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Summary

The work described in this thesis concentrates on chemically
modified heterocyclic conducting polymers based upon pyrrole, thiophene
and indole monomers with -particular emphasis placed upon carboxylic
acid substituents. A brief description of the electrochemistry of
chemically modified poly(pyrroles) is given with an explanation of the

problems associated with the chemical modifications.

A reasonable understanding of the properties of chemically médified
poly(thiophenes) has been achieved. In particular the properties of
poly(3-thiopheneacetic acid) have been characterised in both aqueous and
nonaqueous solution using standard electrochemical techniques in

conjunction with reflectance FTIR studies.

Finally the understanding of poly(indole) and poly(3-carboxyindole)
electrochemistry has been greatly improved especially with regards to the
chemical structure of each polymer, which was elucidated from several
reflectance FTIR studies. The characterisation of the electrochemical
growth and the aqueous electrochemistry of poly(3-carboxyindole) are the
areas in which the greatest advances have been made. The techniques of
reflectance FTIR spectroscopy, UV/vis spectroscopy and impedance

spectroscopy have aided the study of poly(5-carboxyindole) immensely.

More studies need to be performed before a fuller understanding of

these polymeric systems is achieved and the final chapter gives

suggestions for further work which will add to the information given in

this thesis.



Chapter 1
Introduction

1.0 Historical Background of Conducting Polymers

Conducting polymers have become the subject of an intensive
multidisciplinary research effort over the past decade after several
research groups showed that trans-poly(acetylene),}**3 figure 1.1, could
be made to conduct by positively doping the polymer. One of the original
methods of doping was by exposure to iodine vapour,? figure 1.2, which is
believed to be responsible for a radical attack upon the polymer which
initially forms radical sites, called polarons, upon the conjugated polymer
backbone>® Upon further oxidation of the polymer the polarons join
together to form two spinless non-radical states called solitons. Both
polarons and solitons are responsible for the conductivity of the polymer
using the conjugated m-bonding system as a ladder for transporting

charge down the length of the polymer chain.

Original conductivities of the doped trans-poly(acetylenes) were
found to be around 1000 S cm-1 but there has been significant effort put
into the improvement of the pI‘OpCI‘tiCS.7 both conductive and mechanical,
of trans-poly(acetylene) and its derivatives by, for example, increasing its
chain length, reducing the number of defects in the conjugated system
and devising new polymerisation synthetic routes.S Conductivities have
now reached values of greater than 100,000 S cm-1, however the
polymers suffer from instability and attack by atmospheric oxygen which

limits their potential applications.

The discovery that organic polymers could be made to conduct by
virtue of a m-conjugated backbone capable of delocalising and
transporting charge carriers destroyed the myth that only metals and

graphite systems could exhibit conductivities above the semiconductor

1



Figure 1.1 Structure of trans-poly(acetylene)
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Figure 1.2 Iodine doping of trans-poly(acetylene)
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range. It is beyond the scope of this introduction to discuss further the
search for more efficient conducting materials but rather to concentrate
on the specific area of heterocyclic conducting polymers and the specific

properties of these materials.

1.1 Heterocyclic Conducting Polymers

Conducting polymer science advanced further when it was
discovered that certain heterocyclic compounds, for example pyrrole’ and
thiophene,” could, under the right conditions, be polymerised quite easily
by oxidation of the monomer to form polymers that could be reversibly
doped into the conducting state and then dedoped to an insulating state
by either electrochemical or chemical means. Poly(pyrrole)l®11,12,13
figure 1.3, initially discovered by Dall’Olio et al.l* is the most studied of
all the heterocyclic conductihg polymers. It is bonded through the «
positions of the pyrrole monomer providing an uninterrupted cis-trans
nt bonded conjugated network which can be oxidised into a conducting
state. Regarded as one of the simplest conducting polymers it serves as a

reasonable example of this class of conducting polymers.

The ease of deposition coupled with the conducting nature of the
materials suggests that conducting polymers could be useful for the
purpose of electrode modification. A chemically modified electrodelS is
one which has been deliberately coated with a film of foreign molecules
so that the direct contact between solution species and the electrode is
prevented ie. electron transfer is mediated by molecules comprising the
coating. Such modified electrodes lend themselves to applications such as

biosensing,!® pH determination!? and gas sensing.1®

The polymers formed were stable free standing films in air which

displayed interesting properties other than conductivity, such as

19 and high capacitance?® These polymers are generally

deposited upon electrodes by electrochemical oxidation, in a suitable
3

electrochromism



solution, of the monomer which initiates the polymerisation. The

polymerisation mechanisms will be discussed later in this chapter.

Some commonly studied poly(heterocycles) are shown in figure 1.4.
Howevery, there are several other more novel polymers which have been

studied.

1.3 Electrochemical Polymerisation of Heterocyclic Conducting Polymers

Although heterocyclic conducting polymers can be polymerised
chemically’ by oxidising agents such as FeCl, and Cu(ClO“)2 the preferred
technique, for electrochemists, is by electrochemical oxidation, and in
some cases reduction, of the monomers to form radicals which then
initiate the polymerisation process. The reaction mechanism for the
polymerisation of heterocyclic conducting polymers is still largely
unknown although several studies have been undertaken, particularly on

pyrrolel3:25:26.27.28.29 an{ the following reaction scheme, figure 1.5, has

been suggested.

The scheme shows the initial formation of a radical cation in
step (a). The position or the radical site is preferentially at the a-position
of the pyrrole due to a higher degree of resonance stabilisation. The
position of the radical site is quite fortuitous since this is the position
where a polymer bond will be formed. A polymer with bonds at the
B-position would not have a continuous conjugated system: this has

consequences for the conductive nature of the polymer which will be

discussed later in the chapter.

Steps (b) and (c¢) although shown as reactions with monomers could
also be thought of as reactions with polymer chains as shown by the
further steps (f) and (g). Several authors?®:30:31 jre sceptical as to
whether step (c) takes place suggesting that two radical cations would

coulombically repel each other rather than react to form a bond, but this

4
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Figure 1.3 Chemical structure of poly(pyrrole)
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Figure 1.5 Suggested reaction mechanism for the polymerisation of

poly(pyrrole)
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effect would be reduced by increasing the ionic strength of the growth
solutions. Other authors have suggested that the radical - radical
coupling is the only symmetrically allowed reaction3? when orbital
symmetry is considered. Step (b) involves the attack of a radical cation
upon a neutral species followed by a further oxidative process (d) which
then leads to a double deprotonation in step (e). Step (¢) is also followed
by step (¢). The problem of determining the favoured reaction step, (b) or
(c) is mainly due to the difficulty of detecting radical sites on the polymer

chain during polymerisation.

One point which is generally accepted is that monomer radicals are
required throughout the polymerisation and that oxidation of only the
polymer in a solution containing the monomer will not result in further
polymerisation. It is also accepted that large amounts of charge are
consumed during the polymerisation. Two electrons per monomer unit
are removed to form the polymer and charge 1s also taken up during the
oxidation of the polymer. The amount of charge required to oxidise the

polymer and the way that it is distributed in the polymer’s conjugated

chain will be discussed later in the chapter.

The polymerisation also depends very heavily upon the effect of the
solvent33 and the dopant3* anion used during the growth process
figure 1.6. The nucleophilicity of both the solvent and the dopant anion
is the most important factor. A strongly nucleophilic species is capable

of competing with the monomers in “the nucleophilic attack on the

polymerising radical species preventing continued polymerisation.

The susceptibility to attack by nucleophiles other than the monomer
species depends greatly upon the properties of the monomer species in

question. For example, pyrrole has a much lower redox half wave

oxidation potential of 0.76 V vs. Ag/Ag* (0.1 mol dm™ in acetonitrile)

than thiophene which has a value of 1.60 V against the same reference.

7



Figure 1.6 The effect of strong nucleophiles upon - the
polymerisation of poly(heterocycles)
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This suggests that oxidised thiophene 1S much more reactive than oxidised
pyrrole. This is borne out in the polymerisation of the two species;
pyrrole can be polymerised in both acetonitrile and water whereas
thiophene cannot be polymerised under aqueous conditions. In fact the
polymerisation of thiOphené in acetonitrile is very sensitive to the
presence of water.3? It has been shown that traces of
water (0.1 mol dm™) in acetonitrile can retard the polymerisation process
by acting as a nucleophile and concentrations of greater than

1.0 mol dm-3 entirely prevent polymerisation.

The reactivity of the monomers can be reduced by adding electron
donating substituents to the non-bonding positions but generally
substituted monomers tend to behave in a similar manner to the parent
monomer because the substituent cannot exert a big enough influence

upon the oxidation potential.

The polymers may also be susceptible to attack from nucleophiles at
the PB-position after the main polymerisation is complete®37 This
usually occurs when the polymer has been oxidised too far, a process
known as “overoxidation”., After overoxidation occurs the polymer
generally becomes more resistive or passive to further attempts at

oxidation and reduction. Figure 1.7, shows the effect of the attack of

water in acetonitrile on poly(thiophene).
1.4 Bulk Polymerisation and Electrochemical Deposition

After discussing the chemical nature of the polymerisation of
heterocyclic conducting polymers the bulk behaviour of the polymerisation

or electrochemical deposition must be discussed.

Electrochemical polymerisations have been performed on a variety
of substrates the most popular being platinum, gold, glassy carbon and

indium doped SnQ.,,



Figure 1.7 The effect of “overoxxdation” on poly(thiophene) in the

presence of water.
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Pletcher et al3° studied the polymerisation of thiophene in
acetonitrile by cyclic voltammetry and chronoamperometry at different
potentials and found evidence for a nucleation process. Nucleation loops
were observed during cyclic voltammetry figure 1.8, and transients
recorded, figure 1.9, showed an initial risinig portion with a linear i - #2
relationship which can be interpreted as instantaneous nucleation and
three dimensional growth. After the current peaks the transient has an
i - r'V2 relationship which is interpreted as a film thickening process

controlled by linear diffusion of the monomer to the anode.

Hillman et al.38 using chronoamperometry, figure 1.10, described an
initial monomer adsorbance process for the polymerisation of thiophene
in acetonitrile seen as a current spike, followed by polymer nucleation
resulting in a rising i -¢ transient. As the nuclei join to form a

continuous film electron transfer control results in a level i - ¢ transient.

Although these inconsistencies in results exist, due mainly to
differences in growth conditions, it is generally accepted that the
deposition process involves an initial three dimensional nucleation
followed by a steady one dimensional growth perpendicular to the plane

of the electrode, figure 1.11.

Very similar results to Hillman et al3® have been obtained for

42 conditions. However

poly(pyrrole) in both acetonitrile*! and aqueous
the water content of acetonitrile has been found to affect the nucleation
process. The nucleation process is retarded 1n very dry acetonitrile and
enhanced by a 1 % increase by volume of water being added. Water is
thought to act as a base*! during the polymerisation process by removing
the protons ejected during the polymer bond formation. Larger increases

In water concentration have proved to be less beneficial.

Other techniques®®*3 have been used to study the nucleation

process which go beyond the scope of this chapter.
11



Figure 1.8
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Figure 1.9 Potentiometric steps,’
thiophene (50 mmol dm™) acetonitrile solution
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Figure 1.10 A potential step from 0.0 V to 1.8 V (vs. SCE) at a

platinum  electrode in a  solution thiophene

(50 mmol dm™)  acetonitrile  containing = TEAT
(0.1 mol dm™3)33
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1.5 Redox Behaviour and Conductivity of Heterocyclic Conducting

Polymers

As mentioned previously the requirement of a continuous n-bonded
system for the conductivity of a conducting polymer is very important.

Figure 1.12, shows how charge can be transferred down a chain of

poly(1,4-phenylene) but not down a chain of poly(1,3-phenylene).

The redox behaviour of conducting polymers 1s different from the
behaviour of immobilised redox couples.** It has been suggested that the
initial oxidation of the polymers is faradaic followed by a long
capacitative charging process.*®> More recent suggestions imply that
several redox processes are involved which weakly interact with each
other.*® The later explanation is regarded as a more adequate description

of the large potential regions observed between the onset of oxidation and

complete oxidation.

Poly(1,4-phenylene) has proved to be a good model system for the
aromatic type conducting polymers. The initial oxidation of this polymer

produces a polaron?”#3:49 (spin = 1/2). Upon further oxidation a diionic

bipolaron (spin = 0) is formed, figure 1.13.

The charge separation in the bipolaron state is determined by the
offset in energy destroyed by the disruption of aromaticity in the
monomers of the chain. The charged states shown in figure 1.13, are
capable of transferring charge down the length of the polymer chain.
Both the polaron and the bipolaron have associated energies and can be
thought of as energy states which have their own place in an orbital band

diagram. Figure 1.14, shows the band diagrams for typical metals,

nonconducting polymers and conducting polymers.

The presence of polarons and bipolarons has been confirmed by

studies of oligomeric phenylene compounds39:5152 which show distinct

15



Figure 1.12 The charge transport mechanism of poly(1,4-phenylene)
as opposed to poly(1,3-phenylene)
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Figure 1.13 Polaron and bipolaron formation during the oxidation of

poly(1,4-phenylene)
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Figure 1.14
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oxidation peaks during cyclic voltammetry corresponding to polaron and
bipolaron formation. The reduction peaks are somewhat more negative
than the oxidation peaks suggesting that a large scale structural

reorganisation is involved.

Heterocyclic conducting polymers are believed to behave in the
same way as poly(l,4-phenylene) and e.sr. results produced by
Albery et al?3 show evidence of radical polarons being formed during

oxidation followed by production of spinless bipolarons upon further

oxidation.

Although the polaron/bipolaron model of conductivity in
heterocyclic conducting polymers is important, it is also worth noting that
other physical aspects of the polymers exert a great influence on their
conductivity. Wegner et al. > have studied compounds of the type shown
in figure 1.15. The size of the ring was used to attenuate the distance
between ‘each polymer chain. It was was conclusively shown that
increasing the distance between the polymer chains markedly reduced the
conductivity. The conductivity range of conducting polymers is shown in

figure 1.16.

The overall charge taken up by the polymer, during oxidation, per
monomer unit is called the dopancy (0). For polymers such as
poly(pyrrole) and poly(thiophene) the dopancy tends to lie between
0 = 0.25 and 0 = 0.33, which means that when the polymer is fully
oxidised there is one charge for every three or four monomer units.
However lower figures have been quoted for the dopancies. The overall
charge consumed during polymerisation can now be defined in

equation 1.1, from figure 1.17.
Qr = (2 + 0)me (1.1)

m - number of moles of monomer.
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Figure 1.15 Monomers of the type studied by Wegner ez al.>*

Figure 1.16 Conductivity range of conducting polymers
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Figure 1.17
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1.6 The Effect of Dopant and Solvent on the Electrochemistry of

Heterocyclic Conducting Polymers

The way that charge is distributed in the polymer chain has alreadjr
been discussed but an equally important aspect is the way that charge is
countered in order to maintain electroneutrality. When a conducting
polymer is oxidised or in other words is positively doped the dopant
inevitably takes the form of anions. The dopant anions hence have a very
important effect on the electrochemistry of conducting polymers. The

doping behaviour can be divided into three different types;

(1) by diffusion of small anionic3* species such as BE~ and CIO,
into the polymer matrix during oxidation and diffusion out during

dedoping,

(ii) by entrapment of large anions> or polymeric anionic>%->7+3%:53
systems in the polymer to act as a macro dopant resulting in expulsion of

cations during oxidation of the polymer and their return during dedoping,

(iii) by covalently binding anionic species®%t1:0263 to the

monomers, known as “self doping” or “auto doping”, resulting in

behaviour similar to (11).

The three types of processes given are highly idealised and very
rarely occur independently of each other. The most common form of
doping is type (i) although type (ii) is becoming more popular since the
large counter ions impart their own characteristics on the films improving
their overall mechanical properties especially when anionic polymers are

used.

Type (iii) is probably the most electrochemically interesting class of
doping. Covalent binding of sulphonates to pyrrole®0:6! and thiophene®?

have been the most commonly studied although the effects of carboxylic
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acid groups on pyrrole®® have also been investigated. Pickupl? studied
poly(3-methylpyrrole-4-carboxylic acid) finding that direct linkage of a
carboxylic acid group to the ring had an inductive effect on the polymer

imparting a pH dependent “self doping” effect, figure 1.18.

The choice of dopant can be very important, especially during
polymerisation, but also to prevent deactivation due to blockage of the

film by large cations.04:63

Solvents as always play a large part in the electrochemistry of
conducting polymers. The nucleophilic effects of solvents on the
electrochemical polymerisation of conducting polymers have already been
described but other properties are also of importance when the processes
of doping and dedoping are considered. Dopant ions are naturally
solvated and carry solvent in and out of the polymef during doping and
dedoping To facilitate doping, the polymer must already contain solvent

molecules, a process known as wetting.

Poly(thiophene) is an example of a polymer that exhibits very good
electrochemistry in acetonitrile but inhibited electrochemistry under
aqueous conditions unless the films are thin.%® Neutral poly(thiophene) is
hydrophobic®’ with a contact angle, for a drop of pure water, of 180,
However when fully oxidised the contact angle approaches 0° and the
polymer becomes hydrophilic. It has been shown that
poly(3-methylthiophene)®3%? exhibits limited aqueous electrochemistry or
degradation depending on the tyﬁc of dopant ion used. Anions such as
NO, and CIO,” allow a limited doping process to occur which is not fully
understood but varies with the treatment and history of the polymer and
anions such as SO, and CI” allow the polymer to be oxidised only at
potentials at which it will be overoxidised. The aqueous electrochemistry
of the poly(thiophenes) can be improved by the substitution of poly(ether)
groups’? at the B-position but the limited behaviour of these polymers
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Figure 1.18 Cyclic voltammetry at 100 mV s-1 of
poly(3-methylpyrrole-4-carboxylic acid) at a platinum
electrode in aqueous acetate (0.2 mol dm™) buffer

containing KNO, (0.1 mol dm™) at various pH values!’
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presents a barrier to their potential applications.

Most conducting polymers experience “break-in”,’!+72 effects when
cyclic voltammetry is performed upon them for the first time or when the
polymer has been allowed to relax in one oxidation state for a finite
length of time. The effect is seen as an initial retardation of the oxidation
or reduction of conducting polymers during cyclic voltammetry which is
associated with a reorganisation within the polymer that allows the flow

of solvent and counter 1ons during the cycle to proceed more easily.
1.7 Substituted Heterocyclic Conducting Polymers

One of the most interesting features of heterocyclic conducting
polymers 1s their ability to be chemically modified by covalently binding
substituents to positions which are not directly involved in the
polymcrisatioﬁ process. The substituents can alter the properties of the
conducting polymers drastically which means that monomers can be
chemically tailored to produce polymers to suit the specific needs of a

particular application.

Pyrrole monomers are usually substituted at the nitrogen’3 position
due to the ease of substitution compared to the difficult chemistry
involved during the substitution of the B-position. Thiophenes in contrast
cannot have substituents on the sulfur but the ease of substitution at the

3-position has allowed several monomers to be synthesised.

Alkyl substituted thiophenes were probably the simplest studied
substituted thiophenes.475 They were largely studied as a means of
improving the processability of poly(thiophenes) by increasing their
solubility 1In organic solvents since neither poly(pyrrole) nor
poly(thiophene) are soluble in any solvent. N-substituted alkyl pyrroles!”

have also been studied. Substitution was found to generally reduce the

conductivity of the polymers by increasing the distance between each
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monomer chain. The ease of electrochemical oxidation and reduction was
found to be governed by a fine balance between the electron donating
effects of the 3-substituents and steric effects which reduce the planarity

of the r-bonded conjugated network.’®

As mentioned earlier the substituents have a very important effect
on the polymerisation of monomers. Several fJ-substituted thiophenes
were studied in acetonitrile,’’ figure 1.19, performing cyclic voltammetry
and the results were rationalised in terms of the Hammett-Taft

equation 1.2.

E=pno+S (1.2)

PO - polar-mesomeric parameters (0 - Hammett constant)

S - steric factor

The plot shows that the steric factor § is largely constant and the
reactivity of the monomers largely depends on the oxidation potential.
The monomers shown outside the box, figure 1.19, do not polymerise,
their higher reactivities reduce the selectivity for monomer - monomer

coupling and increase the influence of side reactions with nucleophiles.

Properties other than the inductive effect of the substituent on the
aromatic ring can also interfere with the polymerisation of heterocyclic
conducting polymers. For example the lone pair of electrons on
pyrrole-pyridine in the monomer’® shown in figure 1.20, inhibits the

electrochemistry of pyrrole and hence electropolymerisation is prevented.
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Figure 1.19 Hammett-Taft plot of several [(-substituted thiophe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>