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Abstract 

 

Compositions in the (AgxNa1-x)2Nb4O11 solid solution have been prepared by a conventional 

solid state method. Composites containing Ag2Nb4O11 have been shown to be ferroelectric 

and the Curie temperature shown to decrease from 149 °C at x = 1 to 62 °C at x = 0.7. Room-

temperature compositions with x ≤ 0.7 are monoclinic, while those with x ≥ 0.8 are 

rhombohedral with structures consistent with the relevant end-members. At x = 0.75, the 

structure was mainly rhombohedral but with coexistence of the monoclinic structure, 

indicating the proximity of a phase boundary.  

 

 

Text: 

 

 The Ag2O–Nb2O5 binary system is rich in phases, with at least 5 discrete phases 

known to form.
1–3

 Of these, AgNbO3 perovskite is the most widely studied, principally for its 

potential role in lead-free piezoelectrics,
4
 for its dielectric properties

5
 and unusual phase 

transitions.
6
 This leaves a large number of related materials whose structures and properties 

are largely unknown. Ag2Nb4O11 is one such material known to form as a secondary phase 

when making AgNbO3 due to Ag
+
 loss,

6
 while the related Ag2(Nb0.5Ta0.5)4O11 is a prominent 

secondary phase when forming Ag(Nb0.5Ta0.5)O3 thin films.
7
 Single phase Ag2Nb4O11 and 

Na2Nb4O11 have recently been made and studied.
8
 The structure of Na2Nb4O11 was originally 

refined in the centrosymmetric space group C2/c
9
 but a model with the non-centrosymmetric 

space group Cc has also been proposed.
8
 Recently, Ag2Nb4O11 was found to have a structure 

similar to the mineral natrotantite, Na2Ta4O11 (R 3 c)
10,11

 but the demonstrated absence of a 

centre of symmetry results in space group R3c and the possibility of a ferroelectric 

structure.
12

 In this work, the results of forming a solid solution between Ag2Nb4O11 and 

Na2Nb4O11 are explored using x-ray diffraction (XRD) and second harmonic generation 

(SHG). 

Powder samples in the (AgxNa1–x)2Nb4O11 series were made using a conventional 

solid-state processing route. Na2CO3 (BDH, 99 %), Ag2O (Alfa Aesar, 99+ %) and Nb2O5 

(Alfa Aesar, 99.9985 %) were weighed in stoichiometric quantities and ball-milled in propan-

2-ol for ~ 24 h. The resultant mixture was dried at 70 °C, ground using a pestle and mortar 

and passed through a 250 m sieve. The powders were then reacted at 775 – 800 °C in a 

lidded alumina crucible for 2 h, using a heating rate of 5 °/m and fast furnace cooling. XRD 

was performed on the powders using a PANalytical X’Pert Pro MPD with a curved 

Johansson monochromator resulting in focused CuK1 radiation. The process of making 

ceramics of Ag2Nb4O11 causes the material to decompose into AgNbO3 and AgNb3O8, a 

tungsten bronze phase.
2
 In order to make dense bodies, Ag2Nb4O11 and Na2Nb4O11 powders 

were mixed with M-Bond 610 epoxy, centrifuged
13

 and cured at 100 °C for 4 hours with a 

heating rate of 0.5 °/m. The resulting hard composites were thinned, silver conductive paint 

(RS components) used to add electrodes and poled for 10 minutes at 6 kV/mm in silicone oil. 

Measurements of d33 were performed with a YE2730A d33 meter (APC International, Ltd). 

SHG was performed using a set-up described in greater detail elsewhere.
12

 A neodymium-

doped yttrium aluminium garnet (Nd-YAG) laser generated an infrared beam ( = 1064 nm) 
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directed at powder samples and the resulting second harmonic was filtered and its intensity 

measured by a photomultiplier and recorded by an oscilloscope. Samples were heated and 

cooled at 30 °/h and did not show signs of having decomposed while exposed to the laser.  

 All powders were white but, with the exception of x = 0, turned purple when exposed 

to sufficiently intense sunlight, x-rays or laser, presumably due to reduction of Ag
+
 to Ag 

metal as with silver halides. XRD (figure 1a) showed for all compositions except x = 1 the 

presence of a small amount of secondary phase indicated by the appearance of a peak at ~ 

22.5 °2. This is the strongest peak corresponding to the presence of the ferroelectric 

tungsten bronze-structured material Na13Nb35O94,
14.15

 and attempts to remove this phase by 

adding excess Na2CO3 to the batches or by varying the reaction temperature had no 

significant effect. No evidence of Ag metal was observed. Movement of the peaks to higher 

2 with decreasing x indicates reduction in volume, as expected, given that the Na
+
 ion is 

smaller than the Ag
+
 ion.

16
 XRD showed that all compositions with x ≤ 0.7 had structures 

consistent with monoclinic Na2Nb4O11 and compositions with x ≥ 0.75 had structures 

consistent with rhombohedral Ag2Nb4O11, although the data for x = 0.75 show a small 

proportion of the monoclinic phase in coexistence with the rhombohedral phase, which 

implies the existence of a phase boundary between the two structural variants at x ≈ 0.75. The 

monoclinic and rhombohedral structures are related by the identities: 

RM ]101[]100[       (1) 

RM ]110[]010[       (2) 

RM ]111[]001[
3
1      (3) 

 (where the rhombohedral cell is described on the hexagonal setting). The splitting of the 

{030}R peak to {60 2 }M and { 3 31}M peaks is shown in figure 1b as an illustration of the 

distortion encountered as a function of composition. It can be seen that the monoclinic peak 

splitting remains largely constant for x ≤ 0.75 suggesting that, unlike a perovskite, the 

natrotantite structure has limited means to improve the accommodation of ions that are not of 

ideal size. The fact that the structure contains planes of edge-sharing NbO7 polyhedra means 

that there cannot be a simple in-plane tilting mechanism to effect small reductions in volume. 

The relationship between the rhombohedral and monoclinic structures is illustrated in figure 

2. 

 Prior to poling, the Ag2Nb4O11 composites did not have a measurable d33, but after 

poling, a reproducible d33 of of 3.4 (2) pC N
-1

 was obtained. This value could be reversed by 

reversing the direction of the electric field, but decayed slowly over time, indicating a 

significant conductivity within the composite. The ability to switch the polarization of this 

composite proves that the material is ferroelectric. By contrast, the Na2Nb4O11 composites 

gave a d33 value of zero both before and after poling. This shows that the resin is not 

responsible for piezoelectricity, that the Na13Nb35O94 secondary phase is not present in 

sufficiently large quantities to have a measurable effect on the overall piezoelectricity of the 

composite and that Na2Nb4O11 does not appear to be ferroelectric and is thus more likely to 

be the centrosymmetric space group C2/c than the non-centrosymmetric space group Cc.  

A particularly strong second harmonic signal was obtained at room temperature for 

samples with x ≥ 0.75, but a much weaker signal obtained for all other compositions. At x = 

0.7 a weak signal at room temperature was recorded, but became particularly strong at ~ 40 

°C. It is here proposed that the strong signal corresponds to the ferroelectric R3c phase and 

the loss of this signal occurs at the Curie temperature, TC. Figure 3a shows the loss of the 

second harmonic for compositions x ≥ 0.7. By modeling the data above and below TC each 

with a straight line, TC is determined as the temperature at which the lines cross (Table I, 

Figure 3b). It can be seen that the progressive substitution of Ag for Na reduces TC up to the 

phase boundary. The composition x = 0.7 is monoclinic at room temperature, yet the strong 
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second harmonic encountered at ~ 40 °C may indicate that it goes through a phase transition 

to the rhombohedral R3c structure slightly above room temperature, before going through 

another phase transition to R 3 c at ~ 62 °C. Compositions x < 0.7 had a weak second 

harmonic signal that did not display any obvious phase transitions. The additional evidence of 

small amounts of a ferroelectric secondary phase makes it impossible to reach any 

conclusions about the existence of ferroelectricity or even pyroelectricity across the 

monoclinic phase field. 

 In conclusion, powders have been made in the (AgxNa1–x)2Nb4O11 solid solution. 

Those with compositions x ≤ 0.7 have been shown to be monoclinic, consistent with the 

Na2Nb4O11 structure, which appears non-polar. Those with compositions x ≥ 0.8 have been 

shown to be rhombohedral R3c, consistent with the Ag2Nb4O11 structure. At x = 0.75, the 

structure was predominantly R3c, with some coexistence of the monoclinic phase, indicating 

the proximity of a phase transition to this composition. An Ag2Nb4O11 composite was poled 

and shown to be piezoelectric, reversible by an external field, proving that this material is 

ferroelectric and SHG showed that ferroelectricity is encountered in samples with 

compositions x ≥ 0.7. A phase transition sequence monoclinic – R3c – R 3 c over the range 20 

– 62 °C is postulated for x = 0.7. 
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Table I: TCs for (AgxNa1–x)2Nb4O11 compositions obtained from SHG. The reproducibility of 

the temperatures is ± 5 °C. 

Composition, x TC (°C) 

1 149 

0.9 121 

0.8 86 

0.75 81 

0.7 62 

 

 

Figures: 

 

 

 
Figure 1: XRD data for all compositions showing (a) the evolution of peaks throughout the 

series (a peak indicating the presence of Na13Nb35O94 is indicated by *) (b) splitting of the 

{030}R rhombohedral peak into the doublet of peaks {60 2 }M and { 3 31}M on transforming to 

the monoclinic system. 
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Figure 2: Illustration of the natrotantite crystal structure indicating the relationship between 

the monoclinic cell (bold lines) and the rhombohedral cell (dashed lines). Alternate layers of 

NbO7 polyhedra and NbO6 polyhedra with Na
+
/Ag

+
 positions are indicated. 

 

 
Figure 3: (a) Raw SHG data for compositions x ≥ 0.7 (b) TCs obtained from SHG data. 


