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ABSTRACT 1 

 2 

Accurate estimation of crop coefficients for evaporation and transpiration is of great 3 

importance in optimizing irrigation and modeling water and solute transfers in the soil-4 

crop system. In this study we used inverse modeling techniques on soil sensor 5 

measurements at depths from the soil-crop system to estimate crop coefficients. An 6 

inverse model was rigorously formulated to infer the crop coefficients and the lengths of 7 

growth stages using the measured soil water potential at depths during crop growth. By 8 

applying a micro-genetic algorithm to the formulated inverse model, the optimum values 9 

of the crop coefficient and the corresponding length of growth stage were successfully 10 

deduced. It has been found that the lengths of both the initial and development growth 11 

stages of cabbage were 5 days shorter than those from the FAO56 (Irrigation and 12 

Drainage Paper by the FAO). The deduced crop coefficient for transpiration at the initial 13 

growth stage was 0.11; slightly smaller than 0.15 recommended by the FAO56, while at 14 

the mid-season growth stage, the deduced value of 0.95 was identical with the 15 

recommended value. Results show that the predictions of soil water potential using the 16 

obtained values of crop coefficients agreed well with the measurements throughout the 17 

entire growing period, indicating that the deduced crop coefficients were credible and 18 

appropriate for cabbage grown under the specific conditions of location and climate. It 19 

follows that the strategy presented in the study can enable accurate estimates of crop 20 

coefficients to be obtained from soil sensor measurements and inverse modeling 21 

techniques.  22 

 23 
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inverse analysis. 2 

 3 

1. Introduction 4 

 5 

The Food and Agriculture Organization (FAO) of the United Nations in its 6 

Irrigation and Drainage Paper, FAO56, provides a means of estimating water requirement 7 

for various crops grown under different climate conditions (Allen et al., 1998), which has 8 

been widely accepted and applied across the world. However, the crop coefficients 9 

proposed by the FAO56 might not be universally accurate so there is a need for local 10 

calibration according to crop species, soil and climate conditions (Allen et al., 1998).  11 

Numerous studies have been conducted, aimed at obtaining more appropriate crop 12 

coefficients under local conditions. Calibration of crop coefficients has been made with 13 

weighing lysimeter devices (Liu et al., 2002; Kang et al., 2003; Karam et al., 2006; 14 

López-Urrea et al., 2009; Liu and Luo, 2010). Techniques using data from soil sensors at 15 

various depths for estimating evapotranspiration have also been attempted (Mastrorilli et 16 

al., 1998; Nachabe et al., 2005; Fernández-Gálvez and Barahona, 2007). Recently, the 17 

eddy covariance techniques, a prime atmospheric flux measurement technique to measure 18 

and calculate vertical turbulent fluxes within atmospheric boundary layers, have also 19 

been tested in agriculture for measuring crop evapotranspiration (Kjaersgaard et al., 2008; 20 

Li et al., 2008; Sun et al., 2008). Other techniques of measuring actual evapotranspiration 21 

can be seen in the review by Rana and Katerji (2000). Whilst most of these techniques 22 

give promising estimates of actual evapotranspiration at a field scale, a common problem 23 
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is that these techniques alone are not capable of separating soil evaporation from crop 1 

transpiration. Further, the weighing lysimeter technique is labor intensive and expensive. 2 

Numerical modeling techniques for water dynamics in the soil-crop system, on 3 

the other hand, have progressed greatly in the last couple of decades through advances of 4 

sciences in soil and plant and computing power. Many developed mechanistic models are 5 

now able to make reliable predictions of water movement in various processes in the soil-6 

crop system, given accurate inputs (Šimůnek et al., 1992, 2005; Bastiaanssen et al., 2007; 7 

Kroes et al., 2008; Yang et al., 2009). In recent years, with the help of such mechanistic 8 

models, efforts have been made to use inverse modeling techniques to infer the soil 9 

hydraulic properties using the soil water content/potential measurement at depths down 10 

the profile from cropped or fallow soil, and research on this topic has been fruitful (Ines 11 

and Droogers, 2002; Jhorar et al., 2002; Ritter et al., 2003; Sonnleitner et al., 2003; 12 

Gómez et al., 2009; Zhang et al., 2010). These techniques, though promising, have not 13 

been applied to estimate FAO56 crop coefficients. 14 

The principal aim of this study was to devise a strategy of using soil sensor 15 

measurements and inverse modeling techniques to provide an easy and accurate 16 

alternative to calibrate crop coefficients locally. In order to examine the reliability of the 17 

deduced crop coefficients, comparisons were carried out between the simulated results 18 

with the deduced crop coefficient values and the soil sensor measurements within their 19 

working range and those modeled using the values recommended by the FAO56. Since 20 

soil sensors are available nowadays which are inexpensive, simple to maintain and install, 21 

and accurate, the study provides a promising means of calibrating crop coefficients 22 

locally with ease and accuracy. 23 
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 1 

2. Materials and methods 2 

 3 

2.1. Experiments 4 

 5 

An experiment was carried out at Wellesbourne, UK (latitude: 52
o
12' N, 6 

longitude: 1
o
37' W) using a Dutch white cabbage (cv. Eminence, Tozer seeds, UK). The 7 

soil was classified as a sandy loam of the Wick series (Whitfield, 1974). Prior to planting, 8 

soil samples were taken at 10 cm intervals down to a depth of 1.2 m for measurements of 9 

physical properties. Soils were found to be generally uniform in both the topsoil of 30 cm 10 

and the subsoil, however, a slightly higher percentage of sand and a lower percentage of 11 

clay were contained in the subsoil than the topsoil (Table 1). The slightly higher bulk 12 

density in the subsoil was likely to have been due to soil compaction. The soil below 1.2 13 

m depth was assumed to be identical to the soil immediately above.  14 

The experimental design was a fully randomised block, with five replicates. The 15 

crop was transplanted on 29 April 2009 and harvested on 8 September 2009. The plots 16 

were 5.0 x 2.0 m. Plants were spaced 0.50 m between, and within rows. 300 kg N ha
-1

 17 

and 100 kg K ha
-1

 were applied as NH4NO3 and K2SO4 respectively, a day before 18 

planting and was incorporated into the soil during cultivation. Immediately after planting, 19 

the crop was given approximately 10 mm irrigation by overhead oscillating line, after 20 

which drip irrigation, supplied by pressure compensated drippers (Netafim, Tel Aviv, 21 

Israel), was applied. Pests, diseases and weeds were effectively controlled throughout 22 

growth.  23 
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Three irrigation treatments were imposed on the experiment after crop 1 

establishment. One treatment followed growers practice, i.e. 20 mm irrigation for 25 mm 2 

loss of soil water, in applying water, but no efforts were made to measure soil water 3 

potential. The second treatment adopted the irrigation regime according to the FAO56 4 

throughout growth. The soil water content in the root zone was maintained above the 5 

critical threshold value of 0.55 fc+0.45 pwp with fc and pwp being soil water content at 6 

field capacity and the permanent wilting point, respectively. The third treatment had a 7 

threshold value of soil water content which was 25% lower than that used in the second 8 

treatment. The dates and volumes of irrigation for each treatment are given in Table 2. 9 

Soil water potential was measured at various depths in the second and third 10 

treatments using Watermark 200SS-v soil moisture sensors (Irrometer Company, USA). 11 

Such sensors are a granular matrix sensor that measures soil water potential indirectly 12 

using electrical resistance (Shock, 2004). They have widely been used on commercial 13 

farms for irrigation scheduling and for research applications. The sensor is inexpensive, 14 

simple to install and easy to maintain (Thompson et al., 2006). Furthermore, Watermark 15 

200SS sensors have a relatively wide working range of -10 to -200 kPa (Armstrong, 16 

1987; Spaans and Baker, 1992), and are able to provide an accurate measurement of soil 17 

water potential (Thompson et al., 2006). The sensors were installed in the soil on 10 June 18 

at depths of 10, 30, 50, 70, 90 and 100 cm. Each set of 6 sensors were installed at the 19 

centre of a set of four plants, 35 cm from the drip-emitter to the plants in each replicate 20 

plot. Sensors were wired to a datalogger (DL2e, Delta-T devices, Cambrige, UK), 21 

readings were taken hourly and the replicate sensor measurements at each depth were 22 

averaged.  23 
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Soil samples were taken on 1 May 2009 to determine soil moisture in the layers of 1 

0-30 cm, 30-60 cm and 60-90 cm (Table 3). Meteorological data were recorded using an 2 

on-site station, situated approximately 100 m from the experimental site. The measured 3 

weather variables included maximum, mean and minimum air temperatures, total solar 4 

radiation, relative humidity, wind speed and precipitation. Air temperature and relative 5 

humidity were measured at 1.25 m above ground. All the measurements were taken at 6 

daily intervals and some of them are given in Fig. 1.  7 

At harvest, ten guarded heads per plot were cut level with the soil. These heads 8 

were weighed for fresh weight yield. A representative sub-sample of this material was 9 

taken and weighed, then dried and reweighed for an estimation of dry matter percentage. 10 

Pits were dug at the end of the second and third treatments plots, so that a confirmation of 11 

rooting depth could be made. This was achieved by carefully excavating the soil and 12 

recording the maximum depth at which roots were found. There were no significant 13 

effects of irrigation treatment on total yield, expressed either on a fresh or dry weight 14 

basis. The data from the second treatment, i.e. irrigation according to the FAO56 15 

guidance, is used in this study. The measured dry weight yields and rooting depth are 16 

given in Table 3. 17 

 18 

2.2. Inverse modeling 19 

 20 

 Inverse modeling, unlike forward modeling, estimates optimum values of model 21 

parameters from measured data, instead of predicting state variables of the system from 22 

input. 23 



7 

 

 1 

2.2.1 Formulation of the inverse model and optimization algorithm 2 

 3 

The principles behind the inverse modeling techniques involved three different 4 

steps: determining the number of parameters to be deduced, formulating the optimized 5 

function, and implementing an optimized algorithm. In the study, the parameters that 6 

were required included the durations of crop initial, developmental, mid-season and late 7 

season growth stages, Lini, Ldev, Lmid and Llate, and their associated basal crop coefficients 8 

for transpiration Kcb_ini, Kcb_mid and Kcb_end as defined by the FAO56 and illustrated in Fig. 9 

2. Since the total growth length is known, the vector of the parameters to be deduced for 10 

the inverse model is x = [Lini, Ldev, Lmid, Kcb_ini, Kcb_mid, Kcb_end]
T
. The optimized function 11 

is the mean relative error square between simulated values and measurements of a given 12 

state variable. Thus the inverse model can mathematically be stated as: 13 

 14 

To find: x 15 

Maximize: 

2
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 19 

where f is the optimized function, x is the parameter vector, z (cm) is the vertical 20 

coordinate, hmea (cm) and h (cm) are the measured and simulated soil water pressure head 21 

at depth z in the profile, respectively, ti is the time when the i
th

 measurement is taken, N is 22 
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the number of measurements, 
jx  and 

jx are the lower and upper boundaries of the 1 

parameter xj, respectively, and 
meah  and 

meah  are the lower and upper threshold values 2 

within which the measured soil water potential is reliable. 3 

 The optimized function, Eq. (1), gives the identical weight to the measured values 4 

of soil water potential at various depths since there was only one type of measurement 5 

with the same accuracy. However, it should be pointed out that different weights in the 6 

optimized function should be considered if the measurements are not equally accurate to 7 

reflect the precision of the measurements, as suggested by Hollenbeck and Jensen (1998) 8 

and Hollenbeck et al. (2002). 9 

In inverse modeling the reliability of the deduced parameters is dependent on 10 

other parameters required to run the forward model. Any serious bias in the values of the 11 

unfitted parameters will, of course, greatly affect the reliability of the fitted parameters. 12 

In the soil-crop system, the determination of soil hydraulic properties is often problematic. 13 

In this study, soil hydraulic properties were determined using the pedo-transfer functions 14 

(PTFs) approach proposed by Wösten et al. (1999), based on a study of more than 5000 15 

soil samples across Europe. Since the proposed PTFs were aimed particularly at the 16 

European soils, the determination of the soil hydraulic properties in this study was 17 

reasonable. It is realized though that soil hydraulic properties deduced using the field 18 

evaporation experiments as demonstrated in Zhang et al. (2010) are more representative 19 

at a field scale. However, the measured data from the fallow soil was not available for 20 

this study. 21 

The selection of an effective optimization algorithm is crucially important for 22 

solving the inverse model. Although there are many traditional algorithms available (Rao, 23 
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1984; Hopmans and Šimunek, 1999) and some successful studies of using the traditional 1 

algorithms in parameter identification (Zhang et al., 2008), a common problem is that 2 

these methods are only able to find a localized optimum solution, and the solution is 3 

highly dependent on the initial estimates of the deduced parameters. However, modern 4 

evolutionary algorithms such as genetic algorithms (GAs) overcome this problem 5 

(Goldberg, 1989). When GAs are applied, the optimized function Eq. (1) is termed as the 6 

fitness function. The software used in the study is for a micro-GA developed by Carroll 7 

(1999). It has been proved that the micro-GA technique is very effective, and was 8 

previously used for inferring soil hydraulic properties from the field evaporation 9 

experiments (Zhang et al., 2010). 10 

 11 

2.2.2. Description of the forward flow model 12 

 13 

To simulate the soil water pressure head at depths in the profile and at the time 14 

intervals required by Eq. (1), a forward model needs to run. The model outlined in this 15 

section is for this purpose, i.e. predicting spatial-temporal soil water pressure head during 16 

the simulation period. The justification of using the equations below is given in Yang et 17 

al. (2009) and Zhang et al. (2010). It has been demonstrated that if the environmental 18 

conditions, soil hydraulic properties and crop parameters are known with more precision, 19 

then the model is able to produce accurate results in predicting water dynamics in the 20 

soil-crop system (Yang et al., 2009). 21 

In 1-D systems, the Richards’ equation for water transfer within the soil profile, 22 

expressed in terms of soil water content, , and soil water pressure head, h, is:  23 
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where K (cm d
-1

) is the soil hydraulic conductivity,  is the root water stress reduction 4 

factor, and Smax (d
-1

) is the maximum root water uptake. 5 

The soil hydraulic functions are defined according to van Genuchten (1980) and 6 

Mualem (1976): 7 
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where  is the relative saturation, s  and r  (cm
3
 cm

-3
) are the saturated and residual 12 

soil water contents,  (cm
-1

) and n are the shape parameters of the retention and 13 

conductivity functions, m = 1-1/n, and Ks (cm d
-1

) is the saturated hydraulic conductivity. 14 

Smax and  can be calculated using the following expressions (Feddes et al., 1978; 15 

Wu et al., 1999; Yang et al., 2009; Zhang, 2010; Zhang et al., 2010): 16 
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where Lr(z) is the relative root length distribution at z, Kcb, is the basal crop coefficient 1 

for transpiration from the FAO56, dependent on crop species and its development stage, 2 

ET0 (mm) is the reference evapotranspiration, h3 is the soil water pressure head at the 3 

permanent wilting point (-15,000 cm), h1 is the soil water pressure head near saturation 4 

above which water uptake is prohibited due to the lack of oxygen (-1 cm), and h2 is the 5 

threshold soil water pressure head below which the transpiration is reduced. For a rapid 6 

transpiration of 5 mm d
-1

 and a slow transpiration of 1 mm d
-1

, h2 has values of -500 cm 7 

and -1,100 cm, respectively (Šimůnek et al., 1992; Sonnleitner et al., 2003; Yang et al., 8 

2009). 9 

ET0 can be estimated using a Penman-Monteith method directly at daily intervals 10 

according to the FAO56: 11 

 12 

)34.01(

)()273/(900)(408.0

2

2
0

u

eeuTGR
ET asn     (9) 13 

 14 

where Rn (MJ m
-2

 d
-1

) is the net radiation at the crop surface, G (MJ m
-2

 d
-1

) is the soil 15 

heat flux density, u2 (m s
-1

) is the 24 h average wind speed at 2 m height, es (kPa) is the 16 

saturation vapour pressure, ea (kPa) is the actual vapor pressure,  (kPa C
-1

) is the slope 17 

of the vapour pressure curve, and  (kPa C
-1

) is the psychrometric constant. The 18 

procedures of computing G, es, ea,  and  are given in the FAO56. 19 

 The net radiation at the crop surface is calculated as suggested by the FAO56: 20 

 21 
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 9 

where Rs (MJ m
-2

d
-1

) is the daily total solar radiation, Tmin and Tmax ( C) are the daily 10 

minimum and maximum air temperature, respectively, zalt (m) is the altitude, RHmin and 11 

RHmax (%) are the daily minimum and maximum relative humidity, respectively, dr is the 12 

relative distance between the earth and the sun, J is the day number in the year,  (radian) 13 

is the solar declination,  (radian) is the latitude, and s is the sunset hour angle. 14 

Rooting depth growth is estimated according to Greenwood et al. (1982) and 15 

Zhang et al. (2007; 2009): 16 

 17 

)]2-W(10,0max[0zz RR         (16) 18 

 19 
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where zR  (cm) is the rooting depth, Rz0 is the rooting depth at planting (assumed 20 cm 1 

for a vegetable crop with dry weight less than 2 t ha
-1

), W (t ha
-1

) is the above ground 2 

plant dry weight, which is estimated by the following equation for daily increments 3 

(Greenwood et al., 1977; Zhang et al., 2007, 2009): 4 

 5 

W

W
W

1 growthT

WWWW 0max0max )/ln(
      (17) 6 

 7 

in which W0 and Wmax are the crop dry weights at planting and harvest. Tgrowth (d) is the 8 

length of the total growth period. 9 

The root length density declines exponentially from the soil surface downwards 10 

(Gerwitz and Page, 1974; Pedersen et al., 2010): 11 

 12 

z
za

r RzezL z)(        (18) 13 

 14 

where az (cm
-1

) is the shape parameter controlling root distribution down the soil profile. 15 

Daily potential soil evaporation is calculated using the dual crop coefficient 16 

method proposed by the FAO56: 17 

  18 

0ETKE epot           (19) 19 

 20 

where Epot (cm) is the potential daily soil evaporation, ET0 (cm) is the reference 21 

evapotranspiation, and Ke is the evaporation coefficient, defined as: 22 
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 1 
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 3 

where Kcmax is the maximum evapotranspiration coefficient, and fcover is the soil fraction 4 

covered by plants, calculated according to the assumption that the proportion of crop 5 

ground cover is linearly related to W and the full cover occurs when W reaches 4 t ha
-1

 for 6 

cabbage crop measured from the previous experiments (unpublished data). 7 

 The dual crop coefficients used in this study, i.e. Kcb in Eq. (7) and Ke in Eq. (19), 8 

are to calculate potential soil evaporation and crop transpiration at a given day. The 9 

calculated potential soil evaporation is applied to the soil surface for computing actual 10 

evaporation, whereas the potential crop transpiration is applied in the root zone as 11 

expressed in Eq. (7) for computing actual root water uptake in the forward flow model. 12 

Whether the potential soil evaporation and crop transpiration are met is dependent on the 13 

water availability in the soil. 14 

The procedure used to solve the forward flow model formulated above was that 15 

proposed by Yang et al., (2009). The proposed approach, based on the work by Lee and 16 

Abriola (1999), considers that water content in a soil layer is only influenced by the 17 

layers above and below in a small time step of 0.001 d, which drastically simplifies the 18 

algorithm, allowing soil water flow to be calculated layer by layer. The procedure works 19 

with a uniform 5 cm soil layer, and the soil layer is numbered 1 at the bottom of the 20 

profile and with the layer number increasing towards the surface. For re-distribution of 21 

soil water in the profile, the integrated form of Eq. (4) is applied from the bottom layer to 22 
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the top layer at each time step. A detailed description of the algorithm is given elsewhere 1 

(Yang et al., 2009). 2 

 3 

2.2.3. Implementation procedure 4 

 5 

To identify the parameter vector x which contains the crop coefficients and the 6 

durations of crop initial, development, mid-season and the late growth stages, the 7 

following procedures have to be implemented: 8 

1) Set the lower and upper boundaries of the parameter vector x, numbers of 9 

population and generation for the micro-GA algorithm; 10 

2) Randomly generate a population of abstract representations of candidate solutions;  11 

3) Calculate daily soil water potential values at depths where sensors are placed 12 

using the forward flow model for a given candidate solution in the population; 13 

4) Calculate the fitness function f (Eq. 1) using the calculated and measured soil 14 

water potential values; 15 

5) Repeat 3) and 4) for all the candidate solutions in the population; 16 

6) Evaluate every candidate solution in the population based on their fitness (the 17 

higher the f value, the better); 18 

7) Form a new population through genetic operators of crossover and mutation; 19 

8) Repeat from 3) to 7) until the maximum number of generations produced; 20 

9) Find the best solution in the population of the last generation. 21 

The descriptions of the terminologies regarding GAs and how the genetic 22 

operators are performed can be seen in Goldberg (1989). 23 
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 1 

2.2.4. Evaluation criteria 2 

 3 

Accuracy of the simulated soil water pressure head using deduced parameter 4 

values was evaluated as the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) 5 

and the root of the mean squared errors (RMSE): 6 

 7 
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 10 

where 
'

meah  is the average of the measured values. 11 

A value of NSE close to 1 and a small RMSE indicate that the simulated values 12 

are in good agreement with the measured values. 13 

 14 

2.2.5 Parameter values 15 

 16 

The information required for the inverse model includes the upper and lower 17 

boundaries of the deduced variables, weather data, soil hydraulic properties, together with 18 

the crop parameters and the initial conditions for running the forward flow model. The 19 

lower and upper boundaries set for the parameter vector of crop coefficient and length of 20 
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growth stage were x  = [Lini, Ldev, Lmid, Kcb_ini, Kcb_mid, Kcb_end]
T
 = [25, 65, 100, 0.1, 0.7, 1 

0.7]
T
 and x  = [Lini, Ldev, Lmid, Kcb_ini, Kcb_mid, Kcb_end]

T
 = [50, 90, 125, 0.3, 1.2, 1.2]

T
. 

meah  2 

and 
meah  in Eq. (3) were -2000 cm and -100 cm soil water pressure head, respectively, 3 

corresponding to the soil water potential of -200 kPa and -10 kPa within which the soil 4 

sensors perform reliably (Thomson and Armstrong, 1987; Spaans and Baker, 1992). The 5 

weather data used in the simulation periods, including daily minimum and maximum air 6 

temperatures, rainfall, global radiation, relatively humidity and wind speed were 7 

measured and some of the measurements are given in Fig. 1. Since no measurement of 8 

solar radiation was made from 13 August to 20 August 2009, the measured pan 9 

evaporation was used in estimating reference evapotranspiration in the subsequent 10 

simulations for the period. 11 

Soil water retention curves for the topsoil (0 - 30 cm) and the subsoil (30 cm - ) 12 

were derived using the PTFs proposed by Wösten et al. (1999). The PTFs, derived based 13 

on a study of extensive EU soil samples, is considered particularly appropriate for the 14 

soils used in the study. Soil water was calculated to a depth of 200 cm.  The calculated 15 

soil domain was down to 200 cm. The soil hydraulic properties derived using the PTFs 16 

for the topsoil and subsoil are listed in Table 1. The measured final dry weight yield 17 

(Table 3) was used in estimating rooting depth during growth (Eqs. 16, 17). The shape 18 

parameter controlling root distribution down the soil profile az in Eq. (18) was set to be 19 

0.03 cm
-1

, within the range measured for vegetable crops (Greenwood et al., 1982). We 20 

used the measured soil water distributions down the profile on 1 May 2009 as the initial 21 

conditions (Table 1). The soil water between the deepest measured depth and 200 cm was 22 

assumed to be at equilibrium. 23 
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 1 

3. Results and discussion 2 

 3 

3.1 Crop coefficient and length of growth stage 4 

 5 

The lengths of different crop growth stages and their associated crop coefficients 6 

for transpiration were successfully obtained by solving the inverse model formulated in 7 

Eq. (1) using the micro-GA technique. The deduced parameter vector for crop coefficient 8 

and length of growth stage was x = [Lini, Ldev, Lmid, Kcb_ini, Kcb_mid, Kcb_end]
T
 = [35, 55, 17, 9 

0.11, 0.95, 0.89]
T
. It can be observed that while the obtained Kcb_ini of 0.11 at the initial 10 

growth stage is slightly smaller than 0.15 by the FAO56, the value of Kcb_mid at the mid-11 

season growth stage is the same as the recommendation, i.e. 0.95 (Fig. 3). The lengths of 12 

the initial and development growth stages were 35 days and 55 days, respectively, 5 days 13 

less than the FAO56 recommendations on each occasion. However the mid-season 14 

growth stage was markedly shorter than the recommended value and the difference was 15 

35 days. The length and crop coefficient value for the late growth stage obtained from the 16 

study were 25 days and 0.89, compared with 15 days and 0.85 by the FAO56. The 17 

difference between the deduced Kcb_mid and Kcb_end was 0.06, smaller than 0.1 as 18 

suggested by the FAO56. The differences in the parameter values between the deduced 19 

and recommended may be attributed to the crop cultivar and the climate under which the 20 

crop grew. Another contributory factor for the smaller difference in Kcb between the mid-21 

season and late growth stages is that the total growing period in the experiment was 22 

considerably shorter than that assumed by the FAO56. The plants at harvest were not 23 



19 

 

mature enough to significantly reduce transpiration. Overall the deduced parameter 1 

values for crop coefficient and length of growth stage are credible (Fig. 3).  2 

The deduced values are somewhat different from the FAO56 recommendations. 3 

Results reveal that the lengths of initial and development growth stages for cabbage 4 

grown in the experiment are slightly shorter than the FAO56 recommendation, and so is 5 

the crop coefficient for transpiration at the initial growth stage. Such a phenomenon that 6 

the deduced crop coefficients deviate from the FAO recommended values has been 7 

widely reported for a range of crops (Kang et al., 2003; López-Urrea et al., 2009). Length 8 

of crop growth stages may differ under different climates, and different cultivars may 9 

have different transpiration rates, root distributions as well as different lengths of growth 10 

stages (Tuberosa, 2004; Tardieu, 2005). It is therefore necessary to calibrate the crop 11 

coefficient locally so that the water application can be managed more precisely.  12 

It should also be pointed out that, despite the big difference in irrigation amount 13 

applied according to the growers practice (110 mm) and the FAO56 guidance (56 mm), 14 

there was no significant difference in terms of crop dry weight yield. This suggests that 15 

the maximum crop growth can be obtained when the soil moisture content in the root 16 

zone is far below that at field capacity, and the threshold value of soil water content in the 17 

root zone for irrigation by the FAO56 is reasonable for cabbage in this study, in 18 

agreement with the previous studies using the same approach for irrigation for other crops 19 

(see the review by Greenwood et al., 2010). It follows that the FAO56 provides a good 20 

guidance for optimal irrigation over a wide range of crops, and potentially has benefits 21 

over existing grower practices. 22 

 23 
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3.2 Performance of the forward flow model 1 

 2 

Fig. 4 shows the overall comparison of soil water potential between measurement 3 

and simulation for the measured range of -10 to -200 kPa within which the sensors work 4 

accurately. The simulated values were obtained using the forward flow model with the 5 

deduced crop parameter values. Regression between measurement and simulation gave a 6 

high value of R
2
 (0.814) and approximately 1 (0.995) for the gradient (Fig. 4). Statistical 7 

analyses (Eqs. 21, 22) also gave a high value of NSE (0.78) and a relatively low value of 8 

RMSE (15.3 kPa). This indicates that the overall agreement between measurement and 9 

simulation is satisfactory. For comparison, the simulations were also carried out using the 10 

FAO56 recommended values and the same statistical analyses were applied to the 11 

simulated results. Likewise the statistical indices were 0.64 for NSE and 20.0 kPa for 12 

RMSE, respectively. The agreement between measurement and simulation is evidently 13 

worse than that obtained with the obtained crop parameter values. This partly reconfirms 14 

the reliability of the deduced parameters. 15 

Detailed comparison of the soil water potential at various depths between 16 

measurement and simulation was also carried out (Fig. 5). The model not only 17 

reproduced the patterns of soil water changes in layers, but also produced values close to 18 

the measurements. At the 10cm and 30cm depths, soil water potential was markedly 19 

affected by rainfall. The peaks of soil water potential (most negative) all coincided with 20 

the end of the dry spell of weather. However, in the subsoil (below 30 cm) the soil water 21 

potential was much less affected by rainfall (Fig. 5). While the overall performance of the 22 

forward model in reproducing the measurements is fairly good, discrepancies also exist 23 
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between measurement and simulation. The simulated soil water potential at the 10 cm 1 

depth agree well with the measured values, but at the deeper depths the discrepancies 2 

between measurement and simulation tended to increase. One possible reason is the 3 

simple assumption about root length distribution. The model assumes that the root length 4 

distribution during growth is exponential down the profile from the surface and there is 5 

only one parameter controlling the distribution. Results from the study indicate that the 6 

assumption might be an over-simplification. In the model az is the only parameter 7 

controlling root length distribution down the profile. There is no flexibility to distribute 8 

roots other than the exponential manner, whereas the root distribution has not always 9 

found to be exponential in field experiments (Thorup-Kristensen, 2006). Consideration 10 

should be given to formulate the root distribution in a different way with more parameters 11 

such as polynomial distribution proposed by Wu et al. (1999) so that the modeling of root 12 

distribution can be carried out more accurately. Also, attempts should be made to infer 13 

the root parameters together with other crop parameters from the soil sensor 14 

measurements at depths. Another contributory factor is the dynamic impact of water 15 

stress on root water uptake. It has been found that water stress that occurs in one part of 16 

the root zone can be compensated for by enhanced extraction from the other wetter parts 17 

(Lai and Katul, 2000; Li et al., 2001; Yadav et al., 2009). When the top soil dries, the 18 

roots in the deep wetter soil increase their capacity of extracting water, which could lead 19 

to lower than the simulated water potential in the deep soil as shown in Fig. 5. To further 20 

improve the forward flow model, root water uptake with water stress compensation 21 

should be incorporated in the future. 22 

 23 
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3.3 Simulated crop coefficients and evapotranspiration 1 

 2 

Daily simulated crop transpiration coefficient and soil evaporation coefficient 3 

according to Eq. (20) are shown in Fig. 6(a). Despite the fluctuation in Kcb which was 4 

caused by the environmental factor, the simulated Kcb does not deviate markedly from the 5 

basal lines. It follows that the potential transpiration was basically met, and the crop did 6 

not suffer water stress throughout growth. The evaporation coefficient Ke, on the other 7 

hand, varies greatly at the initial crop growth stage, followed by a steady decline before 8 

reaching zero on 30 June when full ground cover occurred. The large variations in Ke at 9 

the initial growth stage were due to the changes in soil water in the surface soil. The 10 

maximum soil evaporation occurred after an event of rainfall or irrigation when the top 11 

soil was wet. The simulated single crop coefficient Kc, i.e. the sum of the Kcb and Ke as 12 

defined by the FAO56, is also compared with the recommendations (Fig. 6b). While 13 

generally the simulated Kc follows the FAO lines, the simulated values are somewhat 14 

lower than the recommended values at the early development growth stage, possibly 15 

caused by obtained shorter lengths of the initial and development growth stages. At the 16 

initial crop growth stages, the calculated Kc fluctuates greatly, similar with the soil 17 

evaporation coefficient Ke. 18 

Fig. 7 shows the cumulative potential and simulated evapotranspiration during 19 

growth, together with the cumulative rainfall plus irrigation. It reveals that the cumulative 20 

actual evapotranspiration was about 55 mm less than the cumulative potential 21 

evapotranspiration, which can be attributed to the dry spell between 22 May and 01 June 22 

when no irrigation was applied. Further, it can be observed that the crop 23 
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evapotranspiration was mainly met by the rainfall and irrigation. The cumulative 1 

simulated evapotranspiration at harvest was 351 mm, compared with 316 mm provided 2 

by rainfall and irrigation. Also, soil water initially contained in the profile contributed to 3 

the crop evapotranspiration as soil water potential in all layers was lower at harvest than 4 

at planting time. 5 

 6 

3.4 Rooting depth and root length distribution 7 

 8 

Fig. 8 shows the rooting depth estimated in the study using Eqs. (16) and (17) 9 

against the cumulative daily air temperature. It reveals that the rooting depth started to 10 

increase (when the above ground dry weight reached 2 t ha
-1

) at the cumulative day 11 

degree of approximately 500 d
o
C after planting, and the increment in rooting depth is 12 

virtually related to the cumulative daily air temperature in a linear manner. The root 13 

growth rate was approximately 0.8 cm d
-1o

C
-1

. This indicates that after a threshold of 14 

cumulative day temperature from planting, the increase in rooting depth could also be 15 

linearly correlated with the cumulative day temperature, in agreement with the 16 

experimental evidence (Thorup-Kristensen, 1998, 2006; Thorup-Kristensen and Van den 17 

Boogaard, 1999; Kage et al., 2000). The threshold value of 500.0 d
-1o

C
-1

 and the growth 18 

rate of approximately 0.8 mm d
-1o

C
-1

 in the study are higher than 350 - 400 d
-1o

C
-1

 and 19 

lower than 1.2 mm d
-1o

C
-1

 reported by Thorup-Kristensen (2006) for cabbage. Given the 20 

fact that the predicted maximum rooting depth by Eq. (16) is in good agreement with the 21 

measured value of 140 cm, the threshold value of 500 d
-1o

C
-1

 and 0.8 mm d
-1o

C
-1

 growth 22 

rate were more appropriate for the crop grown on this particular site, suggesting that the 23 
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growth rate might not be universally held and should be calibrated locally. The 1 

differences in both the threshold value and the growth rate might be caused by different 2 

soils having different mechanical impedance to root elongation and the cultivars used in 3 

the experiments. 4 

The effect of the shape parameter controlling root length distribution down the 5 

profile az on overall model prediction of soil water potential at different depths was 6 

investigated. The regressions between measurement and simulation without the intercept 7 

using various az values of 0.02, 0.025, 0.03, 0.035 and 0.04 cm
-1

 were performed at all 8 

depths (Fig. 9) and the regressed coefficients of the best fitted lines are listed Table 4. 9 

There is a trend that the gradient of the fitted lines decreases with increasing az (Table 4). 10 

A smaller value of az gives more uniformly distributed root length down the profile, 11 

while a bigger value produces more roots near the surface. It is evident that if az is 12 

unrealistically low or high the fitted line deviates from the 1:1 line greatly (Fig. 9). It can 13 

be concluded from Table 4 that az of 0.03 cm
-1

 is the most appropriate to use in Eq. (18) 14 

describing root length distribution in the profile for cabbage, as detailed in the study. 15 

 16 

3.5 Application of the calibrated model 17 

 18 

With the advances in mathematics and computer sciences, modeling has 19 

increasingly become an important tool in precision agriculture. Bastiaanssen et al. (2007) 20 

reported that the mechanistic models could and should be used in assisting irrigation 21 

scheduling. Greenwood et al. (2010) argued that sufficient advances have been made in 22 

soil and plant sciences as well as in sensor and wireless technologies, such to merit 23 
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applying the quantitative models to optimizing irrigation. Nevertheless, the models of this 1 

kind in practical use are still low (Bastiaanssen et al., 2007). Apart from the difficulty in 2 

estimating soil hydraulic properties (Bastiaanssen et al., 2007), we believe that the lack of 3 

confidence in the model predictions is another primary reason why people do not take the 4 

models seriously. Indeed, using the model without calibration for studying water 5 

dynamics in the soil-crop system and irrigation scheduling is not always reliable since the 6 

system is extremely complex. As sensor-driven irrigation systems become more 7 

affordable and more widely adopted, efforts should be made to feed the models with the 8 

measurements for calibration to improve the accuracy of model predictions. It is easy 9 

nowadays to develop and calibrate the models to produce reasonable predictions in a 10 

given location for a number of crops. Together with the knowledge of the tolerance of 11 

water stress in terms of either soil water content in the FAO56 or soil water potential 12 

(Kroes et al., 2008) for various crops, this could lead to irrigation scheduling which solely 13 

relies on the calibrated models. Furthermore, due to the indispensable relationship 14 

between soil water and the availability of nutrients for uptake by roots, the models 15 

calibrated in this way undoubtedly improve the model-based decision support systems for 16 

fertilizer requirement in crop production such as those developed by Zhang et al. (2007, 17 

2009) and Zhang (2010). 18 

 19 

4. Conclusions 20 

 21 

A strategy of inferring the lengths of different crop growth stages and the crop 22 

coefficient by applying an inverse modeling approach on the soil water potential data 23 
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collected from depths has been devised. The soil water potential values obtained from the 1 

model using the deduced parameter values were in much better agreement with the 2 

measured values than if the FAO56 recommended parameter values were used. This 3 

suggests that the strategy presented in the study should enable more accurate estimates of 4 

crop water requirements to be made. We are moving to a situation where accurate sensor 5 

measurements of water potential or content can be obtained at different depths down the 6 

soil profile with a reasonable cost. If this objective is met then the procedures proposed in 7 

this paper provide an easy, affordable and accurate alternative of calibrating crop 8 

coefficients locally for precise and efficient water management in crop production.  9 

It was also found that the micro-GA algorithm was a powerful and robust tool to 10 

find the global solution to the optimization problem. The predicted rooting depth 11 

increased with cumulative day temperature linearly. It is necessary to estimate the root 12 

growth rate using the measured/estimated maximum rooting depth and cumulative day 13 

temperature during growth when applying the inverse modeling technique. Further work 14 

is required to improve the forward flow model by incorporating water stress 15 

compensation for root water uptake, and to expand the inverse modeling technique so that 16 

all the crop parameters including those describing root growth dynamics can be obtained. 17 

These improved model predictions will allow irrigation scheduling to be finely tuned to 18 

the requirements of local conditions. 19 

 20 
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Figure captions 1 

 2 

Fig. 1. Measured daily mean air temperature and relative humidity (a) and solar radiation 3 

and rainfall (b) during the experiment. 4 

Fig. 2. Schematic diagram of the lengths of crop growth stages and crop coefficient for 5 

transpiration. 6 

Fig. 3. Comparison of the lengths of various crop growth stages and crop coefficient for 7 

transpiration between inferred in the study and FAO56 recommendations. 8 

Fig. 4. Overall comparison of soil water potential at various depths between measurement 9 

and simulation. 10 

Fig. 5. Comparison of soil water potential between measurement and simulations with the 11 

inferred parameter values and recommended values by the FAO56 at 10 cm depth 12 

(a), 30 cm depth (b), 50 cm depth (c), 70 cm depth (d) and 90 cm depth (e). 13 

Fig. 6. Inferred daily simulated coefficients for soil evaporation Ke and crop transpiration 14 

Kcb (a) and simple crop coefficient Kc (b). 15 

Fig. 7. Cumulative potential and simulated evapotranspiration and rainfall plus irrigation 16 

in the experiment. 17 

Fig. 8. Relationship between modeled rooting depth and cumulative day air temperature 18 

during growth. 19 

Fig. 9. Effect of root shape parameter z on the overall comparison of soil water potential 20 

at depths between measurement and simulation. Symbols ◊, ∆, ×, * and ○ 21 

represents the simulations from az = 0.02, 0.025, 0.03, 0.035 and 0.04 cm
-1

. 22 

 23 
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Table 1 

Soil physical properties and the van Genuchten hydraulic parameter values 

 
a

s , r : the saturated and residual soil water contents, respectively; 
b

, n: the shape parameters of the retention and conductivity functions, respectively; 
c
Ks: the saturated hydraulic conductivity. 

 

 

 
Clay (%) 

(<0.002mm) 

Silt (%) 

(0.002 - 0.05mm) 

Sand (%) 

(> 0.05mm) 

Organic 

matter (%) 

Bulk density 

(g cm
-3

) 
s
a

 

(cm
3
 cm

-3
) 

r
a

 

(cm
3
 cm

-3
)

b

(cm
-1

) 

n
b
 

(-) 

Ks
c
 

(cm d
-1

) 

Topsoil 

(0 – 30 cm) 13.0 11.5 75.5 1.7 1.55 0.374 0.025 0.07119 1.283 73.0 

Subsoil 

(30 cm – ) 11.0 10.0 79.0 0.8 1.65 0.342 0.025 0.06173 1.346 174.8 



 37 

 

Table 2 

Dates and amounts (mm) of irrigations in different treatments 

 

Treatment 05-May 06-May 12-May 02-Jun 24-Jun 25-Jun 29-Jun 30-Jun 07-Jul 19-Aug 

1
st
    6.4 6.4 9.6 3.1 14.8 5.6 15.0 4.4 20.7 23.8 

2
nd

 6.4 6.4 9.6 3.1 0.0 0.0 0.0 0.0 30.7 0.0 

3
rd

  6.4 6.4 9.6 3.1 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 3 

Summary of the experiment 

 

Soil type Crop Sowing date Harvest date Dry weight at harvest 

(t ha
-1

) 

Max. rooting 

depth (cm) 

Initial soil moisture (cm
3
 cm

-3
) 

0-30cm 30-60cm 60-90cm 

Sandy loam Dutch white 

cabbage 

29 April 

2009 

8 September 

2009 

 

13.2 

 

140.0 

 

0.20 

 

0.21 

 

0.24 
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Table 4 

Fitted coefficients of linear equation without the intercept and R
2
 value between 

measurement and simulation of soil water potential at depths using different root shape 

parameter az 

 

 

z (cm
-1

) 0.02 0.025 0.03 0.035 0.04 

Gradient 1.419 1.342 1.183 0.896 0.56 

R
2
 0.532 0.668 0.716 0.498 0.009 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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