the family of gradient vector fields,
Y |
0& 'E" -E':’C ’.Ea‘_'éf- o + ¢t {-VFf ot _y*)}’ is continous on t. Therefore,

for fixed (s,x), the well known result (from o.i.e) of continuity on parameters

implies (III).
*
let t e (05 ). (I) + (I1) + (II1) => Jjo(s,x) - Lo (t)]| <6 =

* i > (t) = T.6 ,(t) = wie,] (2.(s,x)) =
2 o.(s,x) e in.set (&) Mop.(t) =P T 4, 1] (2(s,

= WIBL1(x) = u(t) = (WEEI(X): W(ty)) = (WEoyr, 1 (x)sblt.y ),

last equality coming from Remark 3.
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On the other hand, by definition ¢ (t + t*) = (w[@y](x);?), with
n
y = ¥(t + " ,y) = w(t,y ), proving the claim.

6.(t) = 0 (t+t), Yte (0,)), t ¢ (0] Fixed, gives (i), and
also shows ¢m to be right continuous where required by (ii). To see it is
also left continuous, thus concluding existence, one just defines
w;*(t) = wy*(-t) (i.e., reverse the direction of wy*)’ ¢;* = ¢;*,e- to be
the corresponding 1ift (from Lemmas 1 and 2) and repeat exactly the same

constructions as above to show that, if t ¢ [0,e ), then ¢m(t*—t) = ¢;*(t).

Un1ﬁueness

on—

Suppose ¢ [0,e] ~ M™ also satisfies the conditions in the statement

oA ,
of this lemma. By (3)' at 0,3 € > 0 such that x

Lv n v n
(6, (t)), t e [0,e), ¥ = ¥(t,y), so that T o, (t)
v n * n . N, N
Therefore ¢_ = ¢ on [0,e). Pick t e [0,e). Define: ¢m*(t) = ¢m(t + t).

HXQh(O) e in-set [oy]

m

Wiyl (x) = T4, (£).

%m* is continuous on [O,e-t*], and satisfies f;m* = wy*’ by hypothesis, with
mm*(O) = 3 (£%) = ¢ (t7) =m. Set or(t) = o (" + t); ¢ satisfies the
same properties as ¢ * (¢ as above is defined from ex1stence in this lemma).
Therefore, from unicity in.lLemma 1, ¢ = mﬁ* on [0, e-t 1; so ¢ (t +t) =
;;*(t) = ¢m(t) = ¢m(t -t) on [O,E-t }, hence ¢m Z ¢, ON [t ,e] and we are

done. 0

LEMMA 7:
e e
Let m

R : .
(x,y) € M5 let S, = {t"}nel’ as in Lemma 4, and, for each n,

e (n) as in Remark 2. Set Eh =t + e(n). Then, if n< I is

construct ¢

fixed: _
— n n _
'{ There exists a unique ¢;:[O,tn]-+M such that ¢m(0) = m, and

(*)'§ ¢" satisfies (1)' and (4) on [O,Eh], (3)' on [0{?5).
m
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Proof
By induction.
Step 1: (*) is true for n = 0.
We have to show there is a unique function ¢;:[0,f6]—+iﬁi such that

0 . es -
¢m(0) =m, and ¢; satisfies (1)' and (4) on [O,to], (3)' on [O,to).

Existence:

Define ¢(t) = oo, (£ e [0.t] (1)
¢m(0),e(0)(t-to)’ te [to,iA] (11),
o, . ¥
where ¢m,t0:[0’to] + M is obtained from Lemma 5 and ¢m(0),€(0) : 10,(0)1 ~» M
s = - 40 0 .
from Lemma 6, with m(0) = ¢m,t0(to) = ¢m(to). (1) and (II) show that ¢, is

well defined and, just from the statements of the lemmas referred to, it

follows trivially that ¢; satisfies (*).

Unigueness

Let Eﬁ:[o,ibl + M" be another function satisfying (*).
v - ~ ~0 ‘
Define ¢m(QL€(0):[0’€(0)]-*M by ¢m(0le(0)(t-t0) = ¢m(t)’ Yte [to,fbl.

';'0 — . s . o - _ 40
¢h/[0’to} = n.t . by unicity in Lemma 5, hence ¢m(to) ‘¢m,to(to) ¢m(t°).

n,
- ° 0 - 0 -
unicity in Lemma 6, so that ¢ = ¢, ¥t e [0,T)]
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Step 2:
| (*) is true for i e I =>» (*) is true for i + 1.

By hypothesis, there is a unique function

¢;:[O,T}] - Mt'satisfying (*). Set m(i) =

(x(i)sy(d)) = ¢;(Ei)' We are back to Step 1,

M with Lemmas 5 and 6 now applied m(i), y(i) = w(iﬂ.y), with
1‘{‘1{ - 171’\“} ¢ (t1+1 -t;), (t1+1 ) now treated as the new t E' > S
g PO t E‘

?

o

L t g . )

o + & E Titat T, R that there is a unique ¢ 4y:10.%;, - T

satisfying the required properties. We define

o

o1h(t) ={o1(t),  te [0,F,] It is trivial to verify that ¢”1

m(1)(t -t te (%%,

satisfies (*), since ¢k and ¢m(i) do; the unicity of these two functions

imply the unicity of ¢;+1, as in Step 1. g
LEMMA 8: _ | .

N
Let m = (x,y) € M. There is a unique function ¢"5Rf + M satisfying
+
(1)', (2)', (3)" and (4), Yt eR.
Proof

Case 1 1 =1{0,1,....N}.
"By definition of I, wy(t) ¢ Cf,\f't € [TNJ*#. Let m(N) = (x(N);y(N))

= ¢2($N). We can then apply Lemma 3 to construct ¢m(N) m(N) JR M \
satisfying the conditions required there.
Define ¢m:]R+ i by: ¢ (t) = ¢|’:(t), if t e [0,%y)
Ny (t “By)s TF te Lty)
¢, satisfies (1)', (2)*, (3)' and (4) and is unique by construction, since

¢N and ¢m(N) have these properties (proceed as in Step 1, Lemma 7).
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Case 2: I = Z+

+ _ _ .
LetteR. Thent ¢ [1:n 1,t 1, some n. This is so because t_ > t_ .,
- n n n-1
+
Ynez , and t >easn=>«. Define ¢m-(t) = ¢:1(t). By definition,

¢m(t) = ¢r.:,(t), Vite [-1':-1_1,'{2-1-], i < n; but ¢:n‘(t)/[0,’1':-i] = ¢:n(t), by unicity

of cb;‘, hence ¢m = ¢r2 on [0,'t'n]. Therefore cbm satisfies all required properties

at t, Vit R+ fixed; to see this, just choose n such that t ¢ [O,Yn) and use
n

¢m = ¢;‘l and Lemma 7. Llet ¢m’ be another function with the same properties,

and t be fixed. Then t [0,'t—n], some n, and by unicity in Lemma 7
N

N
¢m,[0,fh]ss¢;, hence ¢ (t) = o7(t) = o (t). 0

PROOF OF THEQREM 1

Let (t,m) e R+ x M“' be fixed, d’m constructed as in Lemma 8; define

o(t,m) = ¢m(t). The properties of ¢m as in Lemma 8 imply Theorem 1.
O
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CHAPTER 3

3.0. INTRODUCTION

The reason why we could prove Theorem 1 was that we assumed hypothesis
H (see Chapter 1). The question arises as to whether H is a generic property
of vector fields. Our objective in Chapters 5 and 4 will be to prove Theorem 2,
which affirmatively answers this question (see Chapter 1 for a precise statement).
In Chapter 1 we introduce the functor Te, which generalises the tangent
functor. Thus, T°M is the higher dimensional analogue of TM. Iﬁ paragraph 2 (52)
we define the notion of egl expansion of a vector field v e Vk(Rr),l <ses< k, v]e].

We then construct a submersion (off a certain set) S, such that:

R’
Je- (Rr ’Rr) __§____> TeRr

commutes.

This allows us to 'transfer' transversality theorems(§3) to a new context:
we require instead that v[e] be transversal to some submanifold of TR". The
reason for thinking about this at all is that it turns out that the notion of *
transversality of v[e] is closely related to that of ‘'isolated intersection'
of a vector field with a set, which we also define in §3. And this last
notion is, on the other hand, the basic idea behind the sufficient conditions
for the 1ifting as presented in Chapter 2.

The following chapters, in which we prove, in certain cases, the
genericity of the 1ifting property, will be dealing with the construction of

r
the appropriate submanifold of some T%R".
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3.1. THE FUNCTOR T®

We now define Te, from the category of Ck manifolds, k = e fixed, with
s -
C, e<s <k, maps as morphisms, to the category of Ck € fibre bundles

(vector bundles if e = 1), with ¢*"® fibre bundle (vector bundle if e = 1)

maps as morphisms:

Objects M 1€ M
/\NM? e
i f ey, Tf_ e
Morphisms M——>N ™M > TSN

Note:

T1 coincides with T, the usual tangent functor; k = w permitted.

We will first give the definitions of T°M and Tef, and then proceed
to show that they are well defined and satisfy the required properties.
DEFINITION 1:

Let a,B: R > M be Ck. We say that oz* 32 B* iff §(¢,u), chart for

Stan)e . dremre
M, a sufficiently diff. manifold,s.t. 9-19%14-(0) - Q—ﬁfgll(O), Vi=1,....m,
dt

V=010, d é*_thquerms of a,8 at 0.

DEFINITION 2:

Let a denote the equivalence class generated by A above. (we will
shortly show that Y is an equivalence relation, independent of the choice

of chart).

Call T°M the set of all this equivalence classes.

DEFINITION 3:
Let M,N be CX manifolds, f:M+ N be 5, e s s < k.

e,. € e
Define T f: TAM -»lN
a - fa |
where fo is the equivalence class of the germ at 0 of f , and where a is a

representative of a germ in a.
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PROPOSITION 1: "

Ve is well defined, an equivalence relation, and does not depend on
the choice of chart as in Definition 1.

Proof

The definition of Vo does not depend on representat1ves if a;» By are

other representatives for a R B » then ——i*vlll- (0) __12_11(0) =
dt
J
4" (68)i gy = __(Q_é)_;(o)

dt?
It is also clear that Ve is an equivalence relation.
The rest of the proposition will result from:
Claim:
PP ponpniong
If y:R >R" is a Ck curve, j < k is fixed, and § is a Ck diffeomorphism
from a neighbourhood of y(0) into its image, then
J q
d"(gy).. m 3'P
ORI oz oglhyseashg) (¥(t,)
d i 1<q<sj  (hys- ,h ) dis..5i = OX: +.9X;
t 1 1 i i
q 1 q
pos. 1nteg
s.t.gx h -J
§ s=1 °
h gy
d(t) (e
dx; .o.d,  (—F—s — [ )
X 1 q
q dt dt

where o.(hl,...,hq) js an integer, which does not depend upon 0.

This is a straightforward application of the composite mapping formula (see [1],

1.4), which states:

h
] | 1 h
D‘](QY) (t) = = £ oi(hpeeeih) D00(ED) (0 Y (e oo i)
v lsqu (hl’-octh) J q m‘ m é . m
GL(RX.. X.R,R) as above €L(R X, om ;R)L(Rx--XR,R ),etc....
J t1mes q times h1 times



3.1(3)

Since
q mo 2%,
D ﬂi(y(to)) = ) _— (y(to))dxi ... dx. , -and using
. . .es i
Tysenesid =1 axi axi 1 q
q 1 q
I (gy). . h h
the identifications ~———3—l(to) = DJ(Qy)i(td?. (17“"1) ’ dwgl-(t ) = D Sy(t )M1,..
dt J Ciues dts ° ° S tir

s=1,...,9, one gets (*). (The integer ol(hl,...,hq) is actually defined in
[1](1.4), but we only need what is stated above). This proves the claim.

Let now a*, B* be as in Definition 1, and (y,V) be another chart for

M, a(0) € V.

We have

/I

e

djfguli(o) - dj((w¢-%)(¢d))i(0) ' djﬁ(¢¢-%)(¢a))4(0) = 92&?§l4(0)_
dt? dtd ' dt? - dtd

Note:
AANS

We are using the following definition of germ: let a:l, > M,
B:1, » M, I;,1, open. MWe say o B&yJopen I ¢ I; n I,, 0 ¢ I, s.t.
a(t)

*
equivalence class of o by a .

8(t) on I. ~n, is an equivalence relation, and we denote the

PROPOSITION 2:
TeM, as in Definition 2, can be made into a Ck'e, m{e+1) dimensional

manifold, which has the structure of a fibre-bundle.

Proof
. e
We now produce 'local bijections', as defined below, for T M, from

the charts on M.
So, let (¢,U) be a chart for M.
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n,
m'f.ine U= {A € TeMla(O) = X € U}’
n, n,
¢ U m{e+1) , by:
A e
o > (¢(a(0); gi-‘2—0—%9-2-;...; g~199)-(0))
dt dt®

* [ * ~
where a is some representative for o € a.

n, . . . * * *
¢ 1s well defined: if o Ve 8 and B represents B , then, by
Proposition 1,

j J
dlea)igo) = CUBNo), 5 -1, s = 0,1s.. e
dtd dt? |

Claim 1:
Voo A me
¢ : U »o¢(U) xR~ s a bijection.

Proof of claim:
. 1 e AV
Define +vy:(y;v',...,v") » a e U, where
(yivi.v®) € o(u) xR"x...xR" , by selling:
. e J .
o:l] cR+Mtobet~ ¢-1(y + I %T-ta) (I conveniently small)

J=1
dr:(ysvls.. v Ty L g0, Lo 0))
¢Y:(Y§V seessV ) -+ (¢‘?> (y)s Zﬁ.:' E sesoy '(Ee s
J 1 ve
where £:t > y + 2 J, tJ, so that %%(t)lt: =V e, —-—(t)/t_ .

J=1
"

and therefore gy = Id7¢(U)XRme' It is also easy to check that v¢ = ld/a

N - . -l
Hence ¢ is a bijection, and ¢ ~ = v.
vl |,
Let now (¢,U), (¥,V) be two charts for M, as before. Yo ~ is clearly

n N
a homeomorphism. We topologize T°M so that {(¢,U)}, (¢,U) e atlas for M,

are homeomorphisms.
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Claim 2:
-] » My k-e
v (UnV)>PUnV)isac diffeomorphism.

Proof of claim:

1 e n v n,
Let (ysv',...,v°) € o(Un V) = &(U n V) x K",

_1 A - e jj
$ (y;vl,...,ve) = a , where a:t > ¢ 1(y ¢ YU s SO that
j=1 j!

= ¢_1€, £ as above.

Therefore:
" _ _ .
WL vt ® > 7l & e le) s L w ey (o).
dt

Now, by (*) (Proposition 1), one has:

m "‘(W)'1
——Jr(w s) (0) = = 2 T 0.(hysesh ) e y)@x
dt 1<q<j (hl,..,hq) Tpoeeesip=l J q "1
\.-—-T..._.__/ h]
as before Jv T,

Since the q in the formula above satisfies 1 < q s j < e, and w¢'1 is Ck,

it follows that $$'1 is Ck'e. So is its inverse, by an analogous argument,

proving the claim.

Lo . k-e
Therefore, {(¢,U)} generates a maximal C

Rm(e+1).

atlas on TeM, modelled on

Finally, to see that T®M has indeed the structure of a fibre-bundle,
we look at the diagram:

o o} lxld
Uy (UpR™ — > Ux R

v 9
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where IL: a - a(O), and nu is the natural projection; (¢ x 1d)§ i

diffeomorphism, u = n:ku), H a submersion, hence T ® is a fibre bundle.

Its fibre is R . C

PROPOSITION 3:

T%f is well defined (we refer to Definition 3), C°~® differentiable,

and, furthermore: Te'(idM) = id o If g:P - M, and g, P are Ck, then
™

T(fg) = T°F.7%. (f:M -+ N; dim M = m, dim N = r)
Proof

To show that Tf is well defined one just has to check, through
(*) (3.1(2)) that if B represents B ¢ &, then fa = Fé

As for the d1fferent1ab111ty, consider charts ¢,w, as below:

e
M If »TeN
n, n,
¢ Y
Rm(e+}) - ., Rr(e+1)

By using (*) once more, we get:

m 2%, hy by
) (I A o; 5;————5§—-(a Jdx, - dx, (a *5..52 ),
1<qsa h's 11,..,1q=1 iy q i q

if J 21, i=l,...,r

j.(.0 _1
yg:(a sa

- 0 e
and y°(2%,...,a%) = 9(a°), where p = ufs LeS, andy =y s.v)s
. . . ;
YJ:Rm(e+l) +Rr’ ‘{J = (Y‘]]‘,..o,Yg’c--,Yr)

From this, 18f is immediately cs-®

~ ./\ ~ e e ~ -
Now: TeidM = idTeM’ since T?dM:a + idya =a. AlsoT f.T g(e) =

T8¢(8a) = ;h\ = Te(ngQhas we wanted to prove. 0
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REMARK 1:
e te———

A quick Took through definitions 1-3 shows that TMM is - just TM,

' 1, . .
and T°f is just Tf. 1In Proposition 3 above, if we set e = 1, vy . turns out

to be given by:

Q

20.
i,.0 1
. 5;;(a )dxi(a )

W3

vi(a%at) ~(p(a°);
1

—-t g

5;¥(a°)dxi(a1)) =
i

= (p(a°%); d@(ao)al), as it should be.

Just to exemplify the case e # 1, fix e = 2.

Then, y is given by: v(a%,a',a%) » (8(a%)3dB(a%)a’;ap(a®)a%+d%p(a%Ya),al))
(Note: we use both the notations, djﬂ and Djﬂ, with the same meaning).
REMARK 2:

We would like now to relate TM with the jet-spaces: let X, Y be
manifolds, Je(x,Y) the manifold of e-jets from X to Y, defined in the usual
way (see [4], page 37); then, setting X =R, Y = M and JS(R,M) = the subset
of Je(R,M) constituted by the e-jets with soufce 0 ¢ R, one can easily check
that T°M is diffeomorphic to Jg(R,M). (This last set has the structure of‘a
manifold: it is a submanifold of JeGR,M)).

REMARK 3:

For the rest of this section, we consider only the case k = =, for
simplicity of exposition.
REMARK 4:

In our applicacions, the manifcid M will sometimes appear, for a start,

as a submanifold of R". Then one can view 'natura]ly"'TeM' as a submanifold
of T%Rr, We make these ideas precise.

DEFINITION 2':
Suppose M c R" is a smooth (Cw)m—dimensionzﬂ submanifold of R'.
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Define: TSM = {§ Tﬁera(O) =xeM Aqe¢ a* e a such that a(l) < M.

This set can be given the structure of a manifold, as a submanifold
of T%Rr, as follows: 1let x € M be fixed; (p,U) be a chart foriRr,
p:U R >R, x e U, s.t. B(Un M) = p(u) o ® x (O3) 0« R™"; it is
easy to check that 3(3 n ;E;b = a(ﬁ) n V, V a subspace of'Rr(e+1), of
dimension m(e+1). This shows that ;Eﬁ-is a smooth submanifold of TR",
whose smooth differential structure is given by the max. atlas generated
by (T8, 1)} pr

open

We now show that ;Eﬁvand T°M are 'the same' (take f = inclusion, in

the next proposition); i.e. Definition 2 = Definition 2'.

PROPOSITION 4:

Let M be a smooth manifold, f:M - R a smooth embeddina. Then f induces

a diffeomorphism from T°M to TEF(M).

Proof

Define h:TSM » T5F(M) by: & = fo . Let x e M, (4,U) be a chart for
M, xe U; P = f¢'1:¢(U) > R" is an immersion, hence ([4], page7) 3 open sets
U < ¢(U), ¢(x) e U* and V < R", with (U') < V, and a diffeomorphism
:V > (V) ¢ R, s.t. p/U" -R">R" xR™™ s the standard injection.
Set W = ¢'1(u') c U, p= ¢/W, and let ($,§) be a chart for T°M induced from
(p,W)y chart for M. Tp(U') = (6" 1(u")) = TF(W) <R" x {0}; by restricting
V (neighbourhood of f(x)) further, one can auarantee that V 2 f(M) < f(W),
since f(W) is open (in f(M))-f is a homeomorphism into its image. So,
2(V n £(M)) e R" x {0}. Setting n=t/f(M) nV, Z=Vn (M), we therefore
have that {n,Z} is a chart for f(M), which generates {KQ?}, chart for Tef(M),

seen. as well as f(M), as a manifold on its own. We can assume, w.l.0.g,
9

W= f’l(v n £(M)). Since @ = Tf¢-1 is the standard injection, we have
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- LR B
nfy 1. identity/U'. Now, ﬁh$ 1:w(w) chr(E+1) »qpr(e+1) is given by
(note: a:1 + M, a(0) = x ¢ U'):

~-1

de l[) N h /\ ;'\ll de .
(Vo (0);5...3 ;cg(wa)(O))——-———? @ ——> fa —— (nfa(0);...; —5{nfa)(0)) =
_ dt

e
= (nfw-lwa(O);...; j%g(nfw-l)(wa)(O)) = (Ya(0);...; j{;(wa)(ﬂ)) Therefore

- N n _ N :
Nhe L id/Y(W). Therefore h/W = 7 1(1d/w(W))$ is a smooth diffeomorphism.

Therefore h:T°M - T®f(M) is a diffeomorphism.

3.2. THE e™ EXPANSION OF A VECTOR FIELD.

In this paragraph we will, given a vector field v inIRr, define

viel : R" = TR". We then construct a function S which makes the diagram

below commutative.

The important point here is that S turns

RY‘

// out to be a submersion off a certain set,
.e-1
- JQ/ viel and this allows us (see next paragraph)

| to prove transversality theorems for

=1, rry S r
B IR" R TR
| ' submanifolds of T%Rr.

DEFINITION 4:
Let v e VkORr), x e R\, 1<k <o,

i\

\Let a:1 »R" be a solution of v through x, 1 e< k, and a be the

*
equivalence class, under Ne? of o , the germ of o at O.

Define the eth expansion of v, v[e], by:

vie]: R—— TR"
X ———30
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In what follows we will be using the 'natural' identifications

e
R ZR(e) S e (0)...., 3‘%8— (0)), and & LR"R") ¥R"x R x B‘;‘i

e-1 _ ,e-1 e-1 e-1,. . .
where Br,r = A. (1)8 ... 8 Ar (r), and each Al (i), i =1,...,r, is the
space of polynomials in r variables and with degree < e-1. Choose as
coordinates for Aﬁ'l(i) the coefficients of the polynomials.

Wle use the notation:

viel (x) = (x3v°[e1(x);...: v& i el(x)),

and vj[e] = (vi[e],...,vi[e]); when no ambiguity can result, we

write vg for v%[e].

PROPOSITION 5:

cach vg is a polynomial P% in partial derivatives of v, of order

< j-1.

Proof

By induction. For j = 0, we just have v? = Vs Assume that our assertion

. . j d j-1 -
is true for j - 1, j 2'1.  Then P% I (P% (at)))lt:o =

9 j-1 doy = Ty, = (Pj;l) proving the
" g (i (o)) gedt) 0 = I Viea Pi )
proposition.
r
COROL! ARY : R\\
{P;} determines a map S, such that je'll,///_ ‘x\\\:[e]
[y

Je'l (Rr,Rr) «—-——-—§~——) ™" cormutes

Proof

r qe-1 r(e+l
This is just the map: (x;v;...) e R xR x B> +(x3v3*) ¢ R (e+1)

where * is determined by the polynomials in coordinates of 1R R")

corresponding to the ones given in Proposition 5 above.
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PROPOSITION 6:

If v# 0, then S is a submersion at v.

Proof

If v # 0, then vy # 0, for some A. We will now order a sub-base of

. . i . . .

-1, ol . 1 -

¥ HR",R"), by setting qi = 9—3—‘% @’ = (q]sead)s a = (x,0°,...,0%7 ).
“

Notice that by abuse of notation we are confusing an element of the
base of Jenl(RrJRr) with the corresponding partial derivative of v, so that

we can write Sg = P%. 3

: . oVV, . .

By induction, P! contains a term (v )J —L= (v )J qq. Indeed: if
J A axJ A 1

8°v- A

j=0, P? = v, = (v )0 LA suppase our claim is true for j-1. Then pe
i A 2 %0 j
contains the term :
4 (v, (a(t))3! BJTIV" (a(t))) -
dt *x SR /=0
j-1
. oY v, dot
-1 ) i k _
= (@) I e (mHelt) g () ¢ ) g T
k k BXA
j-1 J
. ] oY V. . 0V,
-1 1 - J 1
= (v.)¥t: (——)v, + ... = (v,)Y ——+ ... , as wanted.
A k axk» ax 177k A ax3
b N M
Furthermore,
Phs k # 1 o
do not contain gj.
PZ. Vk, s<]
’ . S . .
Also S{x;—) = (x;—), Hence the Jacobian matrix 56-15 lower triangular,

. 3S
with either 1's or powers of v, down the diagonal. Hence |sa(v)| # 0.

Hence S has maximal rank at v. Hence S is a submersion at v.

COROLLARY:

T ——————

Let A = {0 ¢ Je'IORrJRr) | target of o = 0}.

Then S/Ac is a submersion.
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3.3. SOME TRASVERSALITY THEOREMS:

In order to prove that, for fixed generic f, 'most' flows in C = R
can be uniquely lifted (as in Chapter 2), we will need transversality
theorems of the sort indicated in 3.80. Proposition 7 below is a typical
example of these; in Proposition 9 we show how it translates into the
technical conditions related with the 1ifting theorems.

{a e TR" | do/dt(0) = ... = d%/dt%(0) = 0}.

Let A
A as above, N c R" a submanifold, n = S'I(N),
B = {v|vle] AN}, B = {v|i*Iv & n).

PROPOSITION 7:

Let N be a {closed) smooth submanifold of T%R". Suppose N n A = Q.
Then,?i (open dense) a residual set (in the C Whitney topology)
Bc CR,R") = VR ),s.t. vie] B N, Vv « B.
Proof

From the definitions of S, A and A, it follows immediately that S(A) < A.
Hence N n A =VQ -5 S'l(N) n A =0. Therefore, from Corollary on page (3.2(2)),
n is 5 (closed) submanifold of Je'lﬂRrJRr). Hence B = {vlje'lv M n} s open
dense) residual in c“ch,nf), by Thom's theorem ([41, (page 54)l(page 56». The
proof will be finished by showing that B < B.

Let v ¢ B; choose (if possible) x s.t. v[el(x) ¢ N. So, je'lv(x) € n.
Now, since js'lﬁ n, one has, at x:

..]_(

- r )
T 38N (TR + Tn - T 0% HRTRT), ()

with y = je-lv(x).

Now, S is a submersion, so that
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T S(T, Je'lcnrJRf)) - TV[E](X)(T?R”) . Therefore

.e-1 r
Tx(S - v) T*R + TgS(Tyn)

vie]

Tv[e](x) (TgRr), from (*).

-1
A'l S = [ c =
so S(n) = S(S"(N)) < N. Therefore T,5(Tyn) st = Tier0N

Therefore, Tx(v[e])T*Rr + T TR". This shows

viel ()" = Tyrei(x)
that vie] A N, Therefore v ¢ B, as wanted. : 0

PROPOSITION 8:

Let Q be a {closed) submanifold of R, ¢ = cod.Q > 1. Then, Je and J
(open dense) residual B c C“YRr,Rr) s. t. v[e](Rr) n T8 Q=0, VveB.
We first prove some lemmas:
LEMMA 1: |

Let X,Y be smooth manifolds, W a closed subset of Y.

Then {f ¢ Cw(X,Y)!f(X) n W= 0} is open in the Whitney c® topology
(hence in the Whitney C topology as well).
Proof

Let U = {o ¢ 3°(X,Y)|y = target o ¢ W}, V = J°(X,Y) - u.

- Let {o.} be a convergent sequence of 0-jets, o. e V, Y., o = limo;.
i i i a0 ]

Since target o, W, \{1, and W is closed, target o € W, therefore o ¢ V.
Hence, U is open.

Yow, M(U) = {f « CO(LY)PF(X) e ub = (F](x.F(x)) ¢ Uy VX} =

= {f|f(x) n W = P} is open in the C° Whitney Topology. 0
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LEMMA 2:

Let X,Y be smooth, wOl submanifold of Jk(X,Y), Vae I, some index set,

cod(W ) > dim X, Vo , and W = Uw closed.
el ¢
_ © .k ;T\ V . (4] o)

Ty = {feC(XY)if W,» Va} is C” open (and so, C open).

Furthermore, Tw is open-dense if I is denumerable.
Proof

{g € Cm(X,Jk(X,Y))Ig(X) nW=0} is open by Lemma 1. Now,

k k

jk:f > Jf, ] :Cm(X,Y)—> Cw(X,Jk(X,Y)) is continuous ([4] pg 46), and

therefore {f Cm(X,Y)Ijkf F\wa,\dh} = {fljkf(X) nW=p} =

o K

= (g e LR a0 = 21 s apen.

Now T, = M\ TwoTy ° {f]f Fiwa} > and each T, is residual from

ael “a a a
Thom's Theorem. Hence Tw is dense, since C (X,Y) is Baire. g
LEMMA 3:

Q closed == T°Q closed, Ve.

Proof

Assume (TeQ)c is not open, by absurd. Let a (TeQ)c be such that
0n TeQ # 0, ¥ O containing & . If x = a(0) ¢ Q, and since QC is open,
there would 3 neighbpurhood N of x with N n Q =0 and so, by setting
o =N, we would have & n T°Q = @, wizh 3 < ®, a contradiction. So, we
must have x € Q. Let now U be a neighbourhood (in Rr) of x, s.t. (5,3)‘
(see 3.1.(8)) satisfies E(H n TeQ) = E(E) n N, V as before (3.1(8)). We
have '9\)'(5) ¢ V, otherwise 3 open W around '5(&) e VwithlWn V=20, therefore
;'l(w) n TeQ = @, contradictory. Finally, ;(;) eV => a e TeQ, contrary
to assumption. Hence (T%Q) is open (see also Remark 4 and Definition 2';

Proposition 4 was implicitly used). 0
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PROOF OF PROPOSITION 8:

Choose e so that e >r—é9- (*)

_ € c - -1 ~
Set N = TQ n A% Wy = ST(N); Aq = T°0 0 A= {3 e Alx = a(0) ¢ Q}; W, = S-I(AQ).
Since Nn A =0, W, is a submanifold of -Je'»l(Rr,Rr) (see Proposition 7),
with cod.(wl) = cod.(N) = c(e+l) > r (by (*)).

With the usual identification Je'l(Rr,Rr) =R" xR" x Bi"{ we have

that wz = Q x {0} x Bﬁzrl_, hence a submanifold (closed, if Q is closed) of

Je'l(Rr:,Rr), with codimension (wz) =r+c>r.

If Q is closed, so is T°Q (Lemma 3) and also W = Wy u M, = S—I(N U AQ) - g1 %5,
Hence, setting B = T, = {v}je'lv Fﬁwa, a=1,2} = (=(v|i®N@R") o W=,

we get b open dense by Lemma 2. If G is not closed, just apply usual Thom A

Theorem ([4], page 54) to Wi> W, as above, to get the Ty residual.

DEFINITION 9:

Let S < R be a set, v ¢ Vk(Rr), k 2 1. Then, v has isolated intersection
with S at x ¢ R iff, given o:l +R': solution of v through x,3e¢ > 0 s.t.
{tja(t) €S, |t] <&, t#0} = 0.

Notation: v fI\x S. If vd\xs, V x, we say that v has the property of
[
isolated intersection with respect of S: v/AN S. We write v/ZAN S if vmxS

for every x which is not singular for v(i.e. v(x) # 0).

PROPOSITION 9:

Let Q as in Proposition 8. 3 & c V(Rr), open and dense in the c¢” nhitney
topology, s.t. v/ZA\NQ, ¥ v ¢ B.

Proof

Let e, B be chosen as in Proposition 8 above. Fix v € B and X, € Q.
Let U be a neighbourhood of X (in Rr), ¢: U+ ¢(U) a diffeomorphism s.t.
${U n Q) = ¢(U) n {Rm x {0}), where m=dim Q. Assume ¢(x°) = 0, wlog. Denote
¢/U n Q also by ¢, by abuse of notation, T%:0 ¢ TS(Un Q) + T € TE(o(U n Q)



is a diffeomorphism, with inverse Te(¢'1) (see 3.1(6), Fhwnﬁﬁm3).
Q is closed, v /3\ xQ is trivial if x ¢ Q. Therefore we will prov

theorem if we can show that v/ﬁix Q, X, as above. Let aO:I >R b
)

solution of v through Xo Wie seek to find an € > 0 such that
{tlao(t) € Qlt] <e, t#0}=

Now, o £ T8(o(U) 0 ®"

we would have Te(¢‘1)(635) =

&o = v[e](xo) € Te(u nQ) c

contrary to the hypothesis -
. ~ e
with¢= id, one has: ¢(T (o(!

= ¢(U) n R™ x{0}) Bf'ﬁx_'

RY‘

I i Hence as wc@&;) = (¢a0(0)=
7 l d(gay) d®(¢at,)
—2{0)3...; —— (0
dt dt
d(a,) d®(¢a, )

s e {ml,...,r} s.t. ( ::° > (0)5...3 e e ——23(0)) # (0,...,0).
a{ga). dloar), a3 1(¢a )
such that a = 1/jt "'—"—'JQ"'(O)#(), '_'—‘"‘(0) = .. -'——j—-l'-——

dt dt dt

Expanding (¢ao)s:l -+ R in Taylor Series around 0, one has:
J
d(¢o ) d (¢ ) -
o's . 0's J
: 0)t + ... + 1/j! 0) t¥ + ¢
(905) ¢t + (9o ) (0) + __;Z—_~{ )t /] -—;G§--(
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) A DY
Let Bs be a local diffeomorphism (i.e. B: Jjopen > BS(J)) of R, where

0 ¢ d, BS(O) = 0, and BS(¢aO)S:t > t). This is possible, because (¢ao)S is j
determined. Define B:(xl,xz,...,xs,...,xr) - (xl’XZ""’Bs(xs)""’xr)’
B:U'==Bs (0) x...xBE (0) x ' x...x B, (0) +-Rr, J' < J open,
i s-1 r

+ .,
€; € R 1 =1,...,s-1,5+1,...,r, chosen so that U' c ¢(U). Note that
B(U' n (R" x {0})) < R" x {0}.

Finally, choose € small enough so that (¢ao)((-e,e)) c U'. We have

¢

(B4 o) (1) = Bygat) (1) = t), t e (-e,¢). Therefore (Boay) () = 06>t
(It] < €}; since |t| <e, t # 0 and a,(t) e Q would imply (Boa, ), (t) =0,

we may conclude that ao(t) £Q, if {t#0 , as wished. 0
{t| < €
REMARK 6:

The proof above also shows that:x € Q, v[e](x) ¢ TeQ >V /-TAXQ-

We give now a last example, in which we examine a situation where Q

is not necessarily smooth. Our intention is to illustrate once more how to

interrelate the concepts developed here with standard transversality theorems.
From Levine's article, as'in [14], we quote the following.

(*) ‘The set of maps in L(V,M,s) whose r-extensions are A toWonVis

dense, provided that (n-q) < s-r,(s > r), where q = cod(W), W is a ¢Sr

2
differential submanifold of Jr(V,M), Vand M at least s differantiable,
n = dim V'.

Note: The above is Theorem 1, in 87 of [14].

The topology on L(V,M,s), with V =R', M =R, as in Proposition
10 below, is the topology of uniform convergence of all partial

derivatives of orders < s, including the 0th (see 85, 5.3, of [14]).
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PROPOSITION 10:

k+1

Let Q be a C*™" submanifold of R", k = 0. Let ¢ = cod Q>0and K> 128 .
(4

Then, 3 B c L(Rr,R,k), dense, s.t., Vv ¢ B fixed, vz\ Q.

Proof ‘
Construct Tﬁq, Cl, and set N = TgQ n w-l(Rr(k+1)-A), and n < Jk'l(RrJRr)

as in Proposition 8. We have q = cod(n) = (k+1)c, n of class C1 Now,

the condition k > ré—g-imph'es r-c(k+1) < 0. i.e. f—q < 0. Applying (*) with
r »

V=M=R, s =k, r=k-1 (hence s-r=1), W = n, we see thatYmeans, in our

case, r-q < 1, which is just slightly less than we are requiring. So,

B = {v]jk'1v7ﬁ n} = {vljk'lv(Rr) nn =P} is dense; the last equality comes

from cod n = (k+l)e > r, by hypothesis. As before, v ¢ B =;»v[k]ﬂRr) nN=g.

From Remark 6, V/ﬁXXQ, k/ x satisfying v(x) # 0, as wanted. 0

(Note: If Q is closed, as in Proposition 8, and if one wants to prove the
analogue of Proposition 9 in the non-smooth case, one just has to extend
(*) to the situation as in the remark in the proof of Proposition 8. We
will be concerned, however, with the smooth case; we will proceed, in
Chapter 4, to extend the Propositions and Definitions above in yet another

direction).

REMARK 7:

Lemma 2 is not valid if one removes the hypothesis cod W > dim X.Va;
though this Pésult is mistakenly announced in [4], page 59. It does not hold
even if the wa‘s are disjoint and I is finite, as the following counter-
example shows.

Let X = s}, ¥ =R, k = 0, W}, W, as in picture below, and f = 0.
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3(5)
OF _—*_-.r:-~!K
} Q;;ill:fij.’ EZ;’Vb
Oi 7 >R
> 1S TR
P 220, e
Xs') |
NI b

Let fn z 1/n, Vxe Sl. Now, {fn} > f in the ¢ Whitney topology;

fo ¢ Tys ¥, (because, by construction,our W, is such that the points

rrsee picture
PsPosecsPp oo have coordinates (xn;yg), where the first

coordinate refers to Sl, the second to R). Therefore Tw is not open.
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4.0 INTRODUCTION:

The purpose of this chapter is to show that the properties H1 and HZ’
necessary for the '1ift’' as in Chapter 2,are generically met in VTED.

It is trivial to show that H2 is generic (see 4.5), so that we will

concentrate our comments on the genericity of Hl'

In Section 1 we show that the genericity approach is necessary, since
the required properties are not always met.

In Section 2 we introduce some pre]iminar} material, for later
reference.

Sections 3 and 4 are devoted to the proof of genericity of Hl’

Section 3 deals with the problem of 'avoiding' separatrices
'immediately' after a 'catastrophe point'. This is in general a glokal
problem. It can not be coped with if n > 1 and we use only that f is

“generic (in the sense of [16]). This is because [16] gives us only a local
description 'around' singularities. However, if m= 1, only the local
problem arises, because the 'separatrices' reduce to singularities. There-
fore, in 4.3, the restriction n_=_1 is fundamental (though - see conjectures,
Chapter 6 - generalizations of our methods may be possible). A denumerable
closed union of (sufficiently high codimensional) submanifolds of 1%¢ is
built, and genericity is achieved through the transversality theory of
Chapter 3.

Section 4 deals with ‘'avoiding' Cf, just after meeting it, from the
point of view of our vector fields v ¢ V(C). This is a problem independent
of n, since it depends only on properties of Cf which do not depend on n.
See 4.4.0 to a brief description of the methods used there.

Section 5 shows H2 to be generic (one page), and Section 6 contains

some final and brief technical remarks.
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4.1. AN EXAMPLE

. — — P s f \z
y ¢ I3 5 &> x maximise >3

Before we give the proof of genericity of conditions Hl" H2 (1.2(5)),
we illustrate, through a particular example, what can go wrong. The vector
field below violates H1; this is equivalent to the fact that its second
expansion, v[2], is not transversal to a certain submanifold of RG.

Since we just want to exemplify a local problem, let X = R.

et C = RZ, f:(x;yl,yz)—?x4 - x2 + YoXs and v € V(Rz)’
XxC ¥—2>R

given by: v(ys¥p) = (1;1).

\\ \E\\ We will show:
’ . \ x\\\\ (1) v ¢ Vf (see 1.2(5))
a \ 4 Yz

(2) A 1ift ¢ with properties as in

\ Theorem 1.

\ . \&(;/33,):;,\ (the flow <I>y on the state space is given
N\
}\ NN CF\ by -vf ).

N
(1) Fix (x¥) ¢ oMz, J

2 ]
_ = : . We use the notation
X {yeRlxesepr}

— - = - is, in this case, the set of points where f
Jx.y Jf,x,y' Now, sep (by p y

has a maximum (see 1.2.(3)). Therefore:
A

3 oz y =
(4% - 27y v, = 0
J L—}.‘Zi{ + 2y1 >0

{ya = (-4%) + (Fy; (D ??

% 6X- (II)) This is just the green straight line (open at y).
yZ = 'yl - 1/2

For (x;y) = (1/2; 3/2, 1), one gets i , which (see picture)

is contained in 0;,(3,2’1). violating H,.
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(2) Suppose 3 such a 1ift. Let t = 0, m = (1/2; 3/2

3;/

From Theorem 1, (3),3e >0 s.t.
1/2 = nx(¢(o,ﬁb) e inset nx(¢(t,ﬁb), Y t e [0,e), where the implicit
vector field is -ny,y = Hc(¢@,ﬁ)) = Y(t,y) = (tot) +y = (3/2+t; 1+ t).

Therefore, with fy = X4 - (3/2 + t)X2 + (1+t)x, it is easy to check that fy

has a maximum at 1/2, vV t> 0, so that 1/2 ¢ in-set (*) = * = 1/2. Hence,
for t[O,e),Hx(¢(t,ﬁ)) = 1/2,therefore ¢(t,m) = (1/2, t+3/2,t+1) ¢ M" , @

contradiction.

A———

The trouble with this example is that the orbit of v marked 'r' (see
picture), after getting to P = (3/2;1), runs into J(%;P)' The way to see
that this can not happen generically is to associatc with each point, P in
Cf, all the 'second-order equivalence classes' of curves through P and
running into JQ@;P)' This has dimension 2, and as we let P vary in Cf, we
get in a natural way a stratified union of manifolds in R6 = TgRZ. The higher
strata has codim. 3, and therefore v[2] generically misses our stratification.
It is then possible to show that when this happens no orbit (through some P)
can run into J(.;P)'

These arguments will now be made precise, as we actually construct the
required manifolds for a (generic) fixed f. We will also have to tackle the

problem of avoiding Cf, which does not present itself in the context of the

above example.

4.2. PRELIMINARY DEFINITIONS AND PROPOSITIONS

Let f ¢ C (X x C,R) be generic, in the sense of Proposition 0 (1.2);

letn=1, r s 4.
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Let £ be the set of germs at 0 of C fuactions From R" to R,which is a local
ring (see [16]), and m = m it's maximal ideal. Let n e m2, and (c,nh) an

unfolding of n, h:R® x R 0 - R,0.

DEFINITION 1:

Given (c,h) as above, we say that (c+d,g), as defined below, is
(c,h) with d disconnected controls. (d = 0, an integer)
Rnx chRdh*’Rancr—-—-—bR
v 7 w
g: (X, Y, W) ——— (X9Y) — fl(x,y).
REMARK : |
It is easy to see ([16], pg. 39) that (c,h) is an universal unfolding

of n iff (c+d,g) is.

DEFINITION 2:

The standard r-universal unfolding, (r,g), of n is the standard universal
unfolding, (c,h), (where ¢ = codimension n) of n with d = r-c disconnected
controls. (For the definition of (c,h), see [16], pg.41; also r 2 ¢ - see
[16], 51).

We will have a partiéular interest in the germs (justification below):

X3 X4 X5 X6
n(x) =5 ny(x) = 53 ng(x) = % and n,(x) = %

After convenient choice of base for m/J (see [17], pg 19), their standard

universal unfoldings become:
4 2 5 3
gl(x,U)— + ux; gz(X u V)-‘ T+ 7Y -2-—+ vx,gB(x u V,W) _...+ U +V‘?‘ WX
6 4 3 2

94(X,U,V,W,Z) = 56"" U%- + v-x-§- + w.xz_ + z.
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PROPOSITION 1:

n=1

" r
Let (x,y) & Mg < X* " xR, n =1, r <4, There are diffeomorphism

(fibre preserving) germs y, T such that

R .
the diagram commutes and (r,q) is equal
/Y f to (c,gc) with (r-c) disconnected
R" x Rr;(0,0) ?anr;(x’y) controls, for some ¢ ¢ {1,2,3,4}.
IIr L,
| 4
Rr‘ r - Rr
Proof

From Proposition O (Chapter 2) we know 3 some chart (o U) (V

some i, in Proposition 0) around x ¢ X" ,\U‘ (p3id): U X R ~ ¢(U)’\x R' , With
X X R" R x R"

p(x,y) = (0,0), wlog, s.t. the extension map F:¢(d) x R > Ji____l induced by
fw’l is MQ on U, where Q is the stratification of 3 as in [16], Chapter 8.
So (see [16], pg 51), codn (= fw'lﬁnnx{o}) <r<4, Also, sincen =1,

n is right eguiva]ent to one of ncs(c = 1,2,3,4) above. (Note: we should
4 6 .
cons1der + f; , "%T3 %;- and - %53 but the distinction between the forms

' gns need not be nade in this context - refer to Lemma 4.12 in [16]).
One also has ([16], pg 51) that the germ of ﬁp is a universal unfolding
of n = nc.g, £ given by the right equivalence above. Therefore ([16], pg 43),

h = fxp'l. (5'1 x Id) is a universal unfolding of n=n_£. Now, (r,g) = (c,g.)
with (r-c) disconnected controls is also an universal unfolding of n.. (see

remark in Definition 1), and from Theorem &9 ([16])), (r,g) is isomorphic -

via some (9,9) - to (r,h). This allows us to write down the following

diagram:
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Rn=1 er,o - . >_ R
g
9 f
I n=1 r
r R" LR" 0-~T€KRXR O"‘“ﬁ? XR
g "xId w
\4
R",0
$ I, . (y = 0, wlog).
L v,
R0 — M R0
Y
[0

The proposition then follows by taking gq = fw'l(g‘lI)g and T =@ .

y is clearly fibre preserving, from the commutative of the above diagram. O
REMARK 1:
d o . " .

Me CDBMf) = sing x¢ (see [171, pg.15). Also, Mc is closed in X x C.

Cuk . _ d L
Indeed: M" is open in M, k = 0,...,n (2.1(12)) therefore MfCD aM;) = Mg -UM

o

is closed in M and M is closed in X x C (see 2.1(12)).

PROPOSITION 2:
Let S (xf) = s1ngu1arity set of . (notation as in [4]) [=——=

remarkl. d
=== W =

:)aM;}. Then, Sl(xf) is either P or a cod. 1 submanifold of Mc.

Furthermore, suppose one has defined S1 (Xf) and it is a codimension ®©

submanifold of M.; then S, 1 (xf 1(xf) is either @ or a
- eFl e
cod (e+1) submanifold of Me- ’

In other words, one has a sequence S)(x¢) 2... 25; — ;(x¢)> ...> 51,__.,2(*
b‘T“

each of which is a cod: 1,...,e,...,k=-1 (respectively) submanifold of Mf,the
last set (S1 1 (xf)) being either @ or a codimension k submanifold of M.

k
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Proof
Suppose Sl(xf) 0. Letm= (x,y) ¢ Sl(xf)' From Proposition 1, 3
diffeomorphism germs (at 0) v, , with g = fy = 9. * (r-c) controls. Since
. . . -1
y is a d1ffelaomorph1sm, one has MfY =y (Mf) (germ equation), and
S1{xg) = ¥ (51 (xe)).

——— ]

Now (see [16], Lemma 7.6) Mg = M; er—c’ where M;: q
. c

Construct the map 6:R x R:: +R x lRf as in [17]1, pg 16; it is a
\ \
m/J m/:nJ

diffeomorphism germ. One has the following diagram commuting ( h = fy(e'l x 1)).

-1 -
RxRCXRY'--C 8 "x I 7RXRCXRr-C Y ?XXRC f .
J _
RC | \/ U/
4 _ -1 —mCuml-C Y/M
Mh’Mrf x R"-C 0 xlﬂdh ___7M9—M\g><R g ;Mf
L A .
Xp=Xp * 1 XgXg * 1 X¢
RS x R™-C - I — >R x R™C_ T }Rr
By computation (see [17], pg 20 for the case ¢ = 2), one gets;
¢_ _C,-1,,cnC )
Xp xg.e /Mh']R o' as:
r(fo]d) c=1: a ———y -a2
(cusp) c=2: (ab)—> (2a-3b2; -2ab + 2b3)
3
(swallow 2 3 2 4
tail) ¢c=3: (a,b,c)~> (3b-6c”; 2a-6bc + 8¢~ ;3bc"-2ac-3¢c")
(butter" 2 3 2 4
kﬂy) c=4 (ab,c,d)?(4c-10d";3b-12cd+20d; ;2a+12cd"-6bd-15d ,;
‘ w v ™

2ad+3bd>-8cd>+4d?)
¥ 4
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. -1 . . .
Since 6 ~ x I is a diffeomorphism, Sl(xh) = (8 x I)(Sl(xg)) = (8 x I)y'l(sl(xf));
. -1 |
j.e: I : i i

(6 x I)y 154(x¢) Sl(Xf) > Sl(xf\) diffeomorphically. Now

_C c -
Xp = Xp * Ids so that S,(x,) = S,(x) x R™C. From *, by computation, one
sees that a point in R® is singular. for Xﬁ (c = 1;2,3,4)(—_:.) a = 0. That is,
Cy .

any case Sl(xh) is a cod. 1 vector subspace of RS.", Sl(xh) is a cod.l vector

r -1 r
subspace of R'. Therefore the. chart (8 x I) y /Mc takes Me to R and Sl(xf)

to a cod. 1 subspace of R%. Since m e Sl(xf)’ this shows that SI(Xf) is a
.cod. 1 submanifold of M,.

f
We have proved that Sl(xf) is either @ or a cod.1 submanifold of Me.
Suppose Sl,l(xf),’}m moe Sy 1(xf). One can once more consider the diagram:
Cy_pnC-1
1 bR = 5,05)
/] P". ' 1'Ag e -
S41(x )=Mc'1x R ¢ e'lﬂ\lwu————-—-;a ' Mool orec (1)
1h! Th S =M R
/Sl(xh) l(Xg) Mg i — Y/SI(Xf)—’Sl(Xf)
-1 c-1
Xn/ = Xp X I Xq *1 X¢
Sl(xh) I /Sl(xf)
Rc x Rr-c o I > Rt: er-c r | > Rr

Since}(i)l and|(ii)} are again diffeomorphism germs, one has, by the same

method> as above Sl,l(xn) xR™C = (6 x 1) Y°1(sl’1(xf))

1
c-1
Now S, ( c-l) are computed by discarding a (i.e. setting a=0) from * (this
1'Xn -
eliminates folds as candidates) and investigating where the Jacobian drops
rank by one. This occurs iff b = 0 (c = 2,3,4). Therefore (8 x I) y'lmf
r-c _ c-1 r-c _
sends Sl,l(xf) to Sl,l(xh) x R S]_(x,.l ) xR cod.1l subspace of

)
Rc-l
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c-1 -
R x R™¢ = cod.2 subspace of Rr, therefore S1 1(xf) is a codimension 2

submanifold of Mf. The rest of the proof follows from the fact that

setting: a = b = 0 = Jacobian drops &> ¢ = 0; a = b = ¢ = 0=» Jacobian
drops¢& d = 0 and a straightforward repetition of methods as above. ad
PROPOSITION 3: L

. — 2

. d .
Given m = (x,y) ¢ M, 3 Z, neighbourhood of min X“x Rr, s.t.
3 .
Z o ({x} xR") a M is a submanifold of X"x R".
Proof

- : r
We have Xf IIr/Mf singular (Remark 1), therefore 3 v#O0e Tmech(X xR
such that T x¢{v) = 0, therefore Tl.(v) = 0. Let (VI’VZ""’Vr) be a base for

T ({x} R') e T (X xR"). I = N/{x} R is a diffeomorphism. Therefore

Tmnx is an isomorphism.

r
If v(#0) = ¢ a;Vys then, Tmnx being isomorphic,
1

»
f"}AR one has: Tmnr(v) = TmTl';((v) # 0, a contradiction.
Therefore (V’Vl""’vr) are @.4. in Tm(X x R");
so that:
ry - r :
Tme'l"Tm({x} xR ) Tm(X xR ), i.e.

{x} x R" A M1= at m, hence in a neighbourhood
Z of mj Therefore (from Theorem 4.2 of [41)
Zn ({x} xR} M is a submanifold of X x R'.

a

PROPOSITION 4:

Let X be a LindelBf manifold (i.e. every open cover of X admits a

denumerable subcover), Y a manifold, h:X > Y an jmmersion. Then h(X) is a

denumerable union of submanifolds of Y.
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Proof
Let x ¢ X be fixed. From Proposition 2.10 of [4],-3 neighbourhood Ux
of x s.t. h(U_ ) is a submanifold of Y. {U,} admits denumerable subcover

{U;}, h(x) =\T)h(Ui) and each h(U;) is a submanifold of Y.

Note: h/U, :U, -~ h(U ) is a diffeomorphism. (see [4]). O

LNBTATION: We now fix notation through the following:

REMARK 2:

Fix f. Let S;:=—e—xS.(xe)s...5S ¢ § (x¢) be
1' ' 1 f ? ,.1’-00 1. 1’--- le
O S ;

as in Proposition 2, and define Mg = S1 1° S

e N |

(esk+1). Then

e e+l
{Mg}e=1,...,k—1 is a stratification of Md(=Sl(x)), in the sense that
a_ kKIg d . |
MY =\ Me (disjoint), and each M, is a cod e submanifold of Mg, with
k"l d —"a'

- d = - 3 d = -
}‘_,/ M; = (Me - Me), e=1l,...,k-1. To check this, let m ¢ M1 S1 Sl,l'

Then the c in g, (Proposition 2) has to be 1, otherwise m e S,.1> and

therefore the chart (8 x I}y'I/Mf for Mf shows, as in Proposition 2, that Mg

is a codimension 1 submanifold of Mf. The proof for Mg is similar. Now

1351 °

51’ since our local charts in Proposition 1 show that
s =>meT. therefore (8 - M) = S.-(5.-5. ) = S, . =7 1d; again
Mme Sy =7 Me >, theretore {1y - Ty 17°17°1,1 L1~ e g9a

a similar proof shows that the result holds for e = 2,...,k¥1. So that

d d . c e as

AM} s M =S - S : is a stratification
e‘ e=1’c.o’k-1$r & '_1,_ ...’_1_.1 h—..__l’...___.l,l
e-times (e+1)times

of M.
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REMARK 3:

Proposition 2 above is a straightforward consequence of the global
fact that f is generic (Proposition 0 of Chapter 2), plus the local fact
that at any given m ¢ Mf, the stratification germ induced by Xg On the
manifold germ of Mf at m is just the canonical stratification of
m2/mk (k = 3,...,6), ([17], pgs. 14/21), since we are dealing with n=1.

It was to 'expect' that Proposition 2 should hold anyway, since it
is generic for maps xf:Mf >R" to have the 51,...,1 singularity occurring

as k submanifold of Me (see [4], Chapter VI, §5-Thom Boardman Strat).

4.3. CONSTRUCTING THE SUBMANIFOLDS CORRESPONDING TO M (See 1.1.(4))

———

We will be interested in patching together fibres consisting of
e~-tangent bundles of submanifold germs, over a submanifold of X x C. We
first need some definitions, to give the words above a precise mathematical

meaning.

DEFINITION 3:

N

Let zbe a manifold. Two submanifolds z and zz are equivalent
at p eZiff = N, neighbourhood of p in Z, s. t.; nN-= ZZ n N. This

is easﬂy seen to be an equivalence relation. A submanifold germ of Znear
2N\ .
p is one of these equivalence classes. Notation: Q,p, where Q is some

representative.

d
ﬂwi]l denote the submanifold germ of (X x C) at me M, m = (x,y),
r .
generated by M= Z n ({x} xR ) n Me, as given by Proposition 3 of 4.2.



L E3R° REMARK 4:

N\
We will call B,m the 'C-cross section of

Z“QW‘#)'\M‘ Mc at m'.

DEFINITION 4; Define
N A
C:-/E”-/- T(Q.p) ={ a ¢ T%Z| T representative,

e
a:1 L, of &, Qof Qup s.t. a(I) < Q p=a(0):

%

REMARK 5:

Vool
AN -
One can also use the definition Te(Q,p) = Hel(p), where I, I:e:TeQ*-» Q*,

* AN
induced by the representative Q of Q,p, can be defined in a natural way
(see 3.1(5)). It is easy to check that this definition is independent of
e e, 2N\
representatives and that T (6,\p) = T-(Q,p).

REMARK 6:

Pl
If Q is a submanifold of%, then TeQ = Te(Q,p), where Q itself
peQ

is chosen as representative, everywhere. This is immediate from Remark 5.

DEFINITION 5:

«(0) -

Ne) = {3 « T2, ) M, < T5(X x £).
since MeM, R

Nel = T° xeMel) < T°(c) = T°®).
ol(e) '

i’

W, [e]= (@ « Mel|m < M;j}i 1sisr. -

nlel= Tyl

PROPOSITION 5:

M™e] and "i[e] (1 < i s r) are submanifolds of Tefx x C), of codimensions

equal to 2(e+l) and i+1+2e, respectively.
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Proof

Let «fdkm e MLIe] (M, [e]), m(e M$)= (x,y), and, wlog, y =0 ¢ C =R".

Our first aim will be to construct a local diffeomorphism,

C: cross-sechion H:Vv -—> H(V) , V a neighbourhood
p( of Mg at m N N
XxC,m XxC,m

of m in X ¥ C, with the property of
straightening up Mf, j.e.:

H(V n Mf) = H(V) n (X x (Tinear subspace of C})

Let C' = Tm(xf)(Tm("f)) c TOC = C (from now

on we will not distinguish between

T,C and C).Wlog, C* = {ylyr = 0}, since C'

Pictuia L /, is, in any case, a cod. 1 subspace of C. This
js so because, m € Md being arbitrarily fixed, Tm(xf) drops rank by precisely
one. This is easy to check from the local forms as in % (4.2(4)). One gets

the Jacobians:

[-Za] ; F_] -} ; [03) - 0 4|1 ., with the minors underlined

* and 3 ' having det. # 0, as wished
) cev el (V a,b,c,d)
gl 52
Let 2 = {yly; = ... = ¥,y = 0}, so that C = ¢! x ¢ (notation: y = §,.,))

1 by

Define s:nchxc + X xC
(xypsy,) > Oy
We claim that (with m ¢ M?_.)Tm £ is an isomorphism. First, we note that if

1 2 _ -
(V;VI;"";Vr-l;vr) € Tm(Mf) cT,X@ TyC ;) TyC =T, (X x C), then v, = 0.
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#0
. ey
(Otherwise T xc(vq5...5v) = (vq5...v,_;5v.), contradicting the
definition of Cl). Since dim. (T (Mf)) =r, it follows that T (Hf) =
1, 0 -
TXXQTyC ® {0} —Tm(XxC).

Let u € Tm(X X Cl). Therefore, w = (us0) ¢ T (Mf) Hence, if o
represents w,o:1 » Mf,a(t) = (ax(t);al(t);az(t)), one has

(o, (0)305(0)505(0)) = (u;0).

Therefore T_ E(w) ((ga) (0);(&a)! (0)) = (a (0),a (0)) = u therefore
TmE is surjective, hence an isomrophism, since dim Tm(Mf) = dim Tm(x x Cl).

Pid’unz )
From the Inverse Function Theorem, 3 neighbour~::

UofminXx ¢l (which has been confused with
T (X % Cl) in picture, because we are drawing

X linear), and

h:U-*h(U)c:Mf,

)\y
——" Cv = i = 3
‘fg;/’“ﬁ J/, smooth and such that hg 1d/h(U)' Eh = id/U.

2

Set III:X x C»> X x (:l (so that nl/M = ) and IIZ:X xC-+C
' f
(x3y,3Y,)  +(x43¥;) (%2¥75¥5) * ¥,

d

Note: bIn the following M? can be substituted everywhere by M"; where 'codimension’

appears set i = 1. |
d
M? is a cod.(i+1) submanifold of X x C, so that 3 w, neighbourhood of m ¢ Mi
inXxCand n: W *ﬂerl s.t. n(wn M?) = n{W) n A, where A is a cod.(i+1)

linear subspace of R 1

Choose V, neighbourhood of m in X x C, small enough so that V < ¥ and

Veclx 6% c X x C. (see Picture (3) next page).
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Define H: VvV  ———s H(V) by

(X3y13%5) ——— (x3y;3y, - (ohiy ) (x4 3%,)

This is clearly smooth, since Hl ,II2 and h are. It is well defined,
. 2 '
since Ve« U x C". Let now: O : H(V) ——>» O(H(V)) be defined by:
(x3¥739,) V> (x3y13y, + (MhI,) (x5y,5y,)

also well defined, since H(V) ¢ U x C2, and smooth, for the same reasons.

Now

MH{xsyy5¥,) = (x3y139, = () + WhM (x5y,5y, - (+))) = (x;y,;yz—(-)+n2‘h(x;y§)) =

(x;yl;yz) therefore [H = I/H(V)’ OH(V) = v.

Also HO = I/V therefore H is a diffeomorphism V -H(V)

Furthermore, if (x;yl;_yz) € Mg, then

n, M ‘
[ ] . . 1/ f L] h . . II
L . .

since hg = I . »

b (yy37,) ——> (x3930), 1.e.[H(V n 1) = (V) o (X x ¢! x (O})

The rest of the proof is quite simple.
By means of 4, plus a diffeomorphism
to straighten M?(Md) as well, we will be
able to pmducé a local chart for

T8(X x C) sending M. (e] (WMle]) toa .
We ke Hnear subspace of Rr(e+1)’ the model

Uuc>  for T5(X x C).
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We first remark that since H: V - H(V) is a smooth diffeomorphism,
then TSH:TS(V) > T8(H(V)) is also a smooth diffeomorphism (see Proposition 3,
3.1(e)).
Note: Te(v) is an open submanifold of Te(X x C), containing Q

Mow, since X is a mam'fo]d,a 'YL » neighbourhood of x in X, and
6 = Vgid with ¢ = bxid: M, xC —— o 6(MxC) cRxR". W.l.o.g.,
one can suppose H(V) < Y, x C (otherwise reduce V conveniently). By abuse,

denote ¢/H(V) again by ¢, so that, from now on, ¢:H(V)——-——} oH(V) <R x R".
N .
Let ¢ (a diffeomorphism)be defined in the usual way (see 3.1(k)), i.e:

b ¢ TRH(V)) ——> R™1 xR™ < . xR

A e
X > (s(x3yp3v,) S0, d‘ﬁ%l*o))

.9
We claim that: RHI _
" ,____e_tmes..___‘
gTeH, TV  —— ¢H(V) x ]RHIX .o X RNI , sends
W J U

TeUnTil, [e] to . ¢H(MgnV) x (0} xR"™} x {o1)®,

fe.  o.T (T8 [e], = vy x (10} x R™L < (01
LHS | T ORHS

Indeed:
~ N .
LHS < RHS: Let a ¢ TV aWllife], m = a(C). Hence TH(8) = Ha, with
e
(1) < {x3 x CLx (01, Now & () = (n(m); 4y, ; dLBal())
* ® ' dt dt
If Ha:T >R x R™1 x R is denoted by ((¢Ha),;(oHa)y;(dHa),)

e
then © implies %d(wa)x(o) = .= d—ﬁg-")« (0) =0,
A e
{d(Ha)y(g) = ... = SAHaly (g) = o
U gt dt
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n A
so that ¢.TeH(a) = (¢H(m);0,...,-0;...;0,-,..-,0), as wanted
N |
RHS < LHS: Let T = (m,v ,...,v ) e ¢H(M? n V) x ({0} xR"™! x {o})e,

with V= (05-5...3-30), s=1,...,e

¢'1(t) = §, where 8 is the equivalence class of

B:1+Xx C (I suff. small)
A e tJ
t+-¢ (m + T —l——-) (see 3.1(4)).

j=1 j!

- N,
Let (x,y) = ¢~ 1(m)
It is easy to check that B(I) < {x} x C1 x {0}
Therefore $'l(r) B e TSH(TSV nm, [e]) with g(0) = '3 Qn) therefore

3o M) = te 8.7 (1% T [e]).

Finally, denote n/V. (V < ®) also by n .
Then, we have:
-1.-1 . d r-1 . e r-1 €
nH ¢~ x Ix,..xI: d)H(Mi n V) x ({0} xR ™ x {0})" = n(V)nA x ({0} xR ~* {0})
L——.-’—-——--——‘-'
e times _

r+l

where A is.a linear subspace of R ~, of codimension i+l. Therefore, the

Tocalvdiffeomorphism
n,
= (nH" 1 -1, Ie).¢.TeH sends TS v n1ﬂli[e] to a codimension (i+1+2e) linear

subspace oij(r+1)e, as we wanted to show. 0

PROPOSITION 6:

There is a denumerable open cover, ;i = {U‘%} - of H‘i’ (i fixed)
Jj=l,....n,..

such that, for every Jj:
d(MJ) is a cod.i submanifold of C, where MJ Mg n u{.
i

R
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Proof

This is an immediate consequence of
Proposition 4 plus the following facts:

d . .
(1) Mi is Lindelbf. This is so because X

(compact, metric, therefore Linde18f) and

C=R" are Lindel8f, and therefore so is

d .
M, a (topological) subspace of X x C.

(2) xf/M:.j is ap immersion: M? | —_— S S

1,...,1700,0..,1 == 51,...,1
i times (i+1)times i times

- s1'ng.x1_./S
1,...,1
i times

so that X¢ has mgxima] rank on M?. , 0

COROLLARY

= a denumerable open cover ): = UE = {U‘g} of Md with the property
i

that N’% (as above) is a cod.i submanifold of C, ¥ i,j. Also Xf/tf’”% - N‘g
is a diffeomorphism (see note to Proposition 4).

L=l

W.l.0.q9. U‘} can be supposed to be so small as to satisfy Proposition 1
for some local diffeomorphism. = |

Our next aim will now be to show that we can decompose¥l{e] in a
denumerable number of (sufficiently high codim.) submanifoldsof T°C. For

this we need some further definitions.
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We recall that:

J_ J
Nj Xf/M? (M),
Jj - ud J

Mi M_i n Ui

DEFINITION 6:
mg[e]

@ e Mte1]0(0) = m e M1 M fer = 1° y (mife)

Note 4: It follows immediately that M[e] = umg[e] Jlle] = Ung[e],
j 1,J

- 14

M e = UMer, Moer = UNdier. w

Ple] = {0 e T%(X x C)Ta(0) = m e (x,y) « Me. & admits representative
a:] - X x C such that a(I) < {x} x C}. P lel and~P§[e] are defined analogously.

Note 2: ML (el cPle] ¢ TS(X x C). »
Note 3: It is easy to show that Plel(P;le] #i[e))
is a submanifold of Te(x x C). m

PROPOSITION 7:
TLile] is a submanifold of 1°C, V/ 1,5 Fixed. Cod. (M]lel)sers

Proof |
The idea of the proof is to express N\[e] as P(We]), where P is

defined below in a way which makes it easy to check that P(m‘l}[e]) =n‘1¥[e]

is a submanifold.
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Let P be given by the diagram:

e times

Ple] G > MY xR'x ...xR"

where G is defined as:

GPre] - MI

" e
a..(m;%%(m;...; “—-g(o_n,

e times

r‘.\

xlerx ..;XR

CI{x} x C

where o represents a and B:I + C is given by I.........,{x} X 0 ~———y c
B8

(easy to check that definition independs of representatives). It LS ea.syfa shaw
thil G is a diffeomorphism. And S0.is . G} = = G/wtel. pitel»Mi o M
Also, from the corollary above, xf/M MJ > Nl is‘a. d1ffeomorpmsm so is
3

I/l’lre andI /R ij ecR x R 1o its image. Therefore, PJ I /R (xfo‘G:

T e

P}[e] *P%(P‘g[e]) is a diffeomorphism.
Now, MIfe] is a submanifold of Pile], so that PI(Mjlel) is a submanifold

of T5C.

It remains to prove that Pl‘j(‘m:]i[e]) = 'ﬂ«‘}[e]. (The same argument as below

also shows P(iel) =Mlel).
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)

. 1y » i : ' j e
To see this, fix a e‘m;l?[e]é(o) =M e M?)}G(':( ) = (m;%B—- (0);...; d——S—(O)), with
t dt~

B : I~*——3>{x} x C —-—*ﬁ;‘~ﬁ> C, i.e. B = X9

. N d ' d® n_
Therefore, (x./Mi) x 1)6(a) = (y ; —(3?){0);...; d_f_x_g_)(o)) —_ R R 4} -
N, dt
NS
b

= TeXf(&), therefore Pi.'(_'m;?[e] = 78 Xf(mi_i[e]) ='Ul‘2{e].

Finally, since P‘g is a diffeomorphism dim(ng[e]) = dim (m;?.[e]) =

by
m dim (T8(X x C)) -(i+1+2e) = (r+1)(e+l)-(i+1+2e) = r(e+1)-(e+i). Hence
cod m‘}[el) in T5C is r(e+1)-r(e+l)+(e+i) = e+i. 0
COROLLARY:

MNlel is a denumerable union of submanifolds of TSC, each one of which

has codimension 2 e+l.
PROPOSITION 8:
Tiel, YLie] are closed in T8(x *x ¢), T8(C), respectively.

Proof

) First, we show that T[e] is closed in Te(X x C). Let i ;kﬁ > m = ok(O),
be a sequence inT [el, converging to de T8(X % C). Now, let (¢,U) be some
chart for X x C around m. 'L\I‘ (def. as usual) is a neighbourhood of ; in Te(x x C)l
therefore &k € u for k suff. big, therefore m e U, therefore m -+ m, since U
can be taken arbitrarily small. Now, with n,®, V as in Proposition 5,

2:78(V) niMre] - (n(V) n A) x ({0} x R™"! x {01)%, Kk suff. big

&k > (n(mk);(O;V'{;O);.. .;(O;V';;O))

So @ &k) - (n(m);(O;vl;O);...;(O;VQ;O))'therefore,& € o@herefore aeWel.
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Plel is shown to be closed in Te(x x C) in the same way, therefore

rb—
e c]ogeda’[e]‘ Now P = I 1/JRY'(xf/l“'ld x I)G is a closed map, since

Prop.7

Xg:Me > C is closed (chapter 2) and Hdclosed i_"Mf; therefore P(mie]) Y le]
is closed in TSC. 0

COROLLARY

—————————————

Let e > r be fixed. Then ¥l[e] is a denumerable closed union of
submanifolds of Tec, each one of which has codimension >r+1.
Proof

Use Proposition 7 and Proposition 8 above.

PROPOSITION 9:

Let e 2 r be a fixed integer. There is an open and dense set Be of

N
vector fields with the property that v[e](]Rr) Miel =0, Y ve Be. V(er).

Proof
Define Ag =M dte1 n A, AP =Tite) o A%, W = s‘l(Ag),wg'c = s‘l(Ag’C),

where A, S are defined as in Chapter 3.

Since Ag’c nA=90, w;.i’c is a cod(é+1‘) > r submanifold of Je'l(R',Rr)

) i 1
As in the proof of Proposition 8, Chapter 3, we have N‘} = N‘] x {0} x Be:r R

where N:}i has 1cc:dimension idin ]Rr, and {0} codimension r in r" ; therefore Hg

is a cod.(r+}) > r submanifold of J¢~1(®" R").

let W = \J (wJ UN‘] c) (denumerable), each NJ NJ »¢ a submanifold of
i.J

J"I(R R"), with cod > r.

vow =\ (s7HA]) o sTHAP D) = s al€) = U s fe) -
i,J 1, i,J

‘1( U“J[e] =S 1(’ﬂ.[e]), closed, from Proposition 8 above.
i,



Set B =T, = {vlje'lva(wg and N‘}’C, v i,j)}. This is open and

dense by Lemma 2 in 3.3(2). Transversality with these relative dimensions

means i€ lv@®R") o W‘g = @ therefore j& 1y (R") aw = P, where W=5.'('ﬂ[3]),

J,C
W3
R’
Since je'lv/ vie] commutes (3.2(1)), we therefore have v{e](R") nPlle] =
Je-l(]Rr’Rr) S R" =0, V Ve Be' O

PROPOSITION 10:

Let B = Br’ as above, ve B, y ¢ Cf, arbitrarily fixed. Thenje » 0

s.t. Mf y " Oy(e) = 0.

(Note: this accounts for part of Hl; the 'rest' of Hl’ i.e., the 'Cf part',
will be dealt with in 4.4, so that we will conclude that H1 is generic).
Proof

Since n=1 it is easy to see that x ¢ sep (_—ny) =» x is singular

-Vfn).
for ( fy)

.

~ Therefore, if e > 0 s.taaI (({x,} x C) n M) n O (e) = 01y oo

over all t such that (xt,y) € Md, then one also has Mf n Oy(e) = 0.

Y
It suffices to prove * for a fixed m = (x,y) e M3, since g ey, s

is finite. ,
d ,2 , ~ -~ -
Let m = (x,y) « M. (B) e WL(rl,with B(0) = y&P38 = X¢a where a
admits representative a:I + X x Cs.t. a(I) « Z n ({x} x C) n M, Z some (open)
neighbourhood of m in X x C (see Proposition 3). Since Y = nC(Z n ({x} x C) » Mf)
is a submanifold of C (directly from Proposition 3), y ¢ Y, 3 (open) neighbourhood

V(cltc(Z),wlog) of y in C and
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$:VcR —> ¢(V) <R

VoY —> ¢(V) 0 {(ys...0y,) € Cly, = 0}

(\ J
RY‘

Let us now consider v (= v[ri(y)), where v:I + C be a solution of v through

Y(0) = y, with y(I) c V. Let ¢yi=———x= (¢v)1;,,,; (w)r).

Claim:
J .
d (¢Y)r(0)=# 0, for some 1 < j < r (may be more than one j),
dt?
Proof

Suppose this is not so. Consider

n(t) = ((¢v)4(t)5...5(ov),_1(£);0); by supposition, n v ¢v therefore

AA A~ S |
n  =¢y . Hencey (= ¢ "n) admits representative ¢ 'n, satisfying

¢ 'ln (I) e Vn ¥ (since n(I) < ¢(U)n'{(y1,...,yr)Lyr = 0}). Setting

a(t) = (,(£)507In(t)), we get a(1) < Z o (x} x ) n M, with § = Xgb

s .
{x}

so that ; e Y1 [r], a contradiction to the hypothesis of v ¢ B (see

Proposition 9).
It follows from the claim that (¢Y)r is j-determined (if j is the

smallest integer for which the claim is true). In the same way as in

Proposition 9 (3.3(3)) it is easy to show that, wlog, we can suppese (¢Y)r(t) = tj,

for small enough t. Therefore, for conveniently small € and |[t]| <¢,

(dy)(t) n {(yl,...,yr)lyr = 0} = P, hence

t#0
lt]<e

/
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V() n [(Va¥)1 =9 >y(t) n¥Y=0=50() nT ({x}xCnM)=p
ty0 y ¢ f ,
t#0

ltlee |t|<e
as we wished to show. 0
COROLLARY :
3 open and dense set, B ¢ V(Rr), with the property that,§f Vv e B
i VyeCfS
fixed, J € > 0 s.t. M1_.,_y n Oy(e) = .ﬂ.

f:

4.4. CONSTRUCTING THE SUBMANIFOLDS CORRESPONDING TO C

4.4.0 INTRODUCTION

Let f:X «xR—> R, (we won'tibe using that dim(X) = 1 in 4.4, see 4.0)
where X i's compact, r s 4 s fixed. We will now tackle the problem of
proving thaf having orbits with the property of "isolated intersection’with
respect fo Cf(v/f\ Cf) is a generic (open and dense) property of vector fields
inR". |

To this purpose, we ;benerate', from each of the different strata of
Cf, a denumerable union of submanifolds of TrORr) szr(r+1). In order to be
able to apply our earlier results (see Chapter 3) we need to do this in such
a way that the following conditions are met.

.t{1) Each submanifo]d has to have codimension bigger than r.

(2) The union of all submanifolds must be closed; this union,

in the notation we use in the proofs below, will be the sat

cirl (r = 1,2,3,4).
(3) If vir}(R") n C[r] = @ (we will prove this to be generic)

then vAC,.
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Before we give the formal proof, we would like to explain in a few
words and in a very loose way how we have been led to the solution presented
here; we feel that it is important not only to show that things work but
also why they should.

We first tried to define our union of submanifolds of TrﬂRr) by
crushing, via Tr(xf), what we knew to be a closed subset of Tr(X XiRr), i.e.
Tr(Mg). This was good enough as far as condition (1) was concerned. But
closeness failed.

Our next attempt was directed towards 'correcting' that definition.
The idea would have been to work out the closure of each union of submanifolds,
corresponding to each distinct strata, and perhaps try to 'close' those sets
artificially. This, on one hand, proved to be an impossible task, since those
closures were far too complicated; and, on the other hand, it seemed that
the crushing process was too rough to preserve the property of isolated
intersection. (i.e.,one needs 1ifts to X x C to He able to prove (3})).

We therefore abandoned the whole method althogether, and tried the

-

following strategy:

© (1) Work out, on a case by case basis and 'up to the codimension
required' [(r+1)] - hence satisfying condition (1) -, which
conditions would be fulfilled if a curve o, through a
point y = al0) belonging to a certain strata of C., is to
run into a smaller codimensional strata (or into this sirata).

See appendix for details.
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(II) Try to show that if one has a sequence of curves'{qn} > a
(this is made precise later), through points Yy = dn(O)
belonging to the smaller cod. strata referred above, with
Yp Y then the conditions set up in (I) are met by o.

From an intuitive point of view, it seems likely that one
would get away with this proof; besides, this would take
care of closeness - condition (2).

(111) From the set Clr] cooked up by avoiding local conditions as
in (1), prove condition (3). This is a reasonable conjecture
since in a sense a certain 'converse' is true: if a curve runs
into the smaller cod. strata (which is the basic non-trivial

conditicns
problem that can happen) then it satisfies¥as in (I).

This idea works. It actually allows us to fulfill (3) and, at the
same time, force at each stage the union of submanifolds corresponding to
~each strata to 'close' the union of submanifolds relative to the strata of
immediately smaller codimension, without ever having to work out its closure.
Since we go 'up to the cod. required:- (r+l)' we are really exploiting to
the 1imit the existing room inIRr(r+1) (r=1,...,48).

As to the way we present our results here, the solutions corresponding
tor = i,...,4 are given in succession. It turns out that the proofs are in
a certain way 'cumulative', each new r presenting the problems of the preceding
r with a further degree of complexity, plus a new problem, inherent to the new
dimension.. |

Item (I) is explained in an appendix, since we do not want to mix up
the intuition which led to the method with the proof that it works. The
definitions 'generated' by (I) (thase of the cg[e] - see below - 1 s e s &,
i=1,...,e, j € N) are given in the items 'A' of 4.4.1,...,4.4.4 below.
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Items 'B' are essentially about (II); one needs, however, a certain amount
of technical work to reduce the global problem to a number of 16ca1 cases
and then each one to canonical form. (III) is proved in items C.
The case r=5 is not done here, mainly because the amount of technical
details would probably render it unbearably boring to read and to write,
besides not throwing any specially new 1ight into the problem. We remark
that it is easy to work out (just use same methods as in appéndix)what the 'intuitive
conditions coming from (I) should be in this case, though,of course, we

make no claims of having proved this case.

4.4.1: The case r=1

A. Definition of C[1]

Let S be as in corollary to Proposition 6 (4.3(3)). Since r =1, one
has ﬁ = Fl’ N‘;={yj} R VjeN

set:  diy = T < T'R)

Note: here we view Ni as a 0-dim. manifold; T1 has the usual meaning

pefine: ¢ (11 = U c{m
jeN
and,  C[11 = GI1

B. Closedness of 6[1]

PROPOSITION 11:

C{1] is closed.
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Proof

If ¢ is chart for a manifold M, we re-all that $(=$e) is.a chart
for T°M (see 3.1(4)). Take ¢ = I, the identity on R. Now,
?(C[l]) = Cf x {0} <R", which is closed because Cf is closed; hence, the

proposition is true. g

C. Genericity of v, B\ Ce

PROPOSITION 12:

3 open and dense set, B ¢ V(R), s.t. ¢ =~ ve B=3>Vv[1](R) n C[1] = P
Proof | ,
befine V) = sT1(c)[11) (see Chapter 3, for definition of §). Exactly
as in Proposition 9 (4.3(1})), one sees that V{ has cod. 2. Hence
B ='{v|j°v 2R‘V{,V3} is open and dense and v ¢ B = v[1](R) n C[1] = @, in

a way similar to the above mentioned proposition. g

Note: The case r=1 is by far the most trivial case; the proof of theorems
as above will be similar in the cases r = 2,3,4. We will give fuller

details there.

PROPOSITION 13:
If v ¢ B, as above,. then vi\cf.

Proof

Let v ¢ B be fixed.

C.={y,} . LetyeC.. Hencey=y., some jeN. Now, v[l1](R] o C[1] = @ =
f Jjew f J

> v[l](xj) =;é'(a solution of v through yj)
i e
Therefore da/dt(0) # O, and so de>0s.t.{alt)] t#F0 } o {yj} = @, as wanted.
O



COROLLARY:

If f:X xR +R is generic, 3open and dense set B c U(R)s.t. v ¢ B =D
= v Cs

4.4.2: The case r = 2:

et = B, v, (see 4.3(1)), 8. = wdy |, B. - wd} . and
¥ P ?’2 ﬁl TS Fz 2’5oy an

recall that N‘% = )(1,/M;.j (M‘g) is a submanifold of C =]R2, Vi,j fixed.

In this case Ng, j fixed, is just a point, say Ng = {yj}, while N{ is a
submanifold of]R2 of cod. 1, i.e., a 1-dimensional submanifold.

A. Definition of C[2]

Let i and j be fixed.
[Picture illustrates the

case r=2 and i=2, showing

how u% n.Mf it is mapped

into the cusp, in its standard

]

17 \ form - see also the definition
’
/{c}% of g,, in 4.2(1)]
“
A

o | r
C v .
Y .

Rﬂ.

We first recall (see Remark to Corollary in 4.3(F) that 3 v.T,

diffeomorphisms (corresponding to (j,i)) making the above diagram commutative -
(for a precise statement, see Proposition 1, 4.2(1)). These are nat, however,
unique. This means that every definition which depends upon choosing y,I s.t.
the diagram commutes must be shown to be independent of that choice. For

the rest of 4.4, the letters y,I will be used for diffeomorphisms as indicated

above.
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We will give below a set of definitions which involve a choice of

v,I's we prove then that they do not depend on the choice.

DEFINITION 7:

n,
We first recall the definition of I.

n do e
I:a6e¢ TR + (a(0); E;(O);...; QQE(O)) € Rr(e+1)
dt
In this particular case,
~ 2
n,
T:ae T8 » (a(0); $X0); -3—%—(0)) < R°
t

We now define, for fixed j:

dizr = () < TPR%)

n
T°r 17 H(0,120),

J
¢512]
where T corresponds to (j,2),
A 6 _
Q2[2] = ﬂ&l,...,xs)dR Ix1=x2=x4-0}

;121 = Yda)
jei

¢,l2] = chm, and
3N |

A

Ci2} ‘= C1[2] U.CZ[Z]
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The rest of 4.4.2,A, will be devoted to proving independence of
choice in Definition 7.

We will fix some notation, before we prove independence.

Let g_ be as in Definition 2 (4.2(1)), and let g:R x R" R be equal

to 9. + (r-c) disconnected controls. Let M? be defined as in 4.2(%}).

DEFINITION 8:

=l
. m d
C;(esr-c) = xg(Mi) W
[
,d . C,3,

M. ]

d 1,9, CICZ'O) Cz(l,o)
i.e;wi corres- -
panding to g.

REMARK 7:

Let now f:R x R" +R be generic, m ¢ Mg and uf 3 m; and (yl,l‘z), (yz,rz)
r see pidure
two pairs of local diffeomorphism making the diagram in 4.4(S) commute.

nelation : 9
+ (r-cl) disconnected controls.

From Proposition 1, we know that fy, = gc1

Now, in 4.2(4)/(5) we have seen that yil(Sl(xf)) = Sl(xgz’ Yil(sl,l(xf)) a Sl,l(xgl)’

etc.. . Hence, from the definition, as in 4.2(FH, we get immediately

Mg q-E'v'il(Mq f) (a1l these are germ equations, but we are not interested in
9 1 r(u-(s)

making this explicit). By the commutativeness of the diagram, onme therefore

d
i,q

L analgas
Pl(Ci(cl;rocl)) gﬁgumnn, Pz(ci(cz;r-cz)).

) = X ) == Tplxg g ))
)

gets: rl(xg(M
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We have shown that

1 ] . .

(of course this is not defined on the whole of C. (cl,r- 1), since we are
dealing with germs).

Note that, if in particular €1 = Gy, Ve have proved that if I'l, 1‘2 are two

choices of diffeomorphism, as above, then:

I‘2 I‘j leaves, v i, fixed, the i-strata Ci(c,r-c) INVARIANT

c (20) (zo)

,(2,0)
.(z.o)

REMARK 8:
In Proposition 6,(4.3(6)), there is no loss of generality in taking

U‘ij sufficiently small so that U‘1? n Mg = @, e > i (this is because M: is closed
. "
d
Me,f

in Me -1 Ve)

This means that U‘;J contains points in M? £ (sincegi is a cover of

M? 1=) but not in H:, e > i. Therefore, if T,y are diffeomorphic as above,
]

this means that (from #,4.4(%)) y‘l(ug) contains points in M? g’ but not in
M: g’ e > i, so that one must have c=i, with g = 9. + (r-c) dise. cont»h!as
in Proposition 1 of 4.2(1).

So: if I,y are as above (corresponding to ug), then g = yf = g; * (r-i) d.c.
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We now prove a proposition from which independence of choice in

Definition 7 will follow easily. We will make common practice to identify:

r r
T ~R .
y(JR )

PROPOSITION 14:

’

Let v: R°€) be a(germ of a)diffeomorphism,

leaving the sets C.(2,0), i = 1,2 invariant.

n
(C|(2,c)) Then Tzw Teaves (I)'I(QZ[Z]) invariant.

T

C,(2.,9)

Tgn(c,(z,O))

O

Proof
It suffices to show that Tow(l,O) = (ru, Tv) with T, = 0. This is

da

A n,
because o € 1'1(Q2[2]), a(0) = £, means Eu =g, = 'BT:\L (0) = 0 and, since v

preserves CZ(Z,O), ¥(0) = 0, therefore (w(g))u = (w(g))v = 0, and therefore

all that is left to prove is that (%MU(O); gﬁﬂ)v(O)F Tow(i%u(O); -3—:- v(0))
t t
A 1\
satisfies g(-"-’-"1141(0) = 0. (Recall that Tzw(a) = 1o , therefore 0
dt

Y2 ‘ d d d? 42
23 = (WD), D), ) 005 0 (050, 015 e o0

" ~
hence, to show that Tzw(&) € (}')'1(02[2]) or, equivalently, I(Tzw(a)) € QZ[ZJ,
one has to prove that (w(&))u = (w(t’,))v = 'gi'(w“)v(o) = 0 = see the definition
of 02[2'”-

Suppose Tow(l,O) = (ru-.'rv), with t # 0. By continuity of £ » Tagz-,

* * & . *
3§>0,e>0 s.t.:TExp(l,)'v) = (t,.7,) satisfies |7 | > lTv/Z‘ > 0, and

t *
* . = u
lt,] < 1(27)| (or else <n, n >0, if 7, 0), so that |"?3_ | < N, for

9%
some N ¢ R, fixed, £, ’v s.t.|g] < 8, Ig;l«:.
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Let x be constructed as in [17], x:R > R? , and
b » (-3b2;2b°)
. R
let {g } be a sequence inR", &« C1(2,0),\41, £, > (0,0). Choose

b, (# 0, since £ ¢ C,(2,0)) s.t. x(b ) = £ . By computation, one gets

Te (C1(2,0)) ={(a;- abn)l @ ¢ R}. Notice thatb -+0asn=>e (from the
n

definition of bn’ x and the fact that En (0,0)). In particular, notice

n
that, if ($0.3y) € T (C;(2,0)), for each fixed n, then || Su| = 1 ==f as
n n
(#0) Sy 1ol

n+>o
Let n, = W(En). {nn} -+ (0,0) as n = » , because P leaves CZ(Z,O)
invariant. Hence, by the same arguments which led to®, if (ra,rc) € Tn (CI(Z,G)),
‘ , Uy

n n
T
for each n fixed, then )—!- F0

+ as n >
n

Ty

&D .
Finally, choose n sufficiently big so that:

n : 4
T .
u : n_n
\;ﬁ'\> N, |gn| < andlbnl < €. ((TU,TV) € Tnn(cl(z’o))'
e v

Taking a = 1, (1;-bn) € TE (cl(z,O)), |gn| < & , hence, since ]-bn[ <e,

n
*n
*n  *p Lo T
T, ¥(1,-b.) = (1 s T, ) satisfies |——| < N. Butone also has
2 o ' 1Ty
#0 #0

= 1 c,(2,0) invariant,
TE“W(Tgn(Cl(Z,O)) Thn=w(£n)(cl(2’°))' because Y leaves 1( )
and therefore (t:". r:") € Tn (CI(Z,O)),therefore by our choice of n
n

‘T*S/T:n ‘ > N, a contradiction. Therefore t = 0. 0
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Proof above is just saying that the reason why Tow has to send the

'u-axis' into itself i
itself is that Tgnw sends Tgn(Cl(Z,O)) to Tnn(Cl(Z,O))

since ¥ leaves C1(2,0) invariant, and, as it happens,

b4

'{Tg (01(2,0))} and {Tn (C1(2,0))} 'converge' to the 'u-axis' as
n n

n - o,

PROPOSITION 15:

The definition of C%[Z] above does not depend on the choice of T,y

Proof

By Remark 8, and if Ty,v;s T,sY, are two choices, g(1) = Yyofs g(2) =~ 7

then g(1) = g(2) = 9, with 2-2) = 0 aisc. controls. By Remark 7, y = Fgl Iy

leaves C.(2,0),1nvariant, i=1,2.

2

Let (C‘][Zl) Tr 1'1(Q2[2]), (CJ[2])2 T, 11(02[21) Now,

TZI’I-I-I(QZIZJ) - T2r, P2y (1N 121))) === Tr,(I (g 21, s
N Prop.14

wished.

B. Closedness of C[2]

The aim of the definitions which now follow is to provide the frame-

work for reducing th? proof)that C[2) is closed to a number of local cases.
global

These are later reduced again to canonical forms,

DEFINITION 9:
We define below the total second bundle associated with (i,j), TC{[Z]

.
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Jeor - pdioq
TC1[2] = 01[2]
TC%[Z] = C%[Z] v ( \?’)d Cg 1(m)[Z]), where:
meugnml »

c] (m)[21= {é Cj°[2] |~ (0) =y = :
2,1 €Y B =y = Xf(m)}, j, chosen
so that m ¢ u31'o

PROPOSITION 16:

Definition of cg’l(m)[z] (and hence that of TC%[Z]) is independent of

choice of jo.

Proof:
o J J J J i
Let j , j, s.t. me U.”, me U 1. Recall that.x./U °q Md : M2+ N.©
o’ V1 1 1 fi ol 1 1 1
T3
M1°

io i
diffeomorphically. Let B be a ball contained in U,° n U1,

p = /Mj° BaM) i in N.O
Xf 1 n 1S open 1n 1
Jo
M1 »>

A A 3 [: A o
We claim that {f with 8(0) = y| B « CJ°121} = {8 with 8(0) = y | & « TP).
This is true since 3 represent. 8 of é 38,represent: of §, s.t

s.t. B(I) < N°, 8(0) = y 7 8(1) < P, B(0) = y
_ Jo

P is apen in N1

' ~ j '
- Simflarly, {B € Cll[Z]ho)rg}a,proving the proposition. d

PROPOSITION 17: | (Reducing GLOBAL TO LOCAL)
Suppose §n e C[21, y, = 8,(0), ¥ neNand {ﬁn} +Be TZ(RZ), y = 8(0).

Then, 3 i ¢ {1,2}, j e N and a subsequence {Bn(k)}’ with Yntk) = Bn(k)(o)’
which we will denote by {§k},(yk = Bk(O)}. for simplicity's sake, s.t.:

B ¢ 1cii21, VkeN andy e x(] o wd).

i
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Proof
A J
- > 4 2 n
Since (Bn) e C[2], choose (1n,3n) s.t. B e Cin [2].

J J J : J

n d

Recall that xf/Mi = ui“ n Mi : Min -9lff§99§> Ni"; it is easy to see,
n n n n . n

J a J J
s e n n n
from the definition of C, [2] that B« C, [2]%34n « N .

L n n
J _ .
Set m. = (Xf/Min) 1(yn). (in particular,rn.%guq" o md ).
n i i
n n n
Now, (%P > Y)Yy € Cf. Let x;l(y) = {ml,...,mp}. ;ﬁ; covers Md.
Ce

j .
Choose (i_,j_), 8 = 1,...,P, s.t. m_ « u.S, where i_ =1 or 2 according to
s’"s s ig S

| d d
whether m e M1 or M2' |
The following lemma will immediately imply Proposition 17:

LEMMA:

PN J
Everything as above (hence B < Ci" [2]1), one has:
n

jS 3 J.S
mn € U_is=?8n € TC_iS[Z]

\~

PROOF OF LEMMA:

Case 1: |i = 2. From @ above and Remark 8, one gets i; = 2. Since
) m eUJS =>m eMd m ?Md m =m
3 is=2 3 is=2’ n in=2’ s n

Therefore one can show, in precisely the same
. J J
way as we did in Proposition 15, that CZ"[ZI = CZS[ZI

~ JS JS
Hence, Bn € C2 [2] < Tci =2[2].
3
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A

J J
e 13 = ) 2
Case 2: |i_=11: Bn ¢ Cln[Z] =7 (Nln)

(cusp) -
uif Case 2.1: i_ =2

S
c {8« f:1 (21, 8(0) =y, =8 (0)} =

~

J
= C S (m )[2] < TC S[2], where this last equality
‘hs
comes from Definition 9 (we are also using Proposition 16),

where jo has been taken as jn.

"(""s M”Ce?se 2.? =1
In s, —
M," n U;” is open in M, .(with the induced topology)

th f /MJ”MJ" ’sy 4 in " (4 LT
d’ erefore x. (M," n Uy ) is open in Ny .(md\:c:,. '“’\’Olca)t)

Let B be then an open set of R s.t. B n Ny ’n xf/MI"(M "au s).
n

In
s u' S1nceB eT(N") 36 sB ste(I)ch
B(O) =Y, e B an ; one getsB (I) c B nN", perhaps by reducingthe

original I, if necessary. Now, xf/M (M o s) c xf(M n U s) = xf(M s) = le

Therefore 8 (1) < le,therefore B €T le = S[zx c Tc1 [21. O

LEMMA = PROPOSITION 17:

Initially, we claim: J NeNs.t. m « U u, 5 ¥ n > N. Otherwise,
s=1 s

we would get a subsequence {mr} of"{mn},'contamed in a compact, say K »x ¥

(where K is some compact ball around y), hence converging to m ¢ \.{ uis .
s= s

Som{ {ml,...,mp} and y = xf(m), a contradiction.

3
Therefore, 35 e {1,...,p} and subsequence {mk}kdl s.t. m e U z Vk.

From lemma, Bk € TC,i (2], V k. This settles the first part of Proposition 17:

just take j = J.. 1= ig.
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As to the second part {m } > me{m ,...,mp} (same reasons as above)

j .
and, smce there is no loss of generality in supposing u S two by two disjoint,
M.fu\.l UUSIUUS+ v v u.P thereforemé{ms }
M N NP SRS S B Y
J.s d
therefore mP mg e u » therefore, by choice of (i ,J ), m m, e Mi . 0
(since XF\M) \,) s

PROPOSITION 18: (cusP's BUNDLE' CLOSES ‘FoLD's BuNDLE': STANDARD FORM)

Let 9, (see 4.2(1): 9, R% x R +R) denote the standard cusp (no
(u,v;x)
disconnected controls) and let {ocn} be a sequence in T (R ) converging
neN
to a point a, £ = a(0) = 0. Suppese that, for each n,
(Closeness at fixed, I M < Mi s.t.: (1) Xg /M - Mt - Xq mn(M")=Nm
Cusp's Point] subman. . 2 2
is a diffeomorphism; (i) £, € ,N\ and
¢,(2,0)

(iii) represent, o s.t. an(I) c N". Then qu(O) = (.
| dt

Proof
[ﬂote: This proposition solves the non-trivial part of the proof that C[2]
is closed; in Proposition 19 we show how to reduce the local cases to

standard form-._‘

Construct 6/M : M=M_ ~R%, x = x (o/m)}
S2 92
)( as in [17] (pages 19/20); one has:

= OsnY), with: {x%(a,b) = 2a-3b2
e (see also 4.2(4)) {x"(a.b) = -2ab+2b>
' ’y Since 8/M is a diffeomorphism (see [17], so
’ N A/ is o/M" (M" is a submanifold of M). Now

— C@jm(M?) N" ) ’

xgzIM" is a diffeomorphism, by hypothesis. Therefore, one has that
. e/n“ (M) - N" is a diffeomorphism.
of Xy, A,
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Define: ,
(an(t); bn(t)) = xgl(un(t)). Recall that an(I) c Nn,therefore
oM™ = -1 (a(t))
therefore an(t) = 0/ therefore an(t) = xn(an(_t);bn(t)) (- 3b (t) 2b (t))
i
(a (t), (e, (t))

Therefore,

?(&n)=(-3bf,(0);2b;°{(0);-6(b (0)b}(0)); -6(b2(0)b" (0));-6(b A(0)B (0)+(b? (0))2 6(2b_(0).

(debn}v(0)
It b2(0)) + b2(0)81(0))

We want then to show (dropping the 0's):

-3p% » 0 >
(1) =p»|-6(b b') ~ 0] (II)
3 n
2b- + 0
n da
ati(0)
This is easy, since (I) =p>b_ 0=>9f . (-6b/b’) > 0, as wanted. 0

PROPOSITION 19:
. w2 pnl
C[2} is closed in T-(R").

Proof n ,\
" Let '{Bn} s Y. = Bn(O), be a sequence, with Bn € C[Z],\{ n, converging

nelN n
to some B e szz),‘y = 8(0). We will show that B € C[2].

From_PrOposition 17 and its lemma, 3 subsequence {ﬁk.} k e, Yy = Bk(O)

A
with Bge TC.5[2], ¥k e N.
S

Case 1:

'is=-‘1

h| h J J
In this case, TC;°[2] = TC,%(2] = C,°[2] = TZ(NIS). Let T, y as usual.
S .

R J A J -1
B « TANS) => 3 represent; By of & with 8 (1) < N®, hence I"™" g (1) < ¢(1,1)

v AN
(see Definition 8 and Remark 7). Therefore I(T 1Bk) € {(xl"'°"‘6”"1”‘3‘x5’ 0}
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. n _ N SN NN
therefore (since I and TZ.F 1 are continuous) I(r'ls) = 1im I(r'lsk) €

Koo

{(xl,...,xs)[x1 = Xy =X = 0}, therefore Eirepresent. (r'ls) s.t.
rri8(n) < ¢(1,1)
Hence (?eca]] - see Proposition 17 - that

S d - g J J
y e xf(u S ’ n Mis=1) = x¢(My®) = le) we have 8(1) < N;°, so that

8 T2 le- c1 [2] < C[2].

Case 2:

Case 2.1: 3 subsequence, {8} , with Y. = B, (0), of {3, } s.t.
Pladad LR L r k
reN " kel

r'lg , then, by definition

~

ig .
Br € C2 [21, hfr e N. If T,y are as usual, o

J A ‘
of CZSIZ], ?(u ) € 0,02] = {(xs.. ,xs)]x = x2 = x, = 0} therefore

N A
I(I‘ e) 1im I(a ) e 02[2] therefore s € c2 [2] < C[2].

-0

Case 2.2: 3KeN s.t. B « k/J d Czsl(m)[2],\/k 2 K, ¥ = B,(0)
— mell,SMy €

, ‘ N j j
. a Js s ud
Let k = K fixed. Then g « C,°, (m (2], for some m e U,> n M, where

Jo " J 3

szl(mk)[2]= {8 ¢ C1°[2]|B(0) =y, = Xp(m Bwith § s.t.m eju1°.j The;efore.
» A j .

3 represent. B, of B, s.t. B, (1) b4 N1°. We recall that xf{M1°: M1° *"10

. . ee j S | jo -1 JO ’
is a diffeomorphism; hencexg=Yf _1( Dy (M) > TN D) (e 64(2,0)),
1

diffeomorphlcally ((i)'). Also F’I(Bk(O)) r- (Yk) € P'I(N 9y ((ii)') and,

from @ above, T 1Bk(I) < F'I(N1°) (ii1)').
N

By consider1ng the sequence {I” IBk}' {&k} which converges
Ren k2K

HK
to I’ B, by continuity of Tzr 1, and setting Mk =y 1(M1°).Nk =T 1(N1°), one sees

that:
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(i)', (i)' and (ii)' above =(1), (ii) and (iii) as in Proposition 18. Also,
L J J
from Proposition 17, y e xf(MZS) = NZS , therefore I"I(Y) =0, i.e.,all

conditions required in the hypothesis of Proposition 18 are met. Hence,

-1 N\
d(r's). (0. ¥ ' -k -

A J
so that  (8) ¢ C,°[2] < C[2).

Since Cases: 2.1 and 2.2 cover all possibilities, case 2 is proved,

so that Proposition 19 is proved. a

C. Genericity of V/I\ Cf

PROPOSITION 20: o
3 open and dense set B c V(IRYI') s.t. veB =>v[2](R2) nCl21 =90

Proof
The proof is again very similar to that of Proposition 9 in 4.3(4}).
One defines B) = cli21 n A, 83+ = cJi21 n A°, v = s7h(e)), vl:¢ = s7hgd-6),
JeN, i=1,2andA, S like def. in 3.2(3), 3.2(1).
_ We remark that, direcfly from their definitions,the C?[Z]'s are sub-

Y]
manifolds of TZ(RZ), r.1! being a chart which flattens then into a

linear subspace of R6.’ They have all codimension > 2.

Now since B3°C o A = 9, v}>C is a (cod. > 2) submanifold of J'(R" R%)
(8-dimensional, in this case).

Oh the other hand analogously to Proposition 8, Chapter 3, we have
vg = N'ij x {0} x R4. Hence, since the codimension of Ni.i in R2 is > 0, we

have codimension (V;?) > 2.
Setting V = U (V‘g v V‘}’c) (denumerable), and B = {v|j'v ﬁ(Vg and V‘g.c)vi.j:_
i,J
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we get, in complete analogy with the referred above Proposition 9 in 4.3(11),
the required open and dense set. The proof that v[2]OR2) n C[Zj = @ follows
in precisely the same way as the proof that v[e]ORr) nflle] = @ follows, in

that proposition, from the definition of B. 0

PROPOSITION 21:

J
Let y € Ceo mou(i53), U5, s = 1,...,p as in 4.4(13). 3 v,

s

- | 2

(reducing open neighbourhood of y inR™ s.t.:
- P s d

GLOBAL VncCg=V n[\,_jl (K (u® o M ))]

to ST S o
LOCAL) ' *
Proof

J
Ihs > rhs: let £ « rhs; £ ¢ V and also £ € xf(uiS n M) some s e {1,..,p}.
s

Therefore £ = xf(m), me Md,therefore £ e Cf.
Suppose now that:

lhs ¢ rhs, v V, open neighbourhood of y. Let V = Bl/n(y)’ C, = Blln(y). By

. ence
absurd hypothesis, 3 Yn e(V n(;)s.t Yn ¢ V n [e1Y 0S1nce Yq € Cf, xf(m ) ;€M Nc..
P J
L \_) (u; Sn Md) (otherwise y e [- 1), hence m_¢ L-{ uis’ Now
s s= s

{m } c c1 x X, compact. Let'{mr}-*m be a subsequence converjing to m.
J

J
Immediately Xf(m) =y, and also m ¢ L,g u.S (otherwise, since the u S 's are
s=1 s Ts

open, @ above is contradicted). Hence m {'{ml,...,mp}, a contradiction,

therefore lhs < rhs. 0
COROLLARY:
S
Vncfctajle(u nM)

(v as above)
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PROPOSITION 22:

(Genericity of v A\ cusp in STANDARD FORM: the 2-dimensional problem)

)*ﬁ‘ o (t) Let «(t) = (du(t);°(v(t)) be a ¢ curve through 0 e 1R2.
g¥§(¢5 Suppose %%;(0) # 0
—>

Then, 3 &7 0 s.t.:
c(2,) °<(t)",c,50 n €(2,0) =

Proof
We first remark that C(2,0) = {(-3b2;2b3)[b « R}. Suppose that this

| proposition is false: E}{t Yo, t ~0as n->=s.t. a(t ) € C(2,0). Choosing

"o #0)
bn conveniently, one has:

a(tn) = (_3bﬁ;2bz), and W.1.0.g. bn £ 0, \/rx (since if there is a subsequence

{t } with b_ =0, then a(t) =0, Vr, t, > 0,therefore da/dt(0) = 0, false; and
therefore we can just discard the (finite number of) n's for which bn = 0).

Now bn +~0as n->«, since a(tn) +a(0) =0 eIR2 as n +» ., Therefore ‘

2 3 2bn3-0 da, (0)
0=1imb_ = lim - ——g—- = 1im t0 - d’ ., therefore --40) = 0,
me T e 3b L 2’ =@ (U’ 1.constant
n (tn#O, n) -3b 0
t ..u
a contradiction, therefore we are done. a

PROPOSITION 23

v e B (as in Propos1t1on 20) => v Pan Ce-

Proof
Let|y € C and v ¢ B be fixed, and V » y be as in Proposition 21.

3 e* s.t. 0 (g ) c V. Therefore, Oy(e*) n cf = Oy(a*) n(Vn cf) =

0 (e ) n (\,/ xf(u nM )). If we prove that, for each choice of (is,js),
35 o M%) = 9, then, by choosing € = min {c” }
3 e s.t. Oy(ss) n xf(uis n M7) = @, then, by sing € = min {e ,e;,....6 )

we will get Qy(s) n Ce = 9.
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Case 1:

/.

is =1 . . .
. o 4 .

In this case )(f(u1 nM) = )(f(M1 ) = N1 . Now, since

j L J
v21(R?) n ;521 = 9, one has vi21(R%) - (TA(N)) = 9, therefore
j
by Remark 6 in 3.3(5), v /D y le, as wanted.

Cas
i = 2‘ .

Let T Ias usual. Since I"l( (UJS n Md)) = ( (UjS Md)) c(2,0)

»Y . Xf 2 Xg=Tf Y 2 n < ’V/ >

one has that:

)

[}
=

. -1 - js
ife > 0 is s.t. T (Oy(es)) n C(2,0) = P = Oy(es) n xf(u2 n M
Now, if B: I +R2 is a solution curve of v through y, then

0 (e Yo {B(t)}]t] < € |t] # 0}. It suffices therefore to show that:

LBE >0s.t. {(I ey (1) |t[<s . |t] #0 «cC(2, 0)=ﬂ®.

where o = "8 , by def1n1t1on But, since vi21(R%) n. (22 21=9 =
f__,-\-r“——-——"!
1.1 (g 021)

__..=$ I( u) ¢ Q2[2] @ (0) # 0, we are done, because Proposition 22=>@B.

COROLLARY:
If f:X sz + R is generic, Hopen and dense B s.t. v ¢ B :?vm C

4.4.3: The case r=3.
Let BBy W, u Py (see 4.33)), Ny, M3, U3 as before.
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A. Definition of C[3]

DEFINITION 10: Define, for fixed j:

31 = ) < PR).
C‘g[3] ® TQ'(".?-I(QZ[B]) (r,y are diffeom. associated to (j,2)),
- 120, oy -y -
02[3] = {(xls---’xlz) e R le = XZ = x4 = X5 = 0}.
C§[3] = TBFK?LI(Q3[3D(T,Y corresp. to (j,3)),
12
Q 3[3] = {(xl""’x12) ¢ R [xl = X, = X3 = X = O}
. U dia e . c[3) =\8) C(3]
C.[31 = cJi31 (i=1,2,3) ; = Gilal

jeN

Note: T is a local diffeomorphism and therefore T3r is not defined
‘ n
on the whole of I_l(Qz[B]). Therefore the r.h.s. of & is meant to

N~ o
mean {Tsr(-) l. € I_I(QO[S]) and T”r(-) is defined}. A similar
remark also applies for“the case r = 4.

PROPOSITION 24:

Let y: B!.f) be a germ of a diffeomorphism, leaving C (2,1) (i = 1,2)
invariant. Then T ¥ leaves I 1(02[31) invariant.

Proof .
A '\'..1 Iio /]
Let & e I mﬂnuam)=ag=(ad ig,), Su(0) = L(0) =

Now TITH(E)1 = (9,(6)s v, (83w, (6)s Sdu(o); -ig22v<o> (0)3...5..0,

and wu(g) = wv(g) = 0, since ¢ leaves C2(2,1) invariant. On the other hand,

(d(40),/4e(0); dl4m), /4(0); d(ve), dt(0)) = T o @(0); $(0); Lu(0)).
. 05 ey

The vector Q0,0,aQ(O)i can be identified (as in the usual tangent bundle

construction) with the equivalence class (under first tangency)of the curve
v(t), Yu(t) =0, v,(t) =0, v,(t) =g +al0)t. Since ¥ leaves C,(2,1)
invariant, (vy), () = (y), (t) = 0,therefore T(0,0 £) v (o) = (0;0; *)
therefore T3¢(a) € 1'1(02[3]), as wanted.
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PROPOSITION 25:

Let \DRsa(germ of a)d1ffeomorph1sm, leaving C; (3,0), i = 1,2,3,
invariant. Then T ¥ leaves I (Q3[3]) invariant.
Proof _

We will show that Toxp(l,0,0) (T T ,Tw) =-_—_.>'c = 0, and that

T w(O 1,0) = (Tu’T:’Tw):?T; = 0. The rest of the proposition is trivial,

since } preserves C3(3,0) (see also Proposition 14,' 4.4(9)).

We initially prove ®. Suppose T, # 0. In the same (analogous) way

as in 4.4(10), one shows: & > 0, g\?e >0s.t. T 1}1(1 5‘ 5 )@ r;)
. e * * . ] v( *
satisfies |t Vlrwl < N, N a fixed real, ¥ ¢ , Sv and 5w s.t. |g|<s, |5v | < €,

*
and ]‘gw | < €, |
By computation, and using the X(as in [17]) corresponding to
93¢ (01(3,0)) = {(03-20 ¢+ B;aci - B¢ )| a8 R}, where {£} is a
n

sequence in 1R3, E, € Cl(’3’0)’ Vn, €, (0,0,0) as n+ =, bn’cn chosen so

that x(bn,cn) = £, (hence bn,cn # 0,¥n, since Ey € 01(3,0)). It is easy

to prove that bn,c + 0 asn-+x_, One also has (G.CZ - Bc )r-r Das no>o ﬁ 0

n
provi&ed (a,8) # (0,0). Hence, if for each n, we choose ('g ’3 ‘5") = 5“ € TF, .
n
-(CI(BaO)), thQNF‘r+ © ags n->o® (# (0’090))
sE o

Setting n_ = w(E ), In } - (0,0,0), since y leaves C4(3,0) invariant.

Hence, by the same arguments which led to@, one has: if (Tu,'tv,’tw) € T (CI(3,0)),

n
for each n fixed, then%—-L >0 3dsS N >
T

Finally, choose n sufficiently big so that:
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n

®

o -0’ (1. 2@ .
Take o= 1, 8= 0, (1; -2¢ 3¢ ) < Tg (C,(3,0)), with | |<s , |-2¢,| <e,

2 ok * @ .
and lcnl <e,, therefore t" = (1 ; Tn, T") Tgnw(l;-ch;ci) satisfies

* *n %, *
T"L/ﬁr w | < N. But also Pre T n(C1(3,0)), therefore ITN»/]Tal > N, by

choice of n, a contradiction.

As for @ , substitute@,...,@by, respectively: . Su;Tg‘P(Y:ﬂ;E,:) =

(T*,T*,T;) lgul Eu; ‘Cnl < Sw; o = 0, B = 1; (q,la‘cn) € Tgn(c1(3’o));

drop(:) < € and T = Tg (0;1;-cn).
n

The proof above is saying
that the reason why Tow
sends the '(u x v) plane’

into itself is that TE y sends
n

Te (c (3,0) to T (c (3,0)),

£, n, =¥ )

since ¥ leaves the cod. 1 strata

C,(3,0) invariant and that {T, (C,(3,0))}, {T_ (C,(3,0)} converge to the
1 En 1 n, 1

"(u x v)-plane' as n + =, 0

PROPOSITION 26:
The definition of C%[S] above does not depend on the choice of T,y.

Proof

-1

Consider choices rl’Yl’ FZ’YZ‘ Set ¢ = rz rl and apply Remark 7

and Proposition 24 above; arguments are as in Proposition 15. a



4.4(25)

PROPOSITION 27:

Definition of C§[3] is independent of the choice of T,y.
Proof

Remark 7 and Proposition 25 and arguments as in Proposition 15. [

B. Closedness of C[3]

w——

DEFINITION 11:

We define below the total third bundle associated with (i,3), Tc§[3].

'rc§[31 = cj[3]

TC%[3] = CJ[B] u ( \\3_,6 C 1(m)[3]), where
ROISESCE c1°[3]le(0) =y = x:(m},
J
where j_ is chosen so that m e U1°.
1e3031 = ¢J31 v ¢ LTI‘TGA ¢l ,m31 v ( ko  ((m31),
m n

Melizn 1
. A J

jo
so that m ¢ u1 .

j PO
€3 o(MI31 = {8 ¢ €,°13] [8(0) = y = x¢(m)}, j_ chosen
jO
'so that m e U,".

PROPOSITION 28:

The definition of C (m)[3], as above, independent of the choice

of jo'
Proof: . )
i, Jl_
~ Let J sj, S.t. me u1 s M e ul As in Proposition 16, choose

J
BeclU,® n ujl, and set P = xf/MJo (Bn Ml)’ open in N1° As in Proposition

1
f\Jo
M

16 it is easy to show that:
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A d | A
(B« €,°13118(0) = y = x(m} = {8 ¢ TP|8(0) = y} =

~ J
={B ¢ c11[3]B(0) y}, proving the proposition. a

PROPOSITION 29:

Definition of C% 1(m)[3] independs of choice of jo.
Proof
As above.

PROPOSITION 30:

Definition of cg ,(m)[3] independs of choice of 3or

Proof

. . jQ j] -
Let 30,31 be st. m ¢ u2 s M e U2 . Let:

i

. .
© c3,MI31() = 8¢ C,°31]y = 8(0) = x¢(m},

i

j A j
@ Cg,z(m)[31(31) = {Be C21[3]|y B(0) = xc(m)}.

Note: T » v 3 Ty, vq are diffeomorphisms corresponding to (30,2); (j1,2),
respectively.

. We want to show that ® =@ ., Let 8 e (. Therefore,
8« T 13(g,03) = Tr, (B(yir)((g,031)) = T, (g, 031), by
Be TT, 1701 1 1 7o 2 1 2131))
N d
Proposition 24, therefore B ¢ C21[3],therefore g ¢ & ,therefore ® <®.

Analogously, Dc® . . 0

PROPOSITION 31:

(Reducing GLOBAL to LOCAL)
A ) A A 3

Suppose that 8¢ C[31, ¥, = 8,(0), VncN, and {8} +6 PR )eyes(0)°

Then, 3 jg {1,2,3}, j ¢ N, and subsequenc% {Ek; (see 4.4(12)) such that
é‘k € TC}[3],Vk ¢ N. Furthermore, Yy ¢ x(u;? n Mi)’
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Proof
Very similar to that of Proposition 17; the only difference is that
the local cases below correspond to r = 3.

A J
Again, choose (in,jn) s.t. B_ e C1"[3],.for each fixed n ¢ N;

n
. . n

AR S J I, -
reca]]:xf/Mi" : M, flfj;_,Ni" > Y, and set m = (Xf/Min) 1(y ). In
n

1 n n n n
©
€

M

n

n
. In
particular, m .
n i

Now, y e Cg (see 4.4(12)); 1let x;l(y) = {ml,...,mp} and choose

J
€ Uis, s = 1,2 or 3 according to whether

(15,35), s=1,...,ps.t. m )

3
d
ms € Ml,Z or 3°

LEMMA:

—————————

| J J
. S o S
Everything as above, mo e u1.s =§;Bn € Tcis[3]

PROOF OF LEMMA:

Case 1 g
i =3 gn € C3“[3]. As in Case 1, Proposition 17, one sees that

s One therefore can show, with precisely_

i =3,m =m
s n j j
the same arguments as in Pfoposition 27, that C3"[3] = C3s[31

A Is g
Therefore g e Cq [3] < TCiS=3[3].

~

3
» - n =
‘1n = 2. B« C,"(31, y, = 8,(0).
We may discard is = 1, from Remark 8 above (see also @

above ).
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Case 2.1: is =2

A T3 '\)_1
B, € rn(I (02[3])), where T, corresponds to

-\
N SIS |
(3,52)5 hence T "8 e I7(Q,[31).

We notice that (P-irn) is well defined on P;I(yn), since r;l is defined on

J Y

Yy (mn e U, —_— s x ); hence it makes sense to write:
S l’ '
R
Y, o€ X (U525 %
n f ig
. N

_ =3 3/n-1 -1 -1 s |
B, =T FS(T (rs f;)(rn Fh)), where T 8 e I (02[3]), hence

A

3, -1 - js js
BT TS(I (02[3])) = Cz [3] c TCiS=2[3]-

. A @ 3. -3, o1 vy 2l
Note: One can not write in general B = T FS(T (r Srn))(r ns),

——————

A3 1 . .
BeT Pn(I (Q2[3])), since I may not be defined on y.

J J
Otherwise, one would prove, via ®, that C2“{3] = 625[3], which
is false. We just remark that, for the sake of notation, the

fact that T3

) N N

I, is not defined on the whole of I 1(02[3]) has
been pushed to the background by Note in 4.4(220,and that one
must therefore be aware all the time that for expressions like

T3rs(-) to make sense, T3Ps must be defined on (-).

Case 2.2 i =3

R S S
~ . J
B, ¢ (B¢ c,"131]8(0) = y_ = xe(m )} =

s s 3 ted
C3,2(mn)[3] ? TC;[31, as wanted.
J
Note: m e uis=3 n Mg, by the hypothesis of lemma,
< e (2?) S
and hypothesis of Case 2, so that the equality

above then results by taking jn as the jo in Definition

. . 11 on page 4.4(25).
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Case 3: i =1

a—————— n

A

jn
B, € C,"3]

Case 3.1 is =1

, i3 j
As in Case 2.2 (of 4.4(14)), Mln n ulS is open in M "

3o a4 3 J
therefore x./M (M1 n Uy ) open in NI“. Set

3

J i o3 3
n_ Ny N s
B opn B -t B Ny = /MM " n 0®)

In the same way as in Case 2.2(4.4(!%)) (3ust substitute 2. by 3 whenever it

A 3 s s
appears), one shows that B, e T N~ <TG [3]

Case 3.2 is =2

n J

B, € Cln[3], Bn(O) = Yo and hence

~ A J

By« (B CM3118(0) =y, = xglm)} =
js js .
C2,1(mn)[3] c TC2 [3], as required.

This last ‘equality results by taking_jn as the jo

J
in Definition 11 (notice that m_ e u.s_ n M? ).
n 15-2 1n—l

Case 3.3 i =3

A ~ j j ]
g e {8 e C"131[8(0) = y, = xg(m)} = €3, (m )(3] < TC3031,

- as wanted. The equality results by taking jn as the jo in
d

J .
. . S
Definition 115 m ¢ uis=3 n Min=1.
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© LEMMA =3PROPOSITION 31:

Precisely equal to the proof that Lemma to Proposition 17 => Prop-
. ositfon 17, eventually substituting 2, by 3 where necessary. g

We now solve, in the next three theoréms, the problems which arise
" in the proof that C[3] is closed, in their standard form. We will later
~ (Proposition 35) show that these local problems can be reduced to the

canonical formulation as below.

PROPOSITION 32:

Let g denote the standard cusp 9, (see 4.2(1), 9p° RZ x R'+ R)

| - 4 2

| /

| CUSPS E’UNDLF with one disconnected control. I.e. g(xl,u,v,w) -’55-+ u’—‘é—wx.
CLOSES FOLDS

BUNDLE: THE | Let {&n}

’En -_-an(o), be a sequence in T3(1R3),

STANDARD FCRM) nelN X

.y converging to a point o, &= a(0), with & =& = 0.
[Closedness at R s
Cusp's line) Suppose that, for each n fixed, 3 M, submanifold o M,s.t.:

(i) xg/M":Mn >N = xg/M"(M") is a diffeomorphism.

. n
(11) ?n e N < C,(2,1).

(111) o representative o € o

n
s.t. an(l) c N Nﬂ-
Then:

da,(0) = 2(0) = 0.
dt dt
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Proof

Let 6/M: Mg -> RZ, X % Xg . (e/M'l), as mentioned in the proof of
2

2

Proposition 18.r%u5t15=Mgzx R (see Lemma 7.6 of [16], so that we can define

a map x4 (x with 1 disconnected control) by the diagram:

5 Mg = Mg x R Like in Proposition 18, since
| 2
x /M M" > N7, M" a submanifold of
8/MxI Xg g
X Md and (8/M) x I/Mn are diffeomorphisms,
R3 { 5PHR3 1
one has X, 15 xll((eln) x 1)(M%):

(a/M x I)(Mn) *4R3 is a diffeomorphism on

n

its image, N'. Now:

_ (e/Mlx1
Xn,1 = Xg{(8/M I x1): (ab,e) > (b32a-3b°

;-2ab+2b3c) —>

X
._5#7(2a-3b2; - 2ab + 2b3;c).

Note that (6/M x I)(M™) < (8/M x I)(Mg,gzx R) < {(a,b,c)|a = 0}, where

the last step follows from the way 6/M is constructed; also

(xy,1) Hay(8)) < (oM x TY(N") <

< {(a,b,c)]a = 0} Define: an(t).bn(t),cn(t),
t e 1, by (a (). (8).c ()= %01 (o (1)),

From observation above, an(t) = 0. This allows us to rewrite an(t) as:

ap(t) = x, 1(2,(£)3b (£)3c (£)) = (-3b2(£)s2b3(E)ic, (¢))
0
Therefore, omitting the 0's (see 4.4(16)):
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' . d
&) = ((a),(0); (o), (0); (a), (0); e LAY

dt
W 0ys 2,00 ———z—udz(a") (0) ) '
—v(0); ——w(0); 0); etc...) =
dt dt dt ‘
= 2, 3, . P AN o
(-3b5s 203 ¢ 5 - 6b b's 65 b;* n

12y, 2 02 uv. .
6(bnbn + (bn) )s 6(2bn + (_bn) + bn bn), chs

2
n

‘ 1] ny. - 1 " ] 3. m 12
6(bnbn" + 3b;1bn)’ 6(6bnbr'1bn + 2b bn + Z(bn) 5 Cp ) e R°“.

We want then to show:

2 | .
-3b% > 0 -6b b+ 0
3 = ,
(] 26> 0 6bﬁbn 0 | an

By computation, one sees that

3 ‘ 3
d - (d 12 2
L UV b, %o - by« (6037 + 3 dlon)y )
T , dt
A | B c

We claim that 3 K,Ne N s.t. |b'] < K, ¥nzN. This is so because

le] = [b;‘l. {6(b;\)2+3d2(n (o)l < f} +%
——

dt tends to a constant
as n->o
Therefore - 4 ' % 0. And so does (- n) (-%b"‘), as wanted.
as limited v
0 module o o

see :
4.4(16) 0
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PROPOSITION 33:

(SWGLLOW TAILS BUNDLEV Let g, denote the swallowtail (no disconnected

. ¢ . A
CLOSES CusP's BUNOLE : controls), {an} ,an(O) = Emsequence in T3(]R3),

STANOARD F'ORM) . AnEN
— converging to a, £ = a(0) = 0. Suppose that, for

[closedness at Sualletail’s
Peinl : case i_]

each n fixed:

(i) €, € C2(3,0);. (i1) dan/dt(O) - TE (C2(3,0)).
n

Then:  $2v(0) = $24(0) = o.

Proof

Let ¥, corr'esponding to the swallowtail, be

as computed from [17] (see 4.2(4): c = 3, bottom).
Choose €, s.t. X(O‘O’Cn) = gn (therefore c, £ 0,
because £, € C2(3,0)). From the expression of ¥,

C, ™ 0as n~> oozc'since E;n + 0. Since x preserves
ala,

‘the codimension 2Y i.e,x ({(a,b,c)la S0 -

C2(3,0), we compute

T, (6,(3,00) =T x _ ({(a,b,c)|a=b=0}) =
*n (0,0,¢,

= b
c#

= {(pe - .
= L{(r,-21"cn:rcn)|r~ ¢ R}, n fixed.

Y
d(c ) d(a ) d(a. ) L
Since we know that (-ﬁ-'l-u(O); -%:-»um; ——;;-’-‘—w(o)) c8,¥n

®

. 2
arbitrarily fixed, just choose, fixed n, rn s.t. ® = (rn;-_Zrncn,rncn).

A

~ n
Since {an} converges, I continuous, d(un)

dt

u(0) =rn+reRas n-+o,
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d(a ) constant d(a )
Therefore —2(0) = ;yn_/, > 0 as nsoo, and so does —4y(0) = 2
dt dt - :
\y 0
0 constant
oy

therefore, by continuity of I, one has : dav(O)/dt = daw(o)/dt = 0.

_PROPOSITION 34
| (sweLLow. TAIL'S
OUNDLE CLOSES i
PoLO's RUNDLE: | Let {an} » &y = an(O), be a sequence in T3(]R‘) converging
STANDRARD FORM) nelN
tdcudness at Swa,\loja' to a point a, a(0) = £ = 0. Suppose that, for each m, fixed,
tAl's oink : case 2 . -
Vs o , . $3Mn, a submanifold of MI,S'L' (i) E e N"

| ~
,.; (4,)7(93/,,4» My N X /M..(M Visa di FF- c (3 0)
(111) =1 representative o of an s.t. a (I) < N". Then

Let 93 denote the standard swallowtail, as in Proposition 33.

Proof
Let Xbe as in Proposition 33,7(n =X/O/M(Mn), a
: : . . . Al
‘_ Tocal diffeomorphism. Set.(an(t),bn(t),cn(t))lh @tn(t),
It follows immediately that an(t) = 0. This allows us

to express, as before,

a (t) as a function of bn(t) and cn(t):an(t) = xn(o;bn(t);c (t)) =

2.y, 3(4y. 204y -
= (3bn(t) - Scn(t), -Gbn(t)cn(t) + 8cn(t), 3bn(t)cn(t) 3¢ (t))
.. A
So that, omitting the 0's, as before, one has ?(‘ 'un =
' 1st order expressions
3"7

=(3b_ 6c2,-6b c +8c3-3b cz_3c : 3b)-12¢,c}3-6(b crbic )+24272 ’3(5—32*2b cpca)-12che

n.._ nn n.nn

jons; 3rd order expressions) d(a ) d(a ) d{a )
2nd order expressions ,dn (0) dn - B_w(0)
t t dt
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We want therefore to show that:

\

2
3bn-6cn >0

3 2 3.
-6b c +8c >0 —_ [3(bncn,+ 2b cc') - 12c;c’] + 0
2., 4 (1)
3bncn+3cn ‘-> 0 (1)

We first prove that ¢ >0 as n>«. If this is fa-lse, =] subsequences
{ck} of {cn} ande> 0 s.t. Ickl >e , 7 k. (ck = cn(k)’ k €« N, to be
more precise)

3 2, . ,.2
Now 1lim (-6b,c, + 8¢c)) = lim (- 2c [(3b, -6¢7) + 2¢; 1)
o Kk T %% T . k™" Tk k

0 as ko

Therefore for k suff. big |[(3b, - 6c2)"2?1}> |c2] . therefore |-2¢,[ls|2 lc, f| 2 |>&
ere OY‘e) 0 ' . g’ k k + C“ k ) k = k k €

¥ k suff. big, therefore lim (- 6b,c, + 8cg) # 0, a contradiction;therefore

koo
cn +0asn+o»
0
Now, by computation: ~ vf —Fixed f1xed
AHm'lt 'Iumt

di ) d{ex )
(11) = —Iw(0) "'f%‘, (f (0) (0)) therefore lim w(0) =

dt dt dt n->=0 dt

as wanted. ‘ - 0

PROPOSITION 35:

CI3] is closed in TS(RY).
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Proof

Let {Bn} , Bn(O) =Y be a sequence converging to some

neN
3 e TR, 8(0) = y, B, € CI3], ¥ neN fixed. From Proposition 31 and

A : J
its lemma, Bsubsequence {Bk} Yy = Bk(o), such thatﬁk € Tci5[3], vk ¢ N.
' S

keN

Case 1:

.1s=1

J.s js 3 J‘s
Tci =1[3] = C1 31=T (N1 ). Let T,y as usual. As in case 1,(4.4(36)),
s

-1 v A .
one shows that T Bk(I) < €(1,2), therefore I(T Bk) € {(xl,...,xlz)lxl-x4=x7=xm=0;,
31 A

n e -
therefore by continuity of I and T , I(I' "B) ¢ {(-)|x1=x4=x7=xm=0},hence 3

1 <7

8 of 18 s.t. T™18(I) < C(1,2),therefore B(I) < N

* - JS
representative T )

1
~ J
therefore B « c15[3] c C[3].

Case 2:
o ]

s = %

Case 2.1 3 subsequence,’ {ﬁr} ’ Br(O) = yr,_of' {ék}- » Such that
R reN kelN ‘

A J
Br' € C25[3], ¥ reN. Let T,y be as usual. By definition

o N |
of C2 (31, I(T Br) € Q2[3] = {(xl,...,x12)|x1=x2=x4=x5=0}_
o, -1 n_,.:/:l\ ~ js
Therefore I(I' "8) = Vim I(T Br-) ¢ QZ[B]/ therefore B8 ¢ (:2 [3) < C[3].
oo

| o cjs ( ) 3 ujs d
Case 2.2 JKeNs.t. B € C°y(m)(3], some m e U)> n M,

V¥ k = K, fixed. From the hypothesis, fixed k = K, one has

A

. 3 3
B e Be C,°13118(0) = y, = x.(m)} with § s.t.m e u®.
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A J
Therefore, 3 B,» representative of By» s-t. Bk(I) ?N1°.

jo jo jo ] |
Recall that xf/M1 : M >N;” is a diffeomorphism. Therefore

-1, -1,,3
Xgeyf, 1,0, (4% > TTHNO) (e €)(1,2)) diffeomorphically
/Y ~(M47)

((1)). Mso Il (0) = 1™ly,) « 710 ((i9)") and from @
el (1) < 70 (1)),

N
By considering the sequence {r‘isk} as in Case 2.2, 4.4(4%), one
A J
gets (same arguments as there) (3 e C25[3] c C[3], this time via

~ Proposition 3Z above.

'i=3L

Case 3.1.

A ———— S ——

~ A j
- s
3 subsequence 83 »y.® Br(O), such that B e C,°[3]
reN ‘
\/ r e Ny with T,y corresponding to (j ,3), as usual,

N ,/“\
one gets I(I B ) e Q 031 ={ (*) lxl-x2 3= = O}, therefore

n D
T(rlg) « Q4(3], therefore B e c35[3] c C[3]

Case 3.2

3 subsequence {B } .y, =8, (0), such that, for each
erN j
fixed r, B « c3 2(m )(31, where m_ e U3 o Mg. This menas

that 8 € {8 « c2°t31|e(o) = ¥, = xgm)} =

3

n,
={8eT 1").1'1({(-)lx1=x2=x4=x5 = 0})}, where iy 1s

J
such that m_ e U,’, and T corresponds to j,.2.



4.4(38)
%»

-

-1
d .
"That is: (r;l(yr))u = (‘r(')l(y ) v = _EE%TEB_\”)_U(O) = d(rdtBY‘)V(O) = 0.

-

Now, if T' corresponds to (js,3) we know, from Remark 7 in
4.4(%#), that:

-1 =

r Fo(cz(zsl)) c C2(3a0)
(in that Remark T > Ty, Ty > Ts i=2,r=3and c, = 2, ¢y = 3)

Therefore, if g = (r'l)(yr)) @, = (P"l)(Br). and by{;: above:

d(a ) d(dr) d(a )
(——u(0); v(0); —w(0)) =
dt dt dt

=Tt () () (0) airle ) (0)

For(y,) oI
and hence, since o ¢ T, _ | (C,(2,1)), by ® , we have
Sy, 2
s Loy () (T, (6
o T rlr ) (T C,(2,1))) «
dt dt " Tl Tolty,) 2 & 2

: c Tgr(c2(390))

Also,by B , singe r;l(yr) € C2(2,1) [y, € " X¢ (Mg), since
Y = xf(m ); see also Remark 7],’5 € C (3,0).
Therefore, the cond1t1ons as in the hypothesis of Propos1t1on 33

are met by {ar} hence v(O) = “%(0) = 0, i.e.
- dt dat

-1 | 1,
Qi!..ﬁly (0) = gl-L-I-'--—-ﬁ-)w(O) =?]. We recall, from Proposition 31

L dt
and its lemma, that y/e x(M1 - =3) therefore T 1(y) = (0;0;0).

This, together with 6 (we don't need the whole of Proposition 33),
A " J
shows that 8 « TT.171(0,131 = C;5131 < €3]
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N j
Case 3.3: JKeNs.t. B ¢ C3fl(mk)[3], 8,(0) =y, ., some

s d
m, € U3 n Ml’

Vk > K, arbitrarily fixed.

The proof of Case 3.3 is entirely analogous to that of case 2.2
~ ~ J
(4.4(4%)). For k = K fixed, Bk e {B e C1°[3]IB(O) =Y = Xf(mk)},

J _ J
jo s.t. m € ulo', Hence, 9 representative Bk s.t. Bk(I) < N1°. One gets

: . _ i S ! jo -1 jo . )
(as in 4.4(17)): X9=Yf/Y I(Mio) Py (M ) > T (N1 ) diffeomorphically

j j
() € €(3,00) ((1))s TR (0)) e TTH(N®) ((31)") and 1Yz (1) <

c r'l(N‘I°) ((i14)')

1.

By then considering the sequence {a,} > &y = ak(O), @ =T 3

K™ kel k2K

o, J o
and setting MK = Y 1(M1°). Nk =T 1(N1°), one gets (as in 4.4(17%))

o

‘-1 | : ’ 3
d r B - - . "'1 - . Js
-L—-)-wd (0) = 0, from Proposition 34, and I "(y) = 0, since y « N;°, hence
t .

Ao |
B e C3%(3]  CI3) 0

€. Genericity of v /N C,:

PROPOSITION 36:

3 open and dense set of vector fields, B c V(:R3),s.t. VeB=

2v3RY) o C31 = 9.

Proof
The proof is analogous to that of Proposition 20; one sets

8 = 3 na, 8IS = cl3 aal, vl = sHeD), v - sTHE ) s e,
f=1,2,3, Aand S as before. B = {v| jzv A (Vg and Vg’c),‘d i,§} is

then proved to have the required properties. 0
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PROPOSITION 37: | (GLOBAL to LOCAL)j}

J
Let Y € Cf, mS_’(1S’JS)’ U.iz: S = 19-.-,p as in 4.4(2?). 3 U,

open neighbourhood of y iniR3, s.t. Vn cf =V n [if/ij(uqs " Md)],
‘ s=1 Ts
COROLLARY:
P J d
Voo Coe U xp(u.® n M%),
f = fti
s=1 3
Proof
Same as that of Proposition 21. 0

PROPOSITION 38: (Genericity of v,EE% cusp in STANDARD FORM: the 3 dimensional
problem)

{

Let a(t) = (au(t);av(t);uw(t)) be a € curve

through £ = a(0), £ =(£ 3£ 3,

Eu = Ev = 0. Suppose that:

) satisfying

(2(0); Ly(0)) # (0,0). Then € >0 s.t.
- dt

Halt)]]|t] <e, t # 0} n C(2,1) = 0.

Proof:

Let a(t) = (a,(t);a (t)). Ifde>0s.t. {alt)|lt] <e, t #0}ac(2,0) =2
then our thesis would immediately follow from the fact that €(2,1) = €(2,0) x R.

Therefore our problem will be solved if we show if:

a= (uu,av) is a curve in

R, a(0) = 0, s.t. (a}(0);a}(0))

then |3e > 0 s.t.{a(t)]|t|<e, tA0IC(2,0)=0 |

L #0 (1)

Case 1: Suppose 32v(0) # 0. (II) Follows, from Proposition 22.
M dt -
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Case 2: Suppose 99\/(,0) = 0,':—%(0) # 0. In this case au(t) =
' t

—_— t

40
_ da 2 {d !
= :’-Eu(O) t + 0(t") Therefore |a (t)] 2 172 | (0)[ It] , for t
2.
sufficiently small. Also (t) = S3v(0) t% + 0(t%) ; Therefore
dt
2 2 2
2 d .
lo ()] < 2¢[t°], where ¢ = Iﬁ-v(O)[)ﬂ" 3:‘3«,(0) $0,e=1, if 3—%\/(0) -

Hence [av(t)l < A, |au(t)| b ) for some A ¢ R'. Since —-——u(O) # 0, we also
dt

have [au(t)l 2 |tH-(1°i-u(O) I—%-, therefore [la (t)| < K. |a (t)[;{,
dt | 1 _

for some K > 0.

V=Kl Let & =8/27k%. Chouse £, small enough so that
(au(t),uv(t)) € BG(O)’ v |t] <e;. Suppose that

(o, (8,0, (1)) & Cpo [t] <&y Then 2762(t) = 8u3(e),

therefore since |°‘$(t” < Kzlaﬁ(t)[ ,27|a3(t)l = 8|u3(t) <

s Z7k%|a(t)]. If o (t) = 0, this will lead to

F
(2, vre Su.’) 8/27K2 < Ia (t)], a contradiction; hence au(t) =0
(obawe)
[
therefore by @&, av(t) = 0. Now, since :i_U(O) #0, 3 €y >0 s.t. ¢ u(t) # 0,
t

Y ts.t. |t] < e,. Choose € = min {e,3e,}.
| t#0

the 4 v .
It follows fromvrabove that if“ltI;Oe, then a(t) ¢ Ce = ¢(2,0), as required.
t
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PROPOSITION 39: | (Genericity of v X\ Swallowtail in STANDARD FORM: the

(&) 3 dimensional problem)

let o = (au;av_;aw) be a curve through 0 ¢ 1R3. |

Suppose that _:_aw(o) f 0. Then,a e >0 s.t.
t

>
V' {o(t)] It] <€, |t] #0} a€(3,0) = 8.

Proof
*
We first define C (3,0) = (u,v,w)eli 256w3—27v4+4u(32v2w+4u§w..}
' -3uw2 - u2v2) =0
| i 393 4 2
This is obtained by multiplying | (1) e (\)Y=x"+ux"+vx+w=0| the
2
. 3%a
(93 as in 4.2(1)) f(5) “ 30y = ad + 2ux + v = 0
L dx
2 3

Pquations (1) and (2)<as in brackets) by x",x,1 and x ,xz,x,l, respectively,

and solving the 7x7 determinant for u,v,w. It follows immediately that

€'(3,0) > €(3,0). (it is actually true that C (3,0 2 €(3,0), but this will

not concern us here). So, i‘f'vwe substitute, in the statement of Proposition 39,
€(3,0) by C*(3,0), to get a Proposition 39', say, then Proposition 39' =

Proposition 39. We prove below Proposition 39'.

weeK(UZev?)®
We first give some definitions:

Ck', = {(u,v,w)eR3|v@o. , Inis 1,
u @ u
and w Z: kju| (1+2) %k « R}
’ ( red part of the cone as in
.__:/ \?adu,\‘ﬂﬂ picture; we didn't draw the lower
_'_::"‘};;(_&}; part of the co@rte)
71)- C'\: ={(U.V.w)eR3lu Bv,|3] s 1,
.
23 MCR kIv|(1 + 8%)%, k « R™}

(white part of the cone)
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k Cﬁ v C:: (= {(u,v,w) e R3|w =+ k(u2 + vz)%})

o
"

k k' k u k*
SC C SC C g ' s4t. 1
u i’ v oo v stands for 'solid'; 'C

k

for 'cone’'. Finally, SC SCE usct. The proposition will follow from

some lemmas.

LEMMA 1:

Let k be fixed. 3 8 = §(k) s.t: B4(0) sck

%*
g "€ (3,0) = {0}
@ote: This says that the intersection of the red. ‘solid' cone with the
swallowtail is locally ;a._']
Proof

*
Substituting (1) and (2) in the expression for C (3,0), one gets:

1256k3(1 + a2)3/2[u|3 27t 4 tlu.(t320t2u2klu|(1+cz2);§1;4u3k|u|(1+<:z2);s -

-3uk~2!u|2(1 + ozz) - o2yt = 0.

From this, we have k33 (A + |u|B)@0, where |A| = 256 and B = B(k) is a
| positive constant (B(k?"). < B(k) if k* > k). Therefore, by choosing u

s.t. |ul <§%%) (therefore |ul ?%%%),V k' > k), one guarantees that (B) is
satisfied 1ff u=0 (=> v =w = 0). If we take § = 256/B(k), then

K o -
36(0) nSC, nC (3,0) = {0}, as wanted. 0

LEMMA 2:

S ————————

> |
Let k be fixed ¢ = £(k) s.t. B(0) n SCX n C'(3,0) = {0}
(Wote: This says that the intersection of the whife'solid' cone with the

swallowtail is locally 9]
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Proof
Analogously, one gets K3 (A + [v|B) with |A] > 256 and B = B(k)
(B(k') < B(k) if k' > k). Choosing ¢ = 256/B(k), one again gets

k * _ ' k *
BC(O) n C, n C(3,0) = {0}, vk o> k,therefore BC(’O) n SC, n C (3,0) = {0}.
g
LEMMA 3:

With the same hypothesis as those in Proposition 39, 3 ¢ > 0, k « R'
such that {a(t)| |t] <, t#0} <18 (0) nsSC*- {011,

k

where n = min {8,c}  [Therefore B (0) n SC* ¢*(3,0) = {(0}]

above
Proof

Let a& = C(# 0!); a&(O) = A, aQ(O) B. For small t, a&(t) > C/2,

a&(t) < 2A (or 5A >0, if A = 0), ao(t) < 2B (or GB >0, ifB=0). Fort
fixed, Iau(f)l = Ifg a&(t)dt[ < |2A %] ; analogously, e ()| < |2Bt] and

8, D1 = ler2l [T e T, (D1 2 1 ey (G50 + %, Taking

k = 1 -%51-2- ., we have that, for small t, say |t| < g4 0ne has
Ay U

()] = k (a2(t) + 2(£))% therefore (a (t)ia (t)ia () ¢ 5cX; also

a(t) € sn(o), t small (]t] < €gs say), hence {a(t)| |t] <e, € = min {el.éz},t;‘(ffc

c (Bﬁ(O) n SCk). Also a(t) # 0, |t| <e, t # 0, as a consequence of
SUCs

chw/dt(O) # 0: e may be taken so small as to satisfy a(t) # Ok[l< =, t £ 0.

o
LEMMAS(1 + 2 + 3) > PROPOSITION 39:

Choose ¢ as in Lemma 3. {a(t)] |t;|‘0< e} < B (0) o sck - 0}, 1f
. t
a{t)(]t] <e, t # 0) « C'(3,0) then a(t) « [(C (3,0 n a,‘(oynsc")-coj(um a(t) # 0 -
see above) contradicting Lemma 1 or Lemma 2. Hence

alt) ¢ c*(3,0),therefore a(t) ¢ C(3,0),V t #Atl <e.
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PROPOSITION 40:
v ¢ B (as in Proposition 36) = v Cf.

Proof
As in Proposition 23, we have to show that, for fixed (arbitrarily)
y e Ces vfI\)_' Ce» and this reduces (see 4.4(20)) to proving that

J d
v&y Xf(Uis n M ) in a number of separate cases, i.e.: 1’ = 1,2 or 3.
s

Lase 1: lis = 1) This is like case 1 of Proposition 23: X¢ (u s Md) = Nis

and v[3](R ) nC S[3] p =>vADy le.

. s o . ~1 js d j d
Case 2: i_= 2» ‘Let T,y as usual. Since I (xe(U,° n M ))=Xg=Yf(y(U25 n M%) <

c €(2,1), one has that:

y(e ) n xf(u ¢1

J
i.e.,v/ Dy (x¢(U, S n mdy)y. Hence, it suffices to prove@. Set q =r g,

e, > 0 is s.t. F'l(oy(es)) n €(2,1) = (DT:}

whev'e g:1 +R is a solution curve of v through y; VB](R"){\C"'S[}) Sl; where

c25131 =T r1(02[31), means I(a) ¢ Q,[3], since e v[31(y) ¢ C 5[3] Therefore,
since £ = a(0) = T"1(g(0)) = I“l(y) satisfies £ =g = 0and, by R,

(EU;EV; -(-igu(O); £1—0‘«/(0)) # (0;0;0;0), one has (dau/dt(_O);-dav/dt(O)) # 0; hence,
dt dt

by Proposition 38,F¢ > 0 s.t. {a(t)] |t| <e, t # 0} n C(2,1) = P, which is .

Case 3 1's = 3’ T,y as usual. As above, one has to prove only that
-

36, > 0 s.t. F'l(Oy(eg)’ 0 €(3,0) = §) ¢ . Now VI3IRY) o c3'°'[3] = §=>

(Eu &y Ew (0));‘ (0,0,0,0), where B:1 —>R3 is a curve through y,

a=17lg, £ = a(0). Stnce £ = r7(y) = (O,Oso)"ﬁ‘g"(o) # 0 therefore by
t
Proposition 39 one gets 8. 0
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COROLLARY ;

If f:X XR3 + R is generic, 3open and dense B s.t. v ¢ B @v&t\cf.

4.4,4: The case r = 4:

——

et B=B,u... ul2,(see 4.3(1), N, M}, U] as before

A. Definition of C[4]

DEFINITION 12:

Define, for fixed J:

diar = ttod) < )
gy o h Y1 . .
;141 = TT.1'7.(Q,041) (I,y corresponding to (j,2)),
= 20 - _ _ _ _
Q2[4] = {(xl"",’XZO) e R [xl = X, = Xg = Xg = Xp0 = O}
J = Tép 7-1 . :
C3(41 = TT.I'".(Q4[41) (T,y corresponding to (j.3)),

20l

Q3[4] = {(xl,...,xzo) eRT[%y = %5 = X3 = X = %y = 0}.

a1 = T l(guen (o + (.8,

0}.

[[]
wx
"
=
I
%
o

Qq[81 = {(xysenniXyg) ¢ BOYx; = x,

chm (i=1,....,4).
jeN

¢[4]

Cr4)

i
G
(@]

—de
po—y
-
[ —

HWe prove below that these definitions are independentof the choice of

Tyy.
PROPOSITION 41:
Let y: R4s be a diffeomorphism (a germ of), leaving Ci(Z.Z) (i=1,2)

N
{nvariant. Then T"w Teaves I"'1 (‘02[4]) invariant.
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Proof ‘
A~ a1 e _ _n d
Let a ¢ T7(Q,143,a(0) = € = (£.6,,,.8,), £, = &, = 0, Su(0) =

_da _dza ) '\’4,\ _(\y J
= =4(0) = =v(0) = 0. Now I(T"y(a)) = K¥,8), W, ()5 4 (8); w (e);

dt dt red ed W Z

2

Qigﬁlu(o); Qiiglv(o);.;.; d_(ve) (0); etc..). We would like to show that

dt ' ;_EI—_______..J L.g:_.;___.!

the expressions marked with a dot are 0. By invariance of C2(2,2) one
immediately gets wu(g) = wv(s) = 0.

The rest of the proposition follows from:

Claim: k1
: 2 2
Vv~ do. do do d 2
Let P = I{a) = (§,5....E,5 —u(0);..5 =2(0);] ==u(0);..;==2(0);
! 2 dt dt  |dt a2
k., 1%JV(O)' : d30‘z(O)) ¢ RO 2(as above
N at® |
N
Then, 3a sequence a", g." = a"(O)[where the symbol '3' in a" denotes somre

that the equivalence relation is 'v:,] such that:
f\.(nQ A
(1) Pnﬂla)-»Pasn-wo.
. 3
(11) V n fixed, 3 representative *‘d‘ﬁ s.t. a™(I) C1(2,2).

(hence §n € C1(2,2); a condition like (i) in Proposition 32 is easily met - see

construction below - but we will leave this implicit for simplicity’s sake).
To prove this claim, set. o"(t) = (aE(t);aC(t) ;aC(t) ;a:(t)).

" = a"(0) and define:

2 3
F'a:(t) =g, * d(0)t + é—g—%w(o)tz + 31!-9-%‘(0)t3
0 dt dt dt Vn e N

(78]

2
da 1 d%a 2. 14d 3
(t) = g, + —z(0)t + 2(0)t° + (0)t”.
Z gt AR 3T 4

-5

K
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and

" EHOEE 3b§(t) ¥ neN, where b (t) = b (0) + b, (0) t + > b2(0) t% +

al(t) = 2b3(t) + 37 b (0)t° and b (0),b;(0),b%(0),b™ (0) are

-y

defined below.

by
_def. \/ . .
1/n, ¥ n. One then chooses, for every n arbitrarily

Set bn(O)

fixed, ba(O), b;(O) and bg'(O) s.t. (dropping the Q's):

dzan _ b " 2
$30(0) = -6 (o, + (5)%) = &y (1)
d30.n e TN
-‘;;TJ(O) = -6 (bnbn + 3bnbn) = k2 (2)

and 3n
d ] 3 2 m " -
—d—t%v(O) = 6 (2(b))” + brb™ + 6b brbr) = kg (3)

This is done in the following way: choose bﬁ to be a real root of

the equation: 6(br")3 + 3b,'1k1 + (k2/n + k3) = 0, and set b; = -n/6 (k1 + 5(bﬁ)2):
b = -n/6 (k, - 3nk;b! - 18(b"‘)3n). |

It is easy to check that with this choice (1), (2) and (3) are

verified (by substitituion). Ve |
By definition, (a"(t),an(t)) satisfy (a";a")(l) < ¢,(2,0), therefore
A1) = (aL‘ oo, 'z‘)(l) 7 ool2, 2), since C,(2,2) = €,(2,0) xR,

Yn
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n .n
Also (4) Sty T 0 7 as n >« (see 4.4(32)),
n

d(a,,) since b_ =1/ -+ 0 as
u = - ' n
—:r—-(O) 6bnbn-9 0

n-> o,

and d(a) 2
L —-(0) ~6brb’ = 0

Finally, one can check, by computation, that:

2 n) dZ( n)
———7——{0) b (- ——-—?— (0) + 6(b ) ). Since |br"l is Timited. (see
¢? (u (0))
4.4(32)), 2 = kl,V n, and b+ 0 as n - =, one has:
dt | n
)

(5) ——-2-——(0)+0asn—>°°

(1),...,(5) and Definitions (I) and (II) imply immediately that P.>Pasn+e,
This proves the claim.

Now consider the sequence {Ya } ., .Since ¥ is a (C*) diffeomorphism

n N "
and I is continuous, I({a}a)‘ -> I(@?) as n -+ =, since (@3) =
{ (Pn) + 1 7(P) = (a”) as n + », Recall that

1) - (v, (8)s...00,(E); ﬂd-‘f'lu(o); ——U’—“—%(O),... .

dt

In the same way as in Proposition 32 and (5) above, it follows that
2
M(O) = sl—L‘&)-'«(O) = d—Q'@-‘-)-'v(()) = 0, as wanted, since p"(1) c C1(2,2),
dt dt dt

because y leaves C1(2,2) invariant.
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PROPOSITION 42:

Let WJR4fE) a (germ of) a diffeomorphism, leaving C (3, 1), i=1,2,3,
invariant. Then T ¥ leaves I (03[4]) invariant.
Proof

This is very similar to the situation we had in Proposition 25. The
difference here is that the main argument expioits now the invariance (under -)
of the cod. 2 strata, 02(3,1) - there the invariance of C1(3,0) was behind
the main line of the proof.

Similarly to what was said in Note: (4.4(2%)), the proof follows from
the fact that ¢ leaves the cod.2 strata, C2(3,1), invariant and that, if

{En} +E e C3(3,1) is a sequence with £« C2(3,1), then

TE (C2(3,1))“ § "{(a,0,0,8)]a, B € R}. (i.e., the (u x 2Z) plane), as
n

En + E. The rest of the proposition is trivial, following immediately from
the invariance of the strata of higher (cod.3) codimension, C5(3,1). (see

third line of proof of Proposition 25).

The technical details of the 'reduction to absurd proof' are very similar -
to those as in Proposition 25, so that we just verify 8. (Note: @.3s cé#résyemukyﬁ;
In - Proposition 25, JgS?V%ﬁe fact that:

Tﬁn(cl(a’o)) = {(0)“2C!Cn +8ia Cn - Bcn)|a: € R}" - " {(3a830)|09 B e R}v

as n + »; the contradictions obtained there, in the reduction to absurd proof,

are a direct result of this).

To work out what TE (C2(3,1)) is, we again refer to x, corresponding to
n ,

the swallowtail. C2(3,1) = (x x I) {(a.b,c,d)‘a = b = 0} where
x(0,0,¢) = (-6c2;9c3;-3c4),therefore x x 1(0,0,¢,d) = (-6c2,8c3;-3c4;d).
2
By computation, one therefore gets: TE (C2(3,1))= {(n;-Zacn;acn;B)la »B ¢R,
n

where, for each £ , one chooses (c»d)s.t.(x x I) (0,0,c.d.) = & .
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@ote: c, ? 0,V ne N.) Since £ > ¢ = (0,0,0,*) (since £ « C3(3,1)) as
n + «, one has (,-6c§)->0l therefore C, > 0 as n > =, Hence,

TE (C2(3,1))" +"{(a,0,0,8)|a, B € R}, as wanted.
n ,

The conclusion is, therefore (similarly to Proposition 25), that Tgw

leaves {(2,0,0,8)|a, B < R} invariant; this, together with the fact that y

leaves C3(3,1) invariant, proves our proposition. D

PROPOSITION 43:

Let ¢: ]R4f'3 » as in Proposition 42, leaving Ci(4’0) invariant,

ny
i=1,2,3,4. Then qu leaves I"l(Q4[4-]) invariant.

Proof

Idea is, as it was in Proposition 42, similar to that in Proposition 25.
Part of the proof follows trivially from the fact that ¢ preserves (24(4,0)
(see Proposition 14, 4.4.(9)). The other part consists of a reduction to
absurd argument, as in Proposition 25 and the details of which we will not
write down explicitly, which depends (and follows immediately from) on the
fact that TE (01(4,0)" > "'{(é,a,y,O)la,B, Y « R}, where {£} is a sequence
in R4. £, 81(4,0),Vn, and £ (0,0,0,0) as n + =,

To work out TE‘(CI(4,O)). one refers to x, corresponding to the butterfly
n

(see 4.2(4)). C1(4,0) = y({(a,b,c,d)|a = 0}), where x:

4 3...5
(0,0,¢,) ~ (4c-10¢%; 3b-12cas20d7; 12cd’-Gbd-154); bd’-aca>+ad?).
Tou v w o z
2 2
By computation, one gets TE (c1(4,0)) = { (e;a-38dn;-2ad F3sd + viad -

n

3
- Bd_ - de)lc.B, vy € R},
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where one chooses (bn,cn,dn) (n fixed) s.t x (O,bn,cn,dn) = £ . One

n*
can show (see note below) that £ -~ (0,0,0,0) = d_ > 0, therefore

T, (€;(4,00) » {(B,e.7,0)| .8,y ¢RI
n

The conclusion is that T,V Teaves {(8,2,v,0)|a,8,y € R} invariant.
This, together with the invariance of C4G¥,0) (= {(0,0,0,0)}) under :,

proves the proposition.

Note: Suppose En -+ (0,0,0,0), (bn,cn,dn) as above. By computation, one

has w, = -dn(dn(3un + 5d§) + 2vn), where vn‘and u, > 0 asn->= An easy
reduction to absurd argument shows that dn # 0 is impossible.
The following three propositions follow (in the same way as Propositions

26 and 27 followed from Propositions 24 and 25 <4 Remark 7 -+ arguments as

in Proposition 15) from Propositions 41, 42 and 43, respectively:

PROPOSITION 44: |
The definition of Cg[4] is independent of choice of, T,y.

_EROPOSITION 45: -
" The definition of Cg[4] is independent of choice of T, Y.

PROPOSITION 46:

The definition of Ci[4] is independent of choice of T, v.
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B. Closedness of C[4]

a—

DEFINITION 13:
We define the total fourth bundle associated with (i,3),Tc](4]

J - d
J - d
TG4 = Cyl4l v (;\baﬁﬁé 3 1(m)141), where
2" ,
L8] = B e COB0) = v = yelm),
J
where j is chosen so that m e u1°.
i = cdi v (o muan v (L d e, where
Mme u3nM2 meu3nM1 ’
1(m)[4] = {8 c °11118(0) = y = Xe(m)},
J
where j is chosen so that m e u1°.
: aA
€3 (141 = {8 € C,°141[8(0) =y = x¢(m)},
J
where j s chosen so that m e U2°.
K4 = crdl v (K Jd . 3(m)[41)u(\ Jch o(m)41) v

4 M3 elyn M2

u ( \~ .44 Ca,1(m141), where

c4’1(m)[4] = {B e c1°r4]ls(0) =y = xe(m},

where jo is chosen so that m ¢ Ulo.

e

c3 ,(m4] = {8 Cj°[4] (0) =y = x¢(m)}
8,2\™ 4] B e C,[8]]8 Yy = XM}k,

Jo.

(A ]

where jo is chosen so that m ¢ U

! .
€. 3(m 4] = (B € C°141]8(0) = y = xg(m],

Cude

where jo is chosen so that m e U.°.

W
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PROPOSITION 47:

The definition of Cg 1(m)[4] independs of the choice of j .
s 0

Proof
Identical to that of Proposition 28 (4.4(25)); just substitute 3 by 4
whenever necessary. 0

PROPOSITION 48:

Definition of C% 1(m)[4] independs of the choice of jo.
Proof |
As above.

PROPOSITION 49:

Definition of Ci 1(m)[4] independs of the choice of jo.
Proof
As above.

PROPOSITION 50:

Definition of C% 2(m)[4] independs of the choice of Jor

Proof . .
. . JQ J]_
Let‘Jo,J1 be s.t. m ¢ u2 s M € u2 . Let

: j
0 €3 ,(mM41,) = {B e C,°141]8(0) = y = xe(m)},

J

Jo chosen so that m € u2

0

. . n j
@ c3 ,(M81G,) = (B e 921[4]| 8(0) = y = x(m),

J
j1 chosen so that m ¢ uzl.

Let.ro, Yor T2 1y be as usual, corresponding to (jo,Z); (j1,2),
respectively.
~ ~ ~_ 4 4, -1 V-
Let B ¢ 8. Therefore, B ¢ T4FO.I 1(02[4]) = TTy(T (Fllfo)l 1(Q2[4])) =

by J ~
—_— T4r1(}"1(02[4]),therefore g e 021[4},therefore B €D.c< O :analogous.
Prop.41
0
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PROPOSITION 51:

Definition of Ci 2(m)[4] independs of the choice of 3o
Proof
As above (Proposition 50).

EBQPOSITION 52:

Definition of Ci 3(m)[4] independs of the choice of 3o
Proof
Analogous to that of Proposition 50 above. Just substitute 2 by 3

everywhere, and use Proposition 42 instead of Proposition 41. C

PROPOSITION 53: L(Reducing GLOBAL to LOCAL)

Suppose that gn e C[4], y, = 8,(0), ¥n eN, and {@n} > Be T“(R“),y =z

, nelN
Then, Ei ie {1,2,3,4}, j ¢ N and subsequence {Ek} s Yy T Bk(O), such that
kelN
ﬁk € TC?[4], \/ k ¢ N. Furthermore, y € x (Ug n M?).
N\ M.J
1
Proof
A~ J
‘Choose (i »J ) s.t. B e Ci"[4], for each n e N; recall that
. . . n o
i J i i .
xf/Min:Min"diff"?-N'in 2 Yy,- Set m = ‘,(xf/Min) 1 (yn) In particular,
~noon : n ' n
J
n ?M.".
n- i .
-1 . g
Let'x% (y) = {ml,..;,mp}, and choose (15,35), s=1,...,p s.t. m_ € Uis,
S = 1,2,3 or 4 according to whether mg < MY , 3 .
LEMMA:

S ma——

J ~ J
. s s
Everything as above, m_ ¢ uiszg; By € TCiS[4]
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PROOF OF LEMMA:

Case 1

-
[}

(=]
= L)

O
m

C4 [4]. As in Proposition 17, one easily shows that mo=m

4. MWith the same arquments which lead to the proof of
i, Jg
Propos1t1on 46, one shows that C4 (4] = C4 [4] therefore

wde
"

6 €C4[4]CT4[4]

Case 2: 1n =3

Cases is = 1 or 2 may be discarded (Remark 8 and ¥ above).

Case 2.1: i, =3

S
N
T4P

~ J - _ e
B, € C3"[4] = I 1.(Q3[4]) therefore rnlsn e I 1(03{4]Ltherefore

B = T4r (T4(r‘1r ) (ECTE )), [see note in 4.4(28)], where
Bn S s n nn’’? —_— ) ’

> vl .
i I (Q3[4]); hence by Proposition 42,

A

4. 3-1 _Js I
B, € TT(I77(Q3041)) = C57[4] < T4 [4].

Case 2.2 i_ =4

——— S

Ao~ 1 J j
Bpe {BeC "[4116(0) =¥y = xg(m)} = CyS4(m ) 4] < TC, (4],

[Note: m, € u. 5_4 n Mg, by the hypothesis of lemma, X in 4. 4(55),

and hypothesis of case 2]. Tho equality above results by taking J

as the jo in Definition 13.

Case 3:

Case is = 1 may be discarded (Remark 8 4= ‘®, in 4.4(59)).
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Case 3.1 i =2

it S

Near = 4 T-1 . -1 v
Bn € C2 4] = T T, I (Q2[4]). As in case 2.1 above, I8, € I 1(Q2[4]),

) . . y ~ ,\J" j ]
therefore,by Proposition 41, Bn €\T4FS (1 1(02[4])) = C25[4] c TC§5[4].

Case 3.2: is = 3
A J
B € {B € Cz

| J J
n [4118(0) = yp, = xg(m)} = €%, (m )41 <TC.5(41. This

equality results by setting jn as the jo in Definition 13. Note:
J
S d
eU 3nl\'l

L 2

Case 3.3: i_=4

———— S

2 ~ Iy I Is .
By e {8 e CN141]8(0) =y = xe(m )} = €)% (m )[4] < TC,°[4]. Again
J' .
. . . e eas . S d
set J, as J,» in Definition 13. Note: m. € uis=4 n Min=2.

Case 4: in =1

Case 4.1: i_=1

—_— S
As case 3.1 in 4.4(29); just change 3 by 4 everywhere.

Case 4.2: is = 2

~ J J
~ Analogously as before, we get By € Czsl(mn)[4] c TC25[4].

Case 4.3: is =3

Analogously, one gets gn ,3 1(rn )[4] < TC3 [4].

Case 4.4: ié = 4

~ J J
As above, it follows that B« C451(mn)[4] c Tc4s[4].
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LEMMA ==>> PROPOSITION 53:

Equal to the proof that lemma to Proposition 17 =3 Proposition 17,
substitute 2 by 4, whenever it appears. 0

PROPOSITION 54:[(cuspas BUNDLE CLOSES FOLD'S BUNDLE : STANDARD FORM)

‘ Let g denote the standard cusp 92=R2 X R + R with two disconnected
[-C‘OSEQHESS contrO]S&C-:(L’:VJX)HXZ/Z + X4/2 + uxz/z + V)a

at cusps Let {&n} s & 7 an(O), be a sequence in T4(R4), converging

SurF.'.zceJ neN "

to a point , a

£(0), with§= (EusEVsEWsE ), £ = &, = 0.
Suppose that, for each n fixed, =] ok » submanifold of Mcll, such that
(i) )(g/Mn:Mn > N = xg/Mn(Mn) is a diffeomorphism

(i1) g,  N" < C,(2,2)

. . - . ~ n
(ii1) j representative o € a , s.t. an(I) c N'. Then

day(0) = 2y(0) = £2y(0) = 0
dt dt dt2

In precisely the same way as done in Proposition 32 - with the only

difference that we now have two d1sconnected controls - we can write:
an(t) = x, 5(0sby b, (t)sc, (t)3d (t) = (- 3 (t)s 2b (t)sc, (t)3d, (t)), where

X = x2/(e/M x ,ﬁz)(M ) where x, is defined by the diagram.
n
1

_ 2
Mg = M92 x R
0/MxI , Xg
r2
R Xo — 7 R

Therefore, omitting the 0's, as before (see Proposition 32), we have:
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~ N\ 2...3 - 2
= (-3b_32b ;c_3d ; - '3 'selid!; - "y b2y,
I( “ha) ( n32bpic sd 6bnbn 6bnbn chidls 6(bnbn + bn),

b4

2 2 ny. ., Ju, n d

6(2bn+(b$) + bh n)’cn’dn’ 3" and 4th order" coordinates) e RZO

where, like in Proposition 32, bn(t), cn(t), dn(t) are defined by X;}Z(an(t)) =
= (anS}), bn(t), cn(t), dn(t)). Hence, since

cod ) = = {r op op . 2 3
: dn) o (0) ‘Eu’gv’gw’gz)’ we get -3b. > 0 and 2b. > 0

2,3,
(-an,an’ C n

n
as n > o,

We want therefore to prove:

-3b§ + 0 (a) %4(0) = Tim (-6b'b ) = 0
dt n-xo nn
3 =
(1] %p * 0 da 2
: (b) —=v(0) = 1im (6b'b7) =0
dt n-> nn
(@) L) = Tim (26 #5112 + b2 = 0
dt e n-n nn (11)

(II) (a) and (b) have already been proved in Proposition 32. It remains to

prove (c).

. By computation:

2 2
d"(a,) d™ () . 2
—174(0) = -b_(0) —"ii(0) + 6b(0) (b! (0))2.
dt? dt?
dz(an)
Now bn(O) +0as n-+o, —u(0) tends to a constant as n+~ and
2
dt

(ba(o))z is limited (proved in Proposition 32). Therefore,

2
d"(a. ) ..
Tim -———ELV(O) = ——(0) = 0, as wanted.

Mrbco dt2 dtz
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PROPOSITION 55:

SwALLOW TAIL'S Leg g, denote the swallowtail, g = g5 * one disconnected
s . N

BUNDLE C[-OSE control, {a } , ¢ = a,,(O), be a sequence in T4(R4),

cusP's BUNDLE: neN !

cANONicAL FOR converging to o ,£ = a(0), £ = =¢ = 0. Suppose

[_C.LOSEDNESS AT that for each n arbitrarily fixed, one has:
SwALLOW-TAIL'S (1) £« €5(3,1), (i1) da /dt(0) e T, (C,(3,1)).
n

LINE : CASE i] ‘
Then: da fdt(0) = da, /dt(0) = 0.
Proof
One first computes TE (02(3,1)), as it was done in Proposition 33.

n
In order to do this, one considers the map)X x IR’ where x corresponds to the
swallowtail (see 4.2(%)),x x IR(O,O,c,d) = (-6c2; 8c3;-3c4;d). Choose

cn,dn s.t.y X IR(O’O’Cn’dn) =g (possible since',gn € C2(3,1)), for each n

arbitrarily fixed. Now y preserves 2-dimensional strata, i.e.

x % Ip ({(a;b,c,d)[a = b = 0}) = C,(3,1), so that,by computation

c#0
T, (C,(3,1))= . T -~ XI({(a,b,c,d)]a=b=0})
& 2 v (0,0,c_,d )]ﬁ'.L c.#0,¥n
3 n’'n n
= {(r;-2 'rc2°s)|r S éR} n fixed. Since da_/dt(0) ¢ T, (C,(3,1)) b/ n
| ’ "q\’_ n’ s ’ . n gn o\ ’
arbitrarily fixed, choose r = Fos S = S, SO that dan/dt(o) = (rn-,-Zrncn;rncﬁ;sn).
o 2.3 4. - -
Since En = (-6cn,8cn,-3cn,dn) + (0,0,0,*) as n » =, Cp 0as n—+ =,
d(o. ) |
Also —2u(0) = r, - some constant as n -+« = thereore one gets
dt
d(a ). /dt(0) = -2r.c_ -+ 0
nv (©) nn as n -~ », as wanted, precisely as in Proposition 33.
2

d(an)w/dt(O) = -r.c, = 0
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PROPOSITION 56:

| SWALLOW TAIL'S BUNDLE| Let g denote the standard swallowtail g5 With one
CLOSES
FoLD'S BUNDLE: STRNDARD FORM

disconnected control (see 4.2(4 )). di.e.:

g(Xsu,v,w,z) =‘-\x5/5 + ux3/3 + vx2/2 + wx. Let
[CJoSechtf-’ at suallowTails I
. o}
Une : case 2.] n

s £ = a (0) be a sequence in T4 R4 .
oy Bn T q (R)

converging to a point Q »€ = a(0), with gu =g =
Suppose that, Y n arbitrarily fixed, 3 M", a
manifold of M?, such that:
(i) x-g/Mn:Mn + N = xg/Mn(Mn) is a diffeomorphism.
. n
(i) & n € N < C1(3,1).

' N
(iii) =) representative & of a, s-t. an(I) c N7,

Then: QQV(O) = QQW(O) = 0.
dt dt
Proof
Construct X1 by the diagram: M x R = Mg(c R4 xR) ,

93
/6/MXI Xxg
4

4 X1
R' ———> R

where 6/M is again as outlined in [17], and corresponds to the swallowtail. As

previously (see for instance 4.4(3{)), set Xn,1 = Xll(e/MxI)(M")’ and define
a,(t), b (t), c (t) and d (t) by x;h(an(t)) = (a,(t)s b (t); c (t); d (t)).

Again an(t) = 0, by (iii), and one can write:
an(t) = X, 1(03b, (£)3c,(£)3d, (£)) = (30, (£)-6e(t)s-6b, ()e, (t)+aenlt);
2 8.,
3b, (t)ch(t) - 3c,(t)3d,(8)).

Omitting the 0's from notation below, our problem is reduced to show that:
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6cZ + 0 o) 2 A
3bn -6c > | (a) ?(0) = (-G(bncr'1+brl1cn) + 24CnCr") -0

3
6b_C 48> » 0 | —= d(a )
nnon =7 (b) _;;i—W(O) = (3(b; c +2b c c') —

2 . 4
3bncn-3cn -0

12cicé) - Ol
(11)

(1)

(1) =2 (11)(b) has been proved ‘in Proposition 34. It remains to show that
(I)%(II)(a). We have already shown (4.4(38)) that c, > 0 as n~+e Since
3bn - a\.ﬁ + 0, one also gets bn +~ 0 as n > », from (I).

o)
By computation, one has:
d(a ) d(a )
(c) -—-—-—-v(O) = —2cn(0). —0 4(0) - 6b (0)c (0).
| dt | dt
nd
: ¢*(a.) s  da) d?(a ) )
(d) w(0) = =c(0). —T-u(0) - ¢ (0) — v(0) - 6b, (0)(c (0))".
2 2 2 n n
dt dt dt
d(a )
Suppose we do not have 1im —;—-v(o) = 0.
n-+o t

. d(a
Hence, 3 e > 0, and a subsequence such that | ——¥0)}|> € , YkeN

hm (——%‘(0) + ci\\/ —j\(o) +

cons tant constant

From (d)

d? (o))
+ éka) () = Tin (-G 0)ci(0).c((0)) -

n->oc
v

dt
o constant

(k dloy )/ i
rom (c)) Jim (( (o) (0) + ZC»(O) “K(0)) c(03)

v
modulus 0 constant
greater than




Hence, for all k sufficiently big,
: 14
|ck(0)| < >

Again, by (c):

d(ak)
—v(0) = -2 k(o)

dt

B constant

d(ak)
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6, (0) ¢ (0) ,

b

Timited

and therefore | -c-l:c-—v(O)I < g, for all k sufficiently big, a contradition.

Hence (I)= (II)(a). 0
PROPOSITION 57:
BUTTERFLY's BUNDLE Let g, denote the standard butterfly (no disconnect::

Closes
SWALLOW TAIL-'S BUNDLE:

controls), {&n}

. g, = o.(0), be a sequence
n

cAnonicAL FORM in T4(R4), converging to a £=0a(0), £=0c¢ R*.

[Closedness at Butlerfly's
“Ppourt : cizse.%]

For each fixed n, let x be as defined in [17],

corresponding to the butterfly, and let £ e C,(4,0;,

so that we can choose (uniquely) (O;0,0,dn,g R) s.t.

x(O,d.O,dn) = £ . Suppose that:

. ®
%(0) € [F,n(l);gn(Z)], where by this we mean the space generated
dt ’

by the vectors sn(l) and gn(2), with

s -
B 0
-3:“ 1
(1) = | 3d » £,(2) = -2d,
3 2
| =Gn .dn y
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Then -d—-a-z(O) = 0.
dt

Proof

Since ® 1is true, we can choose, for every fixed n, ro» Sy St.

da = (v - .2p 42 e 42_. 43 . g n
;;n(O) = (rp3s, - 3r,d s3r d- - 2s,d 3 do-r d). Since ' {(an)}nEN converges,

lim r = gg“(0)5 lim (s - 3fn ) = QQV(O), hence 1ims = o, (0)

e N dt n-roo dt N> dt
fixed 0
limit
fixed fixed
Timit limit
hence 1im ng(o) = 1im ( A dﬁ -/riﬂdS) = 0, as wanted.
e dt n-»c0 &
O
0 0

PROPOSITION 58:

BUTTERFLY'S BUNDLE Let g, denote the butterfly, and let {&n}nen,gn = an(O)
CLOSES ' 11
CUSF'S BUNDLE ¢ THE be a sequence in T (R'), converging to a, £ = a(C),
STARNDARD FORM £ = 0. Suppose that, for each n fixed,

[clesedpess =t BatterFlys

i e C,(4,0) (ii) da/dt(0) € T, (C,(4,0)).
Pownt : Case 2{} (1) &y € Cp(4,0) (i) da/dt(0) Eng 2(4,0))

Then: 9%7(0) = 0
dt

Proof
Let x be the one. cdrresponding to the butterfly (as in Proposition 57

above). Choose cn’dn s.t. x(0,0,c_,d ) = £ possible since £, € C2(4,0).

nn
: _ 2, 3.0 240k 5, 3
| () (&)

tends to (0,0,0,0) as n + = and:
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- 2, .
(E), = -3an§u)n +10/3 d,7), if dnfO, one would get a
subsequence {dr} s.t. ldrl >e, Y re N, therefore |

.. c / . 3
I(gv)r‘ = 3|dr| . H%()r +10/3 d;l > 3e ,\v, r sufficiently big, an absurd.
Y A

o
Hence, dn +0as n->x As (4cn - 10d,") > 0 as n > =, one also has ¢, 0

as n -,

We work out Tgn =X(0’09Cnsdn)(cz(4’o)) = T(O’O’cn’dn) x({(a,b,c,d) a=b=0

- e
— (£,(1)5€,(2)1, where £ (1) = | 5,
;M and £ (2)=] !
¢ #0,¥ n 3d” n -2d
I'31 211
-d | | dr )

From (ii) above one therefore has ¥ n, fixed, dan/dt(o) =

= (rn;-Brndn S 3rndr2‘ - Zs.ndn; - rndr::’ + sndﬁ), where s , r < R. By the

convergence in the hypotheses, 1im rn = ggu(O). and
‘ yﬂo n-o dt
lim (-3 +s )= lims —v(O) therefore lim{-r d s d ) = —-z(O)
oo in. n n po N dt n-m( dt
fixed limit . ' C
_BmmrSITION h9; Let s denote the standard butterfly,
, o)
BUTTERRLY'S BunpLE closes o} &, =a,(0), bea sequence in T4(R4)
FoLD's BuNDLE :STANPARD FoRr M| neN

i a = = 0. that,
[closedness at Botterfly converging to a , £ = a(0), & Od Suppose that
Point : Cose 3_] VY on fixed, =) M", submanifold of M", such that:

(i) xgqan:Mn > N" = Xg /Mn(Mn) is a diffeomorpnism.
4
(i1) g, e N <, (4,0)

(i11)3 representative a s.t. °(n(I) < N". Then, daz/dt(O) =
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Proof (of Proposition 59): -

It is very similar to that of Proposition 34. One sets X, =
n

. . . = o1
where x corresponds to the butterfly, (an(t)_’bn(t)’Cn(t)’dn(t)) = x; (o (1))
an(t) = 0, expressing °(n(t) as: ‘

o (t) = x,(0sb(t)se (t)3d (1)) = (4c (t) - 10d§(t); 3b,(t) - 12c _(t)d (t) +
2063(t)312¢, (£)d(£) - 6b, (£)d) (£)-15d7 () 3403 (1)-4e (£)a3(t) + 3b_(1)eZ(1)).

Therefore the proof of proposition reduces to the proof of:

2 A
4cn - IOdn: 0
3b_-12¢c_d_+20d°-> 0 1
n="ntn TN 20d%d*+3(2b d d* + b'd?) -4(c'd +c d') — 0
266 d 1544 0 _nn nnn nn nn“nn’
12¢,dy-6b,dp-15d, = T
dle
5_ 2 z'n(p
4d -4c d +3b d*—> 0 — (0)

(1)

First, one sees that (Ew)n = -dn(2(§v)n + dn(3(gu)n + sd;‘:)), and

hence, since £+ (0,0,0,0), d~ 0, asn~e,

Then, by computation; we have:

d d(a d(a,) d(a, )
Ly o o)y - & Evo - o oo,
dt J dt b dt oy dt
N
4(0) 42y (o) £4(0)
dt dt dt
d(az)
so that T(O) + 0 as n + », as wanted. 0

PROPOSITION 60:

Cl4] is closed in THRY).

(11)
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Let'{Bn}néN, Yy * Bn(O), be a sequence converging to some 8 ¢ T40R4),y= 8(0),

and B¢ C[4], ¥/ neN fixeg. From Proposition 53 and its lemma, =} subsequence
{8,} such that 8, « TC.> [4], V k e N.
kelN ls

Case 1: i =1

: s
Jg 3. & 3.
Tci =1[4] = C1 [41 =7 N1 . With I',y as usual and as in case 1 of
S

(4.4(16) and 4.4(3¢)), one shows that F'IBk(I) c €(1,3) therefore

N AL .
I(r 1Bk) c {(xl,...xzo)lx1 = Xg T Xg = Xj3 = Xy9 = 0}

J ~
As before (4.4(16)/(326)), one gets B(I) < N.°, hence B « C[4].

Case 2: is = 2
Case 2.1: 53 subsequence,"{ﬁr} > Yy T Br(O) of {gk} , such that
- relN keN

. j
B, € c25[4],‘</ r e N.
Proof

As that of case 2.1 (as in 4.4(36)); just substitute 3 by 4 whenever

it appears.

A 1 j
. — - J d S
Case 2.2: ] Ke N s.t. B> Yy ~Bk(0) € Cz,l(mk)[4]’ some m, e My n uzl

Yk = K, fixed.
Proof
Precisely as that of case 2.2 in 4.4(36); substitute 3 by 4 whenever
it appears and apply Proposition 54 instead of Proposition 32.

Case 3: i =3

S ———— S
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Eiif_g;li Ea subsequence {Br}rdN, Yy = Br(O), such that

~

J
B, € 033[4], k/ r e N; one gets, similarly as in case 3.1 (4.4(3})),

~ Js
Be Cy [4] < C[4].

Case 3.2: 53 subsequence'{gr} > Y. =8 (0), such that,V r, fixed,

- rel r

“»cjs()4 25wl Thi 3 e (heco

By € C3,2(M 141, m. e U™ a My This means 8 e - {8 € C,°[41]B(0) = y, = x¢(m )} =

(B e T4

"
FOI-I({(') lxl = Xp = X T X = Xy = 0})} (note: jo is such that

J
0 [ J L] o 3 .
m, € u2 ), i.e. in particular :

R R S RORY W SNORE] o

dt dt

Now, if T corresponds to (jS,B), we know, from Remark 7,that:

-1 Ay
r ro(c2(2,2)) c c2(3,1)..

(in that remark, T -+ Tys Ty > Ts i=2,r=4,¢=2¢,= 3).

Therefore, with £, = I"l(yr)., o, = I"'IBY,, by ® and B :

d(a. ) d(a.) d(o.) d(a.)
—Lu(0); —Fv(0); —w(0) —F2(0)) € T (C5(3,1)) (as in 4.4(38)).
dt dt dt dt &
Mso by, £« C,(3,1). By Proposition 55, it follows that L9(0) = R(0) = 0

j=js -1
By Proposition 53, y QX£Mi=3 ))therefore I “(y) = (0;0;0;*). Hence
S Wt |
BeTDT (Q3[4] < C[4]

~ J
Case 3.3: =] KeNs.t. By € c3fl(mk)[4], 8, (0) = y,, some

J
mkeu35nn‘1’,\/kz|<.
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The proof of case 3.3 is as proof of case 3.3 in 4. 4(35). For k 2 K fixed,

J
(B8 e C1 [4][6(0) xf(mk)}, o s-tem e U1 . Hence J representative
. c 0 j . "1 J —A .o
B, with 8, (1) < N;°. One gets X9=Yf/Y-1(M19)_ .y Mlo)”’ r (Ni )CC,(?’,‘),
. . iy, el “100y £/ - 1,3
diffeomorphically ((i)'); T °(8,(0)) e T 1(Nlo)((n)') and T lBK(I) cT 1(N1°)(Qii)'¥

By then considering the sequence {&.} . (0) k > K, with
"
) 3 de

By > and setting Mk =y 1(M 0y, N = (T'l( 0)), one gets, from
j
Proposition 56, HEV(O) a{w(O) = 0, therefore B e C3 [4] < C[4).

o = T

Case 4: i = 4

—————— S

~ A J
Case 4.1: Eﬂ subsequence {B .} , 8.(0) =y s.t. B e C,5[4], \/ r ¢ N.
r reN T r r 4

//“\
With T,y as usual, one gets I(I 8 ) € Qu8) = {(-)[xy=xp=xg=x)=xg= 0},

n z/"\
therefore I(r" B) € Q4[4] therefore B € C4 [4] < C[4].

Case 4.2: = subsequence'{é } ,8.(0) = y., such that for each fixed r,
™ reN

a d
Br € (m )[4]. m, e U4 f\pﬂ
Th1s means S e {B « C3 [4118(0) =y, = x¢(m.)} =

{8 T4r01'1(03[41) 18(0) = y,. = x¢(m.)}, where .
and J.
Q3141 = {(-)]x; = Xy = X3 = Xg = Xy = 0} XYwhere j,is s.t.m e u3°.
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4.4(70)

Therefore, we know that

d(r s)

d C,(31) TR
Taleso)

(w-axis missing; we actually draw the
projection of C(3,1) on the (zxuxv) space)
]',I) to find out thalt
- ) -1 :

Tkr(t' 1{’o)(P) is, where h. ={" *(y) e €3(3,1) (since y_ eXc(m), m_ e M3).

|d(r;'s,) t}
i.e)———0) ¢ P , (r

P as described in the pict:

The idea of the proof will

Once we work out (II), we then use: | | ‘III)
-1 -1 d(r-1s.) d(r-'g )
B oy 2By - T ) (0. =20
dt dt dt dt
-1, -1
d d(r>"g.)
where -*-———-—-—( 0 l")u(O);...; —2—"L-(0)) e P, by (I)
dt dt

Let e, = r-l I‘o(kr)= I"l(yr). Let x be correspondent to the butterfly, and let

2,

d. be 1.':he unique number s.t. x(O 0,0,d,) = (-10d_ 20d 15dr,4d‘|}:e‘,(1t is easy

to prove unicity).

LEMMA (to case 4.2): r-1 A r-0—]
-1 B I X Te =

Thr(r ro)(P) = [Er(l)’gr(z) > Er(l) 3d2r ’ Er(z) -2d

5 2"

_..-dr Ldr_‘

- ]
space generated by
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PROOF OF LEMMA:

The idea here is to exploit the invariance of the two dimensional
strata, i.e!, the fact that (see Remark 7) rl r,(C,(3,1)) " C,(4,0). As we
have pointed out in Proposition 42, the proof will consist in considering

S S S _ -1 S
sequences {hr} € c2(3,1) -~ hr(e c3(3,1)) and {er}sd\l’ e, =T ro(hr) €

¢ C,(8,0) » e, e c3(4 0) and showing that [T (C,(3,1) 7 LTeS(C2(4,0)) R

- [gAl),gr(Z)] (as above) as s » =; a reduction to absurd proof, using B8

. > Prop. 14
(and continuity of ¢« e R" + T, (r- 1y ) - see also 4.4(9)) easily proves (see

Propositions 14 and 25) that T (I" I‘o)(P) = [£_(1),£._(2)1.
- r r

We first prove @ For this, we compute T AA(C2(3,1)). Let n:, =
h

s
n(u,v,w)(hr)’ where II

rl
) (u,vaw,z) + (u,v,w). Since C2(3,1) = C2(3,0) X [z-axis]

UsV,W
( R

ThS(CZ(B,l)) will be generated by the (one dimensiona]) generator, ‘j?(l), of
r

T (C (3,0)) and 0 cj (2). To f1ndj (1), consider x (corresponding to
0
h, . , 1
the swallowtail), and let ci be s.t. x (cf,) = nf_ (c?, € R3). Since h: -> hr = (0,0,0,*),

then n° + n_ = (0,0,0) (as s->eo), therefore ci +>0as s+, and ci # 0,V s, since

r .
s s . . 1) 1 A idertif
he € C,(3,1). ) (1) is easily computed to bel ~ ¢ g (idertifying
-2¢ .| -2c
2| T sy2
S\2 S
(cp)”] (c.)
0
R =1 x {0}). Therefore - -
R47 1 —.0-1
s
.=2C 0
Ta(cz ) = o ] > P
kl' ( z( 51) (ci)z J 0 b}
. 0 L . L 1/
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H

. s
as s =, since ¢ > 0 (as_ we have commented above, the whole argument is made

precise by a reduction to absurd proof, as in Proposition 14 and 25, for example;

we allow ourselves the somewhat loose use of ' + ', as above, in view of that)

As to @, we start by working out 7 S((22(4,0)). Let x be the one

®r

S
r

S

corresponding to the butterfly. Choose mf, = (ai, b .

S S S
) Crg dr))s.t. X(mr) = e

5O S _ .S . C (0:0-S.a5Y o

l'~
- (4cS - 10(d§)2; - 12c5d5 + 20(d;°;)3-, 12¢3(d3)? - 15(di)j4/@iﬁ4cf,(di)3))and one
~gets TeS(C2(4,O)) as generated by [ 1 \} FO 7
r S
-3d° 2 1
S & S -
S 3§ e
(3 (1) = s.3 g (2): W,
r ()T )
L [ ]

since ©® = cf, 70, Vs.

One can Show that ci + 0 as s-»»o, since e:, > e, (= C3(4,O), from which

it easi]_y follows that di +d, as s >, hence ®. cend of proof ~0
1 ) of lemma
d(r8,i). 2 2 _ 4
v = (p :5 - . - . - .
From lemma, T (0) = (rr,sr 3rrdr,3rrdr zsrdr’srdr rndr)l
' d(r"1g) d(r1g) _
therefore 1im r = —u(0), lim s,k = —v(0), since d >0 as r + w(e\p"o
r r r
s dt r-o0 dt
Nfls o
aVe, =1 (y,) » I"L(y) = (0,0,0,0),a5 r + =, and x(0,0,0,d,) = &)
-1
d(r “g,) |
Therefore 1im ———=2(0) = Tim (Sr di - r. di) = 0 hence
ree  dt e VS TR
fixed fixed 0
limit limit
-1
'-;-—-z(()) = O,therefore I(TT “(B)) € 04[4],
t .

-1 _ 4 - Js
SinceI' "(y) =0 eR’. So BeC(, [4] < C[4].
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Case 4.3 a subsequence {8} , Br(O) = Yy, s-t., for each fixed r,

: reN

a JS J d
B, ¢ C4’2(mn)[4] (m, e Uy nM).

We have B¢ {8 e T'r ?'1{(')Ix = Xo = Xp =X, = X.0=0}|8(0) =y}

r 0 1°% d?r-lsﬁ) 10 18(0) =y,
From Remark 7, r'1r0(62(2,2)) c C2(4,0)) therefore ——TX— (0) €
eC,(2,2) dt
1, (7 ro>,(d(r;15,,)
Iy (¥, i (0)) € Tr'l(y ) (C2(4,0)),' where we use the notation
r

S | |
he = T7(¥.)s e, = T (y,)

We work out T, (02(4,0)) by using x corresponding to the butterfly,

r
as usual: Ter(C2(4,0)) = T(O,O,cr,dr) x{{(a,b,c,d)|a = b = 0}) =[£r(1);€r(2)]
. 1] (o )
where m = (0,0,Cr,dr) is chosen so that X(mr) = e, and gr(l): = .
3a2 [ &e(2) = | aa"
3 2
. dr< ‘.'dl"J

(Note: C, # O,V r, since Yp € xf(Mg))

(—o.\aove.
As Yo y, 0 —l(yr)—> 0; it is easy to show that cr,dr—-) 0. Now, from ® , one has
YT P -1
d(r "gy) d(r "8,
r c . r =y - 2 42 e a2 3
(-——;;———H(O),..., ———;;—-—2(0)) = (r.;s,-3rd ;3r d-2s d ;s d -r d),
d(r-1lp) drle)
sr.d e Rjtherefore 1im r. = ——(0), 1im 5, = ——v(0); it follows that
r oo dt r-o dt
-1 .
d(r g ) A
lim ———TX2(0) = 1im (Sr di - T, d?) = O;thereforep € C4S[4] c C[4].
oo dt oo l \Y; 1 N

- constant 0 constant 0
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A J
. S
Eiii_ﬂ_ﬂ; FKeNs.t. ﬁk € C4,1(m)[41, where 8,(0) =y, = x.(m), some
keUSnM VK
J‘ .
. . ~ n o ~N J
For k 2 K fixed, B e {B ¢ c1 [4118(0) = vy = x¢(m)}, 5 s.t. m e U °.
Hence, 53 represent; B s.t. }3 (I) c N1 » S0 that, as in case 3.3 (4.4(¢9)),

one gets Xg=yg/y-1(Mio) Dy (M1°) >l (N1°) diffeomorphically,

] 1,3 - 1, .
T 1(Bk(O)) erl 1(Nlo) and T 1Bk(I) cT 1(Nlo); so that, considering the

k

~ - .. - -1, 3 j
sequence {oy} 5 g = o, (G}, with o =T lek and setting M" = y 1(M1°),Nk = F'I(Nio)
/

k=k
" d

as before, we have, from Proposition 59, daz/dt(O) = Ojtherefore B ¢ C45[4] c C[4].

0

j& Genericity of v)f\ Cf:

~ PROPOSITION 61
3 open and dense set of vector fields, B c V(R )sS.t. V € B.—.)v[4](R )nC{4]= %

Proof

Like the proof of Proposition 36; just substitute 3 by 4 everywhere,

3v in the definition of B. 0

and jzv by J
PROPOSI%ION 62: (GLOBAL to LOCAL")
LletyeC £ Ms (1 ,J Ys u 5 s=1,. ,p as in 4.4(23). 3 vV, open,

s

neighbourhood of y in Rﬁ,s.t. VinCe= Vn [\,/ xf(U n Md)]-

COROLLARY: .
P J
VacCrec\U xe (U3 a M
f s=1 f. s

Proof:

Same as that of Proposition 21. 0
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PROPOSITION 63: [ (Genericity of v Acusp in STANDARD FORM: the 4 dimensional problé;ﬂ
- i

Let a(t) = (o, (t)sa (t)aw(t),cx (t)) be a (C”) curve through £ = L

- - i . 2
£ = (gu,gv,gw,gz)/sat1sfy1ng £, = &y . Suppose that (EEU(O);HEV(O);'Ef v(0)) #

# (0,0,0). Then,3e >0 s.t. {a(t)] |t| <e, t#0} ncC(2,2) =0.

Proof |
Since €(2,2) = C(2,0) x R2, we see, like in Proposition 38, that we

will be done if we can prove:

if o = &au,av) is a curve in

-~

R, (0)=0, (a&(o);a\’,(o);a\"'(()))# thenjFe > 0 s.t. {a(t)] |t} <e,

#(0,0,0) t # 0} nC(2,0) =
| | Tﬂ) # (2,0) = 9

()7

Case 1:

Suppose %%V(O) # 0. (II) follows from Proposition 22.
Case 2: '

Suppose EEV(O) = 0, afu(O) # 0. (II) follows from Proposition 38

Case 3:.

o 2

Suppose dt % v(0) = % —u(0) = 0, ﬁ;%-v(O) # 0.

In this case ) o (t) = "(O)t try, (t), [r (t)\/ -0 ast-0.
o,(t) =imt +r (), (rv(t)!@-,o as t » 0.
#0
| ; 2
From this, 3 g, >0 s.t. [t] < e =2 lav(t)\ 2 ‘ av(OL/é\t and
o((t)] < Kkt?, K = min{ef 2(0); 1?.
setting ¢ = Zk/a"(O), we then have |o (t)| s ela, (t)]. Let e, >0 be
s.t. Ja(t)] < 27/8c (possible, since o is continuous and a(0) = 0), if [t] < €.



*
Let e = min {g;3e,}.

*
Let t be s.t. |t|] < €.
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Suppose t is s.t. a(t) e €(2,0). Then,

Y 2 2
qu(t) = 27 qv(t) > 27/c..au(t) ;therefore au(t) > 27/8c2 or au(t) = 0.

The first inequality is impossible, since Itl‘< e < €+ S0, a (t) =0 ;
u

therefore av(t) = 0. But then, one can choose €5 S-t. {[t[ < 53}__90,‘,(1;) # 0,

t#0

because lav(t)] > |u¢(0)/2 |t2, t sufficiently small; hence, if

| S

#0

*
¢ = min {e ,53} and {]t] < € , one concludes then that a(t) ¢ C(2,0). This ¢

t#0

settles case 3.

0

N,

PROPOSITION 64 \(Genericity of v/E\ swallowtail in STANDARD FORM: the 4 dimensiorﬂ’
problem)

Let o = (a 30 30 ;az) be a (C") curve through £ = a(0), E, " E
4

Uu v w

=g = 0

v w

R

Suppose that (g%v(o); %%w(o)) # (0,0). Then,

Te>0s.t {aft)] |t] <e, t #0}acC(3,1)=0.

Proof

‘Since €(3,1) = €(3,0) xR, we will be done if we can show:

if |a = (au.av,aw) is a curve

in R3, through 0, with

(a}(0)50,,(0)) # (0,0)
— (1)

Case 1:

Crp————

then,

Je > 0 s... {a(t)]]t] <e,t#0} n C(3,0) =

(11

Suppose a&(O) # 0. (II) follows from Proposition 39.
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Case 2: Suppose a\;l(O) =0, a\',(,o) # 0.

Instead of proving (II), we will

actually show that:

\ ) ]
F>o&t{MnN”th7am=a

t#0

(
*
where C (3,0) is as defined in 4.4(42).

(I1)'=»(1I), since, as pointed out
. *
in 4.4(42), C (3,0) > ¢(3,0).

We define, given c,K e ]R+, the sets:

R, = () « B|usav, o] < o},
Ri = {(u,v,0) € B2 (u,v) e Rets

pk - {(u,v,w) e R3lW = ik(uzwz)}’
sk = U ok,

k'gk

k _ k 3
SPc SP™ n Rc.

To prove (II)', we adopt a method
similar to that used in the proof of

Proposition 39. We first show that,

*
for n suff. small, B (0) n SPnC (3,0)=(

(see 4.4(43)), and then prove that, if
|t] < e, suff. small, € # 0, the orbit

of a has to be inside B (0) n SP% - {0}

(for convenient k, c € R).

Lemma 1:

Let ¢, k as above be fixed.

3 > 0(= n(e,k)),s.t. B (0) a SPE n € (3,0) = {0},
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Proof

: 3 :
Set n = min 11/Kf, K = 266k5(c21)® + 128Kk(cBe1)c + 16kc*(c2+1) +

+ 12k%c%(c%+1)2 + 4¢3,

3
Suppose E}(u,v,w) e R™ s.t. (u,v,w) ¢ Bn(O) n SPE n C*(3,0). Substi tuting

2, . .
U=av, W=+ k'(u2 +v7),with k' < K,in the expression for C*(3,0) (see

4.4(42)), one gets:
®

A

! 2 PY )
vA(-27+v, (256 (k') v (a®+1) £ 1280k (P+1) 28k a3 (6241) dev-3a (k" ) 2(a24 1) Agv-203)) = €

Now [v.0] = [v]l@]<vI(|286(k") *v(a®+1)3 |+ | 128ak" (aP+1) [+ 8k o3 (oPe1)dav | +

+l3a(k') a2+1)24av[+|4a3|) <|v].K, since k'sk, |als C and | v| =<1 (since

(usv,W) € Bn(O)). Hence, |wéb|'<-%.K = 1 -therefore (-27 + v.Q) # 0 3

0;therefore, from the expression of

therefore v = O}therefore u= v

C*(3,0), w = 0. This proves the lemma.

gk CeR,e>0,s.t. fa(t)] |t]<e, t #0) CWJMnS¢={mL

Proof

We first choose € s.t. Rc Rg. where C = max. {1:4 “6(0)

}:
&Pt
Ia&(ﬂ)t + ru(t)l < |2a&(0)|t

L

o, (0t + r (£)] = Jay (03t

If aG(O) # 0, choose €}, s.t: lau(t)l

lav(t)l

2
14a' (0)
Hence |a (t)] = i . lo,(t)] ; therefore |a (t}|s CIav(t)|jtherefore
v

a(t) € Rg,\/ t s.t. |t] < ei.
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IA

If a&(O) = Q}choose e; s.t.: lau(t)l

o, (t)]

|2/0:(0) | ¢

therefore
|y (0)/2]

v

la, (t)] < lo, ()] ; therefore a(t) « Rz, [t] <ey.
Set €; = min.{ei,e;}.
8a‘:(0) 4 }
(2(00) %} (0))? " ) (0) % (0)

We now choose €, s.t.§9c:SPk, where k = max{

If a&(O) # 0, choose €5, S.t.: law(t)l < 2|a&(0)|t2
2 ]
Iau(t)l 2 (Olu(o))z tz:las(t)[ 5 (Q\:I(O))th
4 4

Hence, |o (t)]

] R 2 2
YN < k ; therefore|o, (t)| <. - k(oS (t)+ )
o, (t)+a (t) ’ oy (] (o, () av(t)l,therefore

o t) € Rg, [t] < ).

If a&(O) = 0, choose eg(O) s.t.: law(t)l < t2 1

=
le2(8)] = o (0)%/8.82,62(1)] = a;(o)2/4.§fj
= alt) ¢ R |t] <.
Set €, = min {e},c}}. |
Choose €y s.t. B c Bn(O). This is possible because a{0) = 0, and

o 1s continuous.
Choose €, s.t. |t] < e4=> |a(t)]| # 0, possible because ¢¢(0) # 0.

Set € = min.{el.ez.e3.e4}; this will do.

Lemmas (1 + 2) => case 2 immediately, therefore Proposition 64 is

proved.
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_PROPOSITION 65: |(Genericity of v /I butterfly in STANDARD FORM: the
4 dimensional problem)

- ‘y o 4
Leta= (o 0,30 30,) be a curve through 0 ¢ R'. Suppose that

daz/dt(O) # 0. Therje > 0 s.t.: {a(t)] |t] <e, t #0} n C(4,0) = p.

Proof
The idea is very similar to that of Proposition 39 (see 4.4(42).
* .
One first defines C (4,0) = {(u,v,w,z) R4|P(u,v,w,z)‘5 0}, where

P(u,v,w,z) is a polynomial in u,v,w and z, by multiplying

(1) 39,,'-/3x (-) = x5 + ux3 + vx2 +wx + 2

- (2) | azg"‘»/axz(') = 5x4 + 3ux2 + 2vX + W

3 2
(1) and (2) by x", x~, x,1 and x4, x3, x2, x,1, respectively, and solving
the 9 x9 determinant for u,v,w,z. It follows that C*(4,0) > C(4,0).
P(u,v,w,z) is a polynomial containing the following monomials, with

coefficients in R (these coefficients are irrelevant - from a qualitative

point of view - in the proof): z4,w5,v222w,vzw3,vsz,v4w2;uvz3, uwzzz,uv3wz,

uv2w3;u2vzzz,u2v2w2,u2v4w;u322w,u3v3z,u3v2w2;u4vzw, u4w3;u522,usvzw;usvz,uswz.
~ As in Proposition 3"9, it suffices to prove a Proposition 65', obtained
; *
by substituting C(4,0) by C (4,0) in Proposition 65.

We then give the following definitions:

®

| | L, ®
c:j = i(u,v,w,z) € R4l U= ow, V@B(u2 + w?')z. z = l“k(uz’fvz*'wz)ls .}
with o] < ||8] =1

5 @ ; et
Cv,;(l):{(u’V:W,Z)imdflw@au, V@B(uzwz) %z = ik(u2+v2+w2) ol and|3]s 1}

® 2 ,
& = {(u,v,w,z)eR4|v@aw, o = p(veni) 5 2 2 sk(uPwimd) S lal . 18] s 1b

v
2
Clv:(z)={(u.v,W.Z)eR4|w = av, u@e(v2+w2);5,z® :k(u2+v2+w )’5,[“| , 18] s 1)



This picture represents the region

defined by () and (Din R’
A 1/2 rotation around the

v-axis
reglion .

gives rég.def.by @ and (:) ~

A n/zlrotation of the two above
cases, around the w-aXis, gives
reg.def. by (:) and (:)and (:) and (::L
respectively.

Therefore the complement of [(reg.def.
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We claim that if (u,v,w) e R? then it
belongs to one of the regions below,

defined by the equations:

(:).and @; (@) and @); G and (8

(7D and (6) (see picture and note below

it for immediate geometrical intuitive
proof).

To see this, suppose that (u,v,w) ¢

(@ and @ ) u (@ and @). Immediatel.
vl > 10+ )
(u,v,w) ¢ ((B) and (B)) u (D and &)).

L
Then |u| > |(v2 + w2)2|. Therefore

v2+w2<u2<v2

2w2 < 0, absurd.

%

|. Suppose also

- wz,therefore

From the above:
oK — k k k k
¢ =y v Cyqy v Oy v Bz
| {(u’vsw’Z)€R4|Z=i’k(u2+v2+wz).;§}
One further defines:

(L) cX'and sc&,..,sC
k'zk u w(1)

analogously.

k

k
v and Scw(Z)

k -
SC,

Finally,

kK _ erk k k k -
SC = SCu U Scw(l) v SCv u SCw(Z}

b .def. b d .
y @ and @) v (reg.def. by (Dan @1 {(u,v,w,z)eR4|Z=ik'(u2+V2+W2)%»k'2k-'

= reg.def. by (2)is just the interior of

the cone shown in above picture.
Also, one has that the complement of

il

by

comment above.

[(reg.def. by(:)and(:)u(reg.def.(:)&(E)]

= rea.def. by(:)is the interior of above
cone rotated by II/2 around w-axis.
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LEMMA 1:

R ———————

. = . *
Let k be f1xed.E}6u du(k) s.t. : Bau(O) n SCE n C (4,0) = {0}

Proof

By gubst1tut1ng (:) (:) and (:) in the polymial P, one gets, as in
4.4(43), k*w” (A + |u] B)@O where |A| > coef. of 2 in P, B(k) is a

positive constant (B(k') < B(k) if k' > k). Therefore, by choosing

4
usote ful < S8F0F 2 e efore |y <Coef.of 2F K > k). one
B(k) B(k")

guarantees that (:) is satisfied iff u = 0(=>v=w=12z=0). Take

8, = coef. of 24/B(k).

Let k be fixed. Then:

, k *
LEMMA 2: =] 8 s.t. B (0) nSC. n C (4,0) = {0}
e W(l) SW(].) Wl
LEMMA 3:
2 s, s.t. B, (0)A Sctn ¢"(4,0) = {0}

v
LEMMA 4:

| ) .
=) Sw(2)S- B‘sw(Z)(O)n SCy(2)" € (4,0) = {0}

LEMMAS's 2,3 and 4 are proved as Lemma 1.
LEMMA 5:
Let k be fixed.3 & = §(k) s.t. B.(0) n SC* n C'(4,0) = {0}.
Proofl
Immediate from Lemmas 1/4 above.
LEMMA 6:
5 k € R+, e >0s.t. f{alt)] |t] <e, t#0}¢c ((B (05 n SCk] - {0}).

Proof |
Let aé(O) =D (# 0); a&(O) = A, a&(O) = B, a&(O) = C, For small t,

ay(t) 2 D/2, a}(t) s 2A (or 8, > 0, if A =0), a)t) s28 (or 5 >0, if B =0),

«(t) < 2C(or & > 0, if C = 0). Like in Lemma 3 (4.4(4}), one gets
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2 2 2 %
o (t)] =k (o, (t) + a (t) + a (t))? for It[‘<el,say,and e; suff. small,

= 1/4 ————?———'D'
A2+B +c2

therefore, by , a(t) € SC |t] <gy
Choose €, s.t. {a(t)] |t] <e,) < Ba(o)’ €q S.t. alt) # 0 if

lt|'<e3, t # 0 (possible since aé(O) # 0), ande= min {51,52,53}. This
will do.
LEMMAS 5 & 6 = PROPOSITION 65'=> Proposition 65 immediately.

PROPOSITION 66:

v e B (as in Proposition 6l) = v J @ Ce-
Proof '

Just Tike Propositions 23 and 40. We have to show that, for fixed
(arbitrari?yz y € Cf, V/ff\y Cf, and this reduces to proving that

/{\ g dy .
v y xf(ui n M7) in a number of separate cases, i.e. ig = 1,2,3 or 4.
s

Case 1: \1 =1
J J
~ This 15 like cases 1 in Propos1t1ons 23 and 40: xf(u SaM ) = le and
VI4J(R4) n O =0 A, NS, |

f

Case 2: li_ =2
: -1 js d js d
Let ',y as usual.  Since I (xf(uz nM)) =x g=Yf(y(u2 n M)) e c(2,2),

one has:

’ 3
g > 0 is s.t. P-I(Oy(es)) n €(2,2) = ﬂle {gy(es) n xf(UZS n Md) = Q‘;?

J
i.e. v/f\y(xf(uzs n Md)). Hence, it suffices to prove ©.
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o i L4 . b"
Let 8: I +£R4 be a solution curve of v through y,ﬁ(éﬁiﬁ' r'ls. Now
vi41RY) o ¢35 141 =¢ - means 1(5) ¢ ' ey
2 =0 eans I(a) Q2[4], since v[4](y) ¢ C,”[4]

. _ o1 . o
Therefore, since &= T “(y) satisfies £, = g, = 0 and, by ® , we have
. 2 2 :
(gu’gv’dau/dt(o)’ dav/dt(o)’ d av/dt (0)) f (09030,0,0), it fO]]OWS that
2 2
(da /dt(0), da,/dt(0), <i°/v/dt (0)) # (0,0,0) and hence by Proposition
63, & follows.

Case 3: is =3

Let T',y as usual. It follows, as above, that

- - - ‘ - j
|55 > 085 st 170, (E)) 0 €51 = 00, e,) mxglty® v ) < g

e..
The proof of © is immediate from Proposition 64 and our hypothesis.

S
Like cases above (see also case 3, 4.4(45)), follows directly from

Case 4: (i _ =4

Proposition 65. 0

COROLLARY :

If f:X < R

>R is generic, 3 open and dense B s.t. v ¢ B=» v /D Cs-

4.4.5. Appendix to 4.4

—

This is not an integral part of any proof in this thesis, as it was
pointed out in 4.4.0 (see 4.4.2, (I)) we just show below what is the

motivation behind the definitions of Q;[r] (r = 2,3,8, i =2,...,r).

Cusp's case: (Qlrl, 1= 2,3,4)

Cusp's equation: l*;7v2 = 8u3 \ )

——
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As our curve (see 4.4.0,(I) a is constricted to « (0) = a (0) = 0, we

will find (r+1)-2=(r-1) conditions on a&,a&, etc., imposed by the supposition

that o runs into the cod. 1 strata, since the total number of conditions one

needs, from ;F\ considerations, is r+l1.

I - o (1) = 02
L:__z: au(t)—ut +ont” + 0,
(i) (D) (i) in ® —;27(a ) N 0, =0,
(0 disc. uv(t) = u&t + a;t2 + 03 therefore
controls) =
o' = 0
Unique condition: ‘ac = O this generates the definition of QZ[Z].
r=3 substituting back & = 0 in (i),
(1 disc. a (1) = alt +°(at2 + 0,
controls) (41 )
av(t) = aSt + 03 and (ii) in @ 57'8(a ) t +0, = 0
therefore
| a& =0
1+ . = I =
Conditions: o, = o 0] — Q2[3]
r=4 substituting u& =0 in (ii):
oy 2
2 disc. (ii1) D a (t) = a"t® + 0
Eontro]s) u u 2 3 and (iii) in 8 =2 27(c ") t + 0 = 0
uv(t) = agt” + 0,
therefore
o' =0

Conditions: \av L = ac =4é} - 02[4]
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Swallowtail's case: (Q3[r]; r = 3,4)
Swallowtail's equation: 256m° - vt + 4u(32v2w + 803w - 3uwl-udvd) = ¢
(actually contains it, but =

this isn't relevant here)

Curve a satisfies 3 conditions, au(O) = aV(O) = aw(O),therefore we

need (r+1)-3 = (r-2) conditions.

r = 3 - ] m 2
_ au(t) =a't +oitt + 0,
. . : 2
- (0 disc. (i) o (t) =a't+a"t"+ 0 (i) in ® 256@(') t +0, =0
controls) v v v 5 3 = 4 /

0Lw(t) o"wt +‘awt ¥ 03 thereforeia& = 0!
Unique condition: & 0‘ - Q3[3]

r =4 l
Substituting back in (i):

(1 disc.) )
controls - "

, au(t) = qa(t) +opts + 0,

(i1) av(_t) = q\"t + a;;tz + 0, (i1) in 9—)27( ) t + 0 =0
Y -
0‘w(t) - uwt + 03 thereforejo, = 0

Conditions: |a! =a' =0} ~ Q4]

Butterfly's case: (04[4]) Equation: KZ4 + higher terms = 0 o

r=14 ‘Sﬂau(t) = a&t + 02 . av(t) = a;t + 02
(0 disc () ( a,(t) = ot + 0y a,(t) =t +0p
controls)
(i) in @ =Ko, )4 4 Og = therefore] a) = 0!
Condition: aé =0 | -> Q4[4]
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Note: Case r =5: just go one step further in each of the above cases;

for instance, in the one parameter family of butterflies

we 1d o = ' = 0, givi
wou get’aw a 0, giving Q4[5] as

Dxp e eaxand %) = %5 = x5 = %y = x5 = xg = 0.

4.5. Hz(see 1.2(1)) is generic

——

PROPOSITION 67:

Let f be generic as before. 3 an open and dense, ¥ < V(R")
s.t. v eTL=> S(v) n Ce = 0.

Proof
We have C]c = 1&{ Ng, a closed denumerable union of cod i 2 1
submanifolds (see Propositionbin 4.3(5)). Set ,(;,: = Cp x {rg}; , which is
' SR R"

therefore a denumerable (closed) union of manifolds with cod. (i+r) > r.
setT] = {v| i ﬁ(N\l? x {0}),¥ 1,3}, open and dense from lemma 2 in
*
(3.3(2)). Finally v em:;»j%(x) = (x,v(x)) ¢ Cer Tl X € C{:—w(x) #0,
therefore S(v) n Ce = 0.

4.6. CONCLUSIONS:

PROPOSITION 68 R

" .
= and open and dense (in v(c)) set ft, s.t. v e ft = v satisfies
in 1.2(1), ¥ r ¢ {1,2,3,4} fixed.

H, and H

1 2

Proof
Follows immediately from Corollary in 4.3(14), Corollaries at the end

of Sections 4.4.1 - 4.4.4 and Proposition 67 above.



4.6(1)

PROPOSITION 69:

m—

VGRr) is open in UGRr)

Proof

D a———]

r .
Let ve VIR). I Ks.t. |v(x)] <K, YxcR". Consider the open

set B,(v) = {V']d(jov'|EX);g3\LQ>§3‘) < 1V If v' ¢ B (v), then
T () TVl

Ivi(x) - v(x)] <1, ¥ x ¢ R", therefore v' ¢ vR")

THEOREM 2:

Let r < 4 be fixed, n = 1.

*
jﬂ V , open and dense in UGRr), V* c Vf

Proof

* r e e .y *
Set ¥ =An V[R'). By definition and Proposition 67, V < V.. It

. *
is also immediate that V is open and dense in VORr), from Propositions 68

and 69,
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CHAPTER 5

5.1. PROOF OF THEOREM 3

—

The -purpose of this chapter is to prove Theorem 3 (see Chapter 1)

LEMMA A: Let r =1, n=2, f generic (see Chapter 1); suppose that

V = {Vy}’ the (one-parameter) 'compatible family, is generic
] ) Ropha o omale
in the sense of [12] (in particular, Vy e [K.SJuz:

1,
2

;= Q) v Q] v Q, u Qq - see [12], pages 35, 19, 25, 9 and 26).
*

Then, 3 V', open and dense in V(c), s.t., ¥ove V*, fixed, 3

. . + o . . .
unique 1ift <1>:1Ro x M" o Mn, with properties as in Theorem 1.

We would like to comment that the proof of the existence and uniqueness
of the 1ift is exactly as before (Chapter 2) with the only difference that, to
perform the 'jumps' (see picture), we use a global description of the change
of the phase space of vy, 'around' a singularity of Xgs obtained as a direct
conseauence of [12]: see picture below. See 5.2 for a counter-example showing

that f generic only is not sufficient.

b (the W’(

{=IxC X
' J mp
. .'w
X \

Yo Is ‘{—’(t.\j)
[¥=Flow generaled by v)
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We make these ideas precise:

PROOF OF LEMMA A:
Let X be a compact 2-dimensional manifold, v e V(X), x ¢ X a saddle
node of v (see [12], page 16); we can suppose, w.1.0.g., that the flow of

v, around x (in a ball Ba(x) < X, which can Tocally be supposed to be RZ),

looks like (see [12]), Figure 1 below.

In particular, there is a unique non-
trivial (i.e., # from x itself) orbit § -

which we will call ea(x) - s.t. x is the

a-1imit of 8. 'Also, a set K c SG(X)’

as in Figure 1, s.t., at every point x' of

K, v(x') “"enters" Bs(x). (with "enters"

Figd defined in the obvious way).
We first establish some lemmas, before proving Lemma A.
LEMMA 1:

Let X, v, x as above, v = Vy, v ='{vy} as in Lemma A. Then the w-limit

of e;(x) is a sink.

Proof:
First, from Remark 3, in 2.2.(%#), we know that the
; x w-limit of ea(x) is just a point, a singularity
IR %) of v.. Now, since V is generic, in the sense of
,, B d {2
(121, vy € [K.S] v Q1 U Q1 u Q2 u Q3 (see [12}1);
from the definitions of these sets, one sees
Fig.2 immediately that v, e Q%.
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Hence, in particular, all other
singular points of vy are hyperbolic

(see:1),pg 19, of [12]) and there are no saddie Connections, proving our

Temma. ' ' 0
_LEMA 2;
| //z N Let X, v, x, V as in Lemma 1. Then 3 neighbour-
A% hood
%-’% }V ood N of x (w.].o.g'., N> Ba(x) and a y ¢ R s.t.
. ; Vy+t satisfies either [(i)+(i1)] or [(i)+(ii)")
£ 3 2 — below, V't s.t. [t] < v.
F. 3 . . .
) (1) Vort has a unique singularity in N&St =

(i) Vort has two sing. points in N, one saddle and one node - i.e., sink or
source - if t < 0; no sing. points in N, if t > 0.

(ii)" As (i) but with t <O and £ > 0 interchanged.

Proof

From Lemma 3.z of [12], 3 N, neighbourhood of x, B, neighbourhood of
vy (in (X)) -2€ inthe udtaﬁnnof[ﬂ]- with the topology as defined in [12)
anda function f:B » R s.t., V¥ v ¢ B:
(1) (V) = 0 <pt =

(i1) f{v) > 0 if v has two sing. in N, one saddle and one node;

f(v) < 0 if v has no sing. in N.

Take y small enough so that Vyst € B, Vt s.t. [t] < v, and also so

that v has a saddle node on N iff t = 0 (Cf consists of isolated points).

y+t
Therefore f*(t) = f(vy+t) has no zeroes on (-vy,0) and (0,+y). It has to

change sign at 0, otherwise it is very easy to perturb the family so to

avoid this intersection with 21 (this means it is non-transversal to is

* %*
violating 2), page 37, [12]). Therefore, either f >0 if t<Oand f <0

if t > 0 (which is (ii)) or f <0 if t<0and f >0 if t > 0 (which is (44’

proving the lemma. 0
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Tl
Let X,v,x,V, s(x) ¢ M (see 1.1(1)) as in Lemma 1 above, f generic.
From Proposition 6 (2.1(15)) 3 neighbourhood W of s(x) in M® and ai>o

%

f\’ -
s.t. Bs(x) c in-set [@_vfy](*) ( = in-set [@Vy](k), by the definition of
T N |
compatibility in 1.1(3)), Ym= (X,)) ¢ w. LetTU- U(s(x),w =

n

V)
-\ in-set [@vm](x).
melW y

LEMMA 3:

U, as defined above, is open in X x C.

Proof
Let @ be the C™ flow induced on X x C by f, by B(t(x,y)) = Plyl(t,x),
and\P its time 1 diffeomorphism.
Set Bs(w) = \“::‘/} Bs(ﬁ), open. It is easy to check that

T=(X ,S{I) el
1 -k
v U v~ (B.(w)) , hence the lemma.
k=1 A
open
LEMMA 4:

+ . .
I nekR s.t. Vyst enters Bé(x) on K (as in note previous to Lemma 1)
V t with |t] <n.

Proof

‘Immediate, since K is compact and vy.(x') is continuous on x* and y'
d
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LEMMA 5:

Given K as above (everthing as before), 33

a compact L, as in picture,s.t.

* *

X el =X ¢ in-set [@v 1(s(x)).
y

Proof

Since in-set [@v 1(s(x)) is an open submanifold

oy
of X, given X ¢ 6 (x) nB(x), 3 ue B.(x), xel,
U c in-set [@v 1(s(x)). Therefore the region

R, and in particular L, as claimed, is contained

in this set(see p{cTure). 0
LEMMA A:
Jze R s.t. L x (y-z;y+r) < U,
Proof

L x {y} < U, by Lemma 5, and U is open, (in X x C), by Lemma 3. Hence,
* * *
for each (x ,y), x e L, Ja neighbourhood of (x ,y) contained in U. Their
union covers the compact L x {y}. Extract a finite sub-cover; it is easy to

see that their union contains a set of the form L x (y-c;yﬂ;), as required.
' g

LEMMA 7:
Let € = min {y,z} (y,z defined . in Lemmas 2 and 6 above). Then

either [I] (x,y+t) ¢ U, t ¢ (0,+¢)
or [II] (x,y+t) e U, t e (-¢,0).
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Proof

Suppose that one has ((1)+(ii)] satisfied
in Lemma 2. Let t « (0,+¢) be fixed. By
LeﬂanZ, Vort: t e (0,+¢) (e < v), has ra
singularities in Bs(x)(cN). Therefore
the orbit of x (under Vy+t) must leave

Bﬁ(x). It has to do so outside ¥, and

has therefore to cross L at a point (x*,y‘tf.

By Lemma 6, (x,y+t) ¢ U; this is [I].

Case [II] comes from supposing [(i)+(ii)")

satisfied in Lemma 2. C

PROOF OF LEMMA A:

Construct, as before, an open and dense set V* s.t., Vv e V* fixed,
one has S{v) n Ce = P and, 1f‘i e Ce is fixed,d € > 0 s.t. Oy(e) nCe = $ .
We want to show that, if v e V 1is fixed, then there is a unique 1lift
¢ﬂR; x M" > ﬁﬁ satisfying the properties as in Theorem 1.
A quick look at the proof of Theorem 1 shows that the only point where
one needs more than the above hypothesis is in Lemma 6. This is 'jumping’
lemma, in the sense that one has already constructed
(" ¢

Mo

~w= (Y wants then to perform the 'jump' (see pizture)

up to m, in Lemmas 1+5 (see Chapter 2), and

in a unique well-defined way.
We will therefore outline how the proof of Lemma ¢

would go in the present situation.
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- n. n
Let m (x,y)eM,yeCf. If(x,y)eM,35>0,s.t.x¢sep¢§;

(see Lemma 6), as before, via Proposition 6 in 2.1(45), so that the proof
of Lemma 6 is exactly the same. Assume therefore that m = (x,y) e Md (see

2.2(6)), m = ¢(t,m ), say. We also assume, w.1.0.g., that v(y) > 0, so that
Mn

wy (v stands for the flow generated by v) (s strictlv crescent at t. (see
0 (a)
1.2(1) for the notation). —

From Lemma 2, above, 3 neighbourhood N (> B(x)) and a y > 0 s.t.
either [(1)+(3i)1 or [(i)+(ii)'} hold, if |t] <.

Suppose [(i)+(ii)'] holds. In particular, # sing. of Vo in N,

*
Vy* s.t. 0<y-y <y . Therefore, since the x-component of ¢(t',m0),
\ —d

(b)
1 3 > . - s >
le(cb(t ,mo)), must be a singular point of vyc4e \ g and since, for 0 < t-t' < &
Y (some small ¥)

we have, from (a),

0 <y, () -y, () <y
0

s . Yo |
o A :__’ ) .y.
Y t‘f-\' /v\v Z’§‘l)7° c” it follows, from (b), that:
VAR S
\l’gstk"y(t,j.
|m (e(t',m )) - x| > 86, Vit s.t. 0<t-t' <& therefore ¢m is not left
X o | o
I (o(t,m))

continuous at t; this contradicts (4), 1.2(1), so that our supposition is

false.
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Therefore, [(3)+(ii i i i
[(i)+(i1)] holds. Since wy 1s strictly crescent at

*
O(v(y) >0), Je >0s.t. 0<t < e =

*
PO u(t) - (0) <eyien u ) € (yayse),

. =y
€, as in Lemma 7, given. By Lemma 7,
* *
X ¢ sep @w >t € (0,e ). This is
y(t*)
. gﬁ precisely what is used in the proof of
Y Lemma 6 (see 2.2(})) and therefore we
are done. 0
LEMMA B:

Let n be arbitrary, fixed, ne N, r = 1, V be C1 generic in the sense
of Theorem A of [13] (see §4, page 579), everything else as in Lemma A.
Suppose that v = vy has, at x, a saddle node of type 2 with dim. (stable man.) =
(n-1), dim.(centre man.) = 1 (see [13] 2.1.a, pg. 564 for these definitions).
As before, da unique non-trivial orbit ea(x)(hhich is, in this case, the
'expanding' part of the one-dimensional WC - see page 564 of [13] and picture
be]ow). Then the w-Timit Ofnea(X) is a sink.
Proof . |

This is the equivalent to Lemma 1 above in the n-dimensional case
(n not ﬁecessari]y equal to 2). This is an immediate consequence of (3) in
the above mentioned theorem. That is,
since the (V)-unfolding-unstable (denoted
by £, in notation of [13]) manifold of
the saddle node (see 570, of [13], for
this definition), has to meet the (V)-
unf. stable of 8(x) (i.e. associated to

B8(x)) transversally, as stratified sets

(see 571 of [13] for the stratification

of the saddle node) in particular the strata ea(x) (corresponding to
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u uu
W -W in Soto's n i
o otation) has i
| ? tion) to meet the stable manifold of B(x)
fx}
transvers§11y; i.e., there can be no saddle node connections ;therefore B(x)

is a sink.
O

PROOF OF THEOREM 3

Lemma 2 as above carries on as in the case n=2. (see (A} and (B)
in 3.1, pages 569/570, of [13?. Lemma 3 was not dependent on n. Lemmas 4~7
admit the obvious generalizations, so that the proof of Theorem 3 is then

carried in precisely the same way as outlined in the proof of Lemma A.

Appendix: We prove an alternative version of Theorem 3.

THEOREM 3!
As Theorem 3, but with the assumption that the family V = {vy} is
generated by generic f substituted by the assumption that V is a ¢t family

of gradient vector fields.

Proof
One first writes down the 'natural' equivalences as follows: M = Mv
: . def.
(to rep?ace old M = Mf) is the set of singularities of'{vy}, y € C; Mk, the

set of hyperbolic singularities, s.t. dim (stable man.) = k; x gﬁfxv (to

replace old xf) is the restriction of nc to M, as before. From [12]/[13],
one has that M is a cod. n (i.e. 1 dimensional) sub-manifold of X x C, and
the set Cv (critical values of x, as before) is a cod.l submanifold of C,
i.e., a set of isolated points, in our case (the 'fold' points).

We remark that Proposition 1+6 (in 2.1) carry out without any

problems, Therefore, the proof of the lifting
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theorem in 2.2 can be repeated up to Lemma 6, as explained in the proof of
Theorem 3 above; the rest can be carried out by repeating the proofs of
Lemmas A, B above. These are absolutely the same; the only crucial detail
is that the gradient character of the dynamics has to be re-used in Lemma 1,
above, otherwise Remark 3 in 2.2(F) can not be applied (as a matter of fact

Lemma 1 is false if we drop the gradient hypothesis). 0

Note:
Theorem 3' is perhaps a more 'natural’ one, in the sense that it deals

only with one type of genericity. The imposition of 'gradient' may not be too

restrictive. See comment 4, on page 98 of [6].

5.2. An_examp1e

The purpose of the example below is to show that, if n > 1, there is
no hope that 'f generic', in the sense of [16] - i.e. in Thom's sense, would
be enough, as far as proving theorems 1 and 2 (see Chapter 1) is concerned.

The reason for this is that 'f-generic' is a concept related with
the singularitiesof —ny, y e C, at a germ level, whereagathe 'separatrix’
problem one has to deal with (jn general)a global problem, if n > 1.

Our example is a function f:T2 x R + R, generic, but such that the
conditions necessary for the existence and uniqueness of ¢ in the sense of
Theorem 1 are not met.

We draw f/yo, below, Yo e R fixed.



some pictures to illustrate how f is defined to the 'right' of y_:
o

Jb A » A f
- o « ¢ e < < > ——
Y Y
1. ——
e - o 7
% 4 4 =
— <€ 7 C
A y 4
> — —> O > o \
3 P
| A
m| —
Yo Y yré e

To the left of Yo and to the right of yte, fy is defined so that the
phase space is not altered. f is clearly generic. However ¢ (m° = (xo,yo))
()

can not be continued beyond m = (x,y), since x 'finds itself’ in a

separatrix.
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CHAPTER 6

In_this chapter we will make comments of a speculative nature.

We first would 1ike to consider the problem of choice of @, the space
of objects determining the dynamics in thevstate space. This is a most
important problem, because it deals with the question of deciding the context
in which genericity (of those objects) is going to be considered.

We recall that the possibilities we have been considering here are:

(I) to Jook at & as a space of potential functions.

(I1) to loock at & as a space of r-parameter families of

gradient dynamical systems.

As J. Guckenheimer has pointed out in [6], (I) and (II) are not equivalent,
even at the local level; he shows this through an example, with n =2, r = 3,
He further comments 'Thom assumes that one can pass from the bifurcation of
gradient dynamical systems to the unfolding of their potential functions in
studying catastrophes. The point which we raise here is that the maths of
the situation is not sufficient to justify this assumption’' (see [6], page 96).

We show in Chapter522—4 that, if n = 1, the potential function approach
is c;mp1ete1y justifiable, as far as the problem we considered is concerned.
If n > 1, however, genericity related to universal unfolding of potential
functions at map-germ level is not sufficient, because the 'separatrix problem'
is global, in the first place, and, even at a local level, the definitions of
universal unf of map germs relate to diffeomorphisms, and separatrices of
gradients of potential functions are not 'preserved' under diffeomorphisms.

This suggests that in this case, as we already did in Chapter 5, the

context as in (II) should be considered.
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The problems here seem to be two-fold. First, one does not have at

hand (as far as we know) a theory of bifurcation of r-parameter gradient
dynamical systems for r > 1, n arbitrary. Second, even if Soto's results
([123,[13]) have a 'natural' generalization for r > 1, it is not clear that
vector fields 'generic' in this sense would be well behaved with respect to
the delicate transversality (of union of in-sets of saddles with {x}x C
'type' sets) condition needed to generalize Theorém 2.

The second comment we would Tike to make is that, in spite of the
general observations as above, there is a case where we can solve the
'separatrix problem’ within the context of Chapter 2-4 (i.e. that of (I)),
even if n > 1, r > 1. This is when, at points where 'jumps' have to be
performed, one knows that the only scpatrices one has to worry about are
'‘generated' in a neighbourhood of the jump point itself; i.e., there is no

~ '‘global' sepatrix problem.

[Cross section across L; notice that at any P the vector field enters

R. ‘e suppose that this happens for all L with non @ intersection with

V-see picture - SO that no 'global’ separatrix problem arises]
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From the picture above one sees that the set S one has to 'avoid'
is the ('locally generated') 3 dimensional union of sections (as the one in
picture) U-(2 dimensional). In general, we will have to 'avoid' a [(ntr)-1]
dimensional manifold. In this case, it seems 1ikely that invariant manifold
theory will show that S is transversal to {x} x C. This would allow one to
define the germ manifolds of 4.3 and hopefully proceed in the same way as
there, solving the problem of 'avoiding separatriceé' (which is the only one
which depends upon n).

Thirdly, one can remark that generically in @, in some sense, it is
reasonable to expect intersections of S, as above, with {x} x C to be
transversai; so that germ manifolds of codimension at least 1 could be defined,
and the problem solved. The difficulty is how to express that condition
mathematically and prove its genericity.

| Finally, we remark that the question of choice of ® has been considered
within the framework of the 'max.delay convention'; to other conventions would

correspond other 'natural' choices.
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