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It is proposed to revisit the inverse problem associated with Smoluchowski’s coagulation equation.
The objective is to reconstruct the functional form of the collision kernel from observations of the
time evolution of the cluster size distribution. A regularised least squares method originally proposed
by Wright and Ramkrishna (1992) based on the assumption of self-similarity is implemented and
tested on numerical data generated for a range of different collision kernels. This method expands
the collision kernel as a sum of orthogonal polynomials and works best when the kernel can be
expressed exactly in terms of these polynomials. It is shown that plotting an “L-curve” can provide
an a-priori understanding of the optimal value of the regularisation parameter and the reliability of
the inversion procedure. For kernels which are not exactly expressible in terms of the orthogonal
polynomials it is found empirically that the performance of the method can be enhanced by choosing

a more complex regularisation function.

INTRODUCTION

The effects of clouds and precipitation is one of the
largest sources of uncertainty in our current attempts
to simulate the Earth’s climate ﬂ] The reason for this
is that most phenomena associated with clouds happen
on scales below those which are explicitly resolved by
the current climate models. Their feedback on resolved
scales must therefore be parameterised. Such parameter-
isations require a strong understanding of the underlying
physical processes taking place. One such process which
has attracted considerable attention in recent years is the
time evolution of the droplet size distribution in clouds
and its connection with precipitation. Water droplets in
clouds are seeded by cloud condensation nucleii such as
aerosol particles. They initially grow by condensation
and subsequently by coagulation as droplets collide with
each other in the cloud to produce larger droplets. The
detailed micro-physics of the coagulation process is diffi-
cult to understand theoretically since turbulence within
the cloud is believed to play a key role in determining
the collision rate of droplets ﬂa] A complete theoreti-
cal description is hampered by the difficulty in describ-
ing the statistical interplay between particles and tur-
bulence analytically. On the other hand the quality of
the data available for the study of this problem is im-
proving rapidly due to recent advances in observational
techniques B] and direct numerical simulation of droplets
in turbulent flows [4, [5).

In the context of the droplet coagulation problem,
much research has focused on using our improved ob-
servational understanding of the behavious of droplets
in turbulent flows to calculate more accurately the func-
tional form of the droplet coagulation rate, K(m1,ms),
as a function of droplet masses, or equivalently (if
droplets are assumed spherical), droplet size. In this
note, we argue that the improved availability of data
suggests that we should also revisit the corresponding

inverse problem which can be stated as follows: given
observations or measurements of the time evolution of
the droplet size distribution, how much information can
be extracted about the functional form of the coagulation
rate? This problem was studied in the past by Wright
and Ramkrishna ﬂa] in the context of chemical mixing and
has been recently revisited in the context of droplets in
turbulence by Onishi et al. ﬂﬂ] Although there are many
difficulties associated with such inverse problems, as dis-
cussed below, there are potential rewards. The approach
is data driven and could provide a guide to modeling in
situations where the underlying microphysics remains in-
completely understood. The inverse approach could also
begin to quantify the extent to which available data and
measurements can distinguish between different models.

First a word about the usual forward problem. If the
collision kernel, K(mi,ms2), is known, the evolution of
the cluster size distribution, N,,(¢) is described by the
Smoluchowski coagulation equation ﬂE]

Ot Ny (1) = /Om dmy K(my,m —my) Ny, (£) Ny, ()

— 2N (%) /OOO dmy K (m,m1) No, (t). (1)

It is applicable when spatial correlations between parti-
cles are sufficiently weak that collisions between parti-
cles can be considered statistically independent. A huge
amount is known theoretically about the solutions of the
Smoluchowski equation. See [d] for a modern review.

HOMOGENEOUS COLLISION KERNELS AND
SELF-SIMILARITY

In some applications (see HE] for some discussions),
the collision kernel is a homogeneous function of its ar-
guments whose degree we shall denote by ~:

K(amy,ams) = a” K(my, ms).
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FIG. 1. Snapshots of the self-similar evolution of the clus-
ter size distribution, Ny, (), obtained from a numerical sim-
ulation of Eq. () with the collision kernel K(mi,m2) =

(mhmz)i. The inset shows the scaling function obtained
when the data is collapsed according to Eq. (@) with the typ-
ical scale, s(t), obtained as in Eq. @) with n = 2.

For such kernels, the evolution of the cluster size distri-
bution is often self-similar. That is to say we can write:
No(t) ~ (1) f (2) z=—= (2)

where s(t) is the typical cluster size. This can be defined
intrinsically as a ratio of moments of the size distribution:

_ M, (t) Y

s(t) = M) My(t) = /0 mP N, (t) dm. (3)
The scaling function, f(z), determines the shape of the
cluster size distribution. An example of this self-similar
evolution obtained from numerical simulation of Eq. ()
with K (m1,mg) = (mymz)'/* is shown in Fig. 0l The
inset shows the scaling function, f(z), obtained by col-
lapsing the data according to Eq. (@) with the typical
scale, s(t), obtained as in Eq. @) with n = 2. All nu-
merical simulations of Eq. ({l) reported in this paper were
done using the pairwise binning method described in ]

A homogeneous collision kernel and self-similar time
evolution are not plausible assumptions for the droplet
coagulation problem in clouds which has motivated this
study ﬂﬂ] If one restricts attention to the gravitational
coagulation-dominated regime, one could perhaps argue
that the kernel is approximately homogeneous. It turns
out, however, that even with the resulting differential
sedimentation kernel which is homogeneous of degree
~v = 4/3, the Smoluchowski equation does not produce a
self-similar evolution but rather undergoes instantaneous
gelation , ] Our focus on self-similar problems sim-
ply stems from the fact that they provide the simplest
class of coagulation problems on which we can begin to
study the inverse problem described above. We further

restrict ourselves to kernels having v < 1 in order to
avoid dealing with the gelation transition.

THE INVERSE SMOLUCHOWSKI PROBLEM

Let us introduce the cumulative cluster mass distribu-
tion:

]:m (t) = / ma le (t)dml. (4)
0
The original cluster size distribution, Ny, (¢) is recovered
from F,,,(t) by differentiation:

No(t) = & OTm(®). (5)

m  Om

In terms of F,,,(¢), Eq. () can be written in the compact
form:

OpFm(t) = — /Om AdFm, (t) /OO

m—mi

AdFpm, (t)

ma

K(ml, mg)

(6)
If we assume scaling as in Eq. () then F,,(t) = F(z) and
the scaling function of the cumulative mass distribution,
F(z), satisfies the following scaling equation:

zd_F_—/OzdF(zl)/:o G2 fe ). ()

—2 zZ2

This is a complicated nonlinear integro-differential equa-
tion if we are required to determine F'(z) given K (z1, 22))
(the forward problem). It is, however, a linear equation
if we are required to determine K (z1, 22) given F(z) (the
inverse problem). This inverse problem is, however, ill-
posed. This is most easily seen by considering what hap-
peuns if we discretise Eq. (@) on N z-points. We obtain a
linear system,

g = 5k,

consisting of N equations for the N? values of K (z1, 22)
on the discretisation points. Actually we can reduce
the number of unknowns almost by a factor of 2 since
K(z1,22) = K(z2,21) but the conclusion remains un-
changed. This system is enormously under-determined,
which implies that one can find many solutions but they
are typically over-fitting the measurements of F(z).

One way of dealing with under-determined systems
is via Tikhonov Regularisation (Ridge regression). The
idea is to solve a minimization problem with a regulari-
sation term:

e = argmin {|Sk— g2 +AKI?} . (8)

Noise-dominated solutions have to compete against the
regularization term A||k||? in the minimisation. This ap-
proach was pioneered by Wright and Ramkrishna ﬂa] It



has the advantage that, in principle, one does not need to
know the functional form of the collision kernel a-priori.
The trick is to choose the “best” value of the regulariza-
tion parameter, \. Before discussing the selection of the
value of A, we discuss briefly how to set up the minimiza-
tion problem.

Following [6], we assume that K (my,ms) can be ex-
panded in terms of Laguerre polynomials, L;(x), up to
order p in the m; and ms directions:

K(mi,ma) =Y an Ln(m1,ms) (9)

where

Ln(z,y) = Li(z) L;(y)

where n = (i — 1) p + j is a compound index which rolls
the indices, ¢« and 7, in the m; and meo directions into
one. With Eq. [@), the minimisation problem Eq. (8) is
transformed into a different minimisation which aims to
determine the coefficients, a,, in Eq. ([@). This has a num-
ber of advantages. It ensures that the minimisation prob-
lem automatically finds kernels which are fairly smooth
functions of m; and ms. It also enormously reduces the
size of the problem since the number of polynomials, p,
required in each direction is typically rather small. Fur-
thermore, this choice allows the entries of the matrix S in
Eq. ([8) to be calculated semi-analytically as described in
ﬂa] It has the disadvantage, however, of constraining the
solution to those kernels which can be expressed in the
form of Eq. ([@) which effectively requires a-priori knowl-
edge of the class of kernels which we are seeking, as was
done in [7].

As mentioned above, the tricky part of this procedure
is to determine the most apprpriate value of A\ to use
in Eq. (). If X\ is too small, the result will over-fit the
observations. If X is too large then kg will be pushed
to zero by the weight of the second term in Eq. (8) and
will retain little information about the Smoluchowski dy-
namics encoded in the matrix S. A rational approach to
determining A is provided by plotting an “L-curve” (for
a clear review see [13]). This is a plot of the norm of the
solution, | k||, as a function of the norm of the residual,
|[Ak — bJ|, for a range of values of A. If there is a clear
transition in the minimisation problem from a regime
dominated by overfitting to a regime dominated by the
regularisation then the L-curve will have the distinctive
L-shape and the best values of A are those in the “elbow”
of the curve.

RESULTS

The regularised least squares method described above
was applied to several sets of data obtained by the nu-
merical integration of Eq. () with monodisperse initial

data with different model kernels. We used 40 discretisa-
tion points in the interval z € [0.01, 2.0] and chose p = 3
Laguerre polynomials in each direction. In each case, the
data collapse and extraction of the scaling function was
done using the method described in HE] and then fitted
to a function of the form C z* 'e #% as suggested in
ﬂa] These fitted scaling functions were then used as the
“observations”, F(z), in the discretisation of Eq. ().

Figs. 2land Bl show some results of the regularised least
squares for the constant kernel, K(mi,mso) = 1, and
the sum kernel, K(mq,ms) = %(ml + ma), respectively.
These are good test cases to begin with since the solu-
tion of Eq. () with monodisperse initial data is known
explicitly for each of these kernels allowing the numeri-
cal aspects of the calculation to be validated. The right
panels of the figures show the L-curves obtained by per-
forming the minimisation () over a range of values of
A. In both cases, a clear elbow is visible in the result-
ing curve indicating an appropriate range of values for
A. The left panel shows, for ease of visualisation, the di-
agonal, K(m,m), of the kernels obtained by regularised
least squares as a function of m for different values of .
The A curves shown correspond to values of A which are
too big, too small and “just right” (meaning a value in
the elbow of the L-curve). It is clear that the method
does a reasonable job of extracting the basic shape of the
kernel given the scaling function, F(z). Surprisingly, we
found that it was not necessary to explicitly enforce the
positivity of K(mj,mz) by constrainting the minimisa-
tion as was done in ﬂa] The method seemed to do equally
well, and in some cases, better without these constraints.
For the sum kernel, we did enforce the constraint that
the kernel should vanish for particles of zero mass which
seems physically reasonable - the results were less con-
vincing without this constraint.

Fig. @ shows the corresponding results for the gener-
alised sum kernel K(mi,m2) = 3(,/m1 + /mz). The
results are clearly less convincing. This is probably re-
lated to the fact that this kernel cannot be expressed in
terms of the Laguerre polynomials chosen to represent
the kernel in Eq. (@). It is worth pointing out that the
corresponding L-curve does not have a sharp elbow indi-
cating that the method does not find a clear “best” value
of A\. This seems to illustrate a point in favour of such
methods - the fact that the L-curve does not have a sharp
elbow provides an a-priori indication that the results of
the minimisation should be treated with caution.

Empirical investigation suggest that the results for the
generalised sum kernel can be improved by tinkering with
the regularisation procedure. If, instead of, Eq. [), we
perform the minimisation

min| Sk — g||3 + Aw(k) (10)
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FIG. 2. Results for the constant kernel, K(mi,m2 = 1. The right panel shows the L-curve obtained by performing the
minimisation Eq. (8) over a range of values of A. The left panel shows the diagonal, K(z,z), of the reconstructed kernels
compared to the theoretical curve for values of A in the upper left, lower right and the “elbow” of the L-curve.
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FIG. 3. Results for the sum kernel, K(mi,ms = %(ml + ms2). The right panel shows the L-curve obtained by performing

the minimisation Eq. (8) over a range of values of A. The left panel shows the diagonal, K(z, z), of the reconstructed kernels
compared to the theoretical curve for values of A in the upper left, lower right and the “elbow” of the L-curve.
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FIG. 4. Results for the generalised sum kernel, K(mi,ms = %(,/ml + y/mz2). The right panel shows the L-curve obtained by
performing the minimisation Eq. () over a range of values of . The left panel shows the diagonal, K(z, z), of the reconstructed
kernels compared to the theoretical curve for values of A in the upper left, lower right and the “elbow” of the L-curve.



where

w(k) = Y log(|kl +1) = log [me +1: )

K2

we found that the results were much better. This form
for w was found by experimentation. At present, this
statement is at the level of empirical observation and
requires further investigations.

DISCUSSION AND OUTLOOK

We conclude, as several previous authors have done,
that the inverse Smoluchowski problem is technically
feasible and could potentially be developed into a use-
ful tool for the study of droplet size distributions in
clouds and other applications where the underlying mi-
crophysics is still incompletely understood. The results
presented here indicate that the L-curve provides a useful
complementary tool to the methods developed by Wright
and Ramkrishna ﬂa] to allow the regularisation parame-
ter to be selected a-priori in situations where the collision
kernel is not known from the outset. It is worth men-
tioning that the results presented in Figs. [2)-]) do not
give a good indication to the casual reader of the degree
of numerical sensitivity required in tackling these prob-
lems. It became clear to us during these investigations
that the ill-posedness of the inverse problem represented
by Eq. ([@) requires that great care be taken in interpret-
ing the outputs of these methods. It is also clear that
further research is required, even in the simple case of
self-similar time evolution, in order to make the method
more robust. Our results suggest that we should consider
more general functional forms for the collision kernel than
Eq. @ in order to improve this robustness. This will
probably not pose much difficulty since the analytic sim-
plification obtained by the use of Laguerre polynomials
in ﬂa] is probably less important nowadays owing to the
increased computational power which can be brought to
bear on the computation of matrix elements by quadra-
ture when closed analytic forms are not available.

In the long run, however, it is clear that it is necessary
to free ourselves of the assumptions of homogeneity of

the kernel and self-similarity of the cluster size distribu-
tion. Some strong progress in this direction has already
been made recently by Onishi et al. ﬂ] who have been
able to infer the relative importance of the turbulent and
gravitational coagulation as a function of Reynolds num-
ber from direct numerical simulations of droplet-laden
turbulence using inverse methods. Our approach differs
slightly from this work in the sense that we would like, as
far as possible, to learn the functional shape of the ker-
nel from the data by allowing considerable freedom in the
class of possible kernel functions. This approach would
be more appropriate in situations when the underlying
micro-physics is unknown or controversial.

* lconnaughtonc@gmail.com
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