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Abstract

We study random spatial permutations on Z
3 where each jump x 7→ π(x) is penalized

by a factor e−T‖x−π(x)‖2 . The system is known to exhibit a phase transition for low
enough T where macroscopic cycles appear. We observe that the lengths of such cycles
are distributed according to Poisson-Dirichlet. This can be explained heuristically us-
ing a stochastic coagulation-fragmentation process for long cycles, which is supported by
numerical data.

1 Introduction

Random permutations are common in probability theory and combinatorics [4]. They also
occur in statistical mechanics, albeit with an additional spatial structure. With Λ denoting a
finite box in Z

3, we consider the set SΛ of permutations of Λ, i.e., the set of bijections Λ → Λ.
The probability of a given permutation π ∈ SΛ depends on the jump lengths in such a way that
all sites are mapped in their neighborhoods. In this paper, we study the model with probability

PΛ(π) =
1

ZΛ
exp

(

− T
∑

x∈Λ

‖x− π(x)‖2
)

. (1)

Here T > 0 is a positive parameter and ‖x − π(x)‖ denotes the Euclidean distance between x
and π(x). The normalization ZΛ is defined by

ZΛ =
∑

π∈SΛ

exp
(

− T
∑

x∈Λ

‖x− π(x)‖2
)

. (2)

This model has its origin in Feynman’s approach to the quantum Bose gas [13], where T is
proportional to the temperature. Bosons are described by Brownian trajectories with 1

T playing
the rôle of time; this suggests the weights (1) for the permutation π. The presence of a lattice
is not really justified, but it does not affect the qualitative behavior, at least in dimension 3
(we comment on dimension 2 at the end of the article).

Let us understand the qualitative behavior of the model when we vary the parameter T . The
most probable permutation is the identity, which has weight 1. Typical permutations should
be close to the identity when T is large, with small cycles here and there. The weight in (1)
penalizes large jumps and we expect that ‖x− π(x)‖ . 1√

T
. As T decreases, sites are allowed

to be mapped to more locations and the lengths of permutation cycles grow. One expects that
a phase transition takes place (in dimension 3 or more) that is accompanied by the occurrence
of infinite cycles. See Fig. 1 for a schematic spatial permutation with small T .
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Figure 1: A typical spatial permutation with periodic boundary conditions for small T . The cycle
that contains the origin is depicted in black and it may be long. Isolated sites belong to 1-cycles (i.e.,
they are mapped onto themselves).

The phase transition was observed numerically in [15, 17]; it takes place at Tc ≈ 1.71.
The fraction of sites that belong to macroscopic cycles was seen to converge to a non-random
function ν∞(T ) as |Λ| → ∞, which is continuous and monotone decreasing in T . There are
many macroscopic cycles and their sizes fluctuate. It was also observed that the average length
of the largest cycle scales like 0.624ν∞(T )|Λ|, which is identical to the expectation of the
largest cycle in a random permutation with uniform distribution [23]. The latter observation
was unexplained and puzzling at the time.

The situation is understood better now, and the explanation turns out to be surprisingly
general. The joint distribution of the length of the long cycles is given by the Poisson-Dirichlet
distribution. This distribution has been introduced by Kingman in [18] and has cropped up in
combinatorics, population genetics, number theory, Bayesian statistics and probability theory,
see [12, 19, 4, 20, 21] for details of applications and extensions.

Occurrence of the Poisson-Dirichlet distribution in models of statistical mechanics, i.e. in
models with spatial structure, seems to have been noticed only recently. It has been rigorously
established in the “annealed” model of spatial permutations where the locations of the sites
are averaged upon [9]. The proof is inspired by [24] and it uses a representation in terms of
occupation numbers of Fourier modes, and non-spatial permutations within the modes. Such a
structure is not present here, however.

We recall the definition of the Poisson-Dirichlet distribution in Section 2.2 and provide nu-
merical evidence in Section 2.3 that it is present in our model. In order to explain this, we show
that the equilibrium state can be viewed as the stationary measure of an effective split-merge
process. This strategy was recently applied successfully by Schramm to the random interchange
model on the complete graph [22] (the result was first conjectured by Aldous, see [6]). The
absence of spatial structure makes the situation much simpler, but it was nonetheless a tour de
force to prove that long cycles occur, that they satisfy an effective split-merge process, and that
their asymptotic distribution is Poisson-Dirichlet (see also [5] for subsequent simplifications and
improvements). This strategy was also devised in [16] for the cycles and loops that arise in
the Tóth and Aizenman-Nachtergaele representations of quantum Heisenberg models in three
spatial dimensions [25, 2]. It allowed in particular to identify the parameter of the conjectured
Poisson-Dirichlet distribution. Further situations that look similar include the random currents
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in the classical or quantum Ising models [1, 10, 14].
The key features are as follows: Long cycles are one-dimensional macroscopic objects and

they are spread uniformly over the whole space. Introducing a suitable stochastic process
with local changes, we observe that cycles are merged at a rate proportional to the number
of “contacts” between them, and this number is proportional to the product of their lengths.
Cycles are split at a rate proportional to the number of self-contacts, which is proportional to
the square of the length. This is exactly analogous to a split-merge process on interval partitions
[21, 3, 7]. As a consequence, the distribution of cycle lengths at equilibrium should be given
by the invariant measure of the split-merge process, which is known to be the Poisson-Dirichlet
distribution.

This explanation seems very attractive but it glosses over many technicalities. It assumes
that a spatially uniform distribution of long cycles leads to a “mean-field” interaction and the
correlations due to their spatial structure can be ignored. We provide mathematical background
for these ideas in Section 3.1 and this allows us to state precise conjectures in Section 3.2. These
conjectures are confronted with numerical results in Section 3.3. As it turns out, the above
heuristics is fully confirmed.

2 Distribution of long cycles

2.1 Nature of long cycles

Let us first give precise definitions for “macroscopic”, “mesoscopic” and “finite” cycles in the
infinite volume limit. Given x ∈ Λ and a permutation π ∈ SΛ, let Lx(π) denote the length of
the cycle that contains x, i.e., the number of sites in the support of this cycle.

• Macroscopic cycles occupy a non-zero fraction of the volume. The fraction of sites in
macroscopic cycles is given by

νmacro(T ) = lim
ε→0+

lim inf
|Λ|→∞

1

|Λ|EΛ

(

#{x ∈ Λ : Lx > ε|Λ|}
)

. (3)

• Mesoscopic cycles are infinite cycles that are not macroscopic. The fraction of sites in
mesoscopic cycles is given by

νmeso(T ) = lim
K→∞

lim inf
|Λ|→∞

1

|Λ|EΛ

(

#{x ∈ Λ : K < Lx <
|Λ|
K

}
)

. (4)

• Finally, the fraction of sites in finite cycles is given by

νfinite(T ) = lim
K→∞

lim inf
|Λ|→∞

1

|Λ|EΛ

(

#{x ∈ Λ : Lx < K}
)

= 1− ν∞(T ).

(5)

Here, ν∞(T ) = νmeso(T ) + νmacro(T ) is the fraction of sites in infinite cycles.
One expects that only finite cycles are present when T is large, that a phase with macroscopic

cycles is present when T is smaller than a positive number Tc. This was proved in the annealed
model in [8, 9]. We check this numerically in the lattice model. Let

ρ|Λ|(a) = EΛ

(#{x ∈ Λ : Lx ≤ |Λ|a}
|Λ|

)

. (6)
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Figure 2: Plots of the expected fraction of sites ρ|Λ|(a) in cycles of length smaller than or equal to |Λ|a.
The horizontal dashed line indicates 1− ν∞(T ), the fraction of particles in finite cycles in the infinite
volume limit. The curves have an intersection point independent of |Λ| at a ≈ 0.6 which is therefore
used as the cutoff to distinguish long and short cycles. ν∞(0.8) is estimated to be 0.292. Averages were
taken over 5× 104 realizations.

denote the fraction of sites that belong to cycles of length less than or equal to |Λ|a. Notice
that ρ|Λ|(0) is the fraction of particles mapped onto themselves and that ρ|Λ|(1) = 1. Numerical
results for ρ|Λ|(a) are depicted in Fig. 2 for various parameters T .

In a finite domain, we need to define the cutoff that separates finite and “infinite” cycles.
We can choose |Λ|a with any power 0 < a < 1, since in the infinite volume limit, ρ∞(a) will
not depend on our choice. The graphs of ρΛ(a) depend on the size of the domain, but we see
in Fig. 2 (d) that they cross the same point around a ≈ 0.6 for T < Tc. This value of a is
approximately independent of T and we choose it for the cutoff, since it significantly reduces
finite size effects. For the numerical results, we define the fraction ν|Λ| of sites that belong to
infinite cycles by

ν|Λ|(T ) = 1− ρ|Λ|(0.6). (7)

In accordance with results for the annealed model [8, 9] we expect that νmeso(T ) = 0 and that

lim
|Λ|→∞

ν|Λ|(T ) = ν∞(T ) = νmacro(T ). (8)

This is supported by the numerics in Fig. 2.
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2.2 Griffiths-Engen-McCloskey and Poisson-Dirichlet distributions

For a given permutation π ∈ SΛ we call the cycle at x with length Lx(π) macroscopic if
Lx(π) > |Λ|0.6, as discussed in the previous section. Let L(1)(π), L(2)(π), . . . , L(k)(π) denote
the cycle lengths in decreasing order, where L(k) is the smallest macroscopic cycle for the

permutation π. If λ(i) = L(i)

|Λ| is the fraction of the sites in the ith macroscopic cycle, we define

ν(π) := λ(1) + ...+ λ(k) (9)

to be the fraction of sites in macroscopic cycles, and have EΛ(ν) = ν|Λ|(T ). The sequence (λ
(i))

forms a random partition of the (random) interval [0, ν(π)]. We now introduce the relevant
measures on such partitions, that will allow us to describe the joint distribution of cycle lengths.

The Poisson-Dirichlet distribution (PD) is a one-parameter family but we only need the
distribution with parameter 1, so we ignore the paramter altogether. It is best introduced
with the help of the Griffiths-Engen-McClosckey distribution (GEM). The latter is also called
the “stick-breaking” distribution. One can generate a random sequence of positive numbers
(λ1, λ2, . . . ) such that

∑

i λi = ν as follows:

• choose λ1 uniformly in [0, ν];

• choose λ2 uniformly in [0, ν − λ1];

• choose λ3 uniformly in [0, ν − λ1 − λ2];

• and so on..., always chopping a piece off the remaining portion of the “stick”.

This is equivalent to choosing a sequence of i.i.d. random variables (α1, α2, . . . ) where each αi

is taken uniformly in [0, 1], and then to form the sequence

(α1, (1 − α1)α2, (1− α1)(1 − α2)α3, . . . )× ν.

Our goal is to recognize that a given sequence has the distribution GEM. One can invert the
above construction, and form an i.i.d. sequence out of a GEM sequence. Namely, if (λ1, λ2, . . . )
is GEM on the interval [0, ν], the following sequence is i.i.d. with respect to the uniform distri-
bution on [0, 1]:

(α1, α2, α3, . . . ) =
(λ1

ν
,

λ2

ν − λ1
,

λ3

ν − λ1 − λ2
, . . .

)

. (10)

PD is a distribution on ordered partitions, and a PD sequence can be obtained by rearranging
a GEM sequence in decreasing order. On the other hand, given an ordered PD sequence, a
GEM sequence can be obtained as a size-biased permutation of that sequence [21].

2.3 Numerical observations of cycle lengths

The GEM distribution is easier to handle than the PD distribution, and it contains more
information. We thus introduce an order on cycles allowing us to establish an order for the cycle
lengths. This can be done as follows. First, choose an order for the sites of Λ. Then order the
cycles according to the smallest sites in their support; namely, given two cycles γ = (x1, . . . , x|γ|)
and γ′ = (x′

1, . . . , x
′
|γ′|), we say that γ < γ′ if and only if min1≤i≤|γ| xi < min1≤i≤|γ′| x

′
i. We

then denote L1, L2, . . . the lengths of cycles larger than |Λ|0.6 in this order, which is not to be
confused with the notation Lx for lengths of cycles rooted in x ∈ Λ.
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Let ν ≡ ν(π) for a given permutation. Our aim is to show that ( L1

ν|Λ| ,
L2

ν|Λ| ...) converges to

GEM as |Λ| → ∞, as illustrated in Fig. 3. This is equivalent to showing that

(α1, α2, α3, . . . ) =
( L1

ν |Λ| ,
L2

ν |Λ| − L1
,

L3

ν |Λ| − L1 − L2
, ...

)

(11)

converges to a sequence of i.i.d. uniform random variables in [0, 1], see Eq. (10).

ν finite cycles

L1/|Λ| L2/|Λ| . . .L3/|Λ|

Figure 3: The lengths of macroscopic cycles, divided by the volume, give a random partition of [0, ν]
which is expected to follow the GEM distribution.

The Cumulative Distribution Function for αi is defined as

Fαi
(s) = P (αi ≤ s). (12)

Numerical plots of Fαi
for the first three cycles can be found in Fig. 4. They clearly point to

uniform random variables. Covariances can be found in Fig. 5, showing that they do indeed
tend to 0 in the infinite volume limit. The discontinuities at s = 1 in Fig. 4 for i = 1, 2, 3 are
due to the fact that in finite volumes it may happen that only 0, 1, 2 cycles larger than |Λ|0.6,
respectively, are present.

2.4 Markov chain Monte-Carlo

To sample spatial permutations we use a Markov chain Monte-Carlo process which is ergodic
and has PΛ as its unique stationary distribution. Let BΛ denote a suitable set of bonds, i.e., a
set of unordered pairs {x, y} of sites x, y ∈ Λ. Let τxy = τyx denote the transposition of x and
y. We say that two permutations π, π′ ∈ SΛ are “in contact”, noted π ∼ π′, if there exists a
bond {x, y} ∈ BΛ such that π′ = π ◦ τxy. Let Q(π, π′), π, π′ ∈ SΛ, be the transition matrix of
a continuous-time Markov chain (πt : t ≥ 0) on SΛ.

Proposition 2.1 Suppose that BΛ is large enough so that the graph (Λ, BΛ) is connected, and
that Q(π, π′) > 0 whenever π ∼ π′. The Markov chain with transition rates Q is ergodic.

Proof. This is done in [17], but we recall the argument here. The space SΛ of lattice
permutations is finite and irreducibility of the chain implies ergodicity. It then suffices to show
that for all π, π′ ∈ SΛ, π

′ 6= π there exists n < ∞ such that Qn(π, π′) > 0. Every permutation
π can be represented by a composition of transpositions. We still need to show that each of
these transpositions can be written as a composition of transpositions along bonds of BΛ.

Since the graph (Λ, BΛ) is connected, there exists a connected path (x0, x1, . . . , xm) such
that x0 = x, xm = y, and {xi−1, xi} ∈ BΛ for all 1 ≤ i ≤ m. One can check that the following
composition gives τx,y:

τx,y = τx0,x1 ◦ · · · ◦ τxm−2,xm−1 ◦ τxm−1,xm
◦ τxm−2,xm−1 ◦ · · · ◦ τx0,x1 . (13)

This shows that every π ∈ SΛ is connected to the identity permutation under the Markov chain
dynamics. �
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Figure 4: Cumulative distribution functions Fαi
(s) (12) with i = 1, 2, 3 for system sizes |Λ| =

323, 643, 1283, 2563 and T = 0.8. As the volume tends to infinity, they converge to the CDF of
a uniform random variable. Averages were taken over 105 realizations.

The composition of π with a transposition is explicitly given by

(π ◦ τxy)(z) = π
(

τxy(z)
)

=







π(z) if z 6= x, y,
π(y) if z = x,
π(x) if z = y.

(14)

Let HΛ(π) denote the “energy” of π ∈ SΛ,

HΛ(π) = T
∑

x∈Λ

‖x− π(x)‖2 . (15)
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323, 643, 1283, 2563 and T = 0.8.

Here the Euclidean distance ‖ · ‖ is measured with periodic boundary conditions on a regular
box Λ ∈ Z

3. The distribution (1) then assumes the familiar form of the Gibbs state e−HΛ(π)/ZΛ.
For the transition rates we choose

Q(π, π′) =

{

1
|BΛ| min(1, e−(HΛ(π′)−HΛ(π)) ) if π′ ∼ π,

0 otherwise.
(16)

Note that all rates are in [0, 1] and can therefore be used as acceptance probabilities for the
standard Metropolis algorithm: pick a bond {x, y} ∈ BΛ uniformly at random and swap the
images of x and y under π with probability 1 if this lowers the energy, and with probability
e−(HΛ(π′)−HΛ(π)) < 1 if the swap increases the energy.

It is clear that the measure PΛ fulfills the detailed balance conditions, since

e−HΛ(π)Q(π, π′) = e−HΛ(π′)Q(π′, π) (17)

for all π, π′ ∈ SΛ. This implies stationarity.
The particular algorithm we use is the “swap only” method described in [17]. The initial

permutation is set to be the identity. The Metropolis steps are then as follows:

• Choose a bond {x, y} of nearest-neighbors at random (we use periodic boundary condi-
tions).

• The candidate permutation, π′ = π◦τxy, replaces π with probability min(1, e−(HΛ(π
′)−HΛ(π))).

The Metropolis step is then computationally fast since HΛ(π ◦ τxy) −HΛ(π) depends only
on local terms:

HΛ(π ◦ τxy)−HΛ(π) = T
(

‖x−π(y)‖2 + ‖y−π(x)‖2 − ‖x−π(x)‖2 − ‖y−π(y)‖2
)

. (18)

We use a standard approach based on the ergodic theorem for sampling, where we let
the system equilibrate for a number of Metropolis steps of order 103|Λ|, and ensure that our
measurements are spread over 5 × 103|Λ| steps. We have strong numerical evidence that the
equilibration time of relevant observables is indeed of order |Λ|, as is shown in Fig 6.
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Figure 6: Expected value of the fraction of particles in macroscopic cycles for the permutation after
t Metropolis steps starting from the identity permutation, for |Λ| = 163, 323, 643, 1283 and T = 0.8.
Rescaling time by 1

|Λ|
shows the asymptotic behavior, showing that the equilibration time is of order

|Λ|. The dashed line indicates the asymptote for the curves, ν∞(0.8). Averages were taken over 104

realizations.

2.5 Periodic boundary conditions

We use periodic boundary conditions where Λ ⊂ Z
3 is a 3-dimensional torus with equal side

lengths L. This has the advantage of having less finite size effects than other choices such as
closed boundary conditions. In the limit |Λ| → ∞ we expect our results not to depend on that
choice.

Precisely, for y ∈ Z
d we define vi(y) to be the ith component of y modulo L, in such a way

that vi(y) ∈ {−L
2 + 1, . . . , L

2 } (we assume here that L is even, but the modifications for odd L
are straighforward). The Euclidean distance on Z

d is then replaced by

‖y‖ =
(

d
∑

i=1

|vi(y)|2
)1/2

. (19)

Permutations on the torus can be charaterized by their winding number, which is in reality
a winding vector. The winding number of π in the ith direction, i = 1, . . . , d, is the integer

Wi(π) =
1

L

∑

x∈Λ

vi(π(x) − x). (20)

In a large box, one should not expect any jumps of order L for positive T > 0 because of
the Gaussian weights (1). The dynamics restricted to such permutations conserves the winding
number:

Proposition 2.2 Suppose that the permutation π satisfies

max
x∈Λ

‖π(x)− x‖ ≤ L
2 − 2.

Then Wi(π ◦ τxy) = Wi(π) for all i and all pairs (x, y) of nearest-neighbors in Λ.

9



Proof. Using (14), we have

Wi(π ◦ τxy)−Wi(π) =
1
Lvi(π(y)−x)+ 1

Lvi(π(x)− y)− 1
Lvi(π(x)−x)− 1

Lvi(π(y)− y). (21)

Because of the modulo operation, we have

vi(π(y) − x) = [π(y)− x]i + k1L, vi(π(x) − x) = [π(x) − x]i + k3L,

vi(π(x) − y) = [π(x) − y]i + k2L, vi(π(y)− y) = [π(y)− y]i + k4L.
(22)

Here, [·]i denotes the ith coordinate of the vector in Z
d, and we always have ki ∈ {−1, 0, 1}. It

follows from the assumptions that k1 = k4 and k2 = k3, so that (21) vanishes. �
The consequence of this proposition is that we effectively lose ergodicity in very large sys-

tems, since the dynamics conserves the winding number on simulation time scales. On the
other hand, when macroscopic cycles are present, we expect nonzero winding numbers to ap-
pear with positive probability in the equilibrium measure. The dynamics always start with
the identity permutation which has zero winding number. By the proposition, the path to
nonzero winding numbers must cross bottlenecks, i.e, permutations with large jumps which
occur with probability less than 1

Z e−T (L
2 −1)2 . A big part of the phase space is not explored by

the dynamics.
By introducing Monte-Carlo transitions that flip the orientations of cycles (which does

not change their probability), it is easy to move between permutations with even winding
numbers. On the other hand, it would be interesting to study the winding numbers of typical
permutations at equilibrium, but this seems to be a very difficult task numerically since it
requires dynamics that can move between odd an even winding numbers and still sample from
the correct distribution.

Due to the metastability of the winding number, the actual mixing time of the Monte-Carlo
dynamics is (at least) ecL

2

with c > 0. However, since we are only interested in cycle lengths
and not in their orientation, we do not expect this to be relevant for the observables discussed
in the present paper. In fact, as is shown in Figure 6 and later in Figure 13, we observe
convergence on time scales of order |Λ| = L3. This is still much faster than processes such as
card shuffles leading to uniform distributions on permutations (see e.g. [27]), which are typically
of order |Λ|3 with logarithmic corrections. This is due to the fact that for positive temperature
T the stationary distribution (1) is not uniform, and jumps in a typical permutation are local
of order 1/

√
T . Furthermore, the identity permutation we start with is actually the ground

state (permutation with highest probability) of that measure.

3 Effective split-merge process

In the previous section we presented numerical evidence that the lengths of macroscopic cycles
are distributed according to the Poisson-Dirichlet distribution. The goal of the present section is
to explain it with a split-merge process, defined below in Section 3.1. More precisely, the Markov
chain Monte-Carlo process of Section 2.4, when restricted to the cycle structure, becomes an
effective split-merge process with the correct rates. We formulate precise conjectures about
macroscopic cycles in typical spatial permutations, which we then test numerically.

3.1 Split-merge process

Recall that a partition λ = (λ(1), λ(2), . . . ) of the interval [0, ν] is a sequence of decreasing
positive numbers such that

∑

i λ
(i) = ν. Here, ν is any positive real number. The split-merge

10
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Figure 7: Illustration for the split-merge process. The partition undergoes a merge followed by two
splits and another merge.

process (λ(t) : t ≥ 0), also called coagulation-fragmentation, is a continuous-time stochastic
process on partitions where the ith and jth components (i 6= j) merge with rate

qij = 2λ(i)λ(j)/ν2, (23)

and the ith component is split uniformly into two parts with rate

qi = (λ(i))2/ν2. (24)

Note that the rates are in [0, 1] and they add up to 1, so they can be used directly for the
following implementation of the process. If λ(t) = (λ(1)(t), λ(2)(t), . . . ) denotes the partition at
time t, one chooses the new configuration λ(t+ Exp(1)) after an exponential waiting time with
rate 1 as follows:

• Choose a first part of the partition with probability proportional to its size. That is, the
index i is chosen with probability λ(i)(t)/ν. This is called “size-biased sampling”.

• Choose a second part in the same manner, independently of the first. Let j the corre-
sponding index.

• If i 6= j, merge λ(i)(t) and λ(j)(t). That is, the partition λ(t+ Exp(1)) contains all parts
λ(k)(t) with k 6= i, j, and a part of size λ(i)(t) + λ(j)(t).

• If i = j, split λ(i)(t) uniformly. That is, the partition λ(t+ Exp(1)) contains all parts
λ(k)(t) with k 6= i, and two parts uλ(i)(t) and (1−u)λ(i)(t), where u is a uniform random
number in [0, 1].

• The sequence is rearranged so that (λ(k)(t+ Exp(1))) is decreasing.

The process is illustrated in Fig. 7. Additional background can be found in [3, 7]. Tsilevich
showed that the Poisson-Dirichlet distribution is invariant for the split-merge process [26]. It
was proved in [11] that it is the unique invariant measure (see also [22]).

A key property of our Monte-Carlo process (πt : t ≥ 0) described in Section 2.4 is that, at
each step, either a cycle is split, or two cycles are merged. This is illustrated in Fig. 8. Let us
state this precisely.

Proposition 3.1 Let π ∈ SΛ and x, y ∈ Λ with x 6= y.

11



yπ(y)

x

y

π(x)

π(x)

x π(y)

Figure 8: The transposition τxy splits a cycle if x, y belong to the same cycle (left), or it merges two
cycles if x, y belong to distinct cycles (right). These are the only two possibilities.

• If x, y belong to the same cycle in π, then x, y belong to different cycles in π ◦ τxy.

• If x, y belong to different cycles in π, then x, y belong to the same cycle in π ◦ τxy.

See [17] for more details. It is clear that all cycles of π that do not involve x or y are also
present in π ◦ τxy, and reciprocally. The length of the coalesced cycle is equal to the sum of the
lengths of the two original cycles, and similarly for a fragmentation.

3.2 Effective split-merge process for macroscopic cycles

We have seen in the previous section that each Monte-Carlo step results in either splitting a
cycle, or merging two cycles. We have also seen in Section 2.1 that two kinds of cycles are
present: The finite cycles, whose lengths do not diverge in the thermodynamic limit. And the
macroscopic cycles, whose lengths are positive fractions of the volume. A Monte-Carlo step
does one of the following:

(a) Merge two finite cycles.

(b) Merge a macroscopic cycle and a finite cycle.

(c) Merge two macroscopic cycles.

(d) Split a finite cycle (resulting in two finite cycles).

(e) Splits a macroscopic cycle, resulting in a finite and in a macroscopic cycles.

(f) Splits a macroscopic cycle, resulting in two macroscopic cycles.

One expects each of these options to take place with rates of order O(1) in the limit |Λ| → ∞.
The ones that are relevant to the effective split-merge process are (c) and (f), since their effect
is reflected in a change in (λ(1)(π(t)), λ(2)(π(t)), . . .), the ordered lengths of macroscopic cycles
normalized by |Λ|. Accordingly, we introduce the rate Rij at which the ith and jth largest
cycles merge. It depends on the permutation π, and, with i 6= j, it is given by

Rij(π) = 2
∑

x∈γ(i)

∑

y∈γ(j)

Q(π, π ◦ τxy). (25)

Notice that Rij(π) scales to a constant as the volume diverges, since the sum over x, y is of
order |Λ|, and Q(·) is of order 1/|B(Λ)|, see Eq. (16). The rate Ri at which the ith largest cycle
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splits into two macroscopic cycles involves the cut-off K that distinguishes finite vs macroscopic
cycles:

Ri(π) =
∑

x∈γ(i)

L(i)−K
∑

k=K

Q(π, π ◦ τx,πk(x)). (26)

Here, πk(x) is the site at “distance” k of x along the cycle γ(i). If we set K = 1 in the right
side, we get the rate at which γ(i) splits, irrespective of the sizes of the resulting cycles. The
expression above gives the rate at which γ(i) splits in two cycles, each of which has length
greater than K. As in previous sections we use the cutoff K = |Λ|0.6.

We expect that, for almost all permutations in equilibrium, the rates Rij and Ri are equal
to those of the split-merge process modulo a constant time-scale R, resulting from the effective
rate of macroscopic processes (c) and (f) above. Recall that λ(i)(π) = L(i)(π)/|Λ| is a random
variable.

Conjecture 1 Let T such that ν∞(T ) > 0. There exists a number R (that depends on T but
not on indices) such that for all i, j, and all ε > 0,

lim
|Λ|→∞

PΛ

(
∣

∣Rij − 2λ(i)λ(j)R
∣

∣ > ε
)

= 0,

lim
|Λ|→∞

PΛ

(∣

∣Ri − (λ(i))2R
∣

∣ > ε
)

= 0.

The time scale of the effective split-merge process is determined by R, but the invariant
measure is not, so the exact value of R is irrelevant. It is important, however, that it is
identical for both the splits and the merges, and for all macroscopic cycles.

γ

γ′

finite cycles

Figure 9: Schematic drawing of the situation in a mesoscopic box. It contains finite cycles in light
color, and two legs that belong to each of the macroscopic cycles γ and γ′. The probability that γ and
γ′ merge in the next step is proportional to the number of ‘contacts’ between them, which in turn is
proportional to LγLγ′ . The probability that γ splits into two macroscopic cycles is proportional to the
self contacts amongst different legs of γ, which is in turn proportional to L2

γ .

Let us explain the heuristics towards this remarkably simple behavior. Consider a meso-
scopic box Λ′ whose size is large enough so that boundary effects are irrelevant, yet small
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enough so that Λ is made up of a large number of mesoscopic boxes. The restriction of π on
Λ′ gives many finite cycles, and open legs that are parts of macroscopic cycles. See Fig. 9
for a schematic picture. Let us choose a pair of nearest-neighbors x, y at random, with the
condition that x, y belong to distinct legs. The probability that τxy merges γ(i) and γ(j) is
equal to the probability that x belongs to γ(i) and y belongs to γ(j), or conversely, which is
equal to 2λ(i)λ(j)/ν(T )2, up to vanishing finite-size effects. The probability that τxy splits γ(i)

is equal to the probability that both legs belong to γ(i), which is equal to (λ(i)/ν(T ))2. This
heuristics assumes that macroscopic cycles are spread uniformly in space, so they are present
in all mesoscopic boxes in proportion to their size, and also that the local configurations do
not depend on the situation in other boxes. Note that short range correlations in the cycle
structure affect only the probability that a randomly chosen pair x, y belongs to distinct legs,
which is absorbed in the constant R that determines the time scale of the effective split merge
process.

In addition, we also conjecture that when a cycle is split, it is split uniformly.

Conjecture 2 Let T such that ν∞(T ) > 0 and define the CDF for a function of the split length
a ∈ [0, 1],

θ
(a)
i (π) =

1

Ri(π)

∑

x∈γ(i)

aL(i)
∑

k=K

P (π, π ◦ τx,πk(x)) . (27)

Then

lim
|Λ|→∞

PΛ

(
∣

∣

∣
θ
(a)
i (π)− a

∣

∣

∣
> ε

)

= 0.

If these conjectures hold true, the effective process
(

λ(1)(π(t)), λ(2)(π(t)) . . .
)

t≥0
with sta-

tionary initial condition converges in the limit |Λ| → ∞ to a split-merge process as defined in
(23) and (24), running with total rate Rν2∞. Therefore the distribution of cycle lengths has to
be invariant with respect to the split-merge process, so it has to be Poisson-Dirichlet. We now
check these conjectures numerically.
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Figure 10: A single permutation has been chosen with respect to the equilibrium measure for |Λ| = 128,
T = 0.8. The longest cycle γ(1) is spread everywhere. (Left) Scatter plot of every 500th site along γ(1).
The color indicates the distance along γ(1), renormalized by the length of γ(1), starting from the site
closest to the origin. (Right) The box Λ of volume 1283 has been partitioned in 64 subsets of volume
323. The histogram depicts the number of sites of γ(1) that can be found in each subset. It is essentially
constant.
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3.3 Numerical data about the effective split-merge process

In this section we give numerical evidence that the rates for splitting and merging macro-
scopic cycles converge to those of a split-merge process, thus confirming the Poisson-Dirichlet
distribution of macroscopic cycles. The heuristics behind this argument, as described in the
previous section, is that macroscopic cycles are distributed uniformly amongst lattice sites on
a mesoscopic level, and not are confined to a bounded region. This is illustrated in Fig. 10.
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Figure 11: Expectations (left) and standard deviations (right) of the rates defined in (28). |Λ| =
83, 163, 323, 643, T = 0.8. The standard error for the mean is within the marker size. Averages were
taken over 103 realizations.

In order to verify Conjecture 1, the rates of merging the two longest cycles, splitting the
longest, and splitting the second longest in the next timestep were calculated using (25) and
(26). We define

rij(π) =
Rij(π)

2λ(i)λ(j)
, ri(π) =

Ri(π)

(λ(i))2
. (28)

Fig. 11 shows that rij and ri converge to a constant R as expected, supporting Conjecture
1. Note that in addition to convergence of the mean the variance is decreasing, confirming
convergence in probability as stated in the conjecture.
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Figure 12: Cycles split uniformly. Plot of θ
(a)
1 (π) as defined in (27) for a typical permutation π under

the equilibrium measure with |Λ| = 643, T = 0.8.

If the cycle is split uniformly, θ
(a)
i (π) as defined in Conjecture 2 is the CDF of a uniform
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random variable on [0,1]. The graph of θ
(a)
1 (π) is shown in Fig. 12 for a given permutation π

chosen randomly from the equilibrium measure, which confirms the expected behaviour.
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Figure 13: Expected value of the number of cycles longer than |Λ|0.6, EΛ,t(N|Λ|), as a function of time.
The Monte-Carlo chain starts from the identity permutation and has been recorded for various system
sizes. Averages were taken over 104 realizations.

4 Further prospects

The emergence of macroscopic cycles seems intriguing and it is worth being studied. Start-
ing the Monte-Carlo Markov chain from the identity permutation, one expects the system to
display only finite cycles for some time, before infinite objects built up. Let EΛ,t denote the
corresponding expectation, and N|Λ|(π) denote the number of cycles of length larger than |Λ|0.6.
Fig. 13 shows EΛ,t(N|Λ|) for T = 0.8 and various volumes. There is a peak at the transition
to the phase with macroscopic cycles. It is certainly due to the presence of many mesoscopic
cycles for a short time, that are going to merge afterwards. It would be interesting to get plots
for numbers of cycles larger than |Λ|a for a other than 0.6.

While the fraction of sites in large cycles, EΛ,t(ν), varies continuously with time on the
scale t/|Λ|, the steps (c) and (f) of Section 3.2 take place at a very high rate (proportional to
|Λ|) once the phase with macroscopic cycles has been reached. One then expects the lengths
of macroscopic cycles to split and merge so fast that the Poisson-Dirichlet distribution appears
immediately. The numerical results of Fig. 14 confirms this. Indeed, the expected lengths of
the longest cycles, when divided by the number of sites in macroscopic cycles, is equal to the
expected values obtained with respect to the Poisson-Dirichlet distribution, that can be found
e.g. in [23].

Finally, let us comment on the physical dimension, taken here to be d = 3. It is safe to bet
that everything is similar in all dimensions greater than 3. On the other hand, the dimension
d = 2 remains mysterious. There are certainly no macroscopic cycles, as was observed in
[15]. An open question is whether a phase occurs where a positive fraction of points belong to
mesoscopic cycles. This has been ruled out in the “annealed” model that involves averaging over
point positions [8, 9]. The present lattice model may be closer to a Bose gas with interactions,
on the other hand, where a Kosterlitz-Thouless phase transition is expected. The presence of
mesoscopic cycles could indeed be related to the slow decay of correlation functions.
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Figure 14: The Poisson-Dirichlet distribution occurs already during equilibration. (a) Expected values
of the fraction of sites in macroscopic cycles EΛ,t(ν), and of the lengths of the four largest cycles (divided
by the volume). (b) The expectation of the i-th longest cycle has been divided by the average length
of the i-th part in a random partition with Poisson-Dirichlet distribution. It is always close to EΛ,t(ν).
|Λ| = 1283, T = 0.8. Averages were taken over 104 realizations.
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