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SUMMARY

Recent computer developments have allowed a new dimension to
the scientific inventory control. An example is the
multi-item inventory model described in Johnston (1980)
which represents the departure from the traditional
optimization towards decision aid models which the manager
can use interactively in the examination of the trade-offs
which could improve his current policy.

The Johnston model has however limitations. The scope of
this thesis is to overcome some of these limitations,
namely, the treatment of the non-captive demand, the
determination of the reorder frequency and the extemsion to
a two level inventory system, together with a critical
examination of the variables involved, in order to improve
the decision making.

In relation to non-captive demand, the problem can become
relevant when more than one order overlaps. Then, service
levels and average stocks are normally higher than the
predictions from formulas derived for captive demand. The
main result now achieved is the introduction of the notional
control level which relates to the conventional reorder or
top up levels and to the lost demand. The notional level
allows the extension of established formulations, including
the Johnston model, from non-captive to captive demand.

Johnston leaves the reorder frequency to be decided on a
practical basis. Here, the same criteria adopted by Johnston
have been used to derive consistent expressions for the
number of orders. Empirical functions have been incorporated
to reach formulas ready for use.

The two level system comprises one main warehouse and its

satellites. The analysis covers, basically, the rules to
decide the allocations, the theoretical prediction of
service levels and the extension of the initial Johnston
formulation to this system. The allocation rule derived says
that quantities should be allocated so as to have the same
probability of depletion. For the prediction of service
levels,  the depletion time distribution rather than the
demand distribution has been used in the formulations,
because the conventional approach, based on the latter, does
not produce the desired results. Implementable formulas are
given for situations in which satellites are of the same
order of magnitude.

The results in the three areas mentioned above are
accompanied by considerations about the economic meaning of
the variables and a method is suggested to cross-check the
consistency of the decisions. They are new contributions for
the inventory control and constitute an important complement
to the initial Johnston model.
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i.l Motivation for the research

Inventory .control has received much sattention in the
literature and yet it still is a most challenging topic for
the operational researchers. The interest it raises is not
purely academic, but stems from a real economic issue. In
fact, the average capital tied up in finished goods can be
higher than 10% of the Gross National Product (see Waller,
1978), and if these figures give the magnitude of the
problem to a nation, they also reflect its importance to
each organisation. From a different viewpoint, typical
values for the stock turn of finished goods are around 5 and
this is equivalent to say that capital tied up is about 20%
of the annual revenue. Thus, even small improvements in

percentage would bring significant benefits.

Computer packages based on scientific methods for inventory
control are widespread. Whether they are suitable or well
used has been questioned, for example the following
quotation from Wagner (1980, p.447): "One might be inclined
to conclude that today companies are faced only with the
limited prospect of fine tuning their (inventory) systems to
obtain modest improvements. In m& experience as well as that
of other practitioners who commented on a draft version of
this article, major reductions in inventory investment,
frequently with an accompanying improvement in systemwide
service, can be attained in businesses that already have in

place a scientific inventory management system."
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Continuing developments in small computérs have popularized
their use for the control of inventories whose size is large
enough to have required a main frame a few years ago. Small
computers spread quickly in today organisations and managers
become more and more acquainted to them. This favours the
use of interactive computer packages for decision purposes
and allows a new dimension to the scientific inventory
control. Although computing power and storage potential is
available at a cost effectiveness many times better than ten
or more years ago, most of the current computer systems have
not changed in this basic outlook. An opportunity for ma jor
improvement comes from integrating the stock controli system
into the total company management control and from ensuring

that the stock control units are internally consistent.

This thesis has followed +those two main aims. The first
being to relate the controls traditionally associated with
stocks (for example, reorder level or reorder interval) with
the measures and concepts of more general management
planning. It is an attempt to move away from the simplistic
criterion of cost minimisation so often behind the

traditional systems.

One interactive stock control system which started to
incorporate the higher management aims was described by
Johnston (1980) and that, together with the situation in
which it was used, was taken as a basis for this work. This

necessitated' the second aim, namely a critical examination

-1.1’ —3—



of this -model -and its inconsistencieg. ‘However, a brief

description of its situation needs to be made.

The Johnston approach had been implemented in a group of
builders and - plumbers merchants. The present author
contacted them and spoke to the people in charge of
inventory management. These meetings gave an opportunity to
obtain information about the market environment, the group
corporate policy, the physical distribution operations, the
inventory structure, etc. and have indeed given the theme

for the analysis carried through.

The merchant group is an aggregation of a dozen of
merchandising companies whose global turn-over is some
hundred million pounds a year. It has more than one hundred
branches scattered over Grezt-Britain. These branches are
grouped in four virtually independent distribution areas,
each one having a main warehouse. Products are bought out
and received at the main warehouse and the branches are
supplied from there, i.e., they are satellites to the main
warehouse. The inventory in a satellite has an average of
3,000 lines and a main warehouse deals with 7,000 to 10,000

lines.

Each main warehouse vis controlled independently of its
satellites. A computer based "real time'" information system
is kept up to date with the stock levels, and external
replenishments are triggered on a reorder level policy. The

control of the service levels and reorder levels, is based

—101- -4-



on the Johnston approach, mentioned earl;er.

The stock control in satellites follows a reorder cycle
policy whose decision variables are the reorder 1level, the
top up level and the cycle length. The reorder level is
calculated from the selected service. For this purpose,
items are classified into hierarchical ranks that are
denoted by 'vital', 'key', ‘'standard' and so on; each rank
is associated with a service 1level, typically, 95% for
vital, 93% for key and 88% for standard items where the
figures relate to the percentage of cycles which do not run
cut of stock. The cycle 1length for reviewing the stock
levels is currently one week for all items; but if required
stocks at the end of the day can easily be calculated from
the transaction records. The top up (maximum) stock level is
set s0 that orders are of a 'convenient' quantity,
considering the item demand and the pack size. Practical
considerations, therefore, are influential in controlling

the stocks.

There 1is no intention of describing the merchants group in
detail but only to give an idea about the structure, size
and control of the inventory system that inspired the
theoretical framework for the research. Other particulars
will be mentioned 1later as the analysis goes on. This
analysis, on the other hand, is developed according to the
Johnston approach. His basic criteria are used to extend
previous results to areas which had not been considered but

are relevant to the merchants group.
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1.2 Scope for analysis

Inventory control appears in a large variety of situations,
uses quite a number of theories and techniques and has been
the subject of an enormous amount of specialised literature.
Therefore, delineating the province for the problem we are
interested in is, more than ever, an essential pre-requisite

-in undertaking the analysis.

The real situation which inspires the analytical model is
the merchants group. In that organisation, products are
bought out ready for sale. The inventory system, therefore,
relates to finished goods and can be decoupled from the
production. Thus, integrated approaches such as the recent
developments in "materials requirements planning", can be
left aside. Further comments on this topic can be found in

Brown (1977) and Wagner (1980).

The length of the decision horizon helps the drawing of
another borderline. The research, here, will concentrate on
tactical decisions associated with the daily management of
inventories. Physical distribution decisions such as the
number, 1location and capacity of warehouses, trunking
methods and fixed assets, may have implications on inventory
control: however, they are strategic in relation to
inventory decisions as their effects last much longer.
Therefore, physical distribution problems, including the

scheduling of deliveries, will not be considered here. Basic
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approaches to the physical distribution are found in Eilon

et al (1970), while Mole (1879) gives a survey of more

recent work on vehicle routing and scheduling.

Having removed production and distribution functions from
the main area of concern, we remain with inventory control
in the strict sense. The mathematical treatment of decisions
in inventory control has been tackled in different ways. A
brief reference is given below 1in order to introduce and

localise the approach and the concepts that are going to be

adopted in the analysis.

Consider, firstly, the model that expresses the
relationships among the variables. The most frequent
approach uses a stationary model, i.e., a model which

comprises a single decision period, only. Subsequent periods
are ignored for decision, an attitude called sometimes
"myopic policy". Conversely, dynamic models contemplate a
number of decision periods: the decision is taken only for
the first period, but all of them are considered, according

to a methodology borrowed from dynamic programming.

Dynamic models are theoretically powerful and might be of
interest when stocks are held for speculative purposes or
when the market is unstable but predictable. For instance,
speculating with price fluctuations and capital investment;
or dealing with fashionable goods, demand seasonality,

finance availability and taxation. For most of the current
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situations, however, the benefits from the use of dyramic
models are irrelevant and hardly Justify the heavy
computational burden those models bring. Full details in

dynamic models are given in Veinott(1966).

The myopic policy will be used here because it is also the
one adopted by Johnston and will be most convenient for the
attempt at extending his approach. Furthermore, single
period models are much easier to manipulate and this should

not be overlooked.

Most of the inventory control decision models treat demand
as a random variable. This assumption normally involves two
inter-related aspects: the choice of a probability
distribution and the estimate of the distribution

parameters.

Many of the traditional probability distributions have been
indicated as suitable to fit demand data at one or other
occasion. The main reguirements of demand distributions are
that they should be defined in the positive domain only (or
almost) and that they should be 'easy to handle. Fortuin
(1980) compares five of the most popular ones, namely,
Normal, Logistic, Gamma, Log-normal and Weibull, in a
particular application and concludes that differences in
control are negligible. This conclusion might apply
especially in relation to fast moving items and high service

policies.
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The Gamma distribution will be used through this thesis
thenever a demand distribution has té be specified. The
reasons for this choice are three fold. First, the arguments
in Burgin (1967), namely, that the Gamma family is easy to
handle, it fits the data very well and covers a wide range
of distribution shapes. Second, because the good fit to
demand data was confirmed during the contacts within the

merchants group. Finally, because that distribution was also

used by Johnston.

The distribution, as said before, is only one side of the
demand characterisation. The other is the forecasting of the
demand parameters;'These are normally two, the mean and the
variance. A comprehensive survey of the current forecasting
techniques can be found in Fildes (1979) and details about
the methods commonly used for inventory control are given in
Lewis (19813). Special forecasting techniques may be required
for slow moving items, particularly if they have
intermittent or lumpy demands. Croston (1972 and 1974),

Johnston (1975) and Ward (1978) tackle this problem.

Slow moving items normally have to be dealt with separately
not only because they require special forecasting techniques
but also because they are often associated with specific
policies, e.g. safety in relation to spare parts, trade
image in relation to luxurious products, etc. Furthermore,
the inclusion of slow movers may prevent some convenient
simplifications wusually adopted in the course of the

analysis. These reasons prompted the exclusion of slow
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moving items from our study .

The decision making implies an objective. In +the most
traditional approach, the objective for inventory control is
minimising the annual cost of running inventories. Formally,

such an objective could be set as

Min {c= CO+Ch+0s+Cp} (1.1)

where 'Co','Ch', 'Cs, and 'Cp' denote the so called

ordering, holding, shortage and product costs, respectively.

Due 'to the nature of the model, only variable costs (i.e.,

those affected by the decision) need to be considered.

The ordering costs 'Co' stand for all the ekpenses involved
in making the product available at the warehouse. Often
these costs are assumed to be proportional to the annual
number of orders: then, the proportionality constant is

denoted by procurement or reordering cost rate.

The holding costs 'Ch' reflect the cost of the capital
invested in stock and additional expenses in storing,
maintenance, depreciation, insurance, etc. For convenience,
the holding cost is usually made proportional to the average
investment in stock. The proportionality constant is

normally called holding or carrying charge.

The shortage costs, 'Cs' stand for damages caused by the

item demanded being out of stock. Such damages may be

~1l.2- -10-




diverse. In a merchandising company they might include 1loss
of profit, expediting expenses, contfactual compensations,
loss of customers good will, etc. Shortage costs are
difficult to quantify mainly because they depend largely on
the customer reaction. Usually it is assumed that the
shortage costs increase linearly with one or more measures

for the run out.

The measures for service and rurn out may sometimes give rise
to confusions. Here, the following terminology will be

adopted:

'Stockout’' refers to having no stock to meet

demand. The 'stockout rate' is then the proportion

of replenishment cycles in which stockout occurs.

This rate will be denoted by 'P'.

'Shortage' refers to each unit short, i.e. to each

unit demanded when the item is out of stock.

'Shortage rate' is then the proportion of demand

not met ex-stock. This rate will be denoted by

'V'.
The proportion of time out of stock is sometimes mentioned
in relation to the service; actually, the expectéd value for
this proportion is the same as for the shortage rate 'V',
Usually, the service levels are taken as the complements to

one of the rates defined above, i.e. (1-P) and (1-V).

The product cost 'Cp', sometimes called ‘annual usage value'

is the ©buying cost corresponding to the annual throughput.




This throughput may depend on the mseryice offered by the
company, and the buying price may depend on the quantities
ordered each time. In both cases 'Cp' would be affected by
the final decision, so it should appear in expression (1.1).
Most often, however, this term is not included in the first
approach to a solution: it is considered for the final
decision only and if the effects on 'Cp' of guantity

discounts or other factors are expected to be relevant.

Hadley et al (1963, section 2.6) have shown that the
objective of minimising the annual cost is strategically
equivalent to +the maximisation of the annual profit. The
expression (1.1) is, on the other hand, a generalization of
the function proposed in Wilson (1934) which 1led to the
classical economic order quantity. These objectives have
still a large acceptance, though they are sometimes opposed:
Eilon (1962, 1964), - for instance, recommends instead the
maximisation of the profit pér replenishment; and Burgin
(1967) suggests the return on capital employed, a criterion

which will be examined in section 2.3.

The approach which is being discussed, whatever the
objective function considered, intends to reach an 'optimal'
solution. The optimal solution would be the right target if
the terms in the objective function could be precisely
calculated. This 1is rarely the case: none of the costs
included in expression (1.1) is a simple function; but even
if those functions were linear there was still-a 1arge

margin of uncertainty Dbecause of the difficulties in
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"estimating the cost rates (see Hadley et al, 1963, chs 1,9).

:A different approach to decision problems is gaining
popularity. Taking advantage of the present computing
facilities, models are designed to be wused on a "what-if"
basis. Rather than pretending to give an optimal solution,
- those models illustrate +the consequences of alternative
“decisions in order to aid the final decision making. This
has been the attitude adopted by Johnston. Chapter 2 will
examine this topic in detail as an introduction to the
Johnston model and to the analysis in the subsequent

chapters.

-1.2- -13~




1.3 Guide to the reader

The broad objective of this thesis is to extend the
theoretical results in Johnston (1980) to areas which have

not been contemplated in his model.

In chapter 2, the transition from traditional optimisihg
models to decision aid models is examined through some
examples, and eventually, the Johnston model is introduced
as a decision aid model. The characteristics of the model

are discussed in detail and possible extensions indicated.

In chapter 3, the Johnston model is extended to situations
of overlapping orders, i.e. when more than one replenishment
order can be outstanding. The formulas traditionally used to
estimate the serviceA and the stock levels from the values
set for the decision variables, assume captive demand. If
those formuias are used when demand not met ex-stock is lost

and orders overlap, they tend to underestimate the 1levels
mentioned above. New expressions are derived there which

cater for that effect.

In chapter 4, the analysis covers the reordering frequency,
a variable which Johnston left to be set on a practical
basis. Formulas are derived to calculate a value for that

frequency, consistent with criteria established before.
In chapter 5, a typical centrally controlled 2-level

-1.3- -14-




multi-~item inventory system is examined and eventually,
formulas are derived to predict the service levels from the

values set for +the decision variables. Then, the earlier
criteria are used to complement the Johnston model and

enable its use for the control of the system.

In chapter 6, a summary of the analysis along the thesis is
provided, +the main achievements listed and shortcomings
examined. Finally, a mention is made to topics which require
further investigation, and to neighbouring areas which might

be scope for subsequent research.

The contents of each chapter is divided into headed sections
and some of the latter end with a subsection. A subsection
is an appendix to the respective section and contains
comments, mathematical derivations and other details which
have been withdrawn from the main body of the section for
sake of clarity. These subsections are not essential for the
understanding of the main argument of the chapter; so, they
might conveniently be left in a firét reading in order to

avoid being distracted by minutiae.

A computer-like notation borroweﬁ from Basic and Fortran is
used for the analytical expressions. An attempt was made to
keep that notation consistent and use-the same symbols for
the same variables. The notation symbols are repeatedly

explained at convenient places, nevertheless a list is given

-1.3— "15_




below for general reference. .

1.3.1 Notation details

Variables are denoted.by an alphanumeric string starting by

a letter, and indices of indexed variables are given between

brackets. The multiplication symbol is always explicit and

operations follow the normal hierarchy: exponentiation (**),

multiplication or division (*,/) and addition or subtraction

(+,-), subordinated to the parenthesis rules. For instance:
F2(i,j)/A**2 reads as F2(i,J)/(A**2)

Note the indices 'i,j' in the variable 'F2'

The following symbols are consistently used:

]

A= stocking factor

a= sales loss fraction, i.e., the proportion of
demand not met ex-stock which is lost for sale

BO= n*FI/F , n=avge. no. intermediate cycles (see
5.139)

Bil= F/F1 . shortage penalty ratio

B2= (F2+)s)/F1 : holding ratio

B3= (FO+An)/(d*L*F1) : ordering charge ratio

B4= (L/52)*(B2/B1)

B5= B3/B1

B6= B3/B2

=1.3.1- -16-




c?= constant value for the variable '?°'.

D= demand in a2 relevant period of time, e.g., the

lead time. It may stand for 'Dm' when there is no risk of

confusion.

Dm= mean of 'D'

Ds= standard deviation of 'D‘

Dv= variance of 'D'

Dec= (Ds/Dm) : coefficient of variation

d= demand per unit of time. It may stand for 'dm'

when there is no risk of confusion.

-1c3a1-

dm,ds,dv,dec: the same as for 'D.

DOQ= D/Q

E{?}= expected value for '?'.

EXP(?)= exponential of '7?'.

F=(a*F1+F3)

FI= as 'F' but in relation to intermediate cycles.
FO= cost per replenishment order.

Fl= profit per unit of cost.

F2= holding cést per year and per unit of cost.
F3= penalty per unit of cost of a ﬁnit short.
f(x)= probability density function.

G= (Dm/Ds)**2 : modulus.

g: the same as 'G' but relating to 'd’.

I= total number of items.

i= index for item.

INT(?)= integer part of '?'.

J= total number of families of items.

]

j= index for family.

=
n

total number of satellites.

-17-




k= index for satellite.

L= reorder lead time. It may stand for 'Lm' when
there is no risk of confusion.

ILm,Ls,Lv,Lec: the same as for D.

LOoT= L/T

M(?)= maximum value between '?' and zero.

ML= (52*F1*d-70)/(FZ+FO+\n) : margin loss.
mt= average in time of the number of orders
outstanding.

mo= number of orders outstanding just before a new
order being raised. It may stand for 'mom' when there is no
risk of confusion.

momsz expected 'mo’.

m= (a*mom) : in reorder level policies;

= a*(mom+l) : in periodic review policies.

N= number of orders per year.

OU= 1/U

P= stockout rate, i.e., proportion of cycles that
run out of stock.

p= probability of depletion in the allocation to
satellites;

Q= reorder or delivery quantities.

R= notional nominal control level (reorder level or
top up level, according to replenishment policy). 'Nominal'
stands for on hand plus on order.minus backlog.

RO= actual nominal control level (as for 'R').

RZ= aggregate shortage reorder level.

ri= return on investment.

rmi= return on marginal investment.

S= average stock.

-1.3.1- -18-




T= replenishment period. It 2also stands for 'Tm'
when there is no risk of confusion.

Tm,Ts,Tv,Tec : as for 'D'.

= stock turn, i.e., the number of times per year
the stock of the average year is renewed.

V= shortage rate, i.e., the proportion of demand not
met ex-stock.

Y= nominal stock level,

Yh= on hand stock level.

Y0= on hand stock in MWH,.

YO0f= stock in MWH relating to the clearing level.

Z= shortage quantity per cycle. It may stand for
'Zm' when there is no risk of confusion.

Zm= expected 'Z°'.

Zt= number of days of stock out per cycle. It may
stand for 'Ztm' when there is no risk of confusion.

Ztm= expected 'Zt'.

d7= symbol for partial derivative of '?°'.
A?= symbol for finite difference of '?°'.
.)= Lagrangean multiplier.

M= profit.
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2.1 Optimizing and decision aid models

The inventory models examined in the previous chapter

attempt to optimise an objective function. The solution

depends on the objective aimed at, and importantly, the
position of the optimum will depend on the values of several
parameters or variables, exogenous to the model, and whose
estimation often presents a 1lot of uncertainty. These
parameters include the cost rates per order, per pound
invested in stock and per shortage. Such costs can, in part,
be assessed objectively, the remaining being an attempt to
guantify fuzzy relationships of preference between
conflicting objectives. This 1last component makes those

parameters intangible in a large measure.

The analysis in Boothroyd et al (1963) suggests that
accuracy in estimating the exogenous cost variables is not
crucial. It is shown that if estimates of the rumn out cost
charge are twice as much as the actual value, the total
system cost does not suffer more than a 2 or 3% increase. A
similar increase would result from a 30% overestimate on the
carrying charges. We may question - the reasons for and
the meaning of such an insensitivity. The model explains
that, in the first case, the benefits of a higher customer
service compensate the cost of carrying extra stocks; in the
second, stocks would decrease and the benefits of it would
provide the trade-off for the higher shortages. Therefore,

incorrect estimates to the degree mentioned above, important
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though they may appear, - would not significantly affect the
final perfomance or, at least, the perfomance as measured by
the model. Graphically, it means that the total cost . curve

is flat near the optimum.

Arguing that it does not matter very much if some of the
parameters estimates are not so good 1is not entirely
satisfactory. The cases mentioned above may 1lead to
comparable situations in terms of computed costs, yet be
quite distinet 1in the stock levels and service to the
customers resulting in a very different stock policy. Often,
the sensitivity of the mathematically formulated objective
function does not match entirely the sensitivity of the
decision maker. 4This is because the model is a simplified
and distorted vision of the reality, thus reducing the
dimensionality of the problem and the scope of the different

balancings that constitute the 'management art'.

We can expect disadjustments, sometimes profound, between
the perfomance measured by the model and the perfomance felt
by the manager. Borrowing concepts from Keen et al
(1978,Ch.1), if the .decision procedure were completely
structured, i.e., if all possible perfomance variables
(objectives) were identified, if the preferences relating
each other were defined and if the 1logic sequence of
decision stages were established, then the process could be
automated to find 'the' solution... and the decision maker
could eventually be dismissed. However, structured tasks do

not occur so often in business. And this is not only because

-2.1- -22-




the decision process is not very clear, :but also because of
the difficulty in establishing, once for all, the preference
relationships between perfomance variables. In fact, the
relative merits of different outcomes are continuously
changing with the market environment, the corporate policy,
the constraints upon the stock sub-system, etc. Being so,
this sort of decision processes may eventually be pushed to
a higher level of structuring, but they can never become

structured altogether.

It is not intendéd to discuss the structuring of the
decision process. However, if the analyst examining a task
were let to question the manager about the sequence of
decisions implied 4in the task, and the judgements backing
each of the decisions, he might be able to extract
underlying preference criteria. These, Jjust as the
preferences themselves, are 1likely to be time and place

dependent; yet, some of them may appear more robust than

others. Further, from the analysis of the criteria
themselves, we can eventually ascend to higher rank
criteria, necessarily more robust, walking in this way
towards a higher level structure. Arriving at the complete

structuring would mean having identified that essence which

backs the decision criteria.

Decision aid models are erected from (relatively) robust
criteria. Their function is to reduce the whole set of
feasible solutions into a subset of consistent altermatives,

by eliminating those which definitely have no interest. In
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this way, the decision maker can concentrate his attention
on a limited range of solutions in order to choose, among
them, the most preferred. Note, the selection of the most
preferred solution is valid for a time and a place as, a
priori, no descrimination could be made inside the range of
solutions; otherwise, such a descrimination would have been
included in the model. Consistentiy, any solution inside the

range shall be preferred to any feasible solution outside.

Oﬁviously, the level at which the decision process has been
structured,‘the robustness of the preference c¢riteria and
the effectiveness of the decision aid model are
interrelated. If the structuring had reached completeness,
criteria would give place to'law(s) and we could talk about
an optimizing model in the strict sense. Conversely, a model
for a poorly structured process, if it is consiétent, cannot
be very discriminating and, therefore the range of solutions

produced is large.

Returning to a&an earlier point, the cost parameters mirror,
in part, the relations of preference, amongst perfomance
variables, of the decision maker. Often, such relationships
are very ‘soft' in the sense that no robust criteria have
vet been found to explain them. In such circumstances, it is
naive to look for optima. We caﬁnot do better than creating
a decision aid model based on criteria of ‘'recognized
robustness' in order to ©produce that range of solutions
which would deserve to be 1looked at. The phrase 'recognized

robustness' means that such criteria have been stable and
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are expected to remain stable through the life of the model;
moreover and not less important, it means that users df the

model are acquainted and agree with them.

Choosing 'the' solution among the range of solutions may pgt
be an easy task. The decision maker has to ponder a variety
of combinations, each one a multiple trade-off involving the
whole set of perfomance variables. The decision 2aid model
may help such a choice by providing cross checks for
consistency. For instance, when the manager 'feels' that a
service level of 92%, say, is preferred to one of 89%, he
should be provided with the implications of it, such as the
extra capital involved, the expected extra revenue on sales,
the profits, the assumed penalties for shortages, the
marginal cost of the capital invested, etc., i.e. a set'of
vardsticks which he may like to look at. Then, if he still
feels that 92% is preferred, he is probably right or at

least consistent.

It is not the mathematical formulation that distinguishes
optimizing from decision aid models, rather, it 1is their
rhilosophies, the attitudes of their users and the problems
they are directed to. The decision aid models bridge the gap
between the theorist so concerned with the exactitude that
he misses the action; and the maﬁager who has to act anyway,
but would like to have a good theory backing his intuition.

Such characteristics are the subject of this chapter.
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2.2 Earlier trade-off approaches

Many models include a parameter designated the carrying
(holding) charge to reflect the inconvenience of tying the
company resources in stocks. The problem in evalﬁating this
charge starts with the concept itself and, in consequence,
the sort of charges which shall be included. Most people
agree that carrying charges shall reflect stock maintenance
costs, borrowing interest rates, opportunity costs, but

finding a figure is often controversial.

Brown (1967,tm3) uses the carrying charge in a quite
different way. He says (p.31) '"the carrying charge is a kind
of scale factor that expresses one's relative reluctance to
invest money in stocks". In this perspective, he suggests
that stock 1levels be computed for different values of the
carrying charge, according to the particular model ‘being
used. In his case, the Wilson formula is adopted to compute

the economic order quantity 'Q' for each item 'i',

'Q(i)=‘VE*FO*D(i)/(Fz*C(i)) (2.1a)
where

FO= reoder charge;

F2= holding charge;

C(i)= buying price;

D(i)= anual demand.

The average investment in stock, 'S' is given by

-2.2- -26-




S= h*) C(i)*Q(i) (2.1b)

where 'h' is an averaging constant. 'S' is a function of the
value used for the carrying charge 'F2'. Thus, an exchange
curve relating carryving charges to investments can 'be
pictured, then, letting the management '"decide what value of
the carrying charge to use" (p.39) in order to get a

convenient level of investment in stock.

The point to emphasize is that Brown's proposal brought
different views about the meaning of carrying charge. Rather
than reflecting a real cost, as traditionally was supposed
to do, it becomes purely the scanning knob used in the
search for the best compromise. Thus, the stock level
becomes, explicitly, a variable to be decided upon instead
of being the mefe effect of pursuing an overall objective
a2s, say, the minimum total cost. And the carrying charge,
traditionally supposed to be a relatively objective

parameter, turned out as something intangible and not very
precise, being the consequence of an intended stock policy.
A simple reinterpretation of the model has enabled to pass
from a ‘'optimum' solution to a range of solutions within

which only the very decision maker is able to discriminate.

A different approach is described in Thomson (1967, chd) and
in Lewis (1970, ch8). In this approach, a restriction is
added to the wusual minimum cost model, that imposes a

maximum investment in stock. Formally, the restriction could
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be written as .
h*XC(i)*Q(i)Z cS (2.2a)

where the l.h.s. stands for the investment in stock and 'cS'
is a constant that fixes the maximum stock investment. The
inclusion of this restriction in the Wilson model would lead

to a reorder quantity defined by

Q(i)='Mé*FO*D(i)/((F2-2*h*k)*C(i)) (2.2b)

where 'X' is the Lagrangean multiplier associated with the

restriction.

The value of PAT compatible with (2.2a) could be easily
calculated as shown in Lewis. Alternatively, TA might be
manipulated to produce sets of values for the 'Q(i)'s of all
the items and hence for the investment in stock as
calculated from (2.1b). An exchange curve relating 'S' to
'A' could eventually be drawn and wused in the way Brown
suggested for the exchange curve between stock and carrying
charge. The two approaches are, in fact, strategically
equivalent: a simple generalisation of the carrying charge

concept would make formulas (2.1a) and (2.2b) alike.
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2.3 The Burgin-Wild model

Stock decisions based on exchange curves have been
contemplated also, in Burgin et al (1867), though the
approach in itself did not receive much emphasis. The paper
deals éspecially with finished goods and 1looks for "a
logical basis for the samournt of money to invest in
inventories'. According to the authors such a basis could be
borrowed from the accountancy concept of 'return on capital
employed’, or 'return on investment', here denoted by ‘ri‘t,
wvhich is defined as
ri=T11/(J+8S) (2.3)

—

where Y11' is the profit, 'S' is the investment in stocks

and 'J' stands for other assets.

The main objective of having stocks of finished goods is to
meet immediatly a customer demand whenever it occurs. Being

out of stock has, potentially at least, damaging effects on

sales and, therefore, on - revenues and profits. If more
capital 1is invested in stocks, the average stockouts should
be lower, assuming the investment is fairly distributed by
the items in stock. Hence, some‘sort of relationship between

profit and average investment in stock could be established.

The concept of profit in that paper is not totally clear. It
refers to a profit per item which is assumed constant, no

matter the 1level of stock. This makes sense only if it
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relates to some gross  profit before holding costs having

been deducted. Such an interpretation will be assumed.
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Fig. 2.1 - The profit-stock curve

Fig 2.1 depicts a typical profit-stock curve. The return on
investment as from (2.1) would be the tangent of the angle
formed by the straight line drawn from (-J,0) to the curve,
and the horizontal axis. The maximum ahgle would be for the
straight 1line to the point 'O' which, thus, would determine
the optimum stock 'So'. The picture makes apparent that we
can easily fall in a wide range of indifference, (So-;So+)
say, for which the return on inﬁestment is roughly the same.
Recognizing this, the ©paper moves on and modifies the
criterion into "maximize return on capital employed by
optimal deployment of stock subject to a given total stock

investment". In a condensed form, it coud be written:
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Max (ri) subject to S =< cS (2.4)

where 'cS' stands for a constant value of stock.

ri

So S

Fig. 2.2 - Return on capital as a function of stock

Actually, in B-W ﬁodel there is an equality instead of the
ineguality constraint in (2.4). That, 4in faect, would
correspond to follow the dashed line in fig. 2.2 instead of
the so0lid one, when the availabilify in stock is greater
than 'So'. This, however, 1is more a theoretical detail
without any practical effect; if 'ri' were to be maximised,
decisions based in either of the curves would, surely, be

the same.

B-¥ model contemplates multi-item inventory situations. The
article presents expressions to enable the computation of

the reorder level and the replenishment guantities for each
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item. The criteria of -maximizing -return on -investment
governs the allocation of 'St to inventory lines. The
method is further particularized to situations in which - the
lead time demand is Gamma distributed. The model assumes
that demand not met at once 1is entirely lost. Later, in
Burgin (1970), an empirical relationship between lost sales
and time out of stock is proposed which would extend the
applicability of the model. In Johnston (1874) procedures
are suggested which facilitate the generation of consistent
solutions. More precisely, this author introduces the idea
of '"knobs" to control the system trade-offs between
perfomance variables; and, at the same time, to overcome the

difficulties in assessing some of the cost components.

The basic philosophy to retain in the B-W model is the
production of | an exchange curve for the perfomance
variables, namely, the return on capital versus investment
on stock. An exchange curve is the range of solutions out of
which the final decision is made. The criterion imbedded in
the model 1is to seek the highest return on capital for any
level of investment, from which a judicious allocation of

capital to lines in stock is derived.

B-¥ model had a strong impact on the way of thinking about
inventory control, nonethelesé, for it clearly calls the
attention to the necessity of measures of perfomance other
than profit or cost. However, the authors put too much

emphasis on the return on capital, ignoring others in which

the manager might be and in general 1is interested.




Furthermore, the ~return on capital ' can raise some

controversy as a measure of perfomance.

The return on capital would depend, irn fact, on the assets
'J' about which the article is laconic. It may be difficult
to decide the values which should be considered and this
deteriorates the meaning attached to 'ri' as a perfomance
variable. Actually, the only asséts that should be
considered for the return on capital are those which may be
altered by the decision. The assets which are already
allocated and, whatever the decision might be, are not to be
disposed of, do not matter for that decision. Only the extra
investments associated with each of the options should be
examined. The extra investments involved in short term
decisions about inventory control relate to stocks only, and

so, the term 'J' is redundant in the expression of 'ri'.

The return on capital invested as measure of perfomance can
be contested because it by-passes an important point that
has just been touched: the manager is supposed to ponder the
worth of the extra money to be invested. This leads directly
to the notion of ‘return on marginal investment', 'rmi',

formally defined as:

rmi=0771 /88 | (2.52)
=0T1/88 (2.5b)

the <first for discrete increments and the latter for a

continuous function. (Note that return on marginal
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investment is different from marginal return on investment).
The relationship between 'rmi' =and ‘ri' 4is depicted in

fig.2.3.

Fig. 2.3 - Return on investment and on marginal investment.

It is more important to guarantee that any pound of capital
gets a return which compares favourably with any alternative
application than working near the maximum return on
investment. In other words, the return on marginal
investment shall not be less than the opportunity cost of
capital (on theoretical grounds, they should be equated). In
fact, having capital available there 1is no apparent reason
to refrain investing more than {So', unless there were more
favourable alternatives. If, for instance, the opﬁortunity
cost is at level 4 (fig.2.3), why should we stop at O?
Conversely, there may be more profitable alternatives which

raise the opportunity cost to B; then it would be wise to
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stop the investment about that level. s

Thus, the return on marginal investment has advantages over
‘ri' , as a basis for decisions. The most profitable
allocation of capital to simultaneous investments is
obtained by equating the 'rmi', and not the 'ri', for all of

them. -Note, however, that unlike 'ri', the return on
marginal investment is not supposed to be maximized. Its
maximum occurs at 'S=0' or close, and it can be shown that
‘rmi=ri' for 'S=So'. Therefore, the maximum return on

marginal investment is unlikely to be a reasonable policy.
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2.4 The Johnston model.

The model introduced in Johnston (1980) has some points in
common with the approach in B-W model, namely: penalties for
shortages are estimated on the basis of profit 1loss
resulting from the lost sales; capital available for stocks
is constrained; a criterion is embodied to allocate capital
to product 1lipbes and to help generate the range of
solutions; the final choice is left to the decision maker.
The merits of J-model reside mainly on the refinement of the

concepts and on their development for practical use.

The ©built-in criterion in J-model is the maximization of a
notional profit (which in the
be seen, later, that its meaning is not very distinct from
that profit referred to in the previous section. For the
J-model, the annual profit associated with each product line

is:

Notionzal profit, i

gross profit 52*F1*d

-shortage costs ~N*(F1+F3)*Z

-holding costs -F2*S

-ordering costs ~-N*F0 ' (2.7)

where
FO= cost per order

Fl= gross profit rate

F2= holding cost rate (per money unit)
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. F3= lost sale cost rate j

d= weekly demand-by-value rate

S= average on hand stock-by-value

Z= average shortage-by-value per cycle

N= no. of orders per year
The expression ‘'by-value' means that physical quantities
associated with the variables concerned are multiplied by
the respective unit costs. This is merely a way of keeping

the formulation shorter.

First consider that inventories are operated according to

the conventional reorder level system where 'R' stands for

the nominal reorder level and 'Q'" for the replenishment
quantity. 'Nominal', here, relates to stock on hand plus on
order. For simplicity, continuous review and unit

withdrawals are assumed, so that, any new order is raised
exactly when the level 'R' 1is reached. This assumption is

usual and will be commented in sub-section 2.4.1.

Johnston formulaztion implies that all demand not met at once
is lost; that replenishment orders do not overlap; and that
the situations to be dealt with by the model concern only
high service 1levels, so 'Z' is much lower than 'Q' (this
might be controversial  if the slow movers had not been
excluded). Under these circumsténces,

<

Z= -/}x-R)*f(x)*dx (2.9)

R

where 'f(x)' is the density function of the 1lead time
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demand. The probability of stockout is -then:

©

J(f(x)*dx (2.11a)

R

el
]

-(3Z/3R) _ (2.11b)

For high service 1levels and as it is shown in sub-section

2.4.1, the following approximations can be used:

safety stock, Ys= R-D (2.132)
average stock; S=¥s+Q/2 (2.13b)
and 3S/dR= 1 (2.15)

For a periodic review control procedure, the expressions
(2.9) to (2.15) still hold provided that a different, but
consistent, interpretation is given to the symbols. In this
case, 'R' is the top up level (maximum order cover); and 'Q’
is the average reorder quantity and should be the same as
the average depletion in the reorder period 'T'. More

details are given in sub-section 2.4.1.

After these introductory remarks we resume the discussions
of Johnston's proposals. Though it has not been yet
explicitly mentioned, the J-model is intended to deal with a
multi-item inventory. The paper considers the ﬁossibility of
defining 'buying families', each one consisting of items
obtained from the same supplier, in order to take advantage
of gquantity discounts =zand to reduce distribution costs.

According to the author, operations would follow a periodic
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review control. - At intervals of length 'T', a joint order

would be placed raising the nominal stock of each item to

its top-up level 'R(i)’.

The probiem is then to calculate the 'R(i)'s so that the
capital =allocated to the whole buying family be restricted
to some maximum 'cS'. The investment on each line as well as
the expected services come then imposed by the respective

'R(i)'. In fact, with 'R(i)' and using expressions (2.2) and
(2.11), 'Z(i)' and 'P(i)' could be calculated. On the other
hand, from the reorder period 'T' and from the demand rate
'd(i)', the average reorder quantity would follow as 'Q(i)=
T*d(i)'; and the average demand in the relevant decision
period is 'D(i)=(L+T)*d(i)', where 'L' is the average lead
time. Then having 'R(i)', 'Q(i)', and 'D(i)' the average

stock 'S(i)' would follow from expressions (2.13).

The expression for the profit has a structure as in (2.7)
but now summed up through the whole family. Formally, it can

be writen:

Max (E:TRi)), subject to E:S(i) = cS (2.17)
where each 'Ti(i)' is defined as in (2.7). By introducing a
Lagrangean multiplier 'A' in relation to the constraint, the

objective function turns out:

2:7T(i)+k*[cs—§:8(i)] (2.192)
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‘Then, by taking derivatives to each 'R(i)' and equating to

zero, it follows:

-N*F(i)*( dZ(i)/dR(i) )—(F2+>0*(bS(i)/bR(i) Y =0 (2.19b)

where

F(i)= F1(i)+F3(i) (2.19¢c)
and i= 1,2,...,1, with 'I' being the number of items of the

buying family. Hence, after recalling (2.11) and (2.15),

then:

P(i)= 1/N*(F2+X)/F(i) (2.21)
which, by inversion of (2.11a) determines the 'R(i)'s.
The value of 'F2', the holding cost rate, is assumed not to
have significant variation from item to item. 'N' is taken
as exogenous to the model. 'F(i)/F1(i)' is implied to be
roughly constant across the items of a same family. Then,
after rearranging we get:

P(i)= T*A/F1(i) (2.23)
where 'T' is the average replenishment interval and the new
symbol 'A' stands for what the paper calls the ‘'stocking
factor', a constant for each family.

The latter expression above drives the J-model based system.
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The stocking factor is simply a device, & ‘knob' as it has
been labelled by Johnston, used by the decision maker to
generate potential solutions. Each one can be assessed by a
vector of sattributes <for the perfomance variables. The.
perfomance variables referred to 1in the paper are the
severage stock, the stock turn, the service 1level and the
expected 1loss in sales. Others can easily been added if

required by the user.

The allocation criterion used in J-model does not differ
radically from the one in B-W's. In the 1latter, the
objective is to maximize 'ri= T{1/(J+S)' for each available
'S' which, in fact, is the same as maximizing '7T11' if the
constraint on 'S' is active. 'T1' differs from 'TT', the
profit in J-model, insofar as 'F2' and 'F3' are significant
in relation to 'A' and 'F1', respectively. If 'F2' and 'F3'
were ignored (see further discussion in the next sections),

both the criteria would be the same.

There are many features in J-model which are not mentioned
here because they are not so important for the analysis to
be carried out through this thesis. They relate to practical
points developed to facilitate the user interaction. The

whole package is much in 1line with the concept of the

decision =aid- model. The user is provided with an extensive
board of variables and, in this way, perfomances can be
appreciated from several angles and in relation to different
targets. With practice, the decision maker <can learn how

these variables interact with each other and develop, at the
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same time, a consistent - strategy. Better solutions might
also be helped by working out logical relationships between

variables as it will be discussed in sections 2.5 and 2.6.

' 2.4.1 Analytical details

The derivations above implied some approximations which will
be commented here. First, in relation with the assumption of
continuous review of stock_and unit withdrawals. W¥When the
review of the stock levels is not strictly continuous, but
instead, made at short intervals (for instance,at the end of
each day), it is often assumed, as in Burgin et al (1967),
that the actual inventory position at which the order is
placed fluctuates uniformly in the interval (R ; R-X) where
'X' 1is the mean demand in the review period. Therefore, the
actual reorder level would have ‘mean= R-X/2' and
'variance= (X**2)/12'. If the review 1is continuous but
demand is lumpy, an approximation can also be obtained by
replacing the average quantity issued for 'X' in the above
expressions. In this way, we can always relate to the basic

assurption, in approximate terms.

Expressions (2.9) and (2.11) imply that any demand
backlogged during & shortage is lower than the replenishment
quantity 'Q', so a2all backorders can be supplied after a new

replenishment. This is a reasonable assumption when service
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levels are high and items are fast movers. Formulas for more

general situations are given in Tavlor et al (1976).

The expression (2.13a) for the safety stock neglects the

shortage 'Z'. In fact, the expression should be:

R

Ys= j}R-x)*f(x)*dx (2.252)
= ;_(D_Z) (2.25Db)

Therefore
bYs/éRé 1-p (2.25¢)

Then, for the average stock:
S= Ys+Q/2 (2.27a)

8S/9R= 1-P (2.27b)

The results >derived for the reorder level policy also hold
for the periodic review policy, but in this case 'R' is the
top up level and the relevant period to be considered is
'L+T', where 'L' is the lead time: thus, 'f(x)','D' and 'x'

relate to that period.

Consider fig.2.4. If, over a given period 'Lb+T', the demand
has been 'Db' and any intermediate shortage 'Za' were
entirely backlogged and supplied, then, the shortage at the

end would be
Zb= M(Db-R) : (2.28)

where 'M(x)' means the maximum between zero and 'x'. As
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Fig.2.4 - Shortage effects with P.R. control

shortages cause a loss in sales, any intermediate 'Za' will
not be issued later and 'Zb', actually, might be lower than
the value obtained from (2.29). However, by a convenient
re-interpretation of 'R', as it will be shown in Ch. 3,
expressions (2.8) to (2.13) can still be used. For the time
being this should be taken on trust in order to make the
following remarks: if the shortage 'Z' is entirely lost for

sale, we can expect that

Q+Z= G*T (2.312)
So, 0Q/0R= P (2.31b)
and ©S/0R= 1-P/2 (2.31¢c)

This 1last expression compares with (2.27b): for high_
services, the r.h.s is in both cases, close to one, hence

the approximation considered in (2.15).
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2.5 Interpretations of the holding costs.

Neither B-W nor J-model pays attention to the economical
meaning of the lLagrangean multiplier. It is known that, in
the optimum solution, the value assumed by that multiplier
gives the marginal worth of the constrained resource.
Therefore, for J-model formulation (2.17), the optimum 'A'
would give the increase in profit if one extra unit of money
were made available for investment in stock. Or, in other
words, 'A' is the return on the marginal investment,

formerly denoted by '‘rmi‘.

The return on marginal investment, as already emphasised in
section 2.3, should compare favourably with the opportunity
cost of the «capital and, therefore, with the current
borrowing interest rate. For this comparison being
meaningful, the interest rate should not have been included

in the holding charge 'F2', otherwise, it would be counted

twice.

Expression (2.21) shows that the split between 'F2' and LAY
is quite irrelevant as both éan be interpreted as holding
costs, complementing each othef. In fact, the constraint in
the formulation (2.17) could be ignored if in (2.7) 'F2+A
substitutes for 'F2'; this would lead to the same expression
(2.21). Additionally, 'A' could also be ignored and then
'F2' would stand fér the 'true' (i.e., the whole) holding

cost. In the latter case, 'F2' might then be used to tune
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-the compromise between stock and service;'very much in the
same way as the Brown pfoposal referred to in section 2.2.
Alternatively, 'F2' could be ignored and the tuning be made
based on 'A', only. This illustrates that 'F2' and 'A' are
not distinct {from each other and that one of them is,

actually,>redundant.

As the inventory includes several buying families, the
criterion used to share the money within a family should be

the same to share the money amongst the families. Then, for

the item 'i' of the family 'j' we could write:
P(i,3)= 1/N(3)*(F2(i,3)+A)/F(i,3) (2.33)

Note that 'A', being the return, should be the same.for all
items. 'F2(i,j)' might stand for some discriminating holding
cost, specific for the item. For example, it mav be wise
keeping fashionable or perishable goods with stocks lower
than for more durable items. This could be associated with a
higher holding cost; but, in most of cases it is easier to
fix a maximum stock than estimate the 'F2' required to
produce the same effect. To make it clear, suppose we are
dealing with a product more perishable than the rest of the
inventory; normzlly it would be more convenient to set a
maximum stock, say 2 weeks dem;nd, rather than finding some
figure for 'F2' in order to push down the stock to that 2

week level.

For most of the inventory situatiorns holding cost rates can
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“be eapproximated =as being the same for all the goods or, at
least, for the goods within each family. As mentioned above,
the model reacts to the sum 'F2+)' &and not to each ofrthis
terms, individually; therefore, 'A' can be assumed to
include the whole of the holding costs, and in this case,
'F2' could be ignored. Items which require a special policy
might be associated with special holding costs; but, as
argued above, controlling directly the stock levels is

normally easier.
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2.6 Interpretations of the shortage costs

The other <cost rate appearing 1in expression (2.33) is

'F(i,3)'. This could be unfolded to
F(i,j)= a*F1(i,j)+F3(i,3) (2.35)

Both 'F1' and 'F3' are shortage cost rates. As mentioned in
section 2.4; 'Fl1' is the profit rate. It also corresponds to
a shortage rate insofar as the 'Z' units short are not sold
anymore. Thus, the remainder shortage costs 'F3' are costs

other than direct loss in profit.

In J-model, it is implied that a unit short is a unit lost.
Under this assumption, 'Z' units short would represent a
loss in profit of 'F1*Z'. Actually, a shortage does not mean

necessarily s one-to-one sales loss as some of the customers
may wait for the arrival of the next shipment. For a more
general statement we write for the expected loss in profit
per cycle, 'a*Fi*Z', where 'a' can assume values between O
and 1. Thus, 'a' 4is the 'sales 1loss fractiomn', that
proportion of 'Z' which is really lost for sale. The extreme
'a=0' corresponds to the sifuation of captive demand in
which orders not met are backlogged and wait for the coming
of the goods. At the other end of the range, ‘'a=1', the
entire shortage is lost for sale. In the real world, 'a' must

be located somewhere in between.
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- The wvalue of 'a' may depend on mahy factors: type of
business, competition, market segment, customers good-will,
existence of substitutes, etc. Across an inventory, ‘a' may
have - different values from one commodity to another.
Moreover, for the same item and for the same environment,
'a' depends on how long the shortage lasts. Burgin (1270)
suggests an exponential relationship between l1oss and

time out of stock, as depicted 1in fig.2.5a. This could be
converted into a more tractableA form by ‘noting that the
shortage quantity and days out of stock have a direct

relationship through the demand rate, thus arriving at
a= a2a0-al*Exp(-a2*7) (2.37)

where 'a0O', '‘al! and ‘a2’ are parameters. Fig.2.5b

illustates the role of these constants.

lost
scles

ta) (bl

a¢7g,

ccys out Zz
Of s10CK

Fig.2.5 - (a): The Burgin curve

- (b): Shortage effect on loss fraction

~2.6- -49-




For most of the situations, 'a0' will be close to 1; it is
an asymtotic value for high 'Z' and, in the limit we can
expect that customers do not wait if stocks are consistently
out. There are, of course, some branches of business where
stocks are kept very low or where are item lines not kept at
all but such cases are not being discussed here; we are
concerned with models for inventory policies of relatively
low 'Z'. From the fig.2.5b above, this would lead us to the
area of higher sensitivity of 'a' to 'Z2'. Therefore,
'F=a*F1+F3' would be highly correlated to 'Z' and, hence, to
'‘R'. Then, in establishing the alliocation rule, an
expression different from (2.21) would be reached as a
consequence of '"¢F/3R" having a value significantly

different from zero.

Burgin (1970) did not give empirical evidence that his curve
fitted the reality. Trade environments are so distinct from
each other that customer behaviour patterns in respect to
backlogging are 1likely to vary a lot. Further, these
behaviours may change appreciably from one time to another.
If we think of an inventory involving several thousands - of
items, determining the individual parameters for (2.37) mzy

become quite unjustifiable.

Estimating the loss factor on a broad basis, for the whole
inventory or by groups of items mav be accurate enough for
the purpose of control. Practical procedures to perfcrm this

will depend on the specific situation. Burgin (1970) has




- suggested a way, based on sales -records; other procedures
- could easily be thought of. Estimates on aggregate data,
both across the inventory and across successive periods of
time, will ‘'average' the resulting values for the loss
factor. Thus, we could talk about an ‘aggregate loss factor'
as an average value for 's' within a gfoup of items and for
the service levels currently adopted. Trade characteristics
would dictate how those groupings should be made. The buying
family, Dbecause of the inherent homogeneity of its
components, appears to be a good candidate. Hopefully, one
single aggregate 1loss factor for the whole inventory will

satisfy in many situations.

The aggregate loss factor is, then, an average value for the
current shortage range. W%ith that aggregation, 'a' becomes
practically insensitive to the variations in the 'Z's for
the individual items and acquires robustness through time.
By taking the aggregate value for 'a' in (2.35), the
derivative '¢F/dR' can be approximated as zero and, hence,
(2.33) maintained for the s&llocation rule. Such an
assumption will ©be implied hereafter whenever the loss
factor is referred to. The letter ‘'a' will be used, without
any subscript, but it will relate to the aggregation group

used to estimate its value.

We have been concentrating mainly on the direct loss in
profit caused by the shortage, 'a*F1*Z', This loss is due to
2 non-sale of the item short. The shortage of an item may

cause giving up a joint order and, thus, lead also to losses

-2.6- -51-




. on .the sale of .other items; -also, it may affect future
bdemands, jeopardize promotion campaigns and, if consistent,
contribute to undermine the image of the firm. 'F3', - the
last component of the shortage cost rate in (2.35) relates

to these indirect losses whose magnitude, generally

speaking, depends on customers good will, on market
structure and environment, sand on the company intended
policy. Quantifying <that magnitude is, - however, a very
subjective matter as it should mirror the manager stance on

the environment he perceives.

The allocation criterion as expressed in (2.33) reacts to
the value of 'F', no matter how it 1is split into its
components, ‘Fl'; 'a' and 'F3'. 'F1' can be calculated
easily and precisely from the profit margin, and 'a' could
be estimated as an aggregate factor, in the way described
above. 'F3', however, is highly subjective and this makes

'F' equally subjective.

The problem is again the ability to find a quantifiable
expression to the manager judgement. As 'F1' is the tangible
component in 'F', it may constitute a convenient basis to
gquantify 'F3' and, eventually, 'F' by means of a
relationship 'F=function(F1)' common to all the items in
inventory or, at least, in eacﬁ family. Such a relationship
would be fundamental in dictating stock allocations through
(2.33): this is the criterion built-in in the J-model under
the more compact expression (2.23). But as that relationship

should match the views of the decision maker about the
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’rconsequences'of the shortages,'he?should‘be aware of it "and

" be able to intervene and modify the function.

Johnston (1980) simplifies the problem by assuming that
'P=c*F1', where '¢' is =2 constant in each family. Then,

(2.33) would reduce to

P(i,3)= 1/N(3)*A(3)/F(1,]J) (2.39)

similar to (2.23). On the other hand, Oral et al (1972)
claimed to have found a method to compute shortage costs,
based on a probabilistic model for customer reactions to
shortages. In relation to the specific casé they were
considering, they obtained a regression of costs to the
profit margins and have found an expression with =a
correlation coefficient better than 90% This, after

conversion to our notation becomes:
(F*C)==0.2*(F1*C)**0.9 (2.41)

where 'C' is the cost of the item, so 'F*C' and 'F1*C' are
the shortage cost éud the gross profit for the item,
respectively. Other approaches, either analytical or
empirical could be and have been proposed (see, for

instance, Walters (1968) ). The point to emphasize is that
the finazl choice about the function that is going to be

used, shall be left to the decision maker.

The notation 'F' will be kept from now on, standing for
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. shortage costs. It -will  be -assumed -that in each specific
case it is possible to make explicit some relationship
'‘F=function(F1)', the same for the Qhole inventory (or, at
least, for a buying family) representing satisfactorily the
managerial views about shortage costs. In a extreme
situation where such views do not exist or cannot be
expressed in & more satisfactory way, the relationship

'F=F1' can always be taken.
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2.7 Extensions to the Johnston model

There are two visible weaknesses in the analytical treatment
developed by Johnston. The first is associated with the lost
sazles assumption according to which, demand not met ex-stock
is lost and, in conseguence, a shortage causes a loss in
profit. The lost sales assumption, that is basic for the
allocation criterion, 1is ignored in the subsequent
evaluation of the service 1levels. In fact, the formulas
(2.9) and (2.11) which have been used for calculating the
shertage per cycle 'Z' and the stockout 'P' hold when the
demand is captive and could be used only as an approximation
for non-captive demand situationrs. During the contacts with
the merchants group referred in section 1.1, the errors of
these approximations were reported to be significant when

the orders overlap.

The second weakness relates to the replenishment period
which Johnston assumes to be set on =@ practical basis.
However, the practical sense may be misleading: for
instance, one might be tempted to think, as with the classicail
economic ordering quantity approach, that the reorder costs
are the only factor that preveﬁts frequent reordering. This
does not apply to the J-model, necessarily, because frequent

reordering causes also freguent risks of shortage.

The situation of replenishment orders with overlap and the

problem of determining the reordering frequence will be
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examined in chapters 3 and 4.

Another point to be considered relates to the fact of the

J-model having been devised to the control of inventories
located at one place, only. The inventory in the merchants
group spreads over several 1locations, but at present each
one is controlled independently. An integrated control,
including the main warehouse and the respective branches,
might be appealing but the existing theoretical models for
that control are very complicate to handle. An attempt will
be made in chapter 5 to extend the approach introduced by
Johnston into the 2-level inventory system found in the

merchants group.
These extensions to the J-model constitute the centre of the

research tundertaken and will be the subject for the

remainder of this thesis.
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3.1 An introduction to the problem

Customer service is a main reason for stock holding. The
lack of service or reguests not satisfied immediately may
result in lost sales. Lost sales are distinct from
shortages. The latter refers to the whole quantity reguested
and not immediately satisfied, a ©part of which might be
backlogged and supplied when stock becomes available; the
other part is never issued, because customers give up, and
constitutes the lost szles. This has led to the introduction
of the loss fraction 'a' such that, fqr an expected shortage
'Z' per cvecle, the expected loss in sales is 'a*Z'. The
extremes 'a=1"' and ‘'a=0' correspond to the total lost sales
and backlog cases, respectively. The complete backlog
situation is also termed of captive demand and opposes to

the non-captive situations in which lost sales occur.

Situations of non-captive demand raise analytical problems
when decision periods overlap: the decision period 1is the
supply lead time in the reorder level policy and the lead
time plus the review period in the periodical review policy.
That overlapping occurs whenever more than one order 1is
outstanding, but in the periodical review policy it happens
even if only one order outstands. These difficulties have
been referred to by Hadley et al (1963, section 5.13): nit
(is) not possible to treat rigourously the lost sales case
vhen more than a single order (is) outstanding. For periodic

review systems, things are even more difficult and trouble
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is encountered even in treating the case where only a single
order is outstanding". The loss in sales is a central point
in the approaches followed by Burgin and Wild and by
Johnston. These authors have avoided the problem by assuming

that no more than one order is outstanding, and yet this

restriction is often unreal.

Practitioners know that, when orders overlap and shortages
cause a direct loss in sales, then stocks tend to be higher
and shortages tend to be lower than the values expected from
the reorder 1levels being adopted. These aspects have not
received much attention in the literature and yet
differences are significant when the degree of overlapping
is high. This will be discussed in the next sections in
relation to the reorder level and periodic review operating

policies, however, the approach followed 1is 1likely to be

valid for other models. Importantly, the derivations lead to

a new interpretation of the reorder and top up levels for
replenishment so that the current formulations can be
extended to situations of 1lost sales and overlapping orders
without further complication. This overcomes the difficulty
mentioned in section 2.4 in connection with the periodical
review operating control and eliminates any need for

restricting the number of outstanding orders.

Some usual assumptions are implied in the course of the
derivations. For instance, the independence of the demand in
non-overlapping periods, the independence of the lead times

and the non-overtaking of orders. Admittedly, the last two
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.assumptions are contradictory. The non-overtaking means that
orders arrive in the same sequence as they are raised. This
restricts, in theory, the length of successive lead times.
In practice we can assume that the first quantity arrived
relates to the first ordered. The distortion this introduces
will be small relative to other assumptions (e.g. demand
independence). Another assumption is that the whole gquantity
associated with any order arrives at one time and is larger
than the total of backorders then outstanding. Therefore,
all backorders will be supplied on arrival of a fresh
replenishment. This is perhaps acceptable with the low
shortage levels assumed in J-model. The above approximations
are so standard that they are often not made explicit. They
will be assumed in this work. Other approximations will be
used on one or two occasions. They will be commented upon 2as
introduced. They are often needed to achieve tractable
results though such approxzimations proved to be reasonable
after having been checked by simulation. This point will be

further discusséd at the end of the chapter.
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3.2 The effects on service levels.

Let us consider the classicsal redder level operating policy.
With this policy, a fixed quantity 'Q' is ordered when the
pominal stock falls to the so called reorder level. The
nominal stock is the stock on hand plus on outstanding
orders minus the quantity backlogged. It is always assumed
that quantities backlogged are going to be delivered later,
i.e., Dbackorders are firm. Continuous review and unit
withdrawals are considered on the grounds introduced in
section 2.4. This implies that the nominal stock is actually
at the reorder 1level when & new order is raised. Let us
denote by 'RO' +that reorder 1level. Initially, reorder
decisions are supposed to be independent from item to ifem,
so, only one item is considered in the analysis. Later, <the

results will be extended to group replenishments.

For illustration purposes, consider deterministic processes
with shortages as those represented in fig.3.1. Here, the
replenishment lead time is 'L=5 weeks', the demand rate 'd=2

units', the lead time demand 'D=d*L=10', the replenishment

guantity 'Q=4', the reorder level 'R0O=9'.

The item runs out of stock because 'RO' is lower than the
lead time demand. Denote, as usual, by 'a' the lost sales
fraction. Fig.3.1(a) relates to the total backlog case
a=0'; and fig.3.1(b) to the total lost sales case, 'a=1l'.

¥e can see that, on average, the shortage is higher in the
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former than in the latter in spite of demand rates and
operating policies being the same. The reasons become

apparent after comparing the two diagrams.

In the diagram (a), the shortage associated with each
replenishment period, shown just before a new receipt, is
consistently 1 unit: exactly the difference from 'RO' to the
lead time demand. In figure (b), shortages are also of 1
unit but take place every 3 periods, only. Examining the
latter, it can be seen that, when the shortage of 1 unit
occurs during the first week, there are 3 orders
outstanding, those indicated by '0O1', '02' and 'O3'. Now, we
need to assign a given stockout to one, and only to one,
lead time period in order to avoid multiple counting. The
shortage of 1 unit took ©place in each of the lead times
'01', '02' and '03'. That unit is, however, 1 unit for =all
of them. By convention the shortage will be assigned to the
oldest order outstanding (the next to arrive) which is the
order 'O1'. All the shortages in Fig.3.1(b) correspond to
lost demand; if the 1loss is assigned to order '01l', the
demand left for the lead time '02' is, in fact, reduced by
that loss. The same applies to the remaining demand over
lead time '0O3'. Therefore, the lead time demand to be
covered by 'RO' is the remaining démand, i.e., after
deducting any eventual losses which have occurred in that

lead time and assigned to earlier orders.
Denote by 'Z(1)' the shortage assigned to order '01'. The
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remaining lead time demand in relation to orders '02' and
‘03" is 'D-Z(1)=10-1=9"', which is the same as 'RO'.
Therefore Z(2) and Z2(3) are zero. 1In reiation to '04°',
however, the shortage is 1 again, because the older orders

co-standing with '0O4' have no lost sales assigned to them.

Let us denote:

by 'ZO0(k)' and 'Z1(k)' the shortage quantities
assigned to order 'k' for the total backlogging (a=0) and
total lost sales (a=1) cases respectively; and by ‘Z(k),
simply, the shortages for non-specified values of 'a’';

by 'mo', the number of outstanding orders just
before a new order being raised.
Under a2 deterministic process, shortages can only occur if

'RO' is less than 'D'. We write, then, formally:

Z1(k)= (D-221(k-j))-RO  §=1,2...,mo  (3.1a)

So, 2Z1(k-j)= D-R@ 3=0,1,.+,m0 (3.1b)

Denote by 'Z1' the average of the 'mo+l' terms of the 1l.h.s.

Summation in (3.1b). Then,

(mo+1)*Z1= D-RO (3.32)
and, Z1= (D-RO)/(mo+1) . (3.3b)

This last expression gives, for the data of fig.3.1(b),
'Zl=1/3'. Note that, as the process is deterministic, 'mo’
is constant and so is 'Z1'; 'mo+l' is the number of terms in

'21' and is also the number of reorder periods between
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consecutive shortages.

For the total backlogging case we would have:
7z0= D-RO (3.5)

A deterministic process with a constant lost sales fraction

'a' would be written, in general:
Z(k)=-(9-Za*Z(k-j))_Ro j=0,1,...m0  (3.7)

The shortage pattern, safter stabilization, would follow a
cycle of 'mo+l' reorder periods such that 'Z(k)=Z(k+mo+1l)'.

With this in mind, add up the 'mo+l1' shortages of a cycle
from 'Z(k)' to 'Z(k+mo)' and use (3.7) for each 'Z{(.)'.

This, after some rearrangements leads to:

(mo+1)*(D-RO )= (l+a*mo)* ). Z(k+3) (3.92)

j=o,1,...mo
The shortage accumulated in 'mo+l1' periods is

Y 7.(k+j)= (mo+1)*( D-RO)/(1+a*mo) (3.9b)
j= 0,1,...mo

Hence, the average shortage per period 'Z' is

2= 2 Z(k+3)/(mo+l)  3=0,1,...,mo (3.9¢)
= (D-ROY/(1+a*mo) (3.94)
= 20/ (1+m) (3.9e)
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where '‘m=a*mo'. It will be seen 1in section 3.5 that for the

deterministic case 'mo= INT(RO/Q)' where INT(y) stands - for

'the integer of y'

Now, consider +the probabilistic situation. The lead time
demand is a stochastie wvariable with mean 'D', and density
function 'f(x)'. Denote by 'x(k)' the actual demand during
the 1lead time of a particular order 'k'. The shortage

associated with that order is:
Z(k)= M'{x(k)—RO— a*i:Z(k-j)] j=1,...,mo(k) (3.11)

where 'M[ﬂ" is the meximum between =zero and 'x'; 'mo(k)'
L

denotes the number of orders that were outstanding Jjust

before raising the order 'k' and this number can now

fluctuate from order to order.

In the case of total backlogging, 'a=o' then (3.11) above

simplifies to
Z0(k)= M[x(k)-Ro] (3.13)

Hence, the expected shortage would be given by

Z20= d[(x—RO)*f(x)*dx (3.15)

RC

And the probability of stockout would follow the usual

€xXpression
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@

PO= f f(x)*dx (3.17)

RO

The formulae for 'Z0' and 'P0' are independent of the degree
of overlapping; that is, under the reorder level operating
svstem with captive demand, overlapping does not affect

service levels.

To deal with non-captive demand it 1is convenient to

introduce 'R(k)' defined by

-
R(k)= RO+a* / Z(k-3) j=1,...,mo(k) (3.19)

Denote, then, by 'R', 'Z' and 'mo' the expected values for

'R(k)', 'Z2(k)' and ‘'mo(k)', respectively, after the system

has reached the statistical equilibrium. In the expression
above, the elements 'Z(k-j)' are not independent variables.
But it can be shown, see for instance Ray(1981), that the

expected value

B (L2(k-3), j=1,...,mo(k) ) = mo*Z (3.21)
provided that 'mo(k)' is independent of the 'Z(k-j)'s. This
condition is not met entirely but, as it will be seen later

in section 3.5, correlation is likely to be weak. Expression

(3.21) will be adopted and thence

R= RO+a*mo*Z (3.232)
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From (3.11), the expected value is

Z= E[ M(x(k)-R(k))] (3.252)
Hence fm .
Z=j f(x-y)*f(x[y)*g(y)*dx*dy (3.25b)

RO

where 'x' stands for the values of ‘'x(k)' and 'y' for the
values of 'R(k)' for any order 'k'; 'g(y)' is the
probability density function for 'R(k)'; and ‘f(xfy) is the
conditional probability density function for the lead time

demand, given 'y'.

The exact evaluation of (3.25) is not easy. To overcome the
difficulty the following approximation will be introduced:
'R(k)', in expression above, will be replaced by its

expected value 'R'. By doing so, (3.25) becomes:

7= E [M(x(k)-a)} (3.27a)

or

<

7= jf(x-R)*f(x)*dx ‘ (3.27b)

R

Consistently, it will be adopted for the probability of

stockout

P= prob( x(k)> R ) (3.282)

or

P=-j’f(x)*dx (3.28b)
R

~3.2- -68-



instead of

prob( x(k)=R(k) ) (3.312)

J[J[f(XIy)*g(Y)*dX*dy (3.31b)
.
RC

P

or

o)
i

The size of the errors involved in this s&approximation seems

gquite acceptable in simulation checks reported in section

3.6 .

Expressions (3.15) and (3.17) are particular cases of
(3.27b) and (3.29b), respectively. In fact, for 'a=0' then
'R=R0', so, the latter reduces to the former. Furthermore,

the relationships

2Z/3R= -P(R) (3.33a)

and 2P/8R= -f(R) (3.33b)

apply in the same way as for situations of captive demand.

The wvariable 'R' has been introduced for convenience of the

analysis and was defined earlier as

R= RO+m*Z (3.35)

Derivations above show that the role pérformed by 'R' in a
Situztion with lost sales and decision period overlapping is
the same as the role of 'RO' with céptive demznd. Moreover,

'R reduces to 'RO' for captive demand or for

on-overlapping cases, because ta=0"' or 'mo=0",
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respectively, and hence 'm=0' in - expression (3.35). -
Therefore, 'R' is a mathematical notion which generalizes
the concept of reorder level and, because of this, will be
called 'notional reorder level'. Virtually, the inventory
system reacts directly to 'R' and indirectly only to 'RO’,
which is a <finding of major importance for the analysis

hereafter.

The service levels with lost sales can be approximated <from
the service levels which would be obtained if demand were

captive, as follows:

Z~ Z0/(1+m*PO) (3.37a)

Ve VO/(1+m*P0+a*V0) (3.37b)

where 'V= Z/(Q+a*Z)' and 'V0=20/Q' are the shortage rates
for non-captive and captive demand situations. Derivations
are shown in subsection 3.2.1. Note that the formula (3.37a)
fits the deterministic situation formerly discussed. For
this case, in fact, if 'Z0' is npot zero, then 'PO=1"' and

(3.37a) converts to (3.%e).

Expressions (3.27) to (3.37) derived for the reorder level
control also hold with the periodical review policy as it is
shown in sub-section 3.2.1, but symbols have to be

interpreted differently. Differences are summarized below:
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R.ODL. o P.Ro

L

R Notional reorder level Notional top up level
RO Set " " Set e "
m= a*mo a*(mo+l)

f(x) pdf for L demand pdf for L+T demand

3.2.1 Analytical details

For the purpose of deriving the expressions - (3.37) which
relate the service levels with captive and mnon-captive

demand situations, consider the general expressions

@

Z(X)= J[(x-X)*f(x)*dx (3.3%a)
and *

P(X)= j’f(x)*dx (3.39b)

X
By developing in Taylor's series, we can write

Z(X+h)= Z(X)+(3Z/3X)*h+1/2%(3" Z/dX*)*h*+... (3.41)

Substituting 'RO' for 'X', 'm*Z' for 'h'; and having in mind

(3.33) and the expression (3.23b) defining 'R=RO+m*Z"', then
Z(R)= Z(RO)-m*Z*P(RO)+1/2%(m*Z)**2*f(R0O)+... (3.43)
Following the earlier notation, we would write:
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Z(R)=-[.(x-R)*f(x)*dx =7 (3.45a)
R

Z(R0)=.j'(x-RO)*£(x)*dx =7z0 (3.45b)

RO
P(RO)=.]'f(x)*dx = PO (3.45¢)

thence "o
2= ZO-m*Z*P0+1 /2% (m*Z)**2*f(RO)+... (3.45d)

The last expression would simplify further to

7= 20/(1+m*P0)+... (3.472)

The shortage rate is 'V= Z/(Q+a*Z)'. So, extending the usual
notation structure, 'V0=20/Q'. If 'Z' is approximated by the

first term of the series in (3.472), it follows using the sa_

me steps

V~ V0/(1+m*P0+a*VO0) (3.47b)

The periodical review policy could be analised on the same
steps followed earlier. With this policy, stock levels are
verified at fixed intervals 'T'. The quantity ordered 'Q' is
the difference from the present nominal stock to a top up
level ‘'RO'. Thus, the operating variaﬁles are now 'T' and
'RO'. Note that 'RO' relates here to the top up level while

Previously it meant the reorder level.
The decision horizon is 'L+T' which implies that decision
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periods always overlap, even when no more than one order is
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Fig., 3.2 - Shortages with periodical review poiicy

(a) backlog case; (b) lost sales case
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L

outstanding at any time. For this reason, the lost sales
effect is more pronounced with this model than with the
earlier one. Fig.3.2 helps make it clearer. The diagram
relates to the same item of fig.3.1, but now, operated by

periodical review.

Lead time and demand rate are the same in both figs. 3.1 and
3.2, namely, 'L=5' and 'd=2'. The review period is now set
at 'T=2', so the quantity demanded in 'T' is 4, the same as
the reorder quantity in fig.3.1. As the decision period is
'L+T=7', the demand in this period is 'D=14' (note that,
now, 'D=(L+T)*d' while in the previous model, 'D=L*d'). The
top up 1level is set as ‘RO=13'. The provision for the
decision period, 'RO', is 1 unit lower than the demand 'D,
exactly the same deficit as in fig.3.1. Both situations,
therefore, are gquite comparable and the treatments are
equivalent. When demand is captive, the results, in terms of
shortage, are also the same (figs.3.la and 3.2a). For the
lost sales éase, however, this is not true: in fig.3.1b the

average shortage is 1/3 while in fig.3.2b it is 1/4.

Each order 'k' can be associated to a 'L4T' decision period.
The shortage 'Z(k)' in relation to order 'k' occurs between
the arrivals of the orders 'k' and 'k+1;. As it can be seen
in fig.3.3, there were only 2 orders outstanding just before
the order 'k' being raised, yet 3 decision periods were
Overlapping. In general, we have ‘'mo(k)' orders and

'mo(k)+1' periods outstanding. Expression (3.7) still
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applies for the deterministic .case, having -in, mind the
present meaning of 'RO' and 'D', since the summation is
extended from 'j=1' to 'j=mo+1"'. If, now, we  make
;m=a*(mo+l)', instead of 'm=a*mo', expression (3.9e) is also
valid for the periodic review case. In the example of
fig.3.2b, 'Z20=1', 'mo=2'; +then, for 'a=1', 'm=3', so

'171=1/4".

.kﬂf

k-1 e o e o

k-3 o R |

i time

Fig. 3.3 = Overlapping of orders and decision periods

The approach used in the previous section to deal with the
Probabilistic case applies also here. Essentially, we would
arrive at the same formulas though the symbols have a

different meaning.
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3.3 The effect on stock levels

The stock on hand, 'Ys(k)', at the end of the decision

period associated to order 'k', is given by

Ys(k)= M[ R(k)-x(k)] (3.61)

'x!' relate to the notional level and to the

where 'R' and
decision period demand, respectively. 'D' will denote the
expected value for the latter. That result is based on
arguments similar to those used in the preceding section.

Adopting the same sort of eapproximations, the expected

safety stock would be

Ys= E[Ys(k)] A (3.632)
R
= J[(R-x)*f(x)*dx (3.63b)
[
= R-D+Z (3.83¢)
= RO-D+(m+1)*Z (3.634d)

For the total backlogging, 'YsO=R0-D+Z0'. For most of the
cases 'PO' 4is low, soO it follows from (3.47a) that

'2>20/(1+m)"'. Hence and from (3.63d)
Ys=> RO-D+Z0= YsO (3.65)
%¥henever 'm' is greater than zero. (Obviously, equalities
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shall substitute the inequalities  above whgn' ‘m=0").
Therefore, situations of non-captive demand coupled with
overlapping decision periods result in higher actual safety
stocks than for the eguivalent captive demand and/or

non-overlapping situations.

Yoo Qop vrvrmy e vme oo

T — time

Fig.3.4 - Deterministic approximation for stocks

An azpproxzimation for the average stock can be obtained from
the deterministic equivalent for the stock movement, as it
is  shown in fig.3.4. The determipistic eguivalent
substitutes the expected values, before and after the
replenishment, for the actual levels and assumes a constant
demand rate equal to the average of the actual demand. The
expected stock level Dbefore each reﬁlenishment is the
exXpected safety stock as from (3.63). Note, it is the
€xpected value through all cvcles including those which run
out of stock. Therefore, 'Ys' is the lower stock level of

the deterministic equivalent, as it is seen in the diagram.
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'Q' is the expected  replenishment quantity (a cqnstant for
the R.O.L control). The quantity backlogged is '(1-2)*Z', as
'7Z' is the expected shortage. Such a quantity is captive
and, theoretically, it is delivered to the customer or put
at his disposal as soon as the replenishment arrives. Thus,
it should not account for the average stock of the company
(admittedly, internal conventions may superimpose on these
views). In fig.3.4, it is assumed that the backlogged demand
is issued immediately and so, it is not included in the

average stock. This latter would be, then

S= Vs+1/2%(Q-(1-2)*Z) (3.67a)

= R-D+1/2*(Q+(1+a)*2) (3.67b)

For 'Z' much lower than 'Q', the current assumption, we can

approximate
S= R-D+Q/2 (3.69)

Tavylor et al (1976), for captive demand situations, present
exact formulas for the average stock (of difficult
evaluation, however) as well as, expressions to compute the
upper and 1lower bounds. The upper bound corresponds to

(3.67) with 'a=0', i.e. captive demand, and the lower bound

to (3.69).
'Q' is constant in the case of the inventory being operated
in a reorder level policy. Therefore, it would follow from

(3.67)
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35/3R= 1-1/2%(1+a)*P (3.71)

Iin the case of a P.R. control, on average, 'Q+a*Z=4*T'

This quantity is constant, therefore
d3S/eR= 1-1/2%P (3.73)

Expression (3.71) reduces to (2.27b) for 'a=1' (total lost
sales) and (3.73) is identical to (2.31lc). But now the
expressions are more comprehensive for 'R' has now a broader

meaning. With high service 1levels, 'P' is small and both
expressions can be approximated as in Johnston (1980), by

putting
9S/2R= 1 (3.75)
Thus, the use of a notional level enables a common

analytical treatment for both the lost sales and captive

demand situations.
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3.4 Expansion of the Johnston model.

The formulation introduced in Johnston (1980), as has been
already mentioned, implies that orders do not overlap. This
may constitute a very inconvenient restriction especially in
situations with long procurement lead times. In order to
bring down average stocks to reasonable levels it may be
necessary to use replenishment intervals much shorter than
the lead times, thus accentuating the problem. The
restriction in the model can be withdrawn with the

introduction of the notional level.

We recall from section 2.4 the criterion used in J-model

for investment allocation

Maxz (Y.77(i), subject to 2 S(i)=cS (3.81)
and the derivations which followed to arrive at
~N*F(i)*(3Z(i)/3R(i))-(F2+A)*(3S(i)/OR(i)) =0 (3.83)

The above derivatives '0/dR' stand, regardless of 'R' Dbeing
the notional or the set level, and the férmulation is valid
for any operating procedure. Now, wusing the results in
(3.33) and the approximation (3.75) that has already been
adopted earlier, we get exactly the same formal results.

'"R(i)' should be such that

~3.4- -80-



P(i)= 1/N*(F2+))/F(i) , ,(§.85)
where P(i) is given by (3.29) for each specific 'i’'.

The computational procedures are basically the same as
before. 'P(i)' is fixed from (3.85); then, R(i) is computed
by inversion of (3.29). From 'P(i)' we can also calculate

'Z(i)'. Now, it follows from (3.35) that the level to be set

is
RO(i)= R(i)-m*Z (i) (3.87)

Computations for 'Z' and 'R' can be based on empirical
relationships as those suggested by Johnston. The procedures
to generate values for the perfomance variables can follow
the same steps as for the non-overlapping case. The extra

computations regquired are only those related to (3.87).
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3.5 The estimate of the number of outstanding orders

The suggested approach to deal with situations of
overlappring relies on the assumptition that ‘'m' can be
evaluated.This implies that we are 2able to estimate 'mo',
the average number of orders outstanding when a new order is
raised, as well as, the loss fraction 'a'. The loss fraction

was discussed in section 2.6. Now, we will look at 'mo’.

First of all, it shall be stressed the distinction between
average number of orders outstanding when a new order is
raised, 'mo'; and the average number of orders outstanding
throughout the time, hereafter, denoted by 'mt'. The latter

can be easilyv evzluated with the help of fig.3.5.

Fig.3.5 - Overlapping degree

Consider some length of time, one year, say, during which
N orders are placed at intervals of 'T', on average. Each

Order has a lead time of length 'L'; thus, the 'N' lead
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time vectors add up to the length of 'N%L'.,Thistlength has

now to be compacted into 'N*T' by sliding back the L-vectors

such that they will overlap each other. Then, 'mt', the

average number of vectors overlapping, would be such that

(N*L) /mt= N*T (3.912)
o) mt= L/T (3.91b)
= D/(Q+a*Z) (3.91c)

'mt' is the average number of orders outstanding throughout.

It is also the expected number of orders outstanding at any
random moment in time for both deterministic and
probabilistic processes. 'mt' will be adopted as the measure

for the overlapping degree.

The evaluation concerning 'mo' is not so simple. The

following bounds can, however, be established

mt-1 < mo =< mt (3.83)

In faect if, on average, there were ‘'mo=mt' orders
outstanding 'just before' the new order raising, it would
make 'mt+l' orders 'just after' it. This latter figure would
fall again to 'mt' after the next arrival; and would remain
so from then on to the subsequent ordef raising. Thus, the
number of orders outstanding would vary in the range
(nt;mt+1). The average through time would be, then, higher
and not equal to 'mt'. Therefore, 'mo' has to be lower than

'mt'. By using similar arguments we could conclude that 'mo’
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is greater than 'mt-1'.

Deterministic situations as those exemplified earlier in
figs. 3.1 and 3.2 have the same ‘'mo(k)' for all 'k's; and as
‘mo(k)' is an integer, so is the average 'mo'. Hence and

from (3.93) we can conclude that for the deterministic case
mo= INT(mt) (3.95)
where INT(.) stands for the 'integer of'.

Expression (3.93) is general for both the deterministic and
probabilistic processes. For the latter, however, the
estimztion of 'mo' is not so simple. Hopefully, for many
applications, a rough estimate for 'mo' is enough. Then, the

following might be reasonable:
mo= M(mt-1/2) (3.96)
vhere 'M(x)' is the maximum between zero and 'x'. A much

more elaborate process of estimating 'mo' is examined in

sub-section 3.5.1.

The rational behind expression (3.96) 1is better explained
with the help of fig.3.6. Let be 'I=INT(mt)'. ¥When
'mt~1+1/2', orders arrive more or less at the mid-point
between two consecutive order raising (see figs. 3.1 and
3.2). So, a relatively high degree of varistion in demand

and lead times can occur before the order arrives out of the



T-period in which it was ezpected. It Wis.like}y that for
most of the orders 'mo(.)=I'. A small <fraction may have
'‘mo(.)=I+1'" and higher. Another fraction of identical size
may have 'mo(.)=I-1' and lower. In a random situation these
should occur with equal fregquence so that, on average, we
can expect that 'mo~I‘'. The point 'A' in fig 3.6 would

represent this situation.

Mo

Fig. 3.6 - A rough estimate for 'mo’

Imagine, now, that 'mt' is pear to an extreme, for instance,
lower but close to 'I+1' (point 'B' in the diagram).
Therefore, there should be 'I' orders oufstandinnghen a new
order is raised, but an order is due to arrive just before a
new order raising. However, the process fluctuations can
€asily, either delay the arrival or antecipate the raising,

SO that the 1latter precedes the former and hence 'I+1’
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orders are outstanding. ¥From the position ofvpoinF ‘B’ it is
plausible that about half the orders have mo(.) equal to 'I’
or lower and another half equal to 'I+l1' or higher. On
average, we can expect that 'mo~rI-1/2'. On similar grounds,
we can also expect that 'mo~I-1/2', if 'mt' is higher but

close to 'I' (point 'C').

The three points, 'A', 'B' and 'C' are on a straight line.
If we assume that a linear relationship gives a fair
approximation, then (3.96) follows. Note that this latter
expression gives for 'mo' the mid—pdint of the interval

defined in (3.93).

3.5.1 Anzlytical details

The boundaries for 'mo' stated in (3.93) above imply that
'mt' is not an integer. Theoretically, we could imagine a
limiting case where any new raising coincides with the time
of a new arrival, such as is shown in fig.3.7. In such
circumstances 'mt' is an integer and, in expression (3.93),
'mo' might take the value of one of the extremes, either
'mt-1' or ‘'mt', depending on the sequence in which the
simultaneous events arrival/raising are 1looked at. Such a
coincidence, however, canr only occur consistently under

deterministic situations.
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In deterministic situations, the expression (3.95) holds for

|
k-2 i
}
i

AN QUSRI S

Fig. 3.7 - Simultaneous raising and arrival

mt=2; mo=1 or mo=27

non-integer 'mt', but when 'mt' is an integer ‘'mo' could be
again either 'mt' or 'mt-1'. The latter, however, shall be
the figure to be used in the formulas because only the
'mt-1' orders preceding 'k' have their risk periods located
in the k-lead-time. For instance, in fig.3.7 only the order
'k=1' has its risk period inside the k-lead-time, so ‘'mo'
shall be taken as 1. This become more apparent with the
example in fig.3.8 which relates to a periodical review
control with ‘'mt=2', loss fraction 'a=1l'. Note that this
Situation is very close to the one in £fig.3.2; the
differences come from reducing the 1lead time from 5 to 4,
thus, pushing the overlapping degree 'mt' from 2.5 to the
border 1line 'mt=2.0'. In both cases, 'R=D-1', 'T=2' and
'20=1", However, in fig.3.2, 'Z1=1/4' while in fig.3.8,
'Z1=1/3', Recalling from (3.9e) that 'Z1=20/(1+m)' and that

'm=mo+1' for the periodical review, the figures for 'Z1'
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correspond to 'mo=2' and 'mo=1', respectively; thus, when
'mt' 1is an integer and the process deterministic,

‘mo=mt-1"'.

Lo JES I S i o}
LA I L . 3
NN R

~

Fig. 3.8 - PR control with simultaneous arrival and

raising of orders

The value of ‘'‘mo' for the more general situation of
probabilistic  demand can be estimated, roughly, from

expression (5.96). A more precise method is described below.

Consider first, the reorder 1level policy. In this case,
Orders are raised at 'Q-intervals', that 1is, the sales
between two consecutive orders amount to 'Q'. (Sales in this

context include the backorders). In fig.3.9, the cumulative
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sales are plotted —against -time. 'Byv'choosing appropriate

origins, we can say that order 1 is raised when the
accumulated sales reach 'Q', order 2 when they reach
'2%Q',..., order 'k' when they reach 'k*Q'. When order 4 was
raised the orders 2 and 3 were still outstanding. We see
that 'x(4)' 1is greater than 'x(3)-Q' and greater than
'x(2)-2*Q'. When order 3 was raised, only order 2 was
standing and 'x(3)=x(2)-Q'. In fact, as a conseguence of the
non-overtaking condition, tﬁe following relationship

follows:
(k)= =x(k-j)- j*Q , j=1,...,mo(k) (3.87)

Note that orders ‘'k' and 'k-j' overlap.

Fig. 3.9 - Cumulative sales
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Now, we see from the picture that no orders were outstanding
when order 2 was rzised because 'x(l)' had been less than
'Q'. There was the order 2 outstanding when 3 was raised
because 'x(2)' had been greater than 'Q'. The reason why
order 2 still stands after two new orders being raised is
because 'x(2)' is greater than '2*Q'. Formally, the
condition for the order 'k-j' being standing when order 'k’

is raised is
x(k-j) = J*Q (3.99)

This relation could be derived from (3.899) as a necessary
condition ('x(k)' is non-negative). It 1is now shown to be a
sufficient condition for order ‘'k-j' being standing. .If
'k-j' is standing so are all the subsequent orders up to
'k', because of the non-overtaking. Therefore, (3.89) is
also the necessary and sufficient condition for at least 3!

orders being outstanding when the new order 'k' is raised.

Then, introducing the notation

Pm(j)= prob(mo(k)= j) ' (3.1002)
and

pm(j)= prob(mo(k)= J) , (3.100Db)

for any 'k', it follows from above that
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Pm(j)= ;[f(x)*dx (3.101z)
i-Q
pm(j)= Pm(j)=-Pm(j+1) (3.101b)
{is1jQ
='[f(x)*dx ' (3.101c)

i-0

Note that ‘'x' and 'f(x)' relate to actual sales which, at
most, are the same as the demand. With low shortages we can

approximate these as being the same.

The average number of orders outstanding would be given by

mo= () 3*p(Jj))/(Pm(b)-Pm(u+1)) , j=b,...,u (3.103a)
= (b*Pm(b)+§:Pm(j)-u*Pm(u+1))/(Pm(b)—Pm(u+1)) (3.103b)

Jj=b+l,...,u

vhere 'b' and 'u' are, respectively, bottom and upper
sensible 1limits to be considered for 'mo(k)’'. 'Sensible’
means that, 'Pm(b)~1' and ‘'Pm(u+l)~0°'. So, for practical

purposes, (3.103) may become much simpler.

Note that, under a reorder level policy, when a new order is
raised, the stock on hand plus on order ﬁinus backorders sum
Up to 'R'. The stock on hand is non-negative and the stock
on order is ‘'mo(k)*Q'. The quantity actually backlogged,
"(1-a)*Z(.)', is lower than '(1-a)*Q' since 'Q' is greater

than 'z(.)'. Therefore
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mo(k)*Q.= R+(1-2)*Q (3.1053)

'or, mo(k) = INT(R/Q+1l-a) (3.105b)

then, mo(k)= INT[(R/D)*mt+1-a] (3.105¢)

as 'mt~D/Q'. The r.h.s. of the 1last inequality could be

taken as the upper limit 'u’.

A sort of symmetrical Treasoning could be féllowed in
relation to the bottom 1limit. Saying that 'Z(.)' is less
than 'Q' means that the actual lead time demand 'x(.)' does
not exceed the average 'D' in more than 'R+Q-D'. 1Imn
practical terms, the reverse 1is also likely, 1i.e., the
actual lead time demand does not fall below 'D' in more than

that 'R+Q-D'. Therefore

zx(k) = D-(R+Q-D) (3.107a)
So

x(k)/Q > (2-R/D)*mt-1 ' (3.107b)

Note that the stock on hand just before the arrival of the
order 'k' is 'Ys(k)=R-x(k)'. '¥Ys(k)' 1is positive as we are
considering, now, situations where the demand is less than
the average, therefore "x(k)' is less than 'R'.
Conseguently, the stock on order at that moment must exceed
the difference between 'Ys(k) and 'R', i.e. has to be at
least egual to 'x(k)'. Hence, the number of orders
Outstanding just before the arrival of order 'k’, ‘nb(k)'

say, has to be an integer greater or equal to 'x(k)/Q'. Thus
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nb(k)= INT( x(k)/Q)+1 ) (3.109)

The number of orders outstanding falls to 'mb(k)-1'after the
k-arrival. This last figure gives the number of orders
outstanding when the next order (after the k-arrival) is

raised. Refer to that order as 'k+i'. Then, it follows:

mo(k+i)= nb(k)-1 (3.111a)
= INT( x(k)/Q ) (3.111b)
= INT( (2-R/D)*mt )- 1 (3.111¢)

The r.h.s. of the latter expression could be taken as a
sensible value for the lower boundary 'b'. Both Dboundaries
are close integers in practice, so the evaluation of 'mo’

through (3.103) is not a lengthy task.

For the periodical review procedure, the estimation of 'mo’
could be done in a similar way, substituting T-intervals for
Q-intervals and lead time for lead time demand. Then, from
the non-overtaking condition and through the same sort of
arguments as before, the following necessary and sufficient

condition could be stated:
mo(k)= j if and only if L(k-j)= 'j*T (3.113)

In parallel with the previous case, we could use (3.103) to

€valuate 'mo', as
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Pm(j)=[ £(x)*dx , , (3.1152)

o7

pm(J)= Pm(j)-Pm(j+1) (3.115b)

where 'f(x)' is the density function for the lead time.
Practical limits for 'b' and 'u' could be found as in the

earlier approach.
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3.6 Simulation checks.

In this chapter, a number of approximations have been

introduced to overcome analytical difficulties. The
individual approximations were accompanied by comments
explaining why each was considered acceptable. 1In thi§r_
section, the overall effect of the errors involved is to be

looked at by comparing the analytically expected results to

4.5 by 4:5

Y = 2 -— —_—y — —_— *
A

p
1
RO/D
Fig. 3.10 - Analytical predictions and simulation
with captive demand, a=0
the values obtained from simulation. Comparisons are
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-depicted in figs. 3.10 to 3.12 and show that differences are
small and that the new formulations substantially improve

the predictions.

The solid curves in fig.3.10 represent the analytical
expectations in relation to a reorder level policy when the
lead time demand is gamma distributed with modulus equal to
10 and demand is captive (a=0). 'P' and 'V' stand for the
stockout and shortage rates, respectively; 'R0O' for the
reorder level as set and 'S' for the average stock. 'D' is
the averége demand in the lead time and 'RO/D' and 'S/D'
were introduced to standardize the results. The numbers 0.5
and 4.5, assigned to each curve, are the values set for the
overlapping degree 'mt' (see 3.91). Dots and stars mark
typical values obtained from simulation (actually, only two
sets are plotted but the results of all runs were Very

similar). More details can be found in subsection 3.6.1.

The diagram should read as follows. Consider that the
reorder level is set so that °'RO/D=1.2'. This value at the
lower axis determines, to the right, 'P~0.24'; to the left,
'S/D<1.2' for ‘mt=0.5', and 'S/D~0.3' for 'mt=4.5'. The
corresponding values for the shortage rate are 'V~0.02' for

'mt=0.5' and 'V~0.20' for 'mt=4.5'.

In the case considered in fig 3.10, notional and set reorder
levels coincide because 'a=0', so 'R=RO+a*mo*Z' (see 3.23)
converts into 'R=R0'. As a consequence of this, the expected

Stockout rate tp! is independent of the degree of
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overlapping and so is -the expected ~shortage per cycle 'Z°
(see expressions 3.27 and 3.29). On the other hand, when the

overlapping 'mt' increases,' the reorder quantity ~ 'Q"

decreases, then the shortage rate 'V' increases for 'V~Z2/Q'.

The decrease in 'Q' leads alsc to a lower average stock 'S’'.

4:5 &5

S/D

RoO/D

Fig. 3.11 - Analytical predictions and simulation

with total lost sales, a=1

In fig. 3.11 any shortages are lost for sale (a=1). In this
Case, 'P' depends on the overlapping degree. For the same
Value 'RO/D=1.2' as in the example above, the stockout rate

is now 'P~0.24' for 'mt=0.5' and 'P~0.16' for 'mt=4.5'. 'V’
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and 'S/D' also depend on the overlapping degree but the
variation is less pronounced than with the captive demand:
for 'mt=4.5' they ‘are now 'V~0.09' and 'S/D~0.4' while in

fig.3.10 they were 'V~0.20' and 'S/D~0.3'.

4 expecied
Vi e Octual
02 d
¢ ]
. * 47 '
™ R ¥
e S
+. t . *
]
1 2 3 o4 Vo

Fig. 3.12 - Lost sales effect on services

Fig.3.12 checks the formulas (3.37). 'V1' and 'V0' are the
shortage rates for 'a=1' and 'a=0', respectively. The dots
are results obtained from simulation runs and the stars are
the values calculated from (3.37b) for several combinations
0f demand and control parameters. The differences are small
for the 1low shortage levels currently adopted. Note that
'V0' would be the estimate for 'V1l', if the lost sales
effect were ignored (the estimates would be located on the
bisecting line). Therefore, the improvement brought in by

(3.37) is appreciable.
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3.6.1 Further details

The predictions represented by the curves in figs. 3.10 and
3.11 refer to a reorder level policy and to a demand in the
1eéd time Gamma distributed with modulus 'G=10'. The points
to draw the curves were calculated from the values assigned

to the ratio 'D/Q' and to the stockout 'P'

The overlapping degree was approximated as

mt~ D/Q (3.121a)

which follows from (3.91c), after neglecting 'Z'; and the
number of outstanding orders, having then (3.96) in mind,

wvas estimated as
mo~ D/Q-0.5 (3.121b)

Therefore, the values '0.5' and '4.5' assigned to the curves

correspond to 'mo=0' and 'mo=4", respectively.

The computing routine follows, basically, the steps
mentioned in section 3.4 for the extended Johnston model

¥hich are detailed below:

(i) Set a value for 'P'.

(ii) Invert (3.29) and obtain 'R/Ds', where '‘Ds' is
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the standard deviation for the lead time demand, by using

the "function 1" in Johnston (1980, p.1083). Then, compute

R/D= (R/Ds)*(Ds/D) (3.1232)
= (r/Ds)/ /G (3.123b)
(iii) Compute 'Z/D' by using “function 3" in

" Jonnston (1980. p.1083)
(iv) From (3.87), then
RO/D= R/D-a*mo*Z/D (3.125)
where 'mo' is determined by (3.121b) and 'a' is the value
set for the lost sales fraction.
(v) Compute 'V' as follows:
V= Z/(Q+a*Z) (3.127a)
= (Z/D)/(Q/D+a*Z /D) (3.127b)
(vi) The stock ratio can then be derived from (3.67)
as

S/D= R/D-1+1/2%(Q/D+(1+a)*Z/D) (3.129)

The simulation values in figs. 3.10 and 3.11 were obtained
from a2 discrete time simulation program writtem to run
inventory operations under both reorder level and periodical
review controls. A sample of a printout is shown 1in
fig.3.13. The input conditions are the loss factor 'a',
'D/Q' (as an approximation for the overlapping level) and
'RO/Q'; the demand and supply cha;acteristics; the

simulation length, run-in time and the random generator

(seed).

Lead times were deterministic. Demands are generated daily,
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then inventory status updated and all possible qourses of
actions analysed. The variables 'P','V', 'S/D' and 'mo' have
the wusual meaning. 'Vt' 1is the shortage rate on a time
basis, i.e., time out of stock over total time. 'NTC' stands
for the total number of cycles in the run.

FFINVENTORY CONTRUL SIMULATION®S
¥ hke-tirder Level (R.Q) MONEL #

FARAMETERS -
a3 0.00 1.00

n/n 0.50 1.50 4.50

RO/ Iy 1.00 1.3C 1.60

DATLY DEMaND DISTRIRUTION! GAMMA HOD= 1.0
IBILY DEmARD RATErd= 3CG.0

LEAD TIRE (IiaYSist= 10,

LEAD TIME DEMANDG GaMha m0D= 10.0

STRUL.LENGTH= 15000
kit 1IN TIMES oS00

KANDOM GEN= 1111
ROD 3 /e RO/L D @ F v vt S/ mo N1C
A 0.00 .50 1,00 300 600 0.5% 0.0% 0.09 0.92 0.00 729
K 0.00 C€.50 1.30 300 600 0.26 0.03 0.03 1,28 0.03 774
c 0.00 0.50 1.6C 300 00 0.07 0.01 0.01 1.50 0.01 724
0 0.00 1.50 1.00 300 200 0.59 0,25 0.25 0.30 1.15 2174
E 6.00 1,50 1.3C 300 200 0.24 0.08 0,08 0.5% 1.15 2173
F 0.00  1.5C 1.60 300 200 G.08 0,02 0,02 0,84 1,15 2174
G €.00 4.50 1.04 300 67 - 0.60 0.46 0.46 0.14 4.47 6487
H 0.00 4.50 1.30 300 67 0.26 0.18 0.18 0.34 4.42 64vH
I 0.00 4.5%0 1.60 300 67 0,08 0.05 0.05 0.61 4,52 6487
J 1.00 0.50 1.00 3006 400 ©.5% ©.08° 0.08 0.99 6.00  66%5
K 1.00  0.50 1.30 300 400 ©0.24 0.03 0.03 1.23 0.00 706
L 1.60 0.50 1.60 300  &00 0.06 0.01 ©0.01 1.50 0,00 720
# 1.00 1.50 1.00 300 200 0.43 0.15 0.15 0.40h 0.84 1847
M 1,00 1.50 1.30 300 200 0.1%9 0.06 0.06 0.58 0.9% 2OGT
u 1.60 1.50 1.60 300 200 0.06 0.01 0.02 C.8% 1.11 7143
# 1.00 &£.50 1.00 200 67 0029 0.19 0 0.1Y 0 0.2 3.2 G/
¢ 1,00 4.50 1.30 300 47 0,12 0.08 0,08 0.3 3.89 5993
R 1,00 4.%0 1,60 300 67 0.04 0.02 0.02 0.63 4.23 6378

RUETUAL DEMARD CHARACTERISTICS?
RATES 6.0
ST.ikv=s U9, 9
$ET=12:02.6 FT=22:59.6 JO=C.2

Fig. 3.13 - Printout of inventory simulation
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3.7 Conclusion

The formulations of the reorder level and periodical review
operating procedures have been extended to situations in
which orders overlap and demand is not captive. The approach

used, based on a notional level, may be applicable to other

inventory models whose replenishment decisions involve the

setting of some sort of control stock level.

The notional level is the key concept that enables a common
treatment for both lost sales and captive demand cases. The
notional 1level is obtained by adding to the usual control
level, be it the reorder level, the top up or other control
level, the expected lost sales during the decision horizon.

Referring to (3.23) in section 3.2, it reads

pa o)
"

RO+m*Z (3.135)

where 'R' and 'RO' are the notional and the set reorder

levels and 'm*2' stands for the eXxpected lost sales.

This new concept overcame the lost sales barrier, thus
extending the applicability of the established inventory
decision models. Service levels are given by expressions
(3.27) &nd (3.29) in section 3.2. The same concept is
. applied to reach the formula for the average stock,
expression (3.69) in section 3.3, and to expand the J-model

in section 3.4. The formulas are the same as for captive

~3.7- -102-



demand if the notional -level 'R' =substitutes for the set
physical 1level 'RO'. The extra computational load is thus

quite insignificant.

The traditional formulas to predict the perfomance variables
with captive demand give poor predictions with non-captive
situations if several orders are currently outstanding. The
magnitude of the errors is clearily depicted in the diagrams
jncluded in section 3.6. If the overlapping degree is not
high, those errors might be not as significant as others
provenient from the estimates of the demand or supply
charapteristics: even so, the use of the notional level may

be worthwhile because it brings no significant complexity.

The analytical way which 1led to the formulation of the
notional level concept passed through some approximations in
order to arrive at tractable and usable formulas. Each of
these approximations seems reasonable but the chain of
simplifications might have 1led to distorted and useless
results. This is not the «case, apparently, for the
comparison between the predictions from the formulas so
derived and results obtained by simulation have shown that

they are close. Even when differences are larger, the

bredictions are better than if the notional level were

ignored.
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4.1 Sensitivity to the order frequency

The allocation criterion in J-model which has lead to the

formulsa
= 1/N*(F2+k)/F

assumes that 'N', the number of orders per year, is an
exogenous variable. Johnston mentions, in his paper, the
'‘mean inter-order interval' which is another way to fix the
frequency. But he giveé no help to choose a value for it.
Apparently, that frequency is left to be decided on a basis

of good sense.

It is obvious that the smzller are the orders the lower are
the stocks. Decisions based on the Wilson classical approach
should increase the number of orders if, by any reason, the
ordering costs had become lower. This is apparent in
formulas associated with- the so called economic reorder
quantities, e.g. expression (4.6la) to be seen in section
4.3, With the J-model, however, a decrease in ordering cosis
does not lead necessarily to a more frequent reordering, as

it is shown below.

The effect of the reorder frequency is exemplified in
fig.4.1. The average stock 'S' and the shortage rate 'V' are
variables being used as the two most important to assess the

system perfomance. The figures plot the values of 's/D' ('D?
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S/D S/D

{s}

Dc=- Vi/zo

Fig. 4.1 - Reorder freguency effect on perfomance

is the 1lead time demand) against 'V' for different degrees
of overlapping 'L/T'. The curves, therefore, show the s, V!
rerfomances the decision maker can expect for different

ordering frequencies. Values relate to the continuous review

reoder level control with captive demand. Captive demand has
been assumed in this example in order to isolate the present

problem from the lost sales case discussed in the previous
chapter. The overall pattern of the curves, however, is

common to other situations.

In fig.4.1a, the lead time demand is assumed to follow a
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negative exponential. The coefficient of variation then is
one, i.e. 'Dc=1'. We see that for 'L/T=0.5', i.e. 'N=26/L'
orders a yvear (L in weeks), we can expect to have a shortage
'V' of about 18% for 'S/D=1'. If we increase the number of
orders per year and retain the same shortage rate 'V', then
the investment in stock must be increased. For instance, if
'L/T' changes from 0.5 to 1.5, the 'S/D' has to be raised
from 1.0 to ébout 1.35 to keep the shortage at the same rate
of 18%. That is, ordering more often brings no perfomance
improvement, on the contrary, the result is to get either

larger stocks or worse service. This may constitute a

surprise.

Increasing the order frequency decreases the average stock
if 'P', the probability of stockout, is kept constant.
Increasing 'N', however, also increases the number of times
the stockout may occur. i.e. 'P*N'. Thus, the shortage rate
becomes higher. To recover the previous 'V', safety stocks
need to be higher, too. This last adjustment may lead to
higher average stocks than those we have begun with. In a
case similar to the one depicted in fig.4.la, increasing
'L/T' above 0.5 would lead to a worse situation: higher
ordering costs and higher holding costs for the same

service.

The figure (2) does not illustrate the effects in the region
¥here 'L/T' is wunder 0.5, but it could be shown that when
the overlapping degree raises from very low values there is,

initially, a clear improvement in the 'S,V' perfomance. Such
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én effect, however, becomes weaker and weaker.for higher
overlapping degrees and ends being negative. The turning
point depends on the demand distribution. For instance; if
we l1ook now to the picture (b) on the right side of the fig.
4.1, we see that 5% of shortage could be get either with
'S/D=0.96"' and 'L/T=0.5; or 'S/D=0.48' and 'L/T=1.5'. There
wés a very signficant decrease of stock when the number of
orders per vear was trebled. However, the marginal effect
for higher frequences decreases sharply. The decrease in
's/D' when 'L/T' changes from 1.5 to 2.5 1is already small;
and the effect would be reversed at some stage if we kept on
increaéing the overlapping degree. The turning point in this
example would be reached for a value of 'L/T' necessarily
lowver than 10, according to expression (5.57) to be seen in

section 4.3.

The choice of 2 consistent value for 'N' may not be easy. In
the Wilson approach it depends on estimates for holding and
ordering costs. Such estimates may faise practical
difficulties, yet the rationale is straight forward. The
ralationship between 'N' and those costs is monotonic, the
higher the ratio between holding and ordering costs the
higher the 'N' and the lower the average stocks. It is not
so simple with the J-model. A higher ordering frequency
decreases the stock but increases the shortage quantities if
the replenishment control levels are kept the same. The
choice of & value for 'N', consistent with -the model, 1is

complicated by the fact that the marginal effect of 'N' on

'S' may be negative or positive (for the same 'V'). It is
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not always obvious whether the extra cost of ordering more
often 1is compensated by less capital tied up or, on the
contrary, increases that capital. The problem gets worse

when groups of items are considered.

An analytical approach will be presented in the course of
the next sections. Basically, we are interested in finding a
way to get values for 'N' consistent with the objectives in
J-model. First, the global formulation of that model will be
developed to contemplate the 'optimization' of 'N'. Then,
the éingle item case will be considered, i.e. orders are
supposed to be raised individually, one for each item, at
independent moments in time. This will help understand the
nature of the parameters and variables involved.
Subsequently, the analysis will be extended to group
ordering. Finally, suggestions will be made to deal with the

problem in practical terms.
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4.2 Extension to the J-model

We recall once more from section 2.4 the formulation of the
allocation criterion

pr—

Max 77 , subject toc S < cS (4.1)
Now, 'Tf' and 'S' comprehend all the items in the inventory,
grouped in 'J’' buying families, each family containing 'I'
items. The buying family has been introduced in section 2.4
as a group of items obtained from the same supplier and
ordered simultaneously. Items can be identified as the
elements of a matrix 'I*J'. The subscript (i,j) reads the
item 'i' of the family 'j'. Families have, obviously,
different numbers of items. We can make 'I' the same for =all
the families with a convenient introduction of dummies.
This will simplify the notation. Another simplification is
made through the collapsing of ‘indices to indicate

aggregation. Thus, for instance:

M= T(3)= L LT, 3) (4.32)
S= 2 S(i)= 2 2 S(i,3) (4.3b)

The profit associated with the family 'j' can be derived
from expression (2.7) as:
TT(3)= 52* LF1(4,3)*d(4,3)-N(I)I*FZ(3)-

F2(3)*S(3)-FO(I)*N(3) (4.5)

‘4.2- _110—




'N(j)', mnow, is an endogenous variable. Its value shall be .
in line with the objective stated in (4.1). The feoder cost
‘FO' often is not very precise. 8o, it is convenient to
stipulate a maximum number of orders per year 'eN'; this is
similar to the limit placed on the stock investment. We have
seen earlier that cost rates can be converted into
constraints and #ice-versa, so 'FO' and ‘eN'! really

complement each other.
The objective stated in (4.1) above would then turn out

Max TT , subject to S.=cS and N=cN (4.7)

Now, we introduce the Lagrangean multipliers *As' and 'An'
in relation to the 'S' snd 'N' constraints, respectively, in
order to form the associated Lagrangean expression. Then,
taking partial derivatives in relation to each of the

'R(i,j)'s and equating them to zero we would arrive at
P(i,3)= 1/N(3)*(F2(3)+As)/F(i,]) (4.92)

as seen 1in section 2.4. Similarly, but now taking the

partial derivatives in relation to each of the 'N(j)'s, it

follows

N(j)y**2= 26%d(3)*(F2(3)+As)/(FZ(3)+FO(j)+An) (4.9b)

for a reorder level policy.
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%ith a reorder level policy, a new order is triggered when
the stock falls to the reorder level. Thistrraises no
theoretical difficulty when the orders are placed for each
jtem independently, but it is not clear how an order should
be triggered when it involves all the items of a buying
family. The problem car be overcome"by the introduction of

the aggregate reorder level which is defined below.

Let us suppose for a moment that the 'P(i,j)'s had been set
for a given 'N(j)' according to (4.92). Then the 'R(i,J)'s
and 'Z(i,J)'s could be calculated as usual. The
corresponding expected shortage penalty for the family would

be given by the formula
FZ(5)= & F(i,3)*5(1,3) (4.11)

Denote by 'RZ(j)' the value of 'FZ(Jj)' that results from the
particular values set for the 'P(i,j)'s. This '‘RZ(J)' will
perform the role of the aggregate reorder level for the

family 'j'.

The aggregate reorder level 'RZ(j)' 1is then compared with
the shortage penalty 'FZ(Jj)' which could be expected if a
new family order were raised immediately. If an order is
raised now, the expected shortage 'Z(i;3j)' can be computed
for each item from the quantity in stock and the lead time
oistribution; and then, the associated 'FZ(J)' could be
calculated from (4.11). The current shortage penalty 'FZ(Jj)’

should be kept updated at all times and whenever it falls
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down to the aggregate reorder level 'RZ(j)', & new -order

should be triggered.

Note +that when a family order is placed, the actual stock
position of each itemvis unlikely to be exactly the 'R(i,j)'
which individually had been admitted in order to compute the
'RZ(3)' by means of (4.11). One can expect that
mel-distributions take place and hence, when the aggregate
reorder 1level 1is reached, some items are above and others
are below the respective 'R(i,j)'. The actual stock
investment for a given 'RZ(j)' will be increased as a result
of this mal-distribution. This effect which will be examined
in subsection 4.2.1, was neglected in the derivation of

(4.9b).

The equations (4.9) constitute the basis for determining the
combinations 'P-N' which should be used for the trade-offs
involving service level, investment in stock and procurement
effort, the latter measured by the annual number of orders
for the whole inventory. Note that the ordering cost rate
'FO(j)' adds to 'An' as well as the holding cost rate
'F2(3j)' adds to ‘As'. The model reacts to each of these sums

and not to how they are composed.

The complementarity of 'F2(j)' and ‘Ast has been discussed
in section 2.5 and most of the considerations developed
there in relation to helding costs apply to the reordering
costs. In fact, 'FO(3)' and 'An' also complement each other.

o' is the cost of an extra order per year, on & common
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basis for all the buying families. -Such =a value can be
compared to the current accountancy figures for tﬁe variable
costs of reordering. 'FO(j)' is the extra charge, on top of
'\n', specific of that family 'j'. It might stand for
extraordinary costs in procurement, freight, reception
control or whatsoever, but usually it can be ignored in the

presence of 'An' which broadly accounts for the common

ordering costs.

4.2.1 Analytical details

A remark shall be made sabout the consistency of the
aggregate reorder level. The tactual' stock levels when a
family order is raised, 'Ra(i,j)', say, are unlikely to
coincide with the 'R(i,j)'s specified earlier for each item.
There is a2 variety of possible combinations of ‘Ra(i,j)’'s
wvhich have that same global shortage penalty ‘RZ(3)"'.
Obviously, it would be desirable to have the minimum stock
compatible with that penalty. Or in other words, the minimum
'Ra(j)' compatible with the set 'RZ(j)'. This could be

written formally as
Min(LRa(i,j)) , subject to FZ(3)= RZ(J) (4.19)

By equating to zero the derivatives of the Lagragean

equivalent in order to each of the 'Ra(i,j)'s, we would get
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1- N\*F(i,3j)*P(i,j)=0 (4.213)

or P(1,3)=(1/N)/F(1,3) (4.21b) .

This result is in line with (4.9a). It means that the
optimum combination would be for the 'Ra(i,j)'s coinciding
with the 'R(i,j)'s. Denoting by 'Ra(j)' and 'R(j)' the

summations for 'Ra(i,j)' and 'R(i,j)', respectively, we have

Ra(j).Z R(J) (4.23a)
= R(J)+AR(J) (4.23b)
where AR(I)= L AR, ) (4.23¢)
Ra(i,j)= R(i,3j)+dR,3) (4.23d)
Note that 'ASR(i,j)' can assume negative values, but

'AR(j)' cannot.

These arguments become clearer if we depict the trade-off
between two items as in fig.4.2. The straight line (1) is
the locus of all possible combinations of '2(1)' and 'Z(2)'
leading to 'RZ', the reorder level. Curves (2) and (3)
represent all possible combinations of 'Z(1)' and 'Z(2)' if
the actual stock values, when reordering, summed up to 'R’
and 'RA', respectively. Note, 'RA' is greater than 'R’
because the latter gives higher shortages. Curve (2) is
tangent to 1line (1) on ‘'o'. This is the point which
represents the best combination of 'Z's as it corresponds to
the lowest stock at the reorder moment. On that point 'o',

'Ra(1)=R(1)' =and 'Ra(2)=R(2)'; and, naturally, 'Ra=R'. The

~4.2,1- -115-



reorder level 'RZ', however, is 1likely to be reached with a
non-optimum combination of 'Z's. Let point At represent
that combination. On this point, 'Ra(1)+Ra(2)=RA' and 'RA'

is grater than 'R’.

Z.2)
Curves
1: FUODA2(1)4F(2)%2(2)= RZ= const
2: Rat(l)+Ra(2)= R= const
bk 3: Ra(l)+Ra{2)= RA= const

R2/F(2)

RZ/F(1) pyy IH

!
Fig.4.2 - Effect of mal-distribution

These considerations about the aggregate reorder level are
required for the derivation of equation (4.9b). This was
obtained by eqguating to zero the partial 'N(j)' derivative

0of the Lagrangean expression for (4.5). It would follow,

then

~FZ(3)-N(3)*(@FZ(3)/dN(I))~

(F2(3)+As)*(38(3)/0N(3))-(FO(j)+An)= O (4.25)
Then, it has been assumed that
OFZ(3)/AN(3)= © (4.262)
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DS(F)/ON(G)= -26%d(J)/N**2 (4.26Db)
Consider, first, the single item case. Under a reorder level
policy, the relevant decision period is the lead time 'L'.
'72', therefore, does not depend on the reorder interval, so

(4.262) holds. On the otherihand, from (2.13) in section 2.4

S= R-D+Q/2 (4.273)

= R-D+26%d /N (4.27b)
As 'dR/3N=0', (4.26b) follows.

Consider, now, the multi-item situation. The value of
'FZ(j)' is fixed from (4.19) and does not depend on 'N(j)',
therefore, (4.26a) holds. The expression (4.26b), however,
implies that 'Ra' does not vary with 'N', when 'R' (or,
equivalently, 'RZ') is kept constant. 1In fact, 'Ra' should
replace 'R' in (4.27) because the average aggregate stock

should take into account the actual aggregate reorder level.

Assume for a moment that the nominal stock of each item,
when a new group order is placed, is raised to the level
'R(i,j)+Q(i,j)'. If the subsequent actual demands, for all
items of the family, were exactly as expected, the next
order would have taken place 'T' time units later. At this
moment, all the items would be also at their respective
'R(i,j)'s, i.e. the inventory would be at its optimum

reorder level combination (point 'o' in fig.4.2).
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The actual issues between two successive orders, however,
are not exactly 'Q(i,j)' but say, 'Q(i,3)-ADR(i,j)', in line
with (4.23d). To deal with these differences, we can use the

approach in (3.41) and write
A7~ -Po* (AR)+fo* (A R)**2 (4.29)

where 'fo' stands for the value of the probability density
function of the lead time demand in relation to a reference
stand point 'o'. Now, aggregate the 'I' items of the family

'j' as follows

AFZ(3)= -L F(i,3)*Po(i,i)*DR(,5)+
Zfo(i,j)*AR(i,j)**z (4.31)

The optimum combination is now taken as the reference stand
point. 'AFZ(j)' is zero, because the reordering always
takes place when 'FZ(j)=RZ(j)'. It follows, then, from

(4.92) and (4.21b) that

AR(§)= N(3)/(F2(3)+ As)*() fo(i,d)*AR(L,J)**2) (4.33)

The expected value for *AR(i,j)**2' is the variance of the
demand between two successive reorder points. The period
involved is, on average, 'T(j)=52/N(j)'. 1If ‘ds' is the
Standard deviation of the demand per unit of time, we could

¥rite
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E (AR(L,3)**2)= C(I)*T(J)*ds(d,]J)**2 (4.35)

L

where 'C(I)' is a function of the number of the items of the

family and 'E(.)' stands for the expected value.

The expected value for (4.33), having (4.35) in mind,

converts into

E(AR(3))~ 52%C(I)/(F2(J)+As)*

*(L fo(i,3)*ds(i,])**2) (4.37)

The expected value of AR’ does not depend on
'N'...significantly, &t least, if the above approximations
are reasonable. Note, further, that 'fo(i,Jj)*ds(i,j)' might

be easily converted into a standard density function.

The average stock 'S' 1is modified if 'E(AIR)‘ is greater
than zero. To keep, however, the same number of orders
'N(j)', the 'Q(i,j)'s shall remain the same. So, the top up

level is given by

Top up level= Ra(i,j)+Q(i,J) (4.392)

R(i,j)+DR(i,3)+Q(1,3) (4.39b)

The actual average stock, then, is increased to 'Sa=S+AR"'.
However, as 'AR' is independent of 'N', '3Sa/0N=3S/oN',
therefore the expression (4.13b) holds. The AR(i,j) can be

approximated empirically from the inventory running data.
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4.3 Single item order frequency

Equations (4.9) can be used to generate 'P-N' combinations
consistent with the =allocation criterion in J-model. Some
further refinements are convenient to ease their
manipulation. They are introduced in this section for single
item reordering and will be extended in the next section to

buying families.

Assume then, that decisions are made individually for each
item. So are the orders. The basic equations in (4.9) would

simplify to:

P= (1/K)*(F2+ As) (4.41a)
N*%2= 26*d*(F2+ As)/(FZ+F0+ An) (4.41Db)

The following notation is, now, introduced:

largin loss, ML= (52*F1*d-77)/(52*F1%*d) (4.432)
Shortage penalty ratio, B1=F/Fl (4.43b)
Holding ratio, B2= (F2+ As)/F1 (4.43c)

Ordering charge ratio, B3= (FO+ An)/(d*L*F1) (4.43d)

Stock turn, U= 52*%d4/S ' (4.43¢)

Years of stock, OU= 1/U (4.431)
Recz1l also that:

Shortage rate, V= 2/(d*T) (4.452)

Overlapping rate, LOT= L/T (4.45b)
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This notation is introduced for two main reasons. The first
js to facilitate the derivations to be presentedtlater. The
second and more important is to make apparent relationships
involving cost variables (B1l, B2 and B3) and perfomance

variables (V, OU and LOT). For instance, the formulation in

(4.7) is strategically eguivalent to
in (ML= B1*V+B2*0U+B3*LOT) (4.47)

This equation can be a wuseful tool for decision making and

will be examined in section 4.5.

Let us discuss the meaning of the mnew symbols before
proceeding. The margin loss 'ML' gives the variable costs as

a fraction of the potential profit ceiling. The variable
costs referred to are the costs of ordering and holding
stocks as well as of running out. 'Bl' is the penalty for
shortages as a fraction of the profit rate 'F1', 'Bl'
mirrors the marketing policy, as mentioned in chapter 2 and
can be expected to be close to one. 'B2' expresses the
holding costs measured on that same basis. Holding cost
rates for non-perishable and non-fashién products are
normally in the range of 30 to 50% Typical figures for 'F1'
are 50 to 100%, therefore, 'B2' is likely to stay between
0.5 and 1.0. Note that with "volatile" products
(fashionable, perishable, pilferable, etc.), when holding
costs are higher, so are, normally, the profit margins. Thus
'B2' is likely to remain in the same range. 'B3' is the

reordering cost as a fraction of the profit of the lead time
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demand. The value of 'B3' is 1likely to haﬁe a wide
variation. Typical figures are well below 1. Note that 'Bl‘',
'B2' and 'B3' are costs which have been expressed in
relation to the profit in order to deal with standardized
figures, easier to manipulate. These 'B's can be used as
buttons or knobs to search the appropriate performance

vector, as it will be discussed in section 4.5.

The stock turn 'U' and years of stock 'OU' are quite common
yardsticks. The former gives the number of times per year
the capital is reinvested (or, the whole stock is renewed).
The latter, the time length of each investment (or, the time
to exhaust stocks if fresh cargoes were not received). A
lower 'OU' corresponds to a lower investment in stock. The
shortage rate 'V' is the complement to one of the rate of
fulfilment and thus, a lower 'V' gives a better service
level to customers. The overlapping rate 'LOT' relates to
the reorder freqguency and the lower it is the lower is the
number of orders. Therefore, decreasing '0OU', 'V' and 'LOT'

is the aim, and this is in line with (4.47).
The equations (4.41) would turn out:

P= (1/N)*B2/B1 (4.49a)

N**2= 26*d*B2/(B1*Z+B3*d*L) ' (4.49Db)
Rearranging (4.49) with (4.45) in mind, we get
N= (1/2)*B2/(B1*V+B3*LOT) (4.51a)
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p/2-V= (B3/B1)*LOT (4.51b)

= (L/52)*(B3/B1)*X ' (4.51c)

The formula (4.51a) shows that 'N' remailns finite even if
the reorder costs were zero (B3=0). Recall that with the
¥ilson model, 'N' would tend to infipity in this case. The
last two expressions show that, for a consistent decision,

'V' shall be lower than 'P/2'.

The 1link just mentioned Dbetween 'P' and 'V' may become
useful to write off, a priori, high values for the
overlapping degree. Further insights may be derived from the
particular demand distribution. As shown in subsection
4.3.2, if demand is gamma distributed, when 'P' tends to

ZEero we have
1im (V/P) = LOT*(Dc**2) (4.53)

where 'Dec' is the coefficient of variation of the lead time

demend. 1t is also shown, for any value of 'P', that:

V/P = LOT*Dc**2 , for Dc = 1 (4.55a)
= LOT*Dc**2 , for Dc > 1 (4.55Db)
= LOT , for Dc = 1 (4.55¢c)

Prom (4.51b), 'V/P<1/2, and then

LOT< 1/(2*Dc**2) , for Dc= 1 (4.57)
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This last expression is an important result. Thg condition
'De=1' is generally met, if the very slow movers are
excluded, and then, the boundary imposed by (4.57) overrides
immediately the ©practice of high overlapping degrees. In
particular, for the negative exponential distribution,
'De=1'. So, 'LOT' shall be lower than 1/2. This explains
why, in fig. 4.la, the performance goes worse when 'LOT',

i.e. 'L/T' increases from 0.5.

The simultaneous equations (4.49) determine the P-N
combination. An exact solution, however, .is not easy to
find. Empirical approximations for the probabilistic
functions, as those ipn Johnston (1€80), can simplify the
task considerably. That paper proposes, for Gamma and for

Normal distributed demands, approximations of the form
2 /D= AO+A1*P+A2*P**2 (4.58)

which are reproduced in subsection 4.3.1. Using such

approximations, we would find that the overlapping degree

should be
1L.OT= (-C1+JE;;*2+4*CO*C2) /] (2*%C2) (4.59a)
where
CO= 1/2-A2*B4 (4.59b)
Cl= Al (4.59c)
C2= A0/B4+(52/L)*B¢E (4.59d)
and
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B4= (L/52)*(B2/B1) (4.59%e)
B5= B3/B1 (4.591)

B6= B3/B2 (4.59g)
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Fig 4.3 - Cost effects on the combination of attributes
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The annuzl number of orders is 'N=(52/L)*LCT', 'P' is given
by (4.49za) and the computation of other perfomance

attributes is, now, straight forward. Fig.4.3 shows the

variations of 'P','V' and 'N' with the reorder costs, ifor
different demand distributions. Note the low value of the

shortage rate.

It is interestirg to compare the optimum frequency, as
obtained from derivations above, to the values from the
¥Wilson model. Ve recall that the latter assumes
deterministic demand with no shortages. The choice of 'N' is
such tha+t the variable costs of ordering and holding stocks

are minimized. Formally, we have

Min ( Cost= (F2+Xis)*S+(F0+An)*Nw ) (4.60)

vhere, 'Nw' stands for the ¥Wilson *N'. Equating to zero the

derivatives in relation to 'Nw' and rearranging, it follows:

Nw**2= 26%d=(F2+As)/(FO+An) (4.612)

= (26/L)Y*(B2/B3) (4.61b)

Comparing this result with the expression (4.49b) we see
that 'Nw' is an upper bound for the cofresponding value 1in
J-model, thus it can be used to set a practical limit if one
wants to avoid the computations inﬁolved in the method
described above. 'Nw' is plotted in fig.4.3c, for comparison

Purposes.
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4.3.1 Analyticel determination of LOT

The Appendix III in Johnston (1980) gives approximate
expressions to compute service levels in relation to Gamma
and Normal distributed 1lead time demands. The expressions

below are drawn from there.

For the Gamma distributiorn, the percentage of lost sales

(PLS) is given by

PLS= A7*P+AB8*P**2
where
PLS= 100*Z/D
A7= 9.4808205+101.30969/k~-9.5595537/(k**2)

A8

20.57447149.9995001 /k-27.350124/(k**2)

and 'k' is the modulus of the distribution, '7Z' is the
expected shortage qguantity per cycle and 'D' is the mean

lead time demand.

For the Normal distribution

PLS= X6+X7*P+X8*Px*2
where

X6= -0.0495939
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X7= 40.16012
X8= 78.3590788

but now

PLS= 100%*Z/Ds= (100/Dc)*(Z/D)

Both cases could be standardized under the form

7 /D= AO+A1*P+A2%P**2

where, for the Gamma distribution,

A0= 0
Al= A7/100
A2= A8/100

And for the Normal

A0= X6*Dc /160

Al= X7*Dc/100

=
(§)
]

X8%Dc /100

On the other hand, from (4.45)

V= (Z/D)*LOT

Then, it follows from (4.51)

N= (1/2)*B2/(B1*Z/D*LOT+B3*LOT)

As N= (52/L)*LOT

‘4- 3- 1—

(4.62)

(4.632)

(4.63b)

(4.63c)
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Then (52/L)*(Bl*Z/D+B3)*LOT—B2/2= 0]
Denote

B4= (L/52)%*B2/B1
B5= B3/B1

B6= B3/B2
Then, from (4.61d)

(1/B4*Z/D+52 /L*B6)*LOT**2-1/2= 0

From (4.49), P=B4/LOT
Combining, now, (4.62) and (4.65) we get

(1/B4)* AO*LOT**2+A1*(p*LOT)+A2*(p*L0T)**é}+

| iotaans |

+(52/L)*BE*LOT**2-1/2= 0
or

(A0/B4+52 /L*B6)*LOT**2+ A1*LOT- (1/2-A2*B4)=0

Denoting

CO= 1/2-A2%B4

Cl= Al

C2= AO0/B4+52/L*B6

the solution for (4.67) is

r
LOT= (-C1+ VY C1**2+4*C0*C2) /[ (2*C2*)

~4.3.1-

(4.63d)

(4.642)
(4.64Db)

(4.64c)

(4.652a)
(4.65b)

(4.672)

(4.67b)

(4.69a)
(4.69b)

(4.69¢)

(4.71)
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Note that only the positive root is contemplated in (4.71).
In fact, 'C1' and 'C2' are positive. If 'CO' is also
positive, that robt is the only one which gives positive
values for 'LOT. Currently, 'B4' is much lower than 1. So is

1

A2' zs it can be seen above. Thus, 'CO' is positive for

most of the cases. Otherwise, the other solution for (4.67)

would also have to be considered.

4,.3.2 Detazils about the ratio V/P

Consider the exzpectaztion for the stockout and shortage rates

given by the expressions

p= Lf(x)*dx (4.76a)

= -9Z/oR (4.76b)

Z=]:x-R)*f(x)*dx (4.76¢)
R

=[xn*:f(x)*dx ~R*P (4.76d)
?

V= LOT*Z/D (4.76e)

The density function for the Gamma distribution could be

¥ritten
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f(x)= (1/Gk)*(h**k)*(x**(k-1))*EXP(-h*x)
where 'k' is the modulus, 'h' the scale factor and 'Gk' the
Gammsz function. Denote by 'fi(x)' the first derivative of
'f(x)'. Then note that

fl(x)= (k-1)*(£(x)/x)-h*f(x) (4.761)

Integrating both sides of (4.76f) as follows

o

Jfl(x)*dx= J}k-l)*(f(x)/x)*dx—hfj;(x)*dx (4.772)
R R R
then
O0-f(R)= [(k-l)*(f(x)/x)*dx-h*? (4.77b)
JR
hence e
h*P-f(R)='j(k—l)*(f(x)/x}*dx (4.77¢)
R

On the other hand, the integration by parts of the r.h.s. of

(4.762) gives

L 3

P= [x*f(x)] i/x*fl(x)*dx (4.78z2)

R R

and considering (4.76f)

p= O-R*f(R)—f(k-l)*f(x)*dx+h*fx*f('x) (4.78b)

K K

and considering (4.76d4)

P= -R*f(R)-|(k-1)*f(x)*dx+h*(Z+R*P) (4.78c)
R
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Hence

h*Z= k*P-R*(h*P-f(R)) (4.78d)

and considering (4.77c)

@

h*Z= k*P-R*(k-l)f/}f(x)/x)*dx (4.78e)

R

Now, as 'h=k/D', dividing by 'k' and 'P' it follows

Z/(D*P)= l-R*(k-l)/(k*P)f[}f(x)/x)*dx (4.78%)
R

Z/p.p

~ N

&0

Fig. 4.4 - Ratio between shortages and stockouts

In (4.78f), we see that 'I/(D*P)=1' for k=1. Moreover ’'x' and
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'j(x)' are non-negative (so is the integral on the r.h.s.);
‘R' and 'k' are positive; therefore, 'Z/(D*P)Ais greater
than one for 'k' lower than one and lower than one for 'k'
higher than oné. This‘is confirmed by fig.4.4 where each
curve was drawn from a set of points obtained by computing
t7' and 'P' by the formulas in Johnston (1980). The curves
are monotonic and the limiting value is '1/k'. Tpis can be
seen by applying successively the rule of L'Hopital to 'Z/P'

while making 'R' tending to infinity:

1im (Z/P) 1inxk52/an)/(ap/a3ﬂ (4.79a)

1im[P/f(RjP= -1im[f(R)/f1(Rﬂ (4.79b)

and considering (4.76f)

1im (Z/P)= —1im[1/((k—1)/a—h)} (4.79¢)
- 1/n | (4.79d)

Therefore,
lim [Z/(D*Pﬂ = 1/(D*h)= 1/k (4.79¢)

The curves in fig.4.4 are monotonic and tend to '1/k'. Then,

one can conclude that

1< Z/(D*P)< 1/k for k<1 (4.802)
7/(D*P)= 1 : for k=1 (4.80Db)
1/k< 2/ (D*P)< 1 for k>1 (4.80c)

The boundaries for 'V/P' zs in (4.55), would then be derived

from (4.76e), recalling that 'l/k=Dc**2'.
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4.4 The family order frequency

The manipulation of formulae (4.9) in relation to a buying
family can follow the same steps as in the previous section.
The results can be expressed by the same formulas though the
symbols have now a more complex meaning to contemplate the

multi-item situation. This will be seen below.

The subscript 'j' referring to the family will be omitted in

order to simplify the notation. The subscript 'i', as usual,

stands for the item; Then it reads

Bl1(i) for Bl(i,j)= F(i,j)/F1(i,d) (4.81a)
B2(i) for B2(i,j)= (F2(J)+As)/F1(1i,]) (4.81b)

B3(i) for B3(i,j)= (FO(J)+An)/(d(I)*L(J)*F1(i,J)) (4.81lc)

B4(i) for B4(i,j)= (L(j)/52)*(B2(i,J)/B1(1i,]) (4.81d)
 B5(i) for B5(i,j)= B3(i,3j)/Bl(i,J) (4.81e)
B6 for B6(j) = B3(i,3j)/B2(i,3) (4.81F)
Note that B4(i)*B6= L/52*B5(i) (4.81g)

The basic equations corresponding to (4.49) read now

P(i)= 1/N*B2(i)/Bl(i) | : (4.83a)
= B4(i)/LOT | (4.83b)
N*x2= 26%d/ ().B1(i)/B2(i)*Z(i)+ B6*d*L) (4.83c)

This last equation can be rearranged to give
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N= (1/2)/ (LB1(i)/B2(i)*Z(i)/DT +B6*LOT) (4.85)

where 'DT=d*T' is the family mean demand value in a
replenishment period 'T'. The formula (4.85) corresponds to

. (4.51a) for the single item.

Finally, adopting empirical relationships, we would arrive

at the same formula (4.59)

LOT= (-C1+VC1#*2+4%C0*C2) / (2%CO) (4.862)
But now,

CO= 1/2-a2*B4 (4.86Db)

Cl= al (4.85¢)

C2= a0/B4+(52/L)*B6 (4.86d)
and |

a0= (1/D)*ZA0(1)/D(1) ' (4.86¢e)

al= (1/D)*2 A1(i)/D(i) (4.86%)

a2= (1/D)*ZA2(i)/D(i) (4.86g)
where 'AO', 'Al' and 'A2' are the coefficients of the
empirical expression (4.58) for each item, 'D(i)' is the

mean lead time demand for the item and '"D' is the aggregate
demang for the family (recall that demands are expressed in

money units).

The coefficients in (4.86) assume that the same value 'B4'
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can be adopted for zall the items in the family. The general
situation of having distinct 'B(i)'s is deait with in
subsection 4.4.1. In this case determining 'N' would become
much more complicate. The question now is to know how
accurate 'B4' needs to be for the purpose of computing 'N’'.
i1f the required accuracy is not high, then, for practical

purposes we could use a common 'B4'.

1; Gamma., (1/Dc)¥x2= 4, D=25
2: Normal, ” = 20, D=625
N 12: Aggregation of 1 and 2 )
Nw: Wilson model, Nw=8.06
L=4; EB2=0.5; B3=0.03; E&=0.1
Nw
8
2
12
7 -
1
b -
; T
: B4
/239 2/5% 3/39

Fig. 4.5 - Sensitivity of 'N' to 'B4'

The sensitivity of 'N' to 'B4' is shown in fig.4.4, for a
number of situations. In all of them, 'L=4' and 'B6=0.1'.
Curve (1) relates to a lead time demand Gamma distributed
with modulus egual to 4 (i.e.,'l/Dc**2=4")., Curve 2)
corresponds to a Normal distribution with '1/Dc**2=20"'. Note
that as 'L=4', curve (1) corresponde to having a weekly
demand with modulus of one, thus close to the limits of
Skewness, whilst curve (2) being Normal is at the opposite

end.
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The sensitivity to 'B4' is negligible when compared with the
sensitivity to the distribution, though the latter is not
very high, either. Curve (w) gives the value for the Wilson
deterministic model (Nw=8.06, for any B4). The curve (12)
corresponds to the family constituted by items of curves (1)
and (2). Curve (12) lays between (1) and (2) as expected.
The latter, which relates to the faster moving item, is
shown to be highly dominant. Normally, the higher the demand
the lower the coefficient of variation. Demands in cases (1)

and (2) are in the ratio of 1:25. The relationships between

'D' and 'De' that have been used, agree with empirical data.

The example above réveals that having an accurate value for
'B4' +to calculate the reorder frequency, is not very
important. The low sensitivity to this parameter indicates
that a common 'B4' for each family may well be satisfactory,
Since this value is chosen having in mind the dominance of
the fast sellers. The problem is then reduced to compute the
reorder frequency for as many single-like items as the

number of families.

4.4.1 Analytical details

The derivations leading to the formulas (4.86) are as

follows. After rearranging (4.85), then
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(2 1/B4(1)*Z(i)/D+ 52/L*B6)* LOT**2- 1/2 = 0  (4.87)

The empirical relationships corresponding to (4.58) are now

written as

Z(i)/D(1i)= AO(i)+A1(1)*P(1)+A2(i)*P(i)**2 (4.889)
Or Z(i) /D= a0(i)+al(i)*P(i)+a2(i)*P(1)**2 (4.89Db)
where ak(i)= Ak(i)*D(i)/D , k= 0,1,2 (4.89c)

Bringing these results into (4.87) with (4.432) in mind we

arrive easily at the equation

C2*LOT**2+ C1*LOT- CO= O (4.91a)
where c2= ) a0(i)/B4(i)+ 52/L*B6 (4.91b)
Ci= 2 al(i) (4.91c)
CO= 1/2- 2 a2(i)*B4(i) (4.91d)

The assumption that 'CO" and 'Ci' are positive will be
maintained on the grounds mentioned in the previous section.
Then, the optimum 'LOT' for the model would be given as

mentioned earlier by

LOT= (-C1+\/C1**2+4*C0*C2 Y / (2*C2) (4.93)
Therefore, we can determine analytically the optimum
aggregate 'LOT' (and, hence, 'N') for the family, assuming

that we know the demand distribution for each item and we

are able to discriminate the 'B4(i)'s.
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When the same 'B4' can be assigned to all the items in the
family, then, from (4.8lg) all items have the same 'B5'.
And, from (4.83a) all have the same 'P'., Equation (4.85),

then, could be rearranged to give

N= 26/L*B4/(V+B5*LOT) (4.952)
and P/2-V= B5*LOT (4.95b)
where V= ) 7(i)/DT (4.95¢)

These expressions are parallel to (4.51)

The aggregate 'Z/D' as a function of 'P' is easy to find in
this case as the 'P(i)'s are the same for all the items. It

follows from (4.89):

7/D= a0+ al*P+ al2*P**2 (4.97a)

where ak= ) ak(i) , k=0,1,2 (4.97b)

We would also find that:

C2= a0/B4+52 /L*B6 (4.99a)

= (a0+B5)/B4 (4.99b)
Cl= a1l (4.9%¢)
CO= 1/2- a2%*B4 (4.994d)
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4.5 Shadow prices for decisions

The preceding sections helped make clearer the relationships
petween the input vector of costs and the output vector of per-
formance attributes. The components of those vectors have been,
basically, holding, shortage and reorder costs, on one hand;
services, stock levels and reorder frequency, on the other.
Different combinations could be chosen. Performance vectors

could include more variables, but only two would be independent.
This means that the model has two degrees of freedom. The user,
however, may like to manipulate three control knobs, for instance,
(FO+xn;F;F2+As) or (B1;B2;B3) which relate to specific cests. The
model converts these parameters into ratios, e.g. B4, BS, B6
defined in (4.59). Note in the latter that each one is a combin-
ation of the other two. They can also be used divectly for

control, but in this case with two knobs only.

The cost vector was initially considered as the input because
this is the conventional way of introducing these models.

However, the decision maker very often has a mpch clearer picture
about the attributes for the performance variables than about
those costs. He might hesitate about writing a figure for 'F'
while being quite positive about a maximum shortage rate of 2%.

The input, in such cases, could be in terms of (V;BZ;B3).

If the decision maker were absolutely sure that input

figures were right, the decision process would terminate
Just there. This is not the common case. More often he is
Mt so certain. He may feel, say, that a shortage rate
highey than 2% 1is quite undesirable. 'V' might work as an
~4.5- -140~
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jnput, then 'Bl' would be the dependent variable, an implied

shortage penalty. The system should enable the input of any
relevant vector of variables and calculate the values .for
the dependent ones. If the 1latter included costs, these
could be used for consistency checks. For instance, suppose
that for 'V=2%', the corresponding 'Bl' would be 3.25: this
would mean each unit short costs 3.25 times the profit per
unit, which is unusually high. So, wunless it relates to an

exceptionally high sensitive item, such a figure might

prompt to reconsider the targets set for 'V'.

The choice of the right trade-off, ultimately, depends on

the 'feelings' or intuition of the decision maker. The
reasons why those ultimate decisions cannot be modeled have
been mentioned earlier. That 'intuition', however, can be
improved by providing consistency checks. Fof example, when
the manager decides to decreasé 'V' from 4 to 2%, does he

realize the cost of it? Is he, really, prepared to pay?

The margin loss 'ML' has been introduced earlier in (4.47).

It measures the relative 1loss of profit. It converts into
the absolute loss after multiplying by the potential annual

profit (a figure which 1is easily reckoned). There is an 'ML'

associated to each performance vector which represents the

'shadow price' for that performance.

Let us assume that the decision maker can rank the

perfomance vectors and that a higher ordinal means 2 higher

breference. Call that ordinal, the ‘'utility' of the
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performance vector. Fig.4.6 depicts the margin loss against
utility. The decision maker is assumed to be consistent, so,
transitive properties apply to those utilities. We are
interested in situations like those represented by 'A' and
'‘B' lying on the so called 'effective frontier'. A point
like 'C' is dominated by 'A' (the same utility with lower
margin loss) and by 'B' (higher utility for the same margin
loss). The effective frontier in fig.4.6 gives the mosit
preferred performance vectors for each maréin loss. »

ML

etficient
fronties

/

=]

MLA

utitity of the
performance

Fig. 4.6 - Margin loss and performance

The consistency assumption imposes that the curve in the
Picture be monotonically increasing. If the manager wants to
move the perfomance from 'A' to 'B', the implied cost of
such 2 move is given by an additional margin 1loss of
'MLB-MLA'. This, multiplied by '52*F1*d' converts into
absolute values. The value of having 'B' .for 'A', therefore,

can be easily checked before making a final decision.

Let us consider a numerical example. Suppose that the demand

and supply characteristics mentioned on the top of fig 4.7
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$40PTIHAL P-N COMEINATIONSS$

LEADR TIHE (WKS) = 4,00

L =
G1 = SO.MEAN/VARIANCE = 4.00
NOTE: LEADI TIME DEM&ND ASSUKED YO RE
GAMMA DISTRIBUTED FOR C1.LE.12
&NI: NORMAL DTHERWISE

Bl = SHORTAGD FEN&LTY RATIO = (2.F1+F3)/F1

B2 = HOLDING RATIO = (F24Ls3/F1 )

EZ = ORDER CHARGE RATIO = (K+Ln)/(hi.L.F1) -

F = STOCKOUT RATE

V = SHORTAGE RATE

oy = YEARS OF STOCK

T = REORDER INTERVAL (UWKS)

N = No. ORDERS FEF YEAR

ML = MARGIN LOSES RATE = E1.V$E2.0utR3.L/T

FARTIAL LOSS, HKL1 = MLR-E1.V

MLD = HMLR-E2.YS
KL3Z = BLR=B3.L/T

E1= E2= BZ= p= Y= o= L/T= N= ML = HL1=  HML2=  HML3=
0.500 0.500 ©0.010 0.09¢ 0.028 0.108 0©.856 11.134 0.076 0.062 0.022 0.068
0.500 0.500 6.030 0.129 0.028 0.119 0.598 7.77¢ 0,092 0.077 0,032 0.074
0.500 ©.500 0.C50 0.156 0.02% 0,328 C.492 6.401 0,103 C.0B9 0.039 6.078
0.500 ©.500 0.070 0.i79 0.029 0.136 0.430 5.590 0,113 0.098 0.045 6.082
0.56C €.500 05¢ 0,199 0.620 0.143 ©.387 5.03¢6 0.121 0.106 0.050 0©.085
¢.500 1.000 0,010 0,155 0.058 ©.089 ©.992 12.897 0.127 0,099 0.029 0.117
6. 500 1.060 0.030 ©.268 0.05% C.0%4 0.741 §.428 0,146 0.117 0.052 0.124
6.500 1.050 0.050 0.244 0.041 0.C9F 0.625 B8.120 0.161 0.121 0.062 0.130
6. 500 1.000 6.070 ©.278 0.042 0.104 0.553 7.187 0.174 0.143 0.070 06.135
0,500 1.000 0.0%0 C.306 G.062 ©.108 0.502 &.8532 0.185 6.153 0.077 0.140
1.000 ©.505 0.010 0.044 €.014 0,123 6,847 11.270 0.084 0.070 0.022 0.075
IThhe T 6.560 0.030 0.064 0.014 C.334 0.805 7.859 0.099 ¢.085 0.032 0.081
1 oo 0.500 0.050 0.077 0.014 0.144 0.497 &.447 0,110 0.C97 0,029 0.086
1,000 0.500 0.C70 0.08% ©0.014 0,152 0.434 5,646 0,120 0.106 0.044 ©.090
1 000 0.50G ©.09C ©.098 0.014 ©.15% 0.391 5.085 0.12% 0.115 0.04% 0.094
1.006 1.006 0£.010 ¢.075 ©.028 ©0.105 1.019 12,2581 0.142 L4115 6.038 0.1322
1,060 1.000 0£.0356 0,101 0,028 (.11l C.7 5,858 0.162 ¢.134 0.051 0.129
1.000 1.000 €.050 . 0.120 6,028 C.11é 0.8 £.703 0.174 0.148 0.0&C 0.145
1.000 31.000 ©.070 ©.1385 0.02¢ 0.121 0.5 2.344 0.3189 0.161 0.088 ©.150
1.000 1.000 G.C50 0,150 0.02% 0.126 0.% &.4671 0.20F 0.172 0.075 ©0.154
1,500 0.506 0.01C 0.025 £.00% ©.131 ©.E70 11,314 0.088 0.074 0.622 0.079
1,506 0.500 0.020 0.042 G.C0S  G.143  0.607 7.B87 0,102 ¢.090 ©.032 ©.0E5
10500 C.500  0.05G G.0%:  0.009 (.12 0.499 6.489 0.115 0.101 0.02% ©£.090
1.500 ©.506 0.070 0.G5% 0.00¢ ©0.161 C.436 5,864 €.124 0.11d 0.024 (.094
1.566 0.560 0.06C ©0.0&5 0.007 ©.148 0.392 5,101 0.133 C.119 ©.04% ©.098
1.500 1.000 ©.03C ©€.050 G.01€ ©.113  1.028 13.346 0.151 0.124 0.027 0,140
iTe0 1.000 0.030 0.047 0.018 0.120 C€.764 9.935 0.170 0.143 0.050 0.147
1,550 1.0006 0.050 ©.0S0 0.0:E 0,125 0.643 €.384 0.185 0.159 0.060 0.153
1,500 1.600 0.070 C.090 ©.0i¢ €.13C 0.589 7.396 0.198 0,170 0.088 ©.158
1566 1.000 0.69¢ 0.09% G.01% G.135 0,517 ¢.717 0.20F 0.182 0.074 0.163

Fig. 4.7 - Control figures
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apply. Each line of the table gives a set of values,

consistent with the allocation criterion of the extended
J-model. Use (B1;B2;B3) as theb input vector. Assume that
point 'A' in fig.4.6 results from the input (1.0;0.5;0.01)
which leads to 'V=0.014', '0U=0.123' and 'N=11.27'. Imagine
that the manager was quite happy with the values of 'V' and
'0U' but 'N' was considered excessive. Then, he adjusted
'B3', the knob for 'N', from 0.01 to 0.09. The new
perfomance vector, hereafter referred to as point 'B', is
'V=0.014', 'OU=0.159' and 'N=5.085'. Note that the other
performance variables may also undergo an adjustment to the
new balance. Assume that those figures are found

‘satisfactory.

The consistency of moving from 'A' to 'B' can be tested in
different ways. First, 'Bi', 'B2' and 'B3' have concrete
meanings and their values should be in line with other
numbers the manager may have in his records. For instance,
if 'F1=50%', the value 'B2=0.5' corresponds to '"F2+As=25%".
This 1last figure shall be enough to cover the current
borrowing interest plus other variable holding costs.
Similar exercises could be done for 'Bl' and 'B3' (the

relevant equations being 4,43).

Another way of looking at the changes is through the margin
loss. When changing from 'A' to 'B', the margin loss rises
from 'MLA=0.084' to 'MLB=0.129', an increase of 4.5% of the
potential profit. If the annual usage value were estimated

in '52%d=%$10,000' and 'F1=50%", the implied cost of
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preferring 'B' to 'A' would be $225. Is that a good value?

The rationale subjacent to these last calculations, however,
is not entirely correct. The increase in 'ML' was also due,
in part, to the increase in '‘B3', the reorder cost
associated to 'N' (see 4.47). The other part was the price
for the readjustments imposed on 'V' and 'OU'. The decrease
in 'N', really, brings a saving in reorder costs. Therefore, -
it is a benefit not a cost. Such a benefit shall be compared
to its counterpart, the costs due to the variation of 'V

and ‘Ut Being so, what matters is the change in

'B1*V+B2%0U' (hereafter denoted by 'ML3') rather than in
'ML'. In the example, 'ML3' varied from 0.075 to 0.094,
i.e., 1.9% of the potential profit that is $95. This is the
net cost of reducing 'N' from 11 to 5, in other words, the
shadow price for that decision. Note that shadow prices are

evaluated at the implied costs.

We can assign a net margin loss to each perfomance variable.
Thus, the effects of changing one attibute on the others can

be easily evaluated. The printout reproduced in fig.4.7

mentions:
for V: ML1l= ML-Bi*V= B2*QU+B3*LOT (4.101a)
for 0U: ML2= ML-B2*0OU= B1*V+B3*LOT (4.101b)
for LOT: ML3= ML-B3*LOT= B1*V+B2*0U (4.101¢)

Many other combinations would be possible.
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The utility of the performance vectors was introduced
earlier as an ordinal. 'ML' in fig.4.6 could be éeen as the
guantification or ‘cardinalization' of that wutility. The
effective frontier, as pictured, would be the wutility
function or the value function for the perfomance vector.
The exercise of ranking perfomance vectors and mapping those
preferences against their 'ML's may help extract the utility

function of the decision maker. In a similar way, ‘ML1',

'ML2' and 'ML3' at their efficient frontiers could be
thought of as the utilities of ‘'V', 'OU' and 'N',

respectively.

Each final choice, on the other side, represents a
subjective trade-off with implied cost parameters, 'B1', 'B2'
and 'B3'. The intangible 'Bl' which so much reflects the
managerial policy, might be empirically evaluated. This
could help towards the structuring of the decision process.
The drawbzck of such an approach is that the results, 1if

any, may lack robustness.
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4.6 Conclusion

The reorder freguency in the J-model is considered as an
exogenous variable to be set on an empirical basis. By doing
so, the interaction of the frequency with the other
performance variables is missed, and.yet, this interaction
may become important for the objectives pursued in the

model.

The reorder freguency consistent with the criteria in the
J-model may be significantly lower thean the freguency that
resulted from adopting the economic order quantity given by
the Wilson formula. According to those criteria, it was

shown that the replenishment period 'T' should be such that

L/T<<1/(2*Dc**2) (4.105)

where 'De' is the coefficient of variation of the lead time

demand and ‘L' the lead time.

The relationship above has been earlier referred to as
(4.57) and holds when the lead time demand can be
approximated by a Gamma distribution with modulus greater oOr
equal to one, so it holds 1in most of the situations,
excluding the very slow movers. In particular, if the lead
time demand follows a negative exponential (modulus=1, hence
De=1Y), then 'T>2*L'. This means that no more than one order

should outstand, no matter the length of the lead time, a
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result that probably would not be evident.

The relationship (4.105) establishes an upper bound for the
overlapping degree 'L/T'. The value that should be used can

be computed in practice from the formula

L/T= (—01+'\ﬁ:1**2+4*co*02 y [ (2%C2) (4.107)

earlier referred to as (4.86) and where 'CO', 'Cl' and 'C2'
depend on the carrying, shortage and reorder costs and on
demand characteristics, as explained in section 4.4. This
formula gives the answer to the initial question about the
reorder fregquency, Since this reletes to 'T' and 'L' is

known .

Having derived in chapter 3 the formulas to deal with
non-captive demand, and having solved in the present chapter
the problem of the reorder {freguency, the mathematical
formulation of the J-model for inventories at one location
has been thoroughly discussed. To complete this stage,
considerations were made about an important procedural
aspect, namely, the ability for checking the consistency of
the decisions. The method proposed is based on what has been
called in section 4.5, the net rargin loss associated with
each of the performance variables. The net margin losses for
the shortage rate 'V', for the stock turn ‘U' or for the
duration of stock '1/U' and for tte o&erlapping degree 'L/T'

are reproduced below from (4.101):
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for V: ML1=B2%(1/U)+B3*(L/T) (4.1092)
for 1/U:  ML2= B1*V+B3*(L/T) (4.109b)

" for L/T: > M13= B1*V+B2*(1/U) (4.109¢)

where 'Bl', 'B2' and 'B3' have been defined in (4.43) as the
shortage, the holding and the ordering costs, respectively,

expressed as fractions of the profits.

The formulas (4.109) make apparent that each performance
variable is associated with a cost, imn this case, 'Bl’
associated with 'V', 'B2' with '1/U' and 'B3' with 'L/T'.
These 'B's can be used as buttons to generate possible
solutions in accordance with the allocation criteria of the
model. If the decision maker wants to change one particular
performance variable, he should then change the value for
the respective 'B'. For instance, if the shortage rate 'V'
has to be decreased, the previous value input for 'B1' shall
now be increased. The decrease in 'V' has a price, the
increase in stocks, and this price will be reflected on the
respective 'ML'. That 1is, the increase of 'ML1' would
reflect the price of decreasing 'V', and 'ML2' and 'ML3'
would do the same in relation to decreases of '1/U' and

'L/T', respectively.

The 'ML's are expressed as a fraction of the annual profit
and so, they are easily converted into a money amount.
Therefore, the price of improving‘the performance can be
calculated, that is, the 'shadow price' of a decision can be

estimated.
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In éonclusion, if the decision maker were absolutely sure of
the values whichrshould be adopted for the shortage, holding
and reorder cost rates, the problem would be confined to
compute 'T' from (4.107) and then to calculate values for
the other performance variables, this leading to the optimal
solution. The decision maker, however, cannot be precise

about those costs, so he has to proceed tentatively, by

comparing different trade-offs for the variables. The method
of the shadow prices can provide an important tool to weigh

up these trade-offs.
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5.1 Framework

The merchants group mentioned earlier is organised in four
distribution areas and each of them comprises one main
warehouse (MWH), their branches or satellites in the region
and the related logistic facilities. These distribution
areas are controlled independently and further integration
is not considered for the time being. The system to be
analysed in this chapter will be shaped from one of these

distribution areas.

Presently, the MWH is considered as a single level inventory
for the purpose of external procurement. A family order is
placed to the supplier when the stock in the MWH reaches an
aggregate reorder level as described in section 4.2. A
delivery from the MWH to a satellite is triggered when the
stock in the latter falls below a replenishment 1level. The
control parameters for each satellite are set on the
assumption of unlimited availability at the MWH, and

satellite allocations are made independently of each other.

The MWH and the satellites are, thus, controlled on an
independent basis. Improvements might be obtained with the
introduction of central control, if replenishments and
allocations were decided and controlled on a system-wide
basis. This will be discussed through the present chapter.
The rules and formulas achieved are consistent with the

criteria in +the Johnston model and thus, the model can be
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extended to 2-level systems..

The external demand appears at the satellite level and
external supplies ehter the system through the MWH. There
are exceptions. Some large customers are supplied directly
from the MWH. These are perfectly identified firms, normally
in the building industry. The marketing intelligence is
often able to know in advance their requirements with
reasonable certainty. When this is the case, the respective
flows of materials can be dealt with quite apart from the
remaining stochastic demand. Even if it were not so, a dummy
satellite, adjacent to the MWH, could be ‘created' for that
trade. Thus, the external demand can be supposed to appear
at the satellites, only. On the other hand, some items are
supplied directly from external sources to the satellites.
In relation to those goods, the branch acts on an
independent basis, therefore, the problem reverts to the one
warehouse case discussed earlier. In conclusion, the flow of
materials to be considered relates only to those items
coming from an external supplier to the MWH and from there

to the branches where the external demand appears.

¥hen an organisation holds several warehouses geographically
dispersed, two initial questions might be whether they
should be operated independently or under central control;
and whether warehouses should be replenished directly from
the external source or from intermadiate depots (i.e. main
warehouses) run by the organisation. The system is termed

"one-level" if the warehouses are supplied directly from
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~ outside; "two-level" if the materials are sent firstly to a
main warehouse and then, from here to the others
(satellites); and in general, "multi-level" if there exists

a hierarchy of warehouses through which the materials flow.

Note that multilevel systems as defined above might not mean
central control: satellites could be considered as customers
and place the orders to the MWH in the same way as to an
external supplier; and the MWH would deal with the orders as
with external demand and would control its own stocks in
order to meet this demand to a convenient degree. A control
like this would mean that the system had been decoupled into
one-level inventories. In the context of this thesis,
multilevel systems imply central control, i.e. control
decisions are made having into account the status of the
entire system. This will become clearer later in this

chapter.

The central control of one-level system means, normally, the
simultaneous replenishment of all the warehouses by placing
a joint order to the supplier. The whole quantity ordered is
allocated to the satellites and shipped to them. At a
further stage, transhipments between warehouses may be
required to keep the stocks in balance. The central control
provides better service to customers than independent
warehouses (for the same total stock investment in the
system), but transhipment and information costs are higher.
The latter may be partially offset by eventual economies to

scale derived from joint procurement and replenishment. An
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analysis of this problem is developed in Shakun (1962).

The 2-level system reduces the need for transhipments by
retaining part of the stock in a MWH. Then, satellites are
fed, basically, when their stocks become low. That means
that the external replenishment quantity, when it arrives,
is not allocated all at once to the satellites; a fraction
remains in the MWH. Thus, on average, each external
replenishment originates more than one internal
replenishment to each' satellite. When the subsequent
allocation is made, compensation, in a part at least, can be
given to the demand distortions experienced by the
satellites. Naturally, the magnitude of such distortions
increases for longer external 1eéd times, as does the
importance of the compensation effect. Therefore, a long

external lead time favours the 2-level option.

Note that, in any case, the external lead time is supposed
to be longer than the internal lead times, otherwise,
retaining stock in the MWH might be useless. As recognised
in Hadley et al (1961), if the external lead time was always
less than the internal 1lead time, satellites would tend to

be supplied from the external source.

The MWH, furthermore, reduces the capacity requirements in
the satellites, as the deliveries are smaller, and gives
opportunity for larger procurements. A convenient location
of the MWH, having in mind the distribution network up and

downstream, may lead to substantial savings in
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transportation and holding costs. This 1is a matter which

will not be detailed here (see Eilon et al, 1971, for basic

approaches to this topic and references).

In a one-level system with joint replenishment, some
criteria are needed to divide new supplies amongst the
distribution outlets. In 2 multilevel system, a similar need
arises each time the satellites are supplied from the common
MWH. The rules to allocate a quantity 'Q' of stock to
warehouses depend on the objectives pursued, on the
distribution policy and zlso on the particularities of the
system. An early study about this allocation is found in
Simpson (1959). Here, emergency transhipments can be
allowed, and the targets are either the minimisation of the
transhipment costs or the minimisation of the shortage
gquantities. Different assumptions and cperating policiés
have been considered by a number of authors as Shakun
(1962), Gross (1963), Hadley (1963), Brown (1967,TM20), and
Barrett (1969,ch6). The models vary from author to author,
so do the conclusions. The most common objectives is,
however, the minimisation of either the number of runout
situations (stockouts) or the shortage guantities for the

whole system. Both cases will be examined here.

Consider first the objective of minimising the stockouts.
Stockouts and transhipments are directly related because the
minimum number of stockouts leads to the minimum number of
transhipments. Transhipments may be weighted by cost rates

and a minimum transhipment cost sought. Assume at the
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allocation time that the warehouses have no stock, then, the

objective can be formulated as follows:
Min (E:W(k)*P(k) , subject to E:Q(k)=Q (5.1)

where 'P(k)'is the probability of stockout in warehouse 'k',
'Q(k)' is the part of 'Q' allocated to warehouse 'k' and
'w(k)' 1is the weight associated with the stockout, for

instance the transhipment cost. Formally,

P(k)=‘j'f(k,x)*dx (5.3)

Qiky

with 'f(k,x)' standing for the p.d.f. for demand 1in
warehouse 'k'. This demand relates to a given period, for
instance, the expected time until the next replenishment of

‘the warehouse.
The Lagrangian equivalent to (6.1) is

Lw(k)*P(k)+ A (L Q(k)-Q) (5-5)
Its minimum is met for:

w(k)*(dP(k)/3Q(k))+A =0 (5.72)
w(k)*£(k,Q(k))= A : (5.7b)

Therefore, the 'Q(k)' shall be such that the left hand side
of (5.7b) is the same for 2all warehouses. If the warehouses

have some remaining stock, 'Yr(k)' say, when the allocation
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is made, 'Yr(k)+Q(k)' substitutes for 'Q(k)' in (5.7b).-
The other common objective is the minimization of the
(weighted) shortage. The allocation rule is then to equate

the (weighted) stockout probability. Formally,
Min (-Zw(k)*Z(k) ) , subject to ZQ(k)=Q - (5.9)

where 'Z', as usual, stands for the shortage quantity. The

result would be an allocation such that
w(k)*P(k)= constant (5.11)

The weight 'w(k)' may stand for the shortage cost rate in
each warehouse 'k'. That rate, earlier, has been denoted by

'F(k)' (only 1 item is being considered). Then
F(k)*P(k)= constant (5.13)

This allocation rule 1is the one which agrees with the
criteria in J-model: getting the lowest shortage penalty for
each level of investment. We will return to this point in

section 5.3.

The allocation is only one of the decisions to be made in
controlling the multilevel inventory. Others relate to: the
mechanism that triggers the allocations; the stock balance
between the MWH and the satellites; and the external

replenishment control for the whole system. The integration
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of these problems have been the subject of many studies.
Literature surveys can be found in Scarf (1965), Veinott
(1966), Clark (1972) and Hollier (1976). They comprehend
long lists of references and detailed comments whose
repetition, here, would be redundant. More recent published
work on the topic did not attempt new ways. Most authors
have followed a dynamic approach, i.e., consider a
éuccession of periods of time with decisions being made at
the beginning of each period. The objective, normally, is
the minimum expected discounted cost through the multiperiod

horizon.

Dynamic models are of two different types. One of them,
pioneered by Clark et al (1960 and 1962) uses dynamic
programming. Exact optimum solutions have been found only
for the series structure (one receiver for each supplier).
Upper and lower cost limits can be determined, however, for
arborescent structures. The other type of model uses the soO
called dynamic process analysis. It ‘was introduced by
Veinott (19655, and extended by Bessler et al (1966) and
Ignall et al (1969). The analysis considers a non-stationary
stochastic process over N periods. Further, the conditions
which make the optimum a myopic policy (where the horizon
for the decision is only one period) were identified. When
such conditions apply, the formulation can be simplified

considerably.

The main difficulty with the dynamic approach is its

analytical complexity and the consequent computational
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purden. Such a drawback is magnified when the model is
intended for decisions based on "what-if"‘ aznalysis.
Furthermore, those models work on a periodic review
procedure and are not prepared to deal with multi-item
situations. Simulation models ‘by-pass those mathematical
difficulties and shortcomings and may constitute in the
future a real alternative to the mathematical approach.
Relevant work in this area was developed by Cran (1966),
Connors (1972) and Aggraval et al (1975). These models are
essentially concerned with replenishment and allocation
rules based on parameters whose best value is chosen
empirically. It must be remembered that the parameters are

optimum for the simulation model which may or may not

represent the real world well.

Recalling the formulation of the criterion for capital
investment and the way as J-model 1is used within the
decision process, we realise that the ability to predict the
service levels for each 1level of investment in stock is
essential. None of the current multi-level inventory models
gives or 1is directed to give tractable expressions to
estimate those services. Therefore, they do not help to

extend the Johnston approach.

To conclude this section, a special reference should be made
to the control procedures proposed by Cran (1966) =and by
Brown (1967, TM27). Both deal, specifically, with a 2-level
System comprising a MWH and several satellites. Brown's

basic rules are as follows:
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(i) The MWH replenishments are based on the

aggregate demand forecasts for the whole system.

(ii) For the allocation purpose, stocks are broken
down into: working stocks, corresponding to the expected.
demand; and the safety stocks. Working stocks are allocated
to satellites as soon as received from the external

supplier. Safety stocks are retained centrally.

(iii) Each satellite has a 'warning level’ enough to
cover, with some safety margin, the expected demand during
the time for internal delivery. When such a level is reached
at any one satellite, the remaining stock is allocated to
all] satellites but the only shipment is to that ome in risk

of stockout.

(iv) The record of the inventory situation at all
locations is kept up-to-date. Replenishment orders for the
main warehouse are raised when the aggregate stock on hand
reaches a reorder point which has Dbeen calculated on the

basis of the aggregate demand forecasts.

Cran's proposal is basically the same, except in relation
to (ii), the allocation rule. ¥hen a new allocation is
required, the '"stock time", 1i.e., the time to deplete the
Stock existent in the system, is estimated from the system

demand characteristics. The allocation is, then, given by
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the expression

O
I\

d*T-A*s (5.14)

where:
d= satellite demand rate
T= mean stock time
s= standard deviation for the satellite demand
in the stock time
A= hold back factor, a constant whose best value

is found by simulation

The azbove rules are simple and easy to implement. They are
the opposite to the dynamic models, highly sophisticated and
difficult to use. The model which will be presented in the
next sections possesses some of the that pragmatism.
However, it is more elaborated and, furthermore, 1is

consistent with the basic criteria in J~model.
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5.2 Perspectives for the approach.

Distribution is the main activity in a merchandising
company. That involves, basically, physical transportation
and stocking. Warehouses are the nodes of the distfibution
network. The design of such a network, the location of the
warehouses, the logistic means wused, all affect the lower
bounds for transportation and stock costs and impose
restrictions on perfomances. The stock and transportation
procedures interfere with each other. Therefore, a stock
policy which ignores the other partners of the distribution

complex is liable to be sub-optimal.

An integrated distribution analysis might involve: (i) the
number and location of the warehouses, hierarchy and
capacities; (ii) the means of delivery, delivery routes and
delivery journeys; (iii) the items in the inventory for each
warehouse; (iv) and the replenishment policies. These
aspects are not independent, but, decoupling the system into
subsystems to be worked separately is normally the only way

to achieve practical results.

Another reason favours the split of the 'system. It is the
quite different inertia of the variables involved. Decisions
in relation to service levels may produce results in a few
weeks; the reorganisation of the transports may take months;
and, modifying warehouses location, their capacity or number

is a matter for years. Therefore, those decisions have very
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distinct time horizons. A stock policy usually needs to be
flexible because it has to respond quickly‘ to small
fluctuations in the environment. Such fluctuations are not

to be followed by immediate changes in the logistic means.

The analysis which will be . developed here rests on the
assumption that the distribution network will not undergo
structural changes: the number, location and capacity of the
warehouses; and the delivery means and routes will be kept
the same through the horizon of analysis. Furthermore, slow
moving items will not be considered for the reasons given in
section 1.2; and in respect to the others, the current
inventory lists for the satellites are supposed to be fixed.
Thus, the following analysis will not intervene to modify
the logistic means or the inventory bill of materials.
Rather, it will poncentrate exclusively on the replenishment
policy. This reflects the short term character of the

approach.

The replenishment policies contemplate both the external and
internal replenishments. By external replenishment is meant
the supply from external sources to the system. External
orders are raised on a family basis when a system-wide
reorder level is reached. For this purpose, a central data
base is kept up to date with ‘the stock levels at all

locations. External supplies are received at the MWH.

Internal replenishments are those from the MWH to the

satellites. This is the only direction for the internal flow
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of materials allowed in the analysis. Transhipments among
satellites and returns to the MWH are supposed no% to be a
regular flow. They will exist in practice as a result of
spot decisions but, by assumption, they are not frequent
- and, more important, not planned for. Internal
replenishments are decided individually for each item.
Buying families, in the terms considered for external
supplies, have no interest internally since the MWH is the

common supplier.

There are lead times associated with external and internal
replenishments. As mentioned earlier, external 1lead times
are supposed to be much longer than the internal ones. A
comment should be made in relation to the external lead time
for 2 multilevel system. The period elapsed between the
replenishment process being triggered and the product being
available at the MWH is the external supplier lead time. It
is necessary, however, to add an extra period of time for
that product to become available also a2t the satellite. This
extra period is the internal lead time. The external lead
time for a satellite, therefore, is the external supplier

lead time plus the internal lead time.

Two aspects should be noted in relation to the internal
replenishments. The first is that, once the stock 1is in
possession of the company, the capital is tied up. Capital
cost is the same no matter where the stock is located.
Therefore, ignoring small differences which may occur in

maintenance and handling, the holding costs are the same for
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MWH and for satellites, provided that space is available. It
is +true that a MWH is normally located on cheapér land than
the satellites. However, capacities and locations are longer
term decisions, therefore, the 1land price is a fixed cost
from the present perspective and does not take part in the
model. Then, as the holding costs are the same in any place
of the system, there is no advantage in having the

satellites half empty while the MWH is full.

The second aspect is a consequence of the first. If space is
available in the satellites and stock is abundant in the
MWH, savings in picking and transportation costs can be
obtained if 1larger quantities are supplied each time.
Similar reasons may justify the practice of ‘'route
deliveries': when an item is required for a satellite, a
joint shipment can be sent to others in the same delivery
route. This practice may reduce the picking effort at the
MWH, but tend to increase the number of shipments received
at each warehouse, so the actual advantages have to be
assessed locally. Both individual and group deliveries can

be dealt with by the model to be introduced.

After these initial comments we can concentrate on the main
problem which is the allocation policy ‘that should rule the
internal replenishments. In other words, when a fresh
external supply arrives, a decision is needed about how much
to retain in the MKH and how much to ship to the branches.

There are two reasons for retaining stock in the MWH. One is
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the capacity available in the satellites; the other is
providing a better service to customers. Whenever the system
stock is split into various locations there will be a risk
of having a stockout in one location while others have
excess. This imbalance could be corrected at the expense of
transhipments. When these are not allowed the overall
service becomes poorer. Therefore, quantities allocated
should be small enough to give a relatively high chance of
being consumed before ‘the system is supplied again. This
point will be discussed in section 5.3. For the time being
it is enough to realise that, as we Dprogress through the
external replenishment cycle, the guantities allocated shall
become smaller to keep a constant risk of stock excess. This
agrees with common sense in that when the MWH is full, the
allocation can be generous, whilst rationing is likely to

take place towards the end of the cycle.

If satellite <capacity restrictions are binding, maximum
internal shipments need to be fixed for each satellite. For
this purpose, the capacity might be partitioned by the items
in the inventory, for instance, on a pro rata basis to
demand-volume rate. Such limits may affect the number of
internal replenishments, but not to a significant degree the
service to customers. Capacity restrictions may prevail
after a fresh replenishment, when there is plenty of stock
in the system. The risk of excess is more important at the
end of the cycle. This makes the successive allocations
become increasingly smaller, as it will be seen in section

5.3. A limit is set, in practice, to avoid the sending of
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too small quantities. This 1imit will take the form of a.
‘clearing level' for the MWH. Whenever a new aYlocation is
required and the stock in the MWH is equal or lower than the

clearing level, then all the remaining stock is dispatched.

stock
on hand
max_ollocotion
——I——:. R : R 1,2: intermediate cycle
. : ©3: tingl .-
sotellite
\ recrder level
HWH .
transit :
| : cleoaring levej
\I
system

Fig. 5.1 - Types of replenishment cycles

As yet, the mechanism that triggers the internal
replenishment has not been mentioned. It is presumed that
there is a reorder level for each satellite. The expected
shortages in the intermediate internal cycles will depend on
these reorder 1levels. Intermediate cyclés, as shown in

fig.5.1, are those during which stock still remains in the
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pipeline, i.e., in the MWH or in transit to the satellite.
The final internal cycle (withih an external cyclé) is the
one during which that pipeline becomes exhausted. The
shortages will be called intermediate and final, within the

given cycles.

The mathematical analysis of the internal reorder ievels and
intermediate sho;tages, consistent with the global model,
will be presented in section 5.7. Meanwhile, it ﬁill be
assumed that internal reorder levels are set empirically to
give a reasonable low intermediate shortage, so they are
exogenous to the model. Therefore, the final shortages are
the oniy ones that are at the present stage included in the

model and subjected to ‘'optimization’'.

The characteristics of the system to be examined in this

chapter can be summarized as follows:

(i) The distribution system is looked at on a short
term basis. The whole distribution network will remain
constant, as will, the inventory l1ist of items. The only
variables are those relating to the stock replenishment

policies.

(ii) The system, for analysis purposes, comprises
one MWH and its satellites. A storage capacity is allocated
to each item at each satellite. There 1is no capacity

constraint for the MWH.
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(iii) The 1inventory is controlled centrally, the
knowledge of the actual stock levels at any time and
location is implied. In practice, this assumption éan be
applied to situations in which stocks are updated at short

intervals where extrapolation is accurate enough.

(iv) Internal replenishments are tackled separately
for each item. Flows of materials are from the M¥H to the
satellites and from these to the outside system. No

transhipments or returns are considered.

(v) The holding costs for an item are the same,

regardless of the storage location.

(vi) Picking, handling and transportation cost rates
decrease as internal Treplenishments are made 1in larger

gquantities.

(vii) Internal lead times are small compared with
the external cycle. Internal reorder levels are set
exogenously. In consequence, intermediate shortages are

ignored by the model.

(viii) Internal deliveries are' restricted to the
capacity allocated to the item in each satellite and to a
maximum risk of stock excess. Minimum deliveries for each
satellite and a clearing level for the MWH are fixed on a

practical basis.
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5.3 Criterion to successive allocations (1 sa%ellite)

The first approach to the allocation problem has been
mentioned in section 5.1. It involves two décisions. The
partition of quantity 'Q' shall be such as to give to all
catellites the same weighted probability of stockout till
the time the next replenishment is expected. This rule,
stated earlier in (5.13), solves only part of the allocation
problem. The other part concerns the decision about the size
of the quantity 'Q'. That is, when a new internal delivery
is required what portion of the stock available in the MWH

shall be sent out and what portion shall be retained.

Empirical rules for the quantity of stock "held back'" have
been mentioned earlier in section 5.1, namely those proposed
by Brown and by Cran. Those proposals have intuitive appeal,
however, they lack a solid rationale. The rationale which
will be adopted in this thesis, stems from the notion of
stock excess introduced in the previous section. The larger
the quantity allocated and the later the allocation takes
place in the external cycle, the higher the risk of stock
excess. This risk should rule the successive allocations

along the extermal cycle, as will be seen later.

Picking, handling and transportation costs are assumed to
decrease if the quantities allocated each time are made
greater. Therefore, the gquantities allocated should be as

large as possible, given the risk of stock excess the
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manager 1s prepared to take. That means that successive
allocations shall have the same meximum risk of stock
excess. Other constraints, such as the stock availability or

the capacity may superimpose themselves, but this does not

invalidate the argument.

Note, mnow, that the expected risk of stock excess can be
measured by the probability of the stock (just after the
allocation) exceeding the demand (from that moment until the
end of fhe external cycle). This probability is, in turn,
the complement to one of the probability of that stock being
depleted during the same period. Thus, the rule above is
equivalent to:

"guccessive allocations shall have

the same probability of depletion"
This last ennunciation is more convenient for the analytical
treatment which follows. Note that the probability of
stockout is the probability of depletion of the whole stock
available; yet, the probability of depletion may relate to

any quantity and so, they are distinguished here.

The remainder of this section will tackle mathematically the
problem of successive allocations by considering a system
with the MWH and one satellite. Admittedly, such a structure
would raise no allocation problems, but it is used here to
introduce the next section where structures with any number

of satellites will be analysed.

Denote, then, by 'x' the external demand over the external
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lead time, 'R' the system reorder 1level for the external
replenishments and 'R1' the satellite reorder level for the
internzal replenishments. The system stock on hand is
retained at the MWH except for the quantities shipped out to
the satellite each time the 1latter reaches 'R1'. For the
time being, 'R1' is assumed to be zero. We want to calculate
the allocations 'Q(1)', ...,'Q(t)', ...,'Q(n)', so that they
have the same probability of depletion 'p'. The time moments
when those allocations take place are 'tm(i)', ees, 'tm(t)’',

vee, 'tm(n)’.

fix}

Fig. 5.2 - Probability associated with

the successive allocations

Let's start the analysis when the system reaches its reorder
level 'R' and a new order is raised. That is, when a new
external lead time Dbegins. That momen£ is referred to as
'tm(1)'. Assume that the satellite has no stock on hand.
That being so, an internal allocation is required. Denoting

the quantity involved by 'Q(1)', then, according to the
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criterion, 'Q(1)' should have the probability 'p' of being

depleted. Thus,

pr( x>Q(1) )=p (5.15)

Now, consider some time later in the cycle, say 'tm(t).
Denote by 'Xd(t)', as in <fig.5.2, the quantity so far
depleted since the beginning of the current lead time
period, i.e. since 'tm(1)', and assume that a new allocation
is going to be made. This new allocation, 'Q(t)', shall be
such that it has the probability 'p' of being depleted in
the current period, having in mind that 'Xd(t)' has been
used already. The new allocation involves the following

conditional probability:

pr( x> Xd(t)+Q(t)| x>Xd(t) )=p (5.17)

This is equivalent to

P(t)/Pd(t)=Dp (5.19a)
where, X(t)= Xd(t)+Q(t) (5.18b)
P(t)= pr( x>X(t) ) (5.19c¢)
Pd(t)= pr( x >Xd(t) ) (5.194)

The allocations ruled by expressions (5.19) decrease guickly
and, eventually, they may become too small for delivery
purposes. Usually, there is some limit imposed on the
minimum delivery quantity. That limit fixes the size of the
last allocation and therefore the depletion probability
associated with it. As the depletion probability should be
the same for all the allocations, 'p' should be set from

that last delivery. That is
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p= P(n)/Pd(n) (5.21)

The allocation conditions, in a real system, are normally
slightly different from those described above. First, there
is an internal reorder level, 'R1' say, which triggers the
allocations. When the stock in the satellite falls to 'R1',
a new allocation is made, provided +that the MFH is not
empty. This allocation is calculated by (5.19), but (5.19b)

should now read

X(t)= Xd(t)+R1+Q(t) (5.23)
in order to take into account the quantity 'R1', the stock

existing in the satellite.

Second, only the present allocation 't' 1is considered,
rather than the whole series. 'Xd(t)' can be computed from
the current stock on hand 'Yh(t)'. If 'Yh(t)' is greater
than 'R', no order is outstanding. In such a case, we take
for the calculations 'Xd(t)=0'. If 'Yh(t)' is less than 'R',
there is an order outstanding, at least. Consider the order
that will arrive next and the respective lead time vector.
The quantity depleted since the beginning of that lead time

is 'R-Yh(t)'. Thus
Xd(t)= M[R-Yh(t)] (5.24)
where 'M(x)' means the maximum between zero and 'x'.
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‘The minimum delivery can be fixed in several ways. Here, it
will be assumed that the management sets a 'clearing level'
based on practical considerations. When a new allocation is
required and the stock is below that clearing level, all the

stock is delivered. If the clearing level is fixed at some
value 'x', say, then the 1last delivery can vary from that
value to zero and will be, on average, about 'x/2'. For
convenience, the clearing level will be written as '2*%Y0f"

so that 'YOf' represents the average quantity in the last

delivery, i.e.
Q(n)= YOf (5.25)

The final allocation, in prospect, involves the quantities

X(n)= R (5.27a)

Xd(n)= R-R1-YOf (5.27b)
from which we could have 'P(n)‘', 'Pd(n)' and hence

p= P(n)/Pd(n) (5.29)

The procedure for a new allocation 't' would be as follows:

Xd(t)= M{R-Yh(t)] (5.31a)
From Xd(t), the current depletion, find

Pd(t) according to (5.194d)
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P(t)= p*Pd(t) ' ' (5.31b)
From P(t) find X(t) according (5.19c)

Q(t)= X(t)-Xd(t)-R1 (56.31c)

Obviously, 'Q(t)' may have to be restricted further by the

satellite capacities or the MWH availability.

The following example will help clarify what has been said.
Suppose a MWH with 1 satellite whose external demand in the
external 1lead time is normally distributed with mean
'D=1000"'and standard deviation 'Ds=200'. Let the reorder
levels be 'R=1400' and 'R1=150', for the system and for the
satellite, respectively. The clearing level is '100' and

hence 'YOf=50"'.

The attributes of the final partition can be calculated from
(5.27) as
X(n)= R= 1400
Xd(n)= R-R1-YO0f= 1400-150-50= 1200
The corresponding standard Normal values are
(1400-1000)/200= 2.0 ; and
(1200-1000)/200= 1.0 , respectively.
Hence, the depletion probabilities from (5.19c,d) are
P(n)= 0.02275; Pd(n)= 0.1587

Then, from (5.29), p= P(n)/Pd(n)= 0.143

Now, suppose that the stock 1in the satellite is at the

reorder level and that there are 1300 units in the MWH.
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Hence, 'Yh(t)=1300+150=1450"' --which . is greater than 'R’'.
Then, from (5.31a), Xd(t)=0'. It follows from‘expressions
(5.31):

Pd(t)=1.0, because Xd(t)=0

P(t)= p*Pd(t)= 0.143. The coresponding standard
Normal value is x~1.065, then

X(t)= 1.065*%200+1000= 1213

Q(t)= X(t)-Xd(t)-Rl= 1213-0-150= 1063

Consider, now, a later stage in which the stock on hand is
'Yh(t)=500' split into 350 in the MWH and 150 in the
satellite. Then, from (5.31):

Xd(t)= R-Yh(t)= 1400-500= 900.
The associated depletion probability is Pd(t)=0{8085.

P(t)= p*Pd(t)= 0.143%0.8085= 0.1156.
The corresponding standard Normal value is x~1.2, then

X(t)= 1.2*200+1000= 1240

Q(t)= X(t)-%d(t)-R1l= 1240-900-150= 190

5.3.1 Analytical details

Consider again the successive allocations ruled by (5.19).
Under the circumstances there assumed and with the
convention 'X(0)=0", we have 'Xd(t)=X(t-1)"' and

'Pd(t)=P(t-1)'. It follows then:
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P(0)= 1 . , (5.332)

P(1)= p*P(0)= p (5.33b)
P(2)= p*P(l)= p**2 (5.33c)
P(n)= ... = p**np (5.334)

This gives 'n' simultaneous equations involving the ‘n+2°

unknowns: 'Q(1)', ...,'Q(n)','p', and 'n'. Furthermore
X(n)= E:Q(t)= R, t=1,...,n (5.35)

which makes 'n+l' equations, one less than the number of

unknowns.

Hzin{yp) h=in(i/p)

-

Fig. 5.3 - Allocations with constant depletion probability

Fig.5.3 gives a graphical method to solve the above

equations. 'H(x)' is the log-transform of the probability
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function for the external lead time demand. The equations
(5.21) are equivalent to determine on 'H(x)' poihts spaced
of 'h', where 'h=ln(1l/p)'. Their projection on the x-axis

gives the 'X(.)'s. Then, the 'Q(.)'s can be computed as
Q(t)=X(t+1)-X(t) (5.37)

As there is one more variable than equations, we can try to
fix one of them. The diagram (a), in the figure, would give
the solution when 'n' is preset. The procedure is straight
forward. 'H(R)' can be computed and, then, we make
'h=H(R)/n'; The ceiling 'X(t)' is obtained by inversion of
'"H(t*h)'. The diagram (b) relates to a situation where 'p'
has been fixed. The value of 'h' is immediately calculated
from 'p'. The procedure follows by marking on ‘'H(x)' the
points at the levels 'h', '2*h', etc., and inverting the
function. The value of 'X(4)', on purpose, has been
represented beyond 'R’. It means that the 1last allocation
would be smaller (or larger) than it should. 'X(n)' cannot
be made equal to 'R' for that ‘p', i.e., the choice of 'p'

is restricted. This, however, has no relevant practical

consegquences.

When the lead time demand is gamma (modulus greater than 1)
or normal distributed, 'H(x)' has a shape as in the figure.
The slashed straight line in the diagrams correspond to the
'H(x)' for a negative exponential lead time demand. The
'Q(.)'s, in this case, would be egual. However, the negative

exponential is unlikely to fit the lead time demand of a
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fast mover. Within the range of interest, successive
allocations decrease sfeadily. They decrease sharply, at
first, so very small quantities are reached rapidly. Good
sense dictates a minimum quantity, earlier referred to as
the clearing level. This clearing level ties up the size of

the last allocation &nd, therefore, the values for 'p' and

'h'. Denote by 'YfO' the final allocation quantity. Then,

Q(n)= Y£O (5.392a)
X(n-1)= R-YfO (5.39b)
h= H( R )- H( X(n-1) ) (5.39¢)
p= Exp(-h) (5.394)

This value of 'p' can be used as the depletion probability

for all the allocations.
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5.4 Combined criteria for internal allocation

The preceding section considered the successive allocations
to one satellite alone. This unreal situation was used to
make the method of approach and the terminology clearer. The
true allocation problen, however, arises only for
multi-satellite situations. Recall that a new allocation is
made whenever a satellite reaches its reorder point. The
quantities allocated depend on the status of the whole
system. This implies that the calculations are made as if
guantities were allocated to all the satellites. Whether
such quantities are sent to 211 of them, to & group oOr only
to the satellite which has triggered the process, is a
matter of distribution convenience. Thus, a simultaneous
allocation is required each time, and simultaneous

allocations are ruled by (5.13).

Note that the consequehces of a new allocation may depend

also on the recent history of the system. More precisely,
they may depend on the depletion which has already taken
place in the current lead time. Therefore, the probabilities
in (5.13) shall be read as conditional probabilities. These
latter have been denoted by 'p': say ‘p(k,t)', to stand for
satellite 'k' at time moment 'tm(t)'. Sucessive allocations,
however, shall have equal depletion probabilities. That 1is,
we can write 'p(k)' for 'p(k,t)', as these probabilities do
not depend on 't'. The allocation criterion in (5.153)

becomes, then
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F(k)*p(k)= constant (5.47)

Having the 'p(k)'s, a new allocation can be calculated

easily. The steps involved are as follows:

From Xd(k,t) find Pd(k,t)

P(k,t)= Pd(k,t)*p(k) (5.49a)
From P(k,t) find X(k,t)

Q(k,t)= X(k,t)-Xd(k,t)-¥(k,t) (5.49b)

%:Q(k,t)~2 YO(t) , k=1,2,...,K (5.49¢)

These expressions correspond to those referred to as (5.31)
in the preceding section. 'Y(k,t)' is the current nominal
stock (i.e., on hand plus on order) in satellite 'k'.
'Y(k,t)=R(k)' for the satellite that triggered the
allocation, but is not necessarily so for the others.
'YO(t)' is the current stock available vin the. MWH.
Obviously, it constitutes an upper bound to the sum of the
quantities delivered, hence the relationship (5.49c). If
'YO(t)' is exceeded in the first allocation attempt, the
'X(k,t)'s should be recalculated. Reducing the 'X(k,t)'s
proportionally until (5.49c) is met is likely to be accurate

enough.

The value 'Xd(k,t)' can be picked from the data sales for
each satellite. Or, more conveniently, it can be roughly
estimated from the sales for the whole system, in proportion
to the demand rate. In this case, recalling (5.318), we

would have
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Xd(t)= M{R-Yh(t)] (5.51a)
Then, Xd(k,t)= Xd(t)*d(k)/d ' (5.51b)

where 'd', and 'd(k)' are the demand rates for the system
and for the satellite, respectively, and 'M{x]' is the

maximum between zero and 'x’'.

The 'p(k)'s can be found from expressions (5.27) and (5.29)
in relation to the finai allocation. The process may involve
many iterations if a precise result is required. However,
the computational load is significantly reduced when the
satellites can be considered 'twin'.

The satellites are said to be 'twin' if

the shortage penalties 'F(k)'s and

the coefficients of variation 'Dc’

are constant for all satellites
One procedure to calculate the 'p(k)'s for a situation with

twin satellites and Normal demand is presented in subsection

5.4.1. Another will be discussed in section 5.5.

5.4.1 Analytical details

The calculation of the 'p(k)'s by applying to the finzl

allocation the general criterion formalized in expression
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(5.47), presents some computational difficulties.

When the final allocation takes place, the stocks in
satellites are expected to be close to their reorder levels

and the MWH to be about the average clearing level 'YOf'. Imn

prospect,
Yhi= Y0f+§:R(k) (5.532)
Xd(n)= R-Yhf (5.53b)
Xd(k,n)= Xd(n)*d(k)/d (5.53¢)

Now, 'Yhf', the stock on hand in the Whole system, has to be
shared by all satellites. Denote by 'Yhf(k)' the share for
the satellite 'k'. It is taken that 'Yhf(k)' is greater than
'R(k)'. The strict application of the criterion to the final
allocation would involve the following set of simultaneous

equations extended to all the satellites:

2 Yhf (k)= Ynf (5.552)
X(k,n)=Xd(k,n)+Yhf(k) (5.55b)

Find Pd(k,n) from Xd(k,n)

" P(k,n) " X(k,n)
p(k)= P(k,n)/Pd(k,n) (5.55¢)
F(k)*p(k)= constant (5.554)

k=1,2,.:.K
The solution of this set would have to be found iteratively.
This might not be an easy task, but eventually, would

determine the 'Yhf(k)'s and 'p(k)'s.
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A considerable simplification is introduced with the
assumptions of Normal distributed demand and twin
gatellites. The normality for demand seems reasonable for
most of the cases since we are, nov, especially interested
in long lead times and fast moving items. The 'twinning'
simplification implies that the satellites are balanced in
terms of throughput and commercial importance. Analytically,
if 'F(k)' is constant, the cost of one unit short is fhe
same in all the satellites. Then, from (5.55¢), 'p(k)' is
constant. The other assumption, the constancy of the
coefficient of variance implies that allocations are made in

proportion to demand rates. This point is shown next.

A constant coefficient of variance is expressed as
s(k)/D(k)= Dc= constant ’ (5.57)

where 's' and 'D' are the standard deviation and the mean of

the lead time demand. W¥ith Normal demand distribution, the

depleted quantity 'Xd(k,n)' relates to a standard value

xd(k,n)= (Xd(k,n)-D(k))/s(k) (5.59a)
= (Xd(n)/D-1)/Dc (5.59Db)
As 'xd(k,n)' does not depend on tk', +the same happens 1o

'Pd(k,n)'. Then, it follows from (5.55) that 'P(k,n)’ and
'x(k,n)' are also independent of 'k'. We would arrive easily

at
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X(k,n)= R*d(k)/d (‘5.61a)
x(k,n)= (R/D-1)/Dc (5.61b)

'P(k,n)' and 'P(n)' are found from. ‘x(k,n)' and 'x(n)’.

Thence, 'p' can be computed.

The assumption of +twin satellites may look unrealistic
particularly in view of the many npon-linear variance laws
which operate. For example, one form relates the variance

and the mean as
Dv= a*(D**b) (5.63)
where 'a' and 'b' are constants. Johnston (1980) mentions

that values for 'b' were found rather constant, actually

'b~1.5'. In this case,

Dc & (1/D)**0.25

ADc/De= -0.25%(AD/D)

That is, the coefficient of variation increases when the
demand increases but in a proportion about 4 times 1lower.
The 'twin' assumption leads to compute a ‘p' lower than it
should be if the satellites are different. Recall that 'p',
as computed from the last allocation shall be the minimum
depletion probability (maximum risk of stock excess) to be
considered for the intermediate allocations. Therefore, to

be on the safe side, 'p' should be taken a bit higher than
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the value calculated under the twin assumption.

[y

Note that 'Pd(k,n)' =and 'P(k,n)' as determined from
expressions (5.55) are only approximations. Those formulas
assume a given 'Xd(k,n)' which has been calculated from
(5.53). Actually, the 'expected value' has been taken for
the value of the ‘stochastic variable Xd(k,n)'. The
distribution of 'Xd(k,n) given Xd(n)' should be considered
for an exact evaluation of 'p(k)'. This, however, is not

easy.

An slternative procedure stems from the obvious relationship

P=Pd(n)*p (5.65)

where 'P' is the system stockout rate and 'Pd(n)' is the
probability of clearing out the MWH in a cycle (i.e. of
'Xd(n)' being depleted). 'Pd(n)' can be evaluated easily,
known the demand distribution. 'P' can be estimated through
the depletion time distribution, a new approach that will be

introduced in the next section.
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5.5 Depletion time

The service to customers 1is estimated, usually, from the
ljead time demand distribution defined by the density
function 'f(x)'. This has been élso the procedure followed

so far to compute 'P' and 'Z'. We recall the expressions

P= ff(x)*dx (5.702)
R

Z= j’(R-x)*f(x)*dx (5.70b)
R

Another way to compute the services is based on the
depletion time. This approach is more convenient in relation
to multilevel inventory systems, as it will be seen later in

this chapter.

In inventories operated on a reorder level, 'R' is the
amount of stock available when a new order is raised.
Consider the depletion time 't' as the time to completely
deplete that quantity 'R'. A stockout will occur when '‘R' is
depleted before the arrival of the related order, i.é., when
't' 4is lower than the lead time ','. Formally, it can be

written as:

L
p= fq(t)*dt (5.712)

0

where 'q(t)' stands for the distribution density of the time

to deplete 'R’
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Similarly, the expected time out of stock can be computed as
i
Zt= j'(L—t)*q(t)*dt (5.71b)
0

Then, if 'd' is the demand rate, the expected shortage is

given by
Z= Zt*d (5.722)
= d*j’(L-t)*q(t)*dt (5.72b)
0

Note now that from (5.70) we can derive the result met

before
8Z/0R= -P (5.73a)
Similarly, from (5.71)

37t /3L= P (5.73b)

Thus, 23Z/3R= -3Zt/3L (5.73¢)

That is, the marginal effect on the shortage quantity of an
increase on the reorder level is the same as the marginal

effect on the shortage time of a decrease on the lead time.

The shortage rate 'V' could be computed from 'Z' in the
usual way. Or, directly from '7¢+' and the average period 'T!

as
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V= Zt/T (5.74)

The density function ‘gq(t)' can be estimated empirically
from recorded data. Or, on some occasions, derived from the
demand distribution 'f(x)'.‘ Burgin (1969)  gives some
formulas to calculate the mean and the variance when the
demand is Normal, and the mean when it is Gamma distributed.
Furthermore, if the demand follows a Poisson distribution,
the time to deplete 'R' is Gamma distributed with modulus

'R'. In this case, the mean and the variance would be

tm= R/d (5.752)
tv= tm/g ' (5.75b)
where g= (d/ds)**2 ; 'd' and 'ds' are the mean and the

standard deviation of the demand per unit of time.

Further discussion about these points can be found in
subsection 5.4.1. There, it will be also argued that the
expressions (5.75) are likely to constitute sensible
approximations for the first two moments of the depletion
time distribution when demands are Gamma or Normal
distributed. 1In that case, they would cover the demand
situations which have Dbeen especially contemplated along

this study.
Depletion time distributions tend to the Normal when 'R’
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tends to infinity. If demand were Poisson, the depletion

time would be Gamma. If demand were Gamma, the depletion
time relates to a Poisson. Eoth Gamma and Poisson
distributions can be approximated well by a Normal if the
modulus or the mean, respectively, is high enough. This last
condition is usualy met in the lead time demand
distributions of a 2-level inventory system because the lead
time (external) is long. Further details are given in the
subsection 5.4.1. The point to be stressed here is that
formulas (5.75) and the Normal distribution may provide

approximations for a large range of demand situations.

Note, now, the 'additivity' of the depletion times. If the
amount 'R' is split into 'R1' and 'R2', the times to deplete
'R1' and to deplete 'R2' (say 'tl' and 't2' respectively)
are independent variables. Therefore, we can expect that
't=t1+t2', the time to deplete 'R=R1+R2' has mean and
variance equal to the sum of the means and the variances,
respectively, of 'tl1' and '$+2'., This is consistent with

expressions (5.75).

The additivity property Jjust mentioned applies straight to
the 2-level system with 'K' satellites. Let 'Xd(n)=R-Yhf' be
the quantity depleted in the system up to the final
partition. The corresponding depletion time, according to

the formulas (5.75) would have

mean= (R-Yhf)/d

variance= (R-Yhf)/(d*g)
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At the final allocation, 'Yhf' would be split into the

'Yhf(k)'s. The additional depletion time would have

mean= Yhf(k)/d(k)

variance= Yhf(k)/(d(k)*g(k))

Therefore, the mean and the variance for the total depletion

time would be

tm(k)= R/d-Yhf/d+Yhf (k)/d(k) (5.772)

tv(k)= R/(d*g)-Yhf/(d*g)+Yhf/(d(k)*g(k)) (5.77b)

The problem is again to fix the 'Yhf(k)'s such that the
criterion of equal weighted probability of depletion is
maintained. A precise solution would involve many
jterations. Under the assumption of twin satellites,
'Yhf(k)' is proportiornal to 'd(k)'. Then, those formulas

simplify to give

tm= R/d (5.79a)

tv tm/g+(g/g(k)-1)*th/(d*g) (5.72b)

The evaluation of the service rates could be done according
to formulas (5.71) and (5.72). The normal approximation can
be used as it will be discussed in subsection 5.5.1. In this
case, the value for the standard normal variable would be

taken as
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7= (Lm-tm)/s (5.812)

[y

where 'Lm' is the mean lead time, 'tm' the mean depletion

time as from (5.79). The standard deviation 's' is such that
s**¥2= tv+lLv (5.81b)

'Lv' is the lead time variance. The values for ‘p', 'Z' and

'V' would then follow.

The above results can also be used to determine the

conditional probability ‘pf, i.e. the parameter for

intermediate allocations. The expression (5.29) in section

5.3 can be written

p= P/Pd(n) (5.83a)

where Pd(n)=-/;(x)*dx (5.83b)
Xdiny

Xd(n)= R-Yht (5.83¢c)

'P' is the average stockout rate for the system and 1s

calculated from (5.81). The density 'f(x)' relates to the
system lead time demand. This procedure to compute ‘p' is

simpler than the one considered in subsection 5.4.1.
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5.5.1 Analytical details.

The stockout rate and the expected time out of stock given

by the expressions

p= fq(t)*dt (5.85a)

0

Zt=‘[ (L-t)*qg(t)*dt (5.85b)
o

assume that the 1lead time 'I,' is constant. With variable

lead times they should be replaced by

p= fh(L)*fq(t)*dt*dL (5.872)
rw L
Zt=J' h(L)*| (L-t)*q(t)*dt*dL (5.87b)

where 'h(L)' stands for the lead time density function.

The complexity brought about by ~a variable lead time can be
eliminated by considering the time gap 'yv=L-t'. Denote by
'f(v)' the time gap density function. Then 'Pt' and 'Zt'

could also be calculated from

P=ff(y)*dy : (5.89a)
Zt=fy*f.(y)*dy (5.89b)
]

Note that 'y' may vary from minus to plus infinity.
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The estimate of 'f(y)' can be done empirically from the
actual time gaps recorded. Alternatively, it can be derived
from the depletion time and lead time distributions.
Assuming that depletion times and lead times are
independent, we can estimate the mean and the variance of

the time gap as

ym= Lm=-tm (5.91a)

yv= Lv+tv (5.91b)

Later in this section, reasons are given to expect 'L' and
'R' to be high in the multilevel inventories we are dealing
with, so that 'g(t)' and 'h(L)' are likely to be close to
Normal densities. Then, 'f(y)' is likely to be also fit by

the Normal.

Note that if 'q(t)' is Normal, the evaluation of ‘'P' and
'7¢' in (5.71) would involve the computation of the standard

value
£= (L-tm)/s (5.92)

If 'f(y)' is Normal, the evaluation through (5.89) would

require the standard value

7 = ym/s (5.932)

= (Lm-tm) /s (5.93b)
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The standard deviation 1in (5.92) relates to the depletion
time distribution while in (5.93 ) it relates to the time
gap distribution. The latter expression reduces to  the
former when the lead time is constant. Therefore, the
depletion time and the time gap approaches are basically the
same if we take for the variance in both cases the depletion

time variance plus the lead time variance.

The characterisatibn of the depletion time can Dbe
approximated, and sometimes exactly derived, from the demand
distribution. In Burgin (1969) and Comments (1970), the
following results are derived. Consider the demand per unit
of time and 1let 'd', 'dv' be its mean and variance,

respectively, and 'g=(d**2)/dv'. Then,

(i) When the demand is Gamma distributed, the mean
time to deplete a quantity 'R' is given by

tm= R/d+(1+1/g)/2 (5.95)

(ii) When demand is Normal, the time to deplete 'R’
has for mean and variance, respectively

tm= R/d+1/(2*g) (5.97a)

tv= (tm+3/(4*g)) /g (5.97b)

A comment should be made in relatién to these results.
Burgin considered the depletion time as a discrete variable,
rounded up. For instance, the depletion time is taken as 1
day if the whole quantity is sold in the first day, whether

if in the morning or in the afternoon. In consequence, the
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evaluation of the ‘continuous' depletion time becomes
overestimated when the expressions above are useé. The error
may become significant when 'R' is split into gquantities
'R1', 'R2', ..., 'Rn'. Then the expected time to deplete
'R1', plus 'R2', plus...'Rn' should remain the same as the
time to deplete 'R'. The use of Burgin's expressions would
inflate the results. For instance, for a Gamma distributed
demand, the expected time to deplete 'R' would be given by
(5.95). However, the sum of the expected times to deplete

'R1', 'R2',..., 'Rn' would be

R/d+n*(1+1/g)/2

i.e., the last term comes multiplied by 'n'. Obviously, such

a result lacks coherence.

For the analysis of multilevel inventories the depletion of
'R' has to be considered in stages. Burgin's formulas will

be simplified to:

tm= R/d (5.992)

tv= tm/g (5.99b)

This eliminates the inconsistency mentioned above. The
legitimacy of above simplification requires to be
investigated. Multilevel systems are associated to long lead
times. This makes 'R' relatively high. On the other hand,
slow movers are excluded from the analysis, and for a fast

mover, '1/g' is 1likely to be much lower than 'R/d’.
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Therefore, in the area of our interest, differences from
(5.99) to the Burgin's formulas are not dramatic. The
expressions (5.99), actually, are the exact formulas 1if
demand were Poisson with a rate 'd'. In fact, it is known
that Poisson and Gamma distributions relate to each other.
Such a relationship can be introduced as follows. Assume
that the Poisson variable relates to "failures" which take
place with a rate 'a'. The distribution of the interval per
failure (i.e. the interval between 2 consecutive failures)
is a negative exponential with mean '1/a' and variance
'1/a**2', The distribution of the interval over 'G' failures
is Gamma with modulus 'G', mean 'G/a' and variance 'G/a**2"'.
Therefore, if demand is Poisson with rate 'd', the time per
unit demanded (i.e., per ‘'"failure') has mean '1/d' and
variance '1/d*¥*2'. The time per 'R' units demanded is Gamma

distributed with mean 'tm=R/d' and variance 'tv=R/d**2=t/g"’.

Let's consider, now, a Gamma distributed demand. Let 'd’,
'g' and 'a=g/d' be the mean, the modulus and the scale
factor, respectively, for the distribution of the demand per
unit of time. The 1lead demand follows, "then, a Gamma
distribution with modulus 'G=L*g', mean 'D=L.*d' and the same
scale factor 'a'. Without loss of generality, take the 'day’
as the current time unit; so, the demand rate is 'd' units
per day, the lead time is 'L’ days, etc; Denote by 'sut' a
standard unit of time, such that 'l sut = 1/g day'. And
consider 'x' a variable representing the integer number of
'suts' spent to sell each additional unit of product; i.e.

'x'" is the number of 'suts' per unit demanded. Assume that
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'x' follows a Poisson distribution with a rate ta=g/d’'.
Then, the demand per sut is a negative exponentiél with mean
'd/g'. And the demand over 'G suts' follows a Gamma
distribution with modulus 'G' and mean '‘G*d/g=D'. The latter
is the lead time demand distribution initially considered.

Therefore, 'x! is the Poisson distributed variable

associated to the Gamma distributed demand.

The variable 'x' represents the integer number of suts that
elapse per unit demanded. It is Poisson distributed with
mean ‘a=g/d'. Hence, the variable 'X' representing the
integer number of suts that elapse per 'R' units demanded is
a Poisson with mean and variance 'm=g*R/d'. Now, if 't’
represents the time in days that corresponds to 'X' in suts,

then 't=X/g'. Therefore, the mean and the variance would be,

respectively:
tm= m/g= R/d
tv= m/(g**2)= tm/g

This agrees with (5.989).

Note that 't' is Poisson distributed only for ‘'g=1'.
However, for long lead times and fast moving items, 'm' is
high enough to legitimate the Normal approximztion for the
'X' distributed variable. Consequently, 't=X/g' ~can Dbe

approximated by the Normal, too.

Note also that X! is an integer, therefore, it
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underestimates the actual time. The -error, however, should

be less than 1 sut.

In order to clarify this last approach, consider a lead time
demand Gamma distributed with modulus 'G=30'. Denote the
reorder level by 'R', the standard deviation for the lead
time demand by 's' and the ratio 'R/s' by 'u'. Make 'u=6.0".

From the tables in Burgin et al (1976), we can read:

7Z/D= 3.67% (L/D in the tables)

P= 28.52% (F " " " )

The approach by the associated Poisson would take the

following steps:

E (X)= m= a*R= u*¥G= 32.863
Lead time = L days= (L*g) suts = G suts
P= pr(X<G)= 1-pr(X>=G)= 28.86%
Zt= m*pr(X=G)-G*pr(X= (G+1))-(m-G)
= 32.863%0.7114-30%0.6481-2.863= 1.07 suts
7 /D= Zt/L= Zt(in suts)/G= 1.07/30= 3.57%
So, the values for 'P' and 'Z/D' agree with those found

before.

The rate 'm' in the Poisson distribution is high enough to

be approximated by the Normzal. By doing so, we would get

vo= (30-32.863)/Y32.863= -0.4994

P~ 31%
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7Zt= 0.198*y32.863 suts= 1.135 suts

7 /D= 1.135/30= 3.78%

These results are comparable with those just found above

The expressions (5.99) are theorétically exact for Poisson
distributed demands and look to be reasonable approximations
over the range of the Gamma family. The latter, as it is
known, tends asymptotically to the Normal. Those formulas,
therefore, apply over a spectrum of distributions large
enough to fit the majority of the demands patterns of items

in stock.
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5.6 Extension to the Johnston model

The maximisation of the profit in J-model, as seen before,

involves the solution of the following two simultaneous

equations:
dFZ(i,3)/0R(1,J)= -1/N(3)*(F2(3)+As) (5.1052)
N(j)*>*2= 26*d(j)*(F2(j)+ks)/(FZ(j)+F0(j)+Xn) (5.105b)

The indices refer to the item 'i' of the family 'j'. The
above expressions can be extended to the 2-level inventories
if the shortage and the shortage penalty are understood as

follows:

7(i,5)= LZ(i,3,%) (5.111a)
FZ(i,3)= L F(i,3,K)*2(i,3,k) (5.111b)

where 'k', as usual, stands for the satellite.

The exact evaluation of the 1l.h.s. of the equation (5.105a)
is not an easy matter if we want to contemplate systems with
satellites having rather different demand structures and
commercial strategies. Because of such a difficulty, the
analysis will be restricted to structures of twin
satellites. The main results are presented below. Further

analytical details can be found in the subsection 5.6.1.
For twin satellites the 'F(i,j,k)'s are constant in 'k',
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'F(i,j,k)=F(i,j)' say. In comnseguence, the allocation policy

[y

leads to '"P(i,J,k)=P(i,j)', i.e., the same shortage for each

item (i,j), Bo matter which satellite. Under these

circumstances
JFZ(i,3)/OR(1,3)= -F(1,3)*P(1,3) (5.113)
Applying the last result to eguation (5.105a), it follows
P(i,3)= 1/N(3)*(F2(3)+As)/F(1,3) (5.115)

which is the eguation found for the single level inventory.

The other equation, (5.105b), remains unchanged.

The decision seguence cabh fdllow steps parallel to those in
the single level case. Chapter 4 gives the way to choose a
convenient value for 'N(j)' in the single level case. Those
formulas apply also to the multilevel case. The value of

'N(j)' can so be computed.

The egquation (5.115) generates 2 balanced set of 'P(i,j)'s.
The depletion time approach and the approximation of the
depletion time distribution through the Normal would lead to

the values for 'R(i,j)'. The steps could be

From P(i,j), compute the standard value 'U !
From '7)' compute 'R(i,j)'. This can be done by means

of expressions (5.131) in the subsection 5.6.1
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Once the set of 'R(i,j)'s has been calculated for all the
jtems, the procedures are exactly the same as for the single

case.

5.6.1 Analytical details

The main problem with the evaluation of the l.h.s. of the
equation (5.105a), that is ' ®FZ/dR' (the subscripts 'i,J’
are implied), results from the difficulty of finding a
simple mathematical expression to give the marginal effect
of 'R' on the final partition to the satellites. In other
words, if 'R' is increased by one unit, how would this fact
change the quantities 'YHf(k)' in expressions (5.77) of

section 5.57

If we are dealing with twin satellites, the ;Yhf(k)‘s remain
the same for a constant global 'Yhf', whatever the value of
'R'. Furthermore, as the shortage penalties 'F(k)' are the
equal to all the satellites, so 1is the expected shortage
rate 'P(k)'. Then, 'p=P(k)' can be taken as the expected
average stockout rate for the system. Note that when the
twin assumption does not apply, tﬁe 'P(k)'s should be
different from one satellite to another, so, the concept of

system stockout rate becomes less clear.
For twin satellites, whenever some quantity is split, say
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‘R' into 'R1+R2+...', we have

JZ (k) /OR(k)= -P(k)= -P (5.121a)
As =2 2(k) (5.121b)
then 3Z/dR= Z (QZ(k)/OR(k))*(OR(K)/IR) (5.121c)
= -P*() OR(k)/OR (5.121d)

Therefore
dZ/OR= -P ' ' (5.121e)

because R= E:R(k)

The last relationship (5.121e), obviously, holds in two
extremes: when 'R', the reorder level is split altogether
into 'R1','R2',..., and sent to the satellites which, from
then on, are run separately; and when the whole stock is
kept common until being completely used. This last case 1is,
actually, equivalent to have only one outlet with several

counters.

The situations that are Dbeing considered here are located
between these two extremes, therefore the expression
(5.121e) should hold too. Anyway, equations (5.71) in

section 5.5 apply to each satellite as follows:

L

P(k)=fq(t)*dt (5.1232)
L
7t (k)= I(L-t)*q(t)*dt (5.123b)
[o]
Then, ©2t(k)/dL= P(k) (5.123c)
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Since 'P(k)=P', and as 'QZ/dR=-3Zt/3L' from (5.73), then the

relationship 'd%Z/3R' holds in general.

This result 1leads to equation (5.115) seen before. The
latter generates a value for 'P' which, in turn, dictates
the value for the reorder level 'R'. The depletion time

approach can be used for the purpose of calculating the 'R’

in relation to a given 'P'. The whole procedure is detailed

below.

With the depletion time normally distributed, we can find
the value for the standard variable that corresponds to the
given 'P'. Denote Dby 7' that value. Recalling, now, the

expressions (5.79) in section 5.5:

M= (L-t)/s (5.1252)
s**2= tv+Lv (5.125b)
t= R/d (5.125¢)
tv= t/g+(g/g(k)-1)*Yhf/(d*g) (5.125d)

Now, denote

Cl/U2=1/(2*g) (5.127a)

02/n2=(8/g(k)-1)*Yh{/(d*g)+Lv (5.127b)
By rearranging the set of equations (5.125) we obtain
t**2-2% (L+C1)*t+(L**2-C2)= 0 (5.129)
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Then .

t= L+C1+C3 (5.131a)
Where C3= \f(Cl**2)+z*L*01+cz (5.131b)
Finally, R=d*t (5.131¢)
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5.7 Determining the internal reorder and clearing levels

The internal reorder levels 'R(k)'s and the average clearing
guantity 'Y0f' have been considered to be set empirically.
' They add up to give the 'Yhf'. So, +the latter has been a
variable exogenous to the model. The results in (5.79) show
that 'Yhf' increases the variance, and therefore, brings a
penalty for the average investment in stock. The relative
magnitude of this penalty increases with the number of
satellites. With 1 satellite, ‘g/g(k)=1', so the penalty is
zero as expected. For 9 satellites the increment in the
depletion time variance can be as large as 'gx*Yhf/(d*g)'
whieh is 1likely to represent more than 50% of the whole
variénce. The size of this effect illustrates the
convenience of making the 'R(k)'s and the 'Ybf‘ endogenous

variables.

The inclusion of such variables in the model requires that
some sort of cost or profit rates are found for each of
them. Though, fixing a charge in relation to 'YOf' may be
more difficult and less tangible than fixing a value for
'vyof', directly. 1In respect to 'R(k)', we know that it
governs the intermediate shortages. Shértage penalties have
been - considgred already in relation to the final shortages
and can be extended to the intermediate ones.'Intermediate
shortages, however, are likely to produce 1less damage. In
fact, expediting 1is much easier, quicker and cheaper, sO,

the probable effect on sales and on ‘'good will' is much
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weaker than in relation to the final shortages. Yet,

intermediate shortages may occur more frequently.

The treatment given to the intermediate shortages depends
largely on the attitude of the decision maker. He may have

practical reasons to decide, for instance, that
PI= c*P (5.135)

j.e. the intermediate probability of stockout is taken as a

fraction of the system stockout rate. When penalties for the

intermediate shortages can be estimated, the ‘'optimum PI"
can be found by following the basic approach in the J-model.
This will be discussed in subsection 5.7.1. The calculation
of a precise value for 'PI' would in§01ve one Oor more
jterations. To avoid =2 significant increase on the
computational burden jt is suggested that 'PI' should be

set, roughly, as 1in (5.135). Occasionally, a 'PI' coherent
with the current 'P' should be calculated in order to check
the value that 1is being used for 'e' in (5.135). The
computations required for such 2 checking are quite simple.

An example is given in subsection 5.7.1.

So far, it has been assumed that the iﬁternal reorder level
remains the same through all the internal cycles. However,
it does not need to be sO. There is plenty of stock in the
MWH after an external supply, soO, the risk of an

intermediate shortage gives Do pay-off. This is shown in



fig.5.4. The advantage to the final shortages of having low
'R(k)'s only appears in relation to the last partition.
Therefore, we can operate with two internal reorder levels.
A safe level, say 'R(k,1)' for the first internal cycles,
and a lower one, say 'R(k,n)' for the end, when the system

stock becomes scarce.

Yh,
[
10¢
sctellite k
—_——— P‘k'1
i
N 1 - —— Rh”
) N —
i
i
YO | i

MWH

clegring
level

Fig. 5.4 - Operating on 2 reorder levels

The rule to change from 'R(k,1)' to 'R(k,n)' appears to be
guite obvious. The 'R(k,n)' holds only when the MWH is at or
below its clearing level, i.e., in the cycle which precedes
the last partition. 'R(k,1)' stands for the others. The

figure exemplifies this procedure. Reallocations are
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triggered by 'R(k,l)' up to ‘'tm(n-1)'. ¥hen theA'R(k,l)' is
reached next, the MWH 1is below the clearing level. The
allocation is, then, postponed until the level 'R(k,n)'.
Note that the final shortage ijs not affected by this
procedure. Conversely, the iﬁtermediate shortage can be
reduced drastically. 1In practical terms, this shortage

becomes negligible in all but the last intermediate period.

5.7.1 Analytical details

The intermediate shortage can be treated analytically on the

same grounds used for the final shortage. For this purpose
some sort of shortage penalty needs to be assumed. Let us
take that the intermediate shortage penalty 1is set in
proportion to the penalty for the final shortage. Writing
'F1I' for the intermediate shortage penalty, such a
relationship could take the form '"FI=bO*F'. The latter will
be adopted here, after multiplying by 'n', the number of
intermediate cycles in each external one. Then, we get for

each item
n*FI= BO*F ‘ (5.139)

These parameters can be included in the basic model. The

general expression for the profit would become
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TT= 52%F1#*d-N*(FZ+BO*FZ1)-F2*S-N*FO (5.141a)
where Fz= 2 2 L F(i,3,kK)*Z(1,3,k) (5.141b)

FZI= 9 0 0 F(i,3j,k)*2I(i,3,k) (5.141b)

We take,‘as usual, the partial derivatives of the Lagrangian
and equate them to =zero. %ithout loss of generality, let
'YOf' be kept as an exogenous variable. Denote by 'RI' the
sum of all 'R(k)'s. The decision variables can be chosen as
'R' and 'RI'. 'N' is not being considered, now. The rule to
break down the 'RI' into the 'R(k)'s follows the criterion

of equal weighted probability of stockout.

We have

R= Xd(n)+YOf+RI (5.143)
From the approximation in (3.75)

¥S/3R= 1 ‘ (5.145a)
If 'R' remains constant

2S/éRI= 0 (5.145b)
From (5.121e)

OFZ /dR= ~F*P (5.147)

¥e need to find, next, the partial derivative, 'OFZ/ORI'.

This will be attempted below for the twin satellite
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.

situation with normally distributed depletion times.

[y

Note first that, as 'R’ is kept constant, we conclude from

(5.79) in section (5.5) that

3tm/dRI= O ‘ (5.151a)

3tv/dRI= (1/g(k)-1/g)/d (5.151b)

Furthermore, from (5.81)

¥n/ds= /s (5.1532)

ds/dtv= 1/(2*s) (5.153b)
As F(k)=F

FZ=F*Z (5.155a)

=F*d*Zt ' (5.155b)

And if 'é'is the shortage for the standard Normal

distribution for therstandardized value ‘n', then

Zt= s*C (5.157)
Note 3¢ /on=P (5.159)
Then 87t/ds = +s*((/0M*(ON/ds) (5.161a)
=(, -1*P | : (5.161b)
Now
dFZ/3RI= Frd* (32t /ds)*(3s/3tv)*(3tVv/3RI) (5.163a)
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=F*a* (L -Y*P)/(2*s)*(1/g(k)-1/g)/d (5.163b)

=F*((G-T*P)/(2*8))*(1/g(k)-1/8) (5.163c)
Denote by

A0= 1/g(k)-1/g (5.1652)

Ax= (G -Y*P)/(2%s) (5.165b)
Then

OFZ /ORI= F*AO*Ax (5.165¢)

The partial derivatives of 'FZI' are also required. Obvously

3FZI/3R= O (5.167a)

And, reasoning as for deriving the expressions (5.121),

3FZI/3RI= -F*PI (5.167b)

The optimalty conditions, finally, can be established. By

equating to zero the partial derivatives of (5.14la) we get:

From & /d3R(i,3)=0 : -N*(-F*P)-(F2+As)=0 (5.169za)
and hence p= (F2+As)/F . (5.169D)
From d /ORI(i,j)=0 : =-N*(F*A0*Ax-BO*F*PI1)=0 (5.171a)
and hence PI=(A0/BO)*Ax (5.171Db)

Note from (5.165) that 'AO0~(K-1)/g' 1if demands for the 'K’



satellites are close to each other because, if demands had
the same distribution, 'g(k)=g/K. VWhen 'K=1': 'A0=0"' and
1p1=0'. The value of 'Ax' interacts with the value of 'P'
and of 'PI' itself, therefore, finding a precise figure for
'Ax' requires the use of jterative methods. The example

below will make it clearer.

Consider a system with 'K=5' identical satellites each with
daily demand Gamma distributed with 'd(k)=10' and 'g(k)=0.35.
The external and internal lead times are 'LE=25' and 'LI=5",
both deterministic. The external reorder ratio is 'R/D=1.2"
and the internal is 'R1/DI=2.5'. The average clearing

quantity is 'Y0f=100"

Then:

system daily demand d=K*d (k)=50
g=K*g(k)=2.5

total lead time L=LE+LI=30

system lead time demand D=L*d=1500

externél reorder level R=R/D*D=1800

internal lead time demand DI (k)=LI*d(k)=50

internal reorder level RI(k)=RI/DI*DI(k)=125

final partition Yhf=K*RI (k)+Y0f=125

From (5.79), section 5.5

|

tm= R/d= 36

tm/g+(K-1)*Yhf/(d*g)= 37.6= 6.13%*2

tv

-5.7.1- -216-



From (5.81) and admitting the normal approximation
s= 6.13 '
Y} =(30-36)/6.13= -0.98

Then P= 0.16
L= 0.08

From (5.165)

AO

(1/0.5)-(1/2.5)= 1.6
Ax= (0.09+0.98%0.16)/(2%6.13)= 0.02

Finally, from (5.171)

BO*PI= 1.6*0.02= 0.03

The expected intermediate stockout for the internal reorder
level ratio indicated above ijs 'PI=0.02', for a Gamma
distribution. If we take 'B0=1' in the last result, the

value set for 'RI' is about right.

The expression (5.171b) does not give, directly, a value for
'‘PI because both 'PI' and 'Ax' depend on ‘RI'. An
approximate solution would have to be found iteratively.
However, a rough estimate of the magnitude of '‘PI' is easy
to obtain from the current figures for 'P' and 'Yhf'. That
magnitude can then be compared with the value which is being

adopted for 'PI'.
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5.8 Simulation checks

Formulas to compute stockout and shortage rates, 'P' and
'V, in a 2-level inventory system have been derived in
section 5.5. Those derivations involved three sorts of
approximations necessary to overcome analytical

difficulties.

The first sort relates 10 the depletion time distribution.
Considering that we are dealing with fast moving items and
that a multilevel system implies relatively long lead times
for the external supplies, it has been assumed that the
Normal distribution would fit that depletion time with
reasonable accuracy. Furthermore, that the mean and the
variance for the depletion time could be calculated through

the formulas derived for a Poisson distributed demand.

The second sort of approximations Wwas introduced when
mal-distributions of stock among the satellites were
ignored. It was assumed that the last partition takes place
when the stoék in the MWH is at the level 'YOf'. This is an
estimate of the real value which, actually, can vary from
zero to '2*YO0f'. Furthermore, when the last partition takes
place, there.is one satellite at its reorder level, but the
others are likely to be above theirs. However, for
analytical purposes, all of them have been considered at the
respective reorder levels:! 8o, the last partition actually

takes place earlier in the cycle than the analysis
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considers.

The last partition is supposed to equalise the probability
of stockout for all the satellites. However, this may be
impossible if some of the satellites are overstocked,
because transhipments are not allowed. Furthermore,
practical reasons often prevent the sharing to be made

exactly as theoretically it should be, which adds new

distortions.

The effects of these two sorts of approximations will be
seen below for two cases of demand situations, by comparing
the expectations from the formulas with the values obtained

from simulation runs. The third sort of approximations

relates to the assumption of twin satellites which was used
to simplify the analysis. The use of the expressions soO
derived, when the satellites have distinct demands, is
another source of errors. This, however, will mnot be

investigated here.

The Poisson distribution has the variance equal to the mean
whilst demands of fast moving items, usually, have the
variance greater than the mean. Then, one can expect the
variance of the depletion time to be greater than that givén
by the simplified formulg in (5.75b) 'Which is exact for
Poisson demand, only. Hence, one can also expect the values
of 'P' and 'V' computed on that basis to be lower than the
actual ones. Furthermore, the approximation of the depletion

time distribution by the Normal is another source of
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distortion.

The mal-distributions mentioned in relation to the second
sort of approximations cause again an under-estimate of the
shortages. It has been shownv in section 5.1 that shortages
would be minimised if satellites kept equal probability of

‘stockout. If such condition 1is not verified at the last

partition, actual shortages are greater than the analytical

expectation.

£

45

* Srhaded ares ~ S5U configence interval in
eim.tztipn after IC rezlitations.

Fig. 5.5 - Simulation check, g=0.5

In order to get a feeling about the magnitude of these
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errors, the analytical predictions were checked by
simulation, under two demand situationsﬁ ;g=0.5' and
'g=1,0', where 'g' is the modulus of the Gamma distribution
which has been assumed for the daily demand at each
satellite. The system comprises 1 MWH and 5 equal satellites
whose daily demand rate is 10 units for each. Other details

are given in section 5.8.1.

<l

ac

prediction

| " : RN L3318
v L it ti. 178.1.2760

Ehaded eres ™~ Sl tTnYiCECE interval 1
gimulaticn after 10 revilicataons.

precichorn

IS

Fig. 5.6 - Simulation check, g=1.0

Figs. 5.5 and 5.6 depiect the results of simulation in

comparison with the predictions, at different reorder levels
'R/D'. The 3 marks, star, triangle and dot, are the values

for 3 of the seeds used to generate the demand streams. The
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simulation values are plotted against the 'equivalent R/D',

not the value of 'R/D' that was set for the simulation. - The
'equivalent R/D' relates to the actual mean and variance of
the stream, as it will be explained in section 5.8.1. The
dashed line represents the predictions. The solid lines
relate to the limit situations. The upper line, '"no stock at
MWH" corresponds to the situation of all the stock being
allocated and delivered to the satellites at once, when the
procurement arrives at the system. The lower line, "all
stock at MWH", relates to having the whole system demand

concentrated on one outlet.

The graphs show that the simulation results are reagonably
close to the prediction line, particularly in the region of
‘high service levels. Inventory policies for fast moving
_items, usually, adopt stockout rates 'P' lower than 15% In
this range, differences from simulated to analytical results
look small; and, definitély, the dashed line constitutes a
better estimate than either of the two boundaries given by

"no/all" stock at the MWH.

5.8.1 Further details

The simulation values plotted on figs. 5.5 and 5.6 were
obtained for an inventory sysiem comprising 1 MWH and 5

satellites with equal distributed demand. Other
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characteristics are mentioned in the printout of fig. 5.7.
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ALL 10.02 1J4.18 0.50
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Fig. 5.7 - Simulation printout

The daily demand was set at 10 units a day for each
satellite and assumed to be Gamma distributed. Two cases
were considered for the satellite -daily demand modulus:
'g=0.5' and 'g=1.0'. The system daily demand is then Gamma
distributed with 'mean=50' and 'modulus=5*g'.

There is no overlapping. The ratio 'D/Q' was set as 0.8,
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where 'D' is the lead time mean demand and 'Q' the reorder

quantity.

The external feorder level ratio 'RO/D' was set at 1.1, 1.2,
and 1.3. As the orders do not overlap, the notional and
physical reorder “levels, 'RO' and 'R respectively,
coincide. Lower values for 'RO/D' have not been considered
for they are outside of the range of interest and,
furthermore, the Normal approximation becomes Vvery poor,

there.

The lead times were fixed in 25 and 5 days for the external
supplies and for the internal replenishments, respectively.

The system external lead is then their sum: '.=30".

The final lump delivery was set as 'YOf=100', i.e., 2 days
of system demand. The clearing level is taken as twice that

quantity.

The internal reorder ratio was set at 2.5 times the standard
deviation of the satellite demand during the internal lead

time.

Capacity constraints have been considered for the

satellites. Each delivery 'Q' for : the satellite cannot
exceed 1.5 times the final allocation. The final allocation

is the internal reorder level plus 1/5 of 'YOf'.

The loss factor was set at 'g=0'. This means that demand
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during the stockouts is entirely backlogged.

The simulation runs lasted 5000 days. An initial period of
200 days was allowed to stabilise the system, before
recording the perfomance variables. Three seeds, 13, 531 and

5531 were used.

Service expectations were computed based on the depletion
time approach formulas in (5.79). The limit cases mentioned
relate to the expectations for the "no stock at MWH" and

1311 stock at MWH" situations.

The perfomance parameters recorded along the simulation give
the number of intermediate and extérnal (final) cycles for
each satellite; and the intermediate and final cycles
stockouts and shortages. Intermediate and final cycles and
services have been defined in section 5.2, fig 5.1. The

average stocks are also computed.

The stream seed mentioned above originates a set of seeds,
one for each satellite, {from which demand streams are
generated. A check 1is made on the characteristics of the
demand streams to see how they conform with values as set

for the daily demand mean and modulus.

The difference from the set to the actual demand
characteristics causes a distortion between the expected

values and the simulation results insofar as the former are
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derived from the set demand and the latter from the -actual
stream. In order to eliminate such a distortion, the results
of simulation were plotted on figs. 5.5 and 5.6 against the

'equivalent R/D'.

The 'equivalent R/D' is the value which, with the demand
parameters as set, would give the same expected services as
the ‘'set R/D' with the actual demand parameters. Denote by
'ro' the 'R/D' as set and by 'r' +the equivalent ratio.
Denote by 'Do' and 'Go' the mean and the modulus for the

lead time demand as set; and by 'D' and 'G' the

corresponding values out cof the simulation stream. If we
accept the Normal approximation for the demand
distributions, an equivalent service would be obtained in
both cases if the standard Normal variable had the same
value. The standard Normal value for 'ro' with the actual

demand parameters is

x= (ro*Do-D)/s (5.1752)

= (ro*Do/D-1)*/G (5.175b)

The standard Normal value for the equivalent 'r' with the

demand parameters as set is

x= (r*Do-Do)/so ' (5.177a)

= (r—1)*JE§ (5.177b)
Hence

r= (ro*Do/D-l)*JE7ES +1 (5.179)
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5.9 Conclusion

The goal set up for this chapter has been the extension of
the Johnston approach to inventory situations with two
hierarchical levels. Earlier work on this area is not only
difficult to implement but also it is based on assumptions
which do not fit the rationale followed in the preceding
chapters. These facts prevented the J-model from being
extended to the 2-level systéms by using results already

established.

The complexity of the multilevel systems makes their
analytical treatment extremely heavy unless one works on a
moael tailored for a specific situation. This has been the
way followed here: the system was modelled having in mind
the Organisation which had already provided the framework

for the analysis carried out along the previous chapters.

In the case referred to, system replenishments come to the
warehouse and external demand appears at the satellites. The

Johnston model is used for the main warehouse whose control

is independent and ignores ‘the actual stocks in the
remaining system: an aggregate reorder level is fixed for
the main warehouse based on the system demand and aiming at
a high level of service. Each satellite, in turnm, is
controlled independently, actually on a (r,R,T) control,

i.e., the cyclical reorder level.
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The system for analysis was restricted to the inventory
domain only, freezing deliberately all othe; decisions
concerning physical distribution. The inventory system  was
decoupled from the wider distribution system, primarily, for
sake of simplicity; but also on the grounds that inventory
control, essentially, involves decisions for short periods
while the management of the other areas of the distribution

system, as number and location of depots, transportation

facilities, etc. has a more distant horizon.

The system modelled comprises one main warehouse and its
satellites, all controlled centrally. The flows of materials
are from the external source to the main warehouse, from
here to the satellites and, finally, to the external
customers. No transhipments or returns are considered.
Holding cost rates are assumed to be the same for the main
warehouse and for the satellites. Therefore, the
justification for retaining stock 1in the main wérebouse is,
first, to provide a better global service to customers for
the same investment in stock; and, second, to store product
that exceeds the capacity in satellites. Other assumptions

and more details were given at the end of section 5.2.

Major decisions in the control of multilevel systems relate
to the allocation quantities. That is, if stock exists in
the main warehouse and a shipment is required for a
satellite, how much should be sent and how much should be
retained. The allocafion should take into account that other

satellites are also likely to.need more supplies and that
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keeping stock at the main warehouse, , for later

redistribution, may provide a better service.

The allocation rules discussed in sections 5.3 and 5.4 can
be stated as follows (assuming that services are equally

important for all satellites):

"Each time an allocation is made to a satellite,
it should be made to all of them, so that they
should have the same probability of depletion by
the time the next external replenishment is available.
Furthermore, that probability of depletion should be
the same for the successive allocations in a cycle'.
This rule has led to the formulas (5.49) to compute

allocation quantities.

The probability of depletion required for the allocation can
be computed from the guantities which, in prospect, would be

involved in the last allocation of each cycle. By applying
the rule of constant probability, the allocations decrease
in quantity towards the end of the cycle. There is,
normally, a practical lower limit for a shipment. This limit
together with the reorder jevels of the satellites fix the
minimum for the final allocaticn in a cycle. The probability
of stockout can be calculated for that'allocation; and that

probability can be used as the depletion probability for the

successive allocations (which should be the same for all).

The ability to estimate analitically the stockout and
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_shortage rates 1is fundamental to the Johnston‘apprOach. In
the case of multilevel systems, the evaluation of those
rates from the dehand distribution, as it is done for the
single level inventories, does not work: so, an alternative
way was used based on the depletion time distribution, i.e.,
the distribution of the time to deplete a quantity 'R' of an

item. Referring to (5.71)

L
P=-/é(t)*dt (5.183a)
0
L |
Zt='[(L-t)*q(t)*dt (5.183b)
o]

where 'P' and 'Zt' are the probability of stockout and the
expected time out of stock in a cycle, respectively, ‘'aq(t)’
the density for the depletion time distribution and 'L' is

the lead time. The shortage rate is then 'v=Z2t/T"'.

Aditionally, reasons were found to support the Normal
distribution as a reasonable approximation for the depletion
time, under the circumstances. Furthermore, expressions for
the mean and the variance of the depletion time were
proposed, so that those parameters can be approximated from
the mean and the variance of the demand. Referring to (5.15)

tm= R/d ' (5.1852)

]

tv= tm/g (5.185b)

where 'tm' and 'tv' are the mean and the variance of the

depletion time distribution, 'R' the reorder level and
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tg=(1/dc)**2' with ‘dc' standing for the coefficient of
variation of the daily demand ('g' is the modulus if demand

is Gamma distributed). Details are given in section 5.5.

The setting of the internal reorder levels is discussed in
section 5.7. The internal reorder level relates to the
probability of stockout in intermediate cycles, 'PI', which
could be calculated from (5.171b). It is suggested that the
'"PI's are calculated periodically for a sample of items and
then related to the final or system probability of stockout

'P' such as in (5.135):
Pl= c*P (5.187)

This latter relationship could then be used in the routines
for the decision procedure with the advantage of alleviating
the calculations. Another problem discussed 1in the same
section is the use of two internal reorder levels: a higher
level when there is plentyv of stock in the system and a

lower level at the end, when the stock becomes scarce.

The approximations introduced in the course of these
derivations were submitted to a simulation check. For this
purpose, values for the stockout and shortage rates obtained
by simulation were compared with the aﬁalytical predictions.
The accuracy seems to be reasonable for the range of high
services which have been implied. Details of these checks

are given in section 5. 8.
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The extensién of the Johnston approach to multilevel systems
is discussed in section 5.6. In the case of ‘twin'
satellites, i.e., when the satellites are balanced in
respect to commercial importance and demand characteristics,
the expressions for the service rates can be simplified
considerably. In such circumstances, the control would be
almost as simple as for the single level case. Furthermore,

211 the results achieved in the previous chapters apply. The

non-twin case raises difficult analytical problems, and

because of that, it was not contemplated in this thesis.
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Chapter SIX

CONCLUSION

6.1 Summary

6.2 Achievements and shortcomings

6.3 Leads for further research
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6.1 Summary

The entire analysis presented in this thesis stems from the
Johnstoh approach to multi-item inventory control. Johnston
devised a decision aid system which does not require,
necessarily, individual decisions for each item and awkward
estimates for holding and shortage penalties. The choice of
the control parameters is based upon a vector of performance
variables which reflect a trade-off between service to

customers and capital invested in stock.

The distribution of the capital invested between the items
is made according to the criterion of maximum profit
explained in section 2.4. This allocation is embedded in the
decision aid system and therefore does not require the
attention from the wuser, except perhaps for some key
products. Thus, the decision maker can concentrate mainly on
the broad figures for families of items and for the whole

inventory.

These figures are generated by setting values for tpe sO
‘called "gstock factor" which is wused as a tuning kpob.
Section 2.5 extends the meaning of tﬁe stock factor and
stresses that it should be compared with the current
borrowing interest rate. There is another 'factor' implied
in the Johnston model which eventually could constitute a
second knob: the relation of the shortage cost to the profit

of the item. The implications of such a relationship is
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dealt with in section 2.6 .

The Johnston model throws a new light on to the decision
making process in inventory control. Nevertheless, some
important shortcomings exist, several of which are discussed

in this work.

The first relates to the interaction or feed-back effect of
lost sales on the perfomance variables. The perfomance
measures are estimated according to formulas which have been
derived as if demand were captive. But, on the other hand,
the criterion to distribute the investment by the items is
strongly dependent on the loss of sales (i.e., on demand
being non-captive) during shortages. That loss of sales,
actually, affect the perfomance variables, an aspect which

was ignored by Johnston.

The sales loss effect had been recognised previosly but had
not been quantified. In chapter 3 approximate expressions to
relate the expected shortage quantities under captive and
non-captive demand were derived. Further, the new concept of
notional reorder level was introduced so that the original
Johnston approach could be extended to non-captive
situations. Values obtained by simulation, as those shown in
figs.3.10 to 3.12, are close to the predictions, especially
for the high service levels. Thereforé, the approximations
introduced seem to be acceptable, and the corrections are

recommended.
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The effect of the 1lost sales on services and on average
stock was shown to exist only if the decision periods
overlapped. Under the reorder level control, that period

coincides with the procurement lead time, therefore, lost
sales effects appear only when more than one order is
outstanding at the same time. Under a periodical review
control, as the relevant decision period is the lead time
plus the review period, the lost sales always influence the

services.

Another shortcoming in the Johnston model relates to the
reorder frequency. This is taken as a exogenous variable to
be set up on an empirical basis. As indicated in chapter 4,
the choice of a frequency consistent with the objectives
assumed by Johnston is not straight forward. Increasing the
reorder frequency decreases the average stock 'S' for the
same stockout rate 'P'; but it increases simultaneously the
number of times in a year that a stockout may occur, and
hence, the shortage rate 'V'. The interaction is. such that
to keep 'V' fixed while increasing the reordering frequency,
more stock may be required, as shown in fig 4,1a. In such a
case, reordering more often brings no benefit either for the

investment or for the shortages, and of course, it increases

the procurement costs.

The situation described above, in which a poorer berformance
vector (S,V) is achieved by reordering more often, relates

to demands with large variances or to cases of already high
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reordering frequency. Usually, an increase in the freguency
can lead, after a convenient re-adjustment of the reorder
level, to lower stocks, better shortage rates or some
trade-off between those two. This is shown in fig. 4.1b. But
in any case, the marginal benefits upon 'S' and 'V' of
reordering more often decrease steeply. Therefore, high
overlapping degrees, with many orders outstanding at the
same time, is unlikely to be a good practice from the point

of view being discussed.

It is not satisfactory to 1leave the choice of a reorder
frequency to good sense alone, due to the ambiguities Jjust
mentioned. Section 4.4 gives the expressions for obtaining
the coherent values for that frequency. Basically, those
expressions result from considering the number of orders per
vear as an independent variable in the maximisation of the
profit as expressed by Johnston. A limit is imposed either
on the global number of orders for the whole system or on
the marginal cost of ordering. Then, the frequency for each
'buying family' (i.e., the items with a common supplier) can

be determined to meet those limits.

The treatment of the reorder frequency includes a new tuning
knob and a new variable in the perfomance vector. Deciding
on the most preferred vector may not be easy, for the
preference relationships are not structured and often are
dependent upon time and place. Decisions could be helped if
the decision maker were provided with the means for

cross-checking the consistency of his own preferences.
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The sketch for a possible cross-checking system was
described in section 4.5. It is based on the fact that each
performance variable can be associated with some cost rate:
stock investment relates to a holding cost; service to a
shortage cost; and order frequency to a procurement cost.
Therefore, a cost or, say, a 'shadow price' could be easily
calculated for each performance vector. The more preferred
the vector the higher its shadow price should be. The shadow
prices may, not only provide a test for the preference
relationships, but also help the guantification in money

units of the preference differences.

The Johnston model is directed towards single level
inventories, however, it is being used to control a system
comprising a main warehouse that supplies' a number of
satellites. This fact motivated the analysis imn chapter 5
which extends that model to a 2-level system shaped on the

real situation.

Criteria borrowed from the Johnston approach and applied to
that specific system have produced the rules and the
mathematical expressions to govern the successive
allocations from the main warehouse to the satellites and
amongst the latter. The basic rule is discussed in sections
5.3 and 5.4 and states that allocations amongst satellites at
one time as well as successive allocations at different time

moments should have the same probability of depletion.
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In section 5.5, formulas to compute fhe stockout and the
shortage Trates have been derived on the assumption of those
rules being in force. These results have been achieved
through the depletion time distribution, an approach not

entirely new but rarely used for that purpose.

Some approximations were introduced in the course of the
derivations in order to achieve implementable expressions.
The magnitude of the errors so introduced in the calculation

of service rates was checked against results obtained by

simulation. Three sets of results are depicted in figs. 5.5

and 5.6, section 5.8. The predictions look reasonably good

within the range of services usually adopted.

The ability to estimate the stockout and the shortage rates
paved the way to extend the J-model and the results in
previous chapters to the 2-level situations. In section 5.6,
formulas have been derived for the case of twin satellites,
j.e. satellites having comparable demand distributions and
commercial importance. The distortions which might be
incurred by using these same formulas for unbalanced
configurations is a matter that would require further

investigation.
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6.2 Achievements and shortcomings

The major achievements reported in this thesis relate to the
extensions made to the model proposed by Johnston. Such

extensions are depicted in fig 6.1

Johnston
model

Fig. 6.1 - Extensions to the Johnston model

The first extension, discussed in chapter 3, contemplates
situations in which more than one replenishment may be
outstanding and demand during shcrtages may represent a loss
iq sales. The analysis led to the concept of the notional
reorder level which enabled the use of established formulas
to relate control parameters to perforﬁance variables, and
hence, the use of the Johnston approach. An approximate

expression for the shortage rate was also derived.

The second extension, covered in chapter 4, gives 2an

analvtical process to calculate, for each group of items,
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the reorder frequency consistent with the services. The best
combination of reorder levels and reorder frequencies can

now be looked for, analytically.

Finally, chapter 5 extends the model to centrally controlled
inventory systems comprising a main warehouse and its
satellites. The analysis involved the establishment of
allocation criteria coherent with the general approach, and
the derivation of expressions enabling the estimate of
service variables from the control parameters. The
potentialities of the depletion time distribution have been

explored for this purpose.

Other results, though less important, may deserve a mention.
They relate to the attempt in providing analytical tools to
help the decision maker to be consistent in his choices.
Namely, in section 2.5, by exploring the economic meaning of
the Lagrangean parameters; in section 2.6, by discussing
possible relationships between shortage costs and profits;
and, in section 4.5, by introducing the shadow prices for

the performance variables.

There are, nevertheless, weak points‘in the analysis which
should be referred to. First, in relation to the
assumptions. Most of then ére commonly accepted, e.g. the
ability to know the demand distribution, and the
independence of demands in successive periods and on

different outlets. Some others, however, are 1less common,
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such as, the restrictions made to fast moving items with
Gamma demands and to inventory ©policies with high service

levels.

Assumptions on operating policies limit the replenishments

to the reorder level control. Overshooting problems due to
lumpy demands and to stock reviews being discrete, were not
examined. Assumptions on the structure of the 2-level system
and on the internal flows of goods restrict the
applicability of the results to relatively simple multilevel

situations.

‘Another weakness relates to the need for approximations in

the course of the analysis. To start with, a few expressions
have been simplified on the assumption that some terms
involving stockouts and shortage rates could be neglected
because services were high. Further, the expected value of a
variable, instead of the variable itself, has been used in a
few instances to undo sanalytical ties. Furthermore,
maldistributions of stock when replenishment orders are
raised have been disregarded. However, the magnitude of the
errors so introduced are not large if services are high, as
simulation results have shown. The same appéars to be true
in relation to the errors caused by thg Normal approximation
for the depletion time distribution, and by the simplified
formulas for the mean and the variance of the depletion
time, when the depletion time approach is used to estimate

services in a 2-level inventory system.
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The analysis of the specific 2-level inventory :led to usable
results in situations of twin satellites, only. This will be
the general case, for systems with satellites of quite
different order of magnitude are rare. In this latter case,

how satisfactory the results would be is unknown.

Finally, the analysis isolated the inventory from the whole
distribution system. It 1is well known that tactical
decisions which ignore the strategy are 1liable to be
sub-optimal. Nevertheless, integration has not been
considered, even for the internal transportation procedures

and costs.

In brief, the extensive analysis presented in this thesis
has reached results which are neither exact nor general. The
approximations, however, seem to be reasonable, compared
with the uncertainty about some of the exogenous variables
and the intangibility of most of the decision parameters.
The benefit of dealing with a specific system rather than a
general one was to have achieved results almost ready for
implementation. There may be improvements to make and
further areas to cover; but the analysis worked through has
enlarged considerably the potentialities of the initial

model.

The implementation, which is outside the scope of this work,
will prove, hopefully, the merits of those achievements, and
will suggest, surely, many other refinements that could be

made.
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6.3 Leads for further research

The analysis in earlier chapters had the implementation in
mind, but results may have +to be reformulated to fit the
requirements of the specific inventory system, of the
specific users and of the specific information system. The
implementation stage and the practice later on will give,
surely, many hints for further analysis. There are, however,
two points which can already be admitted: the effects on the
real systems of the mal-distribution of stocks and of the

twin satellite approximation.

Mal-distributions, in the present context, refer to the
imbalances in stocks due to the differences frém actual to
expected values. In section 4.2, a comment was made about
the fact that, when an order for a buying family is raised,
the family is at its aggregate reorder level but the stock
for each individual item is unlikely to be at the respective
reorder level. Such a fact brings a decrease in control
effectiveness which 1leads to 2z poorer performance: for
instance, for a given service, the required global
investment in stock is higher than if items were reordered

individually.

That increment in stock represents a cost which should be
off-set by the savings 1in procurement costs derived from
family reordering. Each extra item added to the family

represents, potentially, a marginal cost in effectiveness
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and a marginal saving in procurement. If the latter is
always higher than the former, enlarging the buying family
would be always favourable, from the present perspective;
but if not, the point where both margins equate should
constitute a limit for the number of items to be included in
the family. Currently, this number is fixed on a practical

basis.

Mal-distribution effects may become amplified in multilevel
inventories. Here, imbalances exist not only among the items
of a family, but also zmong the satellites, for a same itemn.
In the specific model considered, mal-distribution effects
appear also at the level of the last partition, as mentioned
in section 5.8. Nevertheless, for the situations simulated,
central control gave considerable better performance than

individual control of the satellites. This matter, however,

would deserve further consideration.

There is another source of mal-distributions resulting from
bad demand forecasts. Quoting Lampkin (1967, p64): "(...)
the oversestimate of demand cause overstocking which
persists for a long time, while underestimates cause
understocking which only persists for a short time. The
result is that the average stock holding is considerable
greater than one would expect from the average demand rate.
Correspondingly ordering rates are, in practice, lower than
estimates suggest". That author reports also that having
average stocks 50% higher for some goods is not uncommon.

That being so, the overal effect on the inventory may be
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quite important and should be investigated. .

The analysis on 2-level inventories used the twin satellife
simplification to get through analytical difficulties and
reach tractable results. The use of those same formulas for
situations where that assumption does not hold would bring
errors on the estimates of the performance v;riables and
lead to sub-optimal uée of the resources. The magnitude of
these effects should be investigated, eventually, on live

situations and data.

There are logical extensions to the probosed model whose
interest only implementation will reveal. For instance, the
control of the slow movers. Often these products are
associated with high services: essential spare parts,
prestige products, etc.‘ The profit criterion used earlier,

may not be the most appropriate for those items. That being

‘so, the basic approach would require to be reviewed, but

some of the approximations might still stand. Low service
items, on the other side, do not require a sophisticated

control.

Other extensions might be towards more complex multilevel
structures or towards further integration in a wider
distribution system. In order that such attempts have
success in reaching usable results, mathematical models may
have to be shaped on particular situations, otherwise, they

are likely to clash with analytical difficulties.
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Internal transportation and picking costs were not

quantified in the analysis of the 2-level inventory system.
It was shown in section 5.3.1 how the number of internal
replenishments 'n' could be related to the allocation
parameter 'p', if there were no capacity restrictions for
the satellites. Delivery costs are likely to increase with
the number of internal orders, but the strength of such a
dependencé can vary widely from one situation to another. At
one extreme, if a delivery trip were made for each order,
delivery costs would be roughly proportional to the number
of orders. At the other extreme, one can imagine that with
systems involving thousands of items and several satellites,
full advantage of vehicle capacity can be obtained by
rationalising cargoes and trips. Then, delivery costs would
depend essentially on the global throughput and not so much
on how that throughput is actually ordered; thus, the number
of internal orders would not be a preponderant factor for

those costs.

Restrictions on satellite capacities are likely to exist and
to be binding for the distribution shipment immediately
following external replenishmeﬁt and this might increase
substantially the number of internal deliveries. It is a
guess that in most of real situations éapacity restrictions
will be dominant in fixing the number of internal shipments.
The analysis of the internal delivery costs might then

require that satellite capacities were also considered.
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The cost of interpal delivery and its relation to the
average number of deliveries per cycle, to the allocation
parameter, to capacity constraints in satellites, and to the
other logistic facilities might be relevant for the decision
process. However, the analysis of this point to go beyond
the theoretical generality and to reach practical results

should be geared to the particular situation.

The estimation of the demand characteristies 1is an ever
present problem in inventory control models. In this thesis,
the knowledge of the demand has been taken for granted.
Furthermore and in the wake of Burgin and Johnston, demand

was assumed to follow a Gamma distribution.

There is a large amount of literature on forecasting demands
for inventory control and on appropriate probabilistic
distributions for those demands. Section 5.5 discussed the
use of the depletion time approach for control purposes,
namely, to estimate the services for each reorder level. The
shape of this distribution and the legitimacy of the
assumption made should be investigated further. The analysis
of the virtualities of this approach as a usable alternative

for demand distribution might be rewarding.

Hypothetically, there are many other areas which could be
thought of. Enumerating them would be as much fastidious as
irrelevant. Real issues will arise after the implementation

of the results arrived at.
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-end-

END

1 need no gravestone, but

If you need one for me

I would like it to bear these words:

He made suggestions. We carried them out.
Such an inscription would

Honour us all.

(From Bertolt Brecht Poems, p.218
Ed. John Willet and Ralph Manheim

London, Eyre Methuen Ltd. 1976)
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