
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/57735

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



The Valuation of Exotic Barrier Options and 

American Options using Monte Carlo Simulation 

by 

Pokpong Chirayukool 

Thesis 

Submitted to the University of Warwick 

for the degree of 

Doctor of Philosophy 

Warwick Business School 

September 2011 

THE UNIVERSITY OF 

WA]~JC]( 



Contents 

List of Tables v 

List of Figures viii 

Acknowledgments x 

Declarations xi 

Abstract xii 

Chapter 1 Introduction 1 

I Contour bridge Simulation 4 

Chapter 2 Literature Review on Barrier Options and Hitting Times 5 

2.1 An overview of barrier options ................ 5 

2.2 Valuation of barrier options . . . . . . . . . . . . . . . . . . 7 

2.2.1 Valuation methods with GBM and constant barrier. 7 

2.2.2 Non-GBM processes . 

2.2.3 Non-constant barriers 

2.3 Hitting times . . . . . . . . . 

2.3.1 Zt is a Brownian motion 

2.3.2 Zt is a non-Brownian motion 

2.4 ConcI us ion ............. . 

Chapter 3 Valuing Exotic Barrier Options using the Contour Bridge 

13 

16 

18 

19 

20 

21 

Method 22 

3.1 Simulation methods for barrier options. . . . 23 

3.1.1 Dirichlet Monte Carlo method .... 23 

3.1.2 Brownian bridge Monte Carlo method 25 



3.2 The contour bridge simulation method 26 
3.2.1 The choice of contour ..... 27 
3.2.2 Hitting time sampling method 29 
3.2.3 The contour bridge method algorithm 35 
3.2.4 The stopping conditions . . 37 
3.2.5 Computing the value of ST 40 
3.2.6 Single-hit method barriers. 42 
3.2.7 The biggest-bite variant .. 43 
3.2.8 The vertical contours variant 44 
3.2.9 Valuation of a book of options 44 

3.3 Numerical results ........ 45 
3.3.1 The benchmark option. 46 
3.3.2 The exotic options 51 
3.3.3 Numerical results. 53 

3.4 Conclusion ........ 64 

II American Put Options and Control Variates 65 

Chapter 4 Literature Review on American Option Valuation 66 

4.1 American put option valuation problems. 66 
4.2 Approximation and numerical methods. . 68 

4.2.1 Analytical approximation methods 68 
4.2.2 PDE and lattice methods 70 

4.3 Simulation methods ........... 71 

4.3.1 Mesh methods .......... 72 

4.3.2 State-space partitioning methods 74 

4.3.3 Duality methods . . . . . . . . . . 76 

4.3.4 

4.3.5 

4.3.6 

Functional form methods .... 

Overview of the control variate method 

Control variate method for American option valuation 

4.4 American option valuation in stochastic volatility, Levy and jump 

processes, and stochastic interest rate models 

4.4.1 Stochastic volatility ... 

4.4.2 Levy and jump processes .. 

4.4.3 Stochastic interest rate. . . . 

4.5 American barrier and power options 

4.5.1 American barrier ...... . 

ii 

77 

80 
82 

85 
85 
87 
89 
89 
90 



4.5.2 Power option 

4.6 Conclusion ..... 

90 

90 

Chapter 5 Valuing Bermudan and American Put Options with Bermu-

dan Put Option Control Variates 92 

5.1 Exercise at fixed times: Bermudan options. . . 93 

5.2 Bermudan option control variate . . . . . . . . 93 

5.2.1 Bermudan put-terminal control variate. 

5.2.2 Bermudan put-tau control variate .. 

5.2.3 Obtaining values of Tj from simulation. 

5.3 Two-phase simulation method ......... . 

5.3.1 First phase: Estimating the early exercise boundary 

5.3.2 Second phase: Computing the option value . . . . . 

96 

97 

100 

100 

100 

103 

5.4 Approximate American put options using Richardson extrapolation. 105 

5.4.1 Two-point scheme ........................ 105 

5.4.2 Three-point scheme ....................... 106 

5.4.3 Implementing Richardson extrapolation with Monte Carlo and 

control variates . . . 

5.5 Numerical results ..... . 

5.5.1 First phase results . 

5.5.2 Second phase results 

5.6 Conclusion ........ . 

Chapter 6 Valuing American Put Options using the Sequential Con-

107 

108 

109 

110 

119 

tour Monte Carlo Method 121 

6.1 The sequential contour Monte Carlo (SCMC) Method 121 

6.1.1 Sequential contour (SC) options ........ 123 

6.1.2 Sequential contour path construction. . . . . . 124 

6.1.3 The SCMC algorithm: the generalisation of the LSLS algorithm129 

6.1.4 Using SC put options to approximate American put options: 

Richardson extrapolation 

6.2 Sequential contour construction . . . . . . . . . . . . 

6.2.1 Choice of gN-I .............•.•. 

6.2.2 Choices of aD, aN-I, and gi,i = 1, ... ,N - 2 

6.3 Control variates from the SCMC method ..... . 

6.3.1 

6.3.2 

6.3.3 

Valuing barrier options by using hitting time simulation 

Hitting times and options . . . . . . . . 

Rebate options from the SCMC method 

iii 

130 

131 

131 

132 

136 

136 

137 

138 



6.4 

6.3.4 Rebate option control variate 

Numerical Results ......... . 

6.4.1 Choice of contours . . . . . . 

6.4.2 Early exercise boundary of sequential contour options 

6.4.3 Valuing standard American put options 

139 

140 

140 

143 

144 

6.5 Conclusion ............................ 153 

III Projection Techniques and Exotic American Options 154 

Chapter 7 Valuing Exotic American Options using the Sequential 

Contour Monte Carlo Method 155 
7.1 Sequential contour bridge (SCB) method. . . . . . 156 

7.1.1 Contour construction for the SCB method. 156 

7.1.2 The SCB algorithm ............. 158 

7.2 Different projection techniques ........... 158 

7.2.1 Generalised LSLS Algorithm with projection operator 160 

7.2.2 Hitting times projection (T-projection) .... 161 

7.2.3 Contour distance projection (V-projection) ...... 162 

7.3 Application to American fractional power call options .... 163 

7.3.1 Valuation of an American fractional power call option 164 

7.3.2 Contour construction for an American fractional power call 

option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 

7.4 Application to American linear barrier fractional power call options. 169 

7.5 Numerical Results .......................... " 172 

7.6 

7.5.1 Sequential contour bridge (SCB) method with American put 

options .................... . 

7.5.2 American fractional power call option results .. . 

7.5.3 American knock-in option results ......... . 

7.5.4 Benchmark options: flat barrier with power K, = 1 

7.5.5 Exotic American options. 

Conclusion .... 

Chapter 8 Conclusion 

173 

177 
179 

179 

180 

185 

187 

Appendix A The derivation of the hitting time bridge distribution 192 

Appendix B Compute Arc Length of an exponential contour 196 

iv 



List of Tables 

2.1 Examples of T-option and L-option . . . . . . . . . 

3.1 Benchmark valuation, rebate, fiat barrier. (J' = 0.1 

3.2 Benchmark valuation, rebate, fiat barrier. (J' = 0.2 

3.3 Benchmark valuation, rebate, fiat barrier. (J' = 0.3 

3.4 Exotic barrier types and parameters 

3.5 Non-constant barriers ... 

3.6 Rebate option OR, (J' = 0.2 .... 

3.7 Knock-in call option OIC, (J' = 0.2 

3.8 Knock-in put option OIP, (J' = 0.2 

6 

48 

49 

50 

53 

54 

55 

55 

56 
3.9 Recovery option orec, (J' = 0.2 . . . 56 

3.10 Knock-in call option OIC and knock-out put option ODP, single-hit 

[" (J' = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . 58 

3.11 Rebate option OR, close to the barrier, (J' = 0.2 . . . . 59 

3.12 Knock-in call option OIC, close to the barrier, (J' = 0.2 59 

3.13 Rebate option OR, far from the barrier, (J' = 0.2 . . . . 60 

3.14 Knock-in call option OIC, far from the barrier, (J' = 0.2 . 60 

3.15 Rebate option OR, (J' = 0.1 62 

3.16 Knock-in call option OIC, (J' = 0.1 62 

3.17 Rebate option OR, (J' = 0.3 .... 63 

3.18 Knock-in call option OIC, (J' = 0.3 63 

5.1 Four cases of the Bermudan put control variate, cb2 • 97 
5.2 Laguerre polynomial characteristics. . . . . . . . . . . . . . . . . .. 102 

5.3 RMSEs comparison between the put-tau, cJ;., and a combination of 

the put-tau and the Bermudan put-tau, cJ;.+b2, rollback method . .. 109 

5.4 Summary of control variates used in table 5.5 . . . . . . . . . . . .. 111 

5.5 Bermudan put values and variance reduction gains from various kinds 

of Bermudan control variates by using Lattice boundary. . . . . .. 112 

v 



5.6 Two-phase method to value Bermudan put options. Put+Bermudan 

tau roll back with So-dispersion. Pricing control variates are put-tau 

and put-tau + Bermudan early. Benchmark price is 4.00646. 114 

5.7 Two-phase method to value Bermudan put options. X = 100. Bench-

mark value is 6.08118. . . . . . . . . . . . . . . . . . . . . . . . . .. 115 

5.8 Two-phase method to value Bermudan put options. Benchmark value 

is 8.72811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 116 

5.9 Extrapolated American put values with pricing control variate only. 118 

5.10 Extrapolated American put values with pricing and v(O) control variate118 

5.11 Efficiency gains from adding v(O) control. . . . 119 

6.1 T-modified path illustration, T = 1 and N = 6 

6.2 Summary of SC option types . . . . . . . . . . 

6.3 Options defined by hitting times ....... . 

6.4 Extrapolated American put values from type 4 SC option with dif­

ferent values of kmax and kmin . ;1N-l(O) = 5 and gN-l = 2.99. 

127 

132 

137 

Benchmark value is 6.09037 ..................... " 142 

6.5 Contour parameter values . . . . . . . . . . . . . . . . . . . . . . .. 142 

6.6 Extrapolated American put option values from the SCMC method 

with different types, a = 0.2 . . . . . . . . . . . . . . . . . . . . . . . 143 

6.7 Extrapolated American put values from SC option values without the 

v(O) control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

6.8 Extrapolated American put values from SC option values with v(O) 

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 147 

6.9 Correlations between extrapolated American put and v(O) controls, 

p (VOO, :uN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148 

6.10 Extrapolated American put values from the sequential contour op-

tions with only pricing control. . . . . . . . . . . . . . . . . . . . .. 151 

6.11 Extrapolated American put values from the sequential contour op-

tions with pricing and v(O) control . . . . . . . . . . . . . . . . . .. 152 

7.1 Comparison of American and European fractional power call options 163 

7.2 American fractional call values with different ;1N-l(T) . . . . 167 

7.3 American put, a = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . .. 174 

7.4 Bias in extrapolated American put values using T-projection . . .. 176 

7.5 American fractional power call option with forward evolution (stan-

dard SCMC) method. a = 0.2 . . . . . . . . . . . . . . . . . . . . .. 178 

vi 



7.6 Benchmark case: knock-in flat barrier American call options with 

fi, = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 181 

7.7 Knock-in linear barrier fractional power American call options, So = 

105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 182 

7.8 Knock-in linear barrier fractional power American call options, So = 

100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 183 

7.9 Knock-in linear barrier fractional power American call options, So = 98.184 

vii 



List of Figures 

3.1 Illustration of a bridge hitting time 701 I 7 011 ,7012 

3.2 Hitting time densities where v > 0 and v < 0 

3.3 Contour bridge algorithm illustration . . . . . . . 

28 

32 

37 
3.4 Intersection time illustration. . . . . . . . . . . . 39 

3.5 Bimodal bridge hitting time density; f (701 I 7 011 , 7012 ). 7011 = 0.25, 

7012 = 0.26, 2-. = 70.2, .!. = 70, 2-. = 69.8 . 41 
011 01 012 

3.6 Biggest bite illustration ................. 44 

4.1 American put option's early exercise boundary (EEB) 68 

5.1 Convergence of a Bermudan option value to an American option value 

from a trinomial lattice method . . . . . . . . . . . . . . 94 

5.2 A B-spline defined by a set of knot points {O, 2, 4, 8, 16} 104 

6.1 Bermudan and SC option's exercise opportunities. 125 

6.2 Illustration of path construction. . 126 

6.3 Iteration of the SCMC algorithm . . . . . . . . 130 

6.4 The four types of sequential contours ....... 135 

6.5 Asset value simulation from the SCMC method 136 

6.6 Contour shape with different kmax and kmin • N = 50, ,aN-l(O) = 5 

and gN-l = 2.99. ............................ 141 

6.7 Early exercise boundaries of the sequential contour puts and the 

American put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144 

6.8 Convergence of SC put option values to American put values for var-

ious So . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 146 

6.9 Correlations between c:·i with 1)64, their covariances, and standard 

deviations for different contours ,ai(t) . . . . . 149 

7.1 Illustration of different projection techniques 159 

viii 



7.2 Convergence of Bermudan fractional call option values to the Amer-

ican value from a lattice method .. . . . . . 165 

7.3 American fractional power call options' EEB 166 

7.4 Contour construction for an American fractional power call with its 

EEB from Richardson extrapolation ................ " 168 

7.5 The values of ST (area (a), (b) and (c)) .............. " 169 

7.6 Continuation values, regression values and exercise values from the 

S-projection and the T-projection method, for a SC put option, on 

the 62th contour . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 175 

7.7 Continuation values, regression values and exercise values from the 

T-projection method, for a SC fractional call option, on the 62th 

contour .............. . 179 

A.l Illustration of bridge hitting times 193 

ix 



Acknow ledgments 

I would like to first show my gratitude to my supervisor, Dr. Nick Webber, for 

his continual supports, advices, detailed comments, and patience for the past four 

years. I have learnt a lot from him. This thesis would not have been completed 

without his help. 

I am truly indebted to my parents, Mrs. Vipada and Mr. Jitti Chirayukool 

for their encouragements, understandings and financial supports throughout my 

study. Thanks are due to them for giving me an opportunity to pursue this PhD. I 

could not have finished this thesis without them. 

Many thanks go to Ms Somsawai Kuldiloke for always being encouraging, 

considerate, and supportive. I deeply thank her for being an excellent listener. 

Without her, I could not have made it. 

x 



Declarations 

I hereby declare that this thesis is the result of my original research work and effort. 

When other sources of information have been used, they have been acknowledged. 

This thesis has not been submitted anywhere for any award. 

xi 



Abstract 

Monte Carlo simulation is a widely used numerical method for valuing fi­

nancial derivatives. It can be used to value high-dimensional options or complex 

path-dependent options. Part one of the thesis is concerned with the valuation of 

barrier options with complex time-varying barriers. In Part one, a novel simula­

tion method, the contour bridge method, is proposed to value exotic time-varying 

barrier options. The new method is applied to value several exotic barrier options, 

including those with quadratic and trigonometric barriers. 

Part two of this thesis is concerned with the valuation of American options 

using the Monte Carlo simulation method. Since the Monte Carlo simulation can 

be computationally expensive, variance reduction methods must be used in order 

to implement Monte Carlo simulation efficiently. Chapter 5 proposes a new control 

variate method, based on the use of Bermudan put options, to value standard Amer­

ican options. It is shown that this new control variate method achieves significant 

gains over previous methods. Chapter 6 focuses on the extension and the generalisa­

tion of the standard regression method for valuing American options. The proposed 

method, the sequential contour Monte Carlo (SCMC) method, is based on hitting 

time simulation to a fixed set of contours. The SCMC method values American put 

options without bias and achieves marginal gains over the standard method. Lastly, 

in Part three, the SCMC method is combined with the contour bridge method to 

value American knock-in options with a linear barrier. The method can value Amer­

ican barrier options very well and efficiency gains are observed. 

xii 



Chapter 1 

Introduction 

Barrier options are well-known exotic options that are traded in the market. They 

are popular among investors since they are cheaper than the corresponding European 

options and they can be used to gain or to reduce an exposure. They also occur 

in debt instrument and arise in credit risk application. Although there are several 

standard valuation methods that can be used to value barrier option accurately, 

these methods often work when the shape of the barrier is simple such as a flat or 

an exponential barrier, and can value only a single option at a time. 

The more complex versions of barrier options are characterised by conditional 

or non-constant barriers. Even though standard simulation methods can be used 

to value these complex options, they are often slow and prone to simulation biases. 

The first part of this thesis is concerned with the development of a novel simulation 

method to value complex-shape barrier options accurately and to improve on the 

standard simulation method in term of computational costs. 

American options and American style derivatives have become one of the 

most common financial instruments traded both in exchange and in the over-the­

counter market. These types of options are difficult to value because of their early 

exercise feature. This special feature of American options complicates the pricing 

problem because one needs to solve for the exercise boundary simultaneously with 

the option value. The standard Black-Scholes partial differential equation (PDE) 

becomes a free boundary value problem. Because in several settings partial different 

equation (PDE) methods may be numerically difficult to use, Monte Carlo simu­

lation can be used as an alternative numerical method to price American options. 

However, Monte Carlo simulation can be computationally expensive. Therefore, 

variance reductions techniques must be used in order to implement Monte Carlo 

simulation efficiently. The development of a new control variate technique and 
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a new simulation method to value standard and exotic American options are the 

main focus of part two and part three of the thesis. 

There are three main contributions of this thesis. The first contribution is 

the development of a novel simulation method, based on a hitting time simulation, 

to value exotic barrier options and to improve upon the standard simulation method. 

The second contribution is the development of a new control variate technique, based 

on the use of a Bermudan option, to value Bermudan and American put options. 

The new control variate method can be used to reduce substantially computational 

costs of a simulation method. The third contribution is the extension and the 

generalisation of the standard Least Squares Monte Carlo method of Longstaff and 

Schwartz (1995) [177] (LSLS) to value standard and exotic American options. 

Throughout this thesis, the time t asset value St is assumed to follow the 

geometric Brownian motion. That is, 

(1.0.1) 

where Zt is a Brownian motion, r is a risk free rate and (J' is volatility. A risk free 

rate and volatility are assumed to be constant. 

At the beginning of the thesis, Chapter 2 provides a literature review of 

valuation methods that have been used to value barrier options. It also provides a 

general review of the hitting time, a concept that is crucial to the barrier option 

valuation problem and the development of the new simulation technique. 

In Chapter 3 of the thesis, the novel simulation method, the contour bridge 

method, is introduced and is described. The method is applied to the valuation of 

exotic barrier options. Several complex non-constant barrier options are introduced. 

These range from a not very complicated linear barrier option to a more complex 

trigonometric-shape barrier option. The method is based on a hitting time simula­

tion and a bridge hitting time simulation to a specific type of contour. Numerical 

results show that biases in resulting barrier option values are negligible and most 

of the time the contour bridge method achieves substantial efficiency gains over 

standard simulation methods. 

Part two of the thesis begins by reviewing existing American valuation meth­

ods. Chapter 4 reviews semi-analytical and numerical methods used in valuing stan­

dard American options both in the geometric Brownian motion model and in other 

models. The chapter also reviews the valuation of American options by using sim­

ulation techniques. Different simulation methods are reviewed and described. The 

standard regression method, the LSLS method, is also analysed. Several control 
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variate techniques for valuing American options are reviewed and discussed. The 

chapter lastly describes the pricing of American barrier options and a power option; 

the two options that will be considered in the last part of the thesis. 

In Chapter 5, a new control variate technique is proposed. The new method 

makes use of the twice-exercise Bermudan put option as a control variate. The 

Bermudan control variate is implemented to value Bermudan put options using a 

two-phase Monte Carlo simulation method. The results suggest that the Bermudan 

control variate method gives accurate values for Bermudan options and achieves 

significant efficiency gains over the plain LSLS method. It is also shown that Amer­

ican put option values can be approximated accurately by employing the three-point 

Richardson extrapolation method. The standard errors of an extrapolated Amer­

ican value are also reduced by using a value of an individual Bermudan put as a 

control variate. 

Chapter 6 extends and generalises the standard LSLS method for valuing 

American put options. The new method, the sequential contour Monte Carlo 

(SCMC) method, simulates hitting times to a fixed set of exponential contours. 

The method generalises the LSLS method to a more general family of contours and 

instead of iterating backward on a fixed time step, the method iterates backward 

on each contour with a varied time step. It is shown that sampled hitting times 

to contours can be used to value barrier options and these options can be used as 

control variates. Numerical examples show that the method can value American 

put options without evidence of bias and it achieves marginal efficiency gains over 

the standard method. 

Chapter 7 extends the SCMC method by introducing two new projection 

techniques to approximate an option's continuation values. The new techniques are 

the T- and the V-projections. These techniques are applied to value American put 

and American fractional call options. The second part of Chapter 7 demonstrates 

the application of these techniques to value exotic American options; the American 

linear knock-in fractional power call option. To value this option, the SCMC method 

is modified by incorporating the contour bridge method introduced in Chapter 3. 

The method can value American knock-in options without any evidence of bias and 

also achieve respectable efficiency gains over the standard LSLS method. 

Lastly, Chapter 8 presents the conclusion and observations of the complete 

thesis. Recommendations for future research are pointed out. There is an appendix 

consisting of two parts. The first part is concerned with the derivation of the bridge 

hitting time density that is used in Chapter 3. The second part shows the derivation 

of a distance on an exponential contour that is used in Chapter 7. 
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Part I 

Contour bridge Simulation 
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Chapter 2 

Literature Review on Barrier 

Options and Hitting Times 

Barrier options have become popular exotic options that are traded in the market. 

They enable investors to avoid or obtain the exposure and they are cheaper than 

the corresponding European options. They can be monitored either continuously or 

discretely. There are explicit solutions for barrier options for a simple case; single or 

double constant barriers with single underlying asset that follows a geometric Brow­

nian motion process in (1.0.1). For a more complicated barrier option or process, 

numerical methods must be used. A concept that is closely related and is important 

to barrier options is that of a hitting time. It is the first time that a stochastic 

process crosses a certain barrier level. The hitting time has been used in several 

applications in option pricing such as the valuation of barrier options and American 

options. 

This chapter provides an overview of barrier options, their valuation methods 

and hitting times to several types of barrier. An overview of barrier options is 

discussed in section 2.1. Section 2.2 reviews several valuation methods for barrier 

options. The review of hitting times is provided in section 2.3. 

2.1 An overview of barrier options 

Barrier options are a modified form of standard plain-vanilla European options. The 

payoff of barrier options depends on whether or not an asset value hits a pre-specified 

barrier level during the life of an option. An in-option will payout only if an asset 

value crosses a barrier. On the other hand, an out-option will payout only if an 

asset value does not cross a barrier during the life of an option. If the initial asset 
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value at time to is above the initial value of the barrier, an option is referred to as 

a down-option. If the initial asset value is below the time to value of the barrier, 

an option is referred to as an up-option. A barrier option can have either single or 

double barriers. 

Let b(t), t E [0, T] be a barrier level at time t for a barrier option maturing 

at time T and St be an asset value at time t. If a barrier is constant, one writes 

b(t) == b. Write T for the first hitting time of S = (St)t~O to the option barrier. The 

first hitting time for a barrier option is defined as 

T = min{t E [0, T] : St = b(t)}. (2.1.1) 

Let /, = llr:::;T, where llr:::;T is the indicator function, be a variable determining 

whether or not the barrier is hit before time T. Barrier options can be categorised 

into two main groups. The first group is an option whose payoff depends directly 

on T. The second group is an option whose payoff depends on T only through /" 

The former is referred to as a T-option and the latter is referred to as an /'-option. 

There is also a special case of an /'-option called a bare-/, option. Examples are 

shown in table 2.1. Usually, to value an /,-option, one needs to compute additional 

Type Example 
T-option rebate option, paying at T 

/,-option knock-in option 
knock-out option 

bare-/, option knock-out option, paying rebate at T 

Table 2.1. Examples of T-option and /,-option 

quantity such as the asset value of maturity time T, ST, to compute an option's 

payoff. However, if a payoff depends only on /', for instance a knock-out option that 

pays a fixed rebate R at time T, this type of option is referred to as a bare-/, option. 

The concept of barrier option can also be used in the context of credit ap­

plication. For instance, in a structural model of default, the default time is the first 

hitting time of an asset value to a certain barrier level. A bond can be viewed as a 

T-option. In reduced form credit models, default may be modelled as occurring when 

a count-down process hits a barrier level, so bond prices again resemble T-options. 
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2.2 Valuation of barrier options 

Even though there are explicit solutions to value barrier options, most of the an­

alytical formulae are for the simplest types. Merton (1973) [182] first presented 

an explicit solution of a down-and-out call option with one flat barrier when an 

underlying process follows a geometric Brownian motion (GBM). More analytical 

formulae, with this simple case, were provided in Reiner and Rubinstein (1991) [205] 

and Rich (1994) [211] and Kunitomo and Ikeda (1992) [162]with exponential barri-

ers. 

For more complicated types of barrier options, perhaps those with non­

constant barriers or with non-geometric Brownian underlying processes, numerical 

methods must be applied. 

2.2.1 Valuation methods with GBM and constant barrier 

There are several numerical methods used to value barrier options in the literature. 

These are lattice methods, partial differential equation (PDE) methods, analyti­

cal approximation and quadrature methods and Monte Carlo simulation methods. 

When an option has more than one barrier, these standard methods have to be 

modified to obtain values with reasonable accuracy. 

2.2.1.1 Lattice methods 

One of the most popular methods for pricing barrier options is the lattice method. 

Without any modification, the standard lattice method converges very slowly when 

valuing barrier options. When the lattice nodes do not lie exactly on the barrier, 

a lattice will price an option with a wrong barrier, resulting in a bias in option 

values. To reduce the bias, a large number of time steps must be used. This results 

in greater computational times. There are several methods whose purpose is to 

correct bias without using a large number of time steps. 

Boyle and Lau (1994) [42] suggested a method where the number of time 

steps N is chosen such that the barrier lies on lattice nodes. This method is often 

referred to as the 'shifting the node' method. Even though this method can re­

duce biases substantially, it cannot be applied when there is more than one barrier. 

This idea was also adopted by Ritchken (1995) [212] and Dai and Lyuu (2007) [80]. 

Ritchken (1995) [212] pointed out that a trinomial lattice may have an advantage 

over a binomial lattice because a trinomial lattice enables one to have more flexibil­

ity in terms of ensuring that lattice nodes lie on the barrier. Ritchken (1995) [212] 

proposed a method that makes use of a stretching parameter that adjusts an asset 
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value so that nodes can be placed on a barrier. A trinomial lattice is also applied to 

value discrete barrier options by Broadie et al. (1999) [51J. Dai and Lyuu (2007) [80J 

constructed a lattice that has the barrier lying on lattice nodes and applied a com­

binatorial algorithm. The method where the option value is interpolated from two 

values computed from nodes lying above and below the barrier was proposed by Der­

man et al. (1995) [84J. Recently, a method where the drift term of the underlying 

asset can be fitted dynamically at each time step so that an asset value will coincide 

with the barrier, was suggested by Woster (2010) [248]. 

Another lattice method incorporates conditional hitting probabilities into 

branching probabilities of a lattice. This method was described in Kuan and Web­

ber (2003) [160J and Barone-Adesi et al. (2008) [28J. The method requires the 

conditional hitting probabilities to a barrier to be known. However, even though 

they are not known, a linear piecewise approximation can be used. Kuan and Web­

ber (2003) [160J showed that the method works well both for plain vanilla barrier 

options and for barrier Bermudan options. 

Ahn et al. (1999) [2] considered a discrete barrier option in the case where an 

initial asset value is close to to the barrier and proposed an adaptive mesh method. 

This is essentially a trinomial lattice in which more refined lattice branchings are con­

structed in areas where more accuracy is needed. This idea is adopted from Figlewski 

and Gao (1999) [91] who applied an adaptive mesh method to continuous barrier 

options. Steiner et al. (1999) [229J extended the interpolation technique of Derman 

et al. (1995) [84J to value discrete knock-out options when an initial asset value lies 

close to the barrier. The method also takes into account barrier hitting probabili­

ties of nodes near the barrier. The convergence of the lattice method with a barrier 

option with arbitrary discrete monitoring dates was studied by Horfelt (2003) [126]. 

2.2.1.2 PDE methods 

PDE-based methods have also been applied to value barrier options. Suppose an 

asset value St follows a GBM in (1.0.1). Let Vt be the value at time t of an option 

written on St maturing at time T. The method applies the Black-Scholes PDE: 

(2.2.1) 

with boundary conditions that are suited for a barrier option. Different ways used to 

discretise partial derivatives in (2.2.1) give rise to different variants of the technique. 

The explicit finite difference method for valuing both continuous and discrete 

barrier options was proposed by Boyle and Tian (1998) [43]. They modified the 
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partition of grid points on the y-axis such that the barrier is always on the grid 

and implemented quadratic interpolation to compute an option value. The method 

employs a more refined grid near the barrier to eliminate problems that arise when 

an initial asset value So is close to the barrier. When So is not close to the barrier, 

the method's performance is similar to that of the Ritchken (1995) [212] method. 

This comes as no surprise since an explicit finite difference method can be viewed 

as a trinomial lattice method. 

The implicit finite difference method for valuing barrier options was sug­

gested Zvan et al. (2000) [253]. They showed that their implicit method converges 

faster than the explicit method because the explicit method requires a much smaller 

grid spacing. They also pointed out that the Crank-Nicolson scheme (thought of 

as a method that is in between the explicit and implicit methods), even though 

stable, can produce oscillating results when valuing barrier options if a certain con­

dition is not satisfied. Wade et al. (2007) [242] suggested a technique for smooth­

ing high-order Crank-Nicolson schemes for discrete barrier options. An adaptive 

finite element technique to value barrier options was discussed by Foufas and Lar­

son (2004) [93]. They show that the resulting barrier option's values are in agreement 

of those computed from the implicit finite difference method of Zvan et al. (2000) [253]. 

The implicit method was also used by Ndogmo and Ntwiga (2007) [191]. Theyap­

plied coordinate transformation to restrict asset values to be in a particular range. 

To handle valuation problems in areas near the barrier, adaptive grids are used. 

Their main idea is to reduce the solution domain by incorporating conditional hit­

ting probabilities to a boundary condition. This method is similar to the method 

of Kuan and Webber (2003) [160] and Barone-Adesi et al. (2008) [28] in a lattice 

method context and also to the Dirichlet Monte Carlo method that will be discussed 

later. 

Although lattice and PDE-based methods can be used to value barrier op­

tions effectively, they may be difficult to use to value simultaneously a book of 

barrier options with different strikes and barriers. For instance, an implicit PDE 

method has to be used to value one option at a time. 

2.2.1.3 Semi-analytical methods 

Other types of method that can be applied to value barrier options are semi­

analytical methods. They are semi-analytical because usually a solution is in an 

integral form and hence numerical integration is required. Mijatovic (2010) [187] 

presented a semi-analytical solution to value double barriers options with time­

dependent parameters. The method provides an integral representation of the bar-
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rier premium, which is the difference between the barrier option value and the 

corresponding European option value. 

A quadrature technique for valuing discrete barrier options was applied by 

Sullivan (2000) [233] and Fusai and Recchioni (2007) [98]. Sullivan (2000) [233] 

presented a method that combines numerical (multi-dimensional) integration with 

function approximation. This technique is applied at the monitoring dates of the 

option. Fusai and Recchioni (2007) [98] employed a similar idea to value discrete 

barrier options in the constant elasticity of variance (CEV) model of Cox and 

Ross (1976) [75]) and Variance Gamma (VG) model of Madan et al. (1998) [179]. 

There are a number of papers concerning the use of Laplace transform to 

value barrier options, with both single and double barriers. These include Lin (1998) [166], 

Pelsser (2000) [197], Hulley and Platen (2007) [129], Davydov and Linetsky (2002) [82] 

and Wang et al. (2009) [245]. 

Lin (1998) [166] applied the Laplace transform technique of Gerber and 

Shiu (1994, 1996) [101, 102] to the double barrier hitting distribution. The op­

tion value is expressed as an infinite sum. Pelsser (2000) [197] applied contour 

integration to invert the Laplace transform in order to obtain the double hitting 

time density. Option values are then obtained by integrating with respect to the 

density. Hulley and Platen (2007) [129] presented the Laplace transform of the op­

tion value, using numerical quadrature to evaluate integral terms and then inverting 

the Laplace transform of the option value. 

Wang et al. (2009) [245] proposed a hybrid method that combines the Laplace 

transform with the finite difference method to value both single and double barrier 

options. The method eliminates the t-dependent term in the Black-Scholes PDE in 

(2.2.1) by using the Laplace transform. Then the method applies finite difference 

method to discretise S-dependent terms. They show that the method converges 

faster than lattice methods discussed earlier. This is because when the t-dependent 

term is eliminated, there is no problem arising from partitioning time steps unlike 

other numerical methods. 

A path counting method to obtain the double hitting time distributions was 

employed by Sidenius (1998) [226], and with these distributions, an analytical solu­

tion is obtained. 

Semi-analytical methods often require that the hitting distribution to the 

barrier is known. When working with more complex barriers, such as those that 

will be described in chapter 3, it will be difficult for these methods to work well. 

This encourages the use of simulation methods. 
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2.2.1.4 Simulation methods 

Simulation methods have several advantages. For instance, they can be used in a 

situation where more state variables are required or where an underlying process 

is not amenable to other methods. However, when valuing barrier options, naive 

simulation methods can be slow and may suffer from biases in option values. The 

standard Monte Carlo simulation method will be described in detail in section 3.1. 

There is a well known problem when valuing barrier options using Monte 

Carlo simulation called the barrier breaching problem. Consider a down and out 

option, this is a situation where, for each two consecutive times ti and tHll both 

asset values Sti and Sti+l lie above the barrier. However, there is a possibility that 

the barrier may have been hit in the interval (ti' tHl) but the simulation technique 

cannot detect this, resulting in a bias in the option value. One simple way to reduce 

the bias is to increase the number of time steps, but this will increase the computa­

tional cost considerably. 

Bias correction methods 

To correct the biases in Monte Carlo simulation without too much computational 

cost, several methods have been proposed in the literature. Two general approaches 

have been made. The first method is to sample from the distribution of the minimum 

(for 'down'-option) or the maximum (for 'up'-option) of asset values. This method 

is sometimes referred to as the Brownian bridge approach since an asset value is 

sampled conditional on two end points. To implement this method, the distribution 

of the maximum or the minimum of an asset value must be known. Beaglehole 

et al. (1997) [30] applied this method to value barrier options when an underlying 

process follows a geometric Brownian motion. The method is as follows: 

Consider a random stock price path S, starting from an initial value Sti at 

time ti and ending to a value Sti+l at time tHl' One is interested in computing 

the conditional probability of S hitting a constant barrier b during the time interval 

[ti, tHl) given the values of Sti and Sti+l' Sti is assumed to be greater than b. 
Denote a minimum of a process Z = (Zt)t>o as 

mfT == mfT(S) = min {Zk(S)}, , , kE[t,Tj (2.2.2) 

Let {Sti } i=l, .. ,N be a stock price path generated from the Monte Carlo method with 

N number of time steps and {mti,ti+lh=l, .. ,N be a sample of {mti,ti+lh=l, .. ,N which 
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is generated from the Brownian bridge method. Write 

m(S) - min {St.} 
i=l, .. ,N • 

m(m) 

(2.2.3) 

(2.2.4) 

The conditional distribution of the minimum (for simplicity, write S = S) is given 

as: 

(2.2.5) 

and, with a univariate U ,....., U[O, 1), 

is a draw from me,tHl' 

Beaglehole et al. (1997) [30] showed that this method can remove simula­

tion bias for a down-and-out call option with one flat barrier. This method was 

applied to construct a lattice to value American options by Sidenius (1998) [226]. 

Shevchenko (2003) [225] adopted the method of Beaglehole et al. (1997) [30] to value 

multi-asset knock-out options. 

The second bias correction method for the Monte Carlo simulation is to 

compute the conditional hitting probabilities and use them to weight an option's 

payoff. This idea is described in Baldi et al. (1999, 1999) [20, 21]. Suppose a knock­

out option has a payoff h(ST) where ST is an asset value at time T. The method 

computes a conditional hitting probability between time ti and ti+l' Pi. If there are 

N time steps, then the payoff of a knock-in option can be computed as 

( 

N-l ) 
h (ST) 1 - Do (1 - Pi) . (2.2.7) 

This method is referred to as the Dirichlet method and will be discussed further 

in the next chapter. Baldi et al. (1999) [20] applied a large deviation technique 

to obtain analytical forms for Pi for flat and exponential barriers both single and 

double. The formula for the single exponential barrier will be shown and used in 

chapter 3. The valuation of rebate option and parisian option using this method 

was described in Baldi et al. (1999) [21]. 

Even though these correction methods can be applied to correct biases in 
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barrier options, they are limited to cases where the probability is available. These 

are cases where a barrier is flat or exponential. 

Variance reduction with simulation methods 

A method that can be used with the Monte Carlo simulation to value barrier option 

is importance sampling. In this case, the method is used to reduce the variance of the 

possibility of a barrier breaching at each monitoring date. The technique involves 

changing the probability measure from which sample paths are generated. Glasser­

man (2004) [110] provided a general background of the application of the importance 

sampling in option pricing. 

The importance sampling technique to value barrier options was suggested 

by Glasserman and Staum (2001) [111]. The method is to incorporate survival (not 

hitting) probabilities p' into the generation of uniform random variable, U' . Then 

the asset value is sampled using U' . Since the method reduces only the variance of 

a knock-out event, not the variance of the payoff at maturity time T, the method 

may not perform well in a situation when the payoff variance is high. An example 

is an option with large volatility and a long time to maturity. In this case, the 

method should be used in conjunction with other variance reduction techniques. 

Joshi and Leung (2007) [145] use the importance sampling method to value barrier 

options in a jump-diffusion model. The technique modifies the jump size drawn by 

incorporating the hitting probability between each time step. The modified jump 

size ensures that a sampled asset value already reflects the possibility of the barrier 

being breached. The use of stratified sampling on hitting times to value discrete 

barrier options is investigated by Joshi and Tang (2010) [146]. 

Control variate methods for barrier option valuation are described in Kim 

and Henderson (2007) [158], Ehrlichman and Henderson (2007) [89], Fouque and 

Han (2004) [95] and Fouque and Han (2006) [96]. Their methods are based on the use 

of constructed martingales as control variates. Kim and Henderson (2007) [158] and 

Ehrlichman and Henderson (2007) [89] proposed the adaptive control variate method 

in which the iteration procedure is employed to approximate the martingale. The 

use of martingale control variates in valuing barrier options in stochastic volatility 

models was discussed by Fouque and Han (2004, 2006) [95, 96]. 

2.2.2 Non-GBM processes 

There are a number of papers that are concerned with the valuation of barrier options 

in the non-GBM context. Ribeiro and Webber (2006) [208] employed the method of 
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Beaglehole et al. (1997) [30] to correct simulation bias in barrier option values where 

the underlying asset follows Levy processes. Carr and Hirsa (2007) [58] derived the 

valuation equation for barrier options in a general class of Levy processes. Because 

of the existence of jumps, there will be an integral term in the differential equations 

analogous to (2.2.1) and thus one obtains the partial integra-differential equation 

(PIDE). To solve the PIDE, Carr and Hirsa (2007) [58] employed a finite difference 

method. 

The transform approach to value barrier options in Levy models has been 

proposed by Jeannin and Pistorius (2010) [139]. They applied the Weiner-Hopf 

factorisation and then used the Laplace transform to obtain expressions for the op­

tion value. Boyarchenko and Levendorskii (2010) [41] employed the randomisation 

method of Carr (1998) [56] to value double barrier options with a wide class of 

Levy models. The valuation of double barrier options under a flexible jump diffu­

sion model was investigated by Cai et al. (2009) [54] This is a model where jump 

sizes are assumed to be hyper-exponentially distributed. They presented a double 

Laplace transform and then employ a numerical inversion method to obtain the op­

tion value. The valuation of barrier options in jump-diffusion models using a simula­

tion method with importance sampling is described in Joshi and Leung (2007) [145]. 

Metwally and Atiya (2002) [184] also applied a concept of importance sampling to 

estimate the density of hitting times for jump processes. Bernard et al. (2008) [33] 

developed a valuation approach to value barrier options in the stochastic interest 

rate model of Vasicek (1977) [240]. They found a semi-analytical formula to value 

a single constant barrier option. The pricing problem of barrier options in the 

stochastic volatility model of Heston (1993) [122] was investigated in Griebsch and 

Wystup (2011) [117]. They expressed an option value as an n-dimensional integral. 

To evaluate this integral, they employed a fast Fourier transform (FFT) method 

and a multidimensional numerical integration. 

The valuation of a barrier option in which the underlying asset has stochastic 

dividends was discussed by Graziano and Rogers (2006) [116]. They derived a semi­

analytical solution that can be used to value single and double barrier options. 

The valuation of barrier options in the CEV model has been investigated by 

several authors. Boyle and Tian (1999) [44] employed a trinomial lattice to develop a 

discrete approximation for the CEV process. An asset value is transformed such that 

the new process has constant volatility. A trinomial lattice is constructed based on 

the transformed process and the lattice branching is modified using the stretching 

method of Ritchken (1995) [212]. A PDE-based method to price barrier options 

in the CEV model was investigated by Lo et al. (2001) [172]. They employed an 
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eigenvalue expansion approach to obtain the solution. 

Another method is a Lie-algebra approach used by Lo et al. (2000) [175]. 

The method is applied to value barrier options with time-dependent parameters. 

The option value involves an infinite sum with integral terms which may have to be 

computed by numerical integration methods. A similar idea was also used by Lo 

and Hui (2006) [170] and Lo et al. (2009) [174]. This technique was extended to 

valuing barrier options with time dependent parameters by Lo and Hui (2006) [170]. 

Lo et al. (2009) [174] incorporated time-dependent volatilities into the price process 

of moving barrier options. 

Models with time-dependent parameters were also investigated by Novikov 

et al. (2003) [194], Rapisarda (2005) [202]' Roberts and Shortland (1997) [214] and 

Lo et al. (2003) [173]. Roberts and Shortland (1997) [214] valued a barrier option 

when the risk-free rate is a deterministic function. They make use of the approxi­

mation technique proposed by Roberts and Shortland (1995) [213]. Numerical inte­

gration is required in order to obtain the option price. Novikov et al. (2003) [194] 

proposed a method that is based on a piecewise linear approximation and repeated 

integration. The method of images was employed by Lo et al. (2003) [173] to obtain 

upper and lower bounds of barrier options with time dependent parameters. Rapis­

arda (2005) [202] extended the results of Lo et al. (2003) [173] and applied a per­

turbation expansion method to obtain a system of PDEs which yields an expression 

of the option value involving integrals and the sum of infinite series. 

Barrier option pricing in the variance-gamma (VG) and the normal inverse 

Gaussian (NIG) models was investigated in Ribeiro and Webber (2003, 2004) [206, 

207] and Becker (2010) [31]. Ribeiro and Webber (2003) [206] proposed the use 

of a gamma bridge in conjunction with a stratified sampling method (see Glasser-

man (2004) [110] for a general review of a stratified sampling method in the Monte 

Carlo application) to value barrier options in the variance-gamma model. Their 

results show that substantial speed-ups can be obtained. The use of simulation tech­

niques to value barrier options in the VG model was also investigated by Becker (2010) [31]. 

He applied the difference-of-gamma bridge sampling method of A vramidis et al. (2003) [18] 

and Avramidis and L'Ecuyer (2006) [17]. The technique provides bounds of simu-

lated VG paths, which can be used to obtain information about a path hitting a 

barrier in each time interval. Ribeiro and Webber (2004) [207] investigated the val­

uation of average rate options in the NIG model using simulation. They suggested 

the use of an inverse Gaussian bridge with stratified sampling. Even though their 

paper does not provide results for barrier options, their work is important and is 

related to the contour bridge method described in chapter 3. In particular, one part 
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of the method that will be presented in the next chapter uses a result of Ribeiro 

and Webber (2004) [207], with a slight modification. 

2.2.3 Non-constant barriers 

A type of barrier that is relatively more tractable than others is an exponential 

barrier. It is of the form 

0$ t $ T, (2.2.8) 

where 9 E lR is a barrier growth rate. The valuation problem for exponential barrier 

options was investigated by Kunitomo and Ikeda (1992) [162]. They presented the 

solution of the double exponential barrier options as an infinite series by using the 

known hitting time densities of a Brownian motion to a linear barrier. (A correction 

to one ofthe equations in their paper was made by Kunitomo and Ikeda (2000) [161].) 
Buchen and Konstanatos (2009) [52] investigated double exponential barrier options 

with arbitrary payoff. They employed the method of images and obtained the so­

lution that involves the sum of an infinite series. Thompson (2002) [235] studied 

bounds on values of barrier options with exponential barriers. 

Another type of method that is used to value barrier options with exponential 

barriers is lattice methods. This is done by Rogers and Stapleton (1998) [217], Costa­

bile (2002) [74] and Kuan and Webber (2003) [160]. Rogers and Stapleton (1998) [217] 

modified the CRR binomial method of Cox et al. (1979) [76] to value barrier options 

with exponential barriers. The method is based on interpreting the random walk 

on the lattice to be equally-spaced in space rather than equally-spaced in time. The 

probability of moving to the consecutive nodes is modified. 

Costabile (2002) [74] extended the binomial lattice to value exponential bar­

rier options. The method is based on shifting nodes such that they lie on the expo­

nential barrier. The method is shown to yield more accurate option values than the 

trinomial method proposed by Ritchken (1995) [212]. Kuan and Webber (2003) [160] 

considered barrier options in which barriers are in the form b(t) = Cl exp(c2t2 + C3 t ) 

and b(t) = C4 - Cl exp(c2t2 + C3 t ), where CI, C2, C3 and C4 are constants. They valued 

non-constant barriers in the stochastic Dirichlet framework. Their method uses a 

Brownian bridge hitting time distribution to construct a lattice. Their method is 

shown to be superior to those of plain lattice and Monte Carlo methods. 

Rogers and Zane (1997) [218] implemented a state space transformation 

method together with a trinomial lattice to value double exponential barrier op-
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tions. They transformed a log price process X t = In(So) + p,t + aZt to 

(2.2.9) 

where Ut and It are continuously once differentiable barrier functions. 1 Then the 

process Xt is time-transformed to a process Xt with unit volatility and deterministic 

drift term. They then applied a trinomial lattice with the transformed process Xtto 

value barrier options. Their results were similar (maximum of 0.04% difference) to 

the semi-analytical solutions of Kunitomo and Ikeda (1992) [162]. 

Rogers and Zane (1997) [218] investigated barrier options with a linear barrier 

of a form: 

b(t) = b(O) + mt o ~ t ~ T. (2.2.10) 

In this case there is no explicit solution because the hitting time density to a linear 

barrier of a geometric Brownian motion is not known and hence the probabilistic 

approach fails. Rogers and Zane (1997) [218] also applied their transformation 

method to value double linear barrier options in which an upper and a lower barrier 

takes the form (2.2.10). However, they did not compare the results with benchmark 

values. Ballestra and Pacelli (2009) [25] applied boundary element methods to 

value linear double barrier options with barriers of the form (2.2.10) where m = 1. 

They presented an integral representation of the barrier option value and obtain a 

solution by solving a system of integral equations. The method is extended to value 

a quadratic barrier and a kinked barrier option. 

Morimoto and Takahashi (2002) [190] investigated barrier options with a 

square root barrier of forms 

b{t) = b(O)V(t), 

bU (t) = So exp (at + ga-v't) , 

bL(t) - Soexp(at-ga-v't) , 

(2.2.11) 

(2.2.12) 

(2.2.13) 

where (2.2.12) and (2.2.13) are upper and lower barriers for double barrier options. 

The method makes use of an asymptotic expansion to estimate the hitting proba­

bility. A numerical integration is required in order to obtain the option value. 

Hui (1997) [127] investigated the partial barrier option. This is an option 

that the barrier exists for only a certain part of an option's life. Since the barrier 

is constant, Hui (1997) [127] provided explicit solutions for several types of partial 

IPor example, an exponential barrier gives Ut = In(uo} + gt. 
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barrier options. Dorfleitner et al. (2008) [87] applied a Green's function method to 

solve the PDE of barrier options with time dependent parameters. They employed 

their method to value a quadratic barrier option and also a flat barrier option with 

power payoff. 

Kijima and Suzuki (2007) [156] investigated a barrier option valuation prob­

lem in a credit application. They employed a change of measure technique to derive 

a closed form solution for a knock-out exchange option whose barrier is a fraction 

of the value of other security. 

2.3 Hitting times 

A concept that is crucial to the problem of barrier options valuation is that of hitting 

times. For a continuous process z, the first hitting time of the level f3 for the process 

z is defined as 

r = inf {t ;::: 0 : Zt = f3} . (2.3.1) 

If Zo > f3, then 
r- = inf {t ~ 0 : Zt ~ f3} . (2.3.2) 

Similarly, if Zo < f3, then 

r+ = inf {t ;::: 0 : Zt ~ f3} . (2.3.3) 

Generally f3 is allowed to be a function of time t. In this case, f3(t) is called a 

contour. Densities of T are available in a number of cases depending on the process 

Zt and the contour f3(t). 
Perhaps the most common hitting time density is when Zt is a Brownian 

motion: Zt = J1..t + O'Wt, Zo = 0, where Wt is a standard Brownian motion. The 

hitting density f(t; J.l, 0'), where contour f3(t) = f3 is constant, is given by (Karatzas 

and Shreve (1991) [151]). 

f3 ( (f3 - J.lt)2) 
f(t; J1.., 0') = O'V27rt3 exp - 20'2t . (2.3.4) 

f(t;J1..,O') is an inverse Gaussian distribution. 

When Zt = St where St is a geometric Brownian motion and f3(t) is an 

exponential contour: 
1 

f3(t) = - exp (gt) , 
a 

(2.3.5) 

where 9 is a contour growth rate and i = f3(0) is time to value of a contour (one 
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can view a as a parameter that controls time to value of an exponential contour), 

in this case the hitting time density is 

a ( (a - (g - p,) t) 
2 

) f (t; a, g, r, 0") = .,f'i;tj exp - 2 2 ' 
0" 27rt3 0" t 

(2.3.6) 

where p, = r- ~0"2 and a = In (i3ra)) = In (Sa). The density (2.3.6) will be discussed 

further in section 3.2. There are a number of studies of hitting time probabilities 

and distributions. Examples are summarised as follows. 

2.3.1 Zt is a Brownian motion 

When a contour f3(t) is linear, the density is known by the Bachelier-Levy formula 

(see Siegmund and Yuh (1982) [227] and Lerche (1986) [164]). 

The hitting time distribution of a linear contour was investigated by Hobson 

et al. (1999) [125]. They used Taylor expansions to approximate the hitting proba­

bility of a Brownian motion starting both above and below a contour. Durbin and 

Williams (1992) [88] studied a hitting probability in a curved contour case. The hit­

ting distribution of quadratic contours was investigated by Alili and Patie (2005) [8]. 

Wang and Potzelberger (1997) [244] discussed a case where a contour is piecewise 

linear. A hitting time density of a two-dimensional Brownian motion to a constant 

contour was investigated by Iyengar (1985) [135]. 

Daniels (2000) [81] used a numerical method to approximate a hitting time 

distribution of a contour of the form f3(t) = Cl + C2t + C3 sin t where Cl, C2 and C3 

are constants. The hitting time distribution of a similar form of contour was also 

studied by Roberts and Shortland (1995) [213] who applied a hazard rate tangent 

approximation. 

There are a number of authors who investigate hitting time distributions 

when a contour involves a square root of time. Let a, b, C E lR be constants. The idea 

is to transform a Brownian motion to an Ornstein-Uhlenbeck (OU) process and then 

compute a hitting distribution of a transformed process to a constant contour. A 

case where a contour is in a form f3(t) = c..ji was investigated by Breiman (1966) [45]. 

Sato (1977) [222] investigated the hitting distribution of a contour ofthe form f3(t) = 

cJf+t. Jennen and Lerche (1981) [140] considered a case where Zo < 13(0) and 

provided a general form of a hitting distribution of the form f3(t) = J2 (c + at) and 

f3(t) = J(2a + In(t + 1)) (t + 1). Ricciardi et al. (1984) [210] presented the hitting 

distribution to a contour of the form f3(t) = c + btl/k, where k ~ 2, in an integral 

equation. Park and Paranjape (1976) [196] investigated hitting probabilities of a 
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Brownian motion to various types of contour including (3(t) = 1 + 0. 
Analytical expressions, that involve hypergeometric functions, for hitting 

time distributions to contours (3(t) = a+by'c + t and (3(t) = bv'c+1 where Zo < (3(0) 

were provided by Novikov et al. (1999) [193]. The use of the method of images for 

approximating the hitting time distribution to a contour (3 = aJ tIn (~) was done 

by Kahale (2008) [149]. 

The hitting distribution to a contour (3(t) = atk where k < ! has been 

investigated by Park and Paranjape (1976) [196] and Jennen and Lerche (1981) [140]. 

A quadratic case where k = 2 was investigated by Salminen (1988) [220]. 

2.3.2 Zt is a non-Brownian motion 

There are a number of studies of hitting time distributions to constant contours 

when an underlying process is not a Brownian motion. The processes considered 

are the Ornstein-Uhlenbeck (OU) process, the Bessel process, the CEV process and 

Levy processes. 

The hitting distribution of an OU process is expressed as the Laplace trans­

form of a function of a three-dimensional Bessel bridge by Leblanc et al. (2000) [163]. 

A limitation of the formula of Leblanc et al. (2000) [163] was pointed out by Going­

Jaeschke and Yor (2003) [114]. The three-dimensional Bessel bridge method was 

corrected by Alili et al. (2005) [9]. They also provided two additional techniques 

used to approximate the hitting distribution to a constant contour. These are an 

eigenvalue expansion and an integral representational method. The OU-process 

hitting distribution was analysed by Ricciardi and Sato (1988) [209] and Salminen 

et al. (2007) [221]. Lo and Hui (2006) [171] computed an upper bound and a lower 

bound for the OU-process hitting time distribution using the method of images. By 

using a martingale technique, Novikov (2004) [192] also found bounds of OU-process 

hitting distributions when the OU process has ajump component. The hitting distri­

bution of an OU process was applied to a credit application by Linetsky (2004) [168] 

and Yi (2010) [249]. 

The hitting time distribution of the Bessel process was investigated by Pit­

man and Yor (1982) [199], Kent (1980,1982) [154,155] and Pitman and Yor (2003) [198]. 

Kent (1980, 1982) [154, 155] employed an eigenfunction expansion to obtain the hit­

ting distribution. When Zt is a CEV process, Linetsky (2004) [169] provided a 

hitting time distribution and applied it to derive an explicit solution for the value 

of a look-back option. The hitting probability of the CEV process was used in a 

credit application by Atlan and Leblanc (2006) [16] and Campi et al. (2009) [55]. 

Hitting time distributions in jump-diffusion models were investigated by 
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Kou and Wang (2003) [159], Zhang and Melnik (2007) [250] and Atiya and Met­

wally (2005) [15]. For a class of Levy processes, Alili and Kyprianou (2005) [7] 

provided a relationship between hitting time distributions and a smoothing pasting 

condition of an American put option. Hitting time distributions of the generalised 

inverse-Gaussian process was studied by Barndorff-Nielsen et al. (1978) [26]. An ap­

plication of hitting distributions in Levy models to an optimal stopping problem was 

investigated by Mordecki (2002) [188]. Hitting times in Levy models were analysed 

in Imkeller and Pavlyukevich (2006) [133] and Roynette et al. (2008) [219]. 

2.4 Conclusion 

This chapter has reviewed several methods that have been used to value barrier 

options both in GBM and non-GBM models. This chapter points out that even 

though these methods can be applied to value a single barrier option, they may 

fail when the value of a book of options is required. Also, it is not clear how these 

methods can be used to value exotic barrier options with complex non-constant 

barriers. 

This chapter also provides a review of the literature on hitting time distribu­

tions. This include a number of stochastic processes and several types of contour. 

The distribution that is important to this thesis is the hitting distribution of a 

Brownian motion to a linear barrier (which is equivalent to a hitting distribution of 

a geometric Brownian motion to an exponential barrier). The methods that will be 

developed later in this thesis will make use of this distribution. 

In the next chapter, a new simulation method, based on hitting time simu­

lation, for valuing exotic barrier options with complex non-constant barriers will be 

described. 
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Chapter 3 

Valuing Exotic Barrier Options 

using the Contour Bridge 

Method 

Barrier options with constant barriers are standard path-dependent options that 

are widely traded in financial markets. They are also used in debt instruments 

and in credit applications. The valuation problem of barrier options becomes more 

complicated when the barrier is non-constant. This feature is the focus of this 

chapter. 

This chapter describes in detail a new simulation method, the contour bridge 

method, which can be applied to general barrier options, including options with 

highly non-linear barriers. It is based on bridge hitting times to amenable contours 

that can result in substantial improvements over existing simulation methods. Not 

only the method can be applied to non-constant barrier options, but it may also be 

applied to partial and discrete barrier options. However, those types of barriers are 

not considered in this chapter. 

To implement the contour bridge method, one has to consider models and 

contours where the hitting time distribution is known and can be sampled. The two 

required distributions are 

1. hitting times to suitable families of contours and 

2. certain bridge hitting times. 

These distributions can be found not only when the underlying process fol­

lows a geometric Brownian motion, but also when its process is variance-gamma or 

normal inverse Gaussian. 
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The contour bridge method is not restricted to valuing a single barrier option 

at a time. Because a set of hitting times to a sequence of contours can be generated, 

the method can be applied to value multiple barrier options simultaneously. Many 

of the methods mentioned in section 2.2 can be used to price only a single option 

at a time. This can be difficult when a large book of options is required. Even if a 

method can price a single option quite rapidly, its cost when applied to a book can 

be excessive. 

The structure of the chapter is as follows. Section 3.1 reviews current sim­

ulation methods for barrier options. In section 3.2 the contour bridge method is 

presented. Different variants, tailored to specific situations, which can facilitate fur­

ther speed-ups, are also discussed. Numerical results are presented in section 3.3. 

Finally, section 3.4 concludes. 

3.1 Simulation methods for barrier options 

This section reviews standard simulation methods for barrier options, namely, the 

Dirichlet and the Brownian bridge Monte Carlo methods. Note that the variance 

reduction techniques such as control variate or importance sampling will not be 

discussed. The effectiveness of these variance reduction techniques will be equal for 

both the standard simulation method and the contour bridge method. This implies 

that the advantage of the new method will persist when the variance reduction 

methods are implemented. 

Let So be an asset value at time to and b(O) be a barrier value at time to. 

In this chapter, the focus will be on the 'down'-options in which So > b(O). The 

application to the 'up'-option where So < b(O) can be extended by symmetry. 

In this section the asset values are generated at a fixed set of times Y = 

{ti}i=O, ... ,N' with to = 0, tN = T, and ti < ti+l for all i. Write bi = b (ti) for the 
barrier value at time ti and SJ for the simulated value for time ti on the jth sample 

path, with SJ == So· 

3.1.1 Dirichlet Monte Carlo method 

A plain and simple way to value a barrier option by using the Monte Carlo method 

is to use forward-evolution. The method generates a whole set of paths Sj = 
{ SJ, ... , Sf}. , for times ti E Y. This can be done easily since the solu­

;=l, ... ,M 
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tion of the SDE in (1.0.1) is known. It is of the form 

(3.1.1) 

Since z "" N(O, T), where N(J-l, (72) is the normal distribution with mean J-l and 

variance (72, by introducing a standard normal random variable € "" N(O, 1), ST in 

(3.1.1) can be expressed as 

(3.1.2) 

Write Llti = ti - ti-l and SJ = So'ilj = 1, ... , M. On the jth path, S} can be 

computed using 

(3.1.3) 

for i = 1, ... , N. Then one can establish whether a barrier is hit at time ti' The 

barrier is hit if SJ-1 > bi - 1 but S} < bi
. The plain method hitting time, 1'J, is set 

to be 

1'J = min {ti E TIS} ::; bi} . (3.1.4) 

Unfortunately, the plain method is not accurate and is prone to severe sim­

ulation bias. In particular, if both S} and SJ+1 lie close to, but above, the barrier, 

then it is possible that the barrier was hit in the interval [ti, ti+1], undetected by the 

method. Consequently the method tends to under-price knock-in barrier options 

and over-price knock-out options. This is referred to as the barrier breaching bias. 

The Dirichlet method (Baldi et al. (1999) [20]) can be used to correct for sim­

ulation bias. The method makes use of the conditional hitting probability between 

each time interval [ti, ti+11. On the jth sample path, for S} > bi and SJ+1 > bi+l, let 

P~ = lP' [ti < 7 < ti+1 IS;, SJ+1] be the hitting probability in the interval [ti, ti+1] 

conditional on the asset value taking values S; and sj+1 at times ti and ti+l. If 

S; > bi for all i, the probability that the barrier was hit in between simulated times 

on the jth path is given by 

N-l 

Pj = 1 - II (1 - p;) . (3.1.5) 
i=O 

When P~ can be computed, for instance when S is a geometric Brownian 

motion and b (t) == b is a constant barrier, then Pj can be used to simulate the 
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intra-period hitting time, or to weight the payoff, to correct for simulation bias. To 

illustrate this, suppose one wants to value a plain vanilla knock-in call option that 

pays (StN - X)+ at time tN = T if a barrier b(t) is hit any time up to maturity. 

Let Pj be the hitting probability on the jth path given by (3.1.5), then the knock-in 

payoff on the jth path is 

(3.1.6) 

This is a very effective bias correction method. 

When P~ cannot be computed, perhaps because the barrier is not constant, 

or the asset process is complex, it may be possible to approximate p~, for instance 

by approximating b (t) as piece-wise constant (or when the underlying asset pro­

cess is geometric Brownian motion, piece-wise exponential-affine) over the intervals 

[ti, ti+ll· 

3.1.2 Brownian bridge Monte Carlo method 

The Brownian bridge method is a way to construct a sample path by using recursive 

bisection. Let fl be the first standard normal variable. fl is generally used to 

generate a sample point at final time tN = T. Then the next normal variable is 

drawn to sample at an intermediate time step th conditional on a sample point at 

tN and at to. Then sampling is made at further intermediate times. At step th, 

given Zti and Ztk where ti < th < tk, fth is drawn and used to sample an asset value. 

The distribution of Zth is normal with mean 

and variance 
(th - ti) (tk - th) 

tk - ti 

(3.1.7) 

(3.1.8) 

Write Sth as the intermediate asset value with ti < th < tk. Sth can be sampled as 

follows. 

(3.1.9) 

h !db.. were c = tk-ti' 

To use the Brownian bridge method to construct a path (So, ... , SN) at 

times ti E T, one first constructs a value SN for time tN and then iteratively fills 

up the path in the order SLN/2J, SLN/4J, SL3N/4J, SLN/8J, SL3N/8J, et cetera, using a 

binary chop. It is straightforward to use the Brownian bridge when N is a power of 

two because one can divide an interval into two intervals with an integral number 
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of time steps. 

In the Brownian bridge application, a hitting time can be constructed as 

follows. Given a value SN for time tN, one generates a value SlN/2J I So, SN by 

applying the Brownian bridge in (3.1.9). The one continues to generate values by 

binary chop, first to the left of the most recently generated value, and then to the 

right. At time ti, when a value Si is generated, one tests if Si lies above or below 

the barrier. If it is below the barrier then no further iteration is required for times 

greater than ti; to determine a hitting time, only asset values for times less than ti 

need to be generated. If it is above the barrier then values both to the left and to 

the right of Si must be generated and tested. 

The computational saving in pruning away unnecessary refinements of inter­

vals known not to contain the first hitting time can be considerable. This approach 

is related to a special case of the contour bridge method when contours are vertical 

(see section 3.2). 

However, since both Dirichlet and Brownian bridge Monte Carlo generate 

hitting times only in the discrete set Y, they do not value exotic barrier options 

rapidly. In contrast to these two standard methods, the contour bridge enables one 

to generate a more refined value of r, with implicitly better sampling of both rand 

/', often with significantly faster computation times. 

3.2 The contour bridge simulation method 

A contour is defined as the image of a map {3 : jR+ 1---+ jR+ X jR+ where {3 is 

continuous, (3(O) E {O} X jR+, and {3 is bijective onto its image. 

In this chapter, contours of the form (3(t) = (t, f3(t)) are considered. A 

contour {3 is determined by a choice of f3 and f3 is identified with {3. Throughout 

this chapter, f3 will be denoted as a contour. To define a vertical contour, let P be 

a set of points (x, y) E jR2 such that 

General contour: 

Vertical contour: 

where t is a fixed time. 

P = {(x, y) I y = f3(x)} 

P = {(x, y) I x = t}, 

(3.2.1) 

(3.2.2) 

The option considered in this chapter is a 'down' option where the asset value 

at time to is above the barrier at time to. 

The method proceeds by constructing a series of hitting times to an indexed 

set of contours. The method is initialised by constructing a pair of contours that 
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bound the option barrier. Then intermediate contours are constructed. Hitting 

times to these contours are computed by sampling from the contour bridge density. 

The values of the asset at the hitting times are computed and compared to the values 

of the option barrier at those times, enabling efficient convergence to a hitting time 

to the option barrier. 

The contour bridge method generalises the standard Brownian bridge Monte 

Carlo in two ways. First, hitting times are not constrained to lie in a pre-defined 

finite set T. This allows values of r to be established with much greater refinement, 

resulting in reduced simulation bias. Second, by permitting a broader range of 

contours, very substantial efficiency gains can be achieved. 

The method also incorporates a Dirichlet stopping condition, in which a 

conditional hitting probability is computed and then is used to test the exit condition 

(see section 3.2.4). This enables the method to also benefit from the advantages of 

the Dirichlet approach. 

There are two main approaches to using the method which can be applied; 

(1) with single-hit contours and (2) with general contours. These approaches are 

discussed in section 3.2.6. There is a variant that can enhance the method's perfor­

mance effectively. This variant can be applied when a pair of contours bracketing a 

hitting time r < T has been found. This variant is referred to as the biggest-bite 

variate and will also be discussed. 

In the next section, the general contour bridge method is described. Then 

an application to value both r- and L-options is given. 

3.2.1 The choice of contour 

The properties of the contour are given now. Given a model for the asset value 

process, suppose that, for this model, there exists an indexed set of contours, 

(3.2.3) 

for t, a E IR+, with the following four properties: 

(i) Ordered. al < a2 --+ 13 (t I al) > 13 (t I (2) Vt E IR+. 

(ii) Bounding. There exist contours 1300 (t) = 13 (t I a oo ) and 130 (t) = 13 (t I aD), 
with So ~ 130 (0), such that 130 (t) > b (t) > 1300 (t) Vt E [0, T]. 

(iii) Hittable. Let rQ == r (So I a) = mint {St < 13 (t I a) I So} be the hitting time 

to the contour 13 (t I a). It is necessary that rQ can be sampled. 
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(iv) Bridgeable. Suppose a O < al < a2 < a oo , so that Tal < T a2 • Given 

al < a < a2, it must be possible to sample T a I T al ,Ta2 • That is, conditional 

on Tal and T a2 , it is possible to sample from the bridge distribution T a • 

The illustration of the bridgeable property (property iv) is given in figure 3.1. 

Figure 3.1. Illustration of a bridge hitting time T a I Tal, T a2 

It seems convenient to require JID [T < 00] = 1. That is, the hitting time exists 

and is finite. Nonetheless, this requirement can be relaxed in some applications of 

the method (see section 3.2.2). 

There are several families of contours that satisfy properties (i) - (iv). For 

example, 

1. The asset price process is a geometric Brownian motion and contours are 

exponential 
1 

j3 (t I a) = - exp (gt) , 
a (3.2.4) 

for some fixed growth rate g. 

In this case the hitting time density (see section 3.2.2) is 

(3.2.5) 

where p, = r - !172 and a = In (io)) = In (Sa). 

For T a E (Tal, T (2 ), a bridge hitting time T a I Tal, T a2 can be sampled. To do 

this, let T X be a hitting time from Tal to T a , TY be a hitting time from T a to 
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T
Z = T 02 _ T Ol (3.2.6) 

T Y = T 02 - TO, (3.2.7) 

T
X = TO - T 01 • (3.2.8) 

The idea is to sample T X I T Z and then compute a bridge hitting time TO using 

relationship between (T01 , TO, T (2
) and (TX

, TY, TZ). The bridge hitting density 

of f (TX I TZ) (see appendix A for the derivation) is 

f ( XI Z) _ 1 axay 
(TXTY) -~ ( 1 (a; a~ a;)) 

T T ----- -- exp -- -+---
uV21i az T Z 2u2 T X TY T Z ' 

(3.2.9) 

where, with a simplification, ax = In (:1)' ay = In (~), and az = In ( ~) . 

2. The asset price process is a geometric Brownian motion and contours are 

horizontal (flat) 

This is a limiting case of 1. 

1 
13 (t I 0:) == 13(0) = -. 0: 

(3.2.10) 

3. The asset price process is a geometric Brownian motion and contours are 

vertical. This is a standard Brownian bridge case. 

4. The asset price process is variance gamma (VG) or normal inverse Gaus­

sian (NIG) and contours are vertical. See Ribeiro and Webber (2003) [206] 

and Ribeiro and Webber (2004) [207] for the application to barrier and Asian 

options. 

3.2.2 Hitting time sampling method 

In this section, the hitting time simulation method is described. The variant of a 

method when JID[T < 00] < 1 is discussed. The bridge hitting time sampling method 

is also discussed. 

The hitting time distribution in (3.2.5) can be obtained from the hitting 

time distribution of a standard Brownian motion to a linear contour of a form 

j31(t) = a' + gt. In this case, the density is given as (Lerche (1986) [164]) 

f( t· a') = -- exp -..:...--::;....:....-a' ((a' + gt)2) 
'V27ft3 2t' 

(3.2.11) 
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Now for a Brownian motion with driftj Zt = J-tt + aWt where Wt is a standard 

Brownian motion, the hitting distribution is 

, a' ((a' + gt - J-tt)2) 
f(tj a, J-t, a) = y'2;t3 exp - 2 2 . 

a 2~t3 a t 
(3.2.12) 

The distribution in (3.2.12) is equivalent to the hitting density of a geometric 

Brownian motion to an exponential contour. With a' = In (~), one obtains the 

required hitting distribution 

A a ( (a - (g - p) t) 
2 

) 
f (t; a, J-t, a) = J27rt3 exp - 2 2t ' 

a 2~t3 a 
(3.2.13) 

where it and a are given by (3.2.5). 

3.2.2.1 Sampling from the hitting time distribution 

The density in (3.2.13) is an inverse Gaussian distribution. The inverse Gaussian 

variable X rv JG(v, >.) has the canonical density f(tj v, >.) 

f(tj v, >.) = J 2:t3 exp ( - >'(~~2~)2) . (3.2.14) 

With a parameterisation (Seshadri (1993) [224]) 

a 
v = 

J-t 
(3.2.15) 

>. 
a2 

= a2' 
(3.2.16) 

where J-t = 9 - it, One can see that (3.2.13) is an inverse Gaussian in (3.2.14). Since 

the inverse Gaussian variates can be sampled by using the transformation method 

of Michale et al. (1976) [186] (MSH method), the hitting time with densities (3.2.13) 

can be sampled. 

Suppose Y = y(X) where the first derivative y' of y exists, is continuous, 

and is non-zero, except on a closed set with probability zero. Suppose for a fixed 

v = y(Xi), i = 1, ... , N. The MSH method samples X by first drawing v for Y and 

then selecting the ith root Xi of v with probability Pi ( v) where 

(3.2.17) 
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For an inverse Gaussian distribution in (3.2.14), one has 

The two roots of (3.2.18) are 

From (3.2.20) one has 

Then 

() 
A(X-V)2 2 

Y x = 2 '" Xl 
XV 

v 
PI(V) = --. 

V+X 

The MSH algorithm proceeds as follows. 

1. Generate a random variable y '" X~' 

2. Compute the two roots Xl and X2 from (3.2.19) and (3.2.20). 

3. Generate a random variable u'" U(O, 1). 

4. If u ::; I/~X' return Xl· 

5. Else, return X2. 

(3.2.18) 

(3.2.19) 

(3.2.20) 

(3.2.21 ) 

(3.2.22) 

(3.2.23) 

Unfortunately, this algorithm works only for the case where one has drift v ~ 0; 

that is, the process drifts toward the contour (g > J1). To extend to the case v < 0 

where the process drifts away from the contour (g < J.L), one can make use of the 

following relationship (Atiya and Metwally (2005) [15]) 

(-2A) J(t; -v, A) = J(t; v, A) exp ~ , (3.2.24) 

where J(v, A; x) is the inverse Gaussian density in (3.2.14). 

However, as mentioned in Atiya and Metwally (2005) [15] the area under the 

function J( -v, A; x) in (3.2.24) is not equal to one because when the process drifts 
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away from a contour, there is a possibility that the contour may not ever be hit. 

The plot of hitting time densities with different 1/ is shown in figure 3.2. 

{(tIA. v) 

0.15 

I' 

0.10 I " 
I \ 
I , 
I , 
I , 

0.05 

----

~ 
~ 

---------"l---~:1_~ t 
10 15 20 25 

Figure 3.2. Hitting time densities where 1/ > 0 and 1/ < 0 

Parameter values in figure 3.2 are So = 100, b(O) = 70, (J = 0.2, r = 0.05. 

Hitting time densities are computed by using (3.2.5). The first density is plotted by 

using the contour growth rate 9 = 0.06, which yields 1/ = 11.89. This corresponds 

to a case where the process drifts toward a contour and hence, by using a numerical 

integration, an area under the curve is equal to 1. The second density is plotted by 

using the contour growth rate 9 = O. In this case, 1/ = -11.88 and the process drifts 

away (upward) from a fiat contour. One can see that a density where 1/ < 0 is much 

smaller than that of 1/ > O. A numerical integration gives an area under the dotted 

line curve to be ",0.59. 

Importantly, one cannot simply implement the standard acceptance and re­

jection method in this case where f(1'; 1/, A) in (3.2.14) is the dominating density. 

This is because the resulting variates l' would still come from the Inverse Gaussian 

distribution which integrates to one. In other words, by simply implementing a 

usual acceptance and rejection method, one will obtain more (finite) hitting time 

variates than is supposed to, hence resulting in a bias in option values. 

To overcome this problem, Beskos and Roberts (2005) [34] suggested that, 

from (3.2.24), an asset value process will eventually hit a contour with probability 

IP[1' E (O,oo)J = exp (-~>'), and then 

1'(0<1"<00) '" JG(I/, A). (3.2.25) 

That is, conditioning on the contour being hit, the hitting time distribution is 

JG(I/, A). Hence, to sample from a density f( -1/, A; x), one samples the hitting 

32 



time variates with probability exp (-;>') and then set variates r = roo with a proba­

bility 1-exp (-;>'), reflecting the fact that there is non-zero probability of a contour 

not being hit. 

The adjusted sampling algorithm proceeds as follows. 

1. Generate random variable r "" IG(ivi, A) by using MSH method. 

2. Generate random variable u "" U(O, 1). 

3. 

4. If not, set r = 00 so that the contour is not hit. 

Step 4 means a contour is not hit. Note that one is interested only whether (and 

when) a contour is hit before option maturity T. Whether or when a contour is hit 

after time T is not taken into the computation procedure. 

3.2.2.2 Sampling from the bridge distribution 

In order to sample from the inverse Gaussian bridge distribution in (3.2.9), one 

uses the Tweedie's Theorem in Seshadri (1993) [224] and the result of Ribeiro and 

Webber (2003) [206]. Write IG(v, A) as an inverse gaussian variable with parameters 

v and A. Using (3.2.15) and (3.2.16), one writes IG (~, ~) = IG(v, A). Tweedie's 

Theorem and the result from Ribeiro and Webber (2003) [206] are shown below. 

Theorem 1 (Tweedie'S Theorem with n = 2). Suppose rX "" IG ( ~, ~), rY "" 

IG (~,;t) and rZ rv IG (~,;;) with rZ = rX + rY where rX and rY are indepen­

dent then 

1 (a
2 

a
2 

a
2

) -_ 2.+--1L_2 
Q - (12 rX rY rZ (3.2.26) 

is chi-squared with one degree of freedom. That is, Q "" xf. 

Ribeiro and Webber (2003) [206] employed Monte Carlo simulation method 

to value path dependent options in Normal Inverse Gaussian (NIG) model. They 

implemented an inverse Gaussian bridge method to construct sample paths. They 

made use of Tweedie's Theorem and was able to sample from an inverse Gaussian 

bridge distribution which is similar to (3.2.9). The result of Ribeiro and Web­

ber (2003) [206] is given in Theorem 3.2.2.2. 
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Theorem 2 (Ribeiro and Webber (2003) [206]'s result). The bridge hitting time 

density 

(3.2.27) 

where, ax = In (::1)' ay = In (~), and az = In (~), can be sampled by the M8H 
method of Michale et al. (1976) /186j. 

1 (a 2 a2 a2
) II Proof. Let q = ~ ~ + ~ - ~ be an exponent in equation (3.2.27). Set 8 = ;x, 

A a2 a >. = ~ and D = :::1La • Then one has 
U T x 

(3.2.28) 

The two solutions to (3.2.28) are 

(3.2.29) 

(3.2.30) 

Now change variables in (3.2.27) to 8 = ;~ I TQ;2, the density of 8 is 

(3.2.31) 

The MSH result now can be applied. Let Q = 9(8) and suppose for a fixed 

q = 9(sd for i = 1, ... , N. In this case (3.2.17) becomes 

(3.2.32) 

The ratio of first derivative of 9(8) and of f(s) can be computed from (3.2.28) and 

(3.2.31). By substituting (3.2.30) and (3.2.29), one obtains 

g' (81) 
= _ (~)2 (3.2.33) 

9'(82) 

f(82) 2 A 

81 1/ + 81 
(3.2.34) f(sI) = D3 1 + 81 

34 



Hence, the smaller root, 81, should be chosen with probability 

(3.2.35) 

o 

By Theorem 3.2.2.2, one essentially samples 8 = ;:. Then a bridge hitting time 

TO! I TO!l, T0!2 can be computed by using (3.2.6) to (3.2.8). To write 8 in term of TO!, 

one has 

TY 
(3.2.36) 8 = 

T X 

T0!2 _ TO! 

(3.2.37) 8 = TO! _ TO!l 

T0!2 _ TO!l 

(3.2.38) 8+1 = 
TO! - TO!l 

TO! TO!l + 
T0!2 _ TO!l 

(3.2.39) = 
8+1 

The algorithm to sample a bridge hitting time TO! I TO!l, T0!2 is as follows. 

1. Generate a random variable q '" X2• 

2. Compute the roots 81 and 82 in (3.2.29) and (3.2.30) respectively. 

3. Generate a random variable u'" U(O, 1) . 

.,..-';-~~" set 8 = 81. 

5. Else set 8 = 82. 

3.2.3 The contour bridge method algorithm 

In this section the contour bridge method is described in detail. First, the algorithm 

to compute a hitting time T to the option barrier, or to exit if no T < T is found, 

is described. If only /, is required, the algorithm can be modified. For the case of 

an /,-option which requires the value of BT, section 3.2.5 discusses how a value for 

BT I /, can be simulated. 

Write f for a simulated first hitting time of B to the option barrier. The 

algorithm proceeds as follows: 
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1. Given a pair of bounding contours, (30 (t) = (3 (t I aP) and (300 (t) = (3 (t I clXl ); 

construct hitting times TO and Too to these contours. 

If TO > T then the option barrier is not hit and the algorithm stops. If Too < T 

then f E (TO, TOO) and if an /'-option is being valued the algorithm exits. 

Otherwise set i = 1, fi = TO, Ii = Too. Apply step 2 to the interval (fi, Ii) . 

2. At the ith step, suppose that one has hitting times fi < Ii to bounding 

contours fJi (t) = (3 (t I ai ) and f!.i (t) = (3 (t I gi), ai < gi, with S (fi) = 
(3 (fi I ai ) > b (fi), and one has to determine whether there is a hitting time 

in the interval (fi,Ii). 

(2.a) Test if the algorithm halts (stopping rules are discussed in section 3.2.4). 

If the algorithm halts and S (Ii) = (3 (Ii I gi) < b (Ii) then the option 

barrier must be hit in the interval (fi, r.i ). Return an approximation 

f = ~ (fi + Ii) to the hitting time; otherwise if S (Ii) > b (Ii) return a 

condition indicating that no hitting time has been found. 

If the algorithm does not halt then iterate. Set a Hl = ! (ai + gi) and 

construct THI as the hitting time to (3 (t I a Hl ) conditional on fi and 

Ii. 

(2.b) If THl > T then the option barrier cannot be hit in the interval (THl, Ii). 

Set fHl = fi, IHl = THl, increment i ~ i + 1 and apply step 2 to the 

new interval (fi, Ii). 

(2.c) If S (THl) = (3 (THl I a Hl ) < b (THl) then the option barrier has been 

hit in the interval (fi, T H1 ). If a bare-/, option is being valued the algo­

rithm exits immediately. 

Otherwise set fHl = fi, r.Hl = Ti+1, increment i ~ i + 1 and apply 

step 2 to the new interval (fi, Ii). 

(2.d) If S (THl) = (3 (THl I a Hl ) > b (THl) then establish whether the option 

barrier may be hit in (fi,THl ) or in (THl,r.i). 

i. If there exists t E [fi,THl] such that (3 (t I a H1 ) < b(t) then it is 

possible that the option barrier is hit in the interval (fi, TH 1 ). Set 

(fHl,r.Hl ) = (fi,THl), increment i ~ i + 1, and apply step 2 to 

the new interval (fi,r.i). If this finds a first hitting time f E (fi,r.i) 

return f as the first hitting time in the interval (fi-l,Ii - 1). 

ii. If step 2( d)i fails to return a hitting time, then check if it is possible 

that the option barrier is hit in the interval (THl, r.i). 
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If Ti+l > T, or if {3 (t I Qi) > b(t) for all t 2: Ti+1, then the option 

barrier cannot be hit in this interval. Otherwise set (fi+1,!.i+ 1) = 

(Ti+1, !.i), increment i _ i + 1, and apply step 2 to the new interval 

(fi, !.i). If this finds a hitting time f E (fi, !.i) return f as the first 

hitting time in the interval (fi - 1, !.i-l ) . 

If steps 2( d)ii also fails to return a hitting time then the algorithm returns 

a value indicating that no hitting time exists in the interval (fi - 1, !.i-l). 

The contour bridge algorithm is illustrated in figure 3.3. 

Figure 3.3. Contour bridge algorithm illustration 

In figure 3.3, bounding contours are (3°(t) and (3oo(t). In this case, TO < 
T < Too. Then one sets fl = TO and !.1 = Too. The intermediate contour (3m(t) 

is constructed such that i31(t) > (3m(t) > rl(t) 'tit > O. Figure 3.3 shows three 

scenarios of a bridge hitting time; T:", Tb and T:;". First, T:" corresponds to step (2c) 

in which S (T;:) < b (T:"). In this case, the algorithm will be applied only on the 

interval (fl,T;:). Second, T:;" corresponds to step (2b) in which T:;" > T. In this 

case, since the option barrier cannot be hit from a time beyond T:;", the algorithm 

will be applied to the interval (fl,T:;"). Third, Tb corresponds to step (2d) where 

Tb < T and S ( Tb) > b (Tb)' In this case, the option barrier can be hit either on a 

left hand side or a right hand side of (Tb)' The algorithm will have to be applied 

in the interval (fl,Tb') (step 2(d)i) or in the interval (Tb',T) (step 2(d)ii). 

3.2.4 The stopping conditions 

The algorithm halts if one of two conditions is true. It stops if 

2. if S (fi) and S (!.i) both lie above the barrier, then if Ifi - !.il < c;' compute 

(or approximate) p = IP [fi < T < !.i IS (fi) , S (!.i)]. Stop if p < Cpo 
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e; is the binding condition when a hitting time r E Cfi,Li) has been found. In the 

numerical example, e; is set to be 10-10. This degree of refinement is possible in a 

Dirichlet method only if Tie; = T x lO lD time steps are used. Usually, it might not 

be possible to work with such a very large number. 

The second condition is introduced to enable the algorithm to exit early if 

the probability of hitting the barrier is sufficiently low. Without this condition, the 

algorithm will be inefficient. In particular, the algorithm will always take Tie; steps 

to establish that the barrier was not hit. 

When working with exotic barriers, p is not usually computable and an ap­

proximation is used. Suppose that e; is small enough so that over an interval 

<; = [t, t + e;] the option barrier can be approximated reasonably well by a contour, 

b(t) I'V /3(t I ajg) for t E <;. This is a legitimate assumption if, for instance, over <; 

both the option barrier and a contour are approximately linear. Write rm for the 

conditional hitting time to the contour, and set pm = lP' [t < rm < t + e; IS (t), S (t + e;)]. 
When pm can be computed, one can approximate p with pm. 

pm can be computed when S is a geometric Brownian motion and contours 

are exponential. Suppose one is given values 80 and 81 of a geometric Brownian 

motion S at times to and t1, to < t1, and values /30 and /31 of an exponential 

contour /3 (t I a) also for times to and tl. Suppose that 8i > /3i, i = 0,1. The 

conditional hitting probability p = JID [to < r < tl I 80,81, /30, /31] of S to /3 is known 

(see Baldi (1999) [19]). Set Ui = In C~;) and let 

1 (/31) g= In -
t1 - to /30 

(3.2.40) 

be the growth rate of /3 (t I a). Then 

p = exp (-~uo ( u1 -g)) 
(72 tl - to (3.2.41) 

- exp ( - (72 (t1
2 

_ to) UOV01) (3.2.42) 

where VOl = In (fa). 
If ep is too large the method would encounter simulation bias. However, 

numerical results show that. even with a small value of ep, the associated stopping 

condition very significantly reduces execution time. e; can be set to a value much 

larger than e;. If the barrier is not hit, in the worse case the method now takes only 

Tie; steps before halting. 
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3.2.4.1 Intersection times 

In steps 2(d)i and 2(d)ii it is necessary to know the first and last intersection times 

j Land j R between the method and option barriers in the interval (ri, Ii), 

jL = min {,B (t) = b (t)}, 
tE(T',1:') 

jR = max {,B (t) = b (t)} . 
tE( T' ,1:') 

(3.2.43) 

(3.2.44) 

A knowledge of [L, [R, for each contour, and whether ,B (fi) and ,B (Li) are above 

or below b (fi) and b (Li) , is sufficient to establish whether iterations are needed to 

the left or to the right of a hitting time T E (fi, Li
). Tables 3.2.45 illustrate. 'L' 

means that iteration is required on (fi, T). 'R' means that it is required on (T, L i ). 

Left-hand side T > jL Right-hand side T > jR 

conditions true false conditions true false 

,B (fi) > b (fi) true L,R R ,B (Li) > b (Li) true L,R L,R 

false L,R L false L L,R 
(3.2.45) 

So • ~:t\ ........ ~:\:: :::\:.:: ::::.:: :::: 
--. . ' 

: : : 
, __ ~ - - - Soo 

_r- , 

:: : --\----.... _ .... _ .. _ .. _-_ .. _._ ..... 

-------~-

f3(t)00 [R 

'00 
.------------------------------------------~ 
'0 

Figure 3.4. Intersection time illustration 

Figure 3.4 illustrates intersection times j Land j R. Bounding contours are 

,B°(t) and ,BOO(t) and TO < TOO < T. The intermediate contour is ,Bm(t). If a bridge 

hitting time to ,Bm(t), Tm = T;:, one refines only on the right of Tm. This decision 

can be made because one knows that T m < jL and ,B (fi) > b (fi) and hence the 

option cannot be hit before Tm. If a bridge hitting time Tm = "f:, then because 
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of ]L < 7 m < ]R and (3 (fi) > b (fi), one refines both on the left and the right 

hand sides of 7 m . If 7m = 7'{)\ one has 7m > ]R and (3 (r.i ) > b (r.i ). In this case 

one also refines both on the left and the right hand sides of 7 m because the option 

barrier can be hit on either one of the sides. The knowledge of ]L and ]R enables 

one to determine if a bridge hitting time is 7;:, 7/:\ or 7;:-. Unfortunately it may be 

expensive to compute ]L and ]R. This issue will be addressed in section 3.2.6. 

3.2.5 Computing the value of ST 

A bare-I, option does not require a value of the asset price at maturity to be gener­

ated. For a general t-option, such as a knock option, this is not the case. Indeed the 

payoff to a general barrier option may depend on both values of 7 and ST, or on the 

value of St for some t E [0, T). It is easy to extend the contour bridge method to 

simulate values of St for some value of t consistent with the values generated for 7 i . 

Although only the case when t = T is considered, it will be clear how the method ap­

plies for other times t. To compute the value of ST, there are three cases to consider: 

Case 1. 7 00 < T 

In this case, f E (70 , 7 00
), and thus a value for ST can be found directly from 

S (700
) = (3 (700 I a OO

). If the asset process SDE has a solution, the value may be 

generated in a single step from 7 00 to T, otherwise a short-step simulation can be 

used. 

If the algorithm establishes that 7 < T, then ST can be sampled from the conditional 

distribution ST I Sr. Otherwise, when the algorithm exits it will have generated a 

set of hitting times 

o L T R 00 7 < ... <7 < <7 < ... <7 (3.2.46) 

where 7 L is the largest hitting time less than T and 7 R is the smallest hitting time 

greater than T. Suppose that 7 L is the hitting time to the contour (3 (t I aL ) and 

7 R to (3 (t I a R ). 

One needs to generate a value ST I 7 L, 7 R. If this conditional distribution is 

known, then ST can be sampled directly, and no further computation is required. If 
this is not possible then a following numerical approximation can be used: 
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Numerical approximation of 8T: 

1. Let am = ~ (aL + a R ) and compute a conditional hitting time Tm to f3 (t I am). 

2. If T m > T, one sets TR = Tm and repeats step 1 on the new (TL, TR) pair. 

3. if T m < T, one sets TL = T m and goes to step 1. 

4. The algorithm exits when I TL - TR I < E:~, and one sets ST = ! (S (TL) + 8 (TR) ) . 

Case 3. T < TO 

In this case, assume that one may find a value aO such that 80 = f3 (0 I aO). Then 

the previous method case can be applied to the pair (TL, TR) = (0, TO). 

When implementing, if contours are shallow, with small gradients, the iterative 

procedure previously described may stall. When two shallow contours are close 

together, it is possible that the asset value process hits an intermediate contour 

very close to one of the end points, 1'i or 'Li. The hitting density becomes heavily 

bimodal with very little likelihood of the next hitting time occurring towards the 

centre of the interval. Figure 3.5 illustrates this.l 

10001 

800 

600 

0.252 0.253 0.254 0.255 0.256 
Hitting time t 

0.257 0.258 0.259 0.26 

Figure 3.5. Bimodal bridge hitting time density; f (Ta I Tal, T(2). Tal = 0.25, 
T a2 = 0.26, ..l. = 70.2, 1 = 70, ! = 69.8 

al a ~2 

One can see that, from figure 3.5, there is a high probability that a bridge 

hitting time variate T will be close to either l' or 'L (1' = Tal and'L = T(2 ). As a 

lNumerical integration gives an area under the curve of ",1. 
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result, as the method evolves, the contours get very close together but the values ri 
and r.i may stay far apart. This is a numerical problem. Theoretically the method 

should still converge to a true option barrier hitting time r. However, practically 

the method gets bogged down because of rounding errors. 

The problem particularly has an impact on simulating for ST. Option val­

ues may be heavily biased. Even though one can use steeper contours to avoid the 

problem, the computational times will increase and the efficiency gains will be re­

duced. To get rid of a bias, one can first compute the hitting time r, even if only L 

is required. That is, if one establishes that r < T, ST I Sr can be simulated directly 

by using (3.1.3). Although this method gives an unbiased option value, and can 

be used to value knock-in options effectively, it works only when ST needs to be 

computed when r < T. Consequently, it cannot be applied directly to knock-out 

options. 

However, even though one cannot value a knock-out option directly from 

the contour bridge method, one can compute a value of knock-out options from a 

value of knock-in options computed from the method by using in-out parity. In-out 

parity states that the combination of knock-in and knock-out option results in a 

corresponding European option. In-out parity holds for a European barrier option 

regardless of the shape of a barrier. Therefore, since the method can value knock-in 

options accurately (see numerical results in section 3.3), values of knock-out option 

can be obtained. 

3.2.6 Single-hit method barriers 

In the contour bridge algorithm, the most computationally intensive step is to cal­

culate the first and last intersection times JL and JR. If no explicit solution to their 

values is available, one is likely to have to conduct an expensive search to find them. 

Although this search can be accelerated, by tracking previously found first and last 

intersection times, it is a potentially very expensive step. 

The method can be simplified if the contours f3 (t I a) can be chosen such that 

for all a E [aD, a oo] each contour intersects the option barrier at most once. In this 

case the conditions in steps 2(d)i and 2(d)ii can be determined from a knowledge of 

f3 (ri), f3 (r) and f3 (r.i ) , and b (ri), b (r) and b (r.i ) , without having to compute JL 

and JR. 

This is referred to as the single-hit version of the contour bridge method. 

Since the single-hit condition may be satisfied only if contours are steep enough, the 

efficiency gain may be reduced. Vertical contours are obviously always single-hit. 

However, numerical results in section 3.3 suggest that that they are inefficient. 
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To obtain a sufficient condition for single-hit contours, the minimum slope 

of each contour must be greater than the maximum slope of the option barrier. For 

an exponential contour, 
1 

(3 (t I a;g) = _egt , 
a 

(3.2.47) 

fix (3T ~ b (T) and suppose that (3T is a maximal value such that a lower bounding 

contour can be found that takes value f3T at time T, so that f3 (T I a oo ; g) = f3T for 

some index a oo • One has 

(3T = _l_egT 
a OO ' 

9 = ~ In (aOO (3T) . 

(3.2.48) 

(3.2.49) 

Write a oo = a, differentiating (3.2.47) with respect to t yields c!'ooegt • The minimum 

slope at t = 0 is 
9 (3.2.50) 

for 9 > O. Substituting the value of gin (3.2.49) into (3.2.50), for all a E [aD, a oo], 

this family of contours has minimum slope 

(3.2.51) 

If the maximum slope of the option barrier in [0, T] is greater than dmin a single-hit 

contour bridge version is not possible. 

3.2.7 The biggest-bite variant 

This is an improved version of the single-hit method. Suppose that on an interval 

(f,1:.), with I < T, one has 8(f) > b(f) and 8 (I) < b(I) so that r E (f,I). 
An interval (f, I) with these properties is referred to as a bracketing interval. 

Suppose the current bounding contours are f3 (t I a) and f3 (t I g), where a < g. The 

biggest-bite variant algorithm proceeds as follows: 

1. Set d = 8 (f) - b (f) and 4 = b (I) - 8 (I). 

2. If d > 4 choose a such that f3 (f I a) = b (f). Otherwise choose a such that 

(3 (II a) = b (I). 

Figure 3.6 illustrates the biggest-bite variate. A choice whether f3i+l(t) = 

f3~+l(t) or f3i+l(t) = f3~+1(t) depends on the quantities J and 4. 
The biggest-bite method essentially introduces a new selection method for 

intermediate contours once a bracketing interval (f, I) ~ [0, T] has been found. The 
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Figure 3.6. Biggest bite illustration 

method constructs a sequence of hitting times to a series of contours so that at each 

step the algorithm reduces the range (ii, g) by the greatest possible amount while 

preserving the bracketing property. 

3.2.8 The vertical contours variant 

In this case contours are vertical, and thus the method is equivalent to the Brownian 

bridge method discussed in section 3.2 and generating a hitting time to a vertical 

contour will be equivalent to generating an asset value itself by using a bridge 

method. 

The main disadvantage of this method is that since the contours are vertical, 

the range (f,l:.) will not be reduced substantially as it is in the single-hit or the 

biggest-bite variant case. Therefore, it is expected not to perform very well compared 

with exponential contours. 

However, in situations where the single-hit or the biggest-bite variate cannot 

be applied, for example those where hitting time densities cannot be sampled, the 

vertical contour variant may be applied. This is because one is required to sample 

ST I So, and for t E (tl, t2) to sample St I Stl'St2' Hence, one may work with a 

broader range of models when using the vertical contour method. 

3.2.9 Valuation of a book of options 

The contour bridge method can be extended to the valuation problem of a book of 

exotic barrier options simultaneously. Each option can has different barriers and 

different strikes. To value a book of options, the method must have core contours 

that are common for every option. The overview of the method is as follows. 
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1. Construct bounding contours by choosing a O and a oo such that they are single­

hit to all option's barrier. 

2. Construct a sequence of N intermediate single hit contours {,B(t I ai )} i=l, ... ,N 

and hitting times to these contours. 

3. Then the method generates refinements in an interval only if there is an option 

in a book whose barrier might be hit in that interval. 

To save computational times, sample paths must be reused. Although there are 

additional costs because refinements are needed for more intervals, these costs are 

cheaper than those from valuing each option separately. This is an advantage over 

PDE methods. In particular, with different strikes and barriers, PDE methods can 

only to be used to value one option at at time, and a computational cost can increase 

significantly if a book of option is required. 

The application of the contour bridge method to value a book of options is not 

discussed in this thesis. 

3.3 Numerical results 

In this section, the method is implemented. First, a benchmark option is valued 

and then a set of exotic barrier options are valued. The benchmark option is a plain 

vanilla fiat barrier option. 

To assess the performance of the method relative to the standard method, 

comparisons are made with a Dirichlet method (as described on page 23) and with 

a Brownian bridge method. Most comparisons are made with a moderate level of 

volatility, but low and high volatility cases are also presented. Barrier options are 

also valued when So is close to or far from the barrier. 

All options are 'down'-style, so that So > b (0). Base-case parameter values 

for the asset process are So = 85, r = 0.05, (j = 0.2. All options have time to 

maturity T = 1. 

The tables report five quantities. They are (1) the option value V, (2) the 

Monte Carlo standard error (se), (3) the computational time in seconds [t], (4) the 

bias {b} and (5) the efficiency gain e. 

The bias is computed as 

{b} = v- v, 
se 

(3.3.1) 

45 



where v is the true option value. It measures how many standard errors the Monte 

Carlo value is away from the true value. Values of {b} in the range ±2 denote no 

bias (to some confidence level). Large absolute values of {b} indicate the presence 

of bias in a method. 

The efficiency gain of method x over method y is eXY , 

(3.3.2) 

where sex and seY are the standard errors of method x and method y, computed 

with computational times tX and tY• eXY is the multiple of the time taken by method 

x for method y to achieve the same standard error. A gain of less then 1 indicates 

that method x is less efficient than method y. Efficiency gains in the tables are with 

respect to the standard Dirichlet method, reported with an efficiency gain of 1. 

3.3.1 The benchmark option 

First, a benchmark barrier option is valued to confirm the accuracy of the new 

method, and to measure its performance compared with existing alternative meth­

ods. The option, that is valued, is a vanilla first touch rebate option, OR. This pays 

a fixed rebate of R at the hitting time 'T == 'Tb to a fiat barrier, b (t) == b, conditional 

on 'T ::; T. 

When the underlying asset follows a geometric Brownian motion, there is an 

explicit formula for ORe Reiner and Rubinstein (1991) [205]). Set 

(3.3.3) 

then 

[ ( b) 1/JH ( b ) 1/J-6 1 
OR (So) = R So N(z) + So N (z - 260"v'T) , 

where 

Numerical results are reported in tables 3.1, 3.2 and 3.3. The option has 

barrier level b = 80, and rebate R = 5, maturing at T = 1. The asset process has 

So E {80.5, 85,100, 115} with r = 0.05, with 0" = 0.1 (table 3.1), 0" = 0.2 (table 3.2), 
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and (j = 0.3 (table 3.3). The values of the explicit solutions are displayed beneath 

the asset value. 

Every simulated value uses M = 106 sample paths. The contour methods 

use tolerances c; = 10-10 , c; = 10-10 , and cp = 10-10. The standard Dirichlet 

method uses N = 1000 time steps. 

Tables 3.1, 3.2 and 3.3 report option values computed by four methods: the 

standard Dirichlet method; the contour bridge method with vertical contours; the 

single-hit contour bridge method; and the biggest-bite variant. For the single-hit 

method and the biggest-bite variant, four different values of the growth rate 9 are 

used. f3 (T I (iXl; g) = 80 in every case and f3 (0 I 0 00 ; g) = 75, 50, 20, 1, respectively. 

As the value of 9 increases, contours are steeper. 

The entries in the tables show the option value produced by each method, 

the standard error in round brackets, the computation time in square brackets, the 

bias in curly brackets, and the efficiency gain in bold. Values other than the option 

value are rounded to two significant figures. 

The results in the tables 3.1, 3.2 and 3.3 show no evidence of bias. All biases 

are within the range ±2. Standard errors are constant across all methods. As 

expected, the vertical contour method's performance is worst in all cases. Even at 

its best, when So is far from the barrier, it is only around two thirds the efficiency of 

the standard Dirichlet method. Except when So is close to the barrier the contour 

methods always produce substantial efficiency gains. 

When So is close to the barrier the single-hit method does not perform well; 

specially when the contours are steeper. This is because, when So is close to the 

barrier, the Diriclet method will use very small computational times because there is 

high probability that the barrier will be hit. It has an in-built advantage when only 

a single option is being valued. If a book of options were being valued, so that the 

Dirichlet method would usually need to generate an entire sample path, the contour 

bridge method would maintain substantial efficiency gains. Nonetheless, even with 

So is close to the barrier, the biggest-bite method still produces gains when contours 

are shallow. The gains in this case range from ",6 to II. 

In all cases the contour bridge method exhibits increasing efficiency gains as 

the contours become shallower. This is because shallow contours enable the hitting 

time to be found faster than steep contours. Efficiency gains increase as the initial 

asset moves further away from the barrier, to a maximum of 480 when (j = 0.1, 360 

when (j = 0.2, and 240 when (j = 0.3. When comparing the single-hit method with 

the the biggest-bite variate, it is clear that gains from the biggest-bite variant are 

always significantly larger than those from the single-hit method. This emphasises 
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M:>­
oo 

So, 
exact. 
80.5 

4.5873 

85 
1.9600 

100 
0.0418 

115 
0.00024 

Standard 
Dirichlet 

4.5899 
(0.0014) 

[69] 
{1.9} 

1 
1.9571 

(0.0024) 
[360] 

{-1.2} 
1 

0.0415 
(0.0004) 

[480] 
{-0.68} 

1 
0.00025 

(0.00003) 
[470] 

{0.25} 
1 

Vertical 
contour 
variant 
4.5888 

(0.0014) 
[320] 
{1.1} 
0.21 

1.9625 
(0.0024) 

[680] 
{1.0} 
0.53 

0.0410 
(0.0004) 

[740] 
{-1.8} 
0.65 

0.00021 
(0.00003) 

[730] 
{-0.93} 
0.76 

Single-hit contour bridge method Biggest-bite variant 
g g 

0.0645 OA700 1.3863 4.3820 0.0645 OA700 1.3863 4.3820 
4.5879 4.5864 4.5876 4.5891 4.5866 4.5868 4.5879 4.5872 

(0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) 
[36] [46] [67] [110] [6.3] [16] [28] [61] 

{OA4} {-0.7} {0.20} {1.28} {-0.57} {-OA} {OAO} {-0.08} 
1.9 1.5 1.0 0.62 11 4.3 2.5 1.1 

1.9618 1.9598 1.9617 1.9594 1.9611 1.9604 1.9577 1.9609 
(0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) 

[23] [48] [98] [240] [3.5] [13] [23] [58] 
{0.78} {-0.1O} {0.71} {-0.24} {OA8} {0.2} {-0.93} {0.39} 

16 7.4 3.6 1.5 100 29 15 6.2 
0.0416 0.0423 0.0423 0.0416 0.0420 0.0412 0.0418 0.0417 

(0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0004) (0.0004) 
[9 A] [20] [47] [120] [1.1] [3.5] [6.5] [21] 

{-0.50} {1.1} {1.1} {-0.34} {0.57} {-1.3} {-0.04} {-0.31} 
51 23 10.0 4.0 430 140 73 23 

0.00023 0.00029 0.00025 0.00026 0.00020 0.00026 0.00022 0.00024 
(0.00003) (0.00004) (0.00003) (0.00004) (0.00003) (0.00004) (0.00003) (0.00003) 

[7.8] [17] [32] [86] [1.0] [1.6] [4.1] [11] 
{-0.30} {1.27} {0.26} {0.51} {-1.3} {0.64} {-OA6} {-0.02} 

66 25 15 5.3 480 280 130 44 

Table 3.1. Benchmark valuation, rebate, flat barrier. a = 0.1 



~ 
1:0 

So, 
exact. 
80.5 

4.8458 

85 
3.5932 

100 
1.0812 

115 
0.2537 

Standard 
Dirichlet 

4.8460 
(0.0008) 

[33] 
{0.26} 

1 
3.5934 

(0.0022) 
[210] 

{O.ll} 
1 

1.0802 
(0.0020) 

[430] 
{-0.48} 

1 
0.2531 

(0.0011) 
[460] 

{-0.54} 
1 

- ----

Vertical Single-hit contour bridge method Biggest-bite variant 
contour 9 9 
variant 0.0645 0.4700 1.3863 4.3820 0.0645 0.4700 1.3863 4.3820 
4.8462 4.8470 4.8465 4.8460 4.8463 4.8458 4.8459 4.8468 4.8460 

(0.0008) (0.0009) (0.0008) (0.0008) (0.0008) (0.0009) (0.0008) (0.0008) (0.0008) 
[280] [35] [39] [48] [66] [4.8] [11] [20] [39] 

{0.41} {1.4} {0.8} {0.26} {0.60} {0.04} {0.1} {1.2} {0.25} 
0.12 0.96 0.90 0.70 0.50 6.9 2.9 1.7 0.85 

3.5953 3.5912 3.5949 3.5917 3.5943 3.5943 3.5929 3.5953 3.5929 
(0.0022) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022) 

[510] [30] [43] [69] [140] [4.2] [12] [19] [42] 
{0.95} {-0.89} {0.79} {-0.69} {0.50} {0.51} {-0.14} {0.96} {-0.12} 
0.41 6.9 4.8 3.0 1.54 50 17 11 5.0 

1.0835 1.0837 1.0810 1.0784 1.0813 1.0809 1.0836 1.0807 1.0825 
(0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) 

[730] [19] [30] [56J [130] [2.0] [5.8] [10] [26] 
{1.1} {1.2} {-0.09} {-1.4} {0.03} {-0.15} {1.2} {-0.24} {0.66} 
0.59 22 14 7.60 3.3 218 73 42 16 

0.2546 0.2543 0.2551 0.2546 0.2525 0.2548 0.2541 0.2541 0.2532 
(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) 

[750] [12] [20] [37] [92] [1.3] [2.3] [5] [14] 
{0.84} {0.55} {1.3} {0.87} {-1.1} {1.0} {0.35} {0.40} {-0.48} 
0.62 40 24 12 5.1 360 210 85 33 

Table 3.2. Benchmark valuation, rebate, flat barrier. a = 0.2 



01 o 

So, 
exact. 
80.5 

4.9114 

85 
4.1546 

100 
2.2087 

115 
1.0773 

Standard 
Dirichlet 

4.9116 
(0.0006) 

[22] 
{0.31} 

1 
4.1553 

(0.0018) 
[140] 

{0.39} 
1 

2.2052 
(0.0024) 

[350] 
{-1.4} 

1 
1.0762 

(0.0020) 
[440] 

{-0.54} 
1 

~- ---

Vertical Single-hit contour bridge method Biggest-bite variant I 

contour g g I 

variant 0.0645 0.4700 1.3863 4.3820 0.0645 0.4700 1.3863 4.3820 ! 

4.9101 4.91170 4.9120 4.9121 4.9120 4.9109 4.9128 4.9117 4.9113 
(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) 

[260] [33] [35] [40] [52] [4.2] [9.6] [16] [33] 
{-2.1} {0.39} {0.9} {0.98} {0.92} {-0.82} {2.1} {0.38} {-0.15} 
0.08 0.67 0.60 0.56 0.43 5.4 2.4 1.4 0.68 

4.1521 4.1572 4.1560 4.1548 4.1545 4.1537 4.1526 4.1551 4.1533 
(0.0018) (0.0018) (0.0018) (0.0018) (0.0018) (0.0018) (0.0018) (0.0018) (0.0018) 

[430] [30] [43] [56] [100] [4.0] [11] [16] [33] 
{-1.3} {1.4} {0.77} {0.11} {-0.04} {-0.45} {-1.08} {0.29} {-0.69} 
0.32 4.5 3.2 2.4 1.4 34 12 8.5 4.2 

2.2036 2.2067 2.2076 2.2099 2.2085 2.2082 2.2100 2.2094 2.2121 
(0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) 

[660] [26] [39] [59J [110] [2.7J [6] [13] [26] 
{-2.1} {-0.80} {-0.44} {0.52} {-0.07} {-0.19} {0.56} {0.30} {1.4} 
0.53 13 9.0 5.9 3.1 130 58 27 13 

1.0792 1.0757 1.0797 1.0737 1.0767 1.0763 1.0767 1.0745 1.0774 
(0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) 

[720] [19] [26] [44] [96] [1.8] [3.9] [7] [17] 
{0.96} {-0.76} {1.22} {-1.8} {-0.26} {-0.48} {-0.26} {-1.4} {0.05} 
0.61 23 16 9.8 4.5 240 110 60 25 

Table 3.3. Benchmark valuation, rebate, flat barrier. (J" = 0.3 



the effectiveness of the fast-bracketing interval discussed in section 3.2.7. 

As the volatility gets larger, efficiency gains tend to reduce. This is because a 

higher volatility implies a higher hitting probability for the Dirichlet method which 

will exit early. However, even with the high volatility case (j = 0.3, efficiency gains 

with the contour bridge method remain significant. 

3.3.2 The exotic options 

In this section, exotic barrier options are valued. There are three types of options 

and four types of barriers. 

Option types 

The three option types are: 

1. A vanilla rebate option, (JR. This pays a rebate of R at the hitting time r == rb 

to the barrier b (t), conditional on r ~ T. 

2. Knock-in and knock-out options. The payoff hT at the maturity time T is, for 

example, 

(X - ST)+ llT~T' 
(ST - X)+ llT<n 

for a knock-in put, (JIP, 

for a knock-out call, (JOG, 
(3.3.4) 

for some strike X, where r == rb is the hitting time to the barrier b (t), and 1I 

is an indicator function. 

3. A recovery option, (JTec. This models the recovery part paid to a bond holder if 

a firm defaults when its asset value, St, hits a barrier before time T. Recovery 

values are paid at two times. At the time r of default an amount DT = 
max (PTSn RT) is paid, where PT and ~ are a time dependent proportion 

and rebate respectively. At the final time T a second recovery value of DT = 

max (PTST, RT) is paid. The present value of the cash received along the jth 

sample path is Cj, 

( -TT'D + -TTD ) 11 Cj = e 3 T e T JJ.T~T. (3.3.5) 

In the numerical examples, PT == 0.1, for anr < T, PT = 0.05 and RT = RT = 

5. 
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Barrier types 

There are four different types of barrier. They are linear, bull spread, concave 

quadratic, and sine barriers. The motivation for using these barrier is to test a nu­

merical efficiency of the contour bridge method. Options that are traded in markets 

have a much simpler barrier. The idea is that if the contour bridge method can value 

options with difficult barriers, it can easily be used to price options with simpler 

barriers. 

The four barrier types are described as follows. 

1. A linear barrier, b~in, 
b}in = 1 + mt. (3.3.6) 

Two linear barriers are considered: an increasing linear barrier, m > 0, and a 

decreasing linear barrier, m < O. 

2. A bull spread barrier, bfs , 

bfS = 1 + (u -I) N (w (t - e)), u> I (3.3.7) 

where N(.) is the standard normal distribution function. 

3. A quadratic concave barrier, b~, 

(3.3.8) 

4. An linear sine barrier, b~s, 

b}S = I + mt + a sin (b (t + e)) , (3.3.9) 

Two cases are considered: an increasing linear sine barrier, m > 0, and a 

decreasing linear sine barrier, m < O. 

The four types of barrier types together with the parameters are summarised in 

table 3.4. Note that barrier parameters are chosen such that bo is less than So( = 85) 

for a base case and that a barrier neither rises too sharply nor falls too sharply during 

a life of an option. In both cases, the contour bridge and the benchmark method 

will exit early and hence one might not be able to obtain a meaningful comparison. 

Five of these six barriers are plotted in Table 3.5, together with bounding 

pairs of exponential contours. 
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Types Functional form Parameters 
b~in 
t I +mt {I,m} = {SO, 10} and {SO,-lO} 

bhs 
t 1+ (u -I) N (w (t - c)) {l,u,w,c} = {SO, 90, S, 0.4} 

be 
t a + bt + ct2 {a,b,c} = {SO,30,-30} 

bls 
t I + mt + a sin (b (t + c)) {I,m,a,b,c} = {79, 10,5, l5,0.2} 

{l,m,a,b,c} = {79,-1O,5,15,0.2} 

Table 3.4. Exotic barrier types and parameters 

3.3.3 Numerical results 

Since there is no explicit solution for the value of options with the barriers shown 

in table 3.4, benchmark values for options with these barriers were obtained using a 

standard Dirichlet Monte Carlo method with 108 sample paths and up to 1024 time 

steps. Computation times were up to 15 hours for each value. In the majority of 

cases it is clear, by comparing values computed with 256 and 512 time steps, that 

the quoted values are unbiased within standard error.2 

Unless otherwise stated the contour bridge method uses c,}. = 10-10 , c;' = 
10-4 and cp = 10-10 • All (non-benchmark) results are obtained with AI = 106 

sample paths; the Dirichlet method uses N = 512 times steps. 

3.3.3.1 The base case 

This section presents results for the base case, with So = S5 and (j = 0.2, for the 

rebate OR, the knock-in call, OIC, the knock-in put, OIP, and the recovery option 

orec, for the six option barriers discussed in section 3.3.2. Results are reported in 

tables 3.6, 3.7, 3.S and 3.9. The tables show numerical results for the single-hit 

contour bridge method, the biggest bite variant and the standard Dirichlet method. 

Values of the contour growth rate 9 are chosen such that they are the smallest 

values for which the single-hit contour bridge method is possible. aP is chosen so 

that ,8(0 I aP;g) = So; nco is chosen so that ,8(0 I nCO; g) = b(T). 
Tables 3.6, 3.7, 3.S and 3.9 suggest that there is no bias in barrier option 

values since the biases are all within ±2. The performance of the vertical contour 

variant is worst than that of the Dirichlet method, producing gains of only at best 

'" i < 1. Results for the vertical variant are shown only for the rebate option. 

The single-hit method achieves the highest efficiency gains when the barrier is 

linear, particularly with a negative slope. The gains are ",8. When a more complex 

2In other cases, notably the decreasing linear sine case, the result may still be biased by an 
amount greater than the standard error. 
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(b) Bull spread, o.~ = 73, -;!cr = 80 barrier 
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(d) Increasing sine barrier, o.~ = 40, -;!cr = 79.7 (e) Decreasing sine barrier, o.~ = 30, ~ = 80 

Table 3.5. Non-constant barriers 
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(c) Concave quadratic barrier, o.~ = 55, -;!cr = 80 



So = 85, (T = 0.2 Barrier type 
Method Linear i Linear! Bull. Quad. Sine i Sine! 
Benchmark 

~ 

4.23219 2.77827 4.26814 4.38986 4.13732 2.62100 v 
(se) (0.00017) (0.00025) (0.00017) (0.00016) (0.00018) (0.00025) 

Standard va 4.2328 2.7763 4.2658 4.3909 4.1347 2.6197 
Dirichlet fse

d
) (0.0017) (0.0046) (0.0017) (0.0016) (0.0018) (0.0025) 

tdl [90] [150] [95] [67] [109] [170] 
{b t} {-0.36} {-0.42} {-1.4} {0.65} { -1.5} {-0.52} 

Vertical vli 4.2309 2.7791 4.2691 4.3912 4.1402 2.6198 
contour fse

B
) (0.0017) (0.0025) (0.0017) (0.0016 ) (0.0018) (0.0025) 

variant tBJ [390] [526] [530] [432] [591] [652] 
{b } {-0.76} {0.35} {0.56} {0.81} {-0.72} {-0.47} 
eB 0.23 0.29 0.18 0.16 0.08 0.26 

Contour 9 0.1304 0.0741 0.4055 0.3930 1.2149 1.1824 
method VB 4.2311 2.7804 4.2666 4.3891 4.1374 2.6189 
(single-hit, T) (seB) (0.0017) (0.0025) (0.0017) (0.0016) (0.0018) (0.0025) 

W] [16] [19] [39] [22] [54] [56] 
{bS

} {-0.7} {0.9} {-0.91} {-0.47} {0.04} {-0.84} 
eS 5.1 1.9 2.4 3.0 2.0 3.0 

Contour Vb 4.2314 2.7767 4.2675 4.3899 4.1347 2.6207 
method fse

b
) (0.0017) (0.0025) (0.0017) (0.0016) (0.0018) (0.0025) 

(biggest-bite) tbl [3.8] [7] [19] [9.0] [22] [19] 
{b } {-0.46} {-0.63} {-0.38} {0.03} {-1.5} {-0.12} 
eb 24 21 5.0 1.4 5.0 8.9 

Table 3.6. Rebate option OR, (J = 0.2 

So = 85, (T = 0.2 Barrier Type 
Method Linear i Linear! Bull. Quad. Sine i Sine! 
Benchmark v 1.33384 0.62779 1.29762 1.80679 1.17181 0.37943 

(se) (0.00048) (0.00033) (0.00046) (0.00057) (0.00043) (0.00024) 
Standard va 1.3312 0.6252 1.2923 1.7976 1.1710 0.3794 
Dirichlet (sed) (0.0047) (0.0034) (0.0046) (0.0057) (0.0043) (0.0024) 

ltd] [89] [151] [95] [67] [109] [167] 
{bd} {-0.56} {-0.76} { -1.2} { -1.6} {-0.19} {-0.03} 

Contour 9 0.1304 0.0741 0.4055 0.393 1.1249 1.1824 
method VB 1.3343 0.6258 1.2996 1.8051 1.1696 0.3764 
(single-hit, T) (seB

) (0.0048) (0.0033) (0.0046) (0.0057) (0.0043) (0.0024) 
[tB] [16] [18] [39] [22] [55] [56] 

{bS
} {O.lO} {-0.59} {0.43} {-0.30} {-0.51} {-1.2} 

eS 5.6 8.4 2.4 3.0 2.0 3.0 
Contour Vb 1.3293 0.6299 1.2931 1.8042 1.1658 0.3814 
method (seb) (0.0048) (0.0033) (0.0046) (0.0057) (0.0043) (0.0024) 
(biggest-bite) [tb] [4.0] [7.5] [20] [9.1] [22] [19] 

{bb} {-0.94} {0.63} {-0.97} { -0.45} {-1.4} {0.83} 
eb 22 20 4.8 7.4 5.0 8.8 

Table 3.7. Knock-in call option OIC, (J = 0.2 
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So = 85, ()" = 0.2 Barrier Type 
Method Linear i Linear 1 Bull. Quad. Sine i Sine 1 
Benchmark if 13.2477 10.6085 13.2682 13.1423 13.1621 10.4940 

(se) (0.0012) (0.0013) (0.0012) (0.0012) (0.0012) (0.0013) 
Standard vd 13.253 10.618 13.258 13.122 13.169 10.480 
Dirichlet (sed) (0.012) (0.013) (0.012) (0.012) (0.012) (0.013) 

[tdJ [90J [151J [95J [67J [109J [170J 
{bd} {OA1 } {0.75} {-0.88} {-1.7} {0.57} {-1.0} 

Contour 9 0.1304 0.0741 004055 0.3930 1.1249 1.1824 
method VB 13.253 10.597 13.279 13.140 13.155 10.503 
(single-hit, T) (se B

) (0.012) (0.013) (0.012) (0.012) (0.012) (0.013) 
(tBJ [16J [19J [39J [23J [56J [57J 

{bS
} {0.44} {-0.87} {0.92} {-0.16} {-0.59} {0.69} 

eS 5.6 1.9 2.4 2.9 1.9 3.0 
Contour Vb 13.260 10.613 13.272 13.153 13.171 10.509 
method (seb) (0.012) (0.013) (0.012) (0.012) (0.012) (0.013) 
(biggest-bi te) [tbJ [4.1J [7.5J [20J [9.1J [22J [19J 

{bb} {1.0} {0.35} {0.32} {0.89} {0.74} {1.2} 
eb 22 20 4.8 1.4 5.0 8.9 

Table 3.8. Knock-in put option OIP, ()" = 0.2 

, 
So = 85, (J' = 0.2 Barrier Type 

Method Linear i Linear ! Bull. Quad. Sine i Sine! 
Benchmark v 11.07610 7.03916 11.18860 11.56830 10.82990 6.59548 

(se) (0.00046) (0.00062) (0,00044) (0.00042) (0.00048) (0.00062) 
Standard vd 11.0722 7.0407 11.1862 11.5709 10.8334 6.5929 
Dirichlet (sed) (0.0046) (0.0062) (0.0045) (0.0042) (0.0048) (0.0062) 

ltd] [73] [119] [75] [53] [86] [135] 
{bd} {-0.85} {0.25} {-0.54} {0.62} {0.74} {-0.41 } 

9 0.1304 0.0741 0.4055 0.3930 1.1249 1.1824 
Contour V S 11.0800 7.0351 11.1894 11.5678 10.8323 6.6003 
method (seS

) (0.0046) (0.0062) (0.0045) (0.0042) (0.0047) (0.0062) 
(Single-hit) [tsJ [14J [16] [34] [20J [49J [49J 

{bS
} {0.86} {-0.66} {O,18} {-0.12} {0.51} {0.77} 

e S 5.3 7.5 2.2 2.7 1.8 2.7 
Contour Vb 11.0758 7.0356 11.1922 11.5645 10.8274 6.5868 
method (seb) (0,0046) (0,0062) (0,0045) (0,0042) (0,0047) (0,006)2 
(biggest-bite) [tbJ [3.2J [5,8J [17J [7J [19J [20J 

{bb} {-O,07} {-O,57} {0.81} {-O,90} {-O,53} {-1.4} 
e b 23 21 4.5 7.5 4.7 6.9 

Table 3.9. Recovery option O7'ec, ()" = 0.2 
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barrier is valued, gains from the single-hit method is reduced to 1"V2-3. However, 

they are still worthwhile. The recovery option benefits from using the single-hit 

method to roughly the same extent as the other options. The highest gain when 

valuing the recovery option comes from the biggest-bite variant with a positive slope 

linear barrier. A gain is 23. 

As expected, the biggest-bite variant out-performs the single-hit method in 

all cases. The largest gains are achieved when valuing linear barriers, both increasing 

and decreasing. In these cases, the biggest-bite variant produces gains of 1"V20. This 

level of gains is significant. Similar to the single-hit method, gains are decreasing 

when valuing options with more difficult barriers, namely those with sine function. 

Nevertheless, even with these barriers, the minimum gain is around 1"V5 which is at 

least twice as great as the single-hit method. Notice that gains for the contour bridge 

method, both the single-hit and the biggest-bite variants, are broadly comparable 

across different types of option. This is because the main computational burden is 

to compute a hitting time T, which will be similar for the same barrier regardless of 

the option type. 

3.3.3.2 Bias in the computation of ST 

The knock-in option values in tables 3.7 and 3.8 were produced by simulating directly 

values of ST from those of STl when one establishes that T < T, as described in 

section 3.2.5. As pointed out, when using the iterative method, there may be biases 

in option values because of the bimodal distribution. This is illustrated in table 3.10. 

Table 3.10 shows the extent of the bias seen in ST when using the iterative method. 

Results in table 3.10 suggest that biases are very large. They are many 

standard errors away from the range ±2. Even though biases seem to decrease as 

contours become steeper, they are stillI"V5 standard errors away from the benchmark 

values. The consequences when increasing the growth rate 9 are that the method 

will become more computationally expensive and gains will be decreased. In this 

case, efficiency gains are less than 1. Therefore, the iterative method of computing 

ST should not be used. 

3.3.3.3 Efficiency gains close to and far from the barrier 

In this section, efficiency gains when So is either close to or far from the barrier's ini­

tial value b (0) are investigated. First, the case where So is close to b (0) is discussed. 
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, 
So = 85, Benchmark Standard Contour bridge method (single-hit, t) 
(J' = 0.2 Dirichlet 9 

2.1972 6.8024 9.1050 11.4076 
Knock-out put c 0.09029 0.09016 0.10955 0.09687 0.09532 0.09415 

(se) (0.00007) (0.00067) (0.00068) (0.00068) (0.00068) (0.00068) 
[t] [89] [79] [195] [249] [305] 
{b} {-0.20} {28} {1O} {7.4} {5.7} 
e 1 1.1 0.46 0.70 0.3 

Knock-in call c 1.33384 1.3312 1.1912 1.2898 1.3098 1.3041 
(se) (0.00048) (0.0047) (0.0045) (0.0047) (0.0047) (0.0047) 
[t] [89] [42] [101] [128] [157] 
{b} {-0.56} {-32} {-9} {-5.1 } {-6.3} 
e 1 2.1 0.88 0.70 0.57 

Table 3.10. Knock-in call option OIG and knock-out put option ODP, single-hit 
[" (j = 0.2 

Near to the barrier initial values 

Tables 3.11 and 3.12 report results for the rebate, OR, and the knock-in call, OIG, 

when So = 80.5. 

Numerical results suggest that, when So is close to b(O), efficiency gains from 

the single-hit method are often less than one. The biggest-bite variant has gains of 

around 1 or slightly greater (except for the bull spread barrier), but they are not 

very substantial. The vertical contour variant performs very poorly, taking 10 to 20 

times longer that the Dirichlet method to achieve the same standard error. 

It is clear that no method performs well when initial asset values are close 

to the barrier's initial values. Although the biggest-bite method marginally out­

performs the Dirichlet method, it cannot be argued that it is exceptionally superior. 

This is due to the advantage of the Dirichlet method when the initial asset 

value is close to the barrier or the barrier rises sharply during the life of the op­

tion. In these cases, there is a high probability that the barrier will be hit. Since 

the Dirichlet method exits early when the barrier is hit, its computational time de­

creases significantly in this case. 

Far from the barrier initial values 

Tables 3.13 and 3.14 give results when So = 100. 

When So moves further away from b (0), gains from the contour bridge 

method, both the single-hit variant and the biggest-bite variant, increase signifi­

cantly. 

Even though the biggest-bite variant out-performs the single-hit method in 
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So = 80.5, (J' = 0.2 Barrier type 
Method Linear i Linear 1 Bull. Quad. Sine i Sine 1 
Benchmark v 4.92702 4.71688 4.92327 4.95458 4.77969 4.20378 

(se) (0.00006) (0.00011) (0.00006) (0.00005) (0.00010) (0.00018) 
Standard vet 4.92664 4.7170 4.92430 4.95470 4.7794 4.2015 
Dirichlet (sed) (0.00058) (0.0011) (0.0006) (0.00045) (0.0010) (0.0018) 

t: j [l1J [21J [12J [7.2J [35J [64J 
be} {0.67} {0.14} {1. 72} {0.27} {-0.29} {-1.3} 

Vertical vli 4.92717 4.7152 4.92330 4.9541 4.7790 4.2011 
contour (seB) (0.00058) (0.0012) (0.00059) (0.0045) (0.0010) (0.0018) 
variant [tBl [l71J [197J [234J [302J [445J [459J 

{bB} {0.26} { -1.5} {0.05} {0.27} {-0.72} {-1.5} 
eB 0.06 0.11 0.05 0.36 0.08 0.14 

Contour 9 0.1304 0.0741 0.4055 0.3930 1.2149 1.1824 
method VB 4.92720 4.7172 4.92324 4.9548 4.7794 4.2047 
(single-hit, 1") (seB

) (0.00058) (0.0011) (0.00058) (0.00045) (0.0010) (0.0018) 
[tsJ [15J [20J [31J [20) [44J [50J 

{bB
} {0.31} {0.28} {-0.05} {0.49} {-0.29} {0.51} 

eS 0.73 1.1 0.40 0.36 0.8 1.3 
Contour vb 4.92646 4.7176 4.92414 4.95397 4.7810 4.2040 
method ( seb) (0.00058) (0.0011) (0.00058) (0.00046) (0.0010) (0.0018) 
(biggest-bite) [tb] [4J [lOJ [23J [7.4) [29J [25J 

{bb} {-0.97} {0.64} {1.5} {-1.3} {1.3} {0.12} 
eb 2.7 2.1 0.54 0.97 1.2 2.6 

Table 3.11. Rebate option OR, close to the barrier, a = 0.2 

So = 80.5, (J' = 0.2 Barrier Type 
Method Linear i Linear 1 Bull. Quad. Sine i Sine 1 
Benchmark v 1.80283 1.66813 1.78235 1.87312 1.48693 1.13244 

(se) (0.00058) (0.00056) (0.00057) (0.00059) (0.00051) (0.00045) 
Standard vet 1.8059 1.6667 1.7829 1.8627 1.4913 1.1284 
Dirichlet (sed) (0.0058) (0.0056) (0.0057) (0.0059) (0.0051) (0.0045) 

[tdJ [11) [18J [lOJ [6J [29J [52J, 
{bd} {0.53} {-0.25} {0.09} {-1.8} {0,85} {-0,89} 

Contour 9 0.1304 0.0741 0.4055 0.393 1.1249 1.1824 
method VB 1.7980 1.6632 1.7809 1.8684 1.4924 1.1294 
(single-hit, 1") (se B

) (0.0057) (0.0055) (0.0057) (0.0059) (0.0051) (0.0045) 
WJ [16) [17J [26J [16J [38J (41) 

{bS
} {-0.85} {-0.90} {-0,26} {-0.80} {1.1} {-0.7} 

eB 0.69 1.1 0.38 0.38 0.76 1.3 
Contour Vb 1.8073 1.6610 1.7755 1.8641 1.4827 1.1343 
method (seb) (0,0057) (0,0055) (0.0057) (0.0059) (0,0051) (0.0045) 
(biggest-bite) [tbJ [4.1] [9.7] [23] [7.6] [28] [25] 

{bb} {0.78} { -1.3} {-1.2} { -1.5} {-0,83} {O.4l} 
eb 2.7 1.9 0.43 0.79 1.04 2.1 

Table 3.12. Knock-in call option OIC, close to the barrier, a = 0.2 
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So = 100, (7 = 0.2 Barrier type 

Method Linear i Linear 1 Bull. Quad. Sine i Sine 1 
Benchmark v 2.00141 0.43819 2.21583 1.86621 2.01812 0.52961 

(se) (0.00024) (0.00014) (0.00024) (0.00024) (0.00024) (0.00015) 

Standard va 1.9969 0.4369 2.212 1.86239 2.0182 0.5288 

Dirichlet (sed) (0.0024) (0.0014) (0.0024) (0.0024) (0.0024) (0.0015) 

[tj [220] [257] [212] [210] [214] [253] 
fb ~} {-1.9} {-0.90} { -1.6} { -1.6} {0.02} {-0.54} 

Vertical vH 1.9991 0.4417 2.2163 1.8647 2.0173 0.5277 

contour (seB) (0.0024) (0.0014) (0.0024) (0.0024) (0.0024) (0.0015) 

variant [tB] [713] [773] [924] [634] [747] [840] 

{bB} {-0.96} {2.5} {0.20} {-0.63} {-0.34} { -1.3} 

eB 0.31 0.33 0.23 0.33 0.29 0.34 

Contour 9 0.1304 0.0741 0.4055 0.3930 1.2149 1.1824 

method VS 2.0031 0.4396 2.2172 1.864 2.0172 0.5274 

(single-hit, r) (seS) (0.0024) (0.0014) (0.0024) (0.0024) (0.0024) (0.0015) 

[tS] [12] [11] [35] [24] [49] [40] 

{bS} {0.7} {1.01} {0.57} { -0.92} {-0.38} {-1.5} 

eS 18 23 6.1 8.8 4.4 6.3 

Contour Vb 2.0034 0.4369 2.2157 1.8672 2.0159 0.5278 

method ( seb) (0.0024) (0.0014) (0.0024) (0.0024) (0.0024) (0.0015) 

(biggest-bite) [ tb] [2.6] [2.0] [12] [6.7] [15] [10] 

{bb} {0.80} {-0.92} {-0.05} {0.41} {-0.93} { -1.2} 

eb 85 128 18 31 14 25 

Table 3.13. Rebate option (JR, far from the barrier, (j = 0.2 

So = 100, (7 = 0.2 Barrier Type 
, 

Method Linear i Linear 1 Bull. Quad. Sine i Sine 1 
Benchmark v 0.38195 0.02376 0.58910 0.67193 0.57186 0.05313 

(se) (0.00023) (0.00006) (0.00028) (0.00033) (0.00029) (0.00009) 

Standard va 0.3794 0.02418 0.5927 0.6716 0.5752 0.05257 

Dirichlet (sed) (0.0023) (0.00058) (0.0028) (0.0033) (0.0029) (0.00088) 

ltd] [217] [257] [208] [207] [210] [248] 

{bd} {-1.1 } {0.73} {1.3} {-0.11 } {1.1} {-0.64} 

Contour 9 0.1304 0.0741 0.4055 0.393 1.1249 1.1824 

method VS 0.3819 0.02385 0.5928 0.6776 0.5721 0.05271 

(single-hit, r) (seS) (0.0023) (0.00058) (0.0028) (0.0033) (0.0029) (0.00088) 

[tS] [14] [11] [36] [25] [50] [41] 

{bS} {-0.01} {0.16} {1.3} {1.7} {0.09} {-0.48} 

eS 16 23 5.8 8.3 4.2 6.0 

Contour vb 0.3791 0.02293 0.5919 0.6669 0.5685 0.05327 

method (seb) (0.0023) (0.00058) (0.0028) (0.0033) (0.0029) (0.00088) 

(biggest-bite) [tbJ [2.8J [2.4] [12] [6.8] [15J [lOJ 

{bb} {-1.2} {-1.4} {1.0} { -1.5} { -1.2} {0.16} 

eb 78 107 17 30 14 25 

Table 3.14. Knock-in call option (JIG, far from the barrier, (j = 0.2 
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all cases, gains from the single-hit method itself are respectable. The minimum gain 

from the single-hit method is 4.2 for the increasing sine barrier and the maximum 

gain is 23 for the decreasing linear barrier. These are substantial increases from the 

case where So is close to b(O). 

Gains from the biggest-bite variant are much larger. Even with the worse 

cases, the increasing sine barrier, the gains of 14 are obtained. When So is further 

away from b(O), the biggest-bite achieves the highest gain of 128 when valuing rebate 
options with a decreasing barrier. 

This major improvement in the contour bridge's performance compared to 

that of the Dirichlet method is clear and expected. When So is further away from 

b(O), and the barrier does not rise sharply during the life of the option, the hitting 

probability is low. Therefore, the Dirichlet method is often forced to compute an 

entire sample path to establish whether the barrier is hit. In contrast, the number 

of steps taken by the contour bridge method is capped at T / c;. This is potentially 

a considerable reduction in computational effort. 

3.3.3.4 Efficiency gains with high and low volatility 

Now the effects of high and low volatility on efficiency gains are discussed. Ta­

bles 3.15 and 3.16 display results when the volatility is low, a = 0.1, and tables 3.17 
and 3.18 when the volatility is relatively high, a = 0.3. 

By comparing results from table 3.15 with table 3.6, one can see that gains, 

both from the single-hit variant and the biggest-bite variant, are approximately the 

same for options with non-linear barriers. However, gains are much larger when 

valuing barrier options with linear barriers, both positive and negative slope. The 

maximum gains for the single-hit variate and the biggest-bite variant, with a de­

creasing linear barrier, are 18 and 55. These gains are significant. 

With linear barriers, gains are also increased for knock-in calls when volatility 

decreases. This is illustrated by comparing the results in tables 3.16 and 3.7. When 

a = 0.1, the single-hit method and the biggest-bite method achieve maximum gains 

of 17 and 52 respectively. When volatility increases, efficiency gains decrease slightly. 

One can see that gains in table 3.17 are slightly less than those in table 3.6, and 

gains in table 3.18 are slightly less than those in table 3.7. Nonetheless, even though 

gains are decreased, they are still respectable. This is shown by a maximum gain of 

18 for the biggest-bite method and of 4.3 for the single-hit method. 

It seems that gains to the contour bridge method tend to decline as volatility 

increases. This may be because, as discussed, an asset with higher volatility is more 

likely to hit the barrier, favouring the Dirichlet method over the contour bridge 
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, 
So = 85, a = 0.1 Barrier type 
Method Linear i Linear! Bull. Quad. Sine i Sine! 
Benchmark v 3.79958 0.56852 4.08922 4.13750 4.14803 1.12493 

(se) (0.00021) (0.00016) (0.00018) (0.00018) (0.00018) (0.00021) 
Standard va 3.7990 0.5671 4.0876 4.1371 4.1462 1.1215 
Dirichlet fse

d
) (0.0021) (0.0016) (0.0018) (0.0018) (0.0018) (0.0021) 

tdl [139] [249] [134] [88] [115] [222] 
{b ~} {-0.28} {-0.89} {-0.90} {-0.22} { -1.0} {-1.6} 

Contour 9 0.1304 0.0741 0.4055 0.3930 1.2149 1.1824 
method CC 3.7988 0.5701 4.0876 4.1368 4.1467 1.1234 
(single-hit, r) (seC) (0.0021) (0.0016) (0.0018) (0.0018) (0.0018) (0.0021) 

W] [16] [14] [50] [28] [68] [69] 
{bC

} {-0.37} {0.99} {-0.90} {-0.39} {-0.74} {-0.71} 
e 8.7 18 2.7 3.1 1.7 3.2 

Contour VC 3.8008 0.5694 4.0900 4.1384 4.1473 1.1261 
method (seC) (0.0021) (0.0016) (0.0018) (0.0018) (0.0018) (0.0021) 
(biggest-bite) ftC] [4.2] [4.5] [21] [12] [26] [18] 

{bC
} {0.58} {0.55} {0.43} {0.50} {-0.41 } {0.56} 

e 33 55 6.4 7.3 4.4 12 

Table 3.15. Rebate option OR, 0' = 0.1 

So = 85, a = 0.1 
, 

Barrier Type 
Method Linear i Linear! Bull. Quad. Sine i Sine! 
Benchmark ~ 

0.07060 0.00348 0.09559 0.20837 0.14744 0.00631 v 
(se) (0.00007) (0.00001) (0.00007) (0.00012) (0.00010) (0.00002) 

Standard va 0.07009 0.00345 0.09441 0.2062 0.1477 0.00612 
Dirichlet (sed) (0.00066) (0.00015) (0.00073) (0.0012) (0.0010) (0.00018) 

ltd] [137] [250] [131] [89] [117] [224] 
{bd} {-0.78} {-0.17} { -1.6} { -1.8} {0.31} {-1.1} 

Contour 9 0.1304 0.0741 0.4055 0.393 1.1249 1.1824 
method V

S 0.07118 0.00347 0.09583 0.2082 0.1470 0.00642 
(single-hit, r) (seS) (0.00066) (0.00015) (0.00073) (0.0012) (0.0010) (0.00019) 

[tS] [17] [15] [51] [29] [69] [70] 
{bS} {0.S8} {-0.03} {0.33} {-0.19} {-0.47} {0.59} 
eS 8.1 17 2.6 3.1 1.1 3.2 

Contour Vb 0.07079 0.00345 0.09529 0.2089 0.1484 0.00653 
method (seb) (0.00066) (0.00015) (0.00073) (0.0012) (0.0010) (0.00018) 
(biggest-bite) [tb] [4.3] [4.5] [22] [12] [26] [19] 

{bb} {0.29} {-0.17} {-O.4l } {0.44} {1.0} {1.2} 
eb 36 52 6.0 1.4 4.5 12 , 

Table 3.16. Knock-in call option OIC, 0' = 0.1 
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So = 85, 0' = 0.3 Barrier type 
Method Linear i Linear! Bull. Quad. Sine i Sine! 
Benchmark v 4.45818 3.75405 4.45797 4.54520 4.27622 3.40713 

(se) (0.00015) (0.00021) (0.00015) (0.00014) (0.00017) (0.00023) 
Standard va 4.4589 3.7543 4.4561 4.5447 4.2752 3.4092 
Dirichlet sed) (0.0015) (0.0021) (0.0015) (0.0014) (0.0017) (0.0023) 

tdl [65J [98J [70J [51J [87J [124J 
b ~} {0.51} {0.1O} {-1.2} {-0.35} {-0.62} {0.91} 

Contour 9 0.1304 0.0741 0.4055 0.3930 1.2149 Ll824 
method CC 4.4570 3.7521 4.4588 4.5442 4.2782 3.4080 
(single-hit, 'T) (seC) (0.0014) (0.0021) (0.0015) (0.0014) (0.0017) (0.0023) 

WJ [15J [18J [33J [20J [45J [46J 
{bC

} {-0.84} {-0.93} {0.55} {O.O} {1.2} {0.4} 
e 4.3 5.4 2.1 2.6 1.9 2.7 

Contour VC 4.4554 3.7563 4.4576 4.5447 4.2776 3.4054 
method (seC) (0.0015) (0.0021) (0.0015) (0.0014) (0.0017) (0.0023) 
(biggest-bite) W] [3.6] [7.6] [17] [7.7] [21] [19] 

{be} { -1.9} {Ll} {-0.26} {-0.36} {0.81} {-0.76} 
e 18 13 4.1 6.6 4.1 6.5 

Table 3.17. Rebate option (JR, 0' = 0.3 

So = 85, 0' = 0.3 Barrier Type 
Method Linear 1 Linear ! Bull. Quad. Sine 1 Sine! 
Benchmark v 3.6822 2.63255 3.5802 4.2511 2.95794 1.71070 

(se) (0.0011) (0.00091) (0.0010) (0.0011) (0.00091) (0.00070) 
Standard vd 3.679 2.6347 3.589 4.266 2.9747 1.7094 
Dirichlet (sed) (0.011) (0.0091) (0.010) (0.011) (0.0091) (0.0070) 

[tdJ [65J [96J [68J [51J [88J [126J 
{bd} {-0.29} {0.24} {0.87} {1.4} {1.8} {-0.18} 

Contour 9 0.1304 0.0741 0.4055 0.393 1.1249 1.1824 
method VB 3.673 2.6295 3.577 4.247 2.9612 1.7114 
(single-hit, 'T) (seS) (0.011) (0.0091) (0.010) (0.011) (0.0091) (0.0070) 

[tS] [16] [19] [34] [21] [46] [48] 
{bB

} -0.84 -0.34 -0.31 -0.40 0.36 0.10 
eS 4.1 5.1 2.0 2.4 1.9 2.6 

Contour VO 3.672 2.6436 3.581 4.249 2.9492 1.7072 
method (seb) (0.011) (0.0091) (0.010) (0.011) (0.0091) (0.0070) 
(biggest-bite) [tb] [3.9] [7.7] [18] [2.8] [21] [20] 

{bb} {-0.93} {1.2} {0.08} {-0.19} {-0.96} {-O.50} 
eb 17 12 3.8 6.5 4.2 6.3 , 

Table 3.18. Knock-in call option (JIG, 0' = 0.3 
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method in the single option versions implemented and compared here. 

3.4 Conclusion 

This chapter described a novel simulation method, the contour bridge method, that 

has been applied to the valuation of barrier options with exotic barriers. The results 

in section 3.3 illustrate that the contour bridge method generates efficiency gains 

over the Dirichlet method. These gains are sometimes very substantial. Although 

not demonstrated in this chapter it can be argued that the contour bridge method 

would yield significantly greater efficiency gains when applied to a book of options. 

The method can also be extended to apply other types of barrier option such a 

partial barrier option. 

The method shows no evidence of bias when applied to rebate and knock­

in style options. However, it may be difficult to value knock-out options since ST 

cannot be simulated directly. Even though one cannot value a knock-out directly 

from the contour bridge method, one can recover a knock-out value from a knock-in 

value computed from the method by using the in-out parity. This is possible since 

the results suggest that the method can value a knock-in option accurately. 

The numerical results suggest that the biggest-bite version of the method 

can produce very substantial efficiency gains. The method achieves the greatest 

efficiency gains when volatility is low and an initial asset value is further away from 

the initial barrier value. Even though gains decrease when volatility is high, they 

are still good. The shape of the option barrier has a clear effect on the method's 

performance. The highest gains are achieved when the method is applied to value 

options with linear barriers. However, reasonable gains are also made with the more 

difficult linear-sine barriers. 

Even though the single-hit version of the method does not produce efficiency 

gains as large as the biggest-bite version does, those gains are still respectable in a 

number of cases. 

The method relies upon the existence of contours with certain mathematical 

properties. This chapter has investigated only single barrier options. However, if 

there are contours appropriate for double barrier options, the method would extend 

to these options too. 

In conclusion, the contour bridge method is a valuable addition to the set of 

simulation methods that can be applied to value barrier options. 
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Part II 

American Put Options and 

Control Variates 
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Chapter 4 

Literature Review on American 

Option Valuation 

American options and American style derivatives have become one of the commonest 

financial instruments that are traded both in exchanges and in the over-the-counter 

market. They are popular among financial institutions such as investment banks, 

commercial banks, and mutual funds. However, these instruments are generally hard 

to price because of their early exercise features. The pricing problem of American 

options and American-style derivatives is important and challenging. This chapter 

will focus on the valuation problem and methods of American put options in both 

geometric Brownian motion (GBM) and non-GBM models. The chapter begins 

by describing American put option valuation problems in section 4.1. Section 4.2 

describes approximation and general numerical methods. Simulation methods are 

reviewed in section 4.3. Section 4.4 provides a review of literature of American option 

valuation methods in non-GBM models. American barrier and power options are 

described in section 4.5. Section 4.6 concludes. 

4.1 American put option valuation problems 

Consider the standard model of Black and Scholes (1973) [38] in which the price 

process St follows the geometric Brownian motion 

(4.1.1) 

where the risk free rate r and volatility u are constant and positive, and Zt is a 

one-dimensional Brownian motion. The value of an American put option is given in 

Definition 3. 
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Definition 3. An American put option gives a holder the right to sell an underlying 

asset at any time up to and including the expiration date. The value of an American 

put option in the Black-Scholes model at time t E [0, T] with an underlying Stl a 

strike price X I a risk free rate r and volatility (j I is a value process Vt (S) defined 
by: 

(4.1.2) 

where Q is the risk neutral measure and 7* E [t, T] is an optimal stopping time. 

The distinct feature of American options, which make them different from 

European options, is the early exercise feature. The holder of American options can 

exercise anytime before an expiry date. The values of the underlying asset, that 

make it optimal for an option holder to exercise, form an early exercise boundary 

SE (EEB thereafter). The optimal stopping time 7* in (4.1.2) is the first time that 

an asset value falls below SE. That is, 

7* = inf{t ~ ° : St 5 Sf}. ( 4.1.3) 

The EEB determines exercise strategies for a holder of an American put option. 

Given a value St, a holder can choose whether to exercise an American put option. 

A set of (St, t) in which it is optimal to exercise is the immediate exercise region I: 

I = {St E jR+ X [0, T] : v (St) 5 Sf} . (4.1.4) 

A complement of I is a set of (St, t) in which it is optimal to continue holding an 

American put. It is the continuation region C: 

C = {St E jR+ X [0, T] : v (St) > Sf} . (4.1.5) 

The two regions I and C are separated by the EEB, Sf. This is illustrated in 

figure 4.1. 

Since the option's EEB is not known in advance, an American option pricing 

problem can be regarded as the free boundary value problem in which one has 

to compute both Vt(S) and Sf simultaneously. This type of problem was studied 

by McKean (1965) [181]. There exists no closed-form solution to the American 

pricing problem, and the option value needs to be computed by approximation and 

numerical techniques. 
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Figure 4.1. American put option's early exercise boundary (EEB) 

4.2 Approximation and numerical methods 

There are two main stains in the literature on the valuation methods of the American 

options: approximations and numerical methods. The methods discussed in sections 

4.2.1 assume that the underlying asset follows a GBM process in (4.1.1). 

4.2.1 Analytical approximation methods 

Barone-Adesi and Whaley (1987) [27] (BAW method) proposed a quasi-analytical 

approximation method. The method was developed from the quadratic method of 

MacMillan (1986) [178]. The BAW method separates the American put option into 

two parts, which are the European component and the early exercise component. 

Barone-Adesi and Whaley (1987) [27] derived the option's EEB, and so found an 

approximate value of an American put option. However, despite the fast compu­

tational speed, the estimated EEB fails to completely capture time-varying shape 

of the exercise boundary (Ait-Sahlia and Lai (2001) [3]). Bjerksund and Stens­

land (1993) [37] proposed an approximation method in which the EEB is assumed 

to be fiat. The method decomposes an American call option into a knock-out option 

with a rebate paid at the knock-out time. However, since the EEB is assumed to 

be fiat, the exercise strategy is not optimal and then the technique provides only a 

lower bound of the option value. Bjerksund and Stensland [36] extended the method 

of Bjerksund and Stensland [37] by separating the option's time maturity into two 
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parts, each of them with a fiat EEB. The performance of the method depends on 

accuracy in approximating bivariate normal distribution. 

Another approximation approach makes use of a lower and an upper bound 

for an American option value. This method was proposed by Johnson (1983) [143], 

and Broadie and Detemple (1996) [48]. Johnson (1983) [143] used regression coef­

ficients, which are estimated from a large set of option contracts, to obtain lower 

and upper bounds for the American option value. Johnson (1983) [143] then ap­

proximated the functional form of the EEB and American put prices. Broadie and 

Detemple (1996) [48] derived lower and upper bounds of American calls by using a 

capped call option written on the same underlying asset. 

Geske and Johnson (1984) [104] proposed a method, the GJ method, that 

approximated the value of American options through an infinite series of multivariate 

normal distribution functions, and then used Richardson extrapolation to estimate 

the option value. Bunch and Johnson (1992) [53] applied the GJ method with an 

option with only two-exercise times but these times are chosen such that the option 

value is maximised. 

PreKopa and Szantai (2010) [200] applied the idea of Geske and John­

son (1984) [104] and proposed a recursive method to value Bermudan and American 

options. Chang et al. (2007) [62] modified the GJ method by applying the idea 

proposed by amberg (1987) [195]. The modified method assumes that exercise 

opportunities are separated by time steps in a geometric series rather than in an 

arithmetic series and then repeated Richardson extrapolation is used. l Their results 

suggest that the modified method performs better than the original GJ method. 

Carr (1998) [56] developed a semi-analytical method to price American 

puts. By dividing the time to expiry into sub-intervals and assuming each of them 

is random and exponentially distributed, the pricing problem at each time step is 

equivalent to that of a perpetual option, and a PDE is reduced to an ODE. This 

enables Carr (1998) [56] to derive an expression for American put options. 

The other important analytical approximation method for American options 

is the Integral Representation method, which was proposed by Kim (1990) [157], 

Jacka (1991) [136], Carr et al. (1992) [59] and Jamshidian (1992) [138]. This 

method is based on an associated integral equation for the exercise boundary of 

the option. The efficiency of the method depends on the particular iterative method 

chosen to compute the integral term. Kallast and Kivinukk (2003) [150] have re­

cently used the Newton-Raphson method to solve an integral based on the equation 

lSee Dahlquist and Bjorck (1974) [78] for a more detailed discussion of Richardson extrapolation 
technique. 
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of Kim (1990) [157]. Ju (1998) [147] proposed a multi-piecewise exponential func­

tion, and in combination with Richardson Extrapolation, he showed, as pointed out 

by Detemple (2006) [85], that a three-point extrapolation scheme performs as well 

as the lower-upper bound approximation method in terms of both root mean square 

error and computational speed. 

4.2.2 PDE and lattice methods 

In pricing American options there are two main categories of numerical methods. 

The first category is the method that solves directly the partial differential equa­

tion (PDE) governing an American option value in which both time and space are 

discretised (PDE method). The second category is the method that is based on 

risk-neutral valuation at each time step (lattice and simulation methods). This sec­

tion will review PDE and lattice methods and section 4.3 will review simulation 

methods. 

One of the first PDE methods is the finite difference method introduced by 

Schwartz (1977) [223] and Brennan and Schwartz (1978) [46]. Let S be the asset 

value that follows a geometric Brownian motion in (4.1.1) and X be the strike price. 

Denote a value of an American put option as Vt, the idea of this method is to solve 

the following free boundary value problem: 

aV av 1 2 2 a2v - + rS- + -(]' S - - rv = 0, at as 2 aS2 

Vt> (X - S)+, 

Vt = (X - S)+, 

VT = (X - ST)+, 

aV 
as = -1, 

s=sf 
lim Vt = 0, 
Sjoo 

'VS> Sf,t > 0 

'VS> Sf,t > 0 

'VS 5.: Sf,t? 0 

t?o 

t? 0, 

(4.2.1) 

( 4.2.2) 

( 4.2.3) 

( 4.2.4) 

(4.2.5) 

(4.2.6) 

where Sf is the early exercise boundary, by converting a PDE into a set of difference 

equations, each of which is solved iteratively. This is a free boundary problem 

because Sf is unknown and one has to solve for v and Sf simultaneously. Regarding 

some finite difference methods such as the implicit and the Crank-Nicolson method , 
as the stock price step size and time step size approach zero, the solution converges. 

In some cases, such as an explicit finite difference, the method may not converge if 

a certain condition is not satisfied (Tavella and Randall (2000) [234]). 
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When only the time derivative is discretised, the method is called the (hor­

izontal) method of lines. In particular, the method is based on semi-discretisation 

where the domain (s, t) is replaced by a set of parallel lines. Each of the lines is 

defined by a constant value of t. Meyer and van der Hoek (1997) [185] proposed this 

method to value American options. The advantage of this method, as mentioned 

by Chiarella et al. (2006) [66], is that the option price, delta, gamma, and exercise 

boundary are all computed as part of a solution process. 

Another way to solve American option values is to formulate the problem as a 

Linear Complementary problem. One of the most popular algorithms is the project 

successive over-relaxation (PSOR) iterative method of Cryer (1971) [77]. PSOR is 

an iterative method. It is a standard successive over-relaxation (SOR) method in a 

sense that it has a relaxation parameter that is chosen to improve the convergence of 

the iteration. It is modified to update only non-negative SOR solutions. However, 

as mentioned by Dempster et al. (1998) [83], the number of iterations required to 

converge may vary and sometimes can grow rapidly with the number of spatial grid 

points. 

One of the earliest methods in the second category are lattice methods, first 

proposed by Cox et al. (1979) [76]. These methods divide the continuous movement 

of stock prices into equally spaced discrete time steps, and the value of an option 

is obtained by discounting back the sum of a possible option value of each future 

state (up or down) multiplied by a predetermined risk neutral probability. Even 

though this method converges as the number of time steps increases, it may be 

difficult to value an option with more than one or two underlying assets. Amin 

and Khanna (1994) [12] used a probabilistic approach to prove the convergence of a 

binomial tree for American options. The analysis of the convergence of a binomial 

tree was also investigated in Jiang and Dai (1999) [141]. 

Another method that is related to a binomial tree method is the Bernoulli 

walk method proposed by Ait-Sahlia and Lai (199) [4]. In this method, an underlying 

Brownian motion is approximated by a symmetric random Bernoulli walk and a 

backwards algorithm is applied to obtain the option value and its early exercise 

boundary. 

4.3 Simulation methods 

The remaining category of numerical methods for valuing American options is Monte 

Carlo simulation. Let Vt(S) be the value of time t of an American option maturing 

at time T > t. The option value is required at time to. Divide the interval [0, T] 
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into N equal steps 0 = to < tl < ... < tN = T where ti - ti-I = At is constant. 

Write Si = Sti for the value of the underling asset at time t i , vi = v (Si) for the 

value of the option at time ti. Suppose a risk free rate r is constant. Define 

hi =: h (Si) 
Gi=:G(Si) 

The immediate exercise payoff at time ti. 
The continuation value of the American option; the option 
value if not exercise at time ti but may optimally exercise 
at times ti+l,"" tN. 

The Monte Carlo value of an American option at time t = 0, vo is determined 
recursively: 

vN = hN 

iJi-1 = max (hi-l,lE [e-r.:ltv i lSi-I]), 
(4.3.1) 

( 4.3.2) 

for i = 1, ... , N. From (4.3.2), the option value at time to maturity is its payoff 

hN. Equation (4.3.2) means that the value at time ti-l of American option is the 

maximum of the immediate exercise value and the time ti-l continuation value. One 
can write Gi = lE [e-r.:ltviISi-l]. 

Simulation techniques can be divided into four main types; which are the 

mesh method, the state-space partitioning method, the duality method, and the 
functional form method. 

4.3.1 Mesh methods 

The mesh methods can be sub-categorised into two types; which are the random lat­

tice and the stochastic mesh method. These were proposed by Broadie and Glasser­

man (1997, 2004) [50, 49]. 

4.3.1.1 Random lattice method 

The first method is based on randomly sampled states. It generates two option 

value estimators. One is biased upward and the other one is biased downward. The 

method is based on the simulation of a lattice of paths of asset values So, SI, ... , SN 

using (3.1.3). First, a branching parameter k 2: 2 is chosen. Then at So, one 

simulates k independent successor asset values Sf, Sj, ... , Sf all conditioning on so. 
Next, from each SJ, where j = 1, ... ,k, simulate another k independent successors 

SJ1"'" SJk' Next, from each SJlh' one generates k successors SJlhl"'" SJlhk' et 
cetera. 
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8}1, ... ,ji is a generic node in the tree at time step i. This means the node is 

reached by the jl th branch from 8° and the hth branch from the next node, and so 

on. It is important to note the difference between the random lattice method and 

a standard non-recombining lattice method. In a lattice method, successor nodes 

are generated by deterministic up and down probability and hence nodes at the ith 

step appear according to their values; that is the highest node corresponds to the 

greatest asset value. In the random lattice method, successor nodes are simulated 

(randomly sampled) and nodes at the ith step appear according to the order in 
which they are simulated. 

Denote ~Jl, ... ,ji as the high estimator at node 8j1, ... ,J;' It is defined recursively 
as: 

~N 
v· . 
}l, .. ·,JN = hJ.V . 

Jl .. ·JN ( 4.3.3) 

~i 
viI, ... ,ji (hi 1 L:k -r~t~i+l ) = max ' ,- e v' . Jl , .. ·,Ji' k , J1, .. ·,Ji· 

J=1 
(4.3.4) 

t l:J=1 Ai~;2.,ji is computed simply by taking an average of discounted option 

values from k successors, each of them is assigned equal weight. (4.3.4) is a high 

bias estimator (lE[iJ~l, ... ,ji I 8)1, ... ,jJ > v)l, ... ,ji I 8)1, ... ,ji) because it embodies perfect 
foresight. 

To remove the high bias, Broadie and Glasserman (1997) [50] introduced the 

low estimator. The idea is to divide branches at each node into two sets, separating 

the exercise decision from the continuation value. At each node, the method uses 

the first branch to estimate the continuation value and other k - 1 branches to 

approximate the exercise value. The procedure is repeated k - 1 times by using the 

second branch to estimate continuation value, et cetera. Denote fl
j1

, ... ,ji as the low 

estimator at node 8~ J'" It is defined recursively as: Jl, .. ·, • 

vI'! . = hI'! . 
-}1, .. ·,JN J1, .. ·,JN· ( 4.3.5) 

At node j1, ... ,ji at time step i and for each 1 = 1, ... ,k, set 

{

hi.. if _1_ E~- ' e-r~tvi,+1 . < hi, . 
..... il _ J1, .. ·,Ji k-l J-l,J~l -J1,,,·,Ji - J1,,,.,Ji 
v' '-
-J1, .. ·,Ji e-r~t~,+1. otherwise. 

J1, ... ,Jil 
(4.3.6) 
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Then, set 
k 

--i 1 L--il v· . = - v· . 
-)l"')i k -)l"')i' 

1=1 
(4.3.7) 

As k increases, both estimators are asymptotically unbiased and the method provides 

a confidence interval for the American option value. As suggested by Broadie and 

Glasserman (2004) [49J, the main drawback of this method is that the computational 

burden increases exponentially in the number of time steps (exercise dates). 

4.3.1.2 Stochastic mesh method 

The idea of the stochastic mesh method is similar to the random lattice method but 

now the weight assigned to each node is assumed to be random. Another distinction 

is that when computing the option at a node at time step ti, the mesh uses values 

from all nodes at time tHl, unlike the first method that uses values from successors 

of the current node. Since this method keeps the number of nodes at each time step 

fixed, the computational requirement is linear, rather than exponential as in the first 

method, in the number of time step. In this case, for i = 1, ... , Nand j = 1, ... , k let 

S; denotes the jth node at the ith exercise date. The estimated option value, ~ is 
defined as: 

(4.3.8) . 

(4.3.9) 

where W}I is a weight attached to the arc joining Sj with S~+l. At node 0, one sets 

k 
~ 1 "'" -rAt--l v = k ~e VI' 

1=1 
(4.3.10) 

Note that if one allows exercise at time to, set VO = max (k l:~1 e-rAt:vl, hO). Al­

though this method is convergent, it relies on the explicit knowledge of the transition 

density of the underlying state variables, which may not be known in many cases 

(Broadie and Glasserman (2004) [49]). 

4.3.2 State-space partitioning methods 

The second method is the state-space partitioning methods proposed by by Bar­

raquand and Martineau (1995) [29], Tilley (1993) [236] and extended by Raymar 
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and Zwecher (1997) [204] and Jin et al. (2007) [142]. The main idea of this method 

is based on the partitioning, that is defined in advance, of the state space of the 

underlying asset. Unlike the random tree method that uses random sample states, 

the states in this method are defined in advance. For the time step ti, i = 1, ... , N, 
one has a finite partition Qi, ... , QL of Si into ki subsets. At time to, set ko = 1 and 

Q~ = So. Next, define transition probabilities 

(4.3.11) 

where j = 1, ... , ki' I = 1, ... , k + 1, and i = 0, ... , N -1. Then for each j = 1, ... , ki 
and i = 1, ... , N, define averaged payoffs 

( 4.3.12) 

This method uses the simulation to approximate Q]l ~ q;l and h; ~ h;. To do 

this, simulate a large number of paths of So, Sl, ... ,SN and then set pi'l as the 
. 1 J 

number of paths moving from Q~ to Qj+ for all j = 1, ... , ki' 1= 1, ... , k + 1, and 

i = 0, ... , N - 1. Then one computes 

i 
d _ Pjl 
qjl - ii' 

Pjl + ... + Pjki 

and h; as an average of hi for those paths where Si E Q~. 
The estimated option value is recursively defined as: 

--N 
Vj = --N . 

hj 'iJ = 1, ... ,kN 

( 'H' ) ~ = max 'hi, L qi e-rAtiJi+1 
J J' Jl I , 

1=1 

( 4.3.13) 

(4.3.14) 

(4.3.15) 

Even though the method can be used to price multi-dimensional American 

options, it relies on the selection of the state-space partitioning. Also, when the 

dimension is large, the computational time is quadratic in a number of dimensions. 

Raymar and Zwecher (1997) [204] extended this method by including the second 

statistic, such as the second highest moment or the median of the stock price vector. 

They find that their method produces values that are closer to the benchmarks. This 

method was also investigated by Baldi and Pages (2000, 2003) [22, 23] and Baldi 

et al. [24]. 

The method that is similar to the partitioning method is the bundling method 
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of Tilley (1993) [236J. The method simulates the asset value paths at once, reorders 

them from the lowest to the highest, and bundles them into group. These groups 

are used to approximate the option's continuation value. At each time, the method 

compares the immediate exercise value and the continuation value. The American 

option value is obtained by backward iteration. The bundling method was extended 

by Jin et al. (2007) [142] to value high-dimensional American options. They em­

ployed quasi-Monte Carlo to construct bundles. Their results show that the method 
can be used to value options up to 15 assets. 

4.3.3 Duality methods 

Unlike other simulation methods that view the American option pricing problem as a 

maximum over stopping times, this method is based on a minimisation. Roger (2002) [216J, 
Haugh and Kogan (2004) [120j, and Anderson and Broadie (2004) [13] proposed a 

method based on a dual formation. Like the mesh method, this approach can 

generate both lower and upper bounds of option prices. The upper bound is ap­

proximated by the dual minimising over a class of supermartingales or martingales. 

In this method, the primal problem is an American option pricing problem. Write 

ht = h (St). The primal problem is 

[ 
-rr* ] Va = max IE e hr*, 

r*E[a,T] ( 4.3.16) 

where r'" E [0, TJ is a stopping time of the American option. Define a martingale 

7f = {7fi' i = 0, ... , N} with 7fa = O. By the optional sampling theorem, one has the 

upper bound 

IE [e- rr
* hr *] = IE [e- rr

* hr * - 7fr *] ::; IE [.=max (e- rti hi - 7fi )] , 
t 1, ... ,N ( 4.3.17) 

and hence 

(4.3.18) 

Since the inequality in (4.3.18) holds for every r"', it must also hold for the supremum 

over T"'. Hence, write Uo = inf7rIE [maxi=l, ... ,N (e-rtihi - 7fi)] , one has 

(4.3.19) 

Ua is the dual problem. 

To find a martingale that gives a tight upper bound, Roger (2002) [216] 

used this duality method and generated a martingale process by using a separate 
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simulation. An extrapolation technique was also used. 

The representation in (4.3.19) was also used by Haugh and Kogan (2004) [120] 

(they worked with 7T', a supermartingale) and Anderson and Broadie (2004) [13]. 

Haugh and Kogan (2004) [120] employ a low discrepancy sequence and neural net­

work algorithm to estimate the continuation value of the option, and then a lower 

and an upper bound of the American option. 

Anderson and Broadie (2004) [13] pursued a similar methodology. However, 

there are two distinct differences between their method and Haugh and Kogan's 

method. First, Anderson and Broadie (2004) [13] approximated the optimal exer­

cise policy (rather than the initial option price) to estimate the bounds. Second, 

they employed only a simulation to construct an upper bound. By computing their 

upper bound, together with using Longstaff and Schwartz's method (which will be 

discussed next) to compute a lower bound, they found that their resulting confiden­

tial intervals are consistent, and some are tighter than the stochastic mesh results 

of Broadie and Glasserman (2004) [49]. 

4.3.4 Functional form methods 

This class of method approximates an American option's continuation value with 

a functional form. It is based on the use of regression together with Monte Carlo 

simulation. The method suggests that the time ti continuation value of the option, 

Ci can be approximated by a countable linear combination of known functions of 

asset values, Si, and uses regression to estimate coefficients for this approximation. 

Carriere (1996) [61] suggested the use of non-parametric regression to approximate 

Ci . 

Tsitsiklis and Roy (1999, 2000) [239, 238] and Longstaff and Schwartz (2001) [176] 

proposed the use of least-square regression to find a function to approximate contin­

uation values. Tsitsiklis and Roy (1999, 2000) [239, 238] presented their work in a 

theoretical way while Longstaff and Schwartz (2001) [176] presented it in a practical 

way. The method of Longstaff and Schwartz (2001) [176] (LSLS) is described as 

follows. 

4.3.4.1 The LSLS method 

Suppose V; is the time ti Monte Carlo value of an American option on the jth path. 

Let 8J = e-rLlt~+1 be the Monte Carlo continuation value of an American option. 

Let C i = {C;}. be the true continuation value. At time ti, the LSLS method 
}=l, ... ,M 
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approximates Ci by iJi using a known functional form f so that 

(4.3.20) 

where a i are parameters to be found. The parameters ai are chosen such that a 

norm G(a) = 118i 
- f (S I ai

) II is minimised. Longstaff and Schwartz (2001) [176] 
suggested that f can be a finite linear combination of a set of basis functions, 

K 

f (S I ai
) = L at1Pk (S), ( 4.3.21) 

k=l 

for a set of basis functions {1Pkh=l, ... ,K· A set of coefficients ai = {al, .. , ,ak} can 
be estimated by a least square regression at each time ti. 

For a fixed time ti, let W = {1Pk (Sj) }~:l,,,.'K E jRMxK and let 8 = {8j}. E 
J-l, ... ,M J=l, ... ,M 

]RM, One solves for a = {aUk=l, ... ,K E JRK, That is 

minllwa- 811. (4.3.22) 

An optimal set of parameters, a, can be found by 

( T )-1 T ~ a= W W W C. (4.3.23) 

Unfortunately, it is well known that, when working with more than five or six 

basis functions the ordinary least square (OLS) may fail. This is because the basis 

functions may be highly correlated with each other, and hence the method cannot 

distinguish values of the criteria function, G(a), when different combinations of 

basis functions are used. The method then attempts to invert a singular matrix 

(Longstaff and Schwartz (2001) [176]). To cope with this problem, a singular value 

decomposition (SVD) technique can be used instead. This method is useful when 

working with matrices that are close to singular (Press et al. (2007) [201]). The use 

of the SVD and other techniques in the LSLS method was investigated by Areal 

et al. (2008) [14]. 

Write h; = h (Sj) for the option's payoff, The LSLS algorithm to value American 

option is given as follows. 

The LSLS algorithm. 

1. Simulate a set of M independent paths Sj = {SJ, ... , Sf}. Then compute 
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an option value for time t = tN, v1 = hf where, for a put option, hI;l = 
J 

(X - Sf)+. 

2. At each time ti, where 1 ~ i ~ N - 1, write BJ for the continuation value on 
the jth sample path. Set Bj = e-rAt~+1. 

3. Write OJ for an approximated continuation value. Find parameters a i = 

{aUk=l, ... ,K so that OJ''' OJ = f (Sj I ai
), where 

K 

f (sj I ai
) = L al1/Jk (Sj) , (4.3.24) 

k=l 

for the chosen set of basis functions {1/Jdk=l, ... ,K. Parameters ai can be found 

by 

ai 
= argmlnllBj - f (SJ I a) II. (4.3.25) 

4. Exercise is made if h). > OJ. To obtain the EEB, one sets §~ = {Sj I h) > OJ}, 
which is the set of St at which a holder exercises the option. Then one sets 

Sp = max{S E §E}. 
S (4.3.26) 

Sp is the greatest asset value at time ti that the option is exercised. The set 

SE = {SP}, i = 1, ... , N represents the option's EEB. 

5. The option value at time ti, V;, is set to be 

if S~ < S~ 
J - " 

otherwise. (4.3.27) 

6. At time to, the American option value is 

(4.3.28) 

The properties of the LSLS method were studied and analysed by Stentoft (2004, 

2004) [230, 231J. Clement et al. (2002) [72J and Glasserman and Yu (2004) [113J 
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analysed the convergence of the method. Robustness of the algorithm was studied 

by Moreno and Navas (2003) [189]. Glasserman and Yu (2004) [112] studied the 

relation between the LSLS method and the stochastic mesh method of Broadie 

and Glasserman (2004) [49]. The choice of basis functions was studied in Areal 

et al. (2008) [14] and Webber (2011) [247]. Implementation issues of the method 

was also discussed in Webber (2011) [247]. 8tentoft (2004) [230] showed how the 

LSM method can be extended to handle multiple stochastic factors. A comparison 

of the L8L8 method with the method proposed by Carriere (1996) [61] was done by 
8tentoft (2008) [232]. 

There are a number of papers in the literature that use and extend the 

LSL8 method. Chaudhary (2005) [63] implemented the L8L8 method in conjunction 

with a quasi-Monte Carlo and a Brownian bridge method. The method can reduce 

memory requirements and can value high-dimensional American options. A similar 

method was investigated by Jonen (2009) [144]. Wang and Caftisch (2010) [246] 

proposed a method that obtained a regression equation for time to by generating 

initial asset values from a chosen distribution. This equation can be differentiated 

to obtain hedging parameters for American options. Ibanez and Velasco (2010) [130] 

proposed a cost function method in which the cost of suboptimal exercise is min­

imised. Belomestnyet al. (2009) [32] introduced a regression-based method with a 

consumption process. A consumption process is defined by the difference between 

an immediate exercise payoff and the option's continuation value. An upper bound 

and a lower bound for the option value are obtained using this method. 

The LSLS method is also used in other finance applications. Examples in­

clude Beveridge and Joshi (2009) [35] and Trolle and Schwartz (2009) [237] who 

applied the method to Bermudan swaption, Rodriques and Armada (2006) [215] and 

Gamma (2003) [99] who considered a real option, Gamma (2003) [99] who incorpo­

rated stochastic stopping time constraints, which can be used to design executive 
stock option plans, et cetera. 

4.3.5 Overview of the control variate method 

The control variates technique is one of the various methods for improving the 

efficiency of Monte Carlo simulation. The method uses the error in estimating 

known quantities to reduce the error in estimating unknown quantities. This section 

provides the overview of the control variate method. Then, the use of control variates 

for American option valuation problem is reviewed in section 4.3.6. 
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4.3.5.1 Single control variate 

Write vi as the simulated value of an American option along the jth path. Suppose 

that for each j = 1, ... , AI, one simulates another quantity xi along with vi' Suppose 

that (vi,Xj)j=l, ... ,M are independent and identically distributed (LLd) and that lE[x] 
is known. Then for a fixed w, one computes a control variate estimate Vjv 

( 4.3.29) 

The error of Xj -lE[x] is used as a control of lE[v] estimation. The variance of Vjv is 

given as 

Var[VjV] = Var[vj - W (Xj -lE[x])] 

= Var[vj] + (-w)2Var[Xj]- 2wCov(Xj,Vj) 
22 22_ 2 - O'v - WO'xO'vPX1i + W O'x = O'w, (4.3.30) 

where 0'1 = Var[x], O'~ = Var[v], and pxr; is the correlation between x and V. 
The coefficient, w*, is chosen such that O'~ is minimised: 

d0'2 
-2wO'xO'vpxr; + 2w, ~ = (4.3.31) dw 
O'~ 

w* v 
(4.3.32) = -Pxr;, 

O'~ x 

w* = 
Cov[X, v] 

(4.3.33) Var[x] 

Write x = k E~l Xj and v = k E~l Vj' Substitute w* into (4.3.30), a 
ratio of the variance of the controlled estimator to that of the uncontrolled estimator 

is given by: 
Var[v - w*(x -lE[x])] _ 1 2 

Var[v] - - Pxv, (4.3.34) 

or 
Var[v] 1 

Var[vCV] = 1 _ p2 ' (4.3.35) 

It can be seen that the effectiveness of a control variate in terms of the variance re­

duction ratio in (4.3.34) depends on the correlation of the quantity being estimated, 

v, and the control variate, x. When using a control variate on the option value, it 

is referred to as the pricing control variate. 

81 



4.3.5.2 Multiple control variates 

The method of control variates can be generalised to the case of mUltiple controls. In 

this case, suppose that on the jth path, one simulates a vector xi = (xJ, ... , xf) T 

where L is the total number of controls and AT denotes the transpose of vector A. 

Also suppose that the vector of expected values JL = (E[x!, ... , E[xL ]) T is known. 

Assume that the pairs (xi' vi), j = 1, ... , AI are LLd. with the covariance matrix 

( 4.3.36) 

where Exx is the L x L covariance matrix of x, Exv is the L x 1 covariance vector, 

and (j~ is the variance of Vj. For any fixed wEIR L, the control variate estimate is 
given as 

~v...... T (...... ) vi = vi - W xi - JL , (4.3.37) 

with a variance 

(4.3.38) 

which is minimised at 
* 't"'-l't"' W = L.Jxx L.Jxv. (4.3.39) 

Now define 

( 4.3.40) 

The quantity in (4.3.40) is used to measure a linear relationship between xi and vi' 
By substituting (4.3.39) into (4.3.38) and using (4.3.40), one has the variance of the 

control variate estimator 

(4.3.41) 

Therefore, from (4.3.41) one can see that R2 assesses a proportion of the variance 

of v that is removed by using x as control variates. 

4.3.6 Control variate method for American option valuation 

There are two main control variate methods that have been proposed in literature 

to value American options. They are reviewed as follows. 
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4.3.6.1 European option control variates 

The first method is to choose the corresponding European options as control vari­

ates. This idea was first implemented by Broadie and Glasserman (1997) [50] with 

their random tree method. Write C
X = x -lE[x] for the second term on the right 

hand side of (4.3.29). C
X is the control part for an American option and is referred 

to as a control variate. Suppose one values an American put option and uses a 

corresponding European put option as a control variate. In this case, CX becomes 

? = x-lE[x] 

= e-rT (X - ST)+ - Po 
( 4.3.42) 

( 4.3.43) 

where Po = Po (So) is a time to Black-Scholes value of a corresponding European put. 

The use of European options as a control variate for American options in the LSLS 

method was investigated and extended by Rasmussen (2005) [203]. The method is 

described as follows. 

Exercise time control variate 

Instead of sampling the control variates at option's expiry time, Rasmussen (2005) [203] 
made use of the optional sampling theorem and proposed sampling the control at 

the exercise time of the American option. Let T be the exercise time of an American 

option. The control, cX
, becomes 

if T < T, 

Otherwise. 
( 4.3.44) 

The optional sampling theorem states that a martingale stopped at a stopping time 

is a martingale. More specifically, suppose ~ :::; T are two stopping times and let At be 

a martingale, then the theorem says that M, = lE[MrlFd (where F, is the filtration). 

Since the European put e-rtpt (St) is a martingale, it follows that e-rr Pr (St) is a 

martingale and lE[Pr (St)] is equal Po (S(O)). Throughout this thesis, d;. is referred 

to as the put-tau control variate. 

Rasmussen (2005) [203] showed that the method is proven to be effective. 

The correlation between the put-tau control variate and the American option value 

can be as high as 99%. 

The control in (4.3.44) was applied by Broadie and Cao (2008) [47J with 

a primal-dual method to improve a lower bound. They also implement a sub­

simulation to improve an estimate of the early exercise boundary. 
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Continuation value control variate 

Rasmussen (2005) [203] proposed the control variate that is applied to option's 

continuation values. The idea of this control variate is to improve an estimated 
option's EEB. 

Write OJ for the American option's continuation value at the ith time step 

along the jth path. The controlled continuation value OJ is given as 

(4.3.45) 

where c; is the control variate and w is given (4.3.33). This method tightens the 

option's continuation values which results in a more accurate early exercise boundary 

(EEB). A similar idea was also used by Broadie and Glasserman (2004) [49] with 

their stochastic mesh method. They employed mesh weights as a control for option's 

continuation values. The control variate in (4.3.45) is referred to as the rollback 

control variate and will be discussed in more detail in chapter 5. 

4.3.6.2 Martingale control variates 

The second type of control variate techniques for valuing American options is more 

complicated. The technique constructs a martingale to approximate a control vari­

ate (Henderson and Glynn (2002) [121]). This method uses a so called two-phase 

simulation technique (applied in American option pricing problems in Broadie and 

Glasserman (2004) [49], Rasmussen (2005) [203], and Bolia and Juneja (2005) [39), 

Ehrlichman and Henderson (2007) [89], and Juneja and Kalra (2009) [148]), which 

is first to estimate the option's EEB, and then simulate another independent sample 

path (usually a lot less paths than the first phase), exercised at the EEB found in 

the first phase. 

The martingale-based method was proposed by Henderson and Glynn (2002) [121], 

and its application to American option pricing was undertaken by Bolia and Juneja (2005) [39], 
Ehrlichman and Henderson (2007) [89], Broadie and Cao (2008) [47] and recently 

by Juneja and Kalra (2009) [148]. Its application to multi-factor stochastic volatility 

was investigated in Fouque and Han (2004, 2004, 2006) [94, 95, 96]. 

The method of Bolia and Juneja (2005) [39J and Juneja and Kalra (2009) [148] 

relies on a particular choice of basis function such that the expected values of the con­

trol variates can be computed analytically. Ehrlichman and Henderson (2007) [89] 
employed a regression technique called Multivariate Adaptive Regression Splines 

(MARS) discussed by Friedman (1991) [97]. This is a method where an additional 
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basis function is automatically added if the improvement from adding the function 

is greater than a given amount, and the number of a basis function does not exceed 

a specified level. 

4.4 American option valuation in stochastic volatility, 

Levy and jump processes, and stochastic interest 

rate models 

The numerical computation of values of American derivatives, when the underlying 

asset has stochastic volatility or is a Levy process, has received significant attention 

in recent years. Various numerical methods have been proposed to price Ameri­

can options in these non-GBM models. These processes considered are stochastic 

volatility, Levy and jump diffusion and stochastic interest rate processes. 

4.4.1 Stochastic volatility 

One of the most popular stochastic volatility models is the Heston model of Hes­

ton (1993) [122]: 

dSt = J-lStdt + -y'YtStdZt 

dVt = ",(0 - Vt)dt + c-y'YtdWt, (4.4.1) 

where ",,0, and c are strictly positive mean reversion, long run volatility, and volatil­

ity and volatility parameters. 

4.4.1.1 PDE based methods 

Let Ut be an American option value at time t. When the volatility is stochastic, the 
standard Black-Scholes PDE in (2.2.1) becomes 

au 
at 

( 4.4.2) 

where>. is the market price of volatility risk. The main idea behind this method 

is to convert the equation (4.4.2) into a set of differential equations and solve them 

iteratively. However, in this case the problem is more computationally expensive 

than that of the GBM case because one has to take into account the volatility 

derivative term. 
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Zvan et al. (1998) [252] applied a penalty term to handle the American 

early exercise feature. They transformed equation (4.4.2) into a set of differential 

algebraic equations, which are solved by approximate Newton iteration; the method 

is convergent. 

Another convergent method is the multi-grid approach. Its application to 

American option pricing with stochastic volatility was proposed by Clarke and 

Parrott (1999) [71J. They employed a finite difference method combined with a 

coordinate-stretching procedure based on the strike price to solve the linear comple­

mentary problem. Even though convergence is shown, the accuracy of the method 

depends on how the solution domain is truncated. Ikonen and Toivanen (2004) [131] 

proposed an operator splitting method. In this method, each time step is divided 

into two fractional time steps. Linear equations are solved in the first step and the 

early exercise constraint is enforced in the second step. The time convergence of the 

time discretisation scheme is shown. Another method called component-wise split­

ting was proposed by Ikonen and Toivanen (2006) [132]. The method decomposes 

the problem into three linear complementary problems. Each of these problems 

is solved by using a finite difference method (in their paper by an implicit Euler 

scheme and a Crank-Nicolson scheme). Numerical examples show that the method 

is convergent. 

Even though the methods just described are convergent, they may be com­

putationally expensive because one now has to solve a two-factor PDE in a two­

dimension grid. Also, it may be difficult to add other state variables into an already 

higher dimension pricing problem. 

4.4.1.2 Lattice methods 

Guan and Xiaoqiang (2000) [118J and Vellekoop and Kieuwenhuis (2009) [241] pro­

posed a lattice-based method to value American options in the stochastic volatility 

model of Heston (1993) [122J. Since volatility is now stochastic, the lattice becomes 

three-dimensional. Guan and Xiaoqiang (2000) [118] employed an interpolation­

based approach (based on Finuance and Tomas [92] with the model of Hull and 

White (1987) [128]) that interpolated option values on neighbouring nodes whenever 

they are needed and not only on the nodes. Vellekoop and Kieuwenhuis (2009) [241] 

employed an idea similar to Guan and Xiaoqiang (2000) [118] but used bicubic spline 

interpolation to ensure the continuity of the first derivative of the option value with 

respect to the asset value and volatility in order to improve a rate of convergence. 
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4.4.2 Levy and jump processes 

Write u = u(t, S) as the value of an option at time t. When introducing jumps into 

the option pricing problem the Black-Scholes PDE in (2.2.1) becomes the PIDE. 

The value of an option at time t, Ut, is satisfied by the following PIDE (Cont and 

Tankov (2004) [73]): 

8u 
8t 

8u (J2S282u 
= r8 8S + -2-882 - ru 

+ J v(dy) [u - u - 8(eY 
- 1) Z;] , 

where u = u(t, SeY), and v is a Levy density. 

4.4.2.1 PIDE methods 

(4.4.3) 

There exists a number of PIDE methods for the pricing of American options under 

diffusions with Poisson jumps or more general Levy processes. They are discussed 

as follows. 
Finite difference methods have been used in several papers, including Carr 

and Hirsa (2003) [57], Hirsa and Madan (2004) [123], Almendral (2004) [10], and Lev­

endorskiI et al. (2005) [165]. Carr and Hirsa (2003) [57] and Hirsa and Madan (2004) [123] 

developed a numerical procedure for the Variance Gamma process. Carr and Hirsa (2003) [57] 

worked with forward equations. Hirsa and Madan (2004) [123] employed a different 

method. They used two methods to discretise the integral term in (4.4.3). They 

worked with a transformed state variable, y = In(S). They first expanded the in-

tegrand near its singularity (y = 0) and implemented an implicit method to this 

part. The rest of the integral is treated explicitly. The method is convergent. Al­

mendral (2004) [10] formulated a pricing problem as a Linear Complementary prob-

lem and applies standard finite differences. He also implemented the Fast Fourier 

Transform (FFT) to discretise the jump term. LevendorskiI et al. (2005) [165] de-

veloped a new finite difference scheme based on the Randomisation procedure of 

Carr (1998) [56]. The main idea is to not approximate small jumps by a diffu-

sion but by an additional drift. The method is convergent. They found that their 

method produced a more stable EEB than that of Hirsa and Madan (2004) [123], 

and consumed less computational time. 
A stretch grid transformation was employed by Almendral and Oosterlee (2006) [11] 

for the Variance Gamma process to obtain higher accuracy in the numerical inte­

gration process of the integral term of a PIDE. The method is similar to that of 

Clarke and Parrott (1999) [71]. The method is convergent, and by comparing with 
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results from Hirsa and Madan (2004) [123], they found that they can achieve the 

same order accuracy with a fewer grid point (400 x 20 grids instead of 2,000 x 

1,000 grids). Nevertheless, as pointed out by the authors, their grid transformation 

makes it impossible to apply fast Fourier transform (FFT) and hence the method 

cannot take advantage of FFT. 

A variation inequality method is used in Matache et al. (2005) [180] and 

Zhang (1997) [251] for the CGMY process of Carr et al. (2002) [60] and jump 

diffusion model of Merton (1976) [183] respectively. Matache et al. (2005) [180] 

used the wavelet Galerkin discretisation scheme, and also suggested removing the 

drift in order to satisfy the necessary condition. However, as pointed out by Lev­

endorskiI et al. (2005) [165], by removing drift, the payoff functions will become 

time-dependent and the dependence on t needs to be frozen at each time step and 

this may introduce additional errors. 

Another PIDE method is a penalty method. This method is used to price 

American options by Wang et al. (2007) [243] and d'Halluin et al. (2003) [86]. Wang 

et al. (2007) [243] applied this method with the particular iterative method to price 

American options under the CGMY model. d'Halluin et al. (2003) [86] worked in a 

jump diffusion model of Merton (1976) [183] and used an iterative method with a 

FFT method to compute a jump diffusion integral term. Both of the methods show 

convergence. 

4.4.2.2 Semi-analytical methods 

The use of Fourier analysis in pricing American options in non-GBM frameworks was 

discussed in Chiarella and Ziogas (2005, 2006) [64,65] and Chiarella et al. (2006) [67]. 

Chiarella and Ziogas (2005) [64] employed a Fourier Hermite series expansion to 

value an American call in a jump diffusion process. At each time step, Fourier 

Hermite expansion is applied and the exercise boundary and call values are solved 

iteratively. However, as pointed out by the authors, the main shortcoming for this 

method is its incapability to provide an accurate early exercise boundary near the 

time of expiry. Chiarella and Ziogas (2006) [65] and Chiarella et al. (2006) [67] ex­

tended the incomplete Fourier transform approach of McKean (1965) [181] and de­

rived an integral representation of the EEB in jump-diffusion and stochastic volatil­

ity models respectively. As pointed out by the authors in the stochastic volatility 

case the convergence is slow and the iteration scheme needs to be improved. 

4.4.2.3 Lattice methods 
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Kellezi and Webber (2004) [153] applied a lattice method to value Bermudan and 

American options when an underlying process follows a Levy process. They con­

structed a lattice from the transition density function of the Levy process, and also 

proposed several constructions for branching probabilities of a lattice. Their method 

gives prices of Bermudan and bounds of American options in VG and NIG models. 

4.4.3 Stochastic interest rate 

Boyarchenko and Levendorskii (2007) [40] employed a regime switching method 

based on the Randomisation method of Carr (1998) [56] to value perpetual Ameri­

can options. Ho et al. (1997) [124] and Chung (1999, 2002) [70, 69J employed the GJ 

extrapolation method of Geske and Johnson (1984) [104]. Ho et al. (1997) [124J ap­

plied an extrapolation method on option values from multi-variate binomial approx­

imations. Chung (1999, 2002) [70, 69] extended the method of Ho et al. (1997) [124] 

to value American options using only the value of European options and an op­

tion with two exercise dates, which involved a distribution of forward price. They 

proposed both a numerical integration method and a binomial approximation to 

estimate this forward distribution. Lindset and Lund (2007) [167] proposed a sim­

ulation method combined with the two-point GJ-method. Like Chung's method, 

they extrapolated from options with one and two exercise dates. The method also 

uses an option with two exercise dates as the control variate. Nevertheless, they did 
not sample the control variate at exercise times. 

4.5 American barrier and power options 

American barrier options are exotic options with the early exercise feature. Let T 

be the exercise time of an American option and let Tb be the hitting time to the 

option barrier bt . Suppose the barrier option matures at time T, and the underlying 

American fractional power option matures at time Tl ~ T. American barrier options 

can be divided into two types depending on whether they are in or out types: 

1. American knock-in: American option comes in to existence when the option 

barrier bt is hit at Tb and a holder can exercise early at time T where T E h, T
I
]. 

2. American knock-out: a holder can exercise an American option at time T 

where T E [0,70). An American option ceases to exist after time Tb. 

Power option is an option in which its payoff is raised to some power.· This 

type of option generalises a piecewise linear payoff of the standard option (where a 

power is 1). 
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This section provides a brief review of valuation methods for pricing Ameri­

can barrier options and power options. 

4.5.1 American barrier 

Gao et al. (2000) [100] employed a quasi-analytical approach to value a flat barrier 

American option. They decomposed the value of the American barrier option into 

a standard European barrier option and an early exercise premium (similar to the 

method of Barone-Adesi and Whaley (1987) [27]) and then presented an approx­

imation of the option value. Haug (2001) [119] employed the reflection principle 

and obtained an approximation for American barrier options. Numerical results 

from Dai and Kwok (2004) [79] suggest that Haug's approximation may work only 

when the barrier is less than or equal to the American option's exercise price. Dai 

and Kwok (2004) [79] then proposed an approximation that decomposes the Amer­

ican barrier option into standard American options, European option and a plain 

vanilla knock-in option. The method of Dai and Kwok (2004) [79] can value options 
with a wide range of barrier levels. 

Ait-Sahlia et al. (2003) [5] investigated a hybrid method which combines the 

decomposition technique of Gao et al. (2000) [100] with the Bernoulli walk method 

of Ait-Sahlia and Lai [4]. The method approximates the early exercise boundary 

of an American knock-out option by continuous piecewise exponential functions. 

Ait-Sahlia et al. (2003) [6] modified a lattice method by using a Bernoulli random 

walk to value American knock-in options. Even though these methods can value 

American barrier options with a constant barrier, it is not clear how they can value 

an option with a non-constant barrier. 

4.5.2 Power option 

A power call option pays 

max (S(T) - X, ot , (4.5.1) 

where K, E lR, S(T) is an asset value at time T and X is an exercise price. When 

K, E il, Esser (2003) [90] derived the analytical formula in terms of sum series. 

However, when K, ¢ Il, numerical methods must be used. 

4.6 Conclusion 

This chapter has reviewed a number of valuation methods for American options, 

both in GBM and non-GBM models. It has particularly focused on the use of 
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Monte Carlo simulation methods to value American options. Simulation methods 

are flexible and can handle a problem where the number of state variables is large. 

However, Monte Carlo simulation is generally computationally expensive. Therefore, 

variance reduction techniques must be used in order to implement Monte Carlo 

simulation methods effectively. 

This chapter has also provided a review of several control variate methods 

that have been used to reduce the variances of American option values found by 

simulation. There are two main methods; the martingale approach and the use of 

a suitable option as a control variate. The latter is the primary focus of the next 

chapter, chapter 5. It is concerned with the development of a new control variate 
method for valuing American options. 

Chapters 6 and 7 propose a new simulation method that generalises the 

standard LSLS method. The new method will be used to value standard American 

put options and exotic American options. 
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Chapter 5 

Valuing Bermudan and 

American Put Options with 

Bermudan Put Option Control 
Variates 

This chapter is concerned with the valuation of American and Bermudan options 

using Monte Carlo simulation. It presents a simple yet effective control variate 

method that is based on the use of Bermudan put options as control variates. The 

control variate method is used with the Least Square Monte Carlo simulation method 

of Longstaff and Schwartz (2001) [176] (LSLS) to value Bermudan and American 

put options. By choosing a Bermudan put with two exercise times, one is able to 

write it in terms of a compound call option whose analytical solution is known. 

The chapter illustrates the use of two-phase simulation methods in which an 

option's early exercise boundary is estimated in the first phase using Ml sample 

paths and then an option value is computed with pricing control variates, using Af2 

sample paths. 

To approximate the value of American put options, Richardson extrapolation 

is implemented on three different values of Bermudan options. Numerical results 

suggest that the approximated American values are accurate and the Bermudan 

control variate can gain significant speed ups. 

The chapter is organised as follows. Section 5.1 describes the difference be­

tween the Bermudan and the American option and also the convergence of Bermudan 

option values to the American option value. Section 5.2 presents the Bermudan put 

control variates. The proposed methodology is presented in section 5.3, and sec-
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tion 5.4 illustrates the use of Richardson extrapolation to estimate American put 

options. Section 5.5 shows numerical results. Section 5.6 concludes. 

5.1 Exercise at fixed times: Bermudan options 

It is important to note the difference between American options and Bermudan 

options. American option can be exercised at any points in time t E [0, TJ. In 

contrast, Bermudan options can be only exercised at a fixed set of exercise dates, 

a = to < tl < t2 < '" < tE = T.1 Hence, when using numerical methods to value 

an option, if time is discretised into E exercise dates, one is effectively valuing a 

Bermudan option. As E -+ 00, a Bermudan option value converges to a correspond­

ing American option value. Figure 5.1 plots the convergence of Bermudan option 

values to an American option value using a trinomial lattice method. 

Parameter values in figure 5.1 are S = 100, X = 100, r = 0.05, (7 = 0.1, 

T = 1, and number of time steps N = 204,800. The American put value is 2.43679. 

Panel (a) in figure 5.1 shows Bermudan put values with a different number of 

exercise dates E on log scale, E = 1,2, ... ,204800, and a number of time step N is 

204,800. One can see that as the number of exercise dates increases, the Bermudan 

put value convergences to its limiting value, an American put. 

Panel (b) in figure 5.1 shows the error convergence. It plots In{v~ _ VOO), 

where v~ and V
OO are the Bermudan put value and the American put value respec­

tively, against In{E). It shows that the Bermudan put option converges uniformly to 

the American put option approximately at the rate", 1. With this convergence rate, 

American put value can be computed using Richardson extrapolation. This value 

corresponds to a Bermudan value with E = 204, 800. This is a very large number 

of Ej it would be computationally prohibitively expensive to implement accurately 

with a Monte Carlo simulation method. However, section 5.4 will illustrate the use 

of extrapolation techniques with Monte Carlo values to obtain an American put 

value from Bermudan values at small values of E. 

5.2 Bermudan option control variate 

As discussed in section 4.3.6, a good control variate should be a quantity that 

is highly correlated to the American put option. A simple choice would be the 

corresponding European put option because it is straightforward to compute the 

lEven though time intervals {ti - ti-di=l, ... ,E do not have to be equal for Bermudan options, 
they are assumed to be equal through this chapter. 
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Figure 5.1. Convergence of a Bermudan option value to an American option value 
from a trinomial lattice method 
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value of European put along simulated paths. 

Although the European put might be a suitable choice of control variate, 

one would expect the Bermudan put option to be more effective (as its value might 

be more highly correlated with that of the American put). Typically, there exists 

no closed form solution for the Bermudan put option because of its early exercise 

possibilities. However, for Bermudan put options with only two exercise times (Tl < 
T2 = T), an analytical solution can be obtained in terms of the compound call 
option.2 This is shown in Theorem 4. 

Theorem 4. Consider the Bermudan put option maturing at time T, strike X, 

with two exercise times TI < T2. Assume that the interest rate r and volatility (j 

are constant. The value of this Bermudan option, bt , at time t < Tl is 

bt = It + e-r(TI-t) X - B t , (5.2.1) 

where It is the time t compound call option. The compound call option exercises 

at time TI with strike Xl, exercising into a call option with strike X2 exercising at 

time T2 where Xl = X - e-r (T2-TI)X and X2 = X. 

Proof. Denote the European put option maturing at time T2 with strike X as Pt. 

The value of the Bermudan option at time TI , bTl is 

bTl = max (X - BTl' PTI (X, T2)) , 

= max (0, PTI (X, T2 ) + BTl - X) + X - BTl' 

Let CTI be a corresponding call option. By put-call parity, one has 

(5.2.2) 

(5.2.3) 

(5.2.4) 

where e-r (T2-Ttl X is the value at time TI of X received at time T2. Next, one 

observes that 

(5.2.5) 

is the payoff at time Tl of a compound call option with strike Xl = X - e-r (T2 -TI) X 

exercising at time TI call maturing at time T2 with strike X2 = X. Let It be the 

value of this compound call option, then one can write the Bermudan option value 

2 A similar control was proposed in Lindset and Lund (2007) [167] in the stochastic interest rate 
model. Nevertheless, they used the non-exercise time control variate. The two-point Richardson 
extrapolation was also used. 
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at time t as 

as required. 

The analytical value of "Yt is (Geske (1979) [103]) 

(5.2.6) 

o 

(5.2.7) 

where Np (d, e) is the bivariate normal distribution function with correlation p, 

(5.2.8) 

(5.2.9) 

with d2 = d1 - uVT2, e2 = el - uVTi, P = yfii, and STI is a critical asset price 
such that 

(5.2.10) 

STI is the value that determines if a compound call option is exercised at time TI . If 

STI > STI' then CTI (STI' X 2, T2 - Td > Xl and a call is exercised. For a Bermudan 
put option with two exercise times, STI satisfies 

(5.2.11) 

and an option is exercised at time Tl if STI ::; STI' The value of STI can be obtained 
by root-finding algorithms. 

5.2.1 Bermudan put-terminal control variate 

Denote the time t value of a Bermudan put option maturing at time T with two 

exercise times, Tl < T2 = T, by b2t and its value at time to by b20. The option 

b2t can be exercised at time TI if STI ::; STI for some critical stock price STI < X. 

Write T = T2. At time TI, if STI ::; STI' the option is exercised and then ceases to 

exist. If STI > STI' then the option continues to exist and can be exercised at time 

T. 
With this exercise structure, the simplest version of the b2t control variate, 
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The control variate c~ is referred to as the Bermudan put-terminal control variate. 

This is because the value of b2t is used only at times TI and T. BTl::; BTl means 

b2t is exercised at time TI and its holder receives X - BTl' If BTl > BTl' b2t is 

effectively a standard put option and its value at time T is (X - BT)+' 
The Bermudan put control variate, b2t , can be used as the exercise time 

version discussed in section 4.3.6. This will be described next. 

5.2.2 Bermudan put-tau control variate 

Rasmussen (2005) [203] showed that by sampling a European put at the exercise 

time of an American put, the control variate becomes more effective than sampling 

a European put at maturity time T. 
Let T be the exercise time of the Bermudan put option being valued. The 

value of b2t can be used at T instead of using only at TI and T. The value of control 

variate, cb2 , will be different depending on values of T and BTl' In particular, there 

are four different cases to consider. They are summarised in table 5.1. 

Values of T and ST, Situations 

T < Tl The EEB is hit before time Tl . 

Tl ::; T < T and STI ::; STI The EEB is hit after time Tl but the option was 
exercised at time Tl . 

Tl ::; T < T and STI > STI The EEB is hit after time Tl and the option was not 
exercised at time Tl . 

T ~ T and Sn > STI The EEB is not hit and the option was not exercised 
at time Tl. 

T ~ T and Sn ::; STI The EEB is not hit but the option was exercised 
at time Tl. 

Table 5.1. Four cases of the Bermudan put control variate, cb2 

Write Pt for the time t value of a European put option. With these cases, 

the exercise time Bermudan put can be used as a control variate: 

e-rT b2T - b20, 
e-rTI (X - BTl) - b20, 

e-rT 
PT - b20, 

e-rT (X - BTt - b20, 

if T < TI , 

if BTl ::; BTl' 
if TI ::; T < T and BTl > BTl' 
if T = T and BTl > BTl' 

(5.2.13) 

Note that when BTl ~ BTl' the option is exercised regardless whether the EEB is hit 

or not. This is shown by the second case in (5.2.13). When T < T I , b2t still exists 

and its value at T, b2n is used as a control. When BTl ::; BTl' b2t is exercised at Tl 
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and the payoff X - BTl is used. If TI < T < T and BTl> BTl' b2t becomes a put 

and its value at the exercise time, Pn is used. Lastly, when T = T and BTl > BTl' 

b2t is not exercised at T1• It becomes a European put and its value at maturity time 

T, (X - BT)+, is used. c~2 is referred to as the Bermudan put-tau control variate. 

The twice-exercise Bermudan put option, b2t , can also used in several other 

ways which yield three versions of the cb2 control variate. These are shown next.3 

5.2.2.1 The plain Bermudan TI control variate, Cb,PTi 
7', 1 

The plain version of the Bermudan control variate is given by 

if T < T1, 

if BTl ~ BTl' (5.2.14) 
if Tl ~ T < T and BTl > BTl' 

When T < TI (first row in (5.2.14)) and BTl ~ BTl (second row in (5.2.14)), cb,PTI = 
7', I 

cb2 . Nevertheless, C7'b, PTi is different from c~2 in two ways. First, the value of cb,PTi 
7' , I 7', 1 

is not defined at T. Second, the exercise time T used in cb,PTi is not allowed to be 
7', 1 

greater than T1• This is why the value of a payoff at time T1 , (X - BT)+ is used 

when TI ~ T < T and BTl > BTl' 

5.2.2.2 The Bermudan TI control variate, c~2T 
, I 

if T < Til 

if BTl ~ BTl' (5.2.15) 
if TI ~ T < T and BTl > BTl' 

C}l is a slightly improved version to C~:~l' When TI ~ T < T and BTl > BTl' it uses 

a value of a European option at time T1, PTll instead of the payoff (X - BT)+' 

5.2.2.3 The early Bermudan control variate, c~2,e 

First define the portfolio 

(5.2.16) 

3These control variates appeared in Chirayukool and Webber (2010) [68J and are also reported 
in Webber (2011) [247J. 
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where P~ (St ISTl' TI) is the European put maturing at time TI with strike STl' and 

dt (St ISTl' TI ) is a digital option with payoff hTI: 

{
I, 

hTl = 0, 
if STI ~ STl' 

if STI > STI' 
(5.2.17) 

The portfolio B t can be viewed as a knock-out put option with a payoff X - ST 

maturing at time T. It knocks out at time Tl if STI ~ STI ' The put and the digital 

payoff cancel out the Bermudan put payoff. This control variate removes the cash 

flow at time TI and instead takes the cash flow at the earlier time t < TI. 

The early Bermudan control variate, c~2,e, is defined as follows. 

Cb2,e = 
T 

Choice ofTI 

e-rT BT - Bo, 

-Bo, 
e-TTpT - Bo, 

e-rT (X - ST)+ - Bo, 

if T < TI, 

if STI ~ STl' 

if TI ~ T < T and STI > STl' 
if T = T and Sn > STI 

(5.2.18) 

Throughout this chapter, a value of TI is to be Tl = t. This is clearly not the only 

possible choice. The only restriction on TI is that TI E [0, TJ. In fact, Tl can be cho­

sen such that a value of b2t is maximised, which may increase a correlation between 

b2t and Bermudan option being valued. The method of choosing TI to maximise 

b2t was first purposed by Bunch and Johnson (1992) [53] to approximate a value 

of American option by using two-point Richardson extrapolation. The method was 

extended to value American options in stochastic interest rate model by Lindset and 

Lund (2007) [167J. Numerical results from Lindset and Lund (2007) [167] showed 

that, for out-of-the-money options, an option value is maximised when Tl is closed 

to T. For at-the-money options, an option value is maximised when Tl is approx­

imately closed to iT and for in-the-money options, an option value is maximised 

when TI is slightly less than ! T. 

Even though a value of the Bermudan option with two exercise dates can be 

maximised by carefully choosing Tl, this method is not pursued in this thesis and 

is left for future research. 
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5.2.3 Obtaining values of 7j from simulation 

Recall from section 4.3.4 on page 77 that h~ and BJ are the option's payoff and its 

approximated continuation value at the ith time step on the jth path respectively. 

When implementing the exercise time control variate, to obtain the exercise time 

7j,j = 1, ... , A! of a Bermudan option, write 7J for the earliest exercise time on the 

jth path for the Bermudan put being valued after time t i , conditioned on not being 
exercised before time ti, 

(5.2.19) 

where hj is an immediate exercise payoff and BJ is the approximated continuation 

value at time step k on the jth path. Then set 7j = 7J. The exercise time control 
variate on the jth path is 

(5.2.20) 

for any control variate x. For instance, x can be PT or b2T • 

5.3 Two-phase simulation method 

A two-phase simulation method separates the simulation for valuing Bermudan op­

tion into two phases. The first phase is to use a set of A!l sample paths to estimate 

the option's EEB. This is done by applying steps 1 to 4 of section 4.3.4.1, page 79. 

Once the option's early exercise boundary is estimated, the second phase 

generates a new set of M2 sample path to use it to value an option based on the 

exercise boundary estimated in the first phase. 

The advantage of this method is that the second set of simulated paths do not 

involve an expensive regression algorithm and is then less computationally intensive. 

This means that standard errors can be reduced at a slight additional cost. 

5.3.1 First phase: Estimating the early exercise boundary 

It is very important to estimate an option's early exercise boundary accurately 

in order to obtain an accurate option value. To ensure there is less bias in the 

approximated option's continuation values, one can apply a control variate to the 

option's continuation value itself. This method is referred to as the rollback control 

variate and was briefly described in section 4.3.6. This method is discussed in more 

detail now. 
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5.3.1.1 The rollback control variate 

Recall from section 4.3.6 that the controlled continuation value at the ith time step 

on the jth path, e}, is given by 

(5.3.1) 

where 8; is the American option's continuation value at the ith time step along 

the jth path, c~ is the control variate and w is given (4.3.33). Then, with OJ, 
find parameters iii so that OJ = f (Si I iii) where f (Si I iii) is given by (4.3.24). 

OJ optimally fits eJ and is used to determine the EEB of an option in step 4 on 

page 79. 

The EEB that is obtained from OJ is an improvement over that obtained from 

those without the rollback control variate (see Rasmussen (2005) [203], Broadie and 

Glasserman (2004) [49J and Ehrlichman and Henderson (2007) [89]). 

Since the rollback control variate is used to improve option's continuation 

values, it is implemented at each time step. The use of the put-tau rollback control 

variate was discussed by Rasmussen (2005) [203]. Let T be the exercise time of 

a Bermudan option being valued conditional on the option is not being exercised 

before time t. The ~,t rollback is4 

if T < T, 

Otherwise. 
(5.3.2) 

The Bermudan put-tau control variate, c~2, discussed in section 5.2.2 can be used as 

the rollback control variate. Since the value of b2r can be obtained only at t < T
1

, 

it is desirable to combine it with the put-tau control variate. The combined control 
. t _p+b2. vana e, C"r ,IS 

5.3.1.2 So-dispersion technique 

if T < TI < T, 

if TI < T < T, 

if T = T. 
(5.3.3) 

Another technique that can be used to improve an estimation of the option's EEB 

is the So-dispersion technique proposed by Rasmussen (2005) [203]. The aim of the 

method is to increase the number of in-the-money paths in the early stage of an 

4The subscript t means that this is the value of a control variate at time t. 
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option's life, resulting in a smoother option's EEB. The method samples So from 

an initial distribution rather than a single staring point. In particular, it samples 

from So at the fictitious time -t;t < O. Instead of generating a sample path from 

time t = 0, this method generates a sample path from time -td < O. 

In other words, an initial asset value So will be shifted away from the origin 

(toward -t;t) and this will result in more sample paths closer to the EEB in the 

early part of an option's life. This method can be done because the option's EEB 

is independent of an initial asset value So. 
Let Td be the fictitious initial time, the new initial asset value sg is given by 

(5.3.4) 

where f'" N(O, 1). Throughout this chapter Td is set to 0.5.5 

5.3.1.3 Choices for basis functions 

It is important to describe basis functions that will be used to approximate contin­

uation values in (4.3.24). Two types of basis functions are considered. They are as 

follows. 

Orthogonal polynomials 

A system of polynomials {7fn(x)} with degree n is orthogonal on [a, b] if it satisfies 

an orthogonality relation 

(5.3.5) 

where w(x) is a weighting function, 8mn is the Kronecker delta and en is a normal­

isation constant. There are several orthogonal polynomials to choose from such as 

Hermite, Legendre, Laguerre, et cetera. In this thesis, Leguerre basis function will be 

used. These have the following characteristics (Abramowitz and Stegun (1965) [1]). 

a I b w(x) en Recurrence relationship 

01 00 eX 1 (n + l)7fn+1(x) = (2n + 1 - x)'l/Jn(x) - n'I/Jn-l(X) 

Table 5.2. Laguerre polynomial characteristics 

Since 7fn(x) '" xn to leading order, when an asset value is large, says x = 100, 

5This value of rJ was suggested by Rasmussen (2005) [203]. 
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'ljJn(x) rv lOon. Suppose one uses n = 12, 'ljJn(x) will be very large. Suppose that 

the continuation value is ",10. It is clear that using a basis function with ",10012 

to fit a curve with a much smaller value of rv 10 is likely to fail. To work around 

this problem, one can scale down the values of the basis functions. Instead of using 

x, one uses z = xSox where X and So are the strike price and initial asset value 

respectively. Then a variable z is much smaller and the fit will be more stable. 

B-splines basis functions 

B-splines are normally used for curve fitting purposes; for example, in approximating 

the term structure of interest rates (see James and Webber (2009) [137]). 

A spline of order K is defined as a piecewise polynomial function that is 

K - 1 times differentiable everywhere. A K-order spline is defined on an interval 

[80 , 8n ], with knot points (where adjacent polynomials meet) 80 < 81 < ... < 8n . 

In this chapter, the cubic B-spline is used. There are only four values of 

cubic B-splines that are non-zero for every value of x. For cubic splines, set K = 3 

spline and define additional six knot points, L3 < L2 < 8_ 1 < 80 and 8n < 8n+l < 
8n+2 < 8n+3. Then write 

(5.3.6) 

for i = -3, ... ,n-1. 'ljJf(x) is non-zero on the interval [8i ,8i +4J. For instance, if 

x E (15k , b"k+d, 'ljJf(x) is non-zero for i = k-3, k-2, k-l and k. Note that since 'ljJf(s) 

is non-zero on the interval [b"i' b"i+4] , one needs at least four B-spline basis functions. 

Figure 5.2 shows a plot of a B-spline defined by knot points {O, 2, 4, 8, 16}. One can 

see that the B-spline is non-zero only in a range [8i , 8i+4] = [0,16]. 

'ljJf estimates coefficients, ai, i = -3, ... ,n - 1. For x E [80 , b"n], one has 

n-1 

f(x) = L ai'ljJf(x). (5.3.7) 
i=-3 

5.3.2 Second phase: Computing the option value 

The first phase algorithm gives a set {§E}._ ' which is the estimated option's 
,-l, ... ,N-l 

EEB. The second phase uses the estimated early exercise boundary to value the 

option with the Bermudan (or a combination of Bermudan) pricing control variate 

as described in section 5.2.2. 
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Cubic spline values 
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Figure 5.2. A B-spline defined by a set of knot points {a, 2, 4, 8, 16} 

The second phase simulates another set of independent sample paths {Sj } ._ 
)-I, ... ,M2 ' 

where A12 is not restricted to be equal to MI. On the jth path, the option value 
with the pricing control variate is 

(5.3.8) 

where w is given by (4.3.33) and Cj is the value the pricing control variate on the 

jth path. and the option value is computed as the average 

(5.3.9) 

As discussed in section 4.3.6, one can use more than one control variate. Write ~ . 
T,) 

for the value of c!;. on the jth path. Suppose one combines the put-tau ~. with 
, T)' 

b2 ' the Bermudan put-tau control variate, CT,j' (5.3.8) becomes 

(5.3.10) 

where wP and wb2 are elements of w E ]R2 which is given by (4.3.39). The option 

value is found by 

- "v<:v = - "v)' - wP 
-" ~. - wb2 

_ """ cb2 . 
1 M2 1 M2 (1 M2) (1 M2 ) 

M L-) M L- M L- T,) M ~ T,) • 
2 j=1 2 j=1 2 j=1 2 j=1 

(5.3.11) 
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5.4 Approximate American put options using Richard­

son extrapolation 

This section illustrates the use of Monte Carlo values for Bermudan put options to 

estimate values of an American put option by using Richardson extrapolation, as 

suggested by Geske and Johnson (1984) [104]. The use of Richardson extrapolation 

in American option pricing is done in the context of lattice methods (Broadie and 

Detemple (1996) [48]). The use of extrapolation to estimate American option values 

from simulation techniques was suggested by Roger (2002) [216]. 

A method that can be viewed as a more sophisticated version of an extrap­

olation method is the multilevel Monte Carlo method of Giles (2008) [106]. The 

method generalises the idea of Kebaier (1990) [152], which used two levels of time 

step, to multiple levels using time steps in a geometric series. The main idea of a 

method is to achieve a desired accuracy with a smaller number of time steps, reduc­

ing the simulation variance by using a calculation with larger time steps. Results 

in Giles (2008) [106] suggest that the method can significantly reduce computational 

costs. 
Next, the standard two-point Richardson extrapolation is discussed first and 

then the three-point scheme suggested by Geske and Johnson (1984) [104] is ex­

plored. 

5.4.1 Two-point scheme 

Write y for a time interval. Suppose a function v(y) is known and satisfies 

(5.4.1) 

where kl is assumed to be known, v (0) is the quantity one wants to compute, and 

o (yk2) denotes a sum of terms of order k2 and higher. This is one equation with 

two unknowns; v (0) and a. 
To solve for these unknowns, write another equation with a different step 

size qy: 
v (qy) = v (0) + a (qy)kl + 0 (yk2) , 

where q > 1. Substitute a and solving for v(O) yields 

Using values of v (y) and v (qy), one can construct an estimate for v(O). 
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5.4.2 Three-point scheme 

Geske and Johnson (1984) [104] expressed the value of American options as an in­

finite series of multivariate normal distributions and used Richardson extrapolation 

to estimate the value of American options. This method can also be used to ap­

proximate American put values by extrapolating Bermudan put values from Monte 

Carlo simulation. 

Write vN for the value of Bermudan put with N exercise dates. The objective 

is to compute the value of the American put, voo
• Let y < 1 be the time interval 

between each exercisable date, so that y = ~ where T is the option's time to 

maturity. Write v(y) for vN so that V
OO == v(O). Suppose 

(5.4.4) 

for some constants 0:1 and 0:2, where k1 < k2 < k3· Then for q1 < q2, one has 

v (q1Y) = v (0) + 0:1 (q1y)kl + 0:2 (q1y)k2 + 0 (y ka ) , 

v (q2Y) = v (0) + 0:1 (q2y)kl + 0:2 (q2y)k2 + 0 (yka) . 

By substituting 0:1 and 0:2 and solving for v(O), one obtains 

where 

C1 - q;2 _ q;l + q~l _ q~2, 

C2 = l2 -ll 1 1 , 

C3 - q;2 (q~l _ 1) _ q~l (q~2 _ 1 ) + q~2 _ q~l . 

(5.4.5) 

(5.4.6) 

(5.4.7) 

(5.4.8) 

(5.4.9) 

(5.4.10) 

To illustrate this, assume N = 64 and T = 1. Write v1/y = v(y) for a Bermudan 

put option with l/y exercise dates. In this case, v64 = v(y). The next step is to 

determine step sizes qlY and q2Y· One can set these step sizes to be Nand N 
2 4 

respectively. That is, q1 = 2 and q2 = 4. This corresponds to using a Bermudan 

put with v32 , and v16 , exercise dates respectively. 

To obtain k1 and k2, Geske and Johnson (1984) [104] used the Taylor series 

expansion on v(O) and considering only terms up to second order to obtain k1 = 1 

and k2 = 2.6 

6The numerical experiment also shows that the rate of convergence to American option values 
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Hence, one has the path-wise three-point approximation of American put 
value 

(5.4.11) 

Write vN for a Monte Carlo value of the Bermudan put vN • The three Bermudan 

values Vfl4, v32 and v 16 can be computed simultaneously. This can be done with the 

slice-based simulation where option values are stored in an array at each time step 

ti· Write vJ',i for the simulated Bermudan option value with N exercise dates at 

the ith time step on the jth path. The slice-based simulation can be viewed as 

~N,O 
VI 

..... N,! 
VI 

..... N,N 
VI 

vN,O .....N,l ..... N,N 
2 V2 V2 

(5.4.12) +- +- ... +-

vN,O ..... N,! ..... N,N 
M VM VM 

At each step i, option values vJ',i, j = 1 ... , AI is stored in an array. To compute 

values of vJ'/2 and vJ'/4 on the jth path, one only needs to create and store another 

two arrays and iterate back according to their exercise dates. In particular, write 

x mod y as a remainder from~. For i = N, ... , 1, if i mod ql #- 0, only vI" is 

rolled back. If i mod ql = 0 but i mod q2 #- 0, both vI" and vJ'/2 are rolled back. 
. d' dOll ..... N .....N/2 d .....N/4 If t mod ql = 0 an z mo q2 = ,a vi' Vi ,an Vi are rolled back, et 

cetera. Since it is feasible to compute three Bermudan put values along each path, 

the estimation in (5.4.11) can be done easily. 

5.4.3 Implementing Richardson extrapolation with Monte Carlo 
and control variates 

Write if?4 v32 and v~6 as the jth path Bermudan put option values with 64 32 J ' J J , , 

and 16 exercise dates. One can implement (5.4.11) with control variates. Three 

possibilities are considered. They are described now. 

5.4.3.1 Pricing only control variate 

First write 

from lattice method is uniform at rate'" 1. 
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where C
X

, cY , and CZ are control variates. The value of the American put is 

(5.4.16) 

This is a standard pricing control variate in which control variates are applied to each 

Bermudan put option value, :JJ64, v32 , and v16 • This is not computationally expensive 

since Bermudan option values with different exercise dates can be computed using 

the same sample paths. 

5.4.3.2 v(O) only control variate 

This type of control variate does not apply to individual Bermudan put option values 

(:JJ64, v32 , and v16 ). Instead it uses fjl, l = 64,32 and 16 as control variates for the 

estimated American put option value v(O). Define v(O) only control variate c~O,1 
, J I 

on the jth path to be 
M 

vO,1 _ d 1 "" d 
cj - Vj - fl,f L...J Vj' (5.4.17) 

j=1 

for l = 16,32 and 64. The value of extrapolated American put is 

(5.4.18) 

Note that the sum does not have to contain all three terms. In fact, one should 

not include too many terms since this will introduce multicollinearity among the 

controls. 

5.4.3.3 Both pricing and v(O) control 

Combining (5.4.16) and (5.4.18) one has 

~. (0) - .-.cv,64 + ~ (~V,64 _ itV ,32) _ ~ (itV ,32 _ itV ,16) _ "" I vO,1 
vJ - Vj 3 vJ J 3 J J. L...J W cj (5.4.19) 

1=16,32,64 

This is called both pricing and v(O) control, where one controls both individual 

Bermudan put options and an extrapolated value of American put options. 

5.5 Numerical results 

This section applies the Bermudan put-tau control variate method to value single­

asset Bermudan put options with 64 exercise opportunities. The option pays (X - Sr) + , 
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where X is a strike price and Sr is a stock price at time T, if exercised at time T. 

The option's volatility is (1 and the risk-free interest rate is r. Option expires at 

time T. Parameter values are So = 100, r = 0.05, (1 = 0.2 and T = 1. 

5.5.1 First phase results 

In this section, the proposed Bermudan put-tau option control variate is imple­

mented to Bermudan put option's continuation values (rollback control variate). 

The Bermudan put option has N = 64 exercise dates. As discussed in section 5.3.1, 

it is desirable to combine the Bermudan put-tau control variate with the put-tau 

control variate. A combination of the two control variates, c?r+b2, is implemented 

and results are compared with the put-tau control variate, c?r. 
To measure the accuracy of the estimated EEB, RMSE between it and a 

benchmark EEB, found by a lattice method, is computed. Write S{ for the Monte 

Carlo EEB at time ti and SiE for the EEB computed from a lattice with N = 
1,228,800 time steps. The RMSE is computed as 

RMSE= 
N (SfJ _ SfJ)2 L t I 

i=l N ' 
(5.5.1) 

where N is the number of exercise dates. 

I I 

12,500 
I 

50,000 250,000 A1 1,000,000 
CVs c?r c?r+b2 c?r c?r+o:.'. c?r c?r+b2 c?r c?r+b2 

RMSEs 1-64 0.203 0.187 0.110 0.097 0.078 0.077 0.084 0.080 
X=90 1-32 0.262 0.244 0.134 0.095 0.072 0.072 0.072 0.077 

1-16 0.339 0.292 0.174 0.090 0.065 0.069 0.049 0.055 
1-8 0.351 0.368 0.195 0.101 0.076 0.080 0.062 0.056 

RMSEs 1-64 0.164 0.127 0.107 0.127 0.110 0.112 0.120 0.124 
X= 100 1-32 0.186 0.124 0.116 0.112 0.105 0.085 0.086 0.101 

1-16 0.201 0.087 0.108 0.075 0.083 0.069 0.081 0.096 
1-8 0.220 0.085 0.091 0.059 0.064 0.056 0.054 0.027 

RMSEs 1-64 0.208 0.182 0.147 0.149 0.165 0.153 0.159 0.155 
X = 110 1-32 0.237 0.133 0.110 0.116 0.153 0.125 0.143 0.127 

1-16 0.173 0.161 0.139 0.136 0.203 0.123 0.179 0.178 
1-8 0.141 0.055 0.082 0.060 0.173 0.054 0.112 0.200 

I 

Table 5.3. RMSEs comparison betwee~2 the put-tau, c;'f., and a combination of the 
put-tau and the Bermudan put-tau, c?r+ ,rollback method 
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Table 5.3 reports RSMEs of the Bermudan option's early exercise boundary 

with different strike prices, X, and sample paths, AI. The method uses 12 B-spline 

basis functions. The control variate methods are the put-tau, c?r, rollback and the 

Bermudan put-tau rollback combined with the put-tau method, c?r+b2 • The 8
0

-

dispersion method is also implemented to reduce noise of an early segment of the 

EEB (Rasmussen (2005) [203]). Table 5.3 shows four sets of RMSEs. Each set 

measures RMSEs from different time steps. The first set is computed from all 64 

exercise dates. The second set is computed from 1 - 32 exercise dates, the third is 

from 1 - 16 exercise dates and the fourth is from 1 - 8 exercise dates only. 

In table 5.3, cases where <?r+b2 rollback control variate yields smaller RMSEs 

than those computed from <?r rollback control variate are highlighted. One can see 

that RMSEs from <?r+
b2 

control variate are mostly less than those from <fr control 

variate. This seems to be consistent across all sets of the EEB. The smaller RMSEs 

implies that the c?r+b2 approximates the option's EEB more accurately than the <fr 
does. Also, RMSEs decrease as sample paths Al increases. Hence, Al must not be 

too small, otherwise the EEB will not be estimated accurately. 

5.5.2 Second phase results 

In this section, Bermudan put-tau control variates are applied to the Bermudan put 

option value. To measure efficiency gains over the plain LSLS method, a variance 
reduction factor, e, in equation (3.3.2) is computed. 

Section 5.5.2.1 presents Bermudan put values computed from Monte Carlo 

with the EEB computed from a lattice method. Then Bermudan put values from 

the two-phase method will be presented in section 5.5.2.2. 

5.5.2.1 Control variate effectiveness with the lattice EEB 

In this section, Bermudan put option values are computed based on the EEB esti­

mated from a lattice method. The purpose is to assess the effectiveness of control 

variate methods so that one is certain that option values are not affected by noises 

from the estimated EEB. In this case, one can view Bermudan puts as barrier options 

whose barrier is the lattice EEB. 

The control variates are Bermudan put-tau and its variants that are proposed 

and described in section 5.2.1 and 5.2.2. In addition, the put-tau control variate, 

<fr, and the stock-tau control variate, c:, are used. Let T be the exercise time of the 
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Bermudan put being valued. The stock-tau control variate is defined as 

if'T < T, 
Otherwise. 

(5.5.2) 

All control variates used are summarised in table 5.4. The benchmark EEB for a 

Control variates Equations 
r!;. put-tau (4.3.44) 
c8 

'T stock-tau (5.5.2) 
c¥ Bermudan-terminal (5.2.12) 
c~:& Bermudan put-tau (5.2.13) 
Cb2,pl 

'T Tl plain Bermudan Tl (5.2.14) 
c~:&T Bermudan Tl (5.2.15) 
,b:.l,e 

C'T early Bermudan (5.2.18) 

Table 5.4. Summary of control variates used in table 5.5 

Bermudan put with 64 exercise dates, SE, is computed by a lattice method with 

1, 228, 800 time steps. A number of sample paths At = 106• Results are reported in 

table 5.5. It reports Bermudan put option values v64
, standard errors, computational 

time in seconds, and efficiency gains. Standard errors are reported in round brackets. 

Computational times are reported in square brackets and gains are shown in bold. 

Panel (a) of table 5.5 reports results from using variants of Bermudan put­

tau control variates described in section 5.2.1 and 5.2.2. It shows the correlation p 

between the single Bermudan control variate and the Bermudan put value. 

Panel (b) of table 5.5 reports results from using these control variates com­

bined with the put-tau control variate, except the second column where the single 

put-tau control variate is shown. It also shows the correlation between these con­

trol variates with the put-tau control variate. Panel (b) also reports values of R2 

from equation (4.3.40) computed from 64-exercise dates Bermudan put values and 

a combination of control variates. 

Amongst single control variate, the European put-tau control variate achieves 

the highest variance reductions with the highest correlation of 0.999 (comparing 

0.999 with values p with v64 from panel (a)) and an efficiency gain of 505. The second 

best is the Bermudan put-tau control variate with a slightly smaller correlation of 

0.98 and much smaller variance reductions of 21. This is because the Bermudan 

option control variate can only be exercised at time T2 = T and Tl = T /2. Hence, 

when T = Tl, the option holder will receive only a payoff (X - ST1)+ instead of 
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CV Plain CS 
'T c b2 

'T c b2 
T c b2 

'TT 
cb2,Pi 
'Tn 

c~:.l,e 

p with v04 -0.77 0.98 0.84 0.82 0.89 0.45 

V54 6.0835 6.0872 6.0819 6.0822 6.0795 6.0801 6.0783 

(se) (0.0071) (0.0046) (0.0014) (0.0039) (0.0041) (0.0032) (0.0063) 

[tJ [67J [71J [87J [69J [88J [86J [88J 
e 1.0 2.3 21 3.2 2.3 3.8 0.96 

Panel (a): Single control variate 

<!r + c~2 
i 

<!r + c~ I ~ + b2 ' ~ +cb:l,pl 
CV <!r <!r + c~ <!r + c~:l,e 'T c'TT 'T 'TT 

R2 - 0.5977 0.9983 0.6883 0.9990 0.7954 0.9992 

P with ~ 0.999 -0.77 0.98 0.83 0.80 0.89 0.49 

Vb4 6.08114 6.08132 6.08107 6.08136 6.08137 6.08165 6.08121 

(se) (0.00030) (0.00029) (0.00029) (0.00030) (0.00023 (0.00030) (0.00020) 

[t) [74) [78) [94) [76) [95) [93) [95) 

e 505 506 421 494 694 406 872 , 

Panel (b): Combinations control variates with ~ (except the second column) 

Table 5.5. Bermudan put values and variance reduction gains from various kinds 
of Bermudan control variates by using Lattice boundary 

an European put option (as in the put-tau case) which is more correlated to the 

option being valued. Except for the early Bermudan control variate that produces an 

efficient gain of less than 1, other Bermudan-based control variates achieve marginal 

efficient gains of ",2-3. 
When combining the put-tau control variate with the Bermudan-style control 

variate, additional efficient gains are substantially improved. In particular, amongst 

all combinations one can see that a combination of the early Bermudan control 

variate with the put-tau control variate yields the highest efficiency gain of 872 and 

the highest R2 of 0.999. By comparing with the single put-tau, even though the 

computational time is increased by ",30% (from 74 to 95 seconds), the standard error 

is decreased by ",33% (from 0.0003 to 0.0002) and the efficiency gain is increased 

by ",72% (from 505 to 872). The use of the Bermudan Tl control variate combined 

with the put-tau control also achieves greater efficiency gains of 694. 

Even though other combinations may achieve a high R2, their efficiency gains 

reduce (relative to efficiency gains from the single put-tau of 505). This is because 

the correlation between the two controls are high. In other words, adding one 

more control will not contribute much in these cases. Hence, one would expect a 

combination with the highest R2 and the lowest correlation between the two controls 
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to be most effective. This is confirmed by the highest gain of 872 achieved by using 

the combination of the early Bermudan and the put-tau control variates. One can see 

that this combination yields the highest R2 of 0.9992 with the lowest correlation of 

0.49. By comparing this combination with the combination between the Bermudan 

Tl and the put-tau control variate, c~ + c?r, one can see that even though the 

c~ + c?r combination yields a high R2 of 0.9990, a gain is 694 which is ",20% less 

that a gain from c~2,e + c?r. This is because a correlation between the Bermudan 

Tl and the put-tau control variates of 0.80 is much higher than that between the 

early Bermudan and the put-tau control variates of 0.49. The correlation between 

the early Bermudan and the put-tau control variates is the lowest among other 

combinations because the cash flow at time Tl has been removed unlike other types 

of Bermudan put control variates. 

5.5.2.2 Full two-phase results 

A full two-phase method is now implemented to value Bermudan put option with 

64 exercise dates. Numbers of sample paths for the first and the second phase, 

Ml and M2, are varied. The Bermudan put-tau is used with the put-tau as the 

rollback control variate. For the pricing control variate, the put-tau control variate 

is combined with the early Bermudan control variate. Results are compared with 

the single put-tau control variate. Results include option values, standard errors, 

computational time in seconds, biases computed by equation (3.3.1) and efficiency 

gains computed by equation (3.3.2). Standard errors are reported in round brackets. 

Computational times are reported in square brackets. Biases are reported in curly 

brackets and efficiency gains are reported in bold. The efficiency gains are computed 

relatively to the plain LSLS method with a total number of sample paths Al = All. 

Tables 5.6 to 5.8 report the results of the two-phase method with different 

strikes, X. All results are obtained by using 12 B-spline basis functions. The number 

of sample paths used to estimate the EEB, All, and the number of sample paths 

used to value options, M2, are varied from 2500 to 106 • The So-dispersion method 

is also implemented in the first phase. The single put-tau and the combination of 

the put-tau and the early Bermudan control variates are implemented at the pricing 

stage. The total computational times are the sum of the time taken from the first 

phase, tMp and from the second phase, tM2' 

Tables 5.6 to 5.8 suggest that M2 has an impact on the standard errors while 

11,[1 has an impact on bias. When the value of 1111 is small, A11 = 2,500 say, there are 

large biases in option values when Al2 :2: 50,000. This is because the option's EEB 

is computed with a small number of sample paths and thus is effected by simulation 
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.... .... 
~ 

X=95 
M2 / [time] 

Ml 2500 12500 50000 250000 1000000 
[time] d;- d;- + c~2,e d;- d;- + ~'2,e d;- d;- + c~2,e d;- e!;. + c~'2,e e!;. d;- + c~'2,e 

[0.26] [0.30] [0.99] [1.2] [3.7] [4.4] [18] [21] [72] [86] 
4.0019 4.0084 4.0054 4.0077 4.0055 4.00645 4.00559 4.00564 4.00584 4.00568 

2500 (0.0045) (0.0031) (0.0027) (0.0014) (0.0010) (0.00069) (0.00046) (0.00031) (0.00023) (0.00016) 
{-1.0} {0.62} {-0.39} {0.88} {-0.96} {-0.02} {-1.9} {-2.6} {-2.7} {-5.0} 

[13] 147 322 664 1358 2140 4441 5429 10496 7959 14833 
4.0024 4.0072 4.0085 4.0050 4.0070 4.00615 4.00645 4.00608 4.00619 4.00639 

12500 (0.0045) (0.0030) (0.0021) (0.0014) (0.0010) (0.00068) (0.00046) (0.00031) (0.00023) (0.00015) 
{-0.90} {0.24} {1.0} {-1.1} {0.54} {-0.45} {-0.03} {-1.2} {-1.2} {-0.47} 

[65] 31 68 142 318 516 1150 2061 4333 5041 10005 
4.0045 4.0035 4.0085 4.0070 4.0075 4.00624 4.00588 4.00686 4.00610 4.00617 

50000 (0.0047) (0.0032) (0.0020) (0.0014) (0.0010) (0.00069) (0.00046) (0.00031) (0.00023) (0.00015) 
{-0.4} {-0.92} {1.0} {0.38} {1.0} {-0.32} {-1.3} {1.3} {-l.6} {-1.9} 

[261] 7 16 37 83 134 294 610 1323 2062 4352 
4.0045 4.0059 4.0087 4.0069 4.0067 4.00611 4.00646 4.00672 4.00605 4.00669 

250000 (0.0047) (0.0031) (0.0020) (0.0014) (0.0010) (0.00069) (0.00046) (0.00031) (0.00023) (0.00015) 
{-0.42} {-0.I8} {l.1} {0.31} {0.24} {-0.51} {O.OI} {0.83} {-l.8} {1.5} 

[1301] 1 3 8 16 28 60 130 286 498 1089 

4.0081 4.0060 4.0063 4.0074 4.0062 4.00731 4.00655 4.00702 4.00609 4.00647 
1000000 (0.0046) (0.0031) (0.0020) (0.0014) (0.0010) (0.00069) (0.00046) (0.00031) (0.00023) (0.00016) 

{0.35} {-0.14} {-0.08} {0.67} {-0.30} {l.2} {0.19} {1.8} {-l.6} {0.05} 

[5210] 2 4 9 20 35 77 162 360 629 1356 

Table 5.6. Two-phase method to value Bermudan put options. Put+Bermudan tau roll back with So-dispersion. Pricing 
control variates are put-tau and put-tau + Bermudan early. Benchmark price is 4.00646. 



...... 
I-' 
01 

Ml 
[time1 

2500 

(14) 

12500 

(71) 

50000 

[286) 

250000 

[1436) 

1000000 

[5742) 

X= 100 
M2 / [time) 

2500 12500 50000 250000 1000000 
d;- d;- + c~~,e d;- d;- + c~~,e d;- d;- + c~~,e d;- d;- + c{".l,e d:- d;- + c!:-".l,e 

[0.27] [0.33) [1.02) [1.3) [3.8) [4.9) (19) (24) (74) (96) 
6.0886 6.0787 6.0830 6.08114 6.0808 6.08115 6.07900 6.08048 6.07967 6.07999 

(0.0061) (0.0040) (0.0028) (0.0019) (0.0014) (0.00092) (0.00061) (0.00041) (0.00031) (0.00021) 
{1.2} {-0.62} {0.65} {-0.03} {-0.27} {-0.03} {-3.6} {-1.7} {-4.9} {-5.8} 
157 363 687 1494 2249 4682 6417 12201 9600 17066 

6.0843 6.0806 6.0768 6.0844 6.0801 6.08264 6.08192 6.08095 6.08115 6.08113 
(0.0061) (0.0040) (0.0030) (0.0018) (0.0014) (0.00091) (0.00060) (0.00041) (0.00030) (0.00020) 
{0.51} {-0.15} {-1.6} {1.8} {-0.77} {1.6} {1.2} {-0.56} {-0.1O} {-0.25} 

32 75 155 342 562 1227 2418 5070 5994 11641 
6.0706 6.0859 6.0787 6.0787 6.0802 6.08095 6.08018 6.08107 6.08079 6.08088 

(0.0063) (0.0040) (0.0027) (0.0018) (0.0014) (0.00091) (0.00061) (0.00040) (0.00030) (0.00020) 
{-1.7} {1.2} {-0.91} {-1.3} {-0.70} {-0.25} {-1.7} {-0.28} {-1.9} {-1.5} 

7 19 39 83 145 321 708 1563 2411 5093 
6.0879 6.0802 6.0817 6.0837 6.0799 6.08097 6.08085 6.08147 6.08066 6.08093 

(0.0060) (0.0040) (0.0027) (0.0018) (0.0014) (0.00090) (0.00061) (0.00041) (0.00030) (0.00020) 
{1.1} {-0.25} {0.19} {1.4} {-1.0} {-0.23} {-0.54} {0.71} {-1.7} {-1.3} 

2 4 8 17 29 66 148 327 577 1266 
6.0853 6.0828 6.0817 6.0812 6.0798 6.08024 6.08113 6.08171 6.08171 6.08087 

(0.0062) (0.0041) (0.0027) (0.0018) (0.0014) (0.00091) (0.00061) (0.00041) (0.00030) (0.00020) 
{0.66} {0.39} {0.19} {0.01} {-1.0} {-1.0} {-0.08} {1.3} {1.8} {-1.5} 

0.4 1 2 4 7 16 37 84 149 331 

Table 5.7. Two-phase method to value Bermudan put options. X = 100. Benchmark value is 6.08118. 



....... 

....... 
0) 

Ml 
[time] 

2500 

[16] 

12500 

[79] 

50000 

[316] 

250000 

[1579] 

1000000 

[6301] 

x = 105 
M2 / [time] 

2500 12500 50000 250000 1000000 
d;- d;- + c~~,e d;- d;- + c~~,e d;- d;- + ~~,e d;- d;- + ~~,e d;- d;- + ~~,e 

[0.30] [0.36] [1.08] [1.5] [4.0] [5.6] [20] [28] [79] [111] 
8.7322 8.7255 8.7301 8.7258 8.7243 8.7298 8.72935 8.72780 8.72807 8.72762 

(0.0075) (0.0051) (0.0034) (0.0023) (0.0017) (0.0012) (0.00075) (0.00052) (0.00038) (0.00026) 
{0.54} {-0.51} {0.58} {-1.0} {-2.2} {1.5} {1.6} {-0.59} {-0.1O} {-1.9} 

168 364 704 1432 2522 5022 6763 11697 10143 16300 
8.7420 8.7259 8.7299 8.7263 8.7271 8.7267 8.72583 8.72750 8.72668 8.72669 

(0.0076) (0.0050) (0.0034) (0.0023) (0.0017) (0.0012) (0.00076) (0.00052) (0.00038) (0.00026) 
{1.8} {-0.44} {0.52} {-0.78} {-0.60} {-1.2} {-3.0} {-1.2} {-3.8} {-5.5} 

33 75 147 304 594 1244 2394 4732 6016 10654 
8.7294 8.7271 8.7279 8.7271 8.7274 8.7265 8.72711 8.72765 8.72826 8.72777 

(0.0076) (0.0053) (0.0034) (0.0023) (0.0017) (0.0012) (0.00076) (0.00052) (0.00038) (0.00026) 
{0.17} {-0.19} {-0.06} {-0.44} {-0.41 } {-1.4} {-1.3} {-0.88} {0.39} {-1.3} 

8 17 38 79 156 334 709 1479 2419 4769 
8.7329 8.7192 8.7282 8.7305 8.7267 8.7297 8.72721 8.72799 8.72782 8.72784 

(0.0075) (0.0053) (0.0034) (0.0023) (0.0017) (0.0018) (0.00076) (0.00052) (0.00038) (0.00026) 
{0.63} {-1.7} {0.02} {1.0} {-0.83} {1.4} {-1.2} {-0.2} {-0.8} {-1.0} 

2 3 7 15 31 66 149 316 575 1208 
8.7304 8.7244 8.7240 8.7310 8.7264 8.7277 8.72691 8.72772 8.72797 8.72798 

(0.0077) (0.0052) (0.0034) (0.0023) (0.0017) (0.0012) (0.00076) (0.00052) (0.00038) (0.00026) 
{0.29} {-0.71} {-1.2} {1.2} {-1.0} {-0.32} {-1.6} {-0.75} {-0.36} {-0.50} 

0.4 1 2 4 8 17 37 80 149 316 

Table 5.8. Tw~phase method to value Bermudan put options. Benchmark value is 8.72811 



noise. Note that when .M2 < 50,000, the bias cannot be seen because of the higher 

standard errors in option values. 
When comparing the performance between the single put-tau control variates 

and the combination of the put-tau and the early Bermudan control variates, one 

sees that the combination of put-tau and Bermudan early pricing control variate 

yields much greater variance reductions across all values of Afl , Pvf2, and X. More 

specifically, gains from the combination of control variates are twice the size of 

those from the single put-tau control variate. This shows that combination of the 

Bermudan early with the put-tau control variate is more effective than the single 

put-tau control variate. 
The variance reductions obtained from the combination of the put-tau and 

the early Bermudan control variates are very substantial. For instance, consider a 

pair (All, A12) = (12,500,250,000) in table 5.6. It takes approximately 86 seconds 

to compute option values with these All and A12 to achieve a gain of 4,000 over the 

plain LSLS method. To obtain the same level of standard errors with one-phase 

method with the same All, it will take ",1,300 seconds. 

5.5.2.3 Extrapolated American put options 

Tables 5.9 and 5.10 report extrapolated American put options using the method 

described in section 5.4 with different strikes, X. The simulation is the one phase 

method where All = Pvf2 = AI. A number of sample paths, AI, is 50,000. 

Table 5.9 shows extrapolated American put values using the combination 

of the early Bermudan and the put-tau pricing controls. This is the pricing only 

control variate in equation (5.4.16) in which control variates are applied only to 

individual Bermudan put values used for extrapolating. Table 5.10 adds the v(O) 

control to the combination of control variates used in table 5.9. Individual Bermudan 

put values are computed using the put-tau combined with the Bermudan put-tau 

rollback method. This is given by (5.3.3). 
Tables 5.9 and 5.10 show Bermudan put option values with different exercise 

dates; N = 64,32 and 16. Benchmark values, v, are computed from a lattice 

method with 204,800 time steps. Monte Carlo values, V, are computed with time 

steps corresponding to their exercise dates. Tables 5.9 and 5.10 also report option 

values with infinite exercise dates computed from both lattice method and Monte 

Carlo simulation. These values correspond to American put option values that 

are extrapolated from Bermudan put values with 64,32 and 16 exercise dates as 

described in section 5.4. Standard errors (se), computational times [t] and biases 

{b} (with respect to values from a lattice method) are reported. 
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N 00 64 32 16 
Lattice values 4.01309 4.00646 4.00000 3.98744 

Me values v 4.01175 4.00564 3.99949 3.98703 
X=95 (se) (0.00087) (0.00070) (0.00071) (0.00076) 
[t] = 116 {b} {-1.5} {-1.2} {-0.71} {-0.53} 
Lattice values 6.09037 6.08118 6.07214 6.05442 

Me values v 6.0915 6.08112 6.07149 6.05448 
X = 100 (se) (0.0011) (0.00091) (0.00094) (0.00098) 
[t] = 165 {b} {1.0} {-0.06} {-0.70} {0.06} 
Lattice values 8.74017 8.72811 8.71616 8.69254 

Me values v 8.7392 8.7275 8.7158 8.6927 
X = 105 (se) (0.0014) (0.0012) (0.0012) (0.0012) 
[t] = 212 {b} {-0.65} {-0.56} {-0.32} {0.15} 

Table 5.9. Extrapolated American put values with pricing control variate only 

N 00 64 32 16 
Lattice values 4.01309 4.00646 4.00000 3.98744 

Me values 
~ 

4.01293 v 4.00647 4.00016 3.98801 
X=95 (se) (0.00045) (0.00069) (0.00072) (0.00076) 
[t] = 117 {b} {-0.34} {0.01} {0.22} {0.75} 
Lattice values 6.09037 6.08118 6.07214 6.05442 

Me values 
~ 6.09118 6.08258 6.07391 6.05631 v 

X= 100 (se) (0.00062) (0.00090) (0.00093) (0.00098) 
[t] = 168 {b} {1.3} {1.6} {1.9} {1.9} 
Lattice values 8.74017 8.72811 8.71616 8.69254 

Me values v 8.74028 8.7270 8.7144 8.6916 
X= 105 (se) (0.00077) (0.0012) (0.0012) (0.0012) 
ttl = 216 {b} {0.15} {-1.0} {-1.5} {-0.72} 

Table 5.10. Extrapolated American put values with pricing and v(O) control variate 

118 



Results in tables 5.9 and 5.10 show no evidence of bias in extrapolated Amer­

ican put values. Without the use of v(O) as an additional control variate, extrapo­

lated American puts show slightly higher standard errors than those from individual 

Bermudan puts. 

The standard errors can be further reduced by combining the pricing control 

with the v (0) control. Table 5.10 illustrates this. When adding v (0) control variate, 

the standard errors of extrapolated American put values decrease. Table 5.11 shows 

that the efficiency gains from adding the v(O) control is ...... 3.5 over the method where 
only the pricing control variate is applied. 

Lastly, note that the computational cost mainly comes from the fitting pro­

cedure which is 64 + 32 + 16 = 112 times in this case. This is substantially cheaper 

compared with the plain simulation method where it takes ...... 10,000 time steps for 
Bermudan put values to converge to American put values. 

105 
3.4 

Table 5.11. Efficiency gains from adding v(O) control 

5.6 Conclusion 

This chapter has described a novel control variate method to value Bermudan put 

options. The control variate is the Bermudan put option with two exercise dates. 

In general there exists no explicit solution to evaluate Bermudan puts. However, 

with two exercisable times, one can write an analytical solution for the Bermudan 

put as a compound call option. Different variants for the Bermudan control variate 

are described. 

The method is implemented with a two-phase Monte Carlo simulation in 

which the option's early exercise boundary (EEB) is estimated in the first phase 

and then the second phase uses this EEB to value a Bermudan put option. The 

Bermudan control variate is first applied to the option's continuation values to 

improve the estimation of the early exercise boundary (EEB). The numerical results 

suggest that by implementing the Bermudan control variate together with the put­

tau rollback control variate, errors are significantly smaller relative to those obtained 

from using the put-tau control variate by itself. 

With an accurate EEB, the Bermudan control variate is applied to pric­

ing Bermudan put options. Results in section 5.5 suggest that there is no bias in 
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the Bermudan put values. Also, when combining one particular Bermudan control 

variate, namely, the early Bermudan, with the put-tau control variate, the method 

achieves very substantial efficiency gains. All gains produced from this control vari­

ate combination are greater than those from the put-tau alone, by at least a factor 
of two. 

To approximate the value of the American put option, a three-point Richard­

son extrapolation technique is implemented. The method extrapolates three Bermu­

dan put options with different reset dates. The results show no evidence of bias in 

extrapolated American put values. The American put value can be estimated accu­

rately with much lower computational time relative to valuing a Bermudan option 

with a large value of exercise dates. To further reduce standard errors of the ex­

trapolated values, individual Bermudan put values are applied as control variates. 

These control variates can help the method to run ...... 3 times faster. 
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Chapter 6 

Valuing American Put Options 
using the Sequential Contour 
Monte Carlo Method 

This chapter is concerned with the valuation of American put options by using Monte 

Carlo simulation. The chapter describes a novel simulation method, the sequential 

contour Monte Carlo (SCMC) method, based on hitting times to a set of predefined 

exponential contours, that can be used to value American put options accurately. 

The method generalises the standard LSLS method in such a way that it 

allows one to use a broader family of contours (instead of only vertical contours in 

the LSLS method) to value American options. Instead of iterating backward on a 
fixed time step, one iterates backward on each contour. 

Because the method is based on hitting times to a set of contours, the method 

can provide values of barrier options on each contour that can be used as control 
variates to the American put option. 

The structure of the chapter is as follows. Section 6.1 describes the sequential 

contour Monte Carlo method. The contour construction is described in section 6.2. 

Section 6.3 introduces the control variate method obtained from the SCMC method. 

Numerical results are reported in section 6.4. Section 6.5 concludes. 

6.1 The sequential contour Monte Carlo (SCMC) Method 

Consider a fixed set of exponential contours, f3 (t I a i ), of a form 

(6.1.1) 
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where g is a contour growth rate, i = 1, ... ,N -1, and N is a total number of exercise 

opportunities for an option. Set f3i(t) = f3 (t I Qi). Suppose that f3i l (t) > f3i 2 (t) for 

all t and all il < i2, so that the set of contours forms a decreasing sequence. Write 

Sta for the asset value that follows a geometric Brownian motion process in (1.0.1). 

Suppose that Sta > f3it (to) so that no contour has yet been hit. 

The main idea of the SCMC method is to generate a sequence of hitting times 

to an indexed set of contours and then to apply the LSLS algorithm to compute the 

value of the option. These values of the option are used to estimate the value of an 

American put option by Richardson extrapolation. The LSLS method is generalised 

and will be described in section 6.1.3. Unlike the contour bridge method described 

in chapter 3 where contours are generated while the algorithm proceeds, a set of 

contours in the SCMC method is fixed before the algorithm runs. 

Single hit contour 

It is important to require that the contour in (6.1.1) is single-hit to the option's 

EEB. In other words, a contour intersects the option's EEB at most once. This 

ensures that the option can be exercised only once on each contour. That is, the 

option with N exercise opportunities will require N contours. Since the option's 

EEB has no analytical form, its maximum slope cannot be obtained. Hence, the 

condition in section 3.2.6 cannot be applied in order to ensure that the contour is 

single hit. In this case, to have the single-hit contour, one must choose a steep 

contour. 

Write Si = Sti for the asset value at time ti. The hitting time to the ith contour, 

ri, is defined to be 
ri = inf{t E (0, T] : Si ::; f3i(t)}, (6.1.2) 

where T is the option's time to maturity. The distribution of a hitting time in 

(6.1.2) is known and can be sampled from. The hitting time simulation method is 

described in section 3.2.2. 
It is important to notice the difference between the hitting time, r, in (6.1.2) 

and the exercise time, r*, of the option with early exercise feature, such as Bermudan 

options and American options (see equation (4.1.3) for the definition of r* for an 

American put option). On the jth sample path,.a set rj = {rJ} i=l ..... N represents 

hitting times to the ith contour. However, the optlOn can only be exercised optimally 

once at, rj, on the jth path. In the SCMe method, the optimal exercise time, r*, 
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for a put option becomes 

1'* = inf{1' ~ 0: ST =5 Sf}, (6.1.3) 

where sf is the EEB and l' is given by (6.1.2). 

Before the SCMC method is described, it is important to define what options 

the method is valuing. In particular, the option that is exercised at time 1'* in (6.1.3). 

This is described in the next section. 

6.1.1 Sequential contour (SC) options 

A sequential contour (SC) option is an option whose holder can exercise at any time 

up to maturity T. However, the exercise decision can only be made when the asset 

value lies on one of a predetermined set of exponential contours. Specifically, the 

option can be exercised at time l' if and only if ST = f3i (1') for i = 1, ... , N where 

f3i(1') is given by (6.1.1). 
To see the difference between a SC and a Bermudan option, let /Ji be a set 

of points (x, y) in a two-dimensional plane on the ith contour such that 

SC option: 

Bermudan option: 

/Ji = {(x, y) I y = f3i(x)} , 

/Ji = {(x, y) I x = ti} . 

(6.1.4) 

(6.1.5) 

One can view (6.1.5) as simulating a hitting time to a vertical contour (where ti is 

a fixed time). In particular, let T (t, T) be a set of exercise times of a Bermudan 

option and a SC option. It is defined as follows: 

SC option: 

Bermudan option: 

T (t, T) = {1'i I 1'i is given by (6.1.2) } , 

T (t, T) = {1'
i I 1'i = ti for t ~ ti ~ T} . 

(6.1.6) 

(6.1.7) 

1'i for a standard Bermudan option is essentially a predetermined set of exercise 

dates {tih=l, ... ,N· 
Therefore, one can see that 1'i for a Bermudan option are non-random. On 

the other hand, 1'i for a SC option is a hitting time to the ith contour and is therefore 

random. In other words, one does not know in advance where 1'i will be on the ith 

contour. 
Also write A1'i = 1'i+l - 1'i for time intervals between successive exercise , 

time of a SC option. Since 1'i for a SC option is random, A1'i is also random. In 

fact, A1'i will depend on how the contours are constructed. This will be discussed 

in section 6.2. 
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Figure 6.1 shows exercise opportunities for a Bermudan and a SC option. 

Panel (a) shows exercise opportunities for a Bermudan option. Exercise can be 

made in a predetermined set {ti}i=1, ... ,N.1 Panel (b) shows exercise opportunities 

for a SC option. In this case, exercise can be made in a random set of hitting times 

{rdi=l, ... ,N' Generally, Ari are not equal for i = 1, ... , N. 

Write vg,N and vg,N as time t = 0 values of a Bermudan option and a SC 
option with N exercise dates respectively. Clearly one has 

b,N ...J. vs,N vo -r 0 • (6.1.8) 

The value of a Bermudan put option with N exercise dates is generally not equal to 

the value of a SC option with the same N exercise dates. As N ---. 00, both values 
will converge to the American option value. 

The objective of the SCMC method is to use values of a SC put option to approx­

imate the value of an American put option. The overview of the SCMC method is 
given as follows. 

1. Construct asset value sample paths by generating hitting times to a predeter­
mined set of contours. 

2. Apply the (generalised) LSLS algorithm with control variate methods to obtain 
values of SC options. 

3. Implement Richardson extrapolation on these SC option values to approximate 
the value of an American option. 

The advantage of the SCMC method is that simulated hitting times on each contour 

can be used to value barrier options and these options can be used as control variates 
for a SC option. Steps 1 to 3 will be described in detail next. 

6.1.2 Sequential contour path construction 

Unlike the standard LSLS method where asset values are simulated directly, asset 

values in the SCMC method are determined from simulated hitting times. Write S~ 
J 

for an asset value at the ith contour on the jth path, it is the value of a contour in 

(6.1.1) evaluated at a hitting time rJ. 
Suppose the SC option has N (random) exercise dates. For a path j = 

1, ... , AI, the method simulates a hitting time sequence {rj}. , to a set of 
t=l, ... ,N-l 

INote that D.ti do not necessarily have to be equal. 
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(a) Bermudan option's exercise opportunities, {tih=l, ... ,N· 

~{l , !:J.t
i 

!:J.tN 

:(--~: :( ): ~ ) 

t
1 {l i-1 t

i N-1 tN=T t t 

(b) SO option's exercise opportunities, {Tih=l, ... ,N· 

Figure 6.1. Bermudan and SO option's exercise opportunities 
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contours {,8i(t) L=1, ... ,N-1' so that TJ is a first hitting time of S to ,81 (t), starting 

from Sto = So, and TJ is a first hitting time to,8i (t) starting at Sr;-l = ,8i-1 (Ttl) 
at time Tt 1. At this stage there is no restriction on TJ. In particular, one allows 

TJ > T the maturity date of the SC option. Figure 6.2 illustrates hitting times and 

asset values in the SCMC method. 

So 

t--T~ 

Figure 6.2. Illustration of path construction 

Figure 6.2 shows two simulated paths with three exponential contours. An 

initial asset value is So. Points on the contours represent asset values S~ that are 
. . J 

obtained from simulated values of hitting times 1']. 1'] can be greater than the 

option's maturity T. This is the T~ in figure 6.2. 

Note that the SCMC method uses forward path sampling. It generates sam­

ple paths forward through time. Then it stores an entire set of sample paths, both 

hitting times and asset values, and then iterates backward from contour (3i(t) to 

contour ,8i-1(t), i = N, ... , 1. 

The hitting time path will be described in more detail next. 

6.1.2.1 Generalisation: The ffT path 

In this section the definition of hitting times path and slice is modified so that it 

includes sample points only for times t :5 T, and ends with a sample from time T. 
Let T i , i = 0, ... , N - 1, be a sequence of strictly increasing hitting times as 

defined in (6.1.2), with TO == O. A hitting time path is sample l' = (TO, ... ,TN-1) 
so that for i1 < i2 one has Til < T

i2
• The SCMe method constructs a set of 

paths Tj = (TJ, ... , Tf'-I), j = 1, ... , AI, as described in section 6.1.2. Write 
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f/ = {rj h=l, ... ,M for the complete set of hitting times paths. The ith slice is the 

set {rJh=l, ... ,M' This is a sample of hitting times ri to the contour (3i (t). 
Write rT for the constant hitting time T. Given a path (ro, ... , r N -1), 

suppose that ri =f T for any i and rQ < rT < rQ+l for some Q E {O, ... , N - I}. 

The T-modified path is the sample (ro, ... , rQ, rT, ... ,rT) where there are N - Q 
independent samples from rT. From a set of paths f/ = {rj}j=l, ... ,M' set 

(6.1.9) 

then the T-modified path is a set f/T = 
table 6.1. 

{-i} rj ._ . This is illustrated in 
a-l, ... ,N-l 

N-l 

r path (0, 0.2, 0.3, 0~5, 0.7,0.9) 
T-modified path (0, 9.2,0.3,0.5,0.7,0.9) 

V' 

Q 
Panel (a): Q = N - 1 

N-l 

r path (0, 0.2, 0.5, 0~9, 1.2, 1.5) 
T-modified path (0,0.2,0.5,0.9,1.0,1.0) ------- -...........---Q N-I-Q 

Panel (b): Q < N - 1 

Table 6.1. T-modified path illustration, T = 1 and N = 6 

Table 6.1 shows values of hitting times {rJ}._ on the jth path for 
t-l, ... ,N-l 

different values of Q. Panel (a) illustrates a situation where Q = N -1. In this case, 

by using (6.1.9), the T-modified path is identical to the r path. Panel (b) shows 

the T-modified path where Q < N - 1. On the r path, one can see that Q = 3 and 

rQ < rT < rQ+l (0.9 < 1 < 1.2). By (6.1.9), the T-modified path is obtained. 

6.1.2.2 Simulating ST 

On the r path, one has simulated a set of points (ri, Si) ,i = 1, ... , N - 1. Then 

one needs to simulate a value of an asset value at time to maturity, ST. Because 

rT = T, one can view simulating ST as simulating a hitting time rT to a vertical 

contour. This implies that the Nth contour, (3N (t), is always vertical. The Nth 

contour is defined as follows. 

Definition 5. The Nth contour, (3N, is vertical. It lies from ° to (3N-l(T). 

127 



The value of Q will determine how ST is generated. There are two cases to consider. 

These are: 

Case 1: Q = N - 1 

This is a case shown in panel (a) in table 6.1. When Q = N - 1, it implies that 

ri < T Vi = 1, ... ,N -1. Let tuQ = T - rQ. In this case, ST is sampled conditional 

on SrQ • This can be done by: 

(6.1.10) 

where € '" N(O, 1). 

Case 2: Q < N - 1 

In this case, one truncates the r path at Q, and samples ST I SrQ, SrQ+1. This 

can be approximated by using linear interpolation between a pair (rQ, SrQ) and 

( rQ+l , SrQ+1 ). That is, 

(6.1.11) 

This situation corresponds to panel (b) in table 6.1. Note that (6.1.11) is only an 

approximation. The approximation in (6.1.11) will be used to value exotic American 

options in the next chapter, chapter 7. It will be discussed further in section 7.3.2. 

On the jth path, there are a total of Q + 1 values of asset, {S;}. . When 
t=1, ... ,Q+1 

Q = N -1, a set of asset values is complete; that is there are N values of asset values 

for an option with N exercise dates. When Q < N - 1, a set of asset values is not 

complete. In other words, there are less than N asset values on the jth path. Since 

an option matures at time T, any values that are beyond time T are not needed. 

When valuing a SO put option, a set of contours can be constructed such 

that asset values from the approximation in (6.1.11) will be greater than the op­

tion's strike, X, and thus contributes zero to the option's payoff. Since one uses 

only in-the-money sample paths to approximate option's continuation values, the 

computation in (6.1.11) is not needed for the case of valuing a put option. The 

contour construction will be discussed in section 6.2. 
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6.1.3 The SCMC algorithm: the generalisation of the LSLS algo­

rithm 

The standard LSLS algorithm iterates backwards from time tN to time to on verti­

cal contours, approximating continuation values of a Bermudan option. Recall that 

TT is the constant hitting time T. Define TN == TT and TO == to = O. The SCMC 

method generalises the LSLS method by instead iterating back from stopping time 

TN to stopping time TO to exponential contours. 

Let h; == h (S;) = (X - S;) + be a SC put option payoff with strike X at the ith 

contour on the jth path. The SCMC algorithm proceeds as follows: 

1. Fix a set of contours (3 = {(3i(t)} i=l, ... ,N· Set SJ = So and TJ = O. Construct 

T-modified sample paths !YjT = {fJ, ... , ff} '_ and asset value paths 
J-l, ... ,A1 

Sj = {SJ, ... ,Sf} '_ . Set v]' = hf. 
J-l, ... ,M 

2. At each contour (3i(t), 1 ~ i ~ N - 1, write 8j for the continuation value. 

Write LhJ = TJ+1 - rj. Set 8j = e-rArJV;+1. 
3. Write OJ as an approximated continuation value. Find parameters ai -

{ a~} _ K so that Bj '" OJ = f (S; I ai
), where 

k-l, ... , 

K 

f (S; I ai
) = L a~1Pk (S)) , (6.1.12) 

k=l 

for a chosen set of basis functions {1Pkh=l, ... ,K· Parameters ai can be found 

by 
(6.1.13) 

4. The SC option is exercised if h~ > OJ. On each contour, (3i(t), set §E = 

{Sj I h1 > OJ}. §E is the set of asset values at contour (3i(t) at which the SC 

option is exercised. Then one sets 

(6.1.14) 

Sf is the greatest asset value at the ith contour that the SC option is exercised. 

The option's EEB is the set SE = {Sf} ,i = 1, ... , N. 
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5. The SC put option value along the ith contour is 

S; ~ SiE, 
otherwise. 

(6.1.15) 

If 7J > T, then at each iteration step one constructs S-l only for i ~ Q + 1. 

At time 7°, the SC option value is if] = max (ir EJ!=l e-r'TJv), hO). 

Figure 6.3 illustrates an iteration of the SCMC method. It shows that the method 

works backward along contours. The approximation of continuation values and the 

exercise decision are made on the contour. 

Figure 6.3. Iteration of the SCMC algorithm 

6.1.4 Using SO put options to approximate American put options: 

Richardson extrapolation 

The SCMC algorithm will approximate the value of a SC put option with N exercise 

dates. To obtain the approximated value of an American put option, the three-point 

Richardson extrapolation of Geske and Johnson (1984) [104] is applied to the values 

of a SC option with different exercise opportunities. The method is described in 

section 5.4. The only difference is that in section 5.4, values of a Bermudan put 

option are used. In this chapter, values of a SC option are used. In this case, the 

approximated value of an American put option, v(O), is 

(6.1.16) 
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where iJ64, V-32
, and V-16 are values of a SC option with 64, 32, and 16 exercise 

opportunities respectively (see section 5.4 for the derivation of (6.1.16)). 

6.2 Sequential contour construction 

The shape of contours determines the value of a SC option. A SC option is specified 

by (i) a specification of the set of contours that determine the exercise opportunities 

and (ii) a specification of the payoff at exercise dates. A set of contours is determined 

by a set of pair P = {( ai, gi) } i=I, ... ,N· ai determines the time to value of the ith 

contour, {3i(a), and gi is the contour growth rate and determines a steepness of the 

contour. 

The SCMC method is used to value American options. To facilitate this, 

one chooses a suitable SC option. To value an American put option, the payoff of 

a SC option is a put. To choose a set P appropriately, assume that there are four 

parameters to consider. These are 

1. aD: time 0 value of the first contour. 

2. aN-I: time 0 value of the (N - l)th contour. 

3. gi, i = 1, ... , N - 2: the growth rate of the ith contour. 

4. gN-l: the growth rate of the (N -l)th contour. 

This section starts by first discussing gN -1. 

6.2.1 Choice of gN-l 

For the American put option valuation problem, one chooses (aN -1, gN -1) such 

that 
{3N-l(T) = X. (6.2.1) 

This is because any values of Tf, j = 1, ... , M, that is greater than T will contribute 

zero to a put payoff and hence values computed from the approximation in (6.1.11) 

h N-l 't are not used. To c oose 9 , wn e 

(6.2.2) 

then by using (6,1.1) and (6.2.1), one has 

N-l (X) 1 
9 = In {3N-l(O) T' (6.2.3) 
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Other parameters are described next. 

6.2.2 Choices of a O, aN-I, and gi, i = 1, ... , N - 2 

A set P = {( ai, gi)} i=l, ... ,N can be categorised into four types depending on ai 

and gi. Since a SC option is specified by a set of contours (and a payoff at exercise 

dates), one can view different types of contour as different types of SC options. Four 
types of SC options are summarised in table 6.2. 

SC option g' 
types fixed varied 

a' fixed - 3,4 
varied 1 2 

Table 6.2. Summary of SC option types 

Note that cases 3 and 4 are different ways of varying gi. Each type of SC options is 

discussed are follows. 

Type (1): ai varied and gi fixed (gi = g) 

First, the choice of a l is described. All contours should cross the American put's 

EEB because every sample path can potentially contribute to the exercise decision. 

Thus, ,81(0) = c!r must be less than the EEB. Even though the American put's EEB 

is not known in advance, the perpetual American put EEB, Sf, is known. It is in 

the form: X 

S: = 1 + (12/2r . (6.2.4) 

Because the holder of a perpetual American put can exercise the option anytime up 

to infinite, the EEB is flat and lower than the standard (finite horizon) American 

put. Thus one can set a l = l/S:. 
Now a N - l is discussed. Since gi is fixed, a N

- l should be further away from 

a l so that each contour intersects along the American put's EEB. Choose some 

value for a N - l » a l E JR+ such that ,aN-leO) « ,81(0). The subsequent values ai, 

i = 2, ... , N - 2, are set so that 

where 

. a i - l 

a' - ---:--:­- 1- Aai - 1 ' 

aN - l _ a l 

A= 1 N 1 . aa -N-1 
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Since 9 is fixed in this type, set 9 = g1 = g2 = '" = gN-l in (6.2.3). 

Type (2): a i varied and gi varied 

0.
1 

and aN
-

1 are set as in type (1). However, the growth rate 9 can be varied in 
this case. One chooses gi such that 

(6.2.7) 

where 

(6.2.8) 

Equation (6.2.7) means that t; is the time that the ith contour, j3i, has a value 

X. This level of X is roughly used to approximate where contours intersect the 

American option's EEB. Write tf as the time that the j3i intersects the American 

option's EEB. Clearly, as contours get steeper, ti is closer to tf.2 Even though the 

use of t; is only a rough approximation, it provides a general idea of the location of 

exercise opportunities of the option. Hence, by setting t; as in (6.2.8), one roughly 
spreads exercise opportunities evenly along the American put's EEB. 

For each j3i(t), i = 1, ... , N - 2 and t; = N~l' i = 1, ... , N - 1, gi is set as: 

. (X ) 1 l = In j3i(O) t; , (6.2.9) 

and set gN-l as in (6.2.3). 

Type (3): a i fixed (a i = a) and gi varied: (I) 

First, set a such that j3(O) « Sf, The reason j3(O) should be a low value because if' 

j3(O) is too high, contours will be too shallow and hence there may be not sufficient 
in-the-money paths.3 gi is set as in (6.2.9). 

Type (4): a i fixed (ai = a) and gi varied: (II) 

This type of contour is a variant of type (3). Unlike a type 3 contour where t; is 

given by (6.2.8), one can control a set t* = {tih=1, ... ,N-2 more freely in this case. 

This means one has more freedom in controlling a shape of contours. Also, by being 

able to choose a set t*, one can roughly control the location of SC option's exercise 

opportunities along the time horizon. 

2In particular, for vertical contours (standard LSLS method), t; = tf, 
3In numerical examples, (3(0) = 5 for X '" 100. 
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To do this, set the growth rate on the ith contour, gi, to be a function of 
function, k(i), 

with 

k(i) = kmax - iD.k-, 

D.k - = kmin - k max 

N-1 ' 

where kmin ~ kmax and kmin, kmax E 1R+. k(i) is a decreasing function of i. 
Then the growth rate function, g(k(i», is defined to be: 

(
N _1)k(i) 

g(k(i» = -i - gN-l, 

where gN-l is defined in (6.2.3). 

(6.2.10) 

(6.2.11) 

(6.2.12) 

The value of a set t* = {ti}i=1, ... ,N-2 is determined through parameters kmax 
and kmin. Recall a definition of ti in (6.2.7). The parameter kmax controls the 

value of ti. If kmax is small, then ti will be large which means contours will be 

shifted toward an option's maturity. The parameter k min controls the compactness 

of contours. The smaller the value of kmin is, the more clustered contours are toward 
an option's maturity. An analysis of kmax and kmin is in section 6.4.4 

Plots of examples of four different types of contour are shown in figure 6.4. 

Figure 6.4 shows the EEBs of an American put option in bold lines. They are 

computed by using a lattice method with 20,480 time steps. Parameter values are 

So = 100, X = 100, r = 0.05,0' = 0.2 and T = 1. Panel (a) shows type 1 contour 

where a = {ani=l, ... ,N-l is varied and gi is fixed. One can see that contours are 

clustered at the initial segment of the option's EEB and spread out at the near to 

maturity segment. Panel (b) illustrates type 2 contour where both a i and gi are 

varied. Now contours are more evenly spread out horizontally along the EEB. Panel 

(c) shows type 3 contour where a i is fixed and gi is varied. Contours also spread out 

more evenly along the EEB in this case. Lastly, panel (d) illustrates type 4 contour 

where gi is now a function of k(i) in (6.2.10). One can see that contours spread out 

almost evenly along the EEB. They are slightly more clustered at the near-maturity 

segment of the EEB. 

Simulated asset values along the contours of type 4 are plotted in figure 6.5. 

Parameter values are those used to produce a plot in panel (d) in figure 6.4. 

In figure 6.5, since hitting times to the first contour are all conditional on the 

initial value So, most asset values are very close to each other on the first contour. As 

sample paths are generated from one contour to the next contour, asset values spread 

4The different values of k max and kmin define different values of se options. 
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Figure 6.5. Asset value simulation from the SCMC method 

out more along the contour. At time to maturity T, one can see that at the f3N (t) 
contour (the vertical contour where T = 1), there are simulated asset values along 

the contour. These points are generated by methods described in section 6.1.2.2. 

6.3 Control variates from the SCMC method 

For i = 1, ... , N -1, the SCMC method generates hitting times to the ith contour, 

f3i(t). These hitting times can be used to value barrier options with a barrier bi(t) = 

f3i(t). Section 6.3.1 discusses the valuation of a barrier option using hitting time 

simulation. Then, section 6.3.3 describes how barrier option's values are obtained 
from the SCMC method. 

6.3.1 Valuing barrier options by using hitting time simulation 

Define St to be an asset value at time t. Let bet), t E [to, TJ, be a barrier level and 

suppose that the hitting time distribution of St to bet) is known and can be sampled 

from, then a rebate option (to a barrier b(t)) expiring at T can be valued easily by 

Monte Carlo simulation. Recall from chapter 3 that a rebate option pays a rebate 

R at the hitting time r to the barrier b(t), conditional on r :$ T. 

Write fb (r) for the hitting time distribution of St to bet), conditional on So. 

Let R t be the rebate paid if St hits b(t) at time t. Then the value vf of a rebate 
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option at time t is 

(6.3.1) 

Let AI be the total number of sample paths. For path j = 1, ... , AI, sample 

hitting times rj "" fb and set 

M 
--R _ ...!.. ~ -r(Trt)R 
Vt - L.Je T" 

AI j=l J 

t < r}, (6.3.2) 

fif' is a Monte Carlo estimate of vf'. The use of hitting times to value barrier options 

is important to the SCMC method because it can be used to compute control variates 

along the contours. 

6.3.2 Hitting times and options 

Given a stopping time r and maturity time rT = T, set f = min {r, rT}. Let PT be 

an option's payoff at time T. Then the set 0 = (r, rT, R, p) defines several options. 

These are shown in table 6.3. 

Cash flows paid at 
, 

f=r f = r-Y 

Option type r T 
Knock-out option with rebate Rr - PT 
Knock-out option - - PT 
Knock-in option with rebate PT RT 
Knock-in option - PT -
Rebate-r option Rr - -
Rebate-T option - RT -

! 

Table 6.3. Options defined by hitting times 

Let b : [0, T] -+ JR+ be a deterministic barrier level and suppose that r = 

rb = min {t E [0, T] : St S b(t)} is the first hitting time of St to b(t), then 0 is a 

barrier option and the knock-out, knock-in and rebate options listed in table 6.3 

correspond to the vanilla versions. 
A knock-out option with rebate pays out a rebate value, Rn at a hitting time 

r if a barrier is hit before time T. If a barrier is not hit; that is f = rT, it will pay 

out a payoff PT at time T. If a knock-out option has no rebate, it will payout only 

PT at time T conditional on a barrier not being hit. A knock-in option with rebate 

pays out a payoff PT at time T if a barrier is not hit before time T. A rebate RT is 
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paid at time T if a barrier is not hit. If a knock-in option has no rebate attached, 

it will payout PT only when a barrier is hit. 

A rebate-r option pays out Rr when a barrier is hit at r. It can be viewed as 

a rebate attached to a knock-out option. A rebate-T option pays out RT at time T 

when a barrier is hit before time T, f = r. This can be viewed as a rebate attached 
to a knock-in option. 

Also, suppose that Rt = (X - St)+ and PT = RT then the stopping time f 
defines an exercise strategy for an American put option. 

The advantage of the SCMC method is that if the stopping times ri can be 

augmented with payoff functions Ri so that for each i the set Oi = (r, rT, R, P) 

defines an option whose value can be computed explicitly then the set of Oi can be 

used as control variates. Their effectiveness as control variates depends Upon the 

closeness of their values to that of the underlying American option. 

Three examples are 

1. ri = ti with Rt• = (X - StJ+. This is a European put maturing at ti. 

2. ri = rbi, where bi = b a constant, and Rri == R, also constant. This corre­

sponds to valuing a flat barrier rebate option with a rebate R. 

3. ri = r b\ where bi = ;. exp (git) is an exponential barrier, and Rri == R is 

constant. This is an exponential barrier rebate option with rebate Ri. 

Because contours in the SCMC method are exponential, it is straightforward to 

value exponential barrier rebate options in example 3 along the contours. This is 

described next. 

6.3.3 Rebate options from the SCMC method 

The SCMC method generates a set of hitting times ri = {r)} ._ along the ith 
. . . J-l, .... M 

contour, where ri = min {t I St ~ bt(t)} and bt(t) = j3t(t) is an exponential contour. 

Define an ith rebate-r option with a payoff, h~ 

(6.3.3) 

where 11 is an indicator function and R E jR+. From section 6.3.1, the time to value of 

a rebate option on the ith contour can be computed by Monte Carlo simulation. It is 
--tv ',R - .1.. "M e -Trj hR. Effectively, as the method constructs a whole hitting time o - M LJj=l r 

path {r~}~=l ..... N-l, one has a set of rebate option values v~ = {~,i}._ . 
J J=l, .... M t-l ..... N-l 
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6.3.4 Rebate option control variate 

Recall that C
X = x - lErx] is a control variate, where x is a chosen quantity and 

lErx] is known. A set of rebate option values v/1 = {v~'i}. can be used as 
t=l, ... ,N-l 

additional control variates to control variates discussed in section 5.2.2. In this case 
one has multiple controls: 

L 

VCV = V - I: wlcl , 

1=0 
(6.3.4) 

where wI = Cov [v, Xi] IVar [v], L ::; N + 1 is the number of control variates and 
{ cl } I=O, ... ,L is a set of selected control variates. v is a uncontrolled value of the 

SC option. In this chapter, set cO to be the put-tau control variate, cO = ~ in 

equation (4.3.44) on page 83. Also set cl
, 1 = 1, ... , L to be a rebate option (to 

the ith contour) control variate. First, define C:,i to be a rebate option to the ith 
contour control variate. It can be found by 

R,i ~R,i R,i 
cT = Vo - Vo , (6.3.5) 

where V~,i is the time to analytical value of a rebate option to the ith contour.5 

When an option barrier is exponential, the value v~,i is known. This was given 

by Ingersoll (1998) [134] as follows. 

where 

N(.) - Cumulative normal distribution function 

(/>I(x,y) 
In(x) - ya2T 

- a.jT 

<P2(X, y) - <Pl(X,y) + 2yaV<Pl(X,y) 
1 2 

v' 
r - 9 - 2a 

- a2 

a' - ~ v,2 + a2' 

It is important that one should not include too many options (large L) in 

(6.3.4) since this may introduce multicollinearity among the control variates and 

5 A subscript T in C~,i means that its value is obtained from hitting times to exponential contour, 
not from exercise times of a SC option. 
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will reduce the effectiveness of the control variate method. In fact, the numerical 

results reported in this chapter are produced using L = 1. That is, 

6.4 Numerical Results 

(6.3.7) 

(6.3.8) 

In this section the SCMC method is implemented to value SC options that pay 

(X - ST ) +, where X is a strike price and ST is an asset value, if exercised at time T. 

Then, to obtain the value of standard American put options, three-point Richardson 

extrapolation is applied to these values for SC options of the same type but different 
values of exercise dates, N. 

Parameter values, unless stated otherwise, are X = 100, r = 0.05, (J = 0.2 

and T = 1. The number of sample paths, AI, is 50,000. Benchmark values are 

computed using a lattice method with N = 204,800 time steps. The SCMC method 

uses scaled Laguerre basis function (section 5.3.1) where number of basis functions 

K= 12. 

6.4.1 Choice of contours 

First, the effect of kmax and kmin on the value of type 4 SC option and on extrapo­

lated American put values is investigated. Table 6.4 illustrates this. It reports ex­

trapolated option values, standard errors in brackets, computational times in square 

brackets and biases in curly brackets. Biases are computed using (3.3.1). Pricing 
and rollback control variates are the put-tau (section 4.3.6). 

Tables 6.4 reports extrapolated American put value with different values of 

kmax and kmin. The value of kmax ranges from 0.7 to 1. Since kmax varies inversely 

with ti, smaller values of kmax push contours toward an option's maturity. This is 

illustrated in figure 6.6. When kmax = 0.7, ti is ",,0.1 which is nearly 10% of an 

option's maturity (T = 1). Since further reducing kmax means an option holder will 

have less chance of exercising in the initial segment of an option's lifetime, kmax will 

not be further reduced. kmin ranges from 0.1 to kmax . Results in table 6.4 show that 

there is no evidence of bias in American put values. As kmax decreases, the bias is 

larger for values of kmin that are close to kmax · However, these values do not seem 

to be significant. Therefore, to use type 4 ,contour, kmax is set to be a high value 

that is close to 1 while kmin 5 kmax • 
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kmin 

kmax 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

1 6.0891 6.0890 6.0894 6.0904 6.0887 6.0905 6.0()04 6.0912 6.0915 

(0.0016) (0.0016) (0.0016) (0.0016) (0.0015) (0.0016) (0.0016) (0.0016) (0.0016) 

[191] [190] [190] [189] [189] [190] [190] [189] [188] 

{-0.78} {-0.87} {-0.63} {0.03} {-1.l} {0.08} {0.03} {O,4g} {0.fl9} 

0.9 6.0878 6.0885 6.0879 6.0905 6.0()04 6.0894 6.0884 6.0899 

(0.0016) (0.0016) (0.0016) (0.0016) (0.0016) (0.0015) (0.0016) (0.0016) 

[189] [189] [190] [189] [190] [188] [190] [188] 

{-1.6} {-1.2} {-1.6} {0.1O} {-0.01 } { -0.65} { -1.3} {-0.31} 

0.8 6.0882 6.0888 6.0889 6.0892 6.0895 6.0914 6.0914 
(0.0015) (0.0016) (0.0016) (0.0016) (0.0016) (0.0016) (0.0016) 

[190] [190] [190] [191] [188] [190] [188] 
{-1,4} {-1.0} {-0.92} {-0.74} {-0.54} {0.66} {0.63 } 

0.7 6.0885 6.0877 6.0918 6.0922 6.0912 6.0897 
(0.0016) (0.0016) (0.0016) (0.0015) (0.0016) (0.0016) 

[188] [188] [188] [188] [189] [188] 
{-1.2} {-1.7} {0.93} {1.2} {0.56} {-0,43} 

I I I 

Table 6.4. Extrapolated American put values from type 4 SC option with different 
values of kmax and kmin. (3N-l(O) = 5 and gN-l = 2.99. Benchmark value is 6.09037 

Next, four different type of contours (section 6.2) are investigated. Contour param­

eters are reported in table 6.5. 

Type Parameters i 

1: (3i(O),g a1 = 1/ SI - 1/85.71, aN -I - 1/5, 9 = 2.996 

2: (3i(O),g(i) al = 1/ S: = ~/85.71, a N- 1 = 1/5, gi is given byeq. (6.2.9) 

3: (3(O),g(i) a N- l = 1/5,9' is given byeq. (6.2.9) 

4: (3(0), g(i, k( i)) a N- l = 1/5, kmax = 1, and kmin = 0.1 
I 

Table 6.5. Contour parameter values 

Table 6.6 reports extrapolated American put values computed from the 

SCMC method with different types of contours. It reports extrapolated American 

put values VOO, standard errors (se), computational times [t] and biases {b}. The 

put-tau pricing and rollback control variates are applied to individual SC option 

values. 
It is clear that the type 1 contour is heavily high-biased. This is because 

most of the contours are in the initial segment of the option's life. This means an 

option can be exercised predominately in the the early part of its lifetime. Payoffs 

will be discounted back to time T° = to = 0 with lower discount factor. This results 

in a high bias in option values. The bias becomes greater as an option gets deeper 

in-the-money. This is because more paths will be exercised. 

142 

I 

0.1 
6.0911 

(0.0016) 
[188] 

{0,48} 
6.0911 

(0.0016) 
[189] 

{0.47} 
6.0887 

(0.0015) 
[188] 

{-1.1} 
6.0917 

(0.0016) 
[187] 

{0.84} 



When the exercise decision spreads more evenly along the option's EED, as 

for types 2-4, the biases are all within the range ±2. Recall from (6.2.7) that ti 
is the time that fJi(t) has a value X, and it is used to roughly estimate where fJi 

intersects the American option's EED. Since it is easy to modify the location of t~ l 

along the option's EED when using type 4 contours through kmax and k~ll1in, type 4 

contours is chosen to be the contour type of choice in this chapter. 

so, (J' = 0.2 LSLS Contour Type I 

Benchmark 1 2 3 4 

90 VOO 11.4909 11.5258 11.4949 11.4886 11.4943 

11.4927 (Be) (0.0023) (0.0023) (0.0023) (0.0022) (0.0022) 

[tJ [298J [325J [312J [303J [297J 

{b} {-0.8} {14} {0.93} {-1.8} {0.72} 

95 VOO 8.4455 8.4683 8.4556 8.4494 8.4540 

8.4510 (Be) (0.0019) (0.0022) (0.0024) (0.0019) (0.0019) 

ttl [249] [264] [258] [255J [248] 

{b} {-2.9} {8.0} {1.9} {-0.84} {1.6} 

100 VOO 6.0895 6.1016 6.0938 6.0876 6.0908 

6.0904 (Be) (0.0016) (0.0018) (0.0021) (0.0016) (0.0016) 

ttl [184] [201] [201] [195] [193J 

{b} {-0.53} {6.1} {1.6} {-1.8} {0.25} 

105 VOO 4.3036 4.3068 4.3063 4.3035 4.3049 

4.3044 (Be) (0.0013) (0.0016) (0.0017) (0.0013) (0.0012) 

[tJ [129J [139] [141J [137] [141] 

{b} {-0.64} {1.5} {1.1 } {-0.76} {0.40} 

110 VOO 2.9866 2.9871 2.9862 2.9847 2.9857 

2.9865 (Be) (0.0010) (0.0012) (0.0014) (0.0010) (0.0010) 

ttl [92] [92] [101] [98] [103] 

b: I 
{b} I {0.09} {0.43} {-0.23} {-1.8} {-0.88} 

Table 6.6. Extrapolated American put option values from the SCMe method with 

different types, (J' = 0.2 

6.4.2 Early exercise boundary of sequential contour options 

EEBs of se options are shown in this section. Unlike a standard Bermudan option 

(with constant At where At = TIN) in which the EEB can be benchmarked against 

values computed from the lattice method, there is no benchmark for sequential 

contour option's EEB. Therefore, the EEB of the se options will be compared with 

that of an American put option from a lattice method. Since the holder of an 

American option can choose to exercise (continuously) at any time, one expects the 
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EEB of the sequential contour option to lie above that of the American put. 

To obtain the option's EED, the put-tau rollba.ck control va.riate (section 

5.3.1) is implemented. The EEB is shown in figure 6.7 . 

...... American put EEB 

...... sc put EEB: N = 64 

.... sc put EEB: N = 128 

0.1 0.2 0.3 0.4 0.5 0.6 
Time to maturity 

0.7 0.8 0.9 

Figure 6.7. Early exercise boundaries of the sequential contour puts and the 
American put 

One can see, from figure 6.7, that both of the sequential contour's EEB lie 

above the American put's EEB. It has a convex shape as one would expect for a 

put option. Also as the total number of contours N is increased from 64 to 128, the 

EEB of SO options get closer to that of the American put. The SO option's EEB 

shifts down slightly toward the American option's EEB. 

6.4.3 Valuing standard American put options 

In this section, the SOMa method is implemented to approximate values of the 

American put options. First, its convergence and accuracy are investigated and 

compared with those from the standard LSLS method. Second, the effectiveness 

of rebate option control variates is assessed, and the efficiency gain over the LSLS 

method with the put-tau pricing control variate is investigated. 

6.4.3.1 Convergence and Method's Accuracy 

First the convergence of SO options to the American option is investigated. Results 

are compared with the rate of convergence of Bermudan options using the LSLS 

method (Longstaff and Schwartz (2001) [176]). Asset values are chosen to be So = 
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{90, 95, 100}. For each individual SC put and Bermudan put options, the put­

tau control variate is used both for continuation values and for option values. Both 

methods use scaled Laguerre basis function where number of basis functions J( = 12. 

Figure 6.8 shows errors € = Ivoo-vNI, where V
OO and vN are lattice American 

put benchmark values and Monte Carlo estimates respectively, against the number 

of contours (the time step in the LSL8 case) in logarithmic scaling. One can see 

that, for all values of So, the SCMC method converges faster than the LSLS method 

does, although approximately at the same rate. 
Next American put values computed from Richardson extrapolation are re-

ported. Three-point Richardson extrapolation is performed on SC put options with 

a number of contours, N = {16, 32, 64} respectively. Tables 6.7 and 6.8 report ex­

trapolated American values v:"sc, individual sequential contour option values vN , 

standard errors (se), computational times in seconds [t] and biases {b}. The tables 

also report extrapolated American put values from the LSLS method v:',ls. Ta­

ble 6.7 shows extrapolated American put values with pricing control only. Table 6.8 

reports values of an extrapolated American put option with both the pricing control 

and the v(O) control (section 5.4.3). 1)64 is chosen to be the v(O) control variate. 

x, (J" = 0.2 LSLS SCMC 
I 

Benchmark 
.-oo,ls .-oo,sc 1)64 ~32 ~16 

Vtn Vtn to Vto Vtn 

95 4.0135 4.0148 4.0098 4.0048 3.9945 

4.0131 (0.0012) (0.0012) (0.0010) (0.0010) (0.0010) 

[131] [136] 
{0.30} {1.5} 

100 6.0893 6.0905 6.0830 6.0753 6.0588 

6.0904 (0.0016) (0.0016) (0.0013) (0.0014) (0.0014) 

[187] [189] 
{-0.65} {0.07} 

105 8.7409 8.7415 8.7303 8.7185 8.6933 

8.7402 (0.0020) (0.0020) (0.0017) (0.0017) (0.0017) 

[242] [241] 
{0.37} {0.69} 

110 11.9740 11.9703 11.9546 11.9380 11.9021 

11.9728 (0.0024) (0.0024) (0.0020) (0.0020) (0.0020) 

[289] [285] 

{0.48} {-1.1} 
, 

Table 6.7. Extrapolated American put values from SC option values without the 

v(O) control 
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X,u = 0.2 LSLS SCMC 

Benchmark 
---oo,ls ---00,80 1)64 V-32 ~16 

Vtn Vtn to to Vtn 

95 4.01220 4.01210 4.0078 4.0030 3.9919 

4.0131 (0.00058) (0.00050) (0.0010) (0.0010) (0.0010) 

[132] [136] 
{-1.5} {-1.9} 

100 6.08911 6.09070 6.0838 6.0762 6.0592 

6.09037 (0.00076) (0.00070) (0.0014) (0.0014) (0.0014) 

[187J [190J 
{-1.6} {0.47} 

105 8.73937 8.74130 8.7303 8.7185 8.6933 

8.74017 (0.00099) (0.00091) (0.0017) (0.0017) (0.0017) 
[240J [241J 

{-0.80} {1.2} 

110 11.9736 11.9741 11.9583 11.9415 11.9052 

11.9728 (0.0012) (0.0012) (0.0020) (0.0020) (0.0020) 

[287] [285] 
{0.63} {1.1 } 

, 

Table 6.8. Extrapolated American put values from SC option values with v(O) 

control 

The results in table 6.7 and 6.8 suggest that there is no evidence of bias. 

This is shown by small bias estimates I {b } I E 2. The smallest bias is less then 0.1. 

The computational time is on average around 200 seconds which is similar to the 

computational time of the LSLS method. 
It is also worth pointing out the reductions in Monte Carlo variance from 

using the v(O) control on the extrapolated values as in (5.4.19) in table 6.8 over 

table 6.7. In fact, the variance reduction factor, as defined in (3.3.2), from using the 

v(O) control is ......,5. 

6.4.3.2 Variance reduction 

This section investigates variance reductions from using put-tau and rebate option 

control variates. The variance reduction factors are computed by comparing the 

extrapolated American values from the SCMC method with those computed from 

the LSLS method with the put-tau rollback and pricing control variate. 

Table 6.9 reports a correlation between v(O) control variate in section 5.4.3 

with the extrapolated American put value. One can see that the more exercise 

opportunities the option has, the higher the correlation between it and extrapolated 
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American put option value. This is true for both SC and Bermudan put options. 

Correlations between individual SO put options and an American put option are all 

slightly higher than those computed from individual Bermudan put options and an 

American put option, although not significantly. 

Methods p (VOO, 1)64J pJVOO,i},j':) p l 0OO ,i)16J 
SBMC 0.907 0.749 0.785 
LSLS 0.881 0.701 0.740 

Table 6.9. Correlations between extrapolated American put and v(O) controls, 
p (000, i)N) 

Figure 6.9 shows the plot of correlations between rebate option control vari­

ates, c:,i, on each contour (J (t I a i ) with SC option values with 64 exercise dates, 

1)64. Their covariances and standard deviations are also shown. The number of 

sample paths is Al = 5,000. 

Panel (a) in figure 6.9 shows that the correlation increases as later contours 

are used as an option barrier for the rebate option control variate. However, the 

correlation significantly drops when moving the 36th contour to the 40th contour. 

To see this, consider panel (b) where covariances between c:,i and iJ64 and 

their standard deviations are shown. Since each value is taken from different runs , 
standard deviations of iJ64 are consistent across all contours. Cov (c:,i, iJ64) and 

standard deviations of c:,i seem to increase significantly at later contours. An in­

crease in standard deviations of c:,i comes from the fact that simulated hitting times 

have values clustering along the initial segment of a set of contours. In figure 6.5, 
one can see that hitting times are very close to each other on the first few contours. 

This causes the rebate option value to have very low standard errors. As hitting 

times spread out across the (later) contour, standard deviations of rebate option 

values increase. 

Recall that p R,i::-:64 = Cov (c:,i, iJ64) / (UcR'iUjjfl4). Since standard devi-
CT ,v T 

at ions of iJ64 seems to be consistent, the correlation between them will depend 

mainly on their covariance and standard deviation of c:,i. This relationship can be 

explained through their relative rate of change: 

ACov (c:,i, 1]64) 
e = Au R,t ' 

CT 

(6.4.1) 
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where ~x = (Xi - Xi-I) IXi-l. At the ith contour, one ha.'l 

ei > 1 - Pi > Pi-l, 

ei < 1 - Pi < Pi-l' 

(6.4.2) 

(6.4.3) 

This means that the correlation decreases if a rate of change in covariance is less than 

a rate of change in standard deviation of c~,i (~i < 1). In this case, ~40 < 1 which 

causes a decrease in the correlation from 36th to 40th contour. Panel (c) shows ~ of 

correlations between c~,i and 1)64, of their covariances and their standard deviations 

for each contour. One can see that from the 36th to the 40th contour, the change 

in standard deviation of c~,i exceeds the change in standard deviation of covariance 

between c~,i and 1)64. In particular, the 40th contour is the only contour that a rate 

of change in standard deviation of c~,i exceeds a rate of change in the covariance 

between c~,i and 1)64. This causes a decrease in correlation from the 36th to the 

40th contour as shown in panel (a) and (c). 

Next, the effect of rebate option control variate, c~,i, as an addition to the put-tau, 

<?r, control variate is illustrated. This is reported in tables 6.10 and 6.11. Note that 

since American option values are extrapolated from SC option values with 64, 32 

and 16 exercise opportunities, the index of the contour for the rebate option selected 

to be the control variate is chosen to be a multiple of 4. 
Table 6.10 reports extrapolated American put values without the use of v(O) 

control in section 5.4.3. The table reports gains from using only the put-tau control 

SCMC (<?r) and the put-tau and rebate option control SCMC (<?r + c~'i). The 

values from the LSLS method with the put-tau control variate are reported in column 

2. 
There is no evidence of bias for option values in table 6.10. All biases are 

within the range ±2. For the at-the-money and in-the-money case, adding the rebate 

option control variate seems to make a very marginal improvement on the efficiency 

gain. The maximum is only around ",1.2. These marginal gains are consistent across 

all values of the control variate contour index i. For the out-of-the-money case, the 

slight improvement vanishes and the LSLS method seems to perform better in some 

cases. 
Table 6.11 reports extrapolated American put values with the use of v(O) 

control in section 5.4.3. The v(O) control is 1)64 due to its highest correlation with 

extrapolated American option values. 
The option values in table 6.11 show no evidence of bias. Since P (VOO, 1)64) in 

the sequential contour case is slightly greater than that of the LSLS case (table 6.9), 
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-. 

....... 
Ol ....... 

X LSLS SCMC SCMC (~+cT"),i 
Benchmark ~ ~ 60 5t; 52 48 44 40 36 32 

95 4.0135 4.0148 4.0145 4.0144 4.0133 4.0132 4.0127 4.0111 4.0139 4.0117 
4.01309 (0.0012) (0.0012) (0.0011) (O.OOll) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) 

(131) (136) (137) (137) (136) (137) (138) (137) (137) [13!}) 
{0.30} {1.5} {1.3} {1.2} {0.16} {0.12} {-0.37} {-1. 7} {0.68} {-1.1 } 

1.0 0.95 1.1 1.1 1.0 0.99 0.98 1.0 1.0 0.96 

SCMC cJ:. + c~,i ,i 

28 24 20 16 12 8 4 
4.0123 4.0137 4.0127 4.0137 4.0120 4.0135 4.0127 

(0.0012) (0.0012) (0.0012) (0.0011) (0.0012) (0.0012) (0.0012) 
[138] (138) [137) [139) [137) [139) [137) 

{-0.71} {0.50} {-0.35} {0.50} {-0.93} {0.38} {-0.34} 
0.99 0.99 1.0 1.0 0.98 0.97 0.97 

X LSLS SCMC SCMC lcJ:.+4") ,i 
Benchmark cJ:. cJ:. 60 5{i 52 48 44 40 36 32 

100 6.0893 6.0905 6.0918 6.0894 6.0906 6.0897 6.0902 6.0884 6.0889 6.0899 
6.09037 (0.0016) (0.0016) (0.0015) (0.0015) (0.0015) (0.0015) (0.0016) (0.0016) (0.0015) (0.0015) 

[187) (189) [189) [189) [18!}) (188) (188) (188) (188) (189) 
{-0.65} {0.07} {0.94} {-0.62} {0.14} {-0.47} {-O.10} {-1.3} {-0.94} {-0.30} 

1.0 1.1 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

SCMC 2: + c:!j." ), i 
28 24 20 16 12 8 4 

6.0910 6.0910 6.0919 6.0888 6.0906 6.0902 6.0896 
(0.0016) (0.0016) (0.0015) (0.0015) (0.0015) (0.0015) (0.0016) 

(189) [189) (188) (189) (189) [190) [189) 
{0.40} {0.41} {0.96} {-1.0} {0.16} {-0.14} {-0.5O} 
1.07 1.06 1.10 1.12 1.11 1.09 1.07 

X LSLS SCMC SCMC 2:+4" ,i 

Benchmark 2: cJ:. 60 56 52 48 44 40 36 32 

105 8.7409 8.7415 8.7411 8.7407 8.7399 8.7415 8.7386 8.7394 8.7407 8.7404 
8.74017 (0.0020) (0.0020) (0.0019) (0.0019) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020: 

[242) (241) [244) [243) (241) [242) [243) [242) [242) [243] 
{0.37} {0.69} {0,48} {0.29} {-0.16} {0.65} {0.81 } {-O.39} {0.28} {0.14} 

1.0 1.0 1.19 1.13 1.08 1.03 1.04 1.04 1.05 1.03 

SCMC (cJ:. +4") ,i 
28 24 20 16 12 8 4 

8.7412 8.7423 8.7421 8.7405 8.7392 8.7418 8.7405 
(0.0020) (0.0020) (0.0020) (0.0019) (0.0019) (0.0019) (0.0019 

[242] [242] [242] [243] [242] [242) (242) 
{0.50} {1.1} {0.98} {O.15} {-O.52} {0.84} {O.17} 
1.01 

L 
1.04 1.07 1.09 1.11 1.12 1.09 

Table 6.10. Extrapolated American put values from the sequential contour options with only pricing control 
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C1l 
~ 

X LSLS SCMC SCMC (~+c~"),i 
Benchmark ~ ~ 60 56 52 48 44 40 36 32 

95 4.01221 4.01210 4.01291 4.01233 4.01345 4.01256 4.01235 4.01235 4.01251 4.01318 
4.01309 (0.00058) (0.00050) (0.00048) (0.00048) (0.00049) (0.00050) (0.00049) (0.00051) (0.00050) (0.00050) 

[132] [136] [138] [138] [137] [138] [139] [138] [138] [139] 
{-1.5} {-1.9} {-0.37} {-1.6} {0.74} {-l.l } {-1.5} {-1.5} {-1.2} {0.18} 

1.00 1.3 2.8 2.8 2.8 2.6 2.7 2.6 2.6 2.6 

SCMC (~ +~")), i 
28 24 20 16 12 8 4 

4.0135 4.01228 4.01359 4.01318 4.01312 4.01271 4.01294 
(O.ooof14) (0.00051) (0.00051) (0.00050) (0.00048) (0.00050) (0.0004!l) 

[138] [140] [138] [140] [138] [139] [138] 
{0.75} {-1.6} {0.97} {0.18} {0.06} {-0.76} {-0.31} 

2.3 2.5 2.5 2.7 2.8 2.7 2.8 

X LSLS SCMC SCMC (d:+c~"),i 
Bt'nchmark d: d: flO 56 52 48 44 40 36 32 

100 6.08!1l4 6.08!l10 6,09028 6.09069 6.09166 6.09047 6.08957 6.0!l065 6.09080 6.09023 
6.09037 (0.00076) (0.00070) (0.00070) (0.00068) (0.00071) (0.00070) (0,00069) (0.00069) (0.00069) (0.00071) 

[187] [190] [192] [191] [191] [191] [18!!] [189] [18!!] [1!!1] 
{-1.6} {0.47} {-0.13} {0.47} {1.8} {0.14} {-1.2} {0.40} {0.63} {-0.20} 
1.00 1.2 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.0 

SCMC (d: + cT"),i 
28 24 20 16 12 8 4 

6.0!!046 6.08!!44 6.0896 6.0!!152 6.0!l047 6,0!!1l5 6.09077 
(0.00072) (0.00070) (0.00072) (0.00071) (0.00072) (0.00069) (0.00071) 

[190] [191] [190J [192J [190] [192] [1!!IJ 
{0.13} {-1.3} {-1.1 } {1.6} {0.14} {1.1} {0.56} 

1.0 1.1 1.0 1.1 1.0 1.1 1.0 

X LSLS SCMC SCMC (~+~"),i 
Benchmark ~ d: (iO &6 52 48 44 40 3(i 32 

105 8.73!!37 8.74130 8.73898 8.74073 8.73!l86 8.74164 8.73898 8.74039 8.73880 8.74131 

8.74017 (0.00099) (0.00091) (0.00091) (0.000!!1) (0.00091) (0.00091) (0,00094) (0.00092) (0.00089) (0.00091) 

[245] [246] [246J [246] [245] [245] [245] [246] [245] [246] 
{-G.80} {1.2} {-1.3} {0.62} {-0.34} {1.6 } {-1.3} {0.24} {-1.5} {1.3} 

1.0 1.0 1.2 1.2 1.2 1.2 1.1 1.1 1.2 1.2 

SCMC (d: + ~"), i 
28 24 20 16 12 8 4 

8.7414!J 8.74092 8.73882 8.7416 8.74138 8.74014 8.74001 
(0.00094) (0,00097) (0.00097) (0.000!J6) (0.00097) (0.00093) (0.000!!5) 

[24&] [246] [245] [245] [24&] [24&] [24&] 

{1.4} {0.77} {-1.4} {1.5} {1.3} {-0.03} {-0.17} 

1.1 1.0 1.1 1.1 LO_ Ll 1.1 
--

Table 6.11. Extrapolated American put values from the sequential contour options with pricing and v(O) control 



one expects the standard errors from the SCMC method to be slightly lower than 

those from the LSLS method. This is confirmed by results in table 6.11. For the 

out-of-the-money case, gains are increasing approximately to 3. This level of gain is 

also consistent across all contour indexes i. However, for the in-the-money and the 

at-the-money cases, although the SCMC produces a lower standard error, variance 
reductions are stilI very marginal. 

The rebate option can add only marginal improvements because it is used as 

an additional control to the put-tau control which has a very high correlation with 

vN
, N = 64,32 and 16. Hence, the contribution from the rebate option control is 

overshadowed by that from the put-tau control variate. 

6.5 Conclusion 

This chapter has described a new simulation method, the SCMC method, to value 

the American put option. The method generalises the existing LSLS method by 

using a more general family of contours. The method generates hitting times to 

a set of exponential contours and approximates the value of the option which has 

random exercise opportunities. This type of option is called the sequential contour 

(SC) option. The American put value is estimated by extrapolating these SC option 
values. 

Results suggest that, with a suitable choice of contour parameters, biases in 

American put option values found by the method are negligible. Also, standard SC 

option values converge to the American option value slightly faster than standard 

Bermudan option values do. 

The method also provides a set of barrier options that can be used as control 

variates for individual se option values. Numerical examples illustrate the use of a 

rebate option (with exponential barrier) as an additional control variate to the put­

tau control. Numerical results in section 6.4.3.2 suggest that the SeMe, when using 

the combination of the rebate option control variate, the put-tau control variate, and 

the v(O) control, can achieve gains of ",3 when valuing out-of-the-money options. 

However, for the at-the-money and the in-the-money options it turns out that the 

efficiency gains achieved from adding the rebate option control variate is marginal. 

This may be because the effect of rebate option is overshadowed by the put-tau 

control which is highly correlated with the SC option. 

All in all, the new method can value American put option without biases but 

gains over the standard LSLS method are not substantial. 

153 



Part III 

Projection Techniques and 

Exotic American Options 
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Chapter 7 

Valuing Exotic American 

Options using the Sequential 

Contour Monte Carlo Method 

This chapter illustrates the use of the sequential contour Monte Carlo (SCMC) 

method to price exotic American options; an American fractional call option and 

a linear knock-in barrier American call option with a fractional power payoff. The 

proposed method combines the contour bridge method (chapter 3) and the SCMC 

method. 

This chapter also demonstrates how the contour bridge sampling method 

(section 3.2.2) can be combined with the sequential contour method to generate 

sample paths backwards in time. 

Different projection techniques that can be used to approximate continuation 

values are proposed. Instead of using asset values to approximate option's continu­

ation values, the hitting time to a predetermined set of contours (T-projection) and 

the distance along contours (V-projection) can be used. These projection techniques 

are applied to value standard American put options, American fractional power call 

options and linear knock-in American barrier options. 

The chapter is structured as follows. Section 7.1 discusses the use of the 

contour bridge sampling method with the SCMC method. Section 7.2 introduces 

and explores the different projection techniques. Section 7.3 applies the method to 

price American fractional power call options. The contour construction in the call 

option case is discussed and differences in contour shape between the call option 

and the put option cases are pointed out. An application to value linear knock-in 

American barrier options with a fractional power payoff is discussed in section 7.4. 
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Numerical results are reported in section 7.5. Section 7.6 concludes. 

7.1 Sequential contour bridge (SCB) method 

Consider exponential contours of the form 

(7.1.1) 

where ;. is the time to value of the ith contour, gi is the contour growth rate, 

and i is a contour index, i = 1, ... , N. Write (:Ji(t) = f3(t I o;i). The idea of the 

SCB method is to generate sample paths backwards in time from contour f3i+l(t) 

to contour f3i(t) and also apply the generalised LSLS method (section 6.1.3) at the 

same time. It is equivalent to the Brownian bridge method for the vertical contours 

case (section 3.1.2). This method is in contrast to the forward path sampling method 

used in the SCMC method in chapter 6 in which one stores an entire set of hitting 

times and asset values, and then works backwards from each contour to the previous 

contour. 1 

Chaudhary (2005) [63] applied the Brownian bridge method with vertical 

contours (standard LSLS) with quasi Monte Carlo simulation. The main advantage 

of the backward simulation method is the reduction in memory requirement from 

O(M x N x q) to O(M x q) where M is a total number of sample paths, N is a 

total number of contours and q is a total number of assets. This lower memory 

requirement facilitates the valuation of options in higher dimensioned.2 Also, if one 

has to store all sample paths, one will get severe restrictions on M. 

7.1.1 Contour construction for the SCB method 

To implement the sequential contour bridge method, one needs to be able to sample 

from the hitting time bridge density given by (3.2.9). However, to do this, growth 

rates 9 between the two bounding contours must be equal (see section 3.2.2). This 

implies that, to implement the method, every contour's growth rate must be the 

same. Write 9 for this common value of growth rate. Recall the definition of tt from 

chapter 6. It is the time on the ith contour such that 

(7.1.2) 

lThe only difference between the SCMC and the SCB methods is the way sample paths are 

generated. . 
2Multiple asset American options are not considered in this thesis. 
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Using (7.1.1) and write (3i(O) = ~., one obtains 

(7.1.3) 

(7.1.3) is used to approximate where contours intersect the option's EEB. In chap­

ter 6, the growth rate is defined to be a function such that values of t'f can be chosen 
t 

for each contour (type 4 contour). However, since 9 must be fixed in this case the , 
type 4 contour, which 9 is varied, cannot be applied. To be able to control t~ with 

t 

9 fixed, 0/ must be varied and chosen according to values of ti. This contour con-
struction is referred to as the type 5 contour. 

Type 5 contour: a i varied as a function of ti and 9 fixed 

The overview of type 5 contour construction is as follows. 

1. Fix g. 

2. Predetermine t* = {ti}i=l, ... ,N-l' 

3. Choose a = {a i
} i=l, ... ,N-l according to t*. 

These steps are described now. First, for a SC put option, set 9 = In (,aN-) (0) ) ,j.. 
Then, to control values of ti, one substitutes a function gin (6.2.12) into (7.1.3) to 

obtain 
1 (X) ( i )k(i) 

ti = 9 In C N - 1 ' (7.1.4) 

where C E jR+ is a constant, k(i) is defined in (6.2.10) and N is a total number of 

contours. With this set oft* = {ti}i=l, ... ,N-l' the contours can be constructed with 

a set of parameter a = {aih=l, ... ,N-l as follows 

a i = exp(gti) 
X (7.1.5) 

Since there is a function k(i) in (7.1.4), kmax and kmin , which are used for a type 4 

contour, are also parameters for a type 5 contour. The other additional parameter 

is a constant C. If one wants to have an exact same set of t* like the one used for a 

type 4 contour in chapter 6, one will set C to be equal to a fixed (3(0) = l/a for a 

type 4 contour. 
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7.1.2 The SCB algorithm 

Let r] be the first hitting time to the ith contour (3i on the jth path as defined in 

(6.1.1) and 53 = 5T i be the asset value at the ith contour on the jth path. Write 
J 

50 = 5° and let h; == (X - 5;) + be the payoff of a put option. The algorithm 
proceeds as follows. 

The SCB iteration algorithm: 

For path j = 1, ... , M, 

1. Construct a hitting time rJ I rO, 50 to the first contour j31(t). 

2. Conditional on rJ, construct rt -1 I rJ to (3N -1. 

3. If (rj"-l I rJ) < T, set 5; = c)"-1 egTt-
1 

and compute 5f I 5f-l using 

(6.1.10).3 Set i = N and apply step 4. 

4. Iterate back from the contour j3i(t) to j3i-l(t) using the generalised LSLS 

algorithm (section 6.1.3) to obtain SC option values 0. Decrement i +- i-I 

and apply step 5. 

5. At the (3i contour, sample conditional hitting times rtl I rj, rJ to j3i-l by 

using the contour bridge sampling method discussed in section 3.2.2. Go back 

to step 4. 

6. Keep repeating step 4 and 5 until the contour (30, where rO = 0, is reached. 
dJ ( 1 ",M -rT~ ...... 1 hO) Then set v = max M L..Jj=l e J Vj' . 

7.2 Different projection techniques 

Write pi = {(rj, 5;)} '_ . This is a set of simulated points on the ith contour. 
J-l, ... ,M 

Let 
1f : pi 1---+ ~ + . (7.2.1) 

be a projection operator for p = (r,5) E pi, one could set 1f = 1fS or 1f = 1fT where 

1fs(r,5) = 1fS (p)= 5 

1fT(r,5) = 1fT(p) = r 

(7.2.2) 

(7.2.3) 

3Note that since (IN-l(T) = X and one is valuing a put option, values of Sf- 1 where rt-1 > T 
will not be used and hence are not generated. 
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(7.2.2) is referred to as the S-projection and (7.2.3) is referred to as the T-projection. 

In the standard L8L8 method (section 4.3.4), one uses asset values, { 5j} . 
J=l, ... ,M 

at each time step ti, with the chosen basis functions to approximate option continu-

ation values, Bj. This is the S-projection in which continuation values are mapped 

vertically. 

The 8CB and the 8CMC method extends the choices for the projection used 

in the continuation values regression. It does not restrict one to use only trs to 

specify the independent variables in the regression. In particular, because contours 

are not vertical, time and distance along contours can now be defined and can be 

used as the independent variables in the regression. T-projection defines time and 

V-projection defines distance on contours. The V-projection technique is discussed 

in section 7.2.3. 

For the standard L8L8 method which corresponds to simulating hitting times 

to vertical contours, there exists no T-projection since, on the ith contour (time 

step), all asset values are observed at the same fixed time. 

The different projection techniques are illustrated in figure 7.1. It shows a contour 

f3 (t I 0/) and a simulated point (T, 5). The vertical distance from 0 to 5 is defined 

by the S-projection. The horizon distance from 0 to T is defined by the T-projection, 

and the distance along the contour from 0 to (T, 5) is defined by the V-projection. 

5 

Figure 7.1. Illustration of different projection techniques 

159 



7.2.1 Generalised L8L8 Algorithm with projection operator 

This section provides a generalised LSLS algorithm to value the SC option in terms 

of the projection operator 7r( T, S). At this stage, the method is general in a sense 

that the type of projection is not yet specified. Then T-projection and V-projection 

will be described later in detail. 

Define the option's continuation value function to be C f----t jR+. The projec­

tion is used to approximate option's continuation values by C", 0 = f (7r(T, S)la), 

where 7r( T, S) is defined in (7.2.2) and (7.2.3) and a is the parameter to be found. 

Write 

(7.2.4) 

i = 1, ... , N for the set of contours. The projection operator restricts to a map 

7r : ~ f----t jR+. Let h~ == h (Sj) be the SC option's payoff at the ith contour on the 

jth path. For paths j = 1, ... , M, the algorithm proceeds as follows. 

The algorithm with projection operator: 

1. Sample Sf at the contour (IN where time TN = T. This can be done ei­

ther by using forward-evolution (section 6.1.2) or using backward-evolution 

(section 7.1). Set vf = hf. Set i = N - 1 and apply step 2. 

2. At the ith contour, write OJ for the continuation value, OJ = e-r (T
i
+

1
-T

i )vj+1. 

3. Write OJ for approximated continuation values. Find a set of parameters 

ai = {aDk=l, ... ,K such that OJ'" OJ = f (7r (pj) I ai
), where 

K 

f (7r (p;) I ai
) = L ai7J1k (7r (p;)) , (7.2.5) 

k=l 

for a chosen set of basis functions {7J1k} k=l, ... ,K· Parameters a i can be obtained 

by 

(7.2.6) 

4. Exercise the option if h~ > OJ. Then the option values along the ith contour 

are 
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if exercised, 

otherwise. 
(7.2.7) 



Decrement i +- i - 1 and apply step 2. 

5. At the contour j30 where TO = 0, the SC option value is iJ<l = it L~l max (e -rr) vJ, hO). 

7.2.2 Hitting times projection (T-projection) 

At the ith contour, one has a set of asset values, Si = {S~} and a set of 
J j=l, ... ,M' 

hitting time, Ti = {TJ} j=l, ... ,M' Instead of mapping 

(7.2.8) 

and regressing option values against the values of Sj, one can have a map 

(7.2.9) 

and regress option values against the hitting times TJ to estimate option continuation 
values along each contour. 4 

Since only in-the-money paths will contribute to the exercise decision, one 

needs to determine in-the-money paths. To do this, one makes use of predetermined 

values of tt from (7.1.4). For a put option, TJ < tt implies S1 < X which is an 

in-the-money value. Therefore, when valuing the American put option, T~ < t": is 
J Z 

the in-the-money value while TJ > tt is the out-of-the-money value. 

The algorithm proceeds as specified in section 7.2.1. To implement T­

projection technique, one sets 

(7.2.10) 

in (7.2.5). 

To obtain the EEB, let 'Iff = {Tj I h) > OJ}, which is the set of Ti at which 

a holder exercises the option. Then, for a put option, set 

(7.2.11) 

Tl is the greatest simulated hitting time on the ith contour that the option is 

exercised. The set {TiE} i=l, ... ,N represents the EEB of the option. Then the option 

4Since the SCMC method samples hitting times, when using the T-projection, equation (7.2.9) 
does not have to be computed. 
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value VJ in step 4 on page 161 can be found by 

7~ < T~ J - ~ , 

otherwise. 
(7.2.12) 

7.2.3 Contour distance projection (V-projection) 

Instead of projecting horizontally (S-projection) or vertically (T-projection), a third 

possibility is to project onto a distance along a contour itself. Let di (pI, p2) be a 

distance between points pI and p2 along /Ji. The idea is to regress (ji against 

di (pl,p2), pl,p2 E 'P. di (pl,p2) can be explicitly computed. 

Write di (pl,p2) = d(71,72) where pI = (7 1,SI) and p2 = (72,S2), then 

d(71, 7 2) is given by (see appendix B) 

d(r ' ,r') = H 1+ g2 G)' exp(2gr') - 1+ g' (~)' exp(29r1 ) 

+g(r2 - r') -In (1 + 1 + g2 G) 2 exP(29r 2)) 

+ In (1+ 1+ g2 a)' exP(2gr1)) }. (7.2.13) 

where 9 is the growth rate in (7.1.1). When implementing, set 7 2 = 7} and 7 1 = 0. 

To determine the in-the-money value for the V-projection, one computes 

d(O, tn where fi is defined in (7.1.4). For each j = 1, ... ,M, one determines d(O, 7j). 
For a put option, an in-the-money value for a put option is determined by the set 

{d: d(0,7J) E (0, d(O, tn)} and an out-of-the-money value is determined by the set 

{d: d(0,7j) E [d(O, tn, oo)}. This is because d(O, 7]) < d(O, tn implies SJ < X. Note 

that this procedure is the same as the one described for the T-projection where one 

compares 7j with ti, but in this case the distance on the contour is used instead. 

The algorithm proceeds as illustrated in section 7.2.1. One sets 

7r
d (p~) = dj (0,7J) (7.2.14) 

in (7.2.5). 

The option's EEB can be found as follows. Let ID>f = {d} I h} > OJ}, which 
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is the set of di at which a holder exercises the option. For a put option, set 

df = max {dE IDf} . 
d (7.2.15) 

df is the greatest distance along the ith contour that the option is exercised. The 

set {df} i=l, ... ,N represents the EEB of the option. The value df comprises a pair 
of the asset value sf in (6.1.14) and time Tl in (7.2.11). 

In this case, the option value V} in step 4 can be found by 

i E dj ::; di , 

otherwise. (7.2.16) 

7.3 Application to American fractional power call op­

tions 

This section illustrates how the sequential contour method with S-projection, T­
projection and V-projection can be applied to value an American power call option 

with a payoff, h(s), 
h(s) = [max(s - X, 0)]/1: (7.3.1) 

where", E (0,1). 

Without dividends, the standard vanilla American call option value is equal 

to the corresponding European call option since it is not optimal to exercise an 

American call early. However, this is not the case for an American call with the 

fractional power payoff in (7.3.1). This is illustrated in Table 7.1. 

So American European 
90 1.25443 1.18252 

100 2.26822 2.15269 
110 3.39444 3.24124 

Table 7.1. Comparison of American and European fractional power call options 

Table 7.1 shows values of American fractional power call options and those 

of their European counterparts. Parameter values are X = 100, r = 0.05, (J = 0.2, 

and T = 1. '" = 0.5. All values are computed using a trinomial lattice method 

with N = 204,800 time steps. It is clear that American call values are all higher 
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than those of European call which means American fractional power call can be 

( optimally) exercised early. 

Figure 7.2 shows the convergence of Bermudan fractional power call option 

values to American fractional call option values with the same set of parameter 

values used in table 7.1. These values are computed using a lattice method with 

N = 204,800 time steps with different exercise dates, E. Panel (a) shows Bermudan 

fractional call values with different E on a log scale, E = 1,2, ... ,204 800. As 

expected, as E increases the Bermudan value converges to the American value of 

2.26822. Panel (b) shows the convergence in errors, In( vB - V OO
), where vB is the 

Bermudan fractional call option value with E exercise dates and V OO is the value 

of an American fractional call. It shows that the Bermudan value converges to the 

American value at a rate of rv1. 

Figure 7.3 plots American fractional power call option's EEB using a lattice 

method and the same set of parameter values used in table 7.1. The EEB is concave 

rather than convex for the put case. The EEB is non-increasing in time to maturity 

of the option. At maturity, the EEB has a value equal to option's strike, X. The 

region above the EEB is the immediate exercise region while the region below the 

EEB is the continuation region. Let r* be the optimal stopping time of a American 

fractional call option and let Sf be the EEB. Write St as an asset value at time t. 
In this case, r* is given by 

r* = inf { t > a : St ? Sf} . (7.3.2) 

7.3.1 Valuation of an American fractional power call option 

The SCMC method with projection operators described in section 7.2.1 can be easily 

applied to value an American fractional power call option. 

Two modifications are needed for the method to value an American frac­

tional power call. The first modification is trivial; the payoff function is now given 

by (7.3.1). The second modification is concerned with the estimation of the option's 

EEB. As shown in figure 7.3, the exercise region is above the EEB and the con­

tinuation region is below the EEB. Therefore, definitions of Sf in (6.1.14), rf in 

(7.2.11), and df in (7.2.15) must be changed. In particular, at the ith contour, they 
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Figure 7.2. Convergence of Bermudan fractional call option values to the American 

value from a lattice method 
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Time to maturity 

Figure 7.3. American fractional power call options' EEB 

are 

S~ - min {S E sf} (7.3.3) , s 
1".13 = min {T E 1ff} (7.3.4) z T 

dT? = min {dE ]]}f} , (7.3.5) 
~ d 

sf,1ff, and ]]}f are sets of asset values, hitting times and contour distances at 

which a holder exercises the option. SiE , TiE, and df are now the smallest asset 

value, hitting time, and distance at the ith contour that the option is exercised. 

To estimate the value of an American fractional power call options, the 

method approximates values of individual SO fractional power call options with 

different exercise dates, N. Then, the value of an American fractional call option is 

obtained by using Richardson extrapolation (section 6.1.4). 

7.3.2 Contour construction for an American fractional power call 

option 

In chapter 6 where American puts are valued, one was able to choose the growth 

rate gN-l by setting pN-l(T) = X. For American fractional power call case, it 

is required that pN-l(T) > X. This is because, at time T (the vertical contour, 
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f3N) and for paths j = 1, ... , M, one wants to have sufficient in-the-money paths 

Sf> X. Also, since the EEB of American fractional power call options lie above an 

option's strike X (see figure 7.3), having f3N-l(T) > X implies that sample paths 

on the (N - l)th contour contribute to the exercise decision of the option's holder. 

Therefore, in this case gN-l must be chosen such that f3N-l(T) > X. 

It is important that contour parameters must be chosen such that there is no 

bias in option values and are robust to different values of So with the same X, T, (j 

and T. 
To see the effect of changing f3N- l (T), table 7.2 reports values of fractional 

power American call options with different values of f3N- l (T). Type 5 contour is 

used with the SCMC method. Except for the cases where So = 90 and f3N-l(T) E 

{130,140}, contour parameters are kmax = 0.85, kmin = 0.1, C = 5, 9 = 11.69, 
and f3N- l (0 I aN- l ) = 0.001. When So = 90 and f3N-l(T) E {130,140}, kmax is 

changed to 0.70 in order to ensure that 131(0) < So. Benchmark values are computed 

from a lattice method with N = 204, 800 time steps. 

Table 7.2 shows that when f3N-l(T) is 130 or 140, there is a slight low bias 

in option values. When f3N -leT) is 110 or 120, bias is within the range ±2 and 

contour parameters are robust with different values of So. Since these are options 

that will be considered in this chapter, f3N-l(T) is chosen to be either 110 or 120. 

SO f3N 'l(T) 
Benchmark 110 120 130 140 
120 VOO 4.4881 4.4879 4.4843 4.4896 

4.48915 (se) (0.0019) (0.0021) (0.0020) (0.0019) 
[tJ [371J [381] [385] [391] 

{b} {-0.54} {-0.60} {-2.4} {0.22} 
110 VOO 3.3939 3.3958 3.3923 3.3906 

3.39444 (se) (0.0025) (0.0024) (0.0024) (0.0024) 
[tJ [329] [337] [343] [349J 

{b} {-0.23} {0.57} {-0.90} {-1.6} 
100 VOO 2.2661 2.2691 2.2631 2.2627 

2.26822 (se) (0.0023) (0.0023) (0.0024) (0.0023) 
[t] [231} [237J [239] [243J 

{b} {-0.94} {0.38} {-2.1} {-2.4 } 
90 VOO 1.2557 1.2552 1.2496 1.2513 

1.25443 (se) (0.0021) (0.0021) (0.0019) (0.0019) 
[tJ [135J [138J [143J [150J 

{b} {0.61} {0.37} {-2.5} {-1.6} 

Table 7.2. American fractional call values with different f3N-l(T) 
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Figure 7.4 illustrates the type 5 contours. Parameter values are aN-1 = _I_ 
N-I 0.001' 

j3 (T) = 120, 9 = 11.69, C = 5, kmax = 0.85, and kmax = 0.1. The option has 64 
exercise dates. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Time to Maturity 

Figure 7.4. Contour construction for an American fractional power call with its 
EEB from Richardson extrapolation 

7.3.2.1 Values of Sr on the ith contour 

Section 6.1.2.2 discusses two methods to compute Sr. These are cases where r:- 1 < T in equation (6.1.10) and r:- 1 > T in equation (6.1.11). When valu­

ing an American put, values of Sr where r;-l > T are not needed (see section 6.2). 

However, for an American call option, they have to be taken into account since they 

are in-the-money values. This section describes how these values of Sr are used in 

the method. 

Figure 7.5 illustrates the values of Sr from the two cases where r!V-l < T 
J 

and r;-l > T with two exponential contours j3N-l(t) and j3N-2(t). Figure 7.5 

shows three regions; (a), (b), and (c). In region (c), Sr takes values in [0, X). 
In region (a), Sr has values in [X,j3N-l(T)). In region (b), Sr takes values in 

[j3N-l(T),j3N-2(T)). Regions (a) and (c) correspond to the case where r;-1 < T 

and values of Sr in these regions are computed by using (6.1.10). Since values of 

Sr in region (c) are the out-of-the-money values (for a call option) and are not used 

in the algorithm, they need not be computed. Region (b) corresponds to the case 

where r!V-l > T and thus values of Sr in this region are computed by using (6.1.11). 
J 
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Figure 7.5. The values of Sr (area (a), (b) and (c» 

Numerical examples suggest that the approximation in (6.1.11) are used only "'2% 

of total sample paths on the ith contour, and approximately for the last 5% of N 

contours. Thus, noises that come from the approximation in (6.1.11) do not have a 

great impact on the option value. 5 

When computing values of SC fractional power call options, these values of 

Sr must be used. On the Nth contour (a vertical contour from 0 to j3N-l(T», the 

option values are those lying along regions (a) and (c). On the (N - l)th contour, 

the option values are those lying on j3N-l(t) and those in region (b) which is the 

interval [j3N-l(T),j3N-2(T»). On the (N -2)th contour, the option values are those 

on j3N-2(t) and those in the interval [j3N-2(T), j3N-3(T») (not shown in figure 7.5). 

In general, on the ith contour, the option values are those on j3i(t) and also those 

lying in the interval [j3i (T), j3i-l (T») . 

7.4 Application to American linear barrier fractional 

power call options 

This section illustrates how the SCMC method can be extended to value a (down) 

American knock-in linear barrier option. This is a barrier option that is knocked in 

to an American fractional power option. The linear barrier bt is 

bt = 1 + mt, (7.4.1) 

where 1 E 1R+ and mER 
Suppose the barrier option matures at time T, and the underlying American 

5Numerical examples in section 7.5 shows that biases are within the range ±2. 
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fractional power option matures at time Tl 2: T. Let Tb = inf{t E (0, TJ : St :$ bt}. 

An American knock-in option comes into existence at time Tb if Tb < T. Then a 

holder can exercise early at time T where T E h, Td. In this case, set Tl = T. 

The valuation algorithm consists of two main phases: (1) the hitting times 

phase and (2) the valuation phase. They are discussed now. 

Phase 1: Finding hitting times 

When valuing an European knock-in option, knowledge of the value of Tb is not 

required: one only needs to know /, = 1I{1OE[O,T]} , that is, whether an asset hits the 
option barrier anytime between time 0 to T. 

Define the interval [1.*, f*J such that 1.* :$ Tb :$ f*. For an American knock-in 

option, establishing the time interval [1.*, 7*J is crucial. 6 Let T a be the exercise time 

of the American option. Since the American option comes to existence only at Tb, 
it can be exercised early at times T a E [Tb, T]. 

The objective of this phase is to determine the interval [1.*, f*] that contains 

the first hitting time Tb to the option barrier. On the jth path, the method generates 

a set Tj = {TJ}. , where TJ is defined in section 7.1. The algorithm finds an i 
t=l, ... ,N 

such that T~-l < 'T',b. < TJ~' if such an i exists. Then set T* = TJ~-l and f* = T~. J - 1- - J 

Let S; be the simulated value for a hitting time TJ to the ith contour on 

the jth sample path. Given a pair of asset values (S;-l, S;), one has to determine 

if T~-l < Tb. < T~. This is straightforward because the contour bridge method 
J 1 J 

described in section 3.2 can be directly applied. 

Fix a set a = {aih=l, ... ,N. The method first generates hitting times to the 

fixed set of N contours {;3 (T I a i )} TE[O,Tl' i = 1, ... , N, to obtain a set of sample 

paths of hitting times. To establish whether Ttl < Tbj < TJ for a given i, a set of re­

fined contours {;3"lh=l, ... ,L lying between ;3i-l(t) and j3i(t) is generated. Note that 

the value of L is not fixed but is determined by the algorithm. Write bi = b (Tj). 
The algorithm works forward from ;3i(t) to ;3N (t). It proceeds as follows. 

The algorithm to find the interval [1.*, f*J: 

1. Fix a set of contours ;3 = {;3i (t)} i=l, ... ,N· Set TJ = 0 and SJ = So. Construct a 

set of sample paths Tj = {TJ, ... , Tt}._ and Sj = {SJ, ... , Sf'}._ . 
J-l, ... ,M J-l, ... ,M 

Set j = 1 and i = 1. Proceed to step 2. 

6Note that one needs to know only the interval [z:, f*], not the exact value of 7'b. 
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2. At the ith contour, determine if TJ-1 ~ 'Tbj ~ T} by checking whether s~ < bi. 
. . . 3 

If S3~ < bt
, then one establishes that Tb· < T3~' Set T* = T~-l and T-* - Ti 

J - 3 - j' 
Then set i = 1 and increment j +- j + 1. Go back to step 2. 

If SJ > bi, increment i +- i + 1 and apply step 2. 

3. If i = N, this implies SJ > bi 'Vi = 1, ... , N. Must check whether an option 

barrier is breached between (TJ-1, T}) 'Vi = 1, ... , N. To do this, reset i = 1 
and apply step (3a). 

(3.a) At the ith step, one has Si-1 > bi- 1 and Si > bi. Apply the algorithm in 

section 3.2 in between bounding contour j3i-1(t) and j3i(t) with a set of 

refined contours {j3"I} 1=1, ... ,£' 

i 1 . . 1 
(3.b) If one can establish that Tj - ~ Tb j ~ T], set r.* = Tr and f* = T}. 

Then, set i = 1 and increment j +- j + 1. Go back to step 2. 

(3.c) If T;-l '1. Tbj '1. Tj, increment i = i + 1 and apply step 3a. 

(3.d) If i = N, this implies the option barrier has not been breached. Set 

r.* = f* = 00 for that jth path. Set i = 1. Increment j +- j + 1 and 
apply step (2). 

At the end of the algorithm, one obtains a set of pairs { (r.;, f;) } ._ . 
3-1, ... ,M 

Since the standard LSLS method is equivalent to sampling a hitting time to a vertical 

contour, the standard LSLS implements the box vertical method. For the sequen­

tial contour method, the single hit variant method is implemented (see section 3.2.6). 

Phase 2: Knock-in option valuation 

First, the value of the underlying American option is found. Then, the value for 

the barrier option can be found. The American option is valued using the al­

gorithm described in section 7.2.1 (as the one used to find the option's EEB). 

The method uses the same set of sample paths Tj = {TJ, ... , Tt} . _ and 
3-1, ... ,M 

S · = {Sq Sf.'l} as the one used for obtaining the interval [T~' f~] that 3 3"'" 3 . -3 3 3=1, ... ,M 
contains Tb. Write Vj,i as the American option value at the ith contour on the jth 

path. After implementing the algorithm in section 7.2.1, at time TO = 0, one has a 

set {it,O} . 
3 j=l, ... ,M 
To determine the value of the knock-in barrier option VJ, one requires a 

knowledge of {(1.;, fj*) } . _ . On the ith contour, one needs to check if T} ;? f;!' 
3-1, ... ,M 
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or if T] $ 1.;. When T] ~ fj, the option's barrier is already hit and a holder 

can choose to exercise the underlying American option. However, if T~ < T~ the 
) - -)' 

option's barrier is not yet hit and the underlying American option does not come 

into existence. 

Hence, at time TO = 0, set 

{ 

-rT~.-..a,i 
-b0 e 'v'' v.' = J 

J 0 , 
for T~ = f'f < T 

J J ' 
for I; > T 

(7.4.2) 

Then the value of the knock-in option is vn,o = 11 'Lf=1 ilJ'o. 
On the jpath, when f; < T, the American option comes into existence before 

time T. Its value can be observed for the first time at fl. Hence, the value of the 

knock-in option is the discounted value of the American option at time T} = f;. If 

1.; > T, the option's barrier is not hit and thus its value on that particular jth path 

is O. 

7.5 Numerical Results 

This section reports numerical results for three different options: the standard Amer­

ican put option, the American fractional power call options and the barrier option 

that knocks in to an American fractional power call option. Parameter values are 

X = 100, U = 0.2, r = 0.05 and T = 1. Monte Carlo parameter values are 

M = 50,000, N E {16, 32, 64}. The method uses scaled Laguerre basis function 

where the number of basis functions K is 12. To approximate the American value , 
Richardson extrapolation is used on three SC option values V64, V32 and V16. The 

roll-back control variate is call-tau (call option sampled at exercise times. See sec­

tion 5.2.2) and the pricing control variate for each sequential contour options is also 

call-tau. 
Let T a be the exercise time of the option. The call-tau control variate, C~a is 

found by 
if T a < T, 
Otherwise, 

where CO is the time to Black-Scholes value of an European call option. 
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7.5.1 Sequential contour bridge (SCB) method with American put 
options 

Table 7.3 reports extrapolated American put option values from the SCB method for 

different values of So. The projection methods are S-projection and V-projection. 

Note that, when valuing a put option, there are biases in option values when using T­

projection. This issue will be investigated in section 7.5.1.1. The benchmark values 

are computed from a trinomial lattice with N = 204,800 time steps. The table 

reports extrapolated American put values vea, standard errors (se), computational 

times [tJ, biases {b} (3.3.1) and efficiency gains e (3.3.2). Gains are computed 

against the standard LSLS method. Table 7.3 reports values from the standard 

SCMC method (forward-evolution) described in chapter 6 and the SCB method 

(backward-evolution) described in section 7.1. 

In this case, type 5 contour is used (section 7.1.1). Contour parameters are 

.aN-l(O) = c1rr = 0.001, C = 5, kmax = 0.95, kmin = 1 and 9 = 11.51. Table 7.3 also 

shows extrapolated American put option values computed from the standard LSLS 

method with Brownian bridge (backward-evolution). 

The results show no evidence of bias for the S-projection and V-projection 

methods. The biases are all within a range ±2. Standard errors are constant across 

all methods. Regarding the sequential contour methods, the backward evolution 

(SCB) technique produces similar results to the forward evolution (SCMC) technique 

both for S-projection and V-projection. 

Both the S and V-projections yield similar results for all values of So. This 

is because with the chosen set of contours, their steep shape causes the value of S~ , J 

and d!:. to be quite close to each other. 
J 

When comparing the sequential contour results with those produced from the 

standard LSLS, no efficiency agains are observed. Efficiency gains, e, are approxi­

mately in the range e E [0.90, 1.02J. This suggests the performance of the sequential 

contour method (both forward and backward) with S- and V-projections is similar 

to that of the standard LSLS method when valuing American put options. 

7.5.1.1 Bias in the American put value from the T-projection 

Although S- and V-projections are unbiased, it turns out that the T-projection 

exhibits bias. This section investigates this bias. 

The source of bias comes from the noise in estimating TiE in (7.2.11). Fig­

ure 7.6 illustrates the source of such a noise. 

Panel (a) in figure 7.6 shows the continuation values, regression values and 
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So LSLS 
, 

S-Projection I I V-Projection 

Benchmark Backward Forward Backward Forward Backward 

110 1)00 2.9864 2.9871 2.9862 2.9864 2.9868 

2.9865 (se) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) 

[tJ [92J [104J [104J [107J [106J 

{b} {-O.ll} {0.54} {-0.30} {-0.12} {0.23} 

e 1.0 0.91 0.92 0.95 0.90 

105 1)00 4.3024 4.3052 4.3054 4.3052 4.3065 

4.3044 (se) (0.0013) (0.0013) (0.0013) (0.0012) (0.0013) 

[tJ [129] [138] [137] [143J [140J 

{b} {-1.6} {0.59} {0.74} {0.59} {1.6} 

e 1.0 0.94 0.93 0.94 0.94 

100 1)00 6.0904 6.0901 6.0890 6.0892 6.0899 

6.0904 (se) (0.0016) (0.0016) (0.0016) (0.0016) (0.0016) 

[t] [185J [188J [187J [190J [189] 

{b} {0.02} {-0.15} {-0.85} {-0.73} {-0.28} 

e 1.0 0.98 0.98 0.93 0.96 

95 1)00 8.4497 8.4504 8.4533 8.4495 8.4504 

8.4510 (se) (0.0019) (0.0019) (0.0019) (0.0019) (0.0019) 

[t] [249J [245J [244J [246] [245J 

{b} {-0.67} {-0.3} {1.2} {-0.79} {-0.30} 

e 1.0 1.04 1.02 1.01 1.02 

90 1)00 11.4901 11.4896 11.4899 11.4922 11.4937 

11.4927 (se) (0.0023) (0.0023) (0.0023) (0.0023) (0.0023) 

[t] [297] [294] [290] [292] [292] 

{b} {-1.2} {-1.4} {-1.2} {-0.22} {0.43} 

I I e I 
1.0 1.01 1.01 0.99 1.00 

, 

Table 7.3. American put, cr = 0.2 
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Figure 7.6. Continuation values, regression values and exercise values from the 
S-projection and the T-projection method, for a SC put option, on the 62th contour 
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exercise values of the se fractional call options from the S-projection with 64 exer­

cise opportunities. In panel (a), it can be observed that the value of SiE (where the 

regression line crosses the payoff line) is ",,97. 

Panel (b) shows the same plot produced by the T-projection. In this case, it 

is not clear where the regression line crosses the payoff line. With the T-projection, 

the slopes of the exercise value line and that of the regression value line are very 

close. Hence, it is difficult to estimate rl accurately. This introduces noise when 
estimating rp using T-projection. 

Furthermore, since Sri is an exponential function of ri, Sri = ~ exp(gr i ), 

a small simulation noise in estimating riE will result in a much larger noise in the 

option's EEB (in terms of the asset value S). For instance, with a high contour 

growth rate 9 "" 11.5, a 0.1 % difference in rt results in a 1 % difference in option's 
EEB. This is an enormous 10 times increase in error. 

One can see that the error should increase as the contour growth rate 9 

increases. Hence, to reduce bias in option values, one should set 9 so that contours 

are shallower. However, contours cannot be too shallow because this means that 

there are fewer in-the-money paths which will cause the option value to be biased 

low. 

T-projection 
So 9 

Benchmark 11.51 2.30 1.61 
110 VOO 2.9843 2.9854 2.9835 

2.9865 (se) (0.0010) (0.00095) (0.00093) 
[t] [90] [98) [102] 

{b} {-2.2} {-1.2} {-3.2} 
105 VOO 4.2968 4.3030 4.3004 

4.3044 (se) (0.0013) (0.0012) (0.0012) 
[tJ [127J [132J [134J 

{b} {-5.9} {-1.2} {-3.4} 
100 VOO 6.0829 6.0897 6.0852 

6.0904 (se) (0.0016) (0.0015) (0.0016) 
[t] [173J [175] [197] 

{b} {-4.7} {-0.42} {-3.3} 
95 VOO 8.4408 8.4481 8.4455 

8.4510 (se) (0.0020) (0.0019) (0.0019) 
[tJ [194J [223J [232) 

{b} {-5.1 } {-1.5} {-2.9} 

Table 7.4. Bias in extrapolated American put values using T-projection 
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Table 7.4 illustrates the extent of biases in American put values from using 

the SCB method with the T-projection. Values of growth rate are 11.51, 2.3, and 

1.61 which correspond to o:Ll = 0.001, 10, and 20 respectively. These values are 

chosen such that the contours become shallower. 

When 9 = 11.51 (this value of 9 is used in table 7.3), biases are large. They 

are around 5 standard errors away from the benchmark value. When 9 is lowered 

to 1"V2.30, the biases are reduced to be within the range ±2. However, all bias signs 

are negative which implies there may still be bias, although low, in the option value. 

When further lowering 9 to I"V 1.61, the biases increase. Note that these are biases 

from misplacing the contours. With shallower contours, the contours are pushed 

toward option's maturity which means most of the exercise decisions will be done 

further away from time to. This introduces bias in the option value. 

Hence, it is possible to reduce a bias in the American put value computed 

T-projection by making a suitable choice of g. Even though the biases are in ±2, a 

small bias still persists. 

7.5.2 American fractional power call option results 

In this section American fractional power call option values are reported. The 

parameter /'i, in (7.3.1) is set to be 0.5. Benchmark values are computed from a 

lattice method with N = 204,800. Type 5 contour is used. Contour parameters 

are fiN-leO) = c!o- = 0.001, fiN-leT) = 120, C = 5, kmax = 0.85, kmin = 1 and 

9 = 11.69. Note that since numerical results suggest that there is no significant 

difference in the performance between the SCMC (forward-evolution) and the SCB 

(backward-evolution) methods, the SCMC method is used in this case. 

Results in table 7.5 show no evidence of bias for any of the three projections. 

Biases are all in the range ±2. Computational times for the T-projection are, on 

average, I"V 10% less than those from S-projection and V-projection. 

To see why using the T-projection introduces no bias in this case, fig­

ure 7.7 shows continuation values, regression values and exercise values from the 

T-projection. Comparing figure 7.7 to panel (b) in figure 7.6, one can observe that 

it is much easier to determine where the regression line intersects the exercise line 

in a call option case for the T-projection (7{ 1"V0.9838 in figure 7.7). This is due to 

the difference in the shape of the payoff between an American put and an American 

fractional call. The concave shape of the payoff function of an American fractional 

call, due to /'i, < 1 in (7.3.1), make the point where an exercise point first crosses a 

regression point clearly visible. 
Table 7.5 suggests that the SCMC method with S-projection and V-projection 
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So LSLS 
I 

S-proj. I T-proj. I 'D-proj. I 

Benchmark 
120 1)00 4.4906 4.4879 4.4892 4.4914 

4.48915 (se) (0.0019) (0.0021) (0.0019) (0.0022) 

[t] [394] [381] [337] [384] 

{b} {0.75} {-0.62} {0.04} {1.1} 

e 1.0 0.88 1.2 0.82 

110 1)00 3.3942 3.3958 3.3938 3.3946 

3.39444 (se) (0.0023) (0.0024) (0.0023) (0.0024) 

[t] [347] [337] [299] [338] 

{b} {-0.09} {0.58} {-0.28} {O.O} 

e 1.0 0.99 1.2 0.96 

100 1)00 2.2656 2.2691 2.2688 2.2701 

2.26822 (se) (0.0024) (0.0023) (0.0023) (0.0025) 

[t] [237] [237] [213] [240] 

{b} {-1.1} {0.38} {0.26} {0.76} 

e 1.0 1.1 1.2 0.90 

90 1)00 1.2566 1.2552 1.2533 1.2525 

1.25443 (se) (0.0021) (0.0021) (0.0019) (0.0020) 

[t] [117] [138] [123] [140] 

{b} {1.1} {0.38} {-0.60} {-1.0} 

~ I 
e 1.0 0.85 1.1 0.90 

I I 

Table 7.5. American fractional power call option with forward evolution (standard 

SCMC) method. (J = 0.2 
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Figure 7.7. Continuation values, regression values and exercise values from the 
T-projection method, for a SC fractional call option, on the 62th contour 

techniques have no gain over the LSLS method. There is a gain of "" 1.2 from the T 
projection technique. However, this is not substantial. 

7.5.3 American knock-in option results 

This section reports numerical results for a barrier option that knocks in to an 

American fractional power call option using the SCMe method. The pricing and 

rollback control variate is call-tau. 

The stopping condition parameters for the contour bridge algorithm (see 

section 7.4 and 3.2.4) are fl = 10-1°, f2 = 10-4
, and fP = 10-1°. 

7.5.4 Benchmark options: flat barrier with power K, = 1 

When an option barrier is flat and k = 1, there exists several approximation tech­

niques in the literature. There are Haug (2001) [119], Dai and Kwok (2004) [79] and 

Gao et al. (2000) [100]. 
In this section, benchmark values are computed using the approximation 

technique from Haug (2001) [119] who applied the reflection principle to approximate 

the value American down-and-in call option where the barrier, b, is less than the 

option's strike price, X. The idea is that the number of asset value paths from So 

to a point higher than X, that hit a barrier b at Tb < T is equal to the number of 
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paths staring from ~: to a point higher than X. 

Write vb(S), va(s) and b for the value of an American knock-in call option, 

a standard vanilla American call option, and the option's barrier respectively. The 

American knock-in call and the standard American call have the same parameters, 
X,r,a, and T. 

The approximation is 

(7.5.2) 

where is is the dividend yield. To apply (7.5.2), a trinomial lattice is used to compute 

va ( ~) where N = 204,800 steps. When b < X, where X is the strike price of the 

American knock-in option, results from the approximation in (7.5.2) and those from 

the decomposition method of Dai and K wok (2004) [79J coincide. 

Parameter values in Table are X = 100, r = 0.1, is = 0.08, a = 0.3, and 

b = 95. Values computed using (7.5.2) are shown below values of So in table 7.6. 

Table 7.6 presents numerical results for an American knock-in option with a 

flat barrier and standard call payoff (K, = 1). The table shows results from the 8CMC 

with all projections, and those from the L8L8 method. The gains are computed 

relatively to the L8L8 method with the same call-tau roll-back and pricing control 

variate. 

There is no evidence of bias in option values in table 7.6. Biases are all 

in the range ±2. There are slight efficient gains across all values of So and types 

of projection. One can see that for all values of So, the T-projection achieves the 

highest gains (even though marginal) among the three projections. As So moves 

away from the option barrier b, the gains increase slightly. This is because as So 

increases, the vertical contour method will take longer to compute Tb and hence 

results in slightly increased gains to the SCMC method. 

7.5.5 Exotic American options 

This section presents numerical results for American knock-in options with the frac­

tional power payoffs and a linear barrier. Parameter values are X = 100, r = 0.05, 

a = 0.2 and T = 1. Type 5 contour parameters are kmax = 0.85, kmin = 0.1, 

j3N-I(T I aN-I) = 120, j3N-l(O) = c!rr = 0.001, C = 5, and 9 = 11.69. The barrier 

bet) = 1 + mt is linear 1 = b(O) = 95 and m = {-15, -10, -5, 5}. 
The option power parameter K, in (7.3.1) is set to be 0.5. Benchmark values 

are computed from a standard L8LS method with M = 850,000 sample paths and 
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So LSLS S-Proj. T-Proj. D-Proj. 
Benchmark 
105 VOO 5.817 5.823 5.905 5.920 

5.846 (se) (0.052) (0.051) (0.049) (0.052) 
[t] [414] [226] [198] [226] 

{b} {-0.55} { -0.46} {1.2} {1.4} 
{e} 1.0 1.9 2.3 1.9 

102 VOO 6.793 6.827 6.701 6.780 
6.746 (se) (0.053) (0.052) (0.052) (0.051) 

[t] [347] [203] [180] [208] 
{b} {0.89} {1.6} {-0.86} {0.66} 
{e} 1.0 1.8 2.0 1.8 

100 VOO 7.419 7.436 7.350 7.376 
7.414 (se) (0.050) (0.050) (0.048) (0.049) 

[t] [291] [188] [167] [193] 
{b} {O.ll} {0.44} {-1.3} {0.77} 
e 1.0 1.6 1.9 1.6 

98 VOO 8.138 8.161 8.152 8.122 
8.141 (se) (0.044) (0.044) (0.042) (0.044) 

[t] [236] [173] [156] [177] 
{b} {-0.08} {0.45} {0.25} {-0.45} 
e 1.0 1.4 1.7 1.4 

Table 7.6. Benchmark case: knock-in flat barrier American call options with 

K==1. 
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are extrapolated from the Bermudan fractional call values with N E {32, 64, 128} 

exercise opportunities. 

Note that in the first columns in tables 7.7 to 7.9, the slopes of the option 

barrier and benchmark values are presented as triplets: 

( m) ( -15 ) v = 0.3746 . 

(se) (0.0013) 
(7.5.3) 

In top entry is the slope of the option barrier, the middle entry is the Monte Carlo 

benchmark value and the bottom entry in round brackets is the standard error of 
the Monte Carlo benchmark value. 

Benchmark Simulation values 
values LSLS S-Proj. T-Proj. V-Proj. 

-15 1)00 0.3822 0.3764 0.3791 0.3688 
0.3746 (se) (0.0047) (0.0047) (0.0047) (0.0046) 

(0.0013) (t] [739J [272] (246] (279] 
{b} {L6} {0.39} {LO} {-L2} 
{e} 1.0 2.8 3.0 2.7 

-10 1)00 0.5191 0.5142 0.5280 0.5130 
0.5204 (se) (0.0054) (0.0053) (0.0055) (0.0054) 

(0.0015) [tJ [689J [271) [243} [276] 
{b} {-0.25} {-L2} {1.4} {-1.4} 
{e} 1.0 2.6 2.8 2.5 

-5 1)00 0.7212 0.7212 0.7197 0.7329 
0.7293 (se) (0.0061) (0.0061) (0.0062) (0.0062) 

(0.0017) (t] [633) (270) (246] (274] 
{b} {-1.3} {-1.3} {-L5} {0.59} 
{e} 1.0 2.3 2.5 2.2 

5 VOO 1.2813 1.2776 1.2856 1.2769 
1.2893 (se) (0.0076) (0.0076) (0.0076) (0.0076) 

(0.0021) [t] [520] [268] [240J (273] 
{b} {-1.0} {-1.5} {-0.49} {-1.6} 
{e} 1.0 2.0 2.2 1.9 

Table 1.1. Knock-in linear barrier fractional power American call options, So = 
105 

Tables 7.7 to 7.9 report the values of knock-in linear barrier fractional power 

American call options. Results suggest that there is no evidence of bias in these 

values. All option values shown in these tables have biases within ±2. 
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Benchmark Simulation values 
I 

values LSLS S-Proj. T-Proj. V-Proj. 

-15 VOO 0.8040 0.8013 0.7990 0.7880 

0.7948 (se) (0.0064) (0.0064) (0.0063) (0.0063) 

(0.0017) ttl [508] [220] [198] [222] 

{b} {1.4} {1.0} {0.66 } {-1.1} 

{e} 1.0 2.3 2.6 2.3 

-10 VOO 0.9287 0.9295 0.9237 0.9286 

0.9329 (se) (0.0067) (0.0067) (0.0067) (0.0067) 

(0.0016) ttl [469] [219] [199] [221] 

{b} {-0.62} {-0.50} {-1.4} {-0.64} 

{e} 1.0 2.1 2.4 2.1 

-5 VOO 1.0874 1.0889 1.0903 1.0856 

1.0953 (se) (0.0070) (0.0070) (0.0070) (0.0070) 

(0.0017) ttl [421] [218] [199] [221] 

{b} {-1.1} {-0.92} {-0.71} {-1.4} 

{e} 1.0 1.9 2.1 1.9 

5 VOO 1.4590 1.4531 1.4607 1.4577 

1.4616 (se) (0.0074) (0.0075) (0.0074) (0.0074) 

(0.0019) ttl [346] [219] [195] [220] 

{b} {-0.35} {-1.1} {-0.12} {-0.52} 

{e} 1.0 1.6 1.8 1.6 
! 

Table 7.8. Knock-in linear barrier fractional power American call options, So = 

100 
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Benchmark Simulation values 

values LSLS S-Proj. T-Proj. V-Proj. 

-15 VOO 1.0868 1.0885 1.0846 1.0744 

1.0816 (se) (0.0068) (0.0068) (0.0068) (0.0068) 

(0.0016) ttl [384] [197] [178] [198] 

{b} {0.76} {1.0} {0.44} {-1.1} 

{e} 1.0 2.0 2.2 2.0 

-10 VOO 1.1794 1.1933 1.1873 1.1901 

1.1895 (se) (0.0069) (0.0069) (0.0068) (0.0069) 

(0.0017) [t] [352] [196] [178] [199] 

{b} {-1.5} {0.56} {-0.31} {0.1O} 

{e} 1.0 1.8 2.0 1.8 

-5 VOO 1.3067 1.3104 1.3131 1.2949 

1.3050 (se) (0.0070) (0.0070) (0.0069) (0.0069) 

(0.0017) [t] [322] [196] [177] [196] 

{b} {0.25} {0.77} {1.2} {-1.5} 

{e} 1.0 1.7 1.9 1.7 

5 VOO 1.5408 1.5423 1.5473 1.5461 

1.5485 (se) (0.0069) (0.0069) (0.0069) (0.0069) 

(0.0017) [t] [266] [194] [176] [199] 

{b} {-1.1} {-0.91 } {-0.18} {-0.35} 

{e} 1.0 1.4 1.5 1.3 
~ 

Table 7.9. Knock-in linear barrier fractional power American call options, So = 98. 
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Like the benchmark case, the highest gains come from the T-projection across 

all values of m and So. As the slope of the option barrier decreases gains are la g 
S' . ' r er. 

Iml:arly, as So moves further away from the option barrier b(O) at time to, gains 

also mcrease. This is because, on the ith contour, the vertical barrier method takes a 

greater computational time to establish if T i - 1 ~ Tb ~ Ti than the single hit method 

does, and this difference becomes more pronounced as the barrier is decreasing and 

So is larger. 
The highest gain (of 3) over the standard method comes from the T-projection 

technique when So = 105 with m = -15. Gains from the S- and V-projections are 

slightly lower; these are 2.8 and 2.7 respectively. Even when So is close to bo and 

m = -15, all three methods are at least twice as fast as the standard LSLS method. 

The least gains are ",,1.5 when So is close to the option barrier (So = 98) with a 

positive slope, m = 5. 
It is clear that the overall gains when valuing American knock-in options are 

larger than those obtained from the same method when valuing American put and 

American fractional call options. The reason comes from the knock-in valuation 

phase as discussed earlier. 

7.6 Conclusion 

In this chapter, new simulation techniques to value several types of American options 

have been described. First, the sequential contour bridge method is introduced and 

discussed. Second, different projection techniques are described, namely the T­
projection and the V-projection. These projections are applied to value standard 

American put options and American fractional power call options. Then a linear 

knock-in American barrier option is introduced. To value this American option, the 

generalised LSLS algorithm is combined with the contour bridge method described 

in chapter 3. 
The results in section 7.5 suggest that there is no evidence of bias in American 

put option values when using the sequential contour bridge method with the S- and 

V-projections. However, there is a low bias with the T-projection when valuing an 

American put. This seems to be because the convex shape of the American put 

option causes greater noise in estimating TiE when using the T-projection which 

results in a suboptimal estimate of the EEB. The results show that bias can be 

reduced by modifying the shape of the contours but a slight bias can still be observed. 

\Vhen applying these projection techniques to value American fractional call 

options, biases in option values from using the T-projection disappears. This is 
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because the concave shape of the American call's payoff reduces simulation noises 

from the T-projection. In this case, T-projection achieves very marginal gains over 

the standard LSLS method. 

The SCMC method is extended to value exotic American options; an Amer­

ican linear barrier knock-in option with a fractional power payoff. In this case, the 

algorithm is modified so that one can determine if the option barrier is hit before the 

time to maturity T. To do this, the contour bridge method described in section 3.2.3 

is incorporated into the SCMC method. Numerical results show no evidence of bias 

in the extrapolated American knock-in values. The SCMC method with different 

projections is more effective than the standard LSLS method especially when valu­

ing American knock-in options with a large negative barrier slope with an initial 

asset value further away from barrier value at time to· 
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Chapter 8 

Conclusion 

This thesis is concerned with the development of new simulation methods to value 
exotic barrier options and American options. 

Barrier options is one of the most popular exotic options. They have several 

forms. For instance, a knock-out option expires worthless if the predetermined 

barrier is hit before the time to maturity. On the contrary, a knock-in option 

comes into the existence only if the barrier is hit before time to maturity. Barrier 

options enable investors to avoid or to obtain exposure and they are cheaper than the 

European option. Even though several methods can value barrier options accurately, 

these methods may work only when a barrier is in a simple form, namely, a flat or 

an exponential barrier. Most standard methods can be used to price only a single 

option at a time. This can be extremely inefficient when pricing a large book of 

options. Even if a method can price a single option quite rapidly, its cost when 

applied to a book can be excessive. 

The first part of the thesis discusses the valuation problem of barrier options. 

Chapter 2 provides the literature review of existing methods for valuing barrier 

options. It points out that although some of the methods can be applied to price 

standard barrier options accurately, these methods can fail to value a more complex 

barrier option. 

Chapter 3 proposes a novel simulation method, the contour bridge method, 

that can be applied to the valuation of barrier options with complex non-constant 

barriers. The main tool of the method is a hitting time simulation. Instead of 

generating a set of asset values (standard method), the contour bridge method 

samples hitting times to amendable contours to approximate the hitting time to the 

option's barrier. The method is applied to value barrier options with different shapes 

of barrier, ranging from a simple linear barrier to a more complicated trigonometric 
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shaped barrier. Numerical examples in section 3.3 suggest that bias in option values 

is in an acceptable range. 

In most cases, the contour bridge method achieves efficiency gains over the 

standard simulation method. Two variants of the method are proposed; the biggest 

bite and the single hit methods. Results suggest that the biggest-bite version of the 

method always out-performs the single hit version and most of the time achieves 

very substantial gains over a standard simulation method. Even though the single­

hit version of the method does not achieve gains as large as the biggest-bite version, 

those gains are still respectable in a number of cases. The method is also argued 

to produce greater efficiency gains when it is used to value a book of options even 

though this is not illustrated in the chapter. The method cannot be applied to value 

knock-out options directly; however, knock-out option value can be computed from 

the in-out parity. 

Parts two and three of the thesis are concerned with the valuation of Amer­

ican options by using Monte Carlo simulation. American options are hard to price 

because their early exercise feature complicates the valuation problem. The holder 

of American options can exercise anytime before their expiry date. The values of 

the underlying process, that makes it optimal for an option holder to exercise, form 

an early exercise boundary (EEB). 
This boundary makes the valuation problem difficult because the early ex-

ercise boundary also needs to be found. There exists no closed-form solution to 

the American valuation problem, and the option value needs to be computed by 

approximation and numerical techniques. 
The review of several valuation methods for an American option is provided 

in Chapter 4. It includes not only the case where an underlying process follows a 

geometric Brownian motion, but it also describes American option pricing methods 

in non-geometric motion models. The chapter also focuses on several simulation 

methods. Different control variate methods for valuing an American option is dis­

cussed. A brief review of an American barrier option and a power option is also 

given. 
It is well known that Monte Carlo simulation can be used to price Ameri­

can options. However, Monte Carlo simulation may be computationally expensive. 

Therefore, variance reduction techniques must be used in order to implement Monte 

Carlo simulation efficiently. 
Chapter 5 proposes a new variance reduction technique to value Bermudan 

and American put options. The method is based on the use of twice-exercise Bermu-
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dan put options as a control variate. When a Bermudan option has only two exercise 

dates, its analytical solution can be found and hence it can be used as a control vari­

ate. The Bermudan control method is applied in conjunction with the functional 

form method of Longstaff and Schwartz (1995) [177] (LSLS method). A two-phase 

simulation is also used. It is a simulation in which the estimation of the option's 

EEB and the valuation of the option are done separately. In the first phase, the 

option's EEB is approximated. The second phase uses the EEB obtained from the 

first phase to value the option. The proposed Bermudan control variate is applied 

to both phases. In the first phase, it is applied to option's continuation values (roll­

back control variate). In the second phase, it is applied to the option value (pricing 
control variate). 

Numerical examples in section 5.5 show that there is negligible bias in Bermu­

dan option values from a two-phase method, which implies that the option's esti­

mated EEB is accurate. The new Bermudan control variate achieves significant 

gains over the plain LSLS method. In particular, when combining one particular 

Bermudan control variate, namely, the early Bermudan control variate with the put­

tau control variate of Rasmussen (2005) [203], the method achieves very substantial 

efficiency gains. All gains produced from this combination are greater than those 

from the method of Rasmussen (2005) [203] alone, by at least a factor of two. 

With an accurate value for Bermudan put options, the American put value 

can be approximated by using three-point Richardson extrapolation. The method 

extrapolates three Bermudan put options with different number of exercise oppor­

tunities. The results have low standard errors and negligible bias in extrapolated 

American put values. To achieve the same level of accuracy, the standard simu­

lation method must use a very large number of time steps for a Bermudan put 

value to converge to an American put value, typically around ",,10,000 time steps. 

Therefore, the American put value can be estimated accurately with much lower 

computational costs. Standard errors of extrapolated American values are further 

reduced by applying an individual Bermudan put as a control variate. 

In Chapter 6, a new simulation method, the sequential contour Monte Carlo 

(SCMC) method, to value American put options, is introduced. The main idea of 

the method is to generate hitting times to a fixed set of exponential contours and the 

option value is obtained by applying the backward algorithm of the LSLS method 

along sequential contours. This method generalises the standard LSL8 method by 

using a more general family of contours. The advantage of this method is that a set 

of hitting times on each contour can be used to compute barrier option values and 

these option values can be used as a control variate. 
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Unlike a Bermudan option whose exercise dates are predetermined, the ex­

ercise date of the option being valued by the SCMC method is not predetermined 

and depends on the shape of a set of pre-specified contours. This type of option is 

called the sequential contour (SC) option. The SCMC method approximate values 

of these options with different exercise dates and then uses these SC option values 

to estimate the value of an American put option by using Richardson extrapolation. 

Results in section 6.4 suggest that, with an appropriate choice of contour 

parameters, the SCMC method can be used to value American put options with an 

acceptable range of bias. Further, the SC option value also convergences slightly 

faster to the American option values than the Bermudan value from the standard 

LSLS method does. The method uses a rebate option as an additional control variate 

to an existing put-tau control variate. Although the method can price American put 

options with negligible bias, efficiency gains from using a rebate option are marginal. 

The last part of the thesis extends the SCMC method to value exotic Amer­

ican options. The method further generalises the LSLS method by introducing two 

new projections. These projections determine independent variables in the regres­

sion procedure used to approximate option continuation values. The T-projection 

uses sampled hitting times as the independent variable in the regression. The V­

projection uses the distance between time to to a pair of simulated hitting times and 

asset values on a contour. The standard method where asset values are used as the 

independent variable in the regression is the S-projection. 

These techniques were applied to the valuation of an American put and an 

American fractional power call option. Numerical examples in section 7.5 suggest 

that, for American put options, the S- and V-projections can value the options 

with negligible bias. However, there is bias observed in option values when using 

the T-projection. This bias disappears when valuing American fractional power 

call options. This seems to be because the concave shape of a fractional power call 

payoff makes it clearer where to exercise the option for the T-projection. There is 

no gain observed in an American put case. Even though there are gains from the 

T·projection, these gains are not substantial. 
The SeMe method with different projections is applied next to value Ameri-

can knock-in fractional power call options. The barrier for knock-in options is chosen 

to be both linear and flat. In this case, the SeMe method is modified so that it 

can value the knock-in part of an option. This is done by incorporating the contour 

bridge method proposed in Chapter 3. Numerical examples show that bias in option 

values is in an acceptable range. In this case, there are gains over the standard LSLS 

method. The highest gain is achieved using the T-projection. Gains from the S-
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and V-projections are, even though slightly smaller, respectable. 

Note that the methods used in Chapter 3, 6, and 7 rely on sampling a hitting 

time to an exponential barrier. This means it might not be feasible to extend the 

methods to other models such as local or stochastic volatility models because the 

hitting time distribution to an exponential barrier for these models are not known. 

Even though there are hitting time distributions for a constant elasticity of variance 

(CEV) model and an Ornstein-Uhlenbeck (OU) process, they are hitting times to a 

constant barrier and cannot be used. 

In future work, it would be interesting to see the efficiency gains when apply­

ing the contour bridge method to value a book of options. The gains are expected 

to be much higher than those from valuing a single option. Also, the method may 

be extended to value other types of barrier options, perhaps a double barrier option, 

if a hitting time density to a particular type of contour is known. 

The Bermudan control variate can be extended to stochastic volatility mod­

els. In this case, it is clear that one may need an efficient numerical integration 

method to evaluate Bermudan put value in order to use it as a control variate. It is 

also interesting to see how the method can be extended to value higher-dimension 

American options. 
For future work, the SCMC method can include more barrier options and use 

a portfolio of options as a control variate to value American options. It is interesting 

to compare the performance of the put-tau control variate with that of a portfolio 

of different barrier options. 
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Appendix A 

The derivation of the hitting 

time bridge distribution 

The derivation and the implementation of the inverse Gaussian bridge was done 

by Ribeiro and Webber (2003) [206]. They consider the use of Monte Carlo simula­

tion to value path dependent options where an underlying process follows a Normal 

Inverse Gaussian process. The derivation is similar to this case since inverse Gaus­

sian variables are considered. However, the parameterisation is slightly different 

because in this case hitting times to exponential contours are used. 

Write f3i(t) = 13 (t I o:i). Suppose one has three exponential contours of the 

form: 

131 (t) = 1 gt (A.O.l) -e 
0:1 

f3Ci(t) = .!..egt (A.O.2) 
0: 

132 (t) = 1 gt (A.0.3) -e, 
0:2 

Let T Cil , T Ci and T Ci2 be hitting times to these contours such that T Cil < T Ci < 
TCi2. Then let T X be a hitting time from T Cil to T Ci

, TY be a hitting time from T Ci to 

TCi2, and T Z be a hitting time from T Cil to T Ci2 so that T Z = T X + TY. These are shown 

in figure A.1. Write f-£ = r - !0"2, where rand 0" are a risk-free rate and volatility 
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f3(t) 
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Figure A.1. Illustration of bridge hitting times 

of a GBM. The densities of these hitting times are given as follow. 

(A.O.4) 

(A.O.5) 

(A.O.6) 

where 

ax = 
In ({31 (Tal ) ) 

{3a (Tal) (A.O.7) 

ay - ({3a (T
a
)) 

In {32 (Ta) (A.D.S) 

az = 
(fjl (Tal)) 

In {32 (Tal) . (A.D.9) 

Note from (A.D.7) that ax does not depend of T a
• 
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The conditional density of T X I T Z is 

= 

f ( TX ,Tz - TX) 

f (TZ) 
f (TX) f (TY) 

f (Tz) 

(A.O.lO) 

(A.O.11) 

where (A.O.ll) follows by the independency between T
X and TY. Let ( = 9 - J.t. 

Substituting (A.O.4), (A.O.5) and (A.O.6) into (A.O.ll), one has 

After some algebra, an exponent term in (A.O.12) can be written as 

By using Tz = Tx + Ty and (A.O.7) - (A.O.9), the first two terms in an exponent 

vanish. Hence, the exponent term in (A.O.12) is reduced to 

(A.O.14) 

By combining (A.O.12) and (A.O.14), one obtains 

(A.O.15) 

194 



where, with a simplification, ax = In (::1)' ay = In (7;), and az = In ( ~) as 
required. 
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Appendix B 

Compute Arc Length of an 

exponential contour 

The objective is to compute a distance on an exponential contour 

1 
(J(r I a) = - exp(gr) , 

a (B.0.1) 

where a and 9 are constant. Let r2 > rl, rl, r2 E (0,00) and let s be a distance 

between ;3 (r1) and;3 (r2) along the contour. s can be computed as 

(d;3) 2 

1 + dr dr. (B.0.2) 

Substituting (¥r) 2 = g2 (~)2 exp(2gr) into (B.0.2), one has 

1 + g2 (±) 2 exp(2gr)dr (B.0.3) 

To compute definite integral in (B.0.3), one needs to compute 

J 1 + 92 (~) 2 exp(2gr) dr. (B.0.4) 
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Define a new variable z = 9 (~) exp(gr). Write 

r - ~1n (g t~)) 
dr 1 

-dz gz 

dr = 
1 
-dz. 
gz 

Then equation (B.0.4) becomes 

J 1 1 J fift+ z2 v'1 + z2-dz = - --dz 
gz 9 z2 

Then one uses (Gradshteyn and Ryzhik (2007) [115]) 

J Jl:2z2dz=~+ln(z)-ln(I+~). 
To verify (B.0.9), one differentiates (B.O.9) to get v'1;Z2. Then one has 

d~ ~+ln(z) -In(I+~) 
z 1 z 

= VI + z2 + ~ - -yC1 =+=z=;;;:-2 (~I-+-v'--r=1 =+=z:;:::2) . 

Write X = v'f+'Z2. One obtains 

z 1 z 
--=== + - - -;:==::::;;:-:-----;:==;:::: 
VI + z2 z VI + z2(1 + y'1 + z2) 

z 1 z 
= -+-----

X z X(1 +X) 

= 

= 

-

z2(1 + X) + X(1 + X) - z2 
zX(1 + X) 

z2X +X +X2 

zX(1 + X) 
z2 + 1 +X 
z(1 + X) 

z2 + 1 + X 1 
(1 + X) z 
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(B.O.5) 

(B.0.6) 

(B.0.7) 

(B.0.8) 

(RO.9) 

(RO.1O) 

(RO.H) 



h h z2±1+X - X S· t X - ~+ 2 th 2 - X2 1 One needs to s ow t at (1+X) - . mce one se s - y! -r Z-, en Z - -. 

Substitute z2 in (B.O.ll), one obtains 

z2+1+X = X(1+X) =X. 
(1 +X) 1 + X 

(B.O.12) 

This verifies (B.O.9) as required. 

Now, by substituting (B.O.9) into (B.O.8), one gets 

J ~ :zdZ= ~ (~+ln(z)-ln(1+ ~)). (B.O.13) 

Since z = 9 (~) exp(gr), integral (B.OA) is 

J 1+ g' G)' exp(2gr)dr = ~( 1+ g' G) '.XP(2gr) + In(g G) exp(gr)) 

-In (1+ 1+ g' G)' exP(2gr)) ). (B.O.14) 

Finally, s can be explicitly computed as 

f 1 +9' G)' exp (2gr) dr = H 1 +9' OJ exp(2g,.,) - 1+ g' G)' exp(2grl: 

+g( r, - rl) - In (I + I + g' (;;)' eXP(2gr,)) 

+ In (1+ 1+ g' G)' eXP(2gr1)) }. (B.O.15: 
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