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A B S T R A C T

Background

Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian
randomization method, the association is likely to be causal if genetic variants that affect CRP
level are associated with markers of diabetes development and diabetes. Our objective was to
examine the nature of the association between CRP phenotype and diabetes development
using CRP haplotypes as instrumental variables.

Methods and Findings

We genotyped three tagging SNPs (CRPþ2302G . A; CRPþ1444T . C; CRPþ4899T . G) in
the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y
(Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and
hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose
tolerance test and self-report. Common major haplotypes were strongly associated with serum
CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may
confound the association between CRP and diabetes risk. Serum CRP was associated with these
potential confounding factors. After adjustment for age and sex, baseline serum CRP was
associated with incident diabetes (hazard ratio ¼ 1.39 [95% confidence interval 1.29–1.51],
HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for
potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR
or HbA1c (p¼ 0.52–0.92). The associations of CRP with HOMA-IR and HbA1c were all null when
examined using instrumental variables analysis, with genetic variants as the instrument for
serum CRP. Instrumental variables estimates differed from the directly observed associations (p
¼ 0.007–0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick
Park Heart Study II produced null findings (p ¼ 0.25–0.88). Analyses based on the Wellcome
Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight
linkage disequilibrium with our tagging SNPs also demonstrated null associations.

Conclusions

Observed associations between serum CRP and insulin resistance, glycemia, and diabetes are
likely to be noncausal. Inflammation may play a causal role via upstream effectors rather than
the downstream marker CRP.

The Editors’ Summary of this article follows the references.
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Introduction

C-reactive protein (CRP) is a nonspecific marker of systemic
inflammation that predicts incident type 2 diabetes. Chronic
low-grade inflammation may induce insulin resistance and
is a candidate pathway leading from obesity to diabetes [1–3].
Several population-based observational studies suggest an
independent role for CRP in the development of insulin
resistance and diabetes, but it is unclear whether this
association is a causal one or the consequence of imperfect
adjustment for adiposity and other confounding factors [4–
10]. Preventing or delaying onset of diabetes and its compli-
cations is an important therapeutic aim, and there is interest in
inflammatory effectors including CRP as drug targets [11,12].
It is therefore highly desirable to establish which mediators in
the inflammatory cascade are causal for diabetes.

Mendelian randomization involves comparison of pheno-
type and genotype effects in observational studies [13]. If the
association between a modifiable risk factor and disease is
causal, the genetic variant associated with this risk factor
should be related to the disease outcome to the extent
predicted by the magnitude of its association with the risk
factor. The approach is based on two concepts. First, random
allocation of parental alleles leads to lifetime exposure to
differing levels of the risk factor, in the present case CRP
haplotype and heritable CRP level [14,15]. Second, the
genetically influenced component of variation in the risk
factor will generally be unaffected by confounding and
reverse causation, in contrast to the variation associated with
environmental influences [13,16,17].

We are aware of one previous study of CRP and diabetes
employing the Mendelian randomization technique in a
European population [4]. It found that a rare haplotype was
associated with a modest increase in risk of diabetes but did
not employ instrumental variables analysis to show that the
effect of circulating CRP on diabetes risk was unconfounded.
Confounding was demonstrated in a study of CRP and
metabolic syndrome variables [18]. The present study
examines the causal nature of the relation between serum
CRP and development of diabetes risk using Mendelian
randomization. We measured homeostasis model assessment-
insulin resistance (HOMA-IR) [19] and hemoglobin A1c
(HbA1c) as an index of glycemic control, as well as
determining diabetes caseness, in the Whitehall II Study.
The continuous traits provide adequate statistical power for
an instrumental analysis of the unconfounded and unbiased
(by reverse causation and regression dilution bias) effects of
CRP on HbA1c and HOMA-IR. Three tagging SNPs in the
CRP gene allowed construction of haplotypes that were used
as instrumental variables. We carried out a pooled analysis in
relation to diabetes caseness as the same haplotypes were
available in the prospective Northwick Park Heart Study II
(NPHSII). Data from the Wellcome Trust Case Control
Consortium (WTCCC) further allowed us to analyze three
SNPs in tight long-range linkage disequilibrium (LD) with our
tagging SNPs among 1,923 diabetes cases and 2,932 controls.

Methods

Index Study: Whitehall II Study
In 1985–1988, all nonindustrial civil servants aged between

35 and 55 y, in 20 departments in central London were

invited to a medical examination at their workplace [20,21].
With 73% participation, the cohort included 10,308 partic-
ipants at study entry. Of these individuals, 6,156 participated
in screening in 2003–2004 (study phase 7) and were
genotyped for variants in the CRP gene. Excluding non-
Europeans, those with missing phase 7 CRP, neither HOMA-
IR nor HbA1c concentration, missing CRP SNPs, or with
unreliable haplotypes, the final sample included 5,274 (3,849
men, 1,425 women) participants aged 50 to 74 y (mean 61 y),
all of whom signed an informed consent. CRP measurements
at mean age 49 y were available for 4,674 (3,433 men, 1,241
women).
Measurements. Age, sex, body mass index (BMI), waist

circumference, blood pressure, smoking, physical activity,
socioeconomic position, coronary heart disease, and diabetes
status were measured at mean ages 49 and 61 y. Weight was
measured in underwear to the nearest 0.1 kg on Soehnle
electronic scales. Height was measured in bare feet to the
nearest 1 mm using a stadiometer with the participant
standing erect with head in the Frankfurt plane. Waist
circumference, taken as the smallest circumference at or
below the costal margin, was measured with participants
unclothed in the standing position utilizing a fiberglass tape
measure at 600 g tension. Venous blood was taken in the
fasting state or at least 5 h after a light, fat-free breakfast,
before undergoing a 2-h 75-g oral glucose tolerance test [22].
Serum triglycerides were measured by automated enyzmic
colorimetric methods. HDL cholesterol was measured using
phosphotungstate precipitation. Glucose was measured in
fluoride plasma by an electrochemical glucose oxidase
method. Insulin was measured by radioimmunoassay using
polyclonal guinea pig antiserum at age 49 y and by double
antibody ELISA at age 61 y.
C-reactive protein genotyping. DNA was extracted from

blood samples using magnetic bead technology (Geneservice).
Using validated genotype data (minor allele frequency .5%)
from participants of European descent from the National
Heart Lung and Blood Institute (NHLBI) Programs for
Genomic Applications (PGA) database (http://pga.mbt.
washington.edu/), and HapMap (http://www.hapmap.org/), we
examined the pattern of LD across the CRP gene. We used the
haplotype LD r2 method to select a set of tagging (t) SNPs
capable of capturing maximum haplotype diversity using
TagIT (http://popgen.biol.ucl.ac.uk/software.html). We geno-
typed three SNPs in the CRP gene (þ1444T . C [rs1130864];
þ2302G . A [rs1205]; andþ4899T . G [rs 3093077]) using the
ABI Prism 7900HT Sequence Detection System for both PCR
and allelic discrimination (Applied Biosystems) under stand-
ard conditions. CRP þ2303 and þ4899 were found to be in
Hardy Weinberg Equilibrium (HWE) (chisq p . 0.05),
however þ1444 was not in HWE (p ¼ 0.003). Blind re-
genotyping of the þ1444 SNP (n ¼ 678) in a different
laboratory produced a mismatch rate of 0.5% suggesting
that genotyping errors were not responsible. A repeated
blood sample from 553 participants showed the genotyping
error rate was ,1% for each SNP.
C-reactive protein. CRP was measured in serum stored at

�80 8C using a high-sensitivity immunonephelometric assay in
a BN ProSpec nephelometer (Dade Behring). Values below
the detection limit (0.154 mg/l) were assigned a value of 0.077
mg/l (333 [7.1%] at age 49 y, 104 [2.0%] at age 61 y). Samples
from both study phases were analyzed at the same time. Intra-
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and interassay coefficients of variation were 4.7% and 8.3%.
To measure short-term biological variation and laboratory
error, a repeated sample was taken from a subset of 150
participants at mean age 49 y and 533 participants at mean
age 61 y (average time between samples 32 and 24 d,
respectively). Reliability between samples was assessed with
intraclass correlation: r¼0.83 at mean age 49 y, and r¼0.57 at
mean age 61 y.

Diabetes. Diabetes status was determined at mean ages 49,
56, and 61 y on the basis of self-report of doctor diagnosis, use
of diabetes medication or 75 g OGTT. Diabetes was defined
by 2-h glucose � 11.1 mmol/l or fasting glucose � 7 mmol/l
[23].

HbA1c and HOMA-IR. HbA1c was measured in EDTA
whole blood on a calibrated HPLC system with automated
hemolysis prior to injection. HbA1 is resolved as a separate
peak, which does not interfere with HbA1c quantitation.
HOMA-IR was calculated as (fasting glucose [mmol/l]3 fasting
insulin [mU/l]/22.5) [19]. Nonfasting participants were as-
signed a missing value (n ¼ 435, 9.1%).

Data Analysis
Standard regression analysis. We used age- and sex-

adjusted least square regression analysis to assess (1) the
association of haplotypes (see below) with circulating CRP
levels at baseline and follow-up, and with potential con-
founding factors; (2) the associations of potential confound-
ing factors with circulating CRP levels and with HbA1c and
HOMA-IR at follow-up; and (3) the association between
circulating CRP levels with HbA1c and HOMA-IR in a
multivariable model. The haplotype-confounder associations
were computed to test our underlying hypothesis that genetic
variants in CRP would not be associated with confounding
factors that effect conventional epidemiological associations.
We used Cox regression to assess associations between CRP
levels at baseline and incident diabetes, and logistic regres-
sion analysis to assess associations between haplotype and

prevalent diabetes with a binary indicator for study (White-
hall II or NPHSII) in the pooled analysis.
Haplotype construction. We constructed haplotypes with

the genetic data analysis program SIMHAP (see http://www.
genepi.com/au/project/simhap, obtained May 2, 2007), using
1,000 iterations and a posterior probability � 0.95. Four
haplotypes of SNPs þ1444, þ2302, and þ4899 (CAT, CGG,
CGT, and TGT) remained in the analysis in which genetic
variants were used to determine the association of CRP with
diabetes, HbA1c, and HOMA-IR.
Instrumental variables analysis. An instrumental variables

analysis, in which CRP haplotypes were used as instrumental
variables for the unconfounded and unbiased effect of CRP
on HbA1c, was undertaken using two-stage least squares
method. In these analyses we use a model for the haplotype-
CRP association that assumes each of a participant’s two
haplotypes contributes additively to his/her value of CRP, as
in a previous study [18]. We compared results from the
instrumental variable estimates of the association of CRP
with HbA1c to those from ordinary linear regression using
the Durbin form of the Durbin-Wu-Hausman statistic. We
used the F-statistics from the first-stage regressions to
evaluate the strength of the instruments (F . 10 indicates
sufficient strength to ensure the validity of instrumental
variable methods) [24].
General analytic procedures. There was no statistical

evidence that the associations we examined differed by sex,
although previous studies have been inconsistent in this
respect [25–27]. Because of skewness, we logarithmically
transformed CRP in the analyses, using log base 2 so that
we could present associations per doubling of CRP [17,18,28],
and transformed HbA1c and HOMA-IR to the natural
logarithm. We excluded observations with serum CRP . 10
mg/l, indicating an acute phase reaction, in analyses with
serum CRP (n¼ 80 at age 49 y, n¼ 182 at age 61 y). Analyses
were performed with Stata 8.2 or 9.2 (Stata Institute).

Replication Studies
We replicated our analysis in two independent samples:

NPHSII and WTCCC [29,30]. The three tagging SNPs utilized
here were typed in NPHSII (2,173 men, mean age 56 y), and
cases of diabetes (n¼ 174) were identified to the end of 2005
by searching medical records for physician diagnosis and
treatment [29]. Within the WTCCC sample, none of the SNPs
that we have used here were available [31]. However, three
alternative SNPs, identified using Ensembl (http://www.
ensembl.org/index.html), were included on the Affymetrix
500K array and are in long-range LD with our tagging SNPs,
as follows: rs12760041 with rs1130864 (r2 ¼ 0.84), rs2592889
with rs1205 (r2 ¼ 0.75), and rs11265260 with rs3093077 (r2 ¼
1.00). An analysis based on 1,923 cases of diabetes and 2,932
controls was used to examine genotype-diabetes associations.
Each genotype was found to be in Hardy Weinberg
Equilibrium with the exception of rs2592889 among cases (p
¼ 0.003).

Results

Participants were on average 60.9 y of age, the majority was
men and from executive officer and senior administrative
employment grades (Table 1). There were 354 (6.7%) cases of
diabetes at follow-up. As expected, haplotypes were associ-

Table 1. Participant Characteristics

Characteristic n (%) Unless

Otherwise Stated

Total n

Age, mean (SD), y 60.9 (5.9) 5,274

Women 1,425 (27.0) 5,274

BMI, mean (SD), kg/m2 26.7 (4.3) 5,251

Physical inactivity 233 (4.5) 5,231

Low occupational statusa 432 (8.3) 5,223

Current smoking 426 (8.1) 5,248

Prevalent CHDb 695 (13.2) 5,274

Serum CRP, mean (SD), mg/l 2.58 (5.21) 5,274

Previous serum CRP, mean (SD), mg/lc 1.72 (3.21) 4,674

Prevalent diabetesd 348 (7.1) 4,883

HbA1c, mean (SD), % 5.30 (0.60) 5,266

HOMA-IR, mean (SD), (mU/l.mmol/l)/22.5 2.14 (1.89) 4,357

Sample based on participants with CRP genotype, serum CRP, and either HbA1c or
HOMA-IR at study phase 7.
aClerical or office support grade.
bNonfatal myocardial infarction or angina pectoris.
cAt mean (SD) age 49.1 y (5.9 y).
dA total of 292 incident cases after phase 3.
CHD, coronary heart disease; SD, standard deviation.
doi:10.1371/journal.pmed.0050155.t001
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ated with circulating CRP levels (Table 2) but not with risk
factors at baseline or follow-up (all p � 0.07) except in one
case at baseline: CGG-occupational status (p ¼ 0.038). In
contrast, all risk factors were associated with serum CRP,
HbA1c, and HOMA-IR except physical activity level (CRP
only) (Table 3).

Baseline serum CRP was a strong predictor of incident
diabetes after adjustment for age and sex (hazard ratio [HR]
for doubling of CRP 1.39 (95% confidence interval [CI] 1.29–
1.51) (Table 4). Controlling for general and central obesity
attenuated the CRP effect considerably, and after extensive
adjustment the HR was reduced by 51%. After adjustment for
age and sex, higher contemporaneous and previous serum
CRP concentrations were associated with increased HOMA-
IR and HbA1c (Table 5). Further adjustment for risk factors
greatly attenuated these associations.

Median levels of HbA1c and HOMA-IR did not vary by CRP
haplotypes, suggesting that these haplotypes have no effect on

diabetes risk (Table 6), although they are consistently
associated with serum CRP concentrations.
F-statistics from the first-stage regressions in the instru-

mental variable models were greater than 10 (HbA1c, 18.3 for
contemporaneous and 17.0 for previous serum CRP; HOMA-
IR, 15.3 and 15.8, respectively) indicating sufficient strength
to ensure validity of instrumental variable methods in these
data. Table 7 compares the magnitudes of association of CRP
with HbA1c and HOMA-IR obtained from the age- and sex-
adjusted ordinary least squares regression analysis and the
unadjusted instrumental variables analysis. While the ordi-
nary least squares regression analysis indicated positive
associations of CRP levels with HbA1c and HOMA-IR (p ,

0.0001), the instrumental variables analysis consistently
suggested no such association (p . 0.60), though this was
imprecisely estimated. The Durbin-Wu-Hausman test for
difference between the linear regression and instrumental
variables estimates approached significance in three of four

Table 2. Association between CRP Haplotypes and Serum CRP Concentration

Haplotype of þ1444,

þ2302, and þ4899 SNPs

Haplotype Number

and Sample Size at

Ages 49 and 61 y

Median (IQR) CRP, mg/l

At Mean Age 49 y (n ¼ 4,594) At Mean Age 61 y (n ¼ 5,092)

CAT 0 (n ¼ 2,014/2,224) 0.90 (0.46–1.79) 1.28 (0.70–2.51)

1 (n ¼ 2,098/2,334) 0.77 (0.39–1.53) 1.14 (0.61–2.35)

2 (n ¼ 482/534) 0.71 (0.37–1.29) 0.90 (0.47–1.89)

p-Value for trenda ,0.0001 ,0.0001

CGG 0 (n ¼ 4,116/4,558) 0.78 (0.40–1.59) 1.15 (0.61–2.33)

1 (n ¼ 461/516) 0.96 (0.53–1.91) 1.45 (0.80–2.81)

2 (n ¼ 17/18) 1.82 (1.47–4.35) 1.78 (1.13–3.73)

p-Value for trenda ,0.0001 ,0.0001

CGT 0 (n ¼ 2,193/2,457) 0.84 (0.43–1.67) 1.20 (0.62–2.48)

1 (n ¼ 1,980/2,163) 0.78 (0.40–1.58) 1.16 (0.62–2.30)

2 (n ¼ 421/472) 0.79 (0.40–1.62) 1.17 (0.67–2.45)

p-Value for trenda 0.01 0.43

TGT 0 (n ¼ 2,169/2,403) 0.77 (0.39–1.49) 1.11 (0.58–2.27)

1 (n ¼ 2,047/2,262) 0.83 (0.42–1.68) 1.20 (0.65–2.43)

2 (n ¼ 378/427) 0.99 (0.54–2.06) 1.43 (0.75–2.73)

p-Value for trenda ,0.0001 ,0.0001

Table entries are exp(log2CRP). IQR, interquartile range.
aAdjusted for age and sex.
doi:10.1371/journal.pmed.0050155.t002

Table 3. Contemporaneous Associations of Risk Factors for Diabetes with Serum CRP Concentration, HbA1c, and HOMA-IR at Mean
Age 61 y (Adjusted for Age and Sex)

Risk Factor Log2CRP (mg/l) LnHOMA-IR LnHbA1c (%)

Betaa (95% CI) p-Value Betaa (95% CI) p-Value Betaa (95% CI) p-Value

Occupational status 0.090 (0.064–0.116) ,0.0001 0.019 (0.005–0.032) 0.006 0.006 (0.004–0.007) ,0.0001

BMI 0.139 (0.130–0.147) ,0.0001 0.093 (0.089–0.097) ,0.0001 0.005 (0.005–0.006) ,0.0001

Waist circumference (per 10 cm) 0.545 (0.514–0.577) ,0.0001 0.364 (0.350–0.379) ,0.0001 0.022 (0.019–0.024) ,0.0001

Diastolic BP (per 10 mmHg) 0.244 (0.207–0.281) ,0.0001 0.184 (0.165–0.202) ,0.0001 0.005 (0.002–0.007) ,0.0001

Physical inactivityb 0.342 (0.150–0.534) ,0.0001 0.077 (�0.026–0.181) 0.14 0.012 (0.001–0.025) 0.07

n¼ 5,051–5,089 for CRP and HbA1c; n ¼ 4,331–4,355 for HOMA-IR.
aDifference in log2CRP, lnHbA1c, or lnHOMA-IR per unit difference in risk factor by linear regression.
bSedentary versus nonsedentary.
BP, blood pressure.
doi:10.1371/journal.pmed.0050155.t003
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comparisons and highly significant for contemporaneous
serum CRP with HOMA-IR as outcome. Coefficients from the
confounder-adjusted linear regressions were similar to those
from the instrumental variables analyses, suggesting no causal
CRP effect.

NPHSII
Haplotype-serum CRP associations were similar to those

observed in Whitehall II (Table S1). None of the four
haplotypes was associated with potential confounding varia-
bles age, BMI, systolic BP, serum triglycerides, and cholesterol
(Table S2). Serum CRP was a risk factor for incident diabetes
(age adjusted HR for doubling of CRP 1.27 [95% CI 1.11–
1.44]). The effect was attenuated after controlling for the risk
factors above (HR¼ 1.08 [0.93–1.24]).

Pooled analysis of CRP haplotypes and prevalent cases of
diabetes (n¼ 522) in Whitehall II and NPHSII produced null
findings (Table 8). Among TGT homozygotes the reduced risk
of diabetes is counterfactual given the direct association
between TGT haplotype number and serum CRP (Table 2).

WTCCC Sample
Case-control analysis of diabetes and the three SNPs in

long-range LD with the SNPs of interest produced no

evidence of association. Odds ratios (95% CI) were 0.98
(0.92–1.04) for rs12760041, 1.04 (0.98–1.12) for rs2592889, and
0.91 (0.81–1.03) for rs11265260.

Discussion

This large study provides evidence that systemic CRP levels
are not responsible for development of insulin resistance,
hyperglycemia, or diabetes. The finding does not preclude the
possibility that inflammatory signals contribute to causal
processes leading to diabetes. We obtained a clear signal,
using Mendelian randomization, that the association between
systemic CRP and diabetes risk is not causal. However, the
nature of the prospective relation between serum CRP and
diabetes risk points to the potential effects of more proximal
mediators in the inflammatory cascade.
Our underlying assumption was confirmed that genetic

variants in CRP would not be associated with socioeconomic,
lifestyle, and biological confounding factors, enabling us to
estimate the unconfounded effect of CRP on HbA1c and
HOMA-IR by means of the variation in systemic CRP due to
four CRP haplotypes. No such effect was detected.
In addition to the analysis of Whitehall II data, further

support for our conclusion concerning CRP and diabetes is
provided by NPHSII and WTCCC. NPHSII haplotype and
disease caseness data allowed a pooled haplotype-diabetes
analysis with Whitehall II, which confirmed our null findings.
Among almost 2,000 cases of diabetes and 3,000 controls in
the WTCCC sample, we were able to identify three SNPs
distant from the CRP locus but in tight LD with the SNPs we
typed. None of these was associated with diabetes caseness.
Several issues may compromise the value of Mendelian

randomization approach in assessing causality [13]. First,
common genetic variants determining significant propor-
tions of variance in the exposure of interest are needed. For
the CRP haplotypes in question, this is the case here and in
other independent studies [15,18,32–38]. Second, the associ-
ation of the genotype (instrumental variable) with phenotype
has to be strong enough for the instrumental variables
analysis to be consistent. The F-statistic was clearly above the
threshold of 10 used to identify the problem of a weak

Table 4. Relation between Serum CRP at Mean Age 49 y and
Incident Type 2 Diabetes among Participants of European Origin
during 13.1 y Follow-up

Model (270 Cases, Total n ¼ 4,221) HR 95% CI p-Value

Age and sex 1.39 (1.29–1.51) ,0.0001

Occupational status 1.38 (1.28–1.50) ,0.0001

Prevalent CHD, infectious symptoms 1.38 (1.27–1.50) ,0.0001

BMI categories, waist circumference 1.22 (1.11–1.33) ,0.0001

Systolic BP, diastolic BP, BP treatment 1.20 (1.10–1.32) ,0.0001

Serum HDL-cholesterol, TG 1.17 (1.07–1.28) 0.001

HR (95% CI) per doubling of CRP level. Occupational status, employment grade as six-level
ordinal variable. BMI categories, BMI as four-level factor.
BP, blood pressure; CHD, coronary heart disease; TG, triglycerides.
doi:10.1371/journal.pmed.0050155.t004

Table 5. Prospective and Cross-Sectional Associations of Serum CRP with HbA1c and HOMA-IR

Associations Effect n Ratio of Geometric Means (95% CI)a

Adjusted for Age,

Sex, and Raised CRP

p-Value Age, Sex, Raised CRP,

and Risk Factor Adjustedb
p-Value

Prospective Difference in HOMA-IR per doubling

of CRP concentration at mean age 49

3,715 1.121 (1.106–1.135) ,0.0001 1.026 (1.014–1.039) ,0.0001

Difference in HbA1c per doubling

of CRP concentration at mean age 49

4,395 1.010 (1.008–1.012) ,0.0001 1.003 (1.001–1.005) 0.001

Cross-sectional Difference in HOMA-IR per doubling of

CRP concentration at mean age 61

4,060 1.155 (1.139–1.170) ,0.0001 1.013 (1.000–1.025) 0.045

Difference in HbA1c per doubling of

CRP concentration at mean age 61

4,855 1.011 (1.010–1.013) ,0.0001 1.006 (1.004–1.008) ,0.0001

aComplete cases analysis. Table entries are exp(b) from ordinary least squares regression. A ratio of geometric means of 1.120 indicates that a doubling of CRP level is associated with a
12.0% higher level of HOMA-IR.
bAdjusted for age and sex, occupational status, prevalent coronary heart disease (CHD), smoking, physical inactivity, blood pressure, blood pressure medication, BMI categories, waist
circumference, serum HDL cholesterol and triglycerides, and additionally at age 61 y, diabetic medication.
doi:10.1371/journal.pmed.0050155.t005

PLoS Medicine | www.plosmedicine.org August 2008 | Volume 5 | Issue 8 | e1551282

CRP Haplotype and Diabetes



instrument [24], although a larger study would yield greater
precision in the estimates from instrumental variables
analysis. Third, the Mendelian randomization approach may
be open to confounding if the genetic variants used as
instruments have multiple effects on phenotype (pleiotropy)
or if the variant is in LD with another genetic variant that
differently influences the pathway of interest. With respect to
the null associations observed in our study we think
pleiotropy is unlikely. The variants that we used to generate
the CRP haplotypes used here as instrumental variables are in
very close LD with variation within a transcription factor
binding site located 59 of the CRP gene, which is associated
with circulating concentrations of CRP and thought to be
functional [39,40]. It is unlikely that the variation in
circulating CRP associated with this marker (or those, like
our haplotypes, in LD with it) is substantially involved in
other phenotypes affecting inflammatory processes because
of their role as a transcription factor binding site. Fourth,

developmental compensation, or canalization, during fetal
development may provide resistance to the influence of a
genetic variant through permanent changes in cellular
function that counterbalance the genetic effect. Such
mechanisms are a potential source of bias in all Mendelian
randomization studies. Despite this potential bias, the
method has confirmed established associations such as that
of LDL cholesterol with cardiovascular disease risk [41].
Our findings are consistent with a previous study that

examined HOMA-IR as an outcome [18]. To our knowledge
two previous studies have examined the association of
variation in the CRP gene in relation to the binary outcome
of type 2 diabetes [4,42]. We find that the rare CGG haplotype
is associated with serum CRP level, but we do not replicate
the modest link with diabetes observed in the Rotterdam
study [4]. Among Pima Indians (a population with very high
levels of risk for type 2 diabetes) the rs133552 SNP, in the
promoter region of CRP, was associated with diabetes risk

Table 6. Relation between CRP Haplotypes, HOMA-IR, and HbA1c at Mean Age 61 y among Participants of European Origin

Haplotype of þ1444,

þ2302, þ4899 SNPs

Haplotype Number n HOMA-IR Median (IQR)a n HbA1c Median (IQR) %a

CAT 0 1,890 1.39 (1.03–1.92) 2,313 3.14 (3.05–3.26)

1 2,010 1.39 (1.04–1.91) 2,401 3.14 (3.05–3.26)

2 457 1.40 (1.04–1.94) 552 3.14 (3.05–3.26)

p-Value for trendb — 0.88 — 0.52

CGG 0 3,901 1.40 (1.04–1.91) 4,710 3.14 (3.05–3.26)

1 440 1.40 (1.01–1.96) 537 3.14 (3.05–3.26)

2 16 1.13 (0.96–1.52) 19 3.14 (3.09–3.22)

p-Value for trendb — 0.75 — 0.71

CGT 0 2,120 1.38 (1.04–1.92) 2,532 3.14 (3.05–3.26)

1 1,859 1.41 (1.03–1.93) 2,246 3.14 (3.05–3.26)

2 378 1.38 (1.01–1.90) 488 3.14 (3.05–3.26)

p-Value for trendb — 0.76 — 0.70

TGT 0 2,030 1.39 (1.03–1.93) 248,550 3.14 (3.05–3.26)

1 1,958 1.40 (1.04–1.91) 2,339 3.14 (3.05–3.26)

2 369 1.38 (1.05–1.89) 442 3.14 (3.05–3.26)

p-Value for trendb — 0.67 — 0.92

aTable entries are exp(lnHbA1c) or exp(lnHOMA-IR).
bAdjusted for age group and sex.
IQR, interquartile range.
doi:10.1371/journal.pmed.0050155.t006

Table 7. Comparison of Cross-Sectional and Prospective Associations between CRP and HbA1c Concentration Estimated by Linear
Regression and with Instrumental Variables (with CRP Haplotypes as Instruments)

Associations Effect n Ratio of Geometric Means (95% CI)

Linear Regression Analysis Instrumental Variables Analysis p-Valuea

Prospective Difference in HOMA-IR per doubling

of CRP concentration at mean age 49

3,912 1.123 (1.110–1.138) 1.035 (0.934–1.145) 0.098

Difference in HbA1c doubling

of CRP concentration at mean age 49

4,678 1.010 (1.008–1.012) 0.996 (0.981–1.011) 0.09

Cross-sectional Difference in HOMA-IR per doubling

of CRP concentration at mean age 61

4,223 1.154 (1.139–1.170) 0.995 (0.883–1.121) 0.007

Difference in HbA1c per doubling of

CRP concentration at mean age 61

5,086 1.012 (1.010–1.014) 0.999 (0.983–1.015) 0.11

Linear regression analysis adjusted for age and sex.
aTest of equality of linear regression and instrumental variables estimates.
doi:10.1371/journal.pmed.0050155.t007
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[42]. The CRP haplotypes used in the present study index the
rare allele of rs133552, thus it is unlikely that our null finding
is due to unmeasured genetic variation. The consistent lack of
association in our primary study, our two replication samples
including the large WTCCC, and a large case-control study of
Finnish participants [43], provides compelling evidence that
CRP is not related to diabetes in European populations.
Further replication of the genetic association in the Pima
Indian population would shed light on this putative ethnic
difference.

If glucose intolerance and insulin resistance have inflam-
matory causes, mediators should be sought among cytokines
more proximal than CRP to the start of the inflammatory
cascade. Gene expression of CRP occurs mainly in hepato-
cytes, regulated by interleukin (IL)-6 originating from
adipocytes and immune tissue. This cytokine and tumor
necrosis factor (TNF)-a are candidate mediators for the
proposed inflammatory link between increased body fat and
induction of insulin resistance locally in adipocytes and in
distant tissues [1,44,45]. Other inflammatory mechanisms,
such as complement pathways, may also be important [46].

Rodent models of obesity provide evidence that adipose
expression of TNF-a is associated, reversibly, with insulin
resistance and reduced glucose uptake and fatty acid
oxidation [3,47].

In humans, SNPs in TNF have been linked with diabetes,
obesity, and obesity phenotypes [43,48]. However, a short-
term trial of the anti-TNF-a drug etanercept in individuals
with the metabolic syndrome, did not increase insulin
sensitivity despite a decrease in CRP levels [49]. With respect
to IL6, there is evidence for associations of gene variants with
diabetes [43,50], insulin sensitivity [51], and metabolic

syndrome [52]. Whether obesity leads to insulin resistance
primarily as a result of chronic low grade inflammation or
metabolic alterations remains an important question.

Supporting Information
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Editors’ Summary

Background. Diabetes—a common, long-term (chronic) disease that
causes heart, kidney, nerve, and eye problems and shortens life
expectancy—is characterized by high levels of sugar (glucose) in the
blood. In people without diabetes, blood sugar levels are controlled by
the hormone insulin. Insulin is released by the pancreas after eating and
‘‘instructs’’ insulin-responsive muscle and fat cells to take up the glucose
from the bloodstream that is produced by the digestion of food. In the
early stages of type 2 diabetes (the commonest type of diabetes), the
muscle and fat cells become nonresponsive to insulin (a condition called
insulin resistance), and blood sugar levels increase. The pancreas
responds by making more insulin—people with insulin resistance have
high blood levels of both insulin and glucose. Eventually, however, the
insulin-producing cells in the pancreas start to malfunction, insulin
secretion decreases, and frank diabetes develops.

Why Was This Study Done? Globally, about 200 million people have
diabetes, but experts believe this number will double by 2030. Ways to
prevent or delay the onset of diabetes are, therefore, urgently needed.
One major risk factor for insulin resistance and diabetes is being
overweight. According to one theory, increased body fat causes mild,
chronic tissue inflammation, which leads to insulin resistance. Consistent
with this idea, people with higher than normal amounts of the
inflammatory protein C-reactive protein (CRP) in their blood have a
high risk of developing diabetes. If inflammation does cause diabetes,
then drugs that inhibit CRP might prevent diabetes. However, simply
measuring CRP and determining whether the people with high levels
develop diabetes cannot prove that CRP causes diabetes. Those people
with high blood levels of CRP might have other unknown factors in
common (confounding factors) that are the real causes of diabetes. In
this study, the researchers use ‘‘Mendelian randomization’’ to examine
whether increased blood CRP causes diabetes. Some variants of CRP (the
gene that encodes CRP) increase the amount of CRP in the blood.
Because these variants are inherited randomly, there is no likelihood of
confounding factors, and an association between these variants and the
development of insulin resistance and diabetes indicates, therefore, that
increased CRP levels cause diabetes.

What Did the Researchers Do and Find? The researchers measured
blood CRP levels in more than 5,000 people enrolled in the Whitehall II
study, which is investigating factors that affect disease development.
They also used the ‘‘homeostasis model assessment-insulin resistance’’
(HOMA-IR) method to estimate insulin sensitivity from blood glucose and
insulin measurements, and measured levels of hemoglobin A1c (HbA1c,
hemoglobin with sugar attached—a measure of long-term blood sugar
control) in these people. Finally, they looked at three ‘‘single

polynucleotide polymorphisms’’ (SNPs, single nucleotide changes in a
gene’s DNA sequence; combinations of SNPs that are inherited as a block
are called haplotypes) in CRP in each study participant. Common
haplotypes of CRP were related to blood serum CRP levels and, as
previously reported, increased blood CRP levels were associated with
diabetes and with HOMA-IR and HbA1c values indicative of insulin
resistance and poor blood sugar control, respectively. By contrast, CRP
haplotypes were not related to HOMA-IR or HbA1c values. Similarly,
pooled analysis of CRP haplotypes and diabetes in Whitehall II and
another large study on health determinants (the Northwick Park Heart
Study II) showed no association between CRP variants and diabetes risk.
Finally, data from the Wellcome Trust Case Control Consortium also
showed no association between CRP haplotypes and diabetes risk.

What Do These Findings Mean? Together, these findings suggest that
increased blood CRP levels are not responsible for the development of
insulin resistance or diabetes, at least in European populations. It may be
that there is a causal relationship between CRP levels and diabetes risk in
other ethnic populations—further Mendelian randomization studies are
needed to discover whether this is the case. For now, though, these
findings suggest that drugs targeted against CRP are unlikely to prevent
or delay the onset of diabetes. However, they do not discount the
possibility that proteins involved earlier in the inflammatory process
might cause diabetes and might thus represent good drug targets for
diabetes prevention.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0050155.

� This study is further discussed in a PLoS Medicine Perspective by
Bernard Keavney

� The MedlinePlus encyclopedia provides information about diabetes
and about C-reactive protein (in English and Spanish)

� US National Institute of Diabetes and Digestive and Kidney Diseases
provides patient information on all aspects of diabetes, including
information on insulin resistance (in English and Spanish)

� The International Diabetes Federation provides information about
diabetes, including information on the global diabetes epidemic

� The US Centers for Disease Control and Prevention provides
information for the public and professionals on all aspects of
diabetes (in English and Spanish)

� Wikipedia has a page on Mendelian randomization (note: Wikipedia is
a free online encyclopedia that anyone can edit; available in several
languages)
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