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Abstract

The general subject area of research considered in this thesis is population level

epidemic modelling of infectious diseases, with specific application to the prob-

lems of model indeterminacy and systems that include processes associated with

maternally acquired immunity. The work presents the derivation and analysis of

a lumped systems model framework to study the influence of maternal antibod-

ies on the population dynamics of infection among neonate and young infant age

classes. The proposed models are defined by sets of ordinary and partial differen-

tial equations that describe the variation of distinct states in the natural history

of infection with respect to time and/or age.

The model framework is extended to explore the potential population level out-

comes and consequences of mass maternal immunisation: an emerging targeted

vaccine strategy that utilises the active transfer of neutralising antibodies during

pregnancy in order to supplement neonatal immunity during the first few months

of life. A qualitative analysis of these models has highlighted the importance of

interaction with early childhood targeted vaccination campaigns, the potential to

invoke transient epidemic behaviour and the prospective advantages of seasonal

administration.

The work considers the implications of structural identifiability, indistinguishabil-

ity and formal sensitivity analyses on a number of fundamental model structures

within the proposed framework. These methods are used to establish whether a

postulated model structure, or the individual parameters within a known struc-

ture, are uniquely determinable from a given set of empirical observations. The

main epidemiological measures available for the validation of epidemic models are

inherently based on records of clinical disease or age serological surveys, which are

not explicitly representative of infection and provide a very limited observation

of the full system state. The analyses suggest that these issues give rise to prob-

lems of indeterminacy even in the most simple models, such that certain system

characteristics cannot be uniquely estimated from available data.

xv



Chapter 1

Introduction

The implementation of mass immunisation campaigns has long been recognised

as an effective strategy for preventing severe morbidity and mortality inflicted by

a variety of infectious diseases. Neonatal and young infant age classes however,

remain vulnerable to many of these infections [Englund et al., 1998]. Immunising

vaccines are generally unsuccessful in individuals with immature immune systems

and their safety in newborns is of ongoing concern. An accumulation of evidence

suggesting that passive protection during the first few months of life may be con-

veyed in the form of maternal antibodies (MAb) could therefore have a significant

impact on future health care effort within this context [Munoz and Englund, 2000].

The potential to augment passively acquired immunity in the newborn by stimu-

lating a complementary active immune response in the mother has presented an

emerging public health opportunity in the form of maternal immunisation [Glezen

and Alpers, 1999]. Interventions of this nature have already been successfully

applied in several developing regions with the aim of reducing young infant mor-

tality due to tetanus [WHO, 2002]. Candidate vaccines are currently also being

considered for a number of other highly prevalent viral infections, such as human

respiratory syncytial virus (hRSV), influenza and pertussis, which are found to

1



Chapter 1 1.0 2

cause a significant burden of disease among neonatal and young infant age classes

[Healy and Baker, 2006].

The inherent complexity of host-pathogen interactions at both individual and pop-

ulation levels, and the necessarily stringent processes by which new large scale

healthcare intervention strategies are approved, prescribe the use for methods of

theoretical analysis [Nokes and Anderson, 1988]. Mathematical modelling provides

an abstract framework with which to explore the observed behaviour of real world

systems and their potential responses to various environmental conditions, without

the constraints typically imposed by real world risk or cost of experimentation. In

the context of communicable diseases, these efforts are motivated by a requirement

for more accurate predictions regarding the outcome of infection, a greater under-

standing of the principal biological mechanisms at work and to inform decisions

concerned with the governance of public health policy.

Mathematical models are generally classed as either process driven or data driven,

depending on whether they represent an analytic description of the underlying

physical processes or simply some empirical record of real world system behaviour.

The adoption of both approaches is evident throughout the study of mathemati-

cal epidemiology, however, process driven modelling methods are generally more

favourable since they allow more elemental inferences to be made regarding the

fundamental operation of the system. A general procedure for generating and ap-

plying mathematical models of this nature to a particular real world problem may

be described in the following stages:

• Problem Definition - Specify the scope of the problem and capture the

requirements of the model.

• Model Derivation - Collate relevant hypotheses and prior knowledge of the

real world system in order to identify the key physical processes of interest

and describe critical interactions between them in an appropriate mathemat-

ical form.
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• General System Analysis - Investigate relations within the fundamen-

tal operation of the model using mathematical techniques such as steady

state analysis, stability criterion, and bifurcation theory, in order to further

understand the characteristic behaviour of the system.

• Validation - First, ensure that the model sufficiently describes any qual-

itative characteristics of the real system using the aforementioned general

system analysis. Second, calibrate the model by quantitatively comparing

its output with empirical observations and estimating unknown parameters.

Validation is performed in order to ensure that the model may be used to ac-

curately infer characteristics of a specific real world system and make mean-

ingful predictions about its future behaviour.

• Simulation - Explore the predicted behaviour of the system by simulating

the model with a series of input conditions and perturbations that may be

representative of critical and interesting scenarios.

It is the application of this modelling methodology to epidemic systems, including

those that describe characteristics associated with maternally acquired immunity

and intervention, that is the subject of this work.

Problem Statement

The benefits of maternally acquired immunity and maternal immunisation to the

individual are becoming increasingly well established through studies such as those

described by Vandelaer et al. [2003], Puck et al. [1980], and Mulholland [1998].

However, the influence of these processes on population level infection character-

istics remains largely unknown.

The epidemiology of infectious diseases is markedly different to that of noninfec-

tious diseases. Since each infective individual is a potential source of infection to
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others, the risk of disease to any one member of a host population is inherently

dependent on the status of all those with whom they may potentially come into

contact [Medley and Nokes, 2005]. The spread of an infectious agent throughout

a large population of hosts is therefore principally driven by community-wide pat-

terns of susceptibility/immunity and the prevalence of infection. Epidemiological

characteristics and interventions that may influence these variables subsequently

have indirect population level consequences beyond those of the individual to which

they directly relate. Furthermore, heterogeneous interactions between these fac-

tors, such as seasonal, demographic and immunological dependencies, often lead

to highly complex system behaviour.

Population dynamics of communicable diseases are frequently explored using lumped

system models, where individuals within a population are grouped according to

some common epidemiological characteristic and considered as a single homoge-

neous unit [Jacquez, 1996]. Individual level complexities may be reduced according

to risk factors such as immunological experience, age or spatial distribution, in or-

der to make analysis of the resulting model more tractable. In this instance, the

appropriate selection of model structure and the identification of essential system

processes are crucial and have a significant impact on the applicability of the model

to a specific problem.

In order for mathematical models to accurately describe particular real world sys-

tems, they must first be rigorously validated. However, the validation of complex

population level infection based models is often a markedly non-trivial task. The

main epidemiological measures available are typically based on records of clinical

disease or age serological surveys, which are not necessarily representative of in-

fection and provide only a very limited observation of the full system state [White

et al., 2005]. The notification of many infectious agents is also incomplete and

heavily biased depending on awareness, severity of symptoms and social stigma

[Thacker et al., 1983]. These issues give rise to the problem of indeterminacy,

where certain system characteristics may not be uniquely determined from the
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available set of empirical observations.

It is the objective of this work to derive and consider the validation of a series of

population level epidemic model structures that may be used to estimate the influ-

ence of processes and interventions associated with maternally acquired immunity

on the epidemiology of infectious disease. Significant and original contributions in

both these subject areas are presented, where it is hoped that the resulting frame-

work will ultimately contribute to the assessment and optimal implementation of

future public health policies within this context.

Thesis Structure

The thesis is structured into two chapters that describe the derivation of both

existing and novel epidemic model structures, three chapters of analysis and a

brief overall discussion that includes suggestions for future research. Each technical

chapter contains an introduction, a review of relevant literature and a discussion

of the key findings and implications of the work.

Chapter 2 provides a pedagogical review of current epidemic compartmental

systems and the basic modelling principles required by the reader. A number

of fundamental model structures are described in detail since they are applicable

to the derivation of new models in Chapter 3 and their subsequent analysis in

Chapters 4 and 5 is novel. Chapter 3 presents the development and preliminary

analysis of models that incorporate processes associated with maternally acquired

immunity and maternal immunisation.

Chapters 4 and 5 describe the application of techniques used to address issues

of indeterminacy that arise during the validation of the discussed models. These

methods are namely structural identifiability/indistinguishability and sensitivity

analysis, which aim to establish, first, whether it is even theoretically possible
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to ascertain unique parameter estimates from a particular set of measurements

(structural identifiability), and second, how well a particular estimation is deter-

mined or supported by an experimental observation (numerical identifiability and

sensitivity analysis). The results from these analyses are also interpreted to give

an indication of the likely influence of maternally acquired immunity over popula-

tion level system behaviour and discussed in the context of model reduction and

future experimental design.

Chapter 6 describes additional qualitative analysis of the models derived in Chap-

ter 3 and presents a series of examples demonstrating their applicability to epi-

demiological problems arising from maternally targeted intervention. Simulation

is performed using nominal characteristic parameter estimates extracted from the

literature in order to establish what the potential static, dynamic and seasonal

implications of these processes might be.



Chapter 2

Mathematical Modelling of

Communicable Diseases

In reality, all epidemic system processes are inherently stochastic in nature since

they are primarily driven by individual-level events and interactions between hosts.

However, the analysis of epidemic models that include probabilistic descriptions

of such random processes can be a complex and challenging task, and often only

considered following a preliminary analysis of more tractable deterministic mod-

els [Andersson, 2000]. At a population level, stochastic variations are generally

most critical when considering the progression of minor outbreaks within small

isolated cohorts or the persistence of pathogens that are close to the threshold of

extinction. As a result, deterministic models provide a useful approximation to the

epidemic evolution of highly infectious agents that appear ubiquitous throughout

large populations [Anderson and May, 1991].

The most common approach to deterministic modelling of population level mi-

croparasite transmission dynamics is through a compartmental representation of

the various stages in the natural history of infection, written as a system of ordinary

differential equations (ODEs). Analogous examples of compartmental analysis are

7
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also frequently found throughout the literature relating to other scientific contexts,

such as chemical and drug kinetics, where a large base of applicable techniques

have been documented [Godfrey, 1983]. Models of this type comprise a finite num-

ber of interconnected subunits (compartments) that consist of homogeneous and

well-mixed material, where all flow of material between compartments, and to and

from the environment, adheres to the principle of mass balance. For epidemic

systems, the compartmentalised material corresponds to a large population of in-

dividual hosts, through which an infectious agent may be transmitted. In this

instance, compartments in the model structure represent subpopulations of hosts

residing in a common state of disease.

Compartmental based epidemic models were first developed by Kermack and McK-

endrick [1927] and have since been extended to incorporate a wide range of complex

epidemiological characteristics such as incomplete immunity [Gomes et al., 2004],

altered secondary infection [Glass and Grenfell, 2004; Greenhalgh et al., 2000] and

multiple-strain variants [White et al., 2005]. For the general application of these

models see the texts by Anderson and May [1991], Capasso [1993] and Jacquez

[1996], and for specific examples see the work by Medley et al. [2001] and Edmunds

et al. [1996] for hepatitis-B virus (HBV), Weber et al. [2001] and White et al. [2007]

for human respiratory syncytial virus (hRSV), and Keeling and Grenfell [2002] for

measles.

2.1 SIR Framework Models

The general SIR model [Kermack and McKendrick, 1927], shown in Figure 2.1,

is used to characterise epidemic systems where the natural history of infection

can be reasonably approximated into three distinct stages. The host population is

therefore divided into three non-overlapping classes that distinguish an individual’s

state of disease as either susceptible, infective or recovered, which are delineated
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by the state variables S(t), I(t) and R(t), respectively.

The susceptible class includes all individuals who are able to contract the dis-

ease and become infectious; the infective class represents only individuals who are

currently infected and infectious to susceptibles; and the recovered class contains

all individuals who have recovered from infection and have consequently acquired

solid lifelong immunity. In this instance, latency incubation periods are neglected,

whereby all infected individuals are immediately considered to be infectious. It

is also assumed that recovered individuals are no longer able to transmit or re-

contract the pathogen, hence, the structure is most appropriate for modelling dis-

eases such as measles, mumps and rubella (MMR), where evidence suggests that

lifelong immunity to the entire pathogen population is induced following recovery

from natural infection [Jansen et al., 2003].

Figure 2.1: General SIR Compartmental Model

Individuals are born into the susceptible class at a net birth rate, µN , where N is

the total population size. It is assumed that the average duration of infection, v−1,

is small with respect to the average life expectancy, µ−1, such that the net mortality

rate, µ(S(t) + I(t) + R(t)), can be assumed to equal µN , hence maintaining a

constant size population.

Transmission of the infectious agent throughout the population is modelled us-

ing a frequency dependent approximation to mass action mixing. This method

is generally accepted for the spread of pathogens among humans, although alter-

native approximations also exist [McCallum et al., 2001]. Assuming a constant

average contact rate, c, per individual, between all individuals within a particular
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population, the rate at which infectives, I(t), make contact with the susceptible

proportion, S(t)/N , is equal to cS(t)I(t)/N . For each of these contacts there is

then a constant probability, ρ, that the infectious agent will be successfully trans-

mitted. Therefore, the incidence of infection, that is the rate at which susceptible

hosts become infected, can be modelled as βS(t)I(t)/N , where β = cρ. The func-

tion λ(t) = βI(t)/N is often used to represent the force of infection [Jacquez,

1996], where the average age at primary infection can be approximated by λ(t)−1.

The resulting transmission dynamics predicted by the SIR model are subsequently

described by the following system of ordinary differential equations:

Ṡ(t) = µN − λ(t)S(t)− µS(t), S(0) = S0, (2.1)

İ(t) = λ(t)S(t)− (µ+ v)I(t), I(0) = I0, (2.2)

Ṙ(t) = vI(t)− µR(t), R(0) = R0, (2.3)

where
λ(t) = βI(t)/N. (2.4)

It should also be noted that the model structure is strictly a two state system,

since any one of the three state variable equations may be trivially found from the

assumption that the population size is constant, i.e. N = R(t)+S(t)+I(t).

2.1.1 The Basic Reproduction Number R0

The basic reproduction number, denoted R0, is often considered to be the most

important quantity in mathematical epidemiology of infectious diseases. It is pri-

marily defined as the average number of secondary cases of infection induced by a

single primary case in a completely susceptible (naive or virgin) population [Dietz,

1993], and is expressed as a product of the transmission parameter, β, and the
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average duration of time an individual remains infectious:

R0 =
β

µ+ v
. (2.5)

This definition gives rise to an invasion threshold at R0 = 1 that determines

whether or not an infectious agent can successfully sustain within a particular

host population. If the average infective case leads to more than one secondary

case, i.e. R0 > 1, then the infection has the ability to invade the host population

and cause an epidemic. Given that transmission is heavily dependent on social

and environmental variables, which differ between demographically and geograph-

ically distinct populations, R0 is unique for both different diseases and different

populations within which it is being considered [Anderson and May, 1991].

2.1.2 Transmission Dynamics & Endemic

Equilibrium

Following the introduction of an infectious agent into a fully naive population, the

initial growth of a resulting invasion is depicted by the basic reproduction num-

ber, R0. However, once an epidemic has become established, the host population

is no longer completely susceptible to infection since a significant proportion of

the population are either infective or recovered. In this instance, the number of

secondary cases per primary case is defined by the effective reproduction number,

RE = XR0, where X = S/N represents the subsequently reduced proportion of

the population susceptible.

The typical time course of a resulting epidemic can be described in terms of four

distinct stages (see Figure 2.2). The first stage corresponds to a rapid initial in-

crease in transmission due to an abundant availability of susceptible hosts present

within an inexperienced population. As the number of available susceptibles di-
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minish with the spread of infection, the growth of the invasion begins to stall. An

epidemic peak in prevalence is reached at the point where X equals a critical value

X∗ = R−10 ; at which point RE = 1 (i.e. only one new infection arises from each

existing case) and there are generally a greater number of individuals recovering

from infection per unit of time than there are new cases emerging. Subsequently,

Figure 2.2: Typical epidemic curve for a closed population SIR-type system.

during the third stage, the number of infective individuals begins to fall at a rate

largely determined by the average duration of infection. This leads to a reduction

in the force of infection and a further decrease in the proportion of the population

infective. Finally, the invading pathogen population will either continue to decline

and become extinct, or, if there is sufficient replenishment of susceptibles, settle

into a stable endemic equilibrium where X is sustained at X∗.

Steady state analysis of the general SIR model may be applied by initially setting

the system equations (2.1)-(2.2) equal to zero:

Ṡ(t) = µN − β

N
ŜÎ − µŜ = 0, (2.6)

İ(t) =
β

N
ŜÎ − (µ+ v)Î = 0, (2.7)

and solving explicitly in terms of the model parameters. It is found that two steady

state solutions exist, which correspond to either a disease free or endemic state of

invasion, given respectively by



Chapter 2 2.1 SIR Framework Models 13

 Ŝ

Î

 =

 N

0

 and

 Ŝ

Î

 =

 N
R0

µN
µ+v

(1− 1
R0

)

 . (2.8)

Since all state variables must be non-negative, it can be seen that the endemic

equilibrium is only valid for R0 > 1. Therefore, the threshold R0 = 1 gives rise to

a bifurcation point, at which the number of valid steady states and their associated

stability is subject to change. These characteristics may be determined through

an eigenvalue analysis of the system Jacobian matrix, given by: −(µ+ β
N
I) − β

N
S

β
N
I β

N
S − (µ+ v)

 . (2.9)

Since all parameter values are also real and non-negative, eigenvalues for the dis-

ease free and endemic steady states are found respectively to be of the form:

λ1,2 = −µ, β−(µ+v), (2.10)

λ1,2 = −1

2

(
µR0 ±

√
µ(µ(R0−2)2 − 4v(R0−1))

)
. (2.11)

It can be seen from (2.10) that the disease free eigenvalues are always real and

that the corresponding steady state is asymptotically stable (i.e. has negative real

parts) for R0 < 1 (that is β < µ+ v) and unstable for R0 > 1 (that is β > µ+ v),

which re-iterates the invasion threshold discussed in Section 2.1.1. The endemic

steady state is stable throughout its valid range of R0 > 1, however, the associated

eigenvalues are seen to become complex for certain values of R0 determined by the

following conditions:

2(µ+ v −
√
v(µ+ v))

µ
< R0 <

2(µ+ v +
√
v(µ+ v))

µ
. (2.12)

In this instance, the analysis implies that the system will display damped oscilla-

tory behaviour while it converges to endemic equilibrium.
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2.1.3 Recurrent Epidemics & Seasonal Forcing

Many common infections such as measles, mumps and rubella (MMR), influenza

and hRSV tend to display large seasonal oscillations about their endemic equilib-

rium (for example see Figure 2.3). All epidemic behaviour is primarily driven by

susceptibility. Therefore, recurrent epidemics are usually caused by a degree of

antagonism between a relatively slow rate of susceptible supply and a high rate

of recovery from infection, which is sustained by some element of periodic exter-

nal forcing. For the unforced SIR example, where R0 adheres to the conditions

for complex endemic eigenvalues given by (2.12), the natural inter-epidemic time

period may be expressed by the following approximate form:

T ≈ 2π√
µ(β − v)

. (2.13)

In general, it is found that systems with higher net birth rates and more rapid loss

of immunity exhibit shorter inter-epidemic time periods. In contrast, infections

with a carrier state or a large duration of infection with respect to net birth rate

tend not to display significant (underdamped) oscillatory behaviour. Similarly,

infections that induce very limited immunity, such as most sexually transmitted

infections, also do not show recurrent epidemic cycles without significant periodic

forcing.

Recurrent epidemic cycles can in theory be sustained purely by stochastic vari-

ation [Alonso et al., 2007], although most recurrent epidemic systems are found

to oscillate in clear annual or biennial cycles [Hawker et al., 2005]. This strongly

suggests the influence of external seasonal forcing given that the natural frequency

of oscillation is highly parameter dependent and it is unlikely that these values will

coincidently combine to give a consistent time period corresponding to a natural

number [White et al., 2005].
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Figure 2.3: Weekly case notifications of measles in England and Wales for the
period 1948 to 1968, prior to the introduction of mass vaccination [Anderson and
May, 1991]

The most commonly considered mechanisms for seasonal forcing are associated

with the transmission parameter, β(t), since both the effects of human behaviour,

c(t), and the contagiousness of the infectious agent, ρ(t), are potentially governed

by recurring seasonal trends. For example, seasonality in measles is primarily

driven by the annual school term-time pattern of increased contact between indi-

viduals in the classroom (see Keeling et al. [2001], and Fine and Clarkson [1982]),

and the prolonged survival of pathogens such as rotavirus, norovirus and influenza

(see Cook et al. [1990], Mounts et al. [2000], and Hemmes et al. [1960]) outside

the host can be affected by a number of climatic conditions such as temperature,

humidity and exposure to sunlight (see also the reviews by Altizer et al. [2006],

and Grassly and Fraser [2006]). Temporal variation is typically included in basic

SIR type models as a simple sinusoidal function of time of the form:

β(t) = β0
(
1 + β1 cos

[
2π(t− φ)

])
, (2.14)

where β1 defines the magnitude of the annual variation and φ corresponds to the

phase (annual timing).
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2.1.4 Models With Incomplete Immunity

In reality, most pathogens are able to evade natural immunity and re-infect their

hosts through either static antigenic variability or antigenic evolution over time.

The consequence of significant antigenic variability within a pathogen population is

that natural immunity acquired through experience of infection serves only to pro-

tect an individual against a proportion of the circulating infectious agents, leading

to only partial immune protection within the host population [Gomes et al., 2004].

Similarly, if the pathogen population experiences a rapid rate of antigenic evolu-

tion then any acquired immunity following infection will appear only temporarily

effective. It should be noted that the extreme case of incomplete immunity is the

SIS (Susceptible, Infected, Susceptible) model structure, in which all individual

hosts recover directly back into the fully susceptible state and are immediately

able to re-contract the infection. SIS type structures are most appropriate for

diseases such as gonorrhoea, which does not produce sufficient immunity against

reinfection [Capasso, 1993].

In order to model an epidemic system where immune hosts experience waning

of acquired immunity with time since previous infection, the general SIR model

is extended to include an additional transfer of individuals from compartment R

to compartment S, with rate coefficient ωR. This describes the rate at which

Figure 2.4: SIRS Temporary Immunity Model

recovered (immune) hosts return to being fully susceptible (note that the average
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duration of immunity is then ω−1R ) where they are able to re-contract the infection

upon contact with an infective individual. It is assumed that before waning off,

acquired immunity is solid and provides protection against all current variants of

the infectious agent. The model connectivity diagram is shown in Figure 2.4, from

which the system equations can be stated as follows:

Ṡ(t) = µN − λ(t)S(t)− µS(t) + ωRR(t), S(0) = S0, (2.15)

İ(t) = λ(t)S(t)− (µ+ v)I(t), I(0) = I0, (2.16)

Ṙ(t) = vI(t)− (µ+ ωR)R(t), R(0) = R0, (2.17)

where
λ(t) = βI(t)/N. (2.18)

A partial immunity model describes the situation when immunity serves only to

protect the individual against a proportion of the current pathogen population,

and an element of susceptibility to some antigenic variants is always retained. The

Figure 2.5: SIRp Partial Immunity Model

model can be considered as a combination of an SIR submodel (primary infection)

and an SIS submodel (secondary infection), hence the recovered class now acts as

a second susceptible class where hosts have a reduced susceptibility to the force

of infection governed by the parameter σ ∈ [0, 1]. The model structure is shown
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diagrammatically in Figure 2.5 and is defined by the following system equations:

Ṡ(t) = µN − λ(t)S(t)− µS(t), S(0) = S0, (2.19)

İ(t) = λ(t)(S(t) + σR(t))− (µ+ v)I(t), I(0) = I0, (2.20)

Ṙ(t) = vI(t)− σλ(t)R(t)− µR(t), R(0) = R0, (2.21)

where
λ(t) = βI(t)/N. (2.22)

It is assumed that any acquired immune protection does not wane with time and

is not altered by subsequent re-infections. The dynamic behaviour and endemicity

of the system is dually dependent on the contributing characteristics of the SIR

and SIS components of the system. The skewing of this dependence towards either

primary or secondary infection is governed by the re-infection threshold [Gomes

et al., 2004], which describes a limit for R0 with respect to the partial immu-

nity parameter σ, beyond which re-infection becomes dominant and a significant

increase in transmission can occur.

2.2 Vaccination Models

Vaccination strategies are employed to protect susceptible hosts, both at individ-

ual and population level, against parasite infection and subsequently reduce the

prevalence or burden of disease [Anderson and May, 1991]. Vaccines work by

presenting a foreign antigen to the immune system in order to evoke a specific

immune response with less morbidity than the naturally occurring infection. At

a population level, immunisation can be considered as a process of fast-tracking

a proportion of all susceptible hosts to a state of immunity without experiencing

infection and hence a period of time during which they are infectious to others.

The work documented in this study focuses on the analysis of models where vac-
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cination is assumed to induce identical properties of immunity to that of natural

infection, such that vaccinated hosts are included within the recovered population

class, R(t). In this instance, mechanisms such as antigenic variability and evolu-

tion that allow the infectious agent to evade natural immune protection also apply

to vaccine induced immunity. In cases where vaccine induced immunity character-

istics differ significantly from those produced by natural infection, an additional

state variable is typically included to represent individuals protected by the vac-

cine (for a useful introduction to models of mass vaccination see the review by

Scherer and McLean [2002]).

The simplest form of immunisation program is that of an untargeted blanket vac-

cination of a proportion of the total population. In this instance the vaccination is

applied to a random selection of individuals in the population regardless of which

state (experience of infection) they reside in. This is a particularly inefficient strat-

egy given that some individuals who have already attained a degree of immune

protection through natural infection, or who are currently infected, will receive

the vaccine to no effect. This approach can often be the only applicable strategy

given the frequent difficulties that arise with identifying an individual vaccinee’s

prior experience of infection (for example in cases of wild animal vaccination).

Figure 2.6: SIR Model With Birth Targeted Vaccination

One of the most common examples of a targeted vaccination strategy is to admin-

ister immunisation to a proportion of individuals at a particular age. This type of

program, typically employed for childhood immunisations such as the MMR, can

be easily implemented and monitored within a typical healthcare infrastructure.

The most simple realisation of this strategy for an SIR-type epidemic model is
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to assume that a proportion of all newborn individuals are vaccinated at birth.

Although in reality, vaccination is very rarely administered to neonates due to

complications associated with a highly immature immune system, this assumption

provides a useful approximation to situations where vaccination is targeted below

the average age of primary infection, without the otherwise necessary inclusion

of age dependency within the model. A strictly time domain description of this

strategy can therefore be implemented within the SIR framework structure (2.1)-

(2.4) by replacing the inflow of births, µN , into the susceptible compartment (2.1),

by an inflow of susceptibles, µN(1− Pv), and an inflow of vaccinated individuals,

µNPv, to the recovered compartment (2.3) (see Figure 2.6), where the parameter

Pv is the actual proportion of newborns that successfully take the vaccine and

develop immunity to infection.

Following either the introduction of an infectious agent (discussed in Section 2.1.2),

or the implementation of a birth targeted vaccination campaign, the corresponding

population is no longer completely susceptible, and the number of secondary cases

per primary case is subsequently described by RE = XR0. Considering the case

of a disease free population where I(t) = 0 and S(t) = N , vaccination serves to

reduce the proportion susceptible from X = 1 to X = 1− Pv (provided immunity

is solid and lifelong, for example in the case of the general SIR). Hence the effective

reproduction number becomes RE = (1− Pv)R0. Given that RE is required to be

greater than unity for an epidemic to occur, a potential pathogen invasion can be

prevented through vaccination provided the following inequality is achieved:

Pv ≥ 1− 1

R0

. (2.23)

The expression also provides a threshold for the eradication of an established

endemic infection and illustrates how diseases with a relatively low R0 such as

smallpox can be eradicated much more easily than those with a high R0 such as

measles. This concept is often referred to as herd immunity [Anderson, 1992] and

shows how population level protection against an infection can be achieved without
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necessarily vaccinating all individual hosts within it (see also the comprehensive

article by Nokes and Anderson [1988]).

2.2.1 Vaccination & Eradication Thresholds

The invasion threshold, which determines the basic reproduction number R0, and

the minimum vaccination threshold can both be derived from an eigenvalue anal-

ysis of the stability of the disease free equilibrium. Given that Pv ∈ [0, 1] is

a proportion, it can be seen from the expression for herd immunity (2.23) that

eradication of an SIR type infection is always possible provided 100% vaccination

coverage can be achieved. For the general SIR model with birth targeted vaccina-

tion (Figure 2.6), the disease free steady state of the reduced two state system is

found to be of the form:

 S

I

 =

 N(1− Pv)

0

 . (2.24)

The influence of vaccination on the stability of the disease free equilibrium can be

determined from the corresponding eigenvalues of the system Jacobian matrix:

Jacobian =

 −(µN + βI)/N −βS/N

βI/N βS/N − (µ+ v)

 , (2.25)

where the corresponding eigenvalues for the disease free equilibrium are: λ1 = −µ

and λ2 = β(1− Pv)− (µ+ v). It can then be seen that λ1 and λ2 are always real,

and from rearranging λ2, that the disease free steady state can be forced stable

(i.e. negative) if Pv ≥ 1− 1/R0, hence reiterating the condition for herd immunity

(2.23).
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SIRS Temporary/Waning Immunity

For the SIRS model (Figure 2.4), where acquired immunity serves only to pro-

tect individuals for a limited period of time, the system Jacobian matrix, when

evaluated at the corresponding disease free equilibrium, gives rise to the following

eigenvalues:

λ1 = −ωR − µ and λ2 =
β [µ(1− Pv) + ωR]

ωR + µ
− (µ+ v). (2.26)

It can be seen that λ1 is always negative and real. However, the stability of λ2

is also dependent on the waning immunity parameter, ωR. Given that Pv = 1

indicates ideal 100% vaccination coverage, a new threshold term can be derived

that determines the maximum rate of loss of immunity before eradication of the

infection through vaccination becomes impossible. For the eradication of endemic

or potentially endemic infections (where R0 > 1) to be possible:

ωR <
µ

R0 − 1
. (2.27)

Provided the temporary immunity parameter, ωR, satisfies this condition, the crit-

ical vaccination coverage required to force the disease free steady state to be stable

and hence successfully eradicate the infection is found to be:

Pv >
(R0 − 1)(ωR + µ)

R0µ
. (2.28)

SIRp Partial Immunity

For the partial immunity model (Figure 2.5), when Pv = 1 the model structure can

be reduced to that of an SIS given that only secondary infections can occur. This

implies that for eradication to be possible, the corresponding basic reproduction
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number for the SIS submodel, σR0, must be less than unity, hence:

σ <
1

R0

. (2.29)

Provided σ does not exceed this threshold, the critical vaccination coverage re-

quired to eradicate the infection can be derived from the following eigenvalues,

evaluated again at the disease free equilibrium:

λ1 = −µ and λ2 = β [1− Pv(1− σ)]− (µ+ v). (2.30)

The critical vaccination coverage is therefore given by,

Pv >
(1−R0)

R0(σ − 1)
. (2.31)

2.2.2 Consequences of Vaccination

It can be seen from an endemic steady state analysis of the discussed models that

the implementation of a mass vaccination campaign can have a significant effect on

the average age of infection [Nokes and Anderson, 1988]. A reduction in endemic

prevalence, Î, and hence the force of infection, λ, will result in an increase in the

average time taken for newborn individuals to become exposed to and infected with

the disease, and therefore a rise in the average age at infection. The approximate

average age of infection for the general SIR model with birth targeted vaccination,

shown in Figure 2.6, can be derived as follows:

Av = λ−1 =
N

βÎ
=

L

R0(1− Pv)− 1
, (2.32)

where L = µ−1 is the average life expectancy at birth. The individual and pop-

ulation level implications of increasing the average age of infection can be varied

depending on the age-related nature of the clinical disease and any heterogeneity
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within the transmission function, β [Anderson and May, 1985]. If the severity of

clinical disease, or the primary route of transmission changes significantly within

this region, the resulting shift in the age distribution of infective individuals can

be both beneficial or detrimental to the success of the intervention. For example,

the risk of intrauterine infection in cases of congenital rubella increases signifi-

cantly with fertility. In this instance any notable benefit from reducing the overall

incidence of infection may be severely undermined by the increased risk of severe

disease arising from a greater distribution of cases among child bearing age classes

[Anderson and Grenfell, 1985; Knox, 1980].

It should also be noted that the implementation of public health campaigns with

the capability to significantly and rapidly reduce the proportion susceptible can

also result in significant rebound epidemics prior to a new endemic equilibrium

being reached [Scherer and McLean, 2002]. This occurs due to an initial period of

reduced incidence driven by the intervention, which allows for an unsustainable ac-

cumulation of susceptibles in excess of the epidemic threshold [Medley and Nokes,

2005]. The magnitude of the resulting epidemic behaviour may be particularly

pronounced if the perturbed system is highly oscillatory in nature.

2.3 Age Structure

In Section 2.1.3 it was discussed how transmission function properties associated

with human behaviour, c(t), and the probability of transmission, ρ(t), have been

frequently found to vary as a result of some seasonal forcing with respect to time.

However, significant heterogeneity in the transmission of infection can also occur

in the form of an age dependency of structured social and intimate mixing pat-

terns, and individual susceptibility/infectivity to circulating infection. The work

by Anderson and May [1983] argues for the better representation of heterogeneous

transmission patterns in epidemiological models, where the importance of this
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structure on transmission dynamics and vaccination design has since been illus-

trated in a number of high profile examples (see the work by Anderson and May

[1985] for measles and rubella, and Gupta et al. [1989] and Sattenspiel et al. [1990]

for HIV).

Age dependency may be included in epidemic model structures in one of two ways:

either discretely, as additional SIR type compartments that represent key age/risk

groups (see the worked example by Jacquez [1996]), or continuously as a system

of partial differential equations (PDE) (see Anderson and May [1985; 1991]). The

fundamental SIR model (2.1)-(2.4) is therefore extended to give the following set

of system equations:

∂S(t, a)

∂t
+
∂S(t, a)

∂a
= −

[
λ(t, a)+µd(a)

]
S(t, a), (2.33)

∂I(t, a)

∂t
+
∂I(t, a)

∂a
= λ(t, a)S(t, a)−

[
v(a) + µd(a)

]
I(t, a), (2.34)

∂R(t, a)

∂t
+
∂R(t, a)

∂a
= v(a)I(t, a)− µd(a)R(t, a), (2.35)

where

λ(t, as) =
1

N(as)

∫ ∞
0

β(t, as, ai) I(t, ai) dai, (2.36)

with boundary conditions given by:

S(t, 0) =

∫ ∞
0

µb(a)N(a) da, I(t, 0) = 0, R(t, 0) = 0. (2.37)

In this instance, the state variables correspond to (time dependent) age distribu-

tions of individuals within a given state of disease, where age dependent mortality is

described by µd(a) and the (age dependent) duration of infection is D(a) = 1/v(a).

The function β(t, as, ai) describes the transmission rate of infection from infectives

of age ai to susceptibles of age as, incorporating heterogeneous mixing and sus-

ceptibility/infectivity patterns among individuals of different ages, as well as a

potential dependency on time. It is assumed that the population as a whole is of
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constant size N (i.e constant net birth and mortality rates), and has a constant

age distribution with respect to time of the form:

N(a) =
N

L
e
−

∫ a

0

µd(z) dz

, (2.38)

where the average life expectancy is given by L = NS(t, 0)−1.

If the number of susceptible individuals becoming infective at age a (and time t) is

given by λ(t, a)S(t, a), then the average age of infection can be calculated from the

first moment of this distribution [Anderson and May, 1991], using the following

integral equation:

Av(t) =

∫ ∞
0

a λ(t, a)S(t, a) da∫ ∞
0

λ(t, a)S(t, a)da

. (2.39)

2.3.1 Heterogeneity & Basic Reproduction

In most applied situations the value of R0 is estimated as an average value taken

over an integer number of annual cycles, discounting any seasonal fluctuations in

contact patterns. Therefore, the transmission function β(as, ai) is a matrix that

represents average annual (age dependent) transmission rates. In cases with a long

duration of infection (i.e. if contact properties or mortality changes significantly

during the infectious period), the average number of individuals of age as that

contract the infection from a single individual infected at age ai, where S(a) =

N(a), during the interval [ai, ai + δai] is given by:

β∗(as, ai) = N(as)

∫ ∞
0

β(as, ai + u){1−Dai(u)}e
−

∫ ai+u

ai

µs(z) dz

du, (2.40)

where Dai(u) corresponds to the cumulative distribution function of the infectious
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period for an infective at age ai [Farrington et al., 2001]. Hence, if an infected

individual is introduced into a non-homogeneously mixing susceptible population,

the number of resulting cases (i.e. the initial growth of the invasion) will depend

on the age of the initial individual. It should also be noted that for cases with a

relatively short infectious period, β∗(as, ai) ≈ N(as)Dβ(as, ai).

According to the work by Diekmann et al. [1990], R0, now the number of expected

cases in a naive population arising from a single typical infective introduction, can

be defined as the dominant eigenvalue of β∗(as, ai). For details on the definition

of the effective reproduction number, R, in heterogeneous systems see the work by

Farrington and Whitaker [2003].

2.4 Model Validation and Empirical Data

As previously discussed, prospective mathematical model structures must be ap-

propriately validated in order to accurately relate to specific real world systems.

One key aspect of this process is often referred to as the ‘inverse problem’ [Jacquez,

1982], where internal model parameters are assigned numerical values correspond-

ing to an output that best correlates with experimental data. Epidemic models

such as those described in this work are based on processes of infection and are

regularly fitted to time series data collected from records of clinical disease, or

with respect to age in the form of age-stratified serological surveys. The main

epidemiological measures considered in this study are:

• Prevalence - the number of individuals within the population currently

presenting the infection, defined by y(t, a) = I(t, a).

• Incidence - current rate of emerging cases, for example, recorded as the

number of new cases within a given 4 week period, y(t, a) = λ(t, a)S(t, a).
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• Serology - a qualitative serological survey is used to determine prior ex-

perience of infection, implemented as y(t, a) = Ab+(t, a), where Ab+(t, a)

corresponds to all seropositive individuals, i.e. R(t, a).

It should be noted that all of these measures can, in principle, be recorded with

respect to both time and age. However, for infections that exhibit strong seasonal

epidemic patterns, steps must be taken to ensure the correction of any subsequent

distortion in the average age distribution resulting from inconsistent sampling

throughout the inter-epidemic period [Whitaker and Farrington, 2004]. The work

by Keeling and Grenfell [2000] suggests that ignoring the temporal variation in

these cases serves to underestimate values for R0.

2.4.1 Model Indeterminacy

An immediate problem concerning parameter estimation for infection based epi-

demic models arises from an inherently limited and often biased observation of

the full system state, where the main epidemiological measures typically allow

access to only the (clinically) infective and/or seropositive populations. Notifica-

tion of communicable diseases is often found to be incomplete and its bias due to

awareness, disease severity, perceived public health importance and social stigma

is notoriously difficult to quantify [Harpaz, 2004; Thacker et al., 1983].

In addition, the metrics of infection, disease and serology, although strongly in-

terdependent, are not necessarily concordant, and may depend incongruously on

risk factors such as age. This implies that observations arising from the detec-

tion of severe clinical symptoms or from the presence of disease specific antibodies

are often not accurately representative of circulating infection, and may therefore

distort any deductions that might be made from fitting the model to data.
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In the study of hRSV it is found that the risk of severe lower respiratory tract

infections (LRTI) such as bronchiolitis and pneumonia, and resulting hospitali-

sation (typical source of time series data) decreases significantly with increasing

age. However, it is not known whether this susceptibility to disease is governed

by continuous physiological development (e.g. larger airways) or accumulative

immunological experience, or if this dependency correlates with that of suscepti-

bility to infection [White et al., 2005]. The vast majority of observable cases occur

in children under 12 months of age, but a potentially significant yet unknown

amount of subclinical reinfection is likely to circulate unobserved throughout the

wider population as well [Cane, 2001].

For simplicity it is typically assumed that observable disease is directly propor-

tional to infection, or at least infectivity, where, for example, the transmission

of many airborne respiratory infections are aided by the nature of their clinical

symptoms (e.g. coughing and sneezing). In these cases it is common to include

an unknown observation gain k (i.e. y(t, a) = kI(t, a)) that acts as a constant

scalar between predicted infection and real data. For hRSV it is often assumed

that susceptibility to disease decreases with prior experience of infection, whereby

hospital data is considered as a proportion of all primary infection (see examples

by Weber et al. [2001] and White et al. [2007]).

Further indeterminacy arises in age structured models when attempting to esti-

mate heterogeneous transmission characteristics and basic reproduction from sero-

logical survey data [Anderson and May, 1991]. The problem derives from the de-

pendency of R0 on the potentially infectious contact patterns represented by the

transmission function β(t, as, ai), whereby the rate of increase in seropositive in-

dividuals with age is indicative of the force of infection (i.e. rate that susceptibles

become infected, see equation (2.36)), but does not provide information relating to

which age classes the transmission of infection originates. This issue is addressed

in the work by Farrington et al. [2001] where relationships between the contact

patterns of different infections with similar routes of transmission are assumed thus
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allowing further elicitation of information regarding β(t, as, ai). Alternatively, the

work by Edmunds et al. [1997] documents the analysis of a questionnaire for the

direct determination of adult contact patterns associated with the spread of air-

borne infections. However, estimates such as this are unlikely to be sensitive to

many casual social interactions such as those in crowded public spaces. It should

also be noted that the indeterminacy issue becomes more intractable if the depen-

dency of individual susceptibility and infectivity is additionally considered with

respect to age.

2.5 Conclusions

Mathematical models of epidemiological systems are developed in order to inves-

tigate potential responses to critical input conditions and to gain a better under-

standing of the underlying physical processes that characterise observed system

behaviour. Population dynamics of infectious diseases are often explored through

the use of lumped compartmental models, where complex host-pathogen interac-

tions are generalised into common stages within the natural history of infection.

It has been shown throughout this chapter that a wide range of epidemiological

characteristics may be described and analysed within this framework, with varying

levels of complexity and application.

In order for postulated model structures to accurately describe the behaviour of

specific real world systems, they must be parameterised with respect to empirical

measurements under a known set of experimental conditions. Numerous examples

of epidemiological measures may be found throughout the literature, however,

these are typically based on records of clinical disease or serological surveys and

often provide only a very limited observation of the full system state. As a result,

issues of indeterminacy frequently arise in epidemic modelling, leading to poor

characterisation during data fitting. Formal methods to identify model indetermi-



Chapter 2 2.5 Conclusions 31

nacy are an essential prerequisite to parameter estimation and future experimental

design and are discussed in later chapters of this work.



Chapter 3

Models for Maternal & Early

Childhood Immunisation

The models presented in this chapter have been developed to investigate the pop-

ulation level influences of maternally acquired immunity on epidemic systems with

contrasting epidemiological characteristics and their potential response to pertur-

bation from mass maternal immunisation. It is intended that this work encourage a

more panoptic consideration of how prospective maternal and potentially conflict-

ing childhood vaccines might be optimally implemented within different dynamic

populations, and what the resulting impact of the intervention on broader system

behaviour might be.

Models are derived to study the potential outcomes and consequences of maternally

targeted intervention strategies, both in terms of their potential to reduce neonatal

morbidity and mortality from infection, and their effects on the static, dynamic

and seasonal characteristics of the system. The models are discussed in three

main structural forms: homogeneous time and age domain ordinary differential

equation (ODE) models (Sections 3.2 and 3.3.2), discrete age (continuous time)

structured ODE models (Section 3.4.1) and decoupled continuous age-time partial

32
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differential equation (PDE) models (Section 3.4.2), which are derived successively

from an encompassing general model framework described in (Section 3.2).

3.1 Background Biology

The human immune system is an extremely complex collection of biological mech-

anisms that continually acts to protect the individual against infection from ex-

ternal pathogens capable of causing damage and disease to the body [Janeway

and Travers, 2005]. Molecules that are found to induce a response in the immune

system are called antigens (antibody generators) and comprise of either (non-self)

foreign substances (such as bacteria, viruses and other microorganisms etc.) or

(self) cells belonging to the individual. The success of the immune system relies

heavily on its ability to distinguish between self and non-self elements; an abnor-

mal breakdown in this process can often lead to various autoimmune type disorders

where the immune system mounts an aberrant response on the individual’s own

cells and tissues. The system is generally divided into two staged components:

• Innate immune system - provides an immediate, but non-specific response

to infection. This includes anatomical barriers such as the desquamation of

epithelial surfaces, and mucosal secretions in the respiratory and gastroin-

testinal tracts.

• Adaptive immune system - antigen specific response that adapts to im-

prove the recognition and removal of a particular pathogen, resulting in

immunological memory.

The innate and adaptive components of the immune system are also both highly

dependent on a combination of cell-mediated and humoral reactions to infection.

The cell-mediated response involves the migration of white blood cells such as
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macrophages and natural killer cells around the body, and the activation of antigen-

specific cytotoxic T-lymphocytes (T-cells). In contrast, the humoral immune re-

sponse emanates from the secretion of antibodies (immunoglobulin) into the blood

and tissue fluids [Davies, 1997].

Antibodies (Ab) contribute to the immune function by binding to a specific anti-

gen, either tagging it for removal by the complement system, or neutralising its

ability to bind with target cells and cause infection. Antibodies also occur on the

surface of B-cell lymphocytes forming a B-cell receptor (BCR). When activated

by the presence of a corresponding antigen, these BCRs differentiate into either

plasma cells that produce large quantities of specific free antibodies, or memory

cells that survive for long periods of time and allow the system to respond more

rapidly to repeat exposures.

3.1.1 Maternally Acquired Immunity

During early life the neonatal immune function is highly immature, naive to infec-

tion and largely deficient in its ability to protect the individual against circulat-

ing pathogens. Adaptive components of the immune system are yet to be primed

through exposure to foreign antigens (which includes the absence of memory cells),

inhibiting its ability to react with the rapid antibody production synonymous with

a typical secondary immune response [Kemp and Campbell, 1996]. Newborns are

therefore acutely dependent on the accumulated immunologic experience of the

mother, which is conveyed in the specific form of immunoglobulin isotopes IgA

and IgG [Zinkernagel, 2001].

The majority of maternal IgG transfer occurs during the final four weeks of preg-

nancy, where antibodies actively enter foetal circulation by means of a specific

receptor-mediated mechanism via the placenta [Saji et al., 1999] and exceed ma-
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ternal concentrations by a ratio of around 1.2:1 - 1.8:1 at full term [Pitcher-Wilmott

et al., 1980; Sato et al., 1979]. The bulk of IgA is transferred after birth through

breast feeding and remains predominantly within mucosal secretions in the di-

gestive and respiratory tracts of the infant. Active components of the mother’s

immune system such as specific T-cells are unable to transfer protection to the in-

fant due to differences between maternal (self) and foetal (non-self) tissue antigens,

raising the possibility of an adverse response being mounted on the foetus.

Given that the bulk of transplacental maternal IgG is acquired so late in the ges-

tation period, concentrations of maternal antibodies (MAb) in premature infants

are considerably lower than that of full term infants [Costa-Carvalho et al., 1996],

further compromising immunity and significantly increasing the risk of inimical

infection. The work by Ballow et al. [1986] reports an average IgG concentration

for 28 week gestation infants of around 250 mg dL−1 compared to 1500 mg dL−1

for full term infants.

Immunoglobulin proteins are also ultimately short lived and, following birth, neona-

tal concentrations of maternally acquired serum IgG decay exponentially with age.

However, estimates for the rate of this clearance appear to vary enormously; half

lives of between 12 and 100 days are reported in the literature (see Table I in [Sar-

vas et al., 1993]). Several hypotheses exist regarding these inconsistencies such as:

measurement error, perhaps caused by damage to the IgG molecules from iodine-

labelling in work such as that by Waldmann and Strober [1969]; misinterpretation

of seroconversion due to infection [Ochola et al., 2009]; and variability in more

physiological characteristics such as endogenous synthesis, concentration depen-

dency of decay (due to saturatable recycling of antibodies through a finite number

of FcRn receptors), or rapid growth of the infant (increasing apparent volume of

distribution). At a population level, seroepidemiological surveys of common viral

infections such as those by Cox et al. [1998] and Hacimustafaoglu et al. [2004] for

hRSV, Williams et al. [1995] for measles and Nicoara et al. [1999] for MMR, have

shown that most infants become seronegative within 6-9 months of age.
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3.1.2 Maternal Immunisation

Despite the limited duration and inherently passive characteristics of MAb, the

magnitude of their afforded protection against a number of common viral and bac-

terial diseases is frequently reported. Studies such as those by Ogilvie et al. [1981]

and Hacimustafaoglu et al. [2004] for hRSV, and Puck et al. [1980] and Reuman

et al. [1987] for influenza A have demonstrated a strong correlation between high

cord antibody titres (a measure of serum antibody concentration (titre) taken from

the umbilical cord) and a reduced risk of infection among neonates. Similarly, the

administration of hRSV specific immunoglobulin prophylaxis to high-risk infants

and young children has produced a notable decrease in hospitalisation and severity

of disease [Dougherty and Meissner, 2000; Groothuis et al., 1993].

The implementation of a maternally targeted vaccine acts to augment these pro-

tective properties by inducing a complementary active immune response to immu-

nisation in the mother at around 30 weeks gestation. The immediate intention is

to raise maternally acquired serum IgG titres in newborns, hence providing passive

supplementary protection during the first few months of life [Munoz and Englund,

2000]. Additional benefits and demerits of this form of intervention include:

Advantages:

• Pregnant women respond well to vaccination and antibodies (IgG) are readily

transferred across the placenta.

• Intervention directly targets neonatal age classes, which are typically the

most susceptible to infectious diseases and least responsive to vaccines.

• Pregnant women tend to be regularly accessible through existing health care

infrastructure.

• Immunisation has the potential to protect both the infant and the mother.
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Disadvantages:

• Protection is less effectively conveyed to preterm infants who are likely to be

among those most requiring supplementary protection.

• Potentially limited efficacy in areas with high prevalence of infections such as

HIV and malaria, which can suppress the immune system, diminish placental

function and induce prematurity.

• High levels of MAb are likely to inhibit the immune response of young infants

to active childhood vaccines and natural infection.

• Many women are reluctant to accept vaccination during pregnancy due to

concern of associated risk to the foetus.

Maternal immunisation is of primary interest in cases where a significantly high

incidence of disease occurs in particularly young age classes, before immune system

maturation or the successful uptake of an appropriate childhood vaccine [van der

Zeijst et al., 2007]. As a result, intervention strategies of this nature are partic-

ularly applicable in developing contexts where high birth rates and infant trans-

mission skew the incidence age profile towards younger age groups, and neonatal

mortality due to infection is high [Greenwood, 2003]. Mass maternal immunisation

campaigns have already been successfully implemented in a number of developing

regions to reduce young infant mortality due to tetanus [WHO, 2002], where the

contribution of this infection to global neonatal mortality has subsequently been

reduced from 14% in 1993 to around 5% in 2002 [Vandelaer et al., 2003].

Further candidate infections for prospective control by maternal immunisation in-

clude Haemophilus influenzae type b (Hib) [Englund and Glezen, 2003; Mulholland

et al., 1996], pertussis (whooping cough) [Mooi and de Greeff, 2007], influenza [En-

glund, 2003; Sumaya and Gibbs, 1979; Zaman et al., 2008] and hRSV [Englund,

1994; Munoz et al., 2003] (for additional information see also the reviews by Munoz

and Englund [2000], Englund et al. [1998] and Healy and Baker [2006]).
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In cases where maternally acquired IgG has been shown to inhibit the infant re-

sponse to vaccine, work such as that by Williams et al. [1995] and Nicoara et al.

[1999] carefully target childhood immunisation at the peak age of susceptibility

(nadir in seropositivity) where as much exposure to natural infection is avoided as

possible, whilst also minimising ineffective interaction with maternally derived im-

munity. For example, with measles the (natural) average age at primary infection

is around 5-6 years and vaccination is therefore not routinely administered until

12-23 months of age [Williams et al., 1995].

However, in more developing settings where transmission rates among pre-school

children are often much higher, and with more virulent infections such as hRSV,

selection of an optimal age for vaccination is more difficult, often requiring strate-

gies that include multiple dosing. Studies such as those by Siegrist [2003] and

Crowe [2001] suggest that immunisation induced MAb can also inhibit childhood

targeted intervention, therefore increasing maternally derived immunity through

maternal immunisation may prove detrimental to this challenge.

3.2 General MSIR Model Framework

The structure of the general model framework is based on that of an MSIR com-

partmental system, where the natural history of infection includes an additional

state variable that corresponds to neonates and young infants protected by passive,

maternally acquired immunity [Anderson and May, 1991]. It is intended that the

complete model structure describe as much of our prior knowledge or hypotheses of

the underlying biological processes as possible, including the following significant

properties:

• Neonatal MAb protection - a degree of passively acquired (temporary)

immune protection is afforded to newborn infants, depending on the mother’s
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prior experience of infection and immunisation.

• Intervention - implementation of maternal and young infant targeted im-

munisation invokes an active immune response in the recipient.

• Age structure - complete model must be supportive of age dependency in

all parameters and state variables.

• Transmission - inclusive of separable mixing and varying susceptibility with

respect to age, and periodic seasonal forcing.

• Incomplete immunity - a range of outcomes following infection encom-

passing complete/incomplete immunity and potentially altered secondary

infection.

In reality, protective immunity z ∈ [0, 1] is a continuous property that tends to

increase with experience of infection or vaccination, and decrease with respect to

time since recovery. The work by White [2000] discusses the capture of these

characteristics in a PDE model framework where time, age and immunity are all

implemented as continuous independent variables. A possible, though highly in-

tractable implementation of this approach to the MAb problem can be illustrated

by the following expression for a subpopulation of newborns prior to natural in-

fection or vaccination:

∂S(t, a, z)

∂t
+
∂S(t, a, z)

∂a
− ∂ωM(z)S(t, a, z)

∂z
=

δ(a)

∫ ∞
0

µb(a)N(a, z)da− µd(a)S(t, a, z) (3.1)

−
[
σ(a, z)λ(t, a) + ϑ(a, z)V (t, a)

]
S(t, a, z),

where

λ(t, as) =

∫ ∞
0

β(t, as, ai)

∫ 1

0

γ(ai, z) I(t, ai, z) dz dai. (3.2)
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The protective effects of MAb and physiological development against circulating

infection are described by a reduced susceptibility parameter σ(a, z), which is de-

pendent on both age and passively acquired immunity. The subsequent attenuation

of vaccine uptake (from a vaccination programme V (t, a)) is included through the

function ϑ(a, z), and the waning of acquired immunity is governed by the param-

eter ωM(z). The distribution of acquired protection at birth is governed by that

of wider population immunity, N(t, a, z), and the application of an age dependent

fertility function µb(a), where the Dirac delta function, δ(a), ensures all newborns

are born at age zero. The force of infection λ(t, a) is representative of heteroge-

neous contact patterns determined by β(t, as, ai), an infectivity variable, γ(ai, z),

and the corresponding distribution of the infective population I(t, ai, z).

The solution to each state variable of the resulting system is therefore a two-

dimensional surface, characteristically an age serological profile, that is continu-

ously evolving with respect to time. Rigorous validation or even numerical evalu-

ation of such a system is found to be largely unmanageable and extremely compu-

tationally intensive [White, 2000]. Therefore in this work the continuous nature

of immunity is discretised according to distinct (compartmentalised) events in the

natural history of infection, i.e. maternally protected, susceptible, recovered etc.,

whereby fixed degrees of immunity are afforded to individuals depending on their

current state. A number of other common assumptions are made in order to con-

strain the scope and complexity of the problems addressed in this work. These

include:

• Constant population size and age distribution.

• No disease induced mortality.

• No vector or vertical routes of transmission.

• No latent incubation prior to becoming infectious.

• Maternally acquired immunity provides complete protection.
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These assumptions are considered to be appropriate since many of the infectious

agents currently being considered for maternal immunisation tend to evolve over

relative short time frames, are largely non-fatal and are not contracted before

birth or via non-human vectors. The inclusion of a latent incubation period prior

to becoming infectious, and a partial immunity stage due to the progressive waning

of MAb are natural extensions to the proposed model structure and are discussed

in later chapters as a suggestion for future research.

The general model is therefore defined as a continuous age-time PDE type struc-

ture, which is extended from that of the SIR model (2.33)-(2.37) described in

Section 2.3, to support the inclusion of MAb and epidemiological characteristics

associated with incomplete immunity and intervention (discussed separately in

Sections 3.3.1 and 3.3.2 respectively). The model is described by the following

system of partial integro-differential equations:

∂M(t, a)

∂t
+
∂M(t, a)

∂a
= −

[
ωM(a)+µd(a)

]
M(t, a), (3.3)

∂S(t, a)

∂t
+
∂S(t, a)

∂a
= ωM(a)M(t, a)−

[
λ(t, a)+µd(a)

]
S(t, a), (3.4)

∂I(t, a)

∂t
+
∂I(t, a)

∂a
= λ(t, a)S(t, a)−

[
v(a) + µd(a)

]
I(t, a), (3.5)

∂R(t, a)

∂t
+
∂R(t, a)

∂a
= v(a)I(t, a)− µd(a)R(t, a), (3.6)

where

λ(t, as) =
1

N(as)

∫ ∞
0

β(t, as, ai)I(t, ai) dai. (3.7)

The state variables M(t, a), S(t, a), I(t, a) and R(t, a) correspond to the distri-

bution with age of subpopulations classified as protected by maternally acquired

immunity, susceptible to circulating infection, currently infective and recovered at

time t, respectively.
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Age dependent functions for birth, µb(a), and mortality, µd(a), rates, average du-

ration of infection, v(a)−1, heterogeneous and potentially seasonal transmission,

β(t, as, ai), and population age distribution, N(a), are all congruent with those

described in Section 2.3. However, the boundary conditions for M(t, 0) and S(t, 0)

are subsequently amended in order to reflect the coupled dependency of mater-

nally acquired protection on the levels of immunity in the adult population. The

conditions are therefore given by:

M(t, 0) =

∫ ∞
0

µb(a)Ab+(t, a) da, S(t, 0) =

∫ ∞
0

µb(a)Ab−(t, a) da, (3.8)

where the variables Ab+(t, a) and Ab−(t, a) correspond to subpopulations of indi-

viduals grouped as either seropositive or seronegative, depending on their current

state of immunity. Given that M(t, a) and R(t, a) represent those protected by

high levels of maternal and post-infection acquired antibody, it is intuitive that

Ab+(t) = M(t) + R(t), where an appropriate age dependent fertility function,

µb(a), prevents the birth of newborns to infants protected by MAb. It is therefore

assumed that active immunity is acquired upon recovery from the infective state,

whereby mothers ‘currently infected’ at the time of giving birth do not transfer

protective levels of MAb to their offspring. This is a reasonable assumption to

make since adult IgG levels are typically found to peak at around 20 to 30 days

after the onset of clinical symptoms [Ogra, 2004]. Hence, the variables S(t) and

I(t) are considered seronegative, where Ab−(t) = S(t) + I(t).

A series of reduced model structures can then be derived from successive simpli-

fications of the general model, in order to aid analytical tractability of specific

system attributes with respect to the problem statement:

• Dynamics - seasonal and other time dynamic characteristics of the system

may be isolated by removing or compartmentalising age specific processes

within the system.



Chapter 3 3.3 Homogeneous MSIR Models 43

• Statics - age profile characteristics may be studied without the complexities

of time dependency by considering the system at a stable endemic equilib-

rium, and, if necessary, averaging across complete recurrent epidemic cycles.

• Decoupling - simplification through decoupling the dependency of passive

neonatal protection on adult infection dynamics allows the inclusion of a

more empirical model for the rate at which neonates lose maternally acquired

protection.

3.3 Homogeneous MSIR Models

The most fundamental realisation of the general MSIR framework can be derived

by neglecting the inclusion of age dependency in the model parameters and only

considering the system behaviour with respect to either time or age. In this in-

stance homogeneous and non-separable mixing is assumed regarding the transmis-

sion function β(t), and other epidemiological characteristics such as susceptibility

to infection are dependent entirely on immunological experience (i.e. history of in-

fection). Physiological properties attributed to varying age are therefore excluded

from the model.

Figure 3.1: MSIR Compartmental Model

Integrating the system equations (3.3)-(3.6) with respect to age (i.e. finding the

total number of individuals residing in each state of disease for time t):
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dM(t)

dt
= µb

∫ ∞
0

δ(a)Ab+(t, a) da−
(
ωM+µd

)∫ ∞
0

M(t, a) da, (3.9)

dS(t)

dt
= µb

∫ ∞
0

δ(a)Ab−(t, a) da−
(
λ(t)+µd

)∫ ∞
0

S(t, a) da, (3.10)

dI(t)

dt
= λ(t)

∫ ∞
0

S(t, a) da−
(
v+µd

)∫ ∞
0

I(t, a) da, (3.11)

dR(t)

dt
= v

∫ ∞
0

I(t, a) da− µd
∫ ∞
0

R(t, a) da, (3.12)

where

λ(t) =
β(t)

N

∫ ∞
0

I(t, ai) dai, (3.13)

and the Dirac delta function, δ(a), terms replace the boundary conditions (3.8),

yields a more concise, single domain, time dynamic ODE model analogous to

that of a fundamental SIR given by (2.1)-(2.4) in Section 2.1. The fundamental

MSIR, shown in Figure 3.1, is therefore described by the following set of ordinary

differential equations:

Ṁ(t) = µAb+(t)−
[
ωM + µ

]
M(t), M(0) = M0, (3.14)

Ṡ(t) = µAb−(t) + ωMM(t)− β(t)

N
S(t)I(t)− µS(t), S(0) = S0, (3.15)

İ(t) =
β(t)

N
S(t)I(t)− (µ+ v)I(t), I(0) = I0, (3.16)

Ṙ(t) = vI(t)− µR(t), R(0) = R0, (3.17)

where ωM depicts the rate at which maternally protected newborns lose passive

immunity through natural antibody clearance and become fully susceptible to

infection.

Overall net birth and death rates are equal, i.e. µb = µd = µ, hence a constant

size population is maintained. As before, individuals are born either maternally

protected or fully susceptible, at rates µAb+(t) and µAb−(t), respectively, depend-

ing on the previous infection experience of the mother. It should be noted that in
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the general model (3.3)-(3.8) the inclusion of age dependent fertility prevents the

unlikely event of babies born to maternally protected mothers. However, in the

homogeneous model, where the fertility function, µ, is a constant, this becomes a

consequential characteristic of the reduced system.

In the most simple case, where total net birth/death rate is µN and Ab+(t) =

M(t) + R(t), the inflow of passively protected newborns from mothers with high

levels of MAb is cancelled by neonatal mortality. Therefore if both fertility and

mortality from the maternally protected population M(t) are neglected, where

the net birth/death rate becomes µ(N −M(t)), the time domain model remains

structurally equivalent.

Alternatively, if neonatal mortality is included and births from MAb protected

mothers is removed, the seropositive/seronegative variables can be proportioned

such that:

Ab+(t) =
R(t)

N −M(t)
N and Ab−(t) =

S(t) + I(t)

N −M(t)
N, (3.18)

where Ab+(t) + Ab−(t) = N , hence maintaining balanced inflows (µAb+(t) +

µAb−(t)) and outflows (µN), and a constant population size N .

Choice of input structure is therefore determined by the characteristics of the stud-

ied population; in developed countries it is found that infant mortality (under 1

year of age) is typically below 1%, making the neglection of µM(t) a more reason-

able description. However, in developing regions where death rates among young

infants is often much higher, the proportioned fertility model may be more appro-

priate. In both cases the coupled nature of MAb dependence on adult immunity is

preserved, however analytic analysis of the latter (inclusive of neonatal mortality)

can become considerably more complex.

The acquisition of MAb serves to protect seropositive newborns for an average du-
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ration given by ω−1M , whereby the average age at primary infection is dependent on

both the force of infection and the number of infants born with passively acquired

immunity. For an MSIR system residing at a fixed point endemic equilibrium, the

average age at primary infection can be approximated by the expression:

Av ≈
Ab+

N
(ω−1M + λ−1) +

Ab−

N
(λ−1), (3.19)

which is derived from a weighted average corresponding to the respective propor-

tions of seropositive/seronegative newborns. The expression (3.19) is an approx-

imation to the actual value predicted by this model as it does not account for

the effects of mortality and the resulting (exponentially decaying) age distribu-

tion assumed by its structure. It can be seen that increased population immunity,

due to a high force of infection, acts antagonistically against a low average age of

contraction synonymous with high levels of exposure.

3.3.1 Incomplete Immunity

Candidate cases for maternal immunisation generally correspond to systems where

there is a significant prevalence of infection among neonates in the first few months

of life, close to the average duration of MAb. A particularly low average age at

primary infection is likely to be driven by a high force of infection, suggesting either

very high infant transmission or sub-optimal immunity and significant reinfection

throughout the wider population. Intuitively, the corresponding influence of MAb

over wider system dynamics is likely to crucially depend on the age distribution of

population level infectivity, i.e. the relative contributions of primary (potentially

influenced by MAb) and secondary (all subsequent) infection, in addition to the

average age of primary challenge.

However, recalling the issues of indeterminacy with hRSV (see Section 2.4.1), it is
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not always clear whether primary or subsequent reinfection dominate the behaviour

of the system. It is known that a significant level of subclinical reinfection exists

throughout the wider population [Falsey et al., 2006], but its likely contribution

to the total force of infection (or that acting on the neonatal age group) is yet to

be confidently established. As a result, two limiting hypotheses exist regarding

the relationship between observed (disease) dynamics of hRSV and maternally

acquired immunity:

• Neonatal MAb levels may be an insignificant consequence of dominant adult

infection dynamics, whereby they provide protection to only a negligible

proportion of the total population and are therefore unlikely to influence the

system as a whole.

• Conversely, if the majority of secondary subclinical infection does not result

in high infectivity and frequent antibody boosting occurs largely as a result of

exposure to primary infected infants, then MAb may be a significant driving

force in the availability/supply of susceptibles and therefore the time course

of the infection.

The MSIRS2 model structure, shown by the connectivity diagram in Figure 3.2,

has been derived in order to delineate the continuum of system characteristics

between these two extremes and to examine the potential influence of MAb as the

dominance of infectivity is varied within this domain. This approach is similar to

that described by White et al. [2007], and Greenhalgh et al. [2000], who explore

the consequences of altered secondary infection on the transmission dynamics and

equilibrium characteristics of human and bovine RSV. The MSIRS2 model is also

structurally similar to the more expansive MSEIRS4 model proposed in the work

by Weber et al. [2001] (see Appendix A), where the objective was to include

additional realism relating to processes of temporary and accumulating immunity

consistent with observations from a number of longitudinal studies.
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Figure 3.2: MSIRS2 Incomplete Immunity Model

In accordance with clinical observation [Falsey et al., 2006; Hacimustafaoglu et al.,

2004], passive and actively acquired immunity are assumed to wane at different

rates, where the average duration of protection is given by ω−1M and ω−1R , respec-

tively. In an analogous manner to the work by Weber et al. [2001], maternally pro-

tected neonates lose immunity and become fully susceptible, S1(t), to circulating

infection, whereas recently recovered individuals become only partially susceptible,

S2(t), due to a degree of immunological memory. This subsequent reduction in the

risk of infection is governed by the parameter σ ∈ [0, 1], by means of a similar

process to that of the SIRp example described in Section 2.1.4.

Secondary infection, I2(t), is assumed to be less severe than primary infection,

I1(t) [Ogra, 2004], with a shorter duration v−12 < v−11 and reduced infectivity

(viral shedding) γ ∈ [0, 1] [Hall et al., 1991]. Therefore the parameters σ and γ

can be varied in order to govern the dominance of primary and repeat infectivity

within the population. The model is defined by the following system of ordinary



Chapter 3 3.3 Homogeneous MSIR Models 49

differential equations:

Ṁ(t) = µAb+(t)−
[
ωM + µ

]
M(t), M(0) = M0, (3.20)

Ṡ1(t) = µAb−(t) + ωMM(t)−
[
λ(t) + µ

]
S1(t), S1(0) = S0

1 , (3.21)

İ1(t) = λ(t)S1(t)−
[
µ+ v1

]
I1(t), I1(0) = I01 , (3.22)

Ṙ1(t) = v1I1(t) + v2I2(t)−
[
µ+ ωR

]
R1(t), R1(0) = R0

1, (3.23)

Ṡ2(t) = ωRR1(t)−
[
µ+ σλ(t)

]
S2(t), S2(0) = S0

2 , (3.24)

İ2(t) = σλ(t)S2(t)−
[
µ+ v2

]
I2(t), I2(0) = I02 , (3.25)

where

λ(t) =
β(t)

N

[
I1(t) + γI2(t)

]
. (3.26)

The seropositive variable Ab+(t) = M(t) + R1(t) includes individuals who have

recently recovered from an immunising infection and those protected by high levels

of MAb. Individuals considered to be seronegative, where Ab−(t) = S1(t)+I1(t)+

I2(t)+S2(t) (i.e. N = Ab−(t)+Ab+(t)), include those fully or partially susceptible

and currently infective. It can also be noted that the incomplete immunity model

is a generalisation of the fundamental MSIR, whereby setting ωR = 0, i.e. fully

protective immunity from experience of infection no longer wanes with time, the

model becomes equivalent to that given by (3.14)-(3.17).

3.3.2 Maternal Immunisation Models

In accordance with the biological description of the intervention in Section 3.1.2,

mass maternal immunisation is applied to a proportion, Pm, of the total net birth

rate, µN , whereby an additional influx of newborns from low immunity mothers,

given by µPmAb
−(t), are born maternally protected, M(t), instead of fully suscep-
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tible, S1(t) (see Figure 3.3). It is assumed that the mother’s immune response to

the vaccine is actively protective, i.e. the same as that for natural infection, hence

the function µ Pm Ab−(t) also corresponds to the net rate at which seronegative

pregnant women are immunised and subsequently move into the protected state

R1(t).

Figure 3.3: MSIRS2 Maternal Immunisation Model

However, a degree of ambiguity exists over the exact implementation of the ac-

tive response in the model due to the difference in time at vaccine administration

and duration of full term (around 30 and 37 weeks gestation respectively). To

avoid the introduction of complex delay functions and gender structure, it is in-

tuitive to assume that vaccination is actively applied at the time of birth and is

instantly transferable to the newborn, although this is arguably a contradiction to

the prior assumption that mothers who are infective at this time do not transfer

any subsequent immunity to their offspring. Mathematically this discrepancy is

only significant when considering the application of the vaccine to I1,2(t), where im-

munised infectives (in reality vaccinated several weeks before giving birth) should

not have contracted the infection during that time. Given that the target popu-

lation for the vaccine (i.e number of pregnant woman) is realistically a very small

proportion of N , it is anticipated that this is a reasonable simplification to make.

Therefore the following set of system equations can be extended from those given
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in (3.20)-(3.25):

Ṁ(t) = µ
[
Ab+(t)+PmAb

−(t)
]
−
[
ωM+µ

]
M(t), (3.27)

Ṡ1(t) = µ(1−Pm)Ab−(t) + ωMM(t)−
[
λ(t)+µ(1+Pm)

]
S1(t), (3.28)

İ1(t) = λ(t)S1(t)−
[
v1 + µ(1+Pm)

]
I1(t), (3.29)

Ṙ1(t) = µPmAb
−(t) + v1I1(t) + v2I2(t)−

[
ωR+µ

]
R1(t), (3.30)

Ṡ2(t) = ωRR1(t)−
[
σλ(t) + µ(1+Pm)

]
S2(t), (3.31)

İ2(t) = σλ(t)S2(t)−
[
v2 + µ(1+Pm)

]
I2(t). (3.32)

It is assumed that maternally immunised newborns incur only the same passive

protection as those born to naturally immune mothers and that no extra immunity

is afforded to those already seropositive. All infants protected by natural and

vaccine induced MAb (except those who succumb to infant mortality) ultimately

become fully susceptible to infection and do not acquire (active) lasting immunity

until they have independently experienced primary infection.

3.3.3 Interacting Childhood Vaccination

Young infant targeted vaccination can be simplified to that of the birth targeted

model described in Section 2.2. A proportion, Pv, of either all newborns, µN (if

the vaccine does not immunologically interact with MAb), or only the offspring

of low immunity mothers, µAb−(t) (if MAb completely inhibits vaccine response),

are born into a protected or partially protected state, bypassing primary infection.

The degree of interaction between the two vaccines is governed by the parameter

ϑ ∈ [0, 1], whereby a proportion (1 − ϑ)Pv of maternally protected newborns

successfully respond to an administered childhood immunisation. The system can
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then be described by the following set of differential equations:

Ṁ(t) = µ(1−(1−ϑ)Pv)
[
Ab+(t)+PmAb

−(t)
]
−
[
ωM+µ

]
M(t), (3.33)

Ṡ1(t) = µ(1−Pv)(1−Pm)Ab−(t) + ωMM(t)−
[
λ(t)+µ(1+Pm)

]
S1(t), (3.34)

İ1(t) = λ(t)S1(t)−
[
v1 + µ(1+Pm)

]
I1(t), (3.35)

Ṙ1(t) = V (t) + v1I1(t) + v2I2(t)−
[
ωR+µ

]
R1(t), (3.36)

Ṡ2(t) = ωRR1(t)−
[
σλ(t) + µ(1+Pm)

]
S2(t), (3.37)

İ2(t) = σλ(t)S2(t)−
[
v2 + µ(1+Pm)

]
I2(t), (3.38)

where

V (t) = µ (1− ϑ) Pv
[
Ab+(t) + PmAb

−(t)
]

+

µ Pv(1−Pm)Ab−(t) + µ PmAb
−(t).

(3.39)

A potential limitation of this model arises again from the omission of age struc-

ture, this time with respect to fertility. It can be seen that vaccinated newborns

immediately contribute to the birth rate of maternally protected babies, where

in reality the peak age of fertility is predominantly in early adulthood. This as-

sumption may lead to an over estimation of the impact of active intervention on

maternally acquired immunity, particularly in cases where the relative duration of

active immunity is short.

3.3.4 Age Domain Models

If instead the reduced (non age-structured) general PDE model is considered at

endemic equilibrium (steady state variables denoted by X̂) and integrated with

respect to time, for example over τ complete annual cycles (to find the average

number of individuals residing in each state of disease for a given age a), then the
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following system of age domain integro-differential equations can be derived:

dM(a)

da
=

µδ(a)

τ

∫ τ

0

Ab+(t, a) dt−
(
ωM+µ

)1

τ

∫ τ

0

M(t, a) dt, (3.40)

dS(a)

da
=

µδ(a)

τ

∫ τ

0

Ab−(t, a) dt− 1

τ

∫ τ

0

(
λ(t)+µ

)
S(t, a) dt, (3.41)

dI(a)

da
=

1

τ

∫ τ

0

λ(t)S(t, a) dt−
(
v + µ

)1

τ

∫ τ

0

I(t, a) dt, (3.42)

dR(a)

da
=

v

τ

∫ τ

0

I(t, a) dt− µ

τ

∫ τ

0

R(t, a) dt, (3.43)

where

λ(t) =
β(t)

N

∫ ∞
0

I(t, ai) dai, (3.44)

If the transmission function β does not vary with time, or if some seasonal average

value is assumed, then the equations (3.40)-(3.44) reduce to a linear ODE model

of the form:

dM(a)

da
= −

(
ωM + µ

)
M(a), M(0) = µ ˆAb+, (3.45)

dS(a)

da
= ωMM(a)−

( β
N
Î + µ

)
S(a), S(0) = µ ˆAb−, (3.46)

dI(a)

da
=

β

N
ÎS(a)− (µ+ v)I(a), I(0) = 0, (3.47)

dR(a)

da
= vI(a)− µR(a), R(0) = 0, (3.48)

where the following analytic solutions may be found:

M(a) = µ ˆAb+e−a(µ+ωM ), (3.49)

S(a) =
µe−a(µ+λ)

(
ˆAb−(λ− ωM) + ωM ˆAb+(ea(λ−ωM ) − 1)

)
λ− ωM

. (3.50)
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However, if the transmission function β(t) is explicitly dependent on time, then

the incidence age profile is calculated to be of the form:

1

τN

∫ τ

0

β(t) S(t, as)

∫ ∞
0

I(t, ai) dai dt, (3.51)

whereby for seasonal systems there is inevitably some residual time dependency

in the age profile, requiring the full PDE system to be solved.

3.3.5 Preliminary Model Analysis

In the following section a general steady state analysis is performed on a number of

the non age-structured MSIR models discussed so far. The models are compared

to the basic SIR framework described in Section 2.1, the vaccination models in

Section 2.2 and to each other, in order to assess the relative implications of their

structural forms.

Standard MSIR

The basic MSIR structure, given by equations (3.14)-(3.17), can be derived from

the encompassing incomplete immunity model (3.20)-(3.25) by setting ωR = 0, i.e.

an infinite duration of immunity following primary infection, and ensuring that the

initial conditions S0
2 , I

0
2 = 0. Setting these differential equations equal to zero and

through simple algebraic manipulation it can be shown that two equilibrium points

exist, corresponding to either extinction (disease free) or endemic persistence of

the invading pathogen. The disease free steady state, given by:

M̂ = 0, Ŝ = N, Î = 0, R̂ = 0, (3.52)



Chapter 3 3.3 Homogeneous MSIR Models 55

is equivalent to that of the basic SIR (2.8), and through an eigenvalue analysis of

the resulting Jacobian matrix:

λ1 = −µ, λ2 = −ωM , λ3 = β−(µ+v), (3.53)

is also found to adhere to the same conditions for stability (i.e. the stability condi-

tion R0 < 1 gives rise to an invasion threshold at R0 = 1). The endemic susceptible

population Ŝ is again found to be the same as that for a system without maternally

acquired protection, as shown by the corresponding equilibrium expression:

M̂ =
Nvµ(β−(µ+v))

β(µωM+v(µ+ωM))
, Ŝ =

N(µ+v)

β
, Î =

ωM
v
M̂, R̂ =

ωM
µ
M̂, (3.54)

implying that in an analogous manner to birth targeted vaccination, natural im-

munity attributed to MAb has no static influence over the number of susceptibles

in a population already supporting an endemic infection. The endemic prevalence

Î and the proportion recovered R̂ are however found to be dependent on ωM , and

subsequently differ from that of the basic SIR. Given that all parameters are pos-

itive and R0 > 1, an increase in the duration of MAb (i.e. a decrease in ωM) can

only result in a greater proportion of the population residing in M̂ , and hence a

smaller proportion currently infective or recovered.

This is an interesting result as it suggests that maternally acquired immunity has

the capability to reduce population level infection despite the passivity of MAb

(i.e. all maternally protected neonates ultimately become fully susceptible). It can

be deduced that this reduction in prevalence is due to an additional proportion

of the population being immune to circulating pathogens and the subsequent loss

of infants who do not survive the background death rate before contracting an

infection. However, from an eigenvalue analysis at the corresponding system equi-

librium (3.53) it can be seen that there is no possible value of ωM that will give rise

to otherwise unconditional stability of the disease free steady state. This infers

that there is no duration of MAb that can lead to eradication of the pathogen as
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population immunity diminishes with reducing levels of infection.

The number of protected neonates is also strongly dependent on the nature of

population net birth/mortality rates, where an increase in µ leads to a larger M̂

and subsequently accentuates the resulting reduction in Î. This reiterates the

hypothesis that MAb may be more influential in developing regions where there

are likely to be higher birth and infant mortality rates, and additionally an age

distribution skewed towards young infant age classes.

The approximate average age at primary infection predicted by the standard time

domain MSIR model can be found explicitly in terms of its parameters by recalling

equation (3.19) and substituting endemic steady state values from (3.54) (note also

λ̂ = βÎ/N):

Av ≈
M̂(µ+ωM)

Nµ ωM
+
Nv(v+µ)

M̂β2ωM
+
µ ωM + v(µ+ ωM)

βµ ωM
. (3.55)

Taking the first derivative of this function with respect to ω−1M , and providing

[β, ωM , v, N, µ] > 0, R0 > 1, it can be shown that:

d Av

d ω−1M
≥ 0, (3.56)

implying that an increase in the duration of MAb can only result in an increase

in the average age at primary infection.

It should be noted that a more detailed illustration of this characteristic may also

be shown using the age domain realisation (3.45)-(3.48) described in Section 3.3.4.

In this instance the analytic solution for S(a), given by (3.50), is substituted into

the general expression for the average age of infection given by (2.39).
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MSIR with Maternal Immunisation

Setting the parameters ωR, S
0
2 and I02 equal to zero in equations (3.27)-(3.32),

i.e. reducing the model to that of the basic MSIR (3.14)-(3.17) with maternal

immunisation, the following disease free equilibrium can be found:

M̂ =
2PmµN

θ
, Ŝ =

NωM
θ

, Î = 0, R̂ =
PmωMN

θ
, (3.57)

with common denominator,

θ = ωM + Pm(2µ+ωM).

It can be seen that the distribution of individuals throughout a naive, disease free

population is governed by the parameters Pm, µ and ωM , where M̂ + Ŝ + R̂ = N .

Increasing the amount of maternal immunisation, Pm, reduces the proportion of

individuals susceptible to infection, and consequently increases the proportion of

those both passively and actively protected. An interesting outcome of this analysis

can be found in the numerators of the expressions for M̂ and R̂, where the relative

contributions of neonatal and maternal immunity to the reduction in population

susceptibility is seen to be dependent on the differential magnitudes of µ and ωM .

Inevitably the average duration of MAb is considerably less than life expectancy

(2µ << ωM), hence M̂ << R̂, inferring that lifelong active immunisation is a

considerably more effective population level intervention.

The disease free eigenvalues of the system are found to be expressed by the fol-

lowing parameter combinations:

λ1 = −µ(Pm+1)− v1 +
βωM

Pm(2µ+ ωM) + ωM
, (3.58)

λ2,3 = −1

2

(
µ(1 + 2Pm) + ωM ±

√
µ2(1−2Pm)2 − 2µωM + ω2

M

)
,

where λ1 indicates that increasing Pm subsequently alters the stability character-
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istics of the disease free equilibrium (i.e. the effective reproduction number). In

contrast to the standard MSIR model this suggests that it is in some cases theoret-

ically possible to eradicate an infection through mass maternal immunisation. The

condition for possible eradication is calculated in terms of the basic reproduction

number (2.5) by substituting complete vaccination coverage Pm = 1 into λ1, giving

rise to the inequality:

R0 <
2(2µ+ v)(µ+ ωM)

µ+ v
. (3.59)

The second and third eigenvalues can be seen to become complex under certain

parameterisations, leading to oscillatory behaviour. However, given that Pm ∈

[0, 1] and 2µ << ω this is generally not the case.

The endemic equilibrium is found to be given by the following expressions:

M̂ =
µN
[
(Pm−1)v2 + 2Pmβµ+ v

(
β + (P 2

m−1)µ
)]

β
[
v(µ+ωM) + µ

(
ωM + Pm(2µ+ ωM)

)] ,

Ŝ =
N(µ(Pm+1)+v)

β
.

(3.60)

The model predicts that the introduction of maternal immunisation, Pm, will result

in an increase in the proportion of the population protected by MAb and a decrease

in the prevalence of infection. In this instance, the average age at primary infection

can be approximated by the following form:

Av ≈
M̂ + R̂+Pm(Ŝ + Î)

N
(ω−1 + λ−1) +

(1−Pm)(Ŝ + Î)

N
(λ−1), (3.61)

where the average age is seen to increase with greater levels of maternal immuni-

sation.
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MSIRS Temporary/Waning Immunity

The effects of temporary/waning immunity resulting from natural infection can

be explored by setting σ = 1, γ = 1 and v = v1 = v2 in equations (3.20)-(3.26),

whereby secondary infection characteristics are considered to be identical to that

of primary infection. Susceptible and infective states can then be combined such

that: S(t) = S1(t) +S2(t) and I(t) = I1(t) + I2(t), giving rise to a model structure

analogous to that of the SIRS described in Section 2.1.4. The disease free steady

state remains the same as that of the SIR and MSIR systems (3.52), and the

resulting endemic equilibrium is given by:

M̂ = µNv θ, Ŝ =
N(µ+v)

β
, Î = ωMN(µ+ωR) θ, R̂ = ωMNv θ, (3.62)

where

θ =
β − (µ+v)

β
(
ωM(µ+ωR) + v(µ+ωM)

) .
Comparing the expressions in (3.62) with those in (3.54) reiterates the result that

waning of active immunity acts to raise endemic prevalence (force of infection)

within a population through a reduction in the number of individuals currently

protected from infection. Consequently the number of newborns protected by MAb

is also reduced, thus through a combination of this and a higher force of infection,

a short duration of immunity can significantly lower the average age at primary

challenge.

3.4 Age Structured MSIR Models

It is the intention of this work to use a continuous PDE type age structured model

(see the book by Anderson and May [1991]) to assess the impact of MAb on the

distribution of primary infection incidence. This is attempted using the general
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MSIR model (3.3)-(3.8) described in Section 3.2. However, models that include

both time and age as continuous independent variables are inherently complex

to rigorously analyse. Therefore an intermediate, discretised age structure is also

proposed in order to ease analytical tractability.

3.4.1 Discrete Age Structure

In discrete age-structured models the key characteristics of heterogeneous mixing

patterns are lumped together in distinct (homogeneously mixed) age classes with

common epidemiological properties associated with infection [Farrington et al.,

2001]. The age classes are divided according to known characteristics of transmis-

sion, such as higher transmissive contact rates of respiratory viruses among school

aged children or of sexually transmitted infections among young adults. This ap-

proach also allows for a more realistic inclusion of birth and mortality functions

and potentially the influence of physiological development on susceptibility and

infectivity.

Figure 3.4: Discrete Age Model Structure

In this instance the transmission function β(t) becomes an n × n matrix, often
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referred to as a ‘who acquires infection from who’ matrix, that describes the trans-

missive interaction of individuals between n discretised age groups. Each element

βij(t) denotes the rate of transmission arising from contacts between susceptibles

residing in age class i and infectives in age class j. The process of progressive

ageing throughout the model structure is included by means of a linear coefficient

decay parameter ki (see Figure 3.4) that describes the rate at which individuals

mature and leave a particular age class i, where k−1i corresponds to the age-span

of the group.

The set of ordinary differential equations describing an MSIR type model with n

discrete age classes can be expressed as follows:

Ṁ1(t) = UAb+(t)−
(
ωM1 + µd1 + k1

)
M1(t), M1(0) = M0

1 , (3.63)

Ṡ1(t) = UAb−(t) + ωM1M1(t)−
(
λ1(t) + µd1 + k1

)
S1(t) S1(0) = S0

1 , (3.64)

İ1(t) = λ1(t)S1(t)−
(
v1 + µd1 + k1

)
I1(t), I1(0) = I01 , (3.65)

Ṙ1(t) = v1I1(t)−
(
µd1 + k1

)
R1(t), R1(0) = R0

1, (3.66)

Ṁi(t) = ki−1Mi−1(t)−
(
ωMi + µdi + ki

)
Mi(t), Mi(0) = M0

i , (3.67)

Ṡi(t) = ki−1Si−1(t) + ωMiMi(t)−
(
λi(t) + µdi + ki

)
Si(t) Si(0) = S0

i , (3.68)

İi(t) = ki−1Ii−1(t) + λi(t)Si(t)−
(
vi + µdi + ki

)
Ii(t), Ii(0) = I0i , (3.69)

Ṙi(t) = ki−1Ri−1(t) + viIi(t)−
(
µdi + ki

)
Ri(t), Ri(0) = R0

i , (3.70)

where

i = {2, . . . , n}, kn = 0, λi(t) =
n∑
j=1

βij(t)Ij(t).

In the general case all model parameters are allowed to vary with age, supporting

heterogeneity in transmission, fertility and mortality. The population net birth
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and death rates are balanced to ensure constant population size N and distribution

{Ni, . . . , Nn} with respect to age:

µN =
n∑
i=1

µbiNi =
n∑
i=1

µdiNi, (3.71)

where the population sizes for each age class are found to be:

N1 =
µN

µd1 + k1
, Ni = µN

i−1∏
j=1

kj

i∏
j=1

(
µdj + kj

) for i = {2, . . . , n}. (3.72)

The corresponding influxes for seropositive and seronegative newborns are then

defined according to the number of individuals currently immune such that:

UAb+(t) =
n∑
i=1

µbi
[
Mi(t) +Ri(t)

]
(3.73)

UAb−(t) =
n∑
i=1

µbi
[
Si(t) + Ii(t)

]
, (3.74)

where individuals are born into the youngest age class.

Basic Reproduction Number

As discussed in Section 2.3.1 the average transmission function βij corresponds

to an n× n matrix, where the basic reproduction number is subsequently defined

as the average number of expected cases arising from a single typical infective

introduction into an otherwise naive population. Recalling the expression for R0

(2.5), and neglecting movement of infectives due to ageing, the basic reproductive

growth in age class i emanating from a single infective individual residing in age
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class j can be given by:

R0 =


β11N1D1 β12N1D2 . . . β1nN1Dn

β21N2D1 β22N2D2 . . . β2nN2Dn

...
...

. . .
...

βn1NnD1 βn2NnD2 . . . βnnNnDn

 , (3.75)

where Di = (µdi+vi)
−1 corresponds to the average duration an individual remains

infective.

Unfortunately, the derivation of an appropriate, single value for R0 that describes

the invasion threshold and the initial growth rate for the whole system cannot be

achieved through simple averaging of the individual components in equation (3.75).

Following the method documented by Diekmann et al. [1990], the progression of

an epidemic system may be considered in terms of generations, where each new

generation, φg+1, is found by applying an n × n matrix reproduction function,

K, to the current generation, φg. Each generation of infectives is represented by

an n-dimension vector, φ, showing their distribution throughout the different age

classes in the model:

φg = Kφg−1 = K2φg−2 = . . . = Kgφ0, (3.76)

where in the early stages of an epidemic the reproductive function K can be

assumed to be the matrix R0 (3.75).

If, for example, K = R0 is a 2 × 2 matrix (signifying a model structure with two

discrete age classes), with two distinct real eigenvalues λ1 and λ2, and it is known

that λ1 > 0 is the dominant eigenvalue, i.e. λ1 > |λ2|, then ψ(1) and ψ(2) are

corresponding eigenvectors from which any vector x ∈ R2 can be expressed as a

linear combination:

x = c1ψ
(1) + c2ψ

(2), (3.77)
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where

Kx = c1λ1ψ
(1) + c2λ2ψ

(2), (3.78)

and subsequently

Kgx = c1λ
g
1

[
ψ(1) +

c2
c1

(
λ2
λ1

)g
ψ(2)

]
. (3.79)

Given that |λ2/λ1| < 1 and provided c1 6= 0, then the second term in (3.79) will

tend to zero as the number of generations g →∞, effectively reducing (3.79) to:

Kgx ∼ c1λ
g
1ψ

(1). (3.80)

The basic reproduction number for the overall system can therefore be quoted as

the dominant eigenvalue λ1, given that λ1 > 1 results in exponential growth and

λ1 < 1 results in exponential decay, thus describing the invasion threshold for a

completely susceptible population. It can also been noted that the influence of the

initial condition is restricted to the value of c1.

3.4.2 Continuous Age Structure

An alternative approach to modelling the effects of MAb on the average age pro-

file of primary incidence is to consider a more empirical representation of the rate

at which the neonatal population loses passively acquired immunity. The process

is implemented as a simplification to the continuous immunity model (3.1)-(3.2),

proposed in Section 3.2, where the acquisition of protective MAb is decoupled

from wider adult infection/immunity dynamics. This may be appropriate for sys-

tems where high titres of disease specific neutralising antibodies are ubiquitous

throughout the adult (child bearing) population and are relatively unaffected by

‘childhood’ epidemics or seasonality. The model is also extended from that of the

continuous age-time SIR (2.33)-(2.37) discussed in Section 2.3 and defined by the
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following set of equations:

∂M(t, a)

∂t
+
∂M(t, a)

∂a
= −Q(t, a)− µd(a)M(t, a), (3.81)

∂S(t, a)

∂t
+
∂S(t, a)

∂a
= Q(t, a)−

[
λ(t, a)+µd(a)

]
S(t, a), (3.82)

∂I(t, a)

∂t
+
∂I(t, a)

∂a
= λ(t, a)S(t, a)−

[
v(a) + µd(a)

]
I(t, a), (3.83)

∂R(t, a)

∂t
+
∂R(t, a)

∂a
= v(a)I(t, a)− µd(a)R(t, a), (3.84)

where

λ(t, as) =
1

N

∫ ∞
0

β(t, as, ai) I(t, ai) dai. (3.85)

The boundary conditions (i.e. the number of newborns seropositive and seroneg-

ative) are both determined by C(t, Ab); a function that describes the population

cord log antibody titre distribution at a given point in time, and τ , a parameter

representing a discrete cut-off threshold in Ab that distinguishes between complete

immunity and full susceptibility. Although C(t, Ab) includes some inherent depen-

dency on time, the integral of this function with respect to Ab corresponds to the

current net birth rate and is therefore considered to be constant. Hence:

M(t, 0) =

∫ ∞
τ

C(t, Ab) dAb, S(t, 0) =

∫ τ

0

C(t, Ab) dAb, I(t, 0) = 0. (3.86)

Individual log antibody titres are assumed to decay linearly with respect to age

[Ochola et al., 2009], where the average population decay rate is given by ωM ,

and the rate at which maternally protected infants lose MAb and become fully

susceptible to infection is modelled by the function Q(t, a).

Neglecting infant mortality, if an instantaneous birth cohort (i.e. a = t for all

members) is born at t0 and has a log antibody titre distribution C(t0, Ab), then at

t0, the rate at which individuals cross the immunity threshold and subsequently

lose maternally acquired protection is given by Q(0) = ωMC(t0, τ). For a > 0 this
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rate becomes Q(a) = ωMC(t0, ωMa + τ). Generalising this function beyond that

of a single cohort and including infant mortality yields the expression:

Q(t, a) = ωM C(t−a, ωMa+τ) e−
∫ a
0 µ(α)dα, (3.87)

where all individuals of age a (born at time t−a) have antibody titres according

to the same distribution C(t− a,Ab).

The average duration of protection from MAb is evaluated as the average age of

all individuals becoming susceptible at a given time t. In the general case this

can be found in a similar manner to the average age of infection (2.39) from the

following integral expression:

Av(t) =

∫ ∞
0

a Q(t, a) da∫ ∞
0

Q(t, a)da

. (3.88)

In the more simple case where the effects of infant mortality are omitted from the

model and C(t, Ab) is assumed constant with respect to time, this value can be

expressed more simply as:

Av =
(C̄ − τ)

ωM
, (3.89)

where the average duration is dependent on the difference between the average

cord antibody titre, C̄, and the cut-off threshold for immunity τ , as well as the

average individual MAb decay rate ωM .

3.4.3 Maternal Immunisation

Maternal immunisation can be applied to the model (3.81)-(3.87) by means of

a distorting function VM(Ab), which is applied to the initial cord antibody titre

distribution C(t, Ab). If the average MAb response (scalar increase in log Ab
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titre) to the implemented vaccine is independent of the mother’s initial antibody

level, and VM(Ab) follows some random (Gaussian) distribution, then the resulting

post-vaccine cord antibody function can be generated in the following manner:

Cv(t, Ab) =

∫ Ab

0

C(t, z)VM(Ab/z)

C̄(t)
dz. (3.90)

However, given that only a limited proportion, Pm, of pregnant women will suc-

cessfully take up the vaccine, the actual resulting cord log antibody function is

given by:

Cv(t, Ab) = (1− Pm)C(t, Ab) + Pm

∫ Ab

0

C(t, z)VM(Ab/z)

C̄(t)
dz. (3.91)

If the administered vaccine does immunologically interact with a mother’s response

to prior experience of infection, then the potential efficacy of the vaccine may be

impeded by an initially high antibody titre. At a population level, only those indi-

viduals who would not otherwise already be protected by high MAb would benefit

from the immunisation. Neglecting any change in antibody titre between immuni-

sation at 30 weeks gestation and birth, and assuming Ab titres corresponding to

mother and foetus are equal, if a discrete threshold τm defines both immune pro-

tection and vaccine interaction in the adult population, then the function VM(Ab)

is only applied to the region of C(t, Ab) between 0 and τm. Therefore

Cv(t, Ab) = (1− Pm)C(t, Ab) + Pm

∫ Ab

0

f(t, Ab, z)dz, (3.92)

where

f(t, Ab, z) =


C(t, z)VM(Ab/z)

C̄(t)
for z ≤ τm,

C(t, z) for z > τm.

(3.93)

If AT defines some point in age, then all individuals born with log antibody titres

below ATω + τ will become susceptible and at risk of contracting infection before

they reach age AT . One primary aim of maternal immunisation is then to minimise
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the number of infants with cord titres below this target. However, if the vaccine is

ineffective above the mother’s antibody interaction threshold, τm, then assuming

τ < τm < ATω + τ , there is a proportion of newborns who remain at risk from

the infection and are unaided by the vaccine. This proportion may be described

by the following integral expression:

∫ ATω+τ

τm

C(t, Ab) dAb. (3.94)

In this instance good vaccine response is required in mothers with log antibody

titres up to at least τm ≥ ATω + τ .

3.5 Nominal Parameter Values

Throughout the forthcoming work, realistic estimates of model parameters are re-

quired for numerical and qualitative analysis. Nominal values are not estimated

from fitting the proposed model structures to empirical data, since it is initially

unknown if particular parameters are sufficiently determined by the available in-

put/output behaviour of the system. Alternatively, estimates are based on prior

knowledge extracted from a number of clinical studies, epidemiological observa-

tions and the validation of alternative epidemic models presented in the literature.

The following section is used to collate these results and to provide appropriate

sets of initial parameter values corresponding to the ODE MSIR and MSIRS2

models presented in Sections 3.3 and 3.3.1. The parameterisation of models that

incorporate age dependency is discussed for specific examples in Chapter 6.

The models are considered in the context of two contrasting viral infections, namely

measles and human respiratory syncytial virus (hRSV). These pathogens are both

members of the Paramyxoviridae virus family but show differing degrees of anti-

genic variability. The primary route of transmission is through respiratory secre-
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tions by means of either inhalation of aerosol droplets or contact with contami-

nated fomites. It is likely that both infections may be subject to similar processes

of temporal variation, although their resulting seasonality is markedly different.

These pathogens are adopted as illustrative examples since they subsequently dis-

play contrasting interactions with the host immune system that complement the

varying reinfection models presented throughout this chapter and have also been

the subject of an extensive degree of study.

3.5.1 Measles

The foundation model structure described in this work is the fundamental MSIR

model (3.14)-(3.17), which describes the evolution of pathogens that are seen to

induce solid, lifelong immunity following infection. The epidemiology of measles

is traditionally considered in this manner, where clinical disease is generally only

observed among primary cases [Hawker et al., 2005]. However, the boosting and

waning of adult antibody titres has been observed in studies such as that by Huiss

et al. [1997] and Pedersen et al. [1989], which raises the possibility of persistent

subclinical reinfection throughout the recovered/vaccinated population [Damien

et al., 1998; Glass and Grenfell, 2004]. Although measles is unlikely to be a future

candidate for mass maternal immunisation, the potential interaction of MAb with

infant vaccine response, and relations between passively acquired antibodies in

neonates and population wide immunity are of ongoing interest [Gans et al., 1998;

Pabst et al., 1992; Siegrist, 2003].

The infection is widely reported to have an average duration of infectivity, v−1, of

approximately 5 days (i.e. v = 73 yr−1) [Hawker et al., 2005; Schenzle, 1984], and

a basic reproduction number, R0, of around 18 within the UK [Anderson and May,

1991]. Assuming a constant birth/mortality rate coefficient, µ = 0.014yr−1 [White

et al., 2007] (corresponding to an average life expectancy of 71.4 years), the average
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Table 3.1: Initial estimated values for MSIR model parameters corresponding to
pre-vaccine measles in the UK.

Parameter Description Value Source

µ UK net birthrate coefficient 0.014 yr−1 [White et al., 2007]

N UK population size 5.7×107 [White et al., 2007]

β0 Annual average transmission rate 1314 yr−1 [Anderson and May, 1991]

β1 Seasonal variation in transmission 0.046 [Keeling and Grenfell, 2002]

φ Annual epidemic timing 0.019 [Fine and Clarkson, 1982]

v Rate of recovery 73 yr−1 [Hawker et al., 2005]

ωM Waning MAb rate coefficient 4 yr−1 [Nicoara et al., 1999]

transmission rate, β0, may be calculated from (2.5) to be approximately 1314yr−1.

Although the duration of maternally acquired immunity does not appear to have

been estimated explicitly, typical values of around 2-4 months (ωM = 4 yr−1) have

been suggested in a number of sources (such as those by Nicoara et al. [1999] and

Williams et al. [1995]). Table 3.1 provides a complete set of nominal parameter

values for the homogeneous MSIR model derived in Section 3.3.

3.5.2 Respiratory Syncytial Virus

Human respiratory syncytial virus is one of the leading world wide causes of severe

respiratory tract infection among neonate and young infant age classes [Ogra,

2004]. The disease results in hospitalisation rates of 1-3% in infants under 12

months of age, with a peak at 2-3 months and a mortality rate of 1-3% among those

admitted [Munoz et al., 2003]. Age serological surveys such as those described in

the work by Cox et al. [1998] suggest an overall force of infection, λ, in the region

of 0.84 yr−1, where the majority of infants have immunological experience by 3

years of age [White et al., 2007].

In contrast to the measles virus, hRSV is found to display significant antigenic

variability [Cane, 2001], leading to frequent reinfection throughout the wider pop-
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Table 3.2: Fixed nominal MSIRS2 model parameter values corresponding to hRSV
infection in the UK.

Parameter Description Value Source

µ UK net birthrate coefficient 0.014 yr−1 [White et al., 2007]

N UK population size 5.7×107 [White et al., 2007]

λ Average force of infection 0.84 yr−1 [Cox et al., 1998]

v1 Primary infection recovery rate 40.56 yr−1 [White et al., 2005]

v2 Secondary infection recovery rate 107.35 yr−1 [Hall et al., 1991]

ωM Waning MAb rate coefficient 4 yr−1 [Hacimustafaoglu et al., 2004]

ulation [Weber et al., 2001]. As a result, the infection is more appropriately de-

scribed by the MSIRS2 model defined in Section 3.3.1. Adult infection is typically

less severe than that of young children [Falsey and Walsh, 2000]. However, it

is not known whether this is primarily the result of accumulating immunological

experience or some aspect of physiological development [White et al., 2005]. Doc-

umented estimates for the duration of viral shedding are found to vary between

6.7− 10.1 days for infants (corresponding to values of v1 equal to 54.48 yr−1 [Hall

et al., 1976], 40.56 yr−1 [White et al., 2007] and 36 yr−1 [Weber et al., 2001]), and

3.0−4.4 days for adults (corresponding to values of v2 equal to 121.67−91.25yr−1

[Falsey and Walsh, 2000], 107.35 yr−1 [Hall et al., 1991] and 82.95 yr−1 [Lee et al.,

2004]).

The average duration of maternally acquired immunity is reported to be around

1.23-3.75 months (corresponding to values of ωM equal to 9.73 yr−1 [Brandenburg

et al., 1997], 3.67 yr−1 [Cox et al., 1998] and 3.20 yr−1 [Ochola et al., 2009]). A

representative midrange value of 4 yr−1 (average duration of 3 months) is chosen

since it also corresponds with the observations reported by Hacimustafaoglu et al.

[2004] for hRSV and Nicoara et al. [1999] for measles mumps and rubella.

As previously discussed, the contributions of primary and secondary hRSV trans-

mission to the overall force of infection remains largely unclear. Nominal values

for the duration of secondary immunity are found to be between 6.67− 24 months
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Table 3.3: Varying nominal MSIRS2 model parameter values corresponding to
hRSV infection in the UK.

Parameter Description A B C D

β0 Average transmission rate 2490 yr−1 2490 yr−1 152 yr−1 486 yr−1

β1 Seasonal variation in transmission 0.15 0.15 0.21 −
φ Annual epidemic timing 0.51 0.51 0.11 −
σ Susceptibility to secondary infection 0 1 1 0.5

γ Infectivity of secondary infection 0 0 1 0.6

ωR Waning immunity rate coefficient 0 yr−1 1.8 yr−1 1.8 yr−1 0.67 yr−1

(corresponding to values of ωR equal to 1.8 yr−1 [Weber et al., 2001], 1.0− 0.5 yr−1

[Falsey et al., 2006] and 0.51yr−1 [White et al., 2005]). However, altered secondary

infection parameters, i.e. proportionally reduced susceptibility, σ, and infectivity,

γ, are inherently more difficult to estimate, particularly from clinical studies. In

this instance, these parameters are varied within their valid ranges in order to em-

ulate the continuum of possible reinfection characteristics described by the model.

The average transmission parameter, β, is set such that the average force of infec-

tion, λ, remains constant. Sets of nominal estimates for fixed and varied MSIRS2

model parameter values are given by Tables 3.2 and 3.3, respectively, for hRSV in

the UK.

Parameter sets A and B correspond to cases where the overall force of infection is

dominated by primary infectivity. Set A gives rise to a realisation equivalent to

that of the fundamental MSIR model (3.14)-(3.15), where high levels of maternal

antibodies are sustained through solid and lifelong immunity acquired following

primary infection. In contrast, parameter set B corresponds to a situation where

wider population immunity dynamics are dependent on exposure to primary infec-

tion among infants, but do not contribute to overall transmission. Parameter sets

C and D correspond to cases where secondary infectivity is considered equivalent

to primary infection and partially reduced, respectively.
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3.6 Conclusions

A series of MSIR framework models have been presented that aim to address

questions regarding the population level influence of maternally acquired immunity

and the potential outcomes of mass maternal immunisation. The models have been

derived through successive simplifications of an encompassing general PDE model

structure in order to address specific aspects of the problem statement for systems

with contrasting epidemiological characteristics. Sets of initial parameter estimates

have also been collated from the literature corresponding to two common viral

diseases that provide suitable illustrative examples during forthcoming numerical

analysis of the models.



Chapter 4

Structural Identifiability &

Indistinguishability Analysis

The problems of structural identifiability and indistinguishability (see the work

by Bellman and Åström [1970] and Godfrey and DiStefano III [1987]) are purely

theoretical concepts that aim to address the question of uniqueness in the determi-

nation of unknown model parameters and the inference of system structure from

known input-output behaviour of a real system. These analyses are an essential,

yet often overlooked, prerequisite to experiment design and parameter estimation

[Evans et al., 2002]. They are particularly relevant in disciplines such as epidemi-

ology where there is often a significantly limited observation of the full system

state.

In model indistinguishability, the objective is to determine whether or not a series

of competing model structures that represent alternative descriptions of some un-

derlying physical process can be parametrised in such a way as to yield identical

input/output behaviour. If two prospective models are found to be structurally

indistinguishable then it is hence not possible, without the use of additional knowl-

edge of the real system, to determine which structure best corresponds to the col-

74
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lected data. This analysis is of particular importance when there is a degree of

uncertainty in the elemental function of the real system.

The concept of structural identifiability (a special case of indistinguishability where

competing models have the same structure) describes the problem of whether or

not the unknown parameters of a single postulated model can be uniquely deter-

mined from perfect, noise free and continuous experimental data. Global identifia-

bility indicates that a given parameter (or model structure, should all parameters

be globally identifiable) is uniquely determinable from the considered observation.

Should a model structure prove to be unidentifiable, whereby a number of different

parametrisations exist that give rise to identical measurable behaviour of the sys-

tem, parameter values estimated from fitting to real data should be treated with

extreme caution.

Application to Epidemic Systems

The application of identifiability/indistinguishability techniques to identifying prob-

lems of indeterminacy can provide cogent advocation for the more rigorous valida-

tion of epidemic models used in the assessment of decisions regarding large scale

public health policy. However, the illustrated use of these methods are relatively

sparse in the literature and generally not common practice among the epidemi-

ological community. In reality, the identifiability problem is arguably reduced

through the substitution of ‘known’ parameter values, such as population size,

N , and the duration of infection, v−1, into the model prior to fitting. However,

clear estimation of these attributes is often difficult to obtain, for example defining

geographical bounds around a population supporting an unubiquitous infection,

or measuring the exact duration of viral shedding, and do not necessarily scale

consistently between individual and population level characteristics.

The work by White et al. [2001] describes the use of a structural identifiability
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analysis in the validation of a multispecies model for the spread of major and mi-

nor pathogens causing mastitis in dairy cattle. Despite the size and complexity

of the model, it was found that all model parameters were uniquely determinable

from the available data. However, in this case a very comprehensive longitudinal

data set was available for the study, effectively allowing for simultaneous obser-

vation of all four state variables. In contrast, the work by Evans et al. [2004,

2005] considers, respectively, an identifiability analysis of the seasonally forced

general SIR model (2.1)-(2.4), (2.14), and an indistinguishability analysis of an

SIR model (2.1)-(2.4) and an SIRS model (2.15)-(2.4) with temporary/waning im-

munity. The output structure is limited to a more common prevalence observation

with an unknown scaling factor, and in both cases the models were found to be

unidentifiable/indistinguishable.

It is the objective of this chapter to broaden the application of these techniques

to epidemic models that include characteristics of incomplete immunity and birth

targeted vaccination, as described in Sections 2.1 and 2.2, and to some of the

fundamental MSIR model structures derived in Section 3.3.

4.1 Formal Definitions

In order to provide a more formal definition of structural identifiability the follow-

ing standard form for uncontrolled nonlinear systems is assumed:

Σ(p)


ẋ(t, p) = f(x(t, p), p),

y(t, p) = h(x(t, p), p),

x(0, p) = x0(p),

(4.1)

where x(t, p) ∈ Rn
≥0 and y(t, p) ∈ Rm

≥0 denote the state and output vectors re-

spectively; p ∈ Ω (an open subset of Rq
>0 denoting all feasible parameter vectors)
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corresponds to a constant parameter vector, and for all p ∈ Ω, f(·, p) and h(·, p)

are analytic on Rn
≥0.

Definition 1. Two particular parameter vectors p, p̃ ∈ Ω are said to be indistin-

guishable (p̃ ∼ p) if they give rise to identical outputs, i.e. y(t, p) = y(t, p̃) for all

t ≥ 0. Hence it is impossible to distinguish between p and p̃ from an ideal noise

free observation via the output.

Definition 2. For generic p ∈ Ω, the ith parameter pi is said to be globally identi-

fiable if p̃ ∼ p and p̃ ∈ Ω imply that p̃i = pi, and locally (non-uniquely) identifiable

if there exists some open neighbourhood N (p) ⊂ Ω (N (p) 6= Ω) such that p̃ ∼ p

for p̃ ∈ N implies that p̃i = pi. If pi is shown not to be at least locally identifiable

then it is said to be unidentifiable.

Definition 3. A model conforming to (4.1) is said to be structurally globally

identifiable if all parameters pi are globally identifiable, and structurally locally

identifiable if any non-globally identifiable parameters are locally identifiable. If

any parameters are found to be unidentifiable then the model is unidentifiable.

For structural indistinguishability, a competing model structure analogous to that

of (4.1) is also defined in standard form:

Σ̃(p̃)


˙̃x(t, p̃) = f̃(x̃(t, p̃), p̃),

ỹ(t, p̃) = h̃(x̃(t, p̃), p̃),

x̃(0, p̃) = x̃0(p̃),

(4.2)

where x̃(t, p̃) ∈ Rñ
≥0 and p̃ ∈ Ω̃ (an open subset of Rq̃

>0) correspond to state and pa-

rameter vectors respectively, outputs from both competing models y(t, p), ỹ(t, p̃) ∈

Rm
≥0, and for all p̃ ∈ Ω̃, f̃(·, p̃) and h̃(·, p̃) are analytic on Rñ

≥0.
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Definition 4. The competing systems Σ(p) and Σ̃(p̃), where p ∈ Ω and p̃ ∈ Ω̃,

are said to be output indistinguishable (Σ(p) ∼ Σ̃(p̃)) if they give rise to identical

outputs, i.e. y(t, p) = ỹ(t, p̃) for all t ≥ 0. Hence it is impossible to distinguish

between Σ(p) and Σ̃(p̃) from an ideal noise free observation.

Definition 5. The models Σ and Σ̃ are said to be structurally indistinguishable

(Σ ∼ Σ̃) if for generic p ∈ Ω there exists a p̃ ∈ Ω̃ such that Σ(p) ∼ Σ̃(p̃); and for

generic p̃ ∈ Ω̃ there exists a p ∈ Ω such that Σ(p) ∼ Σ̃(p̃).

4.2 Identifiability Methods for

Nonlinear Systems

Since the early 1970’s, an extensive base of literature has accumulated regarding

the issue of identifiability in compartmental systems, for examples see the review

by Cobelli and DiStefano III [1980], the relevant chapter in Jacquez [1996] and

the book by Godfrey [1983], as well as the papers by Godfrey and Chapman

[1990], Godfrey et al. [1994] and Chappell et al. [1990]. Epidemic models such

as those characterised in this work tend to be uncontrolled (free or autonomous)

and inherently nonlinear due to the explicit dependency of infection incidence

(βS(t)I(t)/N) on both the susceptible and infective state variables of the system.

However, despite the additional complexity in analysis over linear systems (see

the book by Walter [1982]), the problem of structural identifiability can still be

approached with a number of well documented methods (for a brief review on

general techniques for nonlinear identifiability see the paper by Boubaker and

Fourati [2004]).
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4.2.1 Taylor Series Expansion Approach

The work by Godfrey and Fitch [1984] describes the use of a Taylor series ex-

pansion method on a number of examples in pharmacokinetics. This technique

was first utilised by Pohjanpalo [1978] and is also equally applicable to time vary-

ing and nonlinear systems. The output functions corresponding to two competing

parametrisations, y(t, p) and y(t, p̃), are expanded as a Taylor series about a known

point in time (usually at an initial condition i.e. t = 0+) in the following manner:

y(t, p) = y(0, p) + ẏ(0, p)t + ÿ(0, p)
t2

2!
+ . . .+ y(k)(0, p)

tk

k!
+ . . . , (4.3)

where y(k)(0, p) =
dky

dtk

∣∣∣∣
t=0

for k = 1, 2, 3, . . . .

The resulting infinite series of successive derivatives, y(k)(0, p), are theoretically

measurable and unique for a particular output expansion. Therefore, if two com-

peting parametrisations are indistinguishable (i.e. yield identical output trajecto-

ries) and hence the considered model structure is unidentifiable, they must have

an identical series of Taylor coefficients. It follows, that in order to perform an

analysis, the Taylor series coefficients for the two parametrisations are found, com-

pared, and algebraically solved to generate a set of conditions for p̃ that give rise

to identical output behaviour [Godfrey and DiStefano III, 1987].

For linear systems it can be shown through the use of the Cayley-Hamilton the-

orem that a maximum of 2n − 1 independent equations (Taylor coefficients) are

required to yield a result (i.e. no further information gained from considering later

coefficients) [Vajda, 1984]. However, for a single output nonlinear system with

rational polynomial transfer coefficients, the upper bound is found to be n+ q+ 1

[Margaria et al., 2001]. In this instance, the full number of coefficients defined

by the upper bound must be evaluated in order to guarantee that further com-

putation does not elicit a reduced result and hence prove a model unidentifiable.
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Consequently, particularly in nonlinear cases, the Taylor series method is more

practically appropriate for proving models that are globally identifiable.

In the case of the basic SIR model, where n = 2 and p = (µ,N, β, v, k, S0, I0), i.e.

q = 7, a total of 10 Taylor coefficients would need to be evaluated given that the

model is shown to be unidentifiable. Implementing this method using a symbolic

manipulation package such as MATHEMATICA (version 7.0.0) [Wolfram, 1999]

or MAPLE (version 13.0) [Heal et al., 1998], it is found that a maximum of only

3 or 4 coefficients are realistically tractable.

4.2.2 Differential Algebra

The application of differential algebra [Ritt, 1950] techniques to identifiability

problems in nonlinear systems has been presented by a number of authors, see

the work by Ljung and Glad [1994], Saccomani et al. [2003], Margaria et al. [2004]

and Yates et al. [2009]. These methods rely on differential algebraic manipulation

to redefine the set of equations that describe a given system into relations that

contain only terms corresponding to the system parameters (p), known inputs (u)

and outputs (y), and their successive derivatives (u(k), y(k)).

The system equations are used as generators for a radical differential ideal, that is

a set of all differential polynomials formed by successive addition, multiplication

and differentiation of the system polynomial equations:

ẋ(t, p) − f(x(t, p), p),

y(t, p) − h(x(t, p), p).
(4.4)

This ideal is decomposed and ranked according to a set of criteria that aims to

eliminate the unknown state variables, x(t, p). The process is performed by means

of a computational algorithm (typically Ritt’s algorithm [Ritt, 1950] or the Rosen-
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feld Gröbner algorithm [Boulier et al., 2009]), in order to generate either a reduced

set of differential polynomials (known as a characteristic set), or an input-output

map, g(y, u, p), that can be used to determine the identifiability of p.

If it can be shown that the polynomial functions relating to indistinguishable

parameterisations, p, p̃ ∈ Ω, given by:

g(y, . . . , y(k), u, . . . , u(k), p) − g(y, . . . , y(k), u, . . . , u(k), p̃) = 0, (4.5)

are identically zero, i.e. have linearly independent monomials, then their coeffi-

cients can be equated and solved in order to find relationships between p and p̃

with respect to the identifiability problem (see Definition 2).

The method is most commonly implemented in either of two software modules:

DAISY [Bellu et al., 2007] and DiffAlg [Hubert, 2005], that are run in the algebraic

manipulation packages: REDUCE [Hearn, 1995] and MAPLE [Heal et al., 1998],

respectively.

4.2.3 Nonlinear State Transformation

State transformation based methods result in the generation of a set of all possible

models that conform to the same structural properties determined by the postu-

lated model, and have identical input-output behaviour. Linear methods (see the

texts by Godfrey [1983], Godfrey and DiStefano III [1987] and Jacquez [1996])

are based on the use of a similarity transformation (in this case an invertible lin-

ear map T ) of minimal (i.e. controllable and observable) systems represented in

standard vector matrix form:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t).
(4.6)
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The transformation, T , therefore relates all equivalent models (i.e. with identical

eigenvalues and input/output kinetics), described by Ã, B̃ and C̃, to the original

model such that:

Ã = TAT−1,

B̃ = TB,

C̃ = CT−1.

(4.7)

The analysis then reduces to utilising constraints imposed by known physical prop-

erties of the original postulated model on the elements of A, B and C, and the

preceding matrix relationships, to determine the unknown elements of T . If T can

be shown to be unique, i.e. the only solution to (4.7) is T = In, then the system

is found to be structurally globally identifiable. If there are a finite (distinct) set

of possible T then the system is locally identifiable, and an infinite number of

solutions for T implies that the system is unidentifiable.

A common generalisation of this method is the exhaustive modelling approach,

whereby the structure or connectivity (characterised by zero and non-zero ele-

ments) of the original system is not imposed on the set of equivalent systems.

In this instance, the analysis is extended to include all competing model struc-

tures within a defined framework and yields results associated with the problem

of structural indistinguishability.

The similarity transformation approach has subsequently been extended to non-

linear systems by a number of authors including Vajda et al. [1989] through the

use of various forms of nonlinear mapping. The following technique, presented by

Evans et al. [2002], utilises the existence of an infinitely differentiable map, φ(x),

that connects the state trajectories corresponding to indistinguishable parameter

vectors, p ∼ p̃, such that:

φ(x(t, p̃)) = x(t, p). (4.8)

The Lie derivative of h ∈ C∞(M(p)) along the vector field f is the smooth function
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given by:

Lfh(x) =
∂h

∂x
(x)f(x). (4.9)

Let fp = f(·, p) and, for some 1 ≤ l ≤ m, hpl (·) = hl(·, p). For any n smooth

functions u1(x, p), . . . , un(x, p) of the form hj(x, p), for some j, or Lrfph
p
l (x) (where

Lr denotes successive Lie derivatives), for some l and r, a function H can be

defined by

H(x, p) = (u1(x, p), . . . , un(x, p))T , (4.10)

where for a particular p ∈ Ω, Hp denotes the vector field H(·, p). The system (4.1)

can be shown to satisfy the Observability Rank Criterion (ORC) [Hermann and

Krener, 1977] at the initial condition x0(p) if a function H, of the form (4.10),

exists such that the Jacobian matrix of Hp, evaluated at x0(p), is nonsingular.

Theorem 6. [Evans et al., 2002] For the system (4.1), suppose that there exists

a suitable function H for which the ORC is satisfied at the initial condition for a

particular parameter vector p ∈ Ω, then p̃ ∈ Ω is indistinguishable, p̃ ∼ p, provided

a τ > 0, an open neighbourhood Vp̃ of x0(p̃) and a smooth mapping φ : Vp̃ → φ(Vp̃)

exist, such that

Hp(φ(x)) = Hp̃(x), (4.11)

for all x ∈ Vp̃, and

φ(x0(p̃)) = x0(p), (4.12)

f(φ(x(t, p̃)), p) =
∂φ

∂x
(x(t, p̃))f(x(t, p̃), p̃), (4.13)

h(φ(x(t, p̃)), p) = h(x(t, p̃), p̃), (4.14)

for all t ∈ [0, τ) with x(t, p̃) ∈ Vp̃, where x(t, p̃) is the solution of the system for

parameter vector p̃.

Full proof of Theorem 6 can be found in the work by Evans et al. [2002].

For analysis, provided the system is found to meet the observability rank criterion,
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a smooth mapping, φ(x), is generated according to (4.11), such that (4.14) is also

satisfied, i.e. the first m smooth functions u1(x, p) . . . um(x, p) are chosen to cor-

respond to the m dimensional output function, y(t, p), and um+1(x, p) . . . un(x, p)

are their successive Lie derivatives. In a similar manner to the linear method, the

conditions defined by (4.12) and (4.13) are then used to establish the unknown

elements of φ(x) and elicit any relations between indistinguishable parameter vec-

tors. The intention is to show that φ(x) = In, whereby the system is found to be

structurally globally identifiable.

4.3 Structural Identifiability Analysis of

SIR Framework Models

It has previously been shown by Evans et al. [2005] that a general SIR model

(2.1)-(2.2) with a prevalence observation of infection is unidentifiable given that

the parameters k, N , S0 and I0 (hence β/N) are not uniquely determined by

the output. This indicates that it is inappropriate to use this model and output

structure to estimate the proportion of contacts between infective and susceptible

individuals that result in infection, β/N , without additional knowledge of param-

eter values within the model.

However, this analysis also shows that the individual parameters µ, v and β are

uniquely determined by the output and hence globally identifiable. Therefore, the

model structure can be used to uniquely determine the basic reproduction number,

R0 (2.5), and hence from (2.23) also the proportion of vaccination coverage required

to eradicate the infection and provide herd immunity against future epidemics.

The following section explores the results of a structural identifiability analysis

applied to other fundamental SIR framework models that include epidemiological
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characteristics associated with suboptimal immunity and birth targeted vaccina-

tion. The objective is to find out how processes of reinfection through antigenic

diversity and the implementation of simple public health intervention might affect

the unique determinability of system characteristics from empirical data.

Methods of Analysis

Although a large number of publications suggest that the differential algebra ap-

proach is mathematically rigorous, the exact implementation used in either of the

two available software modules is not easily examinable by the user. Therefore the

analysis in this work is worked and presented using the nonlinear state transfor-

mation approach. This allows for more detailed examination of working, and more

manual manipulation of the computing process to aid in the inference of results

for otherwise intractable problems. The method is also more intuitively extended

to the general problem of structural indistinguishability.

The state transformation method is implemented in MATHEMATICA version

7.0.0; for completeness, all results are also compared to those obtained from DAISY

version 1.5 (using REDUCE version 3.8) and the DiffAlg differential algebra pack-

age within MAPLE version 13. All analyses are computed on a standard desktop

machine with a Pentium D CPU 3.4GHz and 1Gb of RAM.

4.3.1 SIR With Birth Targeted Vaccination

The first model structure to be analysed is that of a general SIR with simple birth

targeted vaccination, as shown in Figure 2.6. The model is reduced to a two state

problem given that R(t) = N−S(t)−I(t), and expressed in the general form shown

in (4.1):
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f(x(t, p), p) =

µN(1−Pv)−βS(t, p)I(t, p)/N−µS(t, p)

βS(t, p)I(t, p)/N−(µ+v)I(t, p)

 ,

h(x(t, p), p) = kI(t, p), (4.15)

x0(p) =
(
S0 I0

)T
,

where x(t, p) = (S(t, p), I(t, p))T ; the output structure, kI(t, p), corresponds to

a prevalence type observation (with unknown gain k) of the infection; S0 and

I0 are the respective initial conditions for the susceptible and infective states;

and p = (µ,N, Pv, β, v, k, S
0, I0)T is a vector of the unknown model parameters

(assumed to be indistinguishable from p̃ = (µ̃, Ñ , P̃v, β̃, ṽ, k̃, S̃0, Ĩ0)T ).

The first step of the analysis is to ensure that the system is observable, in ac-

cordance with the observability rank criterion detailed by Hermann and Krener

[1977], at x0(p). Let the vector field Hp(x) = (u1(x, p), u2(x, p))
T , where

u1(x, p) = hp(x) = kI,

u2(x, p) = Lfpu
p
1(x) = kI

[
βS/N − (µ+v)

]
.

(4.16)

It can be seen that the ORC is satisfied given that the Jacobian matrix of Hp(x),

 0 k

kβI/N k
[
βS/N − (µ+v)

]
 , (4.17)

has full rank for any p ∈ Ω and for all x ∈ W = {x ∈ Rn : x 6= 0}. Given that

x(t, p) ∈ W for all t ≥ 0 it can be seen from Theorem 6 that if the parameter

vectors p, p̃ ∈ Ω are indistinguishable p̃ ∼ p, the open neighbourhood Vp̃ of x0(p̃)

exists and the smooth mapping φ is a diffeomorphism on Vp̃ onto its range [Evans

et al., 2005].
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The diffeomorphism, φ = H−1p ◦Hp̃ = (φ1, φ2)
T , can then be generated according

to (4.11), such that:

φ(x) =

(
N(Ñ

[
µ+ v − (µ̃+ ṽ)

]
+ β̃S)

Ñβ
,
k̃I

k

)T

, (4.18)

where x = (S, I)T . Since u1(x, p) is chosen to correspond to the output function,

hp(x), it can be seen that φ(x) automatically satisfies (4.14) from Theorem 6 as

well as (4.11).

In order to satisfy (4.13) it is necessary that:

f(φ(x(t, p̃)), p) =

µN(1−Pv)−β φ1 φ2/N−µφ1

φ2(β φ1/N−(µ+v))

 =

∂φ

∂x
(x(t, p̃))f(x(t, p̃), p̃) =

 (Nβ̃/Ñβ)(µ̃Ñ(1−P̃v)−β̃SI/Ñ−µ̃S)

(k̃/k)I(β̃S/Ñ−(µ̃+ṽ))

 .

(4.19)

Note: for presentation, certain functions in the right hand side of (4.19) have been

abbreviated, for example φ1 = φ1(x(t, p̃)) and S = S(t, p̃).

Subsequently the second row of (4.19) is also automatically equal and the resulting

expression from the first component can be rearranged into the following multi-

variate polynomial form:

q1 + q2S(t, p̃) + q3I(t, p̃) + q4S(t, p̃)I(t, p̃) = 0, (4.20)

where

q1 =
N
[
µ
(
µ̃+ṽ−(v+µ) + β(1−Pv)

)
−β̃µ̃(1−P̃v)

]
β

, q2 =
Nβ̃(µ̃− µ)

Ñβ
,

q3 =
k̃(µ̃+ ṽ − (µ+ v))

k
, q4 =

β̃(−k̃Ñβ + kNβ̃)

kÑ2β
.

(4.21)
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In order to obtain general conditions from this expression, it is necessary to ensure

that (4.20) is identically zero, i.e. the resulting monomials, Mi(t) for i = 1, . . . , r,

are linearly independent. In many cases this stage can prove to be an entirely

non-trivial task [Bearup et al., 2010]. However, for this specific example, linear

independence can be successfully shown through computation of the Wronski de-

terminant:

WD(M1(t), . . . ,Mr(t)) =

∣∣∣∣∣∣∣∣∣∣∣∣


M1(t) M2(t) . . . Mr(t)

M1(t)
(1) M2(t)

(1) . . . Mr(t)
(1)

...
...

. . .
...

M1(t)
(r−1) M2(t)

(r−1) . . . Mr(t)
(r−1)



∣∣∣∣∣∣∣∣∣∣∣∣
, (4.22)

where M1(t) = 1, M2(t) = S(t, p̃), M3(t) = I(t, p̃), M4(t) = S(t, p̃)I(t, p̃) ,

and Mi(t)
(j) denotes the jth derivative of Mi(t) with respect to t. If it can be

shown that WD is non-zero for any time point t on some open interval, then the

solutions to the multivariate polynomial are linearly independent (see the work of

Krusemeyer [1988] and the text by Kreyszig [2006]).

Consequently, the only solution to (4.20) is q1 = q2 = q3 = q4 = 0, whereby each of

the four monomial coefficients, qi=0 for i=1, . . . , 4 can then be solved along with

(4.12) to give all possible conditions for p̃ ∼ p:

{
µ̃ = µ, ṽ = v, β̃(1− P̃v) = β(1− Pv),

k̃S̃0 = kS0, k̃Ĩ0 = kI0,
k̃Ñ

β̃
=
kN

β

}
.

(4.23)

Therefore, in this case, the state transformation is found to be an invertible diag-

onal linear map of the form:

φ(x) =
k̃

k

S
I

 , (4.24)
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which is same as that for the unvaccinated SIR, as shown by Evans et al. [2005].

The results show that the parameters µ and v are still globally identifiable, how-

ever, the effective coverage of the applied vaccination, Pv, cannot be uniquely

determined from the output. Further to this, the transmission parameter, β, and

hence the basic reproduction number, R0 (2.5), are no longer uniquely identifiable

following the implementation of a vaccination campaign where Pv > 0. It should

also be noted that only direct knowledge of either β, Pv, or k and N will result

in a structurally globally identifiable system, whereby all other parameters can be

uniquely determined.

4.3.2 SIRS Temporary/Waning Immunity

The SIRS model (2.15)-(2.4), shown in Figure 2.4, is reduced and expressed in the

form given by (4.1), in a similar manner to the previous example, where the output

structure y(t, p) = kI(t, p), initial conditions are given by S0 and I0, and unknown

parameter vector p = (µ,N, ωR, β, v, k, S
0, I0)T (assumed indistinguishable from

p̃ = (µ̃, Ñ , ω̃R, β̃, ṽ, k̃, S̃0, Ĩ0)T ). It is found that the first stages of the analysis

regarding verification of the ORC and the generation of φ are the same as for the

SIR and SIR with vaccination models discussed in Section 4.3.1. In this instance,

the smooth mapping, φ, given by (4.18), can also be seen to automatically satisfy

conditions (4.11) and (4.14) of Theorem 6 for the SIRS model. However, in order

to satisfy (4.13) it is necessary that:

µN−β φ1 φ2/N−µφ1+ωR(N−φ1−φ2)

φ2(β φ1−(µ+v))

 =

 (Nβ̃/Ñβ)(µ̃Ñ−β̃SI/Ñ−µ̃S+ω̃R(Ñ−S−I))

(k̃/k)I(β̃S − Ñ(µ̃+ ṽ))

.
(4.25)
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Solving (4.25) along with (4.12) yields the following set of necessary and sufficient

conditions for p̃ ∼ p:

{
ṽ = v, µ̃− β̃ = µ− β, ω̃R + µ̃ = ωR + µ,

β̃S̃0

Ñ
+ω̃R =

βS0

N
+ωR, k̃Ĩ0 = kI0,

k̃Ñ

β̃
=
kN

β

}
.

(4.26)

The smooth mapping function can subsequently be reduced to:

φ(x) =

(
N(ω̃R − ωR)

β
+
k̃S

k
,

k̃I

k

)T

, (4.27)

whereby only the recovery rate coefficient, v, is found to be globally identifiable

(except also the combinations µ − β, ωR + β and ωR + µ). The consequence of

this outcome is that neither parameters associated with R0 or the duration of

immunity can be uniquely determined from the model output. This implies that

it is impossible to determine what level of vaccine coverage would be required to

eradicate an infection of this type (2.28), or even if such an outcome were even

possible (2.27).

Following the addition of birth targeted vaccination, the structural identifiability

results are given by:

{
ṽ = v, µ̃+ω̃R = µ+ωR,

k̃Ñ

β̃
=
kN

β
,

β̃S̃0

Ñ
+ω̃R =

βS0

N
+ωR,

k̃Ĩ0 = kI0, µ̃β̃P̃v+(µ̃−β̃)(µ̃+ω̃R) = µβPv+(µ−β)(µ+ωR)
}
,

(4.28)

where the smooth map, φ(x), remains the same as (4.27). It can subsequently be

seen that even with prior knowledge of the parameter combination (µ−β), perhaps

from pre-vaccination model fitting, the vaccine efficacy parameter Pv cannot be

globally identified from prevalence data. It should be noted that a minimum of

three parameters are required to be known in order for the model to be structurally
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globally identifiable.

4.3.3 SIR with Partial Immunity

Analysis of the partial immunity model, shown in Figure 2.5, is performed by

first expressing the model equations given by (2.19)-(2.4) in the general form for

a nonlinear two-state system:

f(x(t, p), p) =

 µN−βS(t, p)I(t, p)/N−µS(t, p)[
β
(
S(t, p)+σ

[
N−S(t, p)−I(t, p)

])
/N−(µ+v)

]
I(t, p)

 ,

h(x(t, p), p) = kI(t, p), (4.29)

x0(p) =
(
S0 I0

)T
,

and then generating the vector field, Hp(x) = (u1(x, p), u2(x, p))
T , through suc-

cessive Lie derivatives of the output function, h(x(t, p), p), such that:

u1(x, p) = hp(x) = kI,

u2(x, p) = Lfpu
p
1(x) = kI

[(
S+σ(N−S−I)

)
β/N−(µ+v)

]
.

(4.30)

The ORC is satisfied given that the Jacobian matrix of Hp(x), given by:

 0 k

kβI(1−σ)/N k((β(S(1−σ)−2σI)−N(µ+v−βσ)))/N

 , (4.31)

has full rank for all p ∈ Ω and for all x ∈ W = {x ∈ Rn : x 6= 0}, provided that

σ ∈ [0, 1), i.e. σ 6= 1. It can be noted that the ORC is not met for σ = 1 because

this eventuality corresponds to a reduction of the SIRp model structure into a

single state SIS model. Analysis of the SIS incomplete immunity model would

therefore require consideration of only a single smooth function u1(x, p) = kI.



Chapter 4 4.3 Structural Identifiability Analysis of SIR Framework Models 92

Solving (4.11) of Theorem 6 for φ = (φ1, φ2)
T yields the following smooth map:

φ(x) =

(
θ

kÑβ(σ−1)
,

k̃I

k

)T

, (4.32)

where

θ = kN
(
Ñ
[
µ̃+ṽ − (µ+v) + βσ−β̃σ̃

]
+ β̃(σ̃−1)S

)
+
(
kNβ̃σ̃−k̃Ñβσ

)
I,

which additionally satisfies condition (4.14).

Further satisfying equations (4.13) and (4.12) completes the structural identifia-

bility analysis for an SIR with partial immunity, in which the following relations

between p and p̃ are found:

{
β̃ = β, µ̃ = µ, ṽ = v, σ̃ = σ, k̃S̃0 = kS0, k̃Ĩ0 = kI0, k̃Ñ = kN

}
. (4.33)

Similar to the general SIR result, the smooth mapping φ(x) can be reduced to

(4.24), and the model parameters associated with the basic reproduction number

(i.e. β, µ, and v) are found to be globally identifiable. In addition, it can be

noted that the reduced susceptibility parameter, σ, is also uniquely determined

by the prevalence output structure. These results indicate that the possibility of

eradication with 100% vaccination coverage (2.29), and the effective proportion of

the population required to be immunised (2.31), are both uniquely determined by

the model output.

Upon inclusion of a birth targeted vaccination programme, the identifiability con-

ditions for the model are found to be:

{
µ̃ = µ, σ̃ = σ, ṽ − β̃σ̃ = v − βσ, k̃S̃0 = kS0,

k̃Ĩ0 = kI0, β̃(P̃v − 1) = β(Pv − 1),
k̃Ñ

β̃
=
kN

β

}
,

(4.34)
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where φ(x) is again reducible to that of (4.24), and the actual proportion of vaccine

coverage, Pv, cannot be uniquely determined by the observation. The transmission

parameter, β, recovery rate parameter, v, and hence the basic reproduction num-

ber, R0, become unidentifiable once the intervention has been applied. However,

it should also be noted that σ and µ both remain globally identifiable, and that

if either v, β or kN are known, i.e. from fitting to pre-vaccination data, then R0

and Pv can be uniquely identified.

4.4 Structural Identifiability Analysis of

MSIR Framework Models

The homogeneous time domain MSIR model (3.14)-(3.17), shown in Figure 3.1, is

analysed in order to ascertain whether the model structure suggests that neona-

tal immunity due to maternally acquired antibody has an analytic influence on

the observable behaviour of the system, and consequently if the parameter ωM is

globally identifiable.

The model is considered with a prevalence output structure and defined as a three

state problem given that a closed, constant size population is assumed:

f(x(t, p), p) =


µ
[
N−M(t, p)−S(t, p)−I(t, p)

]
− ωMM(t, p)

µI(t, p) + ωMM(t, p)− βS(t, p)I(t, p)/N

βS(t, p)I(t, p)/N − (µ+v)I(t, p)

 ,

h(x(t, p), p) = kI(t, p), (4.35)

x0(p) =
(
M0 S0 I0

)T
,

where the state vector, x(t, p) = (M(t, p), S(t, p), I(t, p))T ; M0, S0 and I0 are

the initial conditions for the maternally protected, susceptible and infective states
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respectively; and p = (µ, ωM , N, β, v, k,M
0, S0, I0)T is an unknown parameter

vector (assumed to be indistinguishable from p̃ = (µ̃, ω̃M , Ñ , β̃, ṽ, k̃, M̃0, S̃0, Ĩ0)T ).

The function, Hp(x) = (u1(x, p), u2(x, p), u3(x, p))
T , is found from successive Lie

derivatives of the output according to (4.10), and corresponds to the following

smooth functions:

u1(x, p) = hp(x) = kI,

u2(x, p) = Lfpu
p
1(x) = kI

[
βS/N − (µ+v)

]
,

u3(x, p) = Lfpu
p
2(x) = kI

[(
βS/N−(µ+v)

)2
+ β

(
ωMM−βSI/N+µI

)
/N
]
.

(4.36)

The Jacobian matrix of Hp(x) is given by:


0 0 k

0
kβI

N
k

(
βS

N
−(µ+v)

)
ωMkβI

N

kIβ
[
β(2S−I)/N−2(v+µ)

]
N

k θ

N

 , (4.37)

where

θ = β2S(S − 2I)/N +N(v + µ)2 + β(ωMM − 2S(v+µ) + 2µI),

which is again found to be non-singular for all p ∈ Ω and x ∈ W = {x ∈ Rn : x 6=

0}, thus satisfying the observability rank criterion.

A smooth mapping, of the form φ = (φ1, φ2, φ3)
T , is then generated according to

Theorem 6 (4.11):

φ(x) =

(
θ

kωMÑβ
,
N
(
Ñ
[
µ+v − (µ̃+ṽ)

]
+ β̃S

)
Ñβ

,
k̃I

k

)T

, (4.38)

where

θ = kω̃MNβ̃M +
(
k̃Ñβ(v−ṽ−µ) + kNβ̃µ+ β̃(k̃β−kNβ̃/Ñ)S

)
I,
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and x = (M,S, I)T , which automatically satisfies both (4.11) and (4.14).

In order to satisfy condition (4.13) it is necessary that:


µ(N−φ1−φ2−φ3)− ωMφ1

ωMφ1 + (µ− βφ2/N)φ3

φ3[βφ2/N − (v + µ)]

 =


[µ̃(Ñ−M−S−I)− ω̃MM ] θ

(β̃N/βÑ)(µ̃I + ω̃MM − β̃SI/Ñ)

(k̃/k)I[β̃S/Ñ − (ṽ + µ̃)]

, (4.39)

where

θ =
k̃β
[
(S + I)β̃ + Ñ(v−ṽ−µ̃)

]
+ kNβ̃

(
ω̃M −

[
(S + I)β̃

]
/Ñ + µ̃

)
kωMÑβ

.

It can subsequently be seen, from substitution of (4.38) into (4.39), that the second

and third rows are automatically equal. The resulting expression from the first

component of (4.39) can then be rearranged into the form:

q1 + q2M(t, p̃) + q3S(t, p̃) + q4I(t, p̃) + q5M(t, p̃)S(t, p̃)+

q6M(t, p̃)I(t, p̃) + q7S(t, p̃)I(t, p̃) + q8S(t, p̃)2 + q9I(t, p̃)2 = 0,

(4.40)

Linear independence of this expression is shown by considering the following fac-

torisation of a general second order multivariate polynomial:

(
z1+z2M(t, p̃)+z3S(t, p̃)+z4I(t, p̃)

)
(
z5+z6M(t, p̃)+z7S(t, p̃)+z8I(t, p̃)

)
= 0.

(4.41)

where computing the Wronski determinant of either factors in (4.41) shows that

zi = 0 for either i=1, . . . , 4 or i=5, . . . , 8, for all t. Therefore, through expanding

(4.41) and comparing equated coefficients from (4.40), the only solution to (4.40)

is qi=0 for i=1, . . . , 9. These coefficients can then be solved along with (4.12) to

give all possible conditions for p̃ ∼ p:
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{
ω̃M = ωM , µ̃ = µ, β̃ = β, ṽ = v,

k̃Ñ = kN, k̃M̃0 = kM0, k̃S̃0 = kS0, k̃Ĩ0 = kI0
}
,

or{
ω̃M = µ, µ̃ = ωM , ṽ = v, β̃+ω̃M = β+ωM ,

k̃Ñ

β̃
=
kN

β
,

k̃M̃0ω̃M = kM0ωM , S̃0
β̃

Ñ
+ω̃M = S0 β

N
+ωM , k̃Ĩ0 = kI0

}
.

(4.42)

It can be seen from the analysis that the system is unidentifiable, i.e. there are an

infinite number of combinations for values for k and N that give rise to the same

observable system behaviour. However, if either k or N are known then the system

becomes locally identifiable given that only two possible parameterisations exist.

In addition, it can be noted that provided the parameters ωM and µ are in practice

clearly distinguishable from their magnitude (i.e. duration of immunity from MAb

is significantly less than average life expectancy), or any of the unidentifiable

parameters are known (in addition to k or N), the model becomes structurally

globally identifiable. In this instance the duration of MAb protection has at least

an analytically unique influence on the output of the system.

4.4.1 MSIR Models with Incomplete Immunity

& Vaccination

Extending the analysis to further variations of the MSIR model yields a series of

results indicating how the addition of secondary infection and basic public health

intervention might impact identifiability issues within the model framework.
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MSIRS with Temporary/Waning Immunity

An MSIRS model structure with temporary/waning immunity can be derived from

the full incomplete immunity system by setting σ = 1, γ = 1 and v1 = v2 = v in

equations (3.20)-(3.26), where for simplification secondary infection characteristics

are considered to be identical to that of primary infection. Susceptible and infective

states can then be combined such that S(t) = S1(t) + S2(t) and I(t) = I1(t) +

I2(t), giving rise to a model structure analogous to that of the SIRS analysed in

Section 4.3.2.

The analysis is performed in order to establish whether the temporary immunity

parameter, ωR, is uniquely determinable from a typical prevalence output struc-

ture, and to establish if the process of repeat infection through antigenic evolution

has an impact on the identifiability of other characteristic parameters within the

model. The procedure follows the same methodology as previous examples and

yields the following set of conditions for indistinguishable parameterisations p̃ ∼ p:

{
ω̃M = ωM , µ̃ = µ, β̃ = β, ṽ = v, ω̃R = ωR,

k̃Ñ = kN, k̃M̃0 = kM0, k̃S̃0 = kS0, k̃Ĩ0 = kI0
}
,

or{
ω̃M =µ+ωR, µ̃ = ωM−ωR, ṽ = v, ω̃R = ωR, β̃+ω̃M = β+ωM ,

k̃Ñ

β̃
=
kN

β
,
k̃M̃0

µ̃
=
kM0

µ
, S̃0

β̃

Ñ
+ω̃M = S0 β

N
+ωM , k̃Ĩ0 = kI0

}
.

(4.43)

These conditions reveal that the model is unidentifiable, however, similarily to

the MSIR (4.42), two distinct sets of solutions exist. Interestingly, unlike for the

SIRS results (4.26), the addition of a maternally protected state variable forces

the temporary immunity parameter, ωR, to become globally identifiable. If either
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of the parameters µ, β or ωM are known, then the two solutions become equal and

the basic reproduction number, R0, is then uniquely determined by the output.

MSIR with Maternal & Birth Targeted Immunisation

The implications of both maternal and childhood (birth targeted) vaccine inter-

vention are examined through analysis of the interacting immunisation model pre-

sented in Section 3.3.3. The system equations are reduced by neglecting secondary

infection, i.e. considering only (3.33)-(3.35), and presented as a three state problem

assuming a constant population size:

f(x(t, p), p) =


µ
[
1−(1−ϑ)Pv

][
Ab+(t, p)+PmAb

−(t, p)
]
− ωMM(t, p)

µ(1−Pm)(1−Pv)Ab−(t, p) + ωMM(t, p)

− βS(t, p)I(t, p)/N −
[
µ(1+Pm)

]
S(t, p)

βS(t, p)I(t, p)/N −
[
v+µ(1+Pm)

]
I(t, p)

 ,

h(x(t, p), p) = kI(t, p), (4.44)

x0(p) =
(
M0 S0 I0

)T
.

Inflows Ab+(t, p) = N−M(t, p)−S(t, p)−I(t, p) and Ab−(t, p) = S(t, p)+I(t, p),

describe the birth rates of seropositive and seronegative newborns respectively.

Varying combinations of the two interventions and their potential interaction are

evoked through choice of the parameters Pm, Pv and ϑ.

For a birth targeted only intervention, with a vaccine that does not induce an

active immune response in the presence of protective MAb, Pm = 0 and ϑ = 1. In

this instance a full identifiability analysis yields the following set of conditions:
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{
ω̃M = ωM , µ̃ = µ, β̃ = β, ṽ = v, P̃v = Pv,

k̃Ñ = kN, k̃M̃0 = kM0, k̃S̃0 = kS0, k̃Ĩ0 = kI0
}
,

or

{
ω̃M = µ, µ̃ = ωM , ṽ = v, µ̃P̃v = µPv,

k̃Ñ

β̃
=
kN

β
,

β̃+ω̃M(1+P̃v) = β+ωM(1+Pv), S̃0
β̃

Ñ
+ω̃M = S0 β

N
+ωM ,

k̃ω̃M

(
M̃0 +

µ̃Ñ P̃v

β̃

)
= kωM

(
M0 +

µNPv
β

)
, k̃Ĩ0 = kI0

}
.

(4.45)

Unlike the SIR model (see conditions in (4.23)), the implementation of birth tar-

geted vaccination to the MSIR system with maternally acquired immunity does not

have a further detrimental effect on structural identifiability. Additional knowl-

edge of only µ, ωM or β, is required for Pv to become uniquely determined by the

output. In addition, if either k or N are also known, then the model becomes

structurally globally identifiable.

Similar sets of conditions are found for the non-interacting vaccine system, where

Pm = 0 and ϑ = 0, and for the maternal immunisation only system, where Pv = 0.

The first local solutions are equivalent to that of the interacting system shown in

(4.45) and marginally more complex parameter combinations for β and M0 exist

in the second solution. However, the conditions for unique determination of all

individual parameters and for global identifiability of the model are found to be

the same.

4.4.2 Age Domain Model Analysis

As discussed in Section 2.4, population-level epidemiological measures of infectious

disease can, in principle, be recorded with respect to both time and age. A struc-
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tural identifiability analysis of age domain model variants is therefore required to

establish whether key parameters within the model are uniquely determined by

corresponding age dependent outputs, or if a combination of both age and time

domain observations might improve system identifiability.

An age domain variant of the fundamental (homogeneous) MSIR model structure

(3.14)-(3.17) can be derived according to Section 3.3.4, see equations (3.45)-(3.45).

The system is considered to be at a constant endemic steady state with respect to

time, and is expressed in the following standard form:

f(x(a, p), p) =


−ωMM(a, p)

ωMM(a, p)− (λ+ µ)S(a, p)

λS(a, p)− (v + µ)I(a, p)

 ,

h(x(a, p), p) = kI(a, p), (4.46)

x0(p) =
(
µ ˆAb+ µ ˆAb− 0

)T
.

The force of infection is therefore given by, λ = βÎ/N , where Î is the endemic

steady state level of infection (3.54). The recovered/immune state variable, R(a, p),

is omitted from the set of system equations given that it does not influence any

previous states in the natural history of infection and is hence not observable from

a prevalence or incidence output. It should also be noted that if an observation of

incidence is considered, then the model is further reduced to only the maternally

protected and susceptible state variables, M(a, p) and S(a, p). In this instance,

the infective state variable, I(a, p), is also no longer observable via the output

structure, since homogeneous transmission does not permit age dependency within

the force of infection, i.e. Î =

∫ ∞
0

Î(a, p) da is a constant. In addition, the recovery

parameter, v, cannot be estimated unless algebraic expressions for the force of

infection and endemic steady states are substituted into the model.

Provided that constant (annual average) values are taken for λ, i.e. the infective
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population is not included within the force of infection as an age dependent state

variable, the model (4.46) is found to be linear. In this instance, a state transfor-

mation based structural identifiability analysis may be implemented, where φ(x)

is an invertible linear map of the form:

φ(x) =


t11 t12 t13

t21 t22 t23

t31 t32 t33



M

S

I

 . (4.47)

Using condition (4.14) of Theorem 6:

h(φ(x(a, p̃)), p) = k
(
t31M(a, p) + t32S(a,p) + t33I(a, p)

)
= h(x(a, p̃), p̃) = k̃I(a, p),

(4.48)

from which it is seen that t31 = 0, t32 = 0 (given that all parameters, specifically

k and k̃, must be positive), and t33 = k̃/k.

Further satisfying (4.12) and (4.13) yields:

φ(x) =

(
k̃ ω̃M λ̃ M

k ωM
+ t12S + t13I,

k̃
([
v+µ−(ṽ+µ̃)

]
I+λ̃S

)
kλ

,
k̃I

k

)T

, (4.49)

where

t12 = 0,
k̃
(
ω̃M − (ṽ+µ̃)

)
kλ(ṽ+µ̃)

, and t13 = 0,
k̃(ṽ−λ̃)(v+µ−ω̃M)

kλ(ṽ+µ̃)
. (4.50)

The mapping gives rise to six local sets of solutions for p̃ ∼ p, comprising of

various combinations of ωM , µ, λ and v. It is subsequently found that all model

parameters are unidentifiable, and a minimum of at least three out of the four

inter-compartmental flow coefficients and either k or N are required to be known

for the system to be structurally globally identifiable.
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Substituting steady state expressions for ˆAb+ = R̂, ˆAb− = Ŝ + Î and λ̂ = βÎ/N

from (3.54) is seen to further impede the identifiability of p (including the trans-

mission parameter β) for an age domain prevalence output structure. However,

if the resulting conditions for p̃ ∼ p from analysis of an age domain MSIR are

combined with those of the time domain equivalent model (4.42), the following

conditions are obtained:{
ω̃M = ωM , µ̃ = µ, β̃ = β, ṽ = v,

k̃Ñ = kN, k̃M̃0 = kM0, k̃S̃0 = kS0, k̃Ĩ0 = kI0
}
,

(4.51)

where only k or N are required for the system to be globally structurally iden-

tifiable. Since (4.51) is a subset of (4.42), this suggests that despite the model

parameters appearing to be poorly defined by age domain observations of infec-

tion prevalence, additional information could be elicited if also combined with

equivalent time domain measurements of the same system.

4.5 A Cautionary Note

In all worked examples presented in this chapter, the analysed model structures

have been reduced to either a two or three state system through the omission

of the ‘recovered’ state variable, R(t, p). This simplification is possible provided

there is a constant population size, N , and was initially performed in an effort to

minimise algebraic computation. However, it has since transpired that this model

reduction is in fact a necessary step in order to attain full identifiability results for

compartmental epidemic models.

Considering the SIRS example described in Section 4.3.2, a complete identifiability
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analysis yields the following set of conditions for p̃ ∼ p:

{
ṽ = v, µ̃− β̃ =µ− β, ω̃R + β̃ = ωR + β,

β̃S̃0

Ñ
+ω̃R =

βS0

N
+ωR, k̃Ĩ0 = kI0,

k̃Ñ

β̃
=
kN

β

}
.

Implementing the analysis using the unreduced system equations:

f(x(t, p), p) =


µN + ωRR(t, p)− βS(t, p)I(t, p)/N − µS(t, p)

βS(t, p)I(t, p)/N − (µ+v)I(t, p)

vI(t, p)− (ωR+µ)R(t, p)

 ,

h(x(t, p), p) = kI(t, p), (4.52)

x0(p) =
(
S0 I0 R0

)T
,

where x(t, p) = (S(t, p), I(t, p), R(t, p))T , is a state vector, and S0, I0 and R0 are

the initial conditions for the susceptible, infective and recovered states respectively,

an alternative (incorrect) result can be found:

{
ṽ = v, µ̃ =µ, β̃ = β, ω̃R = ωR,

k̃Ñ = kN, k̃S̃0 = kS0, k̃Ĩ0 = kI0, k̃R̃0 = kR0
}
.

In this case the parameters µ, β and ωR are incorrectly claimed to be globally

identifiable, where in the full result it can be seen that they are non-uniquely

determined within larger parameter combinations.

The discrepancy between the two analyses occurs due to a lack of linear indepen-

dence in the resulting multivariate polynomials that arise from condition (4.13) of

Theorem 6. This can be shown by considering the additional system equation:

N = S(t, p) + I(t, p) +R(t, p), (4.53)

which is inherently included within the reduced two state model, but remains
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undefined in the full three state model. Analysis of the latter model description

(4.52) ultimately leads to the evaluation of the following multivariate expression:

q1 + q2S(t, p̃) + q3I(t, p̃) + q4R(t, p̃) = 0, (4.54)

where the monomial coefficients are subsequently solved in order to elicit relations

between indistinguishable parameter vectors p and p̃. It is required that the re-

sulting equation (4.54) be identically equal to zero. However, in this instance, it

can be seen that q1 =q2 =q3 =q4 =0 is not a unique solution, since, from equation

(4.53), the solution q1 =N, q2 =q3 =q4 =−1 also satisfies (4.54). Therefore, if all

state variables are to be included, the expression given by (4.53) must be stated

additionally within the defining set of system equations.

This example emphasises the importance of checking for linear independence dur-

ing structural identifiability analyses and provides an interesting illustration of

how incorrect results may be obtained if this is not satisfactorily fulfilled.

4.6 Indistinguishability in Epidemic

Modelling

The significance of indistinguishability analyses in the area of compartmental epi-

demic modelling is illustrated as a worked example by Evans et al. [2004]. It is

shown that from purely prevalence data, it is not possible to structurally distin-

guish between a simple SIR model with solid lifelong immunity (2.1)-(2.4) and an

SIRS model with temporary/waning immunity (2.15)-(2.4). The consequence of

this result is that from perfect, noise free and continuous output data it is not pos-

sible to determine which postulated model structure best describes the observed

behaviour of the real system, and hence make inferences about the underlying
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biological processes at work (i.e. whether or not immunity wanes over time since

infection). More crucially, depending on which of the two competing model struc-

tures are assumed, there are two possible sets for estimated values of the basic

reproduction number, R0, and thereby the proportion of the population required

to be successfully vaccinated in order to achieve eradication and herd immunity.

Given that the SIR model can be considered as a submodel of the SIRS model,

where the waning immunity parameter, ωR, equals zero, the results of this analysis

can also be extracted from those of an identifiability analysis applied to an SIRS

model, as derived in Section 4.3.2. Setting ωR = 0 in (4.26), hence reducing model

Σ(p) (4.1) to that of a fundamental SIR model (2.1)-(2.4), yields an equivalent

set of algebraic relations between p and p̃ to those found by Evans et al. [2004],

corresponding to structurally indistinguishable systems (Σ(p) ∼ Σ̃(p̃)):

{
ṽ = v, µ̃− β̃ = µ− β, ω̃R + µ̃ = µ,

β̃S̃0

Ñ
+ω̃R =

βS0

N
, k̃Ĩ0 = kI0,

k̃Ñ

β̃
=
kN

β

}
.

(4.55)

In the case of the MSIR/MSIRS models it can be seen from (4.43) that the waning

immunity parameter is globally identifiable, therefore setting either ωR or ω̃R to

zero invalidates both sets of conditions, inferring that the two models are struc-

turally distinguishable. The same result can be deduced for a general SIR and an

SIR with partial immunity, where again the former can be considered as a sub-

model of the latter, and the distinguishing parameter σ is found to be globally

identifiable (see the conditions given by (4.33)).

Interestingly, further consideration of the results given by (4.23), indicates that

from a prevalence type output, it is not possible to distinguish between a general
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SIR and one with birth targeted vaccination, provided:

{
µ̃ = µ, ṽ = v, β̃(1− P̃v) = β,

k̃S̃0 = kS0, k̃Ĩ0 = kI0,
k̃Ñ

β̃
=
kN

β

}
.

(4.56)

It should be noted that for competing systems where neither model can be consid-

ered as a submodel of the other, for example SIR framework models with either

temporary or partial immunity, the constraints (4.11)-(4.14) of Theroem 6 are

extended according to Evans et al. [2004].

4.7 Conclusions & Discussion

The key results of this chapter arise from the application of structural identifiabil-

ity/indistinguishability analyses to fundamental SIR and MSIR framework models,

incorporating various processes of sub-optimal immunity and immunisation. It has

been found that the actual vaccination coverage, Pv, achieved after employing a

birth targeted immunisation campaign on any of the discussed SIR framework

models, cannot be uniquely determined from ideal prevalence data. The addition

of vaccination also serves to force important parameters associated with the natu-

ral basic reproduction number and the re-infection threshold to be unidentifiable.

This outcome may prove important given that the proportion of vaccinees that

successfully take an administered vaccine and acquire sufficient protection is often

very difficult to measure directly, and this work suggests that the discussed vacci-

nation models are not appropriate for estimating this effective coverage. It is also

shown, in the case of the SIRS model, that it is not possible to uniquely determine

the potential success of even an ideal birth targeted vaccination programme with

respect to eradication of the infectious agent.

It should be noted that in both the SIR and SIRp cases, if R0 (specifically β)
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or the combination kN is known, perhaps from fitting the unvaccinated model

to pre-vaccination prevalence data, then Pv can be uniquely identified. However,

estimates from pre-intervention data are only appropriate if the parameters β, k

and N can be confidently considered to have remained constant over the period

of time corresponding to pre- and post-vaccination. Confidence in the consistency

of these parameters is limited given the variable nature of population sizes and

the observation gain (notification bias), and the dependency of infection trans-

mission on changing social and environmental trends. The consequence of this is

that assuming the selected model structure remains appropriate for the system,

it cannot be uniquely determined whether an applied vaccination programme has

failed due to an increase in R0 or from an inadequate Pv. It is suggested that these

results may have direct relevance to the current problem of post-vaccine measles

persistence in the UK.

Application of these techniques to both time and age domain MSIR framework

models has suggested that parameters are analytically better defined by time series

observations than by those recorded with respect to age. However, in all presented

time domain examples, the parameter ωM , corresponding to waning protection

from MAb, has been found to be locally identifiable, where two distinct sets of

solutions exist. If a physical distinction between estimated values for ωM and the

birth/mortality rate coefficient, µ, can be made, or the conditions can be combined

with those relating to an age domain analysis, the results are reduced to a single set

of conditions where many important parameters associated with epidemiological

characteristics and intervention become globally identifiable.

Although the models considered in this work are very basic, and would not be

the primary basis for a national public health intervention, extended models with

greater depth of realism and additional complexity are unlikely to reduce the iden-

tifiability problem given increasing degrees of freedom and continued limitations

on the observation of the system. In all the examples presented, the parameters

N and k are found to be unidentifiable, indicating that either the observation gain
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or the population size must be known in order to obtain qualitative estimates of

infection from fitting to prevalence type data.

All worked examples have been presented using the nonlinear state transformation

method detailed in Section 4.2.3, and verified using either the DAISY or DiffAlg

implementations of the differential algebra approach (see Section 4.2.2). Perfor-

mance differences between the two techniques appear to be minimal, hence, there

were no examples of models that could be successfully analysed by one technique

and not the other. Unfortunately, the inclusion of further model complexity aris-

ing from epidemiological characteristics such as altered secondary infections, age

dependency, and alternative observations such as incidence and serology, require a

computational capacity in excess of that available during this work using either of

the two methods. The DAISY software module is potentially more suitable for the

casual user looking to obtain quick results, however, the algebraic manipulation

package, REDUCE, although freely available, is unfortunately no longer supported

by its developers.



Chapter 5

Formal Sensitivity Analysis

The theoretical techniques for structural identifiability and indistinguishability dis-

cussed in Chapter 4 have provided analytic results regarding indeterminacy issues

in compartmental epidemic modelling. However, these methods do not provide

any indication of how well globally identifiable parameters might be determined

by a chosen output structure. There is subsequently no guarantee that estimation

of these parameter values will be robust in the presence of experimental error.

Such aspects of uncertainty and model indeterminacy in the inverse problem are

typically addressed by the strongly related concepts of sensitivity, numerical iden-

tifiability and experimental design [Banks et al., 2007].

In contrast to structural identifiability techniques, sensitivity based methods are

concerned with the quantitative responses of models to the perturbation of in-

puts and parameters, or some variation in structure, connectivity and submodels

[Nestorov, 1999]. In a validation sense these techniques give an indication of con-

fidence in the estimation of a particular model parameter from a given set of

experimental input/output data. In analysis, they also provide an insight into

the potential influence of specific physical processes over the observable behaviour

109
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of the system. Sensitivity techniques are therefore often used as the basis for

methods concerned with model reduction and experimental design [Banks and

Cintrón-Arias, 2010].

Parameters that are found to have an insignificant influence on the observable

behaviour of the system may be omitted from a postulated model structure in

order to reduce excessive computation and aid tractable analysis (for examples

see the work by Fink et al. [2007, 2008], Degenring et al. [2004], and Smets et al.

[2002]). Conversely, output structures and sampling intervals that prove to be

highly sensitive with respect to certain parameters of interest may be prioritised

in the design of future experiments, thereby maximising the amount of information

gained from fitting to data (see the work by Kappel et al. [2009], and Ogungbenro

et al. [2009]).

It is the objective of the work in this chapter to explore the implementation of

formal sensitivity methods to compare a number of prospective age and time do-

main output structures, corresponding to observations of infection and serology,

with respect to the MSIR model framework proposed in Chapter 3. The intention

is then to establish how well parameters associated with maternally acquired im-

munity might be determined by various observations of the real system and also

to consider the potential influence of these processes on various aspects of sys-

tem behaviour. The analysis is performed according to the work by Vajda et al.

[1985] on models residing at endemic equilibrium. Analytic results are derived

for systems without seasonal forcing and numerical results obtained for those that

include annual variation with time.
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5.1 Methods & Application

In describing the derivation of parametric sensitivities we consider the standard

nonlinear system:

Σ(p) =


ẋ(t, p) = f(x(t, p), p),

y(t, p) = h(x(t, p), p),

x(0, p) = x0(p),

(5.1)

where x(t, p) is an n-dimensional vector of state variables and y(t, p) denotes an

m-dimensional output. It should be noted that both x(t, p) and y(t, p) may be

defined as functions of either time, t, or age, a.

For a given function of time (or age), y(t, p), which is also a differentiable func-

tion of some parameter vector p = (p1, p2, ..., pq)
T , the point or local sensitivities

indicate the rate of change of y(t, p) with respect to p, evaluated at some nominal

point in parameter space, p0 [Jacquez, 1996]. In this case, the sensitivity functions

correspond to partial derivatives of the form:

Si(t, p) =
∂y(t, p)

∂pi
, (5.2)

which are considered as gradients about p0 in a q-dimensional parameter space,

given as a function of time.

In simple examples it may be possible to evaluate sensitivity derivatives analyti-

cally from tractable solutions of the system equations, thus allowing general results

to be obtained. However, in most cases, increasing model complexity inhibits the

direct calculation of these functions and a numerical approach must be adopted

instead. In this instance, parametric sensitivity is estimated from manual manip-

ulation (perturbation) of the individual model parameters and observation of the

resulting deviation in the output (see the book by Tomović [1963]). Subsequently,
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this approach yields only a local analysis about the point p0, whereby an initial

estimate for a nominal set of parameters values is required prior to evaluation.

This may prove problematic in cases where there are high levels of uncertainty in

our prior knowledge of the system.

The generalisation of local analyses over wider regions of parameter space has been

attempted through a number of statistical techniques using Monte Carlo simulation

[Archer et al., 1997; Kleijnen, 1997]. However, numerical based global evaluation

of non-monotonic systems remains a challenging task since adjacent sample points

in p may only coincidently yield similar behaviour of y(t, p). Computation also

becomes increasingly intensive with larger numbers of parameters.

5.1.1 Formal Derivation

The sum of squares deviation of an output function, y(t, p), from some nominal

point, y(t, p0), due to a variation ∆p in p, can be expressed in the form:

Q(p) =
r∑
j=1

[y(tj, p)− y(tj, p0)]
2, (5.3)

for the selected time points {t1, t2, ..., tr}. The function Q(p) is an analytic

function of p, which has a Taylor series expansion about the point p0 given by,

Q(p) ≈ Q(p0)+(∆p)TG(p0)+
1

2
(∆p)TH(p0)∆p, (5.4)

where the variation ∆p is sufficiently small such that terms of O(‖∆p‖3) can be

considered negligible. Since p0 is assumed to minimise Q(p), the gradient vector,

G(p0), defined by [G]i = ∂Q/∂pi, and the term Q(p0) are both equal to zero.

Therefore, the expression given by (5.4) can be further reduced to:
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Q(p) ≈ 1

2
(∆p)TH(p0)∆p, (5.5)

where [H]ij = ∂2Q/∂pi∂pj is the Hessian matrix of Q (matrix of second derivatives

with respect to p). The q by r sensitivity matrix, S, where 2S TS ≈ H, can then

be constructed according to the selected time points {t1, t2, ..., tr} in the following

manner:

S =


∂ y(t1, p)

∂ p1
. . .

∂ y(t1, p)

∂ pq
...

. . .
...

∂ y(tr, p)

∂ p1
. . .

∂ y(tr, p)

∂ pq

 . (5.6)

hence allowing (5.5) to be rewritten as:

Q(p) ≈ (∆p)TS TS∆p. (5.7)

Alternatively, following the work of Vajda et al. [1985], a normalised parameter

vector, α, where αi = ln pi for i = 1, 2, . . . , q, may be defined. The resulting

normalised sum of squares deviation of the output function y(t, α), from a nominal

point, y(t, α0), to a change ∆α in α, can then be expressed by:

Q(α) =
r∑
j=1

[
y(tj, α)− y(tj, α0)

y(tj, α0)

]2
, (5.8)

hence replacing the response equation in (5.8). This results in the generation of a

normalised sensitivity matrix of the form:

S =


∂ ln y(t1, p)

∂ ln p1
. . .

∂ ln y(t1, p)

∂ ln pq
...

. . .
...

∂ ln y(tr, p)

∂ ln p1
. . .

∂ ln y(tr, p)

∂ ln pq

 . (5.9)

In cases where analytic solutions to (5.1) are not practically obtainable, the partial

derivatives of the sensitivity matrix are calculated numerically using either finite
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differencing [Chapra and Canale, 2002] or direct differential methods [Rabitz et al.,

1983]. The latter of these techniques involves solving an augmented system of

equations derived by differentiating h(x(t, p), p) in (5.1) with respect to p and

switching the order of differentiation:

dS(t, p)

dt
=

∂h(x(t, p), p)

∂x
S(t, p) +

∂h(x(t, p), p)

∂p
. (5.10)

The state variables, Si(t, p), corresponding to the sensitivity derivatives given by

(5.2), are then found using a suitable ODE integrator such as ode15s in MATLAB.

The other derivative components in (5.10) can be calculated using automatic dif-

ferentiation methods based on repeated application of the chain rule. These can

be implemented using additional MATLAB modules such as myAD [Fink, 2006] or

MAD [Forth and Ketzscher, 2004].

5.1.2 Numerical Identifiability & Model

Reduction

Since sensitivity analyses are largely concerned with assessing the relationships

between model output structure and parameter values, there are strong parallels

with the problems of structural identifiability discussed in Chapter 4. Given that

an observable change in output, ∆y(t, p), is governed by the sensitivity matrix,

S, identifiability can be assessed numerically by considering whether or not the

expression ∆y(t, p) = S∆p can be solved uniquely for a particular ∆p [Batzel

et al., 2009].

Definition 7. For a nominal parametrisation p0 ∈ Ω, a model, Σ(p), is said to be

sensitivity identifiable if the sensitivity matrix, S, has full rank, or equivalently if

and only if the matrix S TS is non-singular (i.e.
∣∣S TS

∣∣ 6= 0). If S is shown not to
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have full rank then the model is found to be unidentifiable at the point p0 [Batzel

et al., 2009].

It should be emphasised that sensitivity identifiability applies only to a single,

nominal point in parameter space and is therefore not indicative of global identi-

fiability. The analysis is also not strictly an a priori technique since it requires an

initial estimation of the model parameters to be made before evaluation.

Additional analysis of the sensitivity matrix can be performed through either QR

factorisation with column pivoting, as in the work by Fink et al. [2007], and Banks

and Cintrón-Arias [2010], or a principal component analysis (PCA), according to

Vajda et al. [1985], Curtis and Sweetenham [1987], and Degenring et al. [2004].

These techniques allow the ranking of varied model parameters with respect to

their relative importance, for the purpose of model reduction through subset se-

lection.

A PCA can be implemented by means of an eigenvalue-eigenvector decomposition

of the matrix STS = UΛUT , where S is typically the normalised sensitivity matrix

given by (5.9), such that U denotes the matrix of normalised eigenvectors, ui, for

i = 1, 2, . . . ,m, and Λ corresponds to a diagonal matrix of eigenvalues, λi. The

normalised response function, Q(α) ≈ (∆α)TS TS∆α, can then be redefined in

terms of the principal components Ψ = UTα,

Q(Ψ) =
m∑
i=1

λi ‖∆Ψi‖2 , (5.11)

given that ∆Ψi = uTi ∆α = (ui,1∆α1 + . . .+ui,m∆αm). Consequently, the function

Q is most sensitive to changes in α along the principal axis corresponding to the

largest eigenvalue and is least sensitive to changes in α along the principal axis

corresponding to the smallest eigenvalue.

If λi is not small, hence the corresponding principal component is a significant one,
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a small value for a particular ‖ui,j‖ indicates that the corresponding parameter αi

contributes little to the component. It is suggested by Vajda et al. [1985] that any

element of ui with magnitude less than 0.2 can be excluded from consideration.

The justification is that they contribute less than 4% to the sum of squares of

relative changes in y(t, α) as the parameters vary in the direction of the principal

component.

5.2 Static Sensitivity Analysis of Time

Domain MSIR Models

The objective of this work is to explore the results of a formal sensitivity anal-

ysis applied to a series of fundamental MSIR framework models, as described in

Sections 3.3 and 3.4. The outcome of a structural identifiability analysis (see the

results from Section 4.4) has shown that the parameter ωM is at least analyti-

cally significant to the output of these systems. However, it does not provide any

quantitative indication of the magnitude of this influence.

It is intended that the analyses in this chapter illustrate how the processes of

reinfection, age structure and the implementation of simple public health inter-

vention conveyed by these models might affect the sensitivity/determinability of

characteristics associated with protective MAb. In the following section a sensi-

tivity analysis is initially performed on time domain MSIR type models residing

at endemic equilibrium, without the inclusion of seasonal forcing.
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5.2.1 Fundamental MSIR Model

The homogeneous, time domain MSIR model is defined by the differential equa-

tions (3.14)-(3.17), and shown as a connectivity diagram in Figure 3.1. Provided

that the basic reproduction number, R0 > 1, it is found in Section 3.3.5 that the

system has the following stable endemic fixed point equilibrium:

M̂ =
Nvµ(β−(µ+v))

β(µωM+v(µ+ωM))
, Ŝ =

N(µ+v)

β
, Î =

ωM
v
M̂, R̂ =

ωM
µ
M̂. (5.12)

Sensitivity functions corresponding to the various epidemiological observations de-

scribed in Section 2.4 can then be found algebraically about this equilibrium by

taking partial derivatives according to (5.2).

For a time domain prevalence observation, where y(t, p) = I(t, p), the magnitude

and normalised sensitivities of the output equilibrium point, ŷ(p) = Î, with respect

to the MAb parameter ωM , are found, respectively, to be given by:

∂ ŷ(p)

∂ ωM
=

Nvµ2(β − (µ+v))

β(µωM + v(µ+ωM))2
,

∂ ln ŷ(p)

∂ lnωM
=

µv

µωM + v(µ+ωM)
. (5.13)

Alternatively, for an incidence observation, where ŷ(p) = βŜÎ/N , given that Ŝ is

not a function of ωM , the normalised sensitivity function is identical to that of a

prevalence output and the absolute (non-normalised) sensitivity function is simply

scaled by a factor of βŜ/N = µ+ v.

Finally, if the output structure corresponds to a serological type observation, where

ŷ(p) = N − Ŝ − Î, since again Ŝ is not a function of ωM , the non-normalised

sensitivity function is the same as for ŷ(p) = −Î (prevalence). The normalised

sensitivity function is then found to be of the form:

∂ ln ŷ(p)

∂ lnωM
=

−µ2ωM
(µ+ ωM)(µv + ωM(µ+ v))

. (5.14)
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If, as in many SIR type infections, v >> µ (i.e. duration of infection is consider-

ably less than average life expectancy), then the following parameter combination,

which is a scaling between the magnitude of the normalised prevalence and sero-

logical sensitivity functions, adheres to the inequality:

µωM
v(µ+ ωM)

< 1. (5.15)

Therefore, the magnitude of the normalised sensitivity values for prevalence and

incidence observations will be greater than that of a serological type observation

by a factor approximately equal to v/µ.

It can also be seen that the normalised sensitivity functions for all three obser-

vation types are only dependent on the parameters µ, v and ωM ; hence they are

independent of the population size, N , and, more interestingly, the transmission

parameter, β. Furthermore, if v >> µ, it is shown, by dividing the second expres-

sion in (5.13) through by v, that the normalised sensitivity functions for incidence

and prevalence type outputs have only a negligible dependence on the rate of

recovery.

Substituting typical values of v = 73 yr−1 (average duration of 5 days) and µ =

0.010, 0.014 and 0.028 yr−1 (life expectancy of 100, 71 and 36 years respectively)

from the set of nominal parameter values for measles (see Table 3.1), the normalised

sensitivity function for an incidence or prevalence type observation can be plotted

against varying ωM (see Figure 5.1). Near identical relations are also found for the

more complicated case where neonatal mortality is included in the model (see the

proportional input structure described by (3.18)).

Subsequently, it can be seen that higher birth/mortality rates (i.e. lower life

expectancy) and a higher duration of maternal immunity (i.e. lower ωM) give rise

to a heightened sensitivity to ωM . This is because the influence of maternally
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Figure 5.1: Static normalised sensitivity functions corresponding to an incidence
or prevalence type observation of a fundamental MSIR system at endemic equilib-
rium; computed for varying ωM and discrete values of µ.

Table 5.1: Normalised sensitivity values for all MSIR model parameters evaluated
at nominal values corresponding to pre-vaccine measles in the UK.

Parameter µ N β v ωM

Prevalence 0.9963 1.0000 0.0588 -1.0586 0.0035

Incidence 0.9965 1.0000 0.0588 -0.0588 0.0035

Serological -0.0020 1.0000 0.0588 -0.0586 −6.7×10−7

acquired immunity on overall infection levels occurs due to a reduction in the

susceptible proportion of the population. The influence is therefore dependent

on the density age profile of the population as a whole, which is governed in the

heterogeneous case by an age dependent mortality function.

For completeness, Table 5.1 contains the normalised sensitivities with respect to

all system parameters in the MSIR model structure, corresponding to each of the

three considered outputs. The values are calculated similarly to those presented

for ωM , i.e. in the second part of (5.13) and (5.14), and are evaluated at the

nominal values for pre-vaccine measles in the UK given in Table 3.1.

It can be seen that ωM is clearly the least sensitive parameter in the model for all

three observation types. In addition, it also appears that the model as a whole
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is least well determined by a serological-type output structure, with respect to

parameter sensitivity.

5.2.2 MSIR Models with Incomplete Immunity

Epidemic systems that include processes of reinfection through antigenic variability

have the potential to support considerably higher levels of endemic infection, and

consequently a significantly lower average age at primary challenge. The steady

state analysis is therefore applied to MSIR framework models with various forms

of incomplete immunity, in order to explore how these processes might impact

output sensitivity with respect to characteristics associated with MAb.

MSIRS with Temporary/Waning Immunity

A basic MSIRS model structure with temporary/waning immunity can be derived

from the full incomplete immunity system described in Section 3.3.1. This is

achieved by setting altered secondary infection parameters, σ = 1, γ = 1 and

v1 = v2 = v in equations (3.20)-(3.26), and then combining primary/secondary

state variables such that S(t) = S1(t) + S2(t) and I(t) = I1(t) + I2(t).

Steady state solutions to the this system at endemic equilibrium, are given by

(3.62), where an observation corresponding to the prevalence of infection is subse-

quently found to be of the form:

ŷ(p) =
ωMN

(
ωR + µ

)(
β − (µ+v)

)
β
(
ωM(µ+ωR) + v(µ+ωM)

) . (5.16)

The solution for an incidence output may also be deduced by simply multiplying

(5.16) by a factor of (µ+ v). In this instance, the normalised sensitivities for inci-
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dence and prevalence output structures, derived with respect to ωM using equation

(5.6), are both found to be given by,

∂ ln ŷ(p)

∂ lnωM
=

µv

ωM(µ+ωR) + v(µ+ωM)
. (5.17)

Similarly to the fundamental MSIR model, it can be seen that the function is

only dependent on the parameters µ, v, ωM and ωR, and hence not on either the

population size, N , or the transmission parameter, β. Comparing these expressions

with those of the MSIR (complete lifelong immunity i.e. ωR = 0) in equation

(5.13), it can be seen that provided ωR > 0, the normalised sensitivity of ŷ(p) with

respect to ωM is always lower for the SIRS system.

Nominal values of v = 73 yr−1 (average duration of 5 days), µ = 0.014 yr−1 (life

expectancy of 71 years) and ωM = 2, 4 and 12yr−1 (protective duration of 6, 3 and

1 months respectively), are substituted for comparison with Section 5.2.1, where

the normalised sensitivity functions for an incidence or prevalence observation of

an MSIRS can be plotted against ωR (see Figure 5.2).

Figure 5.2: Normalised sensitivity functions for an incidence or prevalence observa-
tion of a MSIRS system with waning/temporary immunity; computed at endemic
equilibrium, for varying ωR and discrete values of ωM .

Alternatively the model may be parametrised with nominal values corresponding
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to hRSV (Tables 3.2 and 3.3(C)), an infectious disease more commonly observed to

display secondary infection in hosts. However, it has already been noted that the

normalised sensitivity function (5.17) is not dependent on transmission, β, and has

only a negligible dependence on v. Therefore, if the infection is considered within

the UK (i.e. maintaining population parameters µ and N), the relations shown in

Figure 5.2 are found to be the same for both nominal parametrisations.

MSIRS2 with Incomplete Immunity & Secondary Infection

An immediate limitation of the simple MSIRS model is the amalgamated represen-

tation of both primary and secondary (repeat) infection as a single state variable.

In order to distinguish the sensitivity of ωM with respect to primary and sec-

ondary cases, the full MSIRS2 incomplete immunity model (3.20)-(3.26) described

in Section 3.3.1 is analysed accordingly.

Nominal values are substituted for hRSV (Table 3.2), where demographic pa-

rameters such as birth/mortality rates, µ = 0.014 yr−1, and population size,

N = 5.7× 107, remain the same as in previous examples for infection in the

UK. Disease specific parameters such as the rate of recovery from primary and

secondary infection, v1 = 40.56 yr−1 and v2 = 107.35 yr−1 respectively (average

durations of 9 and 3.4 days), loss of protection from MAb, ωM = 2yr−1 (protective

duration of 6 months), and the force of infection λ̂ = 0.84 (average age at primary

infection of around 14.2 months) are fixed throughout the analysis.

Additional model parameters that do not appear to be as well defined in the

literature, such as ωR (loss of active immunity), σ (partial immunity factor) and

γ (reduced infectivity factor) are varied across their valid ranges. In this instance,

ωR is varied between 0 and∞ yr−1, and the proportions σ and γ are varied within

the interval, [0, 1], where it should be noted that the extreme values of 0 and 1

effectively alter the structure of the model. The unknown transmission parameter,



Chapter 5 5.2 Static Sensitivity Analysis of Time Domain MSIR Models 123

β, is continuously adjusted in order to maintain a constant force of infection,

λ̂ = 0.84. Subsequently, changes in the three varied parameters (ωR, σ and γ)

generate a shift in the dominance of primary and secondary cases with respect to

overall population infectivity.

The resulting normalised sensitivity functions corresponding to changes in ωM

are illustrated in Figures 5.3 and 5.4, for fixed values of γ = 0.6 (proportional

infectivity of secondary cases) and ωR = 0.67 yr−1 (average duration of active

immunity of 18 months) respectively.

If the secondary infectivity parameter, γ, is fixed, then the normalised sensitivities

for ωM can be calculated with respect to varying ωR (rate that actively protected

individuals lose immunity and become partially susceptible) for a range of σ ∈ [0, 1]

(proportional degree of partial susceptibility).

Figure 5.3: MSIRS2 model endemic equilibrium normalised sensitivity func-
tions for ωM corresponding to primary (blue) and secondary (black) preva-
lence/incidence of infection. Computed with nominal values for hRSV and
ωM = 2 yr−1, for varying ωR and contrasting values of σ.

These relations are shown in Figure 5.3, where it can be seen that the processes

of temporary/waning and partial immunity have contrasting effects on the nor-

malised sensitivity of ωM . An increase in ωR (i.e. shortening the duration of
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active immunity) causes a significant reduction in the sensitivity of both primary

and secondary infection, see also the SIRS model results in Figure 5.2. However,

an increase in σ (i.e. a decrease in partial protection afforded by experience of

infection) gives rise to an increase in sensitivity of ωM . This is likely to occur due

to the corresponding effects of these processes on transferable MAb in the wider

population. An increase in ωR has the direct effect of reducing the average period

of time that potentially child bearing individuals experience protective levels of

antibody. Conversely, an increase in σ acts to increase the rate of reinfection,

which subsequently leads to greater levels of population immunity.

Alternatively, for fixed ωR = 0.67 yr−1 (average duration of active immunity of

18 months), the sensitivity relations corresponding to varying σ ∈ [0, 1] and γ ∈

[0, 1], are evaluated and shown in Figure 5.4. It can be seen from the results

that the normalised sensitivity of ωM is a monotonically increasing function with

respect to both σ and γ. However, for observations of primary infection, the

change in sensitivity due to varying γ is extremely small (note that all plot lines

corresponding to primary infection are overlaid in Figure 5.4).

Figure 5.4: Steady state normalised sensitivity profiles to ωM for a MSIRS2 model
with a prevalence/incidence output and nominal values for hRSV. Plots correspond
to primary (blue) and secondary (black) infection, for varying σ and discrete values
of γ.
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In all analysed examples, the normalised sensitivity of ωM is considerably lower

for observations of primary infection than for secondary infection. This may seem

contrary to the intuitive assumption that maternally acquired immunity has, at

least in the age domain, a greater, more direct degree of interaction with primary

challenge. However, in the absence of age related heterogeneity, influence over

population-wide infection levels arise purely from the proportional removal of po-

tential infectives. In this instance, baseline fluctuations in primary transmission

are often amplified through the reinfection process leading to a greater normalised

change in secondary cases.

5.3 Static Sensitivity Analysis of Age

Domain MSIR Models

At a fixed point (non-seasonally forced) endemic equilibrium, observations of in-

fection and serology are static with respect to time, but still vary with respect to

age. The following section describes a static sensitivity analysis applied to a set

of equivalent (non-heterogeneous) age domain MSIR models (as derived in Sec-

tion 3.3.4), in order to establish parameter sensitivity with respect to age. Homo-

geneous age domain models of this type are linear in form, where output solutions

and corresponding sensitivity relations can be found analytically using symbolic

manipulation software such as MATHEMATICA [Wolfram, 1999] or MAPLE [Heal

et al., 1998].
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5.3.1 Fundamental (Homogeneous) MSIR

Recalling from Section 3.3.4, for a non-seasonally forced MSIR system, residing at

a fixed point endemic equilibrium (in time), a linear, purely age dependent system

of equations can be derived (3.40)-(3.44) with the following analytic solution for

an incidence observation:

y(a, p) =
λ̂µe−a(µ+λ̂)

[
ˆAb−(λ̂+µ−ωM) + ωM ˆAb+(ea(λ̂+µ−ωM )−1)

]
λ̂+ µ− ωM

. (5.18)

The seropositive and seronegative populations are assumed to be ˆAb+ = R̂ and

ˆAb− = Ŝ + Î respectively, where the processes of neonatal fertility and mortality

(i.e. from state M(a)) are removed according to the discussion on proportional

birth rates in Section 3.3. The average force of infection is given by λ̂ = βÎ/N , and

steady state variables by the expressions in (5.12). Sensitivity functions are found

symbolically according to (5.2), for all three observation types, through partial

differentiation of the appropriate output solutions (i.e. (5.18) for incidence) with

respect to p. In this instance, sensitivity functions are found to be age dependent

and, algebraically, considerably more complex than those of the static time domain

examples in Section 5.2.

The normalised sensitivity expressions for ωM are evaluated at the nominal pa-

rameter values corresponding to pre-vaccine measles in the UK (Table 3.1), and

displayed in Figure 5.5 with a prevalence output age profile. Figures 5.6 and 5.7

then illustrate how the three sensitivity curves change with varying basic repro-

duction number (R0 = 8 and R0 = 80), and rate of loss of maternally protected

neonates (ωM = 1 and ωM = 12), respectively.

It can be seen from comparing the relations in Figure 5.6 and Figure 5.5, that

an increase in infectivity (subsequently lowering the average age at primary in-
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Figure 5.5: Age profile normalised sensitivity functions for incidence, prevalence
and serological outputs of a fundamental MSIR system at endemic equilibrium.
Sensitivities are evaluated with respect to ωM at nominal parameter values for
pre-vaccine measles in the UK (i.e. R0 = 18).

fection) reduces the peak age of sensitivity for all three observation types, but

has contrasting effects on their magnitude. For low values of R0, peak sensitivity

for the serological observation is notably larger than that of prevalence and inci-

dence. However, while the latter two output sensitivities increase with higher R0,

serological sensitivity is found to decrease.

Variation in the sensitivity curves between different values of ωM are elicited from

comparison of the plots in Figures 5.5 and 5.7. The results show that the peak

sensitivity for a serological observation varies considerably more than that of the

prevalence and incidence outputs, which remain relatively unchanged at around

0.7. The age at peak sensitivity appears to decrease for all observations with

increasing ωM , which corresponds accordingly to a decrease in the average duration

of acquired protection, ω−1M .

In all five examples there are no noticeable differences between the sensitivity

characteristics of incidence and prevalence outputs. However, it does appear that

the peak sensitivity for a serological type observation occurs consistently later in

age. This result may prove to be significant in cases where there are limitations
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(a) Sensitivity Profiles for R0 = 8 (b) Sensitivity Profiles for R0 = 80

Figure 5.6: Prevalence, incidence and serological output normalised sensitivity
functions corresponding to changes in ωM , for contrasting values of basic repro-
duction. Results computed at time domain endemic equilibrium with nominal
parameter values for pre-vaccine measles in the UK.

(a) Sensitivity Profiles for ωM = 1 (b) Sensitivity Profiles for ωM = 12

Figure 5.7: Age profile normalised sensitivity functions for ωM , evaluated at en-
demic equilibrium with nominal values for pre-vaccine measles in the UK and at
contrasting values for ωM .

on the observation of clinical disease or on the collection of serological samples in

very young infants.

In addition to peak values in sensitivity, it should also be noted that there are

key points in age for all output types where the sensitivity of ωM is equal to

zero. Interestingly, the peak age of sensitivity (0.075 and 0.45 years for incidence

or prevalence and serological outputs respectively, where R0 = 18 and ωM = 4)

appears well below both the average age at primary infection (calculated in this

case to be 3.97 years) and the peak age of infection (0.75 years, see Figure 5.5). It

should also be noted that in all cases, peak normalised sensitivities are found to
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be significantly greater than those recorded for the static time domain examples

in Section 5.2.1.

5.3.2 MSIRS with Temporary/Waning

Immunity

Following the derivation of the linear age domain MSIR in Section 3.3.4, a purely

age dependent system of equations can also be derived for an MSIRS model with

temporary waning immunity. This is performed with the inclusion of an additional

intercompartmental flow representing the process of recovered individuals losing

active immunity and becoming fully susceptible to infection. Normalised sensitiv-

ity functions are again found symbolically from analytical solutions of the three

observation types according to (5.2). The resulting expressions are found to be

considerably more complex than those of the fundamental MSIR (5.18) since the

state variable solutions for S(a) and I(a) become additionally dependent on R(a)

and hence also on I(a).

For comparison with the MSIR model results shown in Figure 5.5, normalised sen-

sitivity functions for the MSIRS model (see Figure 5.8) are evaluated at nominal

parameter values taken from Table 3.1, where the waning active immunity param-

eter, ωR, is set to 0.5, 1.8 and 4yr−1 (protective duration of 24, 6.67 and 3 months,

respectively).

The profiles in Figure 5.8 show that the initial peak in normalised sensitivity

for prevalence or incidence observations are largely unaffected by variations in the

rate that recovered individuals lose actively acquired immunity. However, for lower

values of ωR (i.e. longer durations of active immunity) a secondary, more variable,

sensitivity peak occurs at around 9-10 months of age. Interestingly, this region
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(a) Sensitivity for Incidence/Prevalence (b) Sensitivity for Serological Observation

Figure 5.8: Normalised sensitivity curves to changes in ωM , for an age domain
incidence/prevalence and serological observations of a MSIRS system; evaluated
at endemic equilibrium, for various values of ωR.

of sensitivity becomes negative in magnitude indicating a positive relationship

between infection prevalence (infective state variable I(a)) and the duration of

maternally acquired immunity, ω−1M , (i.e. a greater duration of protection from

MAb acts to increase infection levels at certain ages).

In contrast to prevalence/incidence outputs, normalised sensitivity functions cor-

responding to serological type outputs are much more variable with respect to

changes in ωR. Shorter durations of actively acquired immunity (i.e. increasing

ωR) give rise to considerably lower sensitivity to changes in ωM , see also Figure 5.5

where ωR = 0.

5.4 Dynamic Sensitivity Analysis of

Seasonally Forced Models

As discussed in Section 2.1.3, many common infections such as measles, mumps

and rubella (MMR), influenza and hRSV tend to display large (seasonal) recurrent

epidemics at endemic equilibrium rather than settling to a constant level of trans-

mission. This limit cycle behaviour is captured by time series data of prevalence,

incidence or serology (see Figure 2.3) and often used for the estimation of epidemic
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model parameters through data fitting (for examples see the work by Weber et al.

[2001], White et al. [2007], and White et al. [2005]).

The following section aims to address the question of parameter sensitivity for

characteristics associated with MAb in this context, through the dynamic analysis

of MSIR framework models that include temporal variation. Since there are no

convenient analytic solutions to the MSIR framework models when system pa-

rameters are allowed to vary dynamically with time, the analysis must resort to

numerical methods, as outlined in Section 5.1.

5.4.1 Fundamental MSIR Model with Seasonal

Forcing

Temporal variation of the transmission function is included in the homogeneous

MSIR model (3.14)-(3.17) as a simple sinusoidal function of time of the form:

β(t) = β0
(
1 + β1 cos

[
2π(t− φ)

])
, (5.19)

where β1 defines the magnitude of the annual variation and φ corresponds to

the phase (annual timing). Nominal parameter values are again substituted for

pre-vaccine measles in the UK (Table 3.1), where additionally, β1 = 0.046 and

φ = 0.019.

In order to perform a dynamic sensitivity analysis on the seasonally forced MSIR,

an augmented system of differential equations are derived according to (5.10).

In this instance, the dependent variables correspond to the dynamic sensitivity

functions described by (5.2). The system of sensitivity equations are then solved

numerically, for each of three output structures, using the ode15s ODE integrator,

and the myAD automatic differentiation module [Fink, 2006] in MATLAB version
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R2009b. The computation is performed on an RM desktop machine with a Pen-

tium D 3.4GHz CPU and 1Gb of RAM, using a maximum step size of 0.001 years.

Prior to analysis, the simulation is run for a suitable period of settling time (i.e.

250 years) in order to allow the system solutions to converge satisfactorily close

to their endemic limit cycle. The normalised sensitivity matrix, given by (5.6), is

then generated for all 7 model parameters (i.e. p = (µ,N, β0, β1, φ, v, ωM)T ), with

sample points taken at uniform time intervals of 0.01 years, for ten complete annual

cycles. Figures 5.9 and 5.10 show the resulting deviation in the sum of squares

function, Q(α), to a unit change in lnωM , i.e. normalised sensitivity squared, for

incidence or prevalence and serological outputs respectively.

Figure 5.9: Sum of squares deviation to a unit change in lnωM (normalised sen-
sitivity squared), for an MSIR model with seasonal forcing and a prevalence or
incidence output; evaluated with nominal parameter values for measles in the UK.

The system is seen to exhibit biennial epidemic behaviour in accordance with

documented observations of pre-vaccine measles in the UK [Keeling and Grenfell,

2002], where the normalised sensitivity of ωM is found also to be periodic with a

time period of 2 years. Near identical results were obtained for both prevalence and

incidence observations, with normalised sensitivity to ωM varying between -0.037

and 0.032 throughout the biennial cycle. In contrast, the normalised sensitivity for
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Figure 5.10: Sum of squares deviation to a unit change in lnωM (normalised
sensitivity squared), for a seasonally forced MSIR model with a serological type
output structure; evaluated with nominal parameter values for measles in the UK.

a serological type observation varies only between −5.26× 10−5 and 2.41× 10−4.

Figures 5.11 and 5.12 show the resulting dynamic sensitivity functions for a preva-

lence/incidence observation where ωM = 1 and 6 yr−1 respectively (i.e. average

duration of maternally acquired immunity of 12 and 2 months). In this instance

Figure 5.11: Normalised sensitivity (squared) with respect to ωM , for a prevalence
or incidence observation of a seasonally forced MSIR model, computed with the
nominal UK measles parameter set and ωM = 1 yr−1
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Figure 5.12: Normalised sensitivity (squared) with respect to ωM , for a prevalence
or incidence observation of a seasonally forced MSIR model, computed with the
nominal UK measles parameter set and ωM = 6 yr−1

the normalised sensitivity functions are found to be amplified with decreasing ωM

(increasing duration of protection). It can be seen from the outputs of the two sim-

ulations that the peak sum of squares deviation to a unit change in lnωM is more

than 10 times greater for an average duration of 12 months than for 2 months.

In all cases the point of maximum (magnitude) normalised sensitivity does not

necessarily align with the biennial peak in the corresponding observation. This is

an interesting result as it suggests, for example, that prevalence or incidence data

collected for validating this particular characteristic of the MSIR model, would

not be optimally sampled around the time of maximum epidemic behaviour. It

can also be seen that there are regions for all output types where the sensitivity

to ωM is positive and negative, and hence two points during each biennial cycle

where the normalised sensitivity of y(t, p) is equal to zero.

Further analysis of the resulting sensitivity matrix for all examples show that it

has full rank (i.e. S TS is non-singular), indicating that the MSIR model is sensi-

tivity identifiable (see Definition 2 in Section 5.1.2) at p0 corresponding to the UK

measles parameter set. This result is consistent with those of a structural iden-

tifiability analysis given in (4.42), see Section 4.4, since the unknown observation
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Table 5.2: Principal component analysis of the normalised sensitivity matrix corre-
sponding to a MSIR model with seasonal forcing. Computed at nominal parameter
values for pre-vaccine measles in the UK and sampled at 0.01 year intervals over
a 10 year period.

No. Eigenvalue µ N β0 β1 φ v ωM

1 561135 0.236 -0.022 0.270 -0.044 -0.927 -0.095 0.002

2 312054 0.560 -0.115 0.710 0.108 0.323 0.230 0.001

3 7952.76 0.366 0.395 -0.009 -0.306 0.174 -0.766 0.003

4 1074.88 0.300 0.594 -0.269 0.672 -0.065 0.170 -0.002

5 32.7887 -0.187 -0.423 0.146 0.662 0.032 -0.567 0.064

6 0.07314 -0.378 0.309 0.357 0.048 0.001 -0.047 -0.794

7 0.00054 0.479 -0.451 -0.450 0.003 -0.000 -0.002 -0.605

gain, k, is neglected i.e. k = 1, and the parameters µ and ωM are distinguishable

from their nominal values.

For completeness, the relative influences of all MSIR model parameters are exam-

ined by means of a singular value decomposition of the normalised S TS matrix,

see Section 5.1.2 and the work by Vajda et al. [1985]. Table 5.2 shows the magni-

tude of the resulting principle components and the relative contributions of each

individual model parameter.

It can be seen that the magnitude of the principal components range between

5.4×10−4 and 5.6×105. The parameter ωM is clearly the least influential parameter

in the model, making significant contributions (i.e. absolute value greater than 0.2

[Vajda et al., 1985]) to only the two smallest components. In this instance an

elemental value of 0.002 corresponds to a 0.0004% contribution to the sum of

squares deviation in y(t, p), in the direction of the largest eigenvalue. It can also

be noted that despite a tenfold increase in the peak sum of squares deviation for

ωM = 1 yr−1, see Figure 5.12, the resulting PCA reveals no greater contribution to

all but the smallest principal component. In contrast, all other model parameters

appear to be well defined by the chosen outputs, with significant influence over at
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least one of the three major components.

5.4.2 Seasonally Forced Models with Incomplete

Immunity

In order to extend the analysis using nominal values for hRSV, the process of

seasonal forcing is applied to an appropriate epidemic model with incomplete im-

munity. An existing example of a seasonally forced model of this type is the 17

compartment, time domain, ODE based MSEIRS4 model, proposed by Weber

et al. [2001]. It has been developed as a more realistic representation of the epi-

demiological mechanisms associated with reinfection and accumulating acquired

immunity, observed with hRSV.

The model has been chosen for analysis in this work because it is very closely

related to the MSIRS2 model structure proposed in Section 3.3.1 and has also been

previously fitted to four separate sets of empirical data [Weber et al., 2001]. A

formal sensitivity analysis can therefore be performed using fitted nominal values,

in order to study the influence of maternally acquired immunity on observations

of primary infection, and hence, the determinability of ωM . It should be noted

that this is not intended as a critique of the work published by Weber et al. [2001],

given that the flow rate coefficient ωM is not a fitted parameter in their parameter

estimation, and the influence of maternal immunity was not the focus of their

study, or the subject of any inference from the results.

The set of system equations corresponding to the MSEIRS4 model are given in

Appendix A. The first four infections in the natural history of the disease are

distinguished by separate state variables (i.e. Si(t), Ei(t), Ii(t) and Ri(t) for

i = 1, . . . , 4), where Ei(t), for i = 1, . . . , 4, represents a latent incubation period

with an average duration of ζ−1. In this instance, baseline susceptibility decreases
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Table 5.3: MSEIRS4 model parameters for hRSV in Gambia, Florida, Finland &
Singapore [Weber et al., 2001]; values for µ, v, ωM , ωR, & ζ given in yr−1.

Location µ β0 β1 φ v ωM ωR ζ σ1 σ2 σ3

Gambia 0.041 256 0.20 0.26 36 13 1.8 91 0.50 0.35 0.25

Florida 0.016 268 0.13 0.03 36 13 1.8 91 0.50 0.35 0.25

Finland 0.013 192 0.39 0.19 36 13 1.8 91 0.50 0.35 0.25

Singapore 0.016 260 0.12 0.00 36 13 1.8 91 0.50 0.35 0.25

with successive experience of infection, following a temporary period of full pro-

tection upon recovery from each infection. Therefore, it can be noted that the

MSIRS2 model, given by (3.20)-(3.26), can be derived from the MSEIRS4 model

by neglecting the incubation stages and considering only the first two infections.

The analysis is performed using the nominal set of fitted parameter values, ex-

tracted from the work by Weber et al. [2001], corresponding to hRSV in The

Gambia, see Table 5.3. In a similar manner to the MSIR example, the sensitivity

matrix is generated numerically once the simulation has satisfactorily converged to

a stable endemic limit cycle. Sample points are again taken at uniform 0.01 year

intervals, for 10 complete annual cycles. Figures 5.13 and 5.14 show the resulting

deviation in the sum of squares function, Q(α), due to a unit change in lnωM ,

for primary prevalence or incidence and serological type outputs respectively. The

dynamic sensitivity functions are given with respect to time, and presented against

their corresponding output functions.

It is found that the sensitivity of ωM for all output types is periodic with a time

period of 1 year. Near identical results are obtained for prevalence and incidence

outputs (peak absolute value of 0.078), however, the normalised sensitivity of ωM

for a serological observation is found to be significantly smaller in magnitude (peak

absolute value of 0.005) and peaked at slightly different points in time. There are

again also two points during each epidemic period where the sensitivity of y(t, p)

with respect to ωM is equal to zero. The point of maximum sensitivity for all out-
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Figure 5.13: Resulting sum of squares deviation, Q(α), in a prevalence/incidence
observation of a seasonally forced MSEIRS4 model, to a unit change in lnωM
(normalised sensitivity squared); evaluated at nominal values for hRSV in The
Gambia.

Figure 5.14: Sum of squares deviation to a unit change in lnωM (normalised
sensitivity squared), for a serological observation of a seasonally forced MSEIRS4
model; evaluated with nominal parameter values for hRSV in The Gambia.

puts does not necessarily align with the annual peak in the corresponding obser-

vation, although their position relative to the annual epidemic cycle is comparable

to that of the measles example shown in Figures 5.9 and 5.10.
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It can also be noted that by removing seasonal forcing from the model (i.e. setting

β1 = 0), hence forcing the system to converge to a fixed point endemic equilibrium,

the analysis gives rise to a steady state normalised sensitivity value in the region

of 0.0014 for a prevalence or incidence observation of primary infection. This value

appears to be consistent with the results shown in Figure 5.3, which correspond to

the normalised sensitivity of an unforced MSIRS2 model, at endemic equilibrium,

with nominal values for hRSV in the UK.

The MSEIRS4 system is found to be sensitivity identifiable, i.e. the sensitivity

matrix, S, has full rank for all three observations, however, through a singular

value decomposition of S TS, it is also shown that ωM is again poorly defined by

time series infection dynamics. It can be seen from Table 5.4, which shows the

individual parameter contributions to the resulting principal components of Q(α),

that ωM contributes to only the 5th, 6th, 7th and 8th principal components, which

are between 104 and 108 times smaller than the largest.

Similar results were also obtained for parameter sets estimated using epidemic

data from Finland, Florida and Singapore [Weber et al., 2001], suggesting that

the regional variation in parameter values observed in these cases does not have a

significant impact on sensitivity.
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5.5 Conclusions & Discussion

A formal sensitivity analysis has been applied to a set of contrasting ODE epidemic

models, with various observation structures, for two common viral diseases. The

objective has been to assess the determinability of parameters associated with

passive immunity from MAb, and hence, also estimate the magnitude of their

influence over the static, dynamic and seasonal characteristics of system behaviour.

The analysis has indicated that the corresponding sensitivity of community-wide

transmission levels is potentially increased by processes associated with a greater

duration of protection from MAb, higher fertility rates and partial immunity. It

has also been shown for homogeneous cases that changes in the rate that mater-

nally protected neonates become fully susceptible has a much greater influence on

epidemiological measures recorded with respect to age than with respect to time.

A potential limitation of the analysis in this work has arisen from the consideration

of only homogeneous transmission, immunity and fertility etc. It is possible that

greater output sensitivity may be generated from small perturbations in ωM if, for

example, the peak age of transmission occurs close to that of the average dura-

tion of waning maternal antibody. However, the analysis of heterogeneous PDE

based systems is found to be substantially more challenging using techniques asso-

ciated with automatic differentiation and the accuracy of most numerical methods

do not permit the implementation of finite differencing given that time domain

sensitivities are found to be in the region of 10−3.

Implications for the Estimation of MAb Parameters

All worked examples have consistently shown near identical normalised sensitivity

results, corresponding to changes in ωM , for observations of incidence and preva-
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lence in either domain. This suggests that it is not critical which of the two data

types are used with respect to parameter estimation within these model struc-

tures. In addition, no examples were found where it may be beneficial to utilise a

serological type observation recorded with respect to time.

In all dynamic and static age domain analyses it has been shown that there are

key regions, both in the annual epidemic cycle (i.e. with respect to time) and

in the average age profile, that correspond to peak, and conversely, zero sensi-

tivity to variation in all unknown model parameters. This indicates that the use

of prior experimental design and optimal sampling could be of great benefit in

maximising confidence during parameter estimation and potentially minimising

unnecessary data collection. In the age domain, analysis of the considered models

has shown comparable peak values in normalised sensitivity for serological and

prevalence/incidence outputs. However, these peaks tend not to occur at the same

points in age, and have contrasting dependencies on the basic reproduction number

and nominal value of ωM . Similarly in the time domain, maximal output sensitiv-

ity to ωM appears in all cases not to coincide with the annual or biennial epidemic

peak in infection and differs again between observations of prevalence/incidence

and serology.

A comparison of results corresponding to equilibrium observations of systems with

constant and seasonally varying transmission suggests that changes in ωM can

potentially have a more significant impact on dynamic behaviour than on overall

levels of infection. However, in all dynamic time domain examples the parameter

was still clearly found to be one of the least sensitive in the model. Consequently,

MSIR framework models with time domain output structures are likely to be

inappropriate for estimating characteristics associated with maternally acquired

immunity. Moreover, through the use of techniques such as subset selection, these

models may be acceptably reduced by omitting the immunising effects of MAb if

the purpose of the model is to achieve reasonable estimates for other parameters

such as those associated with transmission.
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More promisingly, analysis has shown that maternally acquired immunity has a

much greater influence on epidemiological observations recorded with respect to

age than with respect to time. However, the results of a structural identifiabil-

ity analysis, described in Chapter 4, have shown that these parameters are not

uniquely determined by age domain output structures. One possible resolution to

this problem might be to simultaneously fit equivalent model structures to both

age and time domain data sets; although this is likely to involve dedicated epidemi-

ological studies beyond those which are typically conducted for the two infections

discussed in this work. In addition, the particularly young age in peak sensitiv-

ity of all age domain observations could be a major hindrance in the selection of

suitably high fidelity sample points in this region.



Chapter 6

Model Analysis & Numerical

Simulation

The role of maternally acquired immunity within the observed characteristics of

many infectious diseases remains largely unclear. Models have been proposed in

Chapter 3 that aim to describe some of the fundamental epidemiological processes

associated with MAb, such that their influence over a broad range of system be-

haviour may be explored. It is the objective of this chapter to provide additional

analysis of these models and present examples of their use in assessing the potential

impact of mass maternal immunisation on systems with differing epidemiological

characteristics.

In the absence of appropriate data, the scope of this work is unable to extend to the

validation of quantitative predictions regarding intervention outcomes for specific

infections. Instead, the aim is to provide a more qualitative analysis using a range

of typical values extracted from the literature (see Section 3.5). It is intended that

the work highlights some of the potential effects of mass maternal immunisation

on static, dynamic and seasonal characteristics of infection, and to encourage the

discussion of how prospective interventions of this type may be more optimally

144
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implemented in future public health policy. Specific areas of interest include:

• The potential impact of maternally targeted intervention on the incidence of

neonatal infection and the average age of primary contraction.

• Possible outcomes regarding population-wide prevalence of infection.

• How the potential success of maternal immunisation might be subject to:

◦ The force of infection / average age at primary infection.

◦ Processes associated with reinfection, including the distribution/dominance

of primary and secondary infectivity.

◦ Heterogeneity in the population age profile and transmission function.

• The potential interaction of mass maternal immunisation with early child-

hood targeted vaccines.

• The dynamic consequences of system perturbation due to rapid implemen-

tation of an intervention campaign.

• Seasonal targeting of prospective intervention strategies for systems with

temporal forcing.

To address these issues, Section 6.1 presents a continuation of the preliminary

steady state analysis described in Section 3.3.5, where a number of ODE-based time

domain models are used to explore the impact of various combinations of passive

and active intervention effort on the overall prevalence of infection. Relations are

elicited for varying degrees of antibody interaction between vaccines, reinfection

and discrete age dependent fertility/mortality.

A more detailed analysis of potential age specific infection patterns resulting from

maternal immunisation is presented in Section 6.2. The analysis uses various

implementations of the continuous age domain model described in Section 3.4.2,
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with MAb titre distribution characteristics elicited from the literature for hRSV.

Finally, in Section 6.3, a number of the proposed models are used to explore the

consequences of intervention on the time dynamic behaviour of systems with and

without seasonal forcing.

6.1 Time Domain Steady State Analysis

In keeping with the work flow of previous chapters, the following section considers

the characteristics of ODE-based time domain models residing at a fixed point

equilibrium. In this instance, the effects of temporal variation are neglected and

age dependency is included only in the discrete compartmentalised form described

in Section 3.4.1. The analysis is performed in order to gain insight into the poten-

tial dependencies of population-wide infection levels on prospective intervention

strategies.

Analytic solutions are found according to Section 6.2.1 using the symbolic manip-

ulation package MATHEMATICA (version 7.0.0). However, solutions to systems

more complex than those previously considered in the preliminary analysis of Sec-

tion 3.3.5 are typically too expansive to include explicitly. In these cases, key

relations are illustrated graphically using typical parameter values and appropri-

ate intervals of variation.

6.1.1 Fundamental MSIR

The foundation for all prior analyses in this work has been the fundamental MSIR

model shown by Figure 3.1. In this instance, the model is considered with the

addition of maternal (passive) and potentially interacting childhood (active birth
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targeted) immunisation as described in Section 3.3.3. The system equations are

derived from the full incomplete immunity model (3.33)-(3.38) by removing the

state variables corresponding to secondary infection (i.e. S2(t) and I2(t)) and set-

ting the parameter ωR equal to zero. It should be recalled that the proportions Pm

and Pv correspond to the application of maternal and birth targeted immunisation

respectively, which are applied in terms of the net birth rate, µN . The interaction

between neonatal immunity derived from the two intervention types and natural

infection experience of the mother is described by the parameter ϑ.

The system has a single, stable equilibrium point corresponding to either eradica-

tion or endemic persistence of the infectious agent. In the absence of any interven-

tion, these equilibrium points are delineated by the bifurcation point, R0 = 1. For

R0 > 1 and under suboptimal intervention, an endemic level of infection transmis-

sion is observed, which is subsequently dependent on the proportions Pm, Pv and

ϑ. Evaluating this equilibrium using nominal values for pre-vaccine measles in the

UK (Table 3.1), a series of relations between endemic prevalence of infection and

various combinations of intervention effort, with and without antibody interaction,

are elicited and shown in Figure 6.1.

(a) Primary infection profiles for ϑ = 0. (b) Primary infection profiles for ϑ = 1.

Figure 6.1: Endemic prevalence of infection for specific proportions of birth tar-
geted vaccination, Pv, and antibody interaction, ϑ, with respect to maternal immu-
nisation, Pm, and evaluated at nominal parameter values for pre-vaccine measles
in the UK.

It can be seen from the two graphs in Figure 6.1 that the model predicts both
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interventions would have a positive impact on reducing the transmission of the

pathogen. In the absence of antibody interaction, i.e. ϑ = 0, Figure 6.1(a) shows

that in this example it is possible to force the disease free equilibrium to become

stable and eradicate the infectious agent. However, for high values of ϑ, the efficacy

of birth targeted vaccination is significantly reduced. In Figure 6.1(b), high levels

of antibody interaction are seen to prevent the eradication of the infection by

means of the considered intervention strategy.

Following the analysis in Section 2.2.1, an eradication threshold for ϑ can be found,

above which, too few newborns successfully respond to the active vaccine and herd

immunity can no longer be achieved. The system Jacobian matrix is evaluated at

the disease free equilibrium, with maximum maternal and birth targeted immuni-

sation (i.e. Pm, Pv = 1). This gives rise to a set of eigenvalues:

λ1 = −2µ,

λ2 = −(ωM + ϑµ), (6.1)

λ3 = −v − 2µ+
ϑβωM

2(ϑµ+ ωM)
,

which are always negative and real provided the interaction parameter adheres to

the following inequality:

ϑ <
2(v + 2µ)ωM

βωM − 2vµ− 4µ2
. (6.2)

Evaluating (6.2) with respect to the UK measles parameter set (Table 3.1), it is

found that for eradication of the infection to be possible, ϑ < 0.11.

From Figure 6.1(b) it can be seen that for ϑ = 1, the minimum prevalence of infec-

tion that can be achieved is 9675 cases (a reduction of 611 cases or 5.94%). This

limit in efficacy occurs since only newborns born to fully susceptible mothers will

benefit from either of the two immunisations. As population immunity is raised,

the number of successful birth targeted vaccinations quickly diminish, restricting
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the impact of the intervention. If maternal immunisation is successfully applied to

all pregnant women, i.e. Pm = 1, then all newborns will be protected by MAb and

potentially none will respond to the active vaccine. This result emphasizes the ef-

forts of Williams et al. [1995] and Nicoara et al. [1999] who discuss the importance

of targeting childhood vaccination beyond the average duration of MAb.

An expression approximating the average age at primary infection predicted by

the model may be derived similarly to those of the MSIR (3.19) and MSIR with

maternal immunisation only (3.61), and given in the following form:

Av ≈
µ̂M

µ̂M + µ̂S
(ω−1 + λ−1) +

µ̂M
µ̂M + µ̂S

(λ−1), (6.3)

where

µ̂M = µ(1−(1−ϑ)Pv)
[

ˆAb++Pm ˆAb−
]
,

µ̂S = µ(1−Pv)(1−Pm) ˆAb−.

The function is based on a weighted average of the corresponding proportions of

seropositive (Ab+) and seronegative Ab− newborns, excluding those who success-

fully respond to the active (birth targeted) vaccine and avoid primary infection.

The resulting relations between the average age at primary infection, the two forms

of intervention and their interactions are illustrated by Figure 6.2, which is evalu-

ated again with respect to the UK measles parameter set (Table 3.1). It should be

noted, with respect to Figure 6.2(a), that for values of Pm, Pv and ϑ that result

in the eradication of the infectious agent, an average age at primary infection can

no longer be calculated.

It can be seen from the two graphs in Figure 6.2 that again both interventions have

a positive impact on the average age at primary infection. However, in cases where

there are high levels of antibody interaction the benefits of active immunisation

are substantially limited.
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(a) Average age of infection for ϑ = 0. (b) Average age of infection for ϑ = 1.

Figure 6.2: Average age at primary infection for specific proportions of birth tar-
geted vaccination, Pv, and antibody interaction, ϑ, with respect to maternal im-
munisation, Pm; evaluated at nominal parameter values for pre-vaccine measles in
the UK.

All results in this section suggest that if the detrimental effects of antibody interac-

tion are reduced then active immunisation is by far the most effective intervention

with respect to wider population infection. However, the characteristics that have

been discussed in this section are potentially accentuated by the solid and lifelong

immunity assumed by the MSIR model. In this case, a particularly high propor-

tion of the population is seen to reside in a seropositive state, leading to naturally

high levels of MAb among newborns.

6.1.2 Models with Incomplete Immunity

To explore the outcomes of intervention implemented within systems where active

immunity is incomplete, the analysis is applied to the MSIRS2 model structure

proposed in Section 3.3.3. The model is described by the set of system equations

(3.33)-(3.39), where it can be recalled that the additional state variables S2(t) and

I2(t) correspond to characteristics associated with altered secondary infections.

The parameters ωR, σ and γ describe, respectively, the rate of loss of active immu-

nity, a reduced risk of secondary infection and a reduction in secondary infectivity.
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As discussed in Section 3.3.1, in cases such as hRSV it is often unclear whether the

more significant source of transmission is from primary or secondary infectivity.

In the MSIRS2 model, higher values of σ and γ result in a greater prevalence of

reinfection, which may subsequently dominate the behaviour of the system and

the overall force of infection. In contrast to the MSIR example, rapid waning of

active immunity yields lower numbers of seropositive individuals throughout the

childbearing population, leading also to fewer numbers of children born with pro-

tective levels of MAb. The objective of this analysis is therefore to explore whether

the static influence of maternal immunisation over wider population transmission

is affected by the balance of primary and secondary infection.

The MSIRS2 system is found to have a single, stable equilibrium point correspond-

ing to either eradication or endemic persistence of the infection. Provided that the

invasion threshold is met, an endemic level of transmission is observed, which is

subsequently dependent on the intervention parameters, Pm, Pv and ϑ. The equi-

librium is evaluated at nominal parameter values for hRSV (Table 3.2), where

the secondary infection parameters, ωR, σ and γ, and the transmission parameter,

β, are varied to encompass a spectrum of infectivity biases, whilst maintaining a

constant force of infection.

The resulting relations between the endemic prevalence of primary infection and

various combinations of intervention effort, for primary and reinfection dominated

transmission, with and without antibody interaction, are shown in Figure 6.3. For

Figures 6.3(a) and 6.3(b) the secondary infection parameters are set to: ωR =

1.8 yr−1 (average duration of immunity of 6.67 months), σ = 1 and γ = 1, which

correspond to the upper interval values given by Table 3.3(C). In order to maintain

a typical force of infection for hRSV of λ = 0.84 yr−1, the transmission parameter

is set to β = 152 yr−1.

For comparison, Figures 6.3(c) and 6.3(d) show the relations that result from

parameterising the model such that it emulates an MSIR type structure, where
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only primary infection contributes to the overall force of infection. In this instance,

ωR = 0 yr−1 (lifelong immunity), σ = 0, γ = 0, and subsequently, β = 2490 yr−1

(see Table 3.3(A)).

(a) Primary infection profiles evaluated at
ωR = 1.8 yr−1, σ = 1, γ = 1 & ϑ = 0.

(b) Primary infection profiles evaluated at
ωR = 1.8 yr−1, σ = 1, γ = 1 & ϑ = 1.

(c) Primary infection profiles evaluated at
ωR = 0 yr−1, σ = 0, γ = 0 & ϑ = 0.

(d) Primary infection profiles evaluated at
ωR = 0 yr−1, σ = 0, γ = 0 & ϑ = 1.

Figure 6.3: Endemic prevalence of primary infection for specific proportions of
birth targeted vaccination, Pv, and antibody interaction, ϑ, with respect to mater-
nal immunisation, Pm. Evaluated at parameter values corresponding to reinfection-
dominant, (a)-(b), or primary infection-dominant, (c)-(d), transmission.

The results indicate that, when applied independently, both the active and passive

immunisation methods yield a positive impact on the prevalence of primary infec-

tion. For high values of ϑ, the efficacy of the active vaccine is once again inhibited

through its interaction with MAb. However, in the absence of maternal immuni-

sation, i.e. Pm = 0, it can be seen that the childhood vaccine is considerably more

effective within the reinfection system than the MSIR (primary infection) system.
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This is likely to be a result of waning population immunity, which subsequently

leads to a reduction in the number of seropositive newborns. It should also be

noted that since the transmission parameter, β, is reduced in order to maintain

a constant force of infection in the presence of greater secondary infectivity, the

basic reproduction number, R0, is subsequently decreased.

When a combination of the two interventions is applied with high levels of in-

teraction, it can be seen from Figure 6.3(d) that the MSIR-type system displays

qualitatively similar results to that of the measles example shown in Figure 6.1(b).

In this instance, birth targeted vaccination is predominantly limited by naturally

occurring levels of MAb, such that it is still beneficial to implement the passive

vaccine. However, in the reinfection example (Figure 6.3(b)), where natural levels

of MAb are low, maternal immunisation has a significantly detrimental effect on

the efficacy of the active vaccine. This implies that in situations where mater-

nal immunisation is likely to interact with an existing or prospective childhood

vaccine, its application should be considered with caution.

(a) Average age of infection for ϑ = 0. (b) Average age of infection for ϑ = 1.

Figure 6.4: Average age at primary infection for specific proportions of birth tar-
geted vaccination, Pv, and antibody interaction, ϑ, with respect to maternal immu-
nisation, Pm; evaluated at nominal parameter values for hRSV where ωR = 1.8yr−1,
σ = 1 and γ = 1.

The resulting relations between the average age at primary infection and the ap-

plied interventions are calculated for the reinfection example using equation (6.3)

and shown in Figure 6.4. In contrast to the results shown in Figure 6.3(b), it can
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be seen from Figure 6.4(b) that for ϑ = 1, maternal immunisation has a beneficial

impact on the average age at primary infection at Pv = 0 and Pv = 0.5. Comparing

the two graphs at Pv = 0.5 suggests that the implementation of mass maternal im-

munisation may have a positive influence on the average age at primary infection,

despite raising overall prevalence.

6.2 Static Analysis Age Domain

In order to obtain a more detailed description of infection patterns in neonatal

and young infant age classes, it is necessary to consider the evolution of the sys-

tem state variables continuously with respect to age. Section 3.4.2 describes an

alternatively derived PDE-based MSIR model structure that also includes a more

empirical representation of MAb titres among newborns. The model is therefore

focussed more directly on waning neonatal immunity and infection, rather than

that of the population as a whole. The dependency of the maternally protected

population is decoupled from the dynamics of susceptibility and immunity in the

wider population, and determined purely from static serological observations.

The objective of this section is to demonstrate how the model may be used in order

to explore specifically how the implementation of mass maternal immunisation

might affect the age profile of primary infection incidence and the number of cases

among infants below a target age. Static age profiles are extracted from numerical

simulations generated using typical values and characteristics derived from the

literature, and a number of speculative age varying transmission functions that

emulate potential routes of infection.
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6.2.1 Methods & Application

The model is initially considered as a fundamental MSIR system, without the

additional complexities of sup-optimal immunity and altered secondary infections.

Recalling from Section 3.4.2, the system is defined by the following set of nonlinear

partial differential equations:

∂M(t, a)

∂t
+
∂M(t, a)

∂a
= −Q(t, a)− µd(a)M(t, a), (6.4)

∂S(t, a)

∂t
+
∂S(t, a)

∂a
= Q(t, a)−

[
λ(t, a)+µd(a)

]
S(t, a), (6.5)

∂I(t, a)

∂t
+
∂I(t, a)

∂a
= λ(t, a)S(t, a)−

[
v(a) + µd(a)

]
I(t, a), (6.6)

∂R(t, a)

∂t
+
∂R(t, a)

∂a
= v(a)I(t, a)− µd(a)R(t, a), (6.7)

where

λ(t, as) =
1

N

∫ ∞
0

β(t, as, ai) I(t, ai) dai. (6.8)

The boundary conditions correspond to the current birth rates of seronegative and

seropositive newborns, given by,

M(t, 0) =

∫ ∞
τ

C(t, Ab) dAb, S(t, 0) =

∫ τ

0

C(t, Ab) dAb, I(t, 0) = 0, (6.9)

where the function C(t, Ab) describes a random distribution of cord log antibody

titres. The rate at which maternally protected newborns become fully susceptible

to infection is then described by the expression:

Q(a) = ωM C(ωMa+τ) e−
∫ a
0 µd(α)dα. (6.10)

The work by Williams et al. [1995] suggests the use of a Gaussian distribution as

an appropriate model for population MAb titres in measles and this assumption
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is also adopted in this work. Nominal characteristics for maternally acquired

antibodies are derived according to those observed for hRSV by Cox et al. [1998],

where similar characteristics have also been reported by Ochola et al. [2009]. In

this instance, the static cord titre distribution Ĉ(Ab) has mean, C̄ = 3.0 log AU,

and standard deviation, σC = 0.39, where the rate of MAb decay, ωM , is 3.67 yr-1,

and the threshold for susceptibility, τ is 1.7 log AU.

Since the dependency of newborn serology is decoupled from that of the child

bearing population, the process of age dependent fertility is not considered and a

constant inflow of births is represented by the integral of Ĉ(Ab) with respect to

Ab. The resulting birth rate coefficient is subsequently assumed to be equal to

that used in previous examples such as for the UK (µ = 0.014) or The Gambia

(µ = 0.041).

An age dependent mortality function, µd(a), is chosen to emulate Type I sur-

vivorship, that is where mortality rates are greatest among older individuals. The

resulting population age distribution, N(a), is generally regarded as a better ap-

proximation to human populations than that of Type II survivorship (where µd(a)

is a constant coefficient), particularly for populations in more developed countries

[Anderson and May, 1991]. For simplicity, this is implemented as a step function

of the form:

µd(a) =

 0 for a ≤ L,

∞ for a > L,
(6.11)

where L = µ−1 corresponds to the average life expectancy. In the context of

the model, which is focussed predominantly on primary infection in neonatal age

classes, the most significant aspect of this assumption is the resulting neglection

of infant mortality. Again this is reasonable for the consideration of developed

populations, where mortality rates in the first year of life are typically less than

1%, however, it may be less appropriate for communities in developing regions.
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Maternal immunisation is applied to the model according to Section 3.4.3, where

a function VM(Ab) (a random distribution of scalar increases in log AU) is used to

manipulate the initial cord log antibody titre distribution, C(t, Ab), such that,

Cv(t, Ab) = (1− Pm)C(t, Ab) + Pm

∫ Ab

0

C(t, z)VM(Ab/z)

C̄
dz. (6.12)

The distorting function, VM(Ab), is again assumed to be Gaussian, where V̄M and

σVM denote the mean and standard deviation of this distribution, respectively. As

in previous examples, the parameter Pm corresponds to the proportion of pregnant

women who successfully respond to the vaccine. The best documented example of

a candidate vaccine trial of this type for hRSV is that presented by Munoz et al.

[2003]. The study reports a 4 fold increase in the geometric mean concentrations of

hRSV IgG Ab in infants born to vaccine recipients compared to those of mothers

who received a placebo. However, an increase of only 0.5 log 2 AU was observed for

neutralising antibodies. In the model, the immunising effects on the mother are

neglected since in the MSIR example virtually all individuals are already immune

by the time they reach child bearing age.

As continually discussed throughout this work, in reality, pathogen transmission is

often a highly heterogeneous process with potentially complex interdependencies

on social interaction, physiological development and immunological experience of

the host. However, estimation of these functions from empirical observation is

critically impeded by the issues of indeterminacy described in Section 2.4.1. The

most practicable approach to this problem has arisen from the combined works of

Grenfell and Anderson [1985], who present a maximum-likelihood methodology for

estimating age-related changes in the rate of infection, λ(a), from serological data,

and that of May and Anderson [1984], and Schenzle [1984], who impose constraints

on the structure of β(as, ai) such that it may be estimated explicitly.

The technique presented by Grenfell and Anderson [1985] initially involves mod-

elling the average force of infection as an arbitrary degree polynomial of the form:



Chapter 6 6.2 Static Analysis Age Domain 158

λ(a) =


k∑
i=0

bi a
i for M < a ≤ L,

0 for a ≤M,

(6.13)

where L and M denote the upper and lower age limits, respectively, and k is

the order of the expression. The resulting cumulative distribution of seropositive

individuals, given by the function:

F (a) =


1− exp

[
−

k∑
i=0

(
bi
ai+1 −M i+1

i+ 1

)]
for M < a ≤ L,

0 for a ≤M,

(6.14)

is then fitted to empirical age serological profile data, in order to estimate the

polynomial coefficients, bi, for i = 0, . . . , k. In the original work, the method is

applied to a number of datasets corresponding to records of measles incidence in

the UK and USA, for which the estimated rates of infection consistently rise to

a peak at around 10 years of age and decline thereafter [Grenfell and Anderson,

1985]. In addition, the results from a series of further studies for pertussis, measles,

mumps, rubella, chicken pox and scarlet fever are collated in the book by Anderson

and May [1991]. The review reports a striking similarity in the age-specific force

of infection, with a consistent peak in λ(a) occurring between 5-15 years of age

across the range of studied infections.

Unfortunately, the lower age limit, M , is included in functions (6.13) and (6.14)

in order to avoid obscurity due to the presence of maternally acquired antibodies.

It is found that the estimation of λ(a) in this age region is significantly hindered

by ambiguity between genuine seroconversion due to experience of infection and

residual MAb. In this instance, longitudinal serological data, such as that discussed

in the work by Ochola et al. [2009], is required in order to detect increasing Ab

titres that are indicative of an active immune response. However, the inference of

infection rates from analyses of this nature is still limited by restrictions on serum
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sampling frequencies, measurement error and confidence in the interpretation of

results below the limit of quantification. Consequently, in order to further the

analysis in this work, a series of example transmission functions are speculated in

order to characterise potential patterns of infection resulting from common and

vertical age biased social mixing, and decreasing susceptibility due to physiological

development among young infant age classes.

6.2.2 Simulation Results

Simulation of the system is performed in order to give insight into the potential

effects of maternal immunisation on age specific infection patterns among young

infants. Average age profiles of incidence and serology are presented for various

intervention characteristics and age specific transmission functions. The full PDE

model structure, given by (6.4)-(6.9), is solved according to Appendix B using sim-

ple numerical methods based on an explicit 3rd order backwards difference scheme

[Chapra and Canale, 2002]. More sophisticated algorithms have been presented

for problems of this nature, see for example the work by White [2000], however,

the simple approach is adopted in this work for ease of implementation and to

minimise time required for computation. The techniques are considered to be

appropriate since the outcomes of the analysis are largely qualitative in nature.

Constant Transmission Function

The model is first considered in the most simple case with non-seasonal and ho-

mogeneous transmission. The transmission function is therefore assumed to be

constant with respect to time and age, where a nominal value of β = 2490 yr-1 is

chosen to give a typical force of infection, λ = 0.84 yr-1, for hRSV. In the absence

of maternal immunisation, the simulation results are qualitatively comparable to
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the age serological profile data presented by Cox et al. [1998] (Figure 6.5). The

model predicts a peak in the proportion of the population susceptible (nadir in

proportion seropositive) of around 80%, occurring at 0.60 years (7.2 months) of

age, and around 90% of individuals having experienced infection by 3 years of age.

(a) PDE Model Simulation (b) hRSV Age Serological Data

Figure 6.5: Comparison between simulation results for the PDE MSIR model
with non-seasonal and homogeneous transmission, and age serological survey data
presented in the work by Cox et al. [1998], where incidence is presented as a
proportion of the net birth rate, µN .

It can be seen from Figure 6.5(a) that the peak ages for incidence and susceptible

supply occur at around 0.60 years (7.2 months) and 0.35 years (4.3 months) of age,

respectively. Since the distribution Ĉ(Ab) is assumed to be Gaussian, the peak age

of susceptible supply also corresponds to the estimated average duration of pro-

tection afforded by MAb. This prediction is notably higher than that documented

in the original work by Cox et al. [1998], where a simpler first order elimination

model is used to estimate an average duration of around 0.27 years (3.3 months).

The average age at primary infection is calculated using (2.39) and found to be

1.57 years (18.8 months), which is 0.32 years (3.8 months) greater than that pre-

dicted by the ODE models examined in Section 6.1 (Figure 6.4). The proportion

of newborns who become susceptible below a specified age may be found by eval-

uating the integral expression given by (3.94). For the parameter values applied

to the model, it is estimated that only 0.04% of newborns are born immediately

susceptible to infection. However, it is also shown that 91.6% of infants are likely
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to become susceptible before the age of 6 months. In order to protect all individ-

uals at risk of infection in this age region, an immunologically interacting vaccine

would need to invoke an effective response in mothers with antibody titres of at

least 3.54 log AU.

A non-interacting maternal immunisation campaign is applied to the model ac-

cording to Section 6.2.1 and a series of simulations performed in order to examine

the impact of the intervention. Results obtained for a range of values for the

mean vaccine efficacy, V̄M , (with standard deviation, σVM = 0.25) and the effective

vaccination coverage, Pm, are presented in Figure 6.6 and Table 6.1. It should

be noted that since C̄ = 3.0 log AU, mean vaccine efficacies of V̄M = 1.46 and

V̄M = 1.60 correspond roughly to a 4- or 6- fold average increase in antibody titre,

respectively.

(a) Responses to various Pm, at V̄M = 1.46 (b) Responses to various V̄M , at Pm = 0.75

Figure 6.6: Predicted outcomes of mass maternal immunisation applied to a fun-
damental decoupled MSIR model structure with non-seasonal and homogeneous
transmission; evaluated for various values of vaccine coverage and efficacy, where
incidence is presented as a proportion of the net birth rate, µN .

In response to the intervention, the simulations show an upward spreading of the

incidence age profile, leading to a moderate rise in the average age at primary

infection (Figure 6.6). There is also a significant reduction in the proportion of

individuals acquiring infection below 1 year and below 6 months of age, with no-

tably more success in the younger of the two age groups (see Table 6.1). In this

context, the results concur that maternal immunisation is a potentially efficacious
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intervention strategy with respect to reducing neonatal infection. However, it

can also be seen that the predicted distortion in the susceptible age profile con-

sequently leads to a decrease in the peak value. Hence, passive immunisation

may prove detrimental to the task of targeting active childhood vaccination to the

nadir in seropositivity (peak age of susceptibility), thereby increasing the degree

of potential interaction. This effect appears to be more pronounced for midrange

vaccination coverage, where neither the vaccinated or unvaccinated characteristic

curves dominate the resulting age profile.

Table 6.1: Predicted outcomes of mass maternal immunisation applied to a fun-
damental decoupled MSIR model structure with homogeneous transmission; eval-
uated for various values of vaccine coverage and efficacy.

Proportion of Mean Vaccine Average Age at Proportion Infected
Coverage Pm Efficacy V̄M Infection (years) < 6 months < 1 year

0 N/A 1.57 9.4% 39.7%

0.5 1.47 1.78 5.4% 27.6%

0.75 1.47 1.89 3.4% 21.7%

1 1.47 2.00 1.4% 15.8%

0.75 1.23 1.74 5.5% 29.5%

0.75 1.47 1.89 3.4% 21.7%

0.75 1.60 1.98 2.8% 18.0%

The results in Table 6.2 show the effects of differing degrees of variance for the

vaccine response distribution. It can be seen that greater variability in vaccine

response appears to advance the increase in average age at primary infection,

but also leads to less effective prevention of infection among the proportion of

individuals under 6 or 12 months of age.

It should also be noted that the overall prevalence of infection, calculated from the

integral of J(a) with respect to a, remains unchanged following the implementation

of the vaccine. This result is contrary to that predicted by the ODE models in

Section 6.1 (see Figure 6.3), and is a consequence of neglecting the immunising

response of the mother, and of the inclusion of an age-specific mortality function
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Table 6.2: Predicted outcomes of mass maternal immunisation applied to a fun-
damental decoupled MSIR model structure with homogeneous transmission, for
various values of vaccine coverage and variance in efficacy.

Proportion of Standard Deviation Average Age at Proportion Infected
Coverage Pm Vaccine Efficacy σVM Infection (years) < 6 months < 1 year

0 N/A 1.57 9.4% 39.7%

0.25 0.1 1.67 7.1% 33.4%

0.25 0.25 1.682 7.4% 33.7%

0.25 0.5 1.70 7.7% 33.5%

0.75 0.1 1.88 2.6% 20.8%

0.75 0.25 1.89 3.4% 21.7%

0.75 0.5 1.96 4.6% 21.4%

based on simplified Type II survivorship. It indicates that in homogeneous systems

with low infant mortality rates, maternal immunisation does not reduce the overall

prevalence of infection, unless there is significant herd immunity resulting from

vaccination of the mother.

Constant Common Age Transmission Bias

The first heterogeneous transmission profile to be considered is a diagonally sym-

metric, non-decreasing function of age, that is constant with respect to time (see

Figure 6.7(a)). The function corresponds to a situation where the primary route of

transmission is biased towards more frequent mixing between similar aged individ-

uals. Social interactions that potentially spread infection are often more common

between individuals of similar ages due to common social development and the

structure of the education system. Simulation results are shown in Figure 6.7(b),

where mass maternal immunisation is applied with a mean vaccine efficacy of 1.47

(approximately a 4 fold average increase in MAb) and a coverage, Pm = 0.75.
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(a) Transmission Function (b) Incidence Age Profile

Figure 6.7: Simulation results comparing pre- and post-mass maternal immuni-
sation incidence age profiles obtained using a decoupled MSIR model structure
with common age biased transmission; evaluated for V̄M = 1.47, σVM = 0.25 and
Pm = 0.75, where incidence is presented as a proportion of the net birth rate, µN .

The model suggests that if transmission is higher among similar aged individuals,

then raising the average age of infection among vaccinated individuals subsequently

reduces the force of infection acting on unvaccinated individuals at younger ages

and increases it at later ages. This leads to a lower incidence of infection in

younger (unvaccinated) age classes, subsequently raising the average age of infec-

tion. Therefore, in this instance it can be noted that maternal immunisation is

potentially beneficial for the infant population as a whole, including those that are

not directly immunised by the vaccine. The overall prevalence of infection is again

found to be unaffected by the intervention.

Vertical Age Transmission Bias

In the second example, the transmission function is biased such that the primary

source of infection for relatively well protected neonates and very young children is

from older age groups, for example through interaction with elder siblings residing

in a higher risk (school or preschool) age class. The resulting transmission profile

(shown in Figure 6.8(a)) is diagonally symmetric, constant in time, but increasing

with respect to age. Simulation results corresponding to the static system response

to immunisation are displayed in Figure 6.8.
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(a) Transmission Function (b) Incidence Age Profile

Figure 6.8: Simulation results comparing pre- and post-mass maternal immuni-
sation incidence age profiles obtained using a decoupled MSIR model structure
with vertical age biased transmission; evaluated for V̄M = 1.47, σVM = 0.25 and
Pm = 0.75, where incidence is presented as a proportion of the net birth rate, µN .

In this case, the force of infection applied to younger unvaccinated infants may be

increased as a result of increasing the average age of infection in the vaccinated

proportion. The simulation results shown in Figure 6.8 suggest that the imple-

mentation of a maternal immunisation campaign to a system of this type may in

fact prove detrimental to those individuals who do not directly receive the vaccine,

consequently reducing their average age at primary infection. The total proportion

of individuals ultimately infected for pre- and post-vaccine implementations are

compared as previously described and again suggest no significant impact from

the intervention.

Non Symmetrical Decreasing Transmission Bias

The final heterogeneous transmission example corresponds to a situation where the

susceptibility of the infant decreases with increasing age. This relation could be the

result of some aspect of physiological development, for example, larger and more

robust airways. The transmission function, shown in Figure 6.9(a), is therefore

assumed to be non-diagonally symmetric and represents an age specific change in

the host rather than social mixing patterns. Simulation results for the vaccinated

and unvaccinated age profiles of primary incidence are shown in Figure 6.9(b).



Chapter 6 6.3 Times Series Analysis of Dynamic & Seasonal Responses 166

(a) Transmission Function (b) Incidence Age Profile

Figure 6.9: Simulation results comparing pre- and post-mass maternal immunisa-
tion incidence age profiles obtained using a decoupled MSIR model structure with
non-symmetrical decreasing transmission; evaluated for V̄M = 1.47, σVM = 0.25
and Pm = 0.75, where incidence is presented as a proportion of the net birth rate,
µN .

The simulation suggests there is little difference in the risk experienced by pre-

and post-vaccine unvaccinated individuals. However, the total proportion of in-

dividuals infected in the post-vaccine system (area under incidence age profile) is

found to be 0.74, which is notably lower than the pre-vaccine proportion of 0.87.

This indicates that maternal immunisation may result in reduced prevalence of in-

fection in this type of system. However, in practical terms the decrease in β(as, ai)

must originate from an initial value high enough to facilitate a very low average

age at primary infection, to a final value low enough to sufficiently reduce basic

reproduction, and within relatively close proximity of the region between pre- and

post-vaccine average duration of MAb.

6.3 Times Series Analysis of Dynamic &

Seasonal Responses

The static based analyses reported in the previous sections of this chapter have

indicated that maternal immunisation is unlikely to notably affect long term pop-
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ulation infection levels unless there exists some specific pattern of heterogeneity

within neonatal and young infant age classes. However, interventions of this type

do have a direct influence over the rate of susceptible supply, which is a key factor

in the observed dynamic behaviour of epidemic systems. The two main objectives

of this section are to demonstrate how MSIR framework models may be used to

establish, firstly, whether stimulating greater neonatal immunity through maternal

immunisation has the potential to significantly perturb stable endemic systems,

and secondly, whether interventions of this type may benefit from seasonal target-

ing in cases where recurrent epidemic behaviour is driven by temporal forcing.

Time dynamic behaviour is simulated using the MSIRS2 ODE model with maternal

immunisation (3.27)-(3.32) and the decoupled PDE system (3.81)-(3.85), which is

extended to also include additional state variables corresponding to secondary

infection. As in previous examples, the MSIRS2 model is solved using the ode45

algorithm in MATLAB and the PDE model according to Section 6.2.1 where state

variable solutions are integrated with respect to age in order to isolate population

wide time series dynamics. Parameter values are set corresponding to those elicited

in Section 3.5 for hRSV with varying degrees of reinfection. In the PDE model

the transmission function, β(t, as, ai), is considered to be constant with respect to

age and mortality is assumed to follow the Type I survivorship function given by

(6.11). The cord log antibody titre distribution, Ĉ(Ab), and the vaccine response

function, VM(Ab), are parameterised as in Section 6.2.1, such that they emulate

the observations of Cox et al. [1998], and Munoz et al. [2003].

6.3.1 Dynamic Consequences of Intervention

Recalling from Section 2.1.2, it is discussed that unforced epidemic systems, partic-

ularly those with a short duration of infection and relatively slow rate of susceptible

supply, have a strong propensity to oscillate following perturbation away from a
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stable endemic steady state [Anderson and May, 1991]. In this instance, rapid

implementation of public health interventions that lead to an appreciable reduc-

tion in population susceptibility have the potential to evoke significant epidemic

behaviour while the system converges back to endemic equilibrium [Scherer and

McLean, 2002].

In the absence of infant mortality, the total inflow of susceptible individuals is

found to converge to that of the population net birth rate, µN . Assuming that

the implementation of a mass maternal immunisation campaign yields a positive

distortion of the cord antibody titre distribution, the intervention will result in

an increase in the average duration of immunity between unvaccinated and vacci-

nated generations of newborns. This leads to a temporary decrease in susceptible

supply, with magnitude and duration dependent on the efficacy of the vaccine

and the proportion of pregnant mothers to which it is applied. Since maternally

acquired immunity is passive and ultimately wanes with age, any reduction in

susceptible supply invoked by higher MAb titres is unsustainable and will quickly

return to its pre-vaccine rate. The resulting characteristic disturbance is illus-

trated in Figure 6.10(a), where simulation results are obtained for both the ODE

and PDE versions of the MSIRS2 model evaluated at parameter values correspond-

ing to hRSV with intermediate secondary infection (Tables 3.2 and 3.3(D)) and

Pm = 0.75.

It can be seen from Figure 6.10(a) that both models predict a significant decrease

in the rate of susceptible supply as a direct result of the immunisation. This leads

to a reduction in the incidence of infection, which, when the rate of susceptible

supply returns to its original value, allows for a rapid increase in the number of

available susceptibles. This in turn triggers a series of epidemics as shown in

Figure 6.10(b). In the ODE based system the rate at which maternally protected

neonates become fully susceptible to infection is governed by simple first order

elimination kinetics. This incurs an immediate response to the intervention that
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(a) Perturbation of Susceptible Supply (b) Predicted Dynamic Response

Figure 6.10: MSIRS2 ODE (coupled) and PDE (empirical/decoupled) model pre-
dictions for the dynamic response to perturbation from rapid implementation of
a maternally targeted vaccine at t = 0.5 years. Susceptible supply and primary
infection prevalence presented as a proportion of their steady state values.

converges exponentially back to its pre-vaccine rate (Figure 6.10(a)). In contrast,

the PDE model prediction is determined by the resulting distortion of the cord

titre distribution and the manner in which MAb wanes with age. This gives rise

to a more gradual response curve with a notable delay in peak reduction caused

by the propagation of seropositive individuals born prior to the intervention.

The epidemic oscillations observed following the implementation of the vaccine

(Figure 6.10(b)) are the result of complex endemic steady state eigenvalues, as

discussed in Section 2.1.2. Further investigation reveals that the observed differ-

ences in dynamics predicted by the two models result largely from the neglection

of immunity acquired by the mother in the PDE model, rather than from decou-

pling the dependency of passive neonatal immunity on the wider population. The

implications of this assumption also account for the offset in final value infection

prevalence observed between the two models. This reiterates the suggestion that

in homogeneous systems only the active response of the mother is likely to reduce

overall population infection through herd immunity.

For comparison, Figure 6.11 shows the resulting dynamic response of the two

models with parameter values corresponding to hRSV with varying infectivity
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bias (see Table 3.3(B) and (C)). It can be seen from Figure 6.11(b) that increasing

reinfection tends to reduce the highly oscillatory behaviour observed with more

primary infection dominant systems, such as that shown in Figure 6.11(a). This

illustrates that there is likely to be less risk of rebound epidemics associated with

the rapid implementation of mass maternal immunisation in systems that display

frequent reinfection of the host.

(a) Primary infection dynamics evaluated at
β0 = 2490yr−1, ωR = 1.8yr−1, σ = 1, γ = 0.

(b) Primary infection dynamics evaluated at
β0 = 152 yr−1, ωR = 1.8 yr−1, σ = 1, γ = 1.

Figure 6.11: MSIRS2 ODE and PDE system responses to perturbation by mass
maternal immunisation at t = 0.5 years, presented as a proportion of pre-vaccine
steady state values. Evaluated at parameter values corresponding to primary
infection dominant, (a), or reinfection dominant, (b), transmission.

It should be noted that these characteristics may be evaluated in more detail

through an eigenvalue analysis of the endemic steady state as described in Sec-

tions 2.1.2 and 3.3.5. It is also important to note that in cases where long term

population infection levels are largely unaffected by the intervention, any subse-

quent oscillatory behaviour will result in epidemic peaks of infection that exceed

pre-vaccination endemic levels.

6.3.2 Seasonality

Recalling from Section 2.1.3, many common infections tend to display large sea-

sonal epidemics at endemic equilibrium, which are presumed to be sustained by
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some form of temporal variation within the transmission function, β(t) [Altizer

et al., 2006]. In many cases such as measles and polio, pulse vaccination strategies

are employed, whereby a vaccine is repeatedly administered independently of age

and over very short periods of time [Nokes and Swinton, 1995]. Consequently,

work such as that by Grassly and Fraser [2006] has sought to optimise the timing

of periodic interventions with respect to the seasonal epidemic cycle, in order to

maximise the impact of the vaccine.

Since maternal immunisation has been shown to directly influence the supply of

susceptible individuals, it seems intuitive that there may be some notable ad-

vantage to seasonal targeting of the intervention in the context of systems with

periodic temporal forcing. This is additionally supported given that the average

duration of maternally acquired immunity is short with respect to typical epidemic

time periods. Individuals who are immunised at such a time that their natural

MAb titre would have waned shortly following an annual epidemic are unlikely

to benefit from the vaccine if they are not significantly exposed to infection again

until the following year. In this case it is hypothesised that immunisation should

be targeted to those individuals who are likely to experience their first annual

epidemic at around the time that low MAb titres wane to a susceptible level.

In order to assess the implications of alternative, seasonally targeted maternal

immunisation strategies, the ODE MSIRS2 model, given by (3.27)-(3.32), is ex-

tended such that the proportional application of the intervention, Pm(t), becomes

a function of time. In the simplest case, maternal immunisation is administered

during a single fixed period within each epidemic cycle. The relative timing of the

immunisation pulse is then varied with respect to the epidemic interval in order to

optimise the efficacy of the intervention. Temporal variation in the transmission of

infection is included within the model as in previous examples using the sinusoidal

function given by (2.14). The model is also further extended into a number of

discrete age classes according to Section 3.4.1, such that the number of primary

infections below a specific target age may be evaluated.
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Simulation results are obtained using a two age class model structure, where the

ageing parameter, k1 = 2yr−1, is set such that primary infection prevalence may be

estimated among children under 6 months of age. For simplicity, all other model

parameters are assumed to be the same for both age classes and are set according to

Tables 3.2 and 3.3(C) for hRSV with high levels of reinfection. Simulation results

corresponding to an ideal (Pm(t) = 1) annual maternal immunisation campaign

with a duration of 3 months are shown in Figure 6.12(a).

(a) Primary infection prevalence under 6 months of age with optimal maternal immunisation.

(b) Proportion of pre-vaccine primary infection level with respect to intervention timing.

Figure 6.12: Simulation results for a seasonally forced MSIRS2 model with variably
timed 3 month pulse maternal immunisation. Evaluated at parameter values for
hRSV with highly prevalent reinfection.

It can be seen from Figure 6.12(b) that the reduction in primary infection preva-

lence achieved varies between 0.8% and 20.5% depending on the timing of the

intervention with respect to the epidemic cycle. This compares to a maximum

reduction of 29.1%, which may be obtained with an untargeted intervention strat-
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egy applied constantly throughout the year. The results suggest that the optimal

implementation of a three month pulse strategy is during the period immediately

prior to the annual epidemic peak of primary infection. This also coincides with

the peak in population susceptibility, which additionally minimises the interaction

between the vaccine and active immunity of the mother acquired from natural in-

fection. It should be noted from Figure 6.12(b) that the impact of this particular

intervention decreases rapidly either side of the optimum and that in practice, the

epidemic peak of infection may be difficult to accurately predict three months in

advance.

The analysis suggests that the potential benefit of seasonal targeting for a partic-

ular system is dependent on the ratio between the resulting increase in average

duration of maternally acquired immunity and the inter-epidemic time period. For

example, in cases such as hRSV infection in Finland, where seasonal epidemics are

biennial, a significant reduction in vaccine effort may be achieved through pulse

implementation. However, for infections where the inter-epidemic time period is

similar or less than the potential increase in duration of MAb, the prospective

benefits in efficacy are likely to be reduced.

Simulation results have clearly shown that there are likely to be potential bene-

fits to pulse implementation of maternally targeted vaccines in seasonal systems.

However, addition complexities such as the physical delay between vaccine admin-

istration to the mother and the birth of her offspring are required to be included

in forthcoming versions of the model in order to facilitate more accurate predic-

tions of optimal timing. In addition, it should be noted that the specificity of a

particular strategy may also be diminished by variability in factors such as cord

antibody titre and vaccine response distributions, consistency in the timing of epi-

demic peaks and again the duration of time between vaccine administration and

full term.
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6.4 Conclusions & Discussion

A series of MSIR framework models have been proposed for the study of population-

level epidemiological processes associated with maternally acquired immunity. A

preliminary analysis of this framework has been performed in order to gain insight

into the potential outcomes and consequences of mass maternal immunisation, and

to illustrate the importance of the subject. The discussed models have been shown

to qualitatively repeat empirical observations of unvaccinated epidemic systems

and their applicability in studying the wider implications of maternally targeted

intervention has been demonstrated. It is hoped that the framework will ulti-

mately contribute to the assessment and optimal implementation of future public

health policy within this context.

Simulation of the models using nominal parameterisations have concurred that

maternally targeted vaccines have the potential to appreciably reduce the inci-

dence of infection among neonatal age classes. In cases such as hRSV, where a

particularly low average age at primary infection is typically observed, interven-

tions of this nature may prove invaluable to efforts aimed at alleviating the burden

of disease within these age groups. However, it is anticipated that the potential

consequences of mass maternal immunisation for the wider population are more

variable and depend on a number of epidemiological factors such as age specific

transmission characteristics and reinfection.

Population Level Outcomes

A series of static analyses have suggested that overall population infection levels

may only be notably reduced by maternal immunisation if susceptibility, infectivity

or survivorship decreases significantly between the pre- and post-vaccine average

durations of maternally acquired immunity. In all static simulation examples,
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the average age at primary infection and the prevalence of infection in younger

ages for the vaccinated proportion of newborns showed improvements. However,

the indirect consequences of immunisation to unvaccinated individuals appears to

vary depending on the characteristic heterogeneity of the transmission function.

Example transmission patterns have been illustrated that give rise to both ben-

eficial and detrimental influences on infection among the remaining unvaccinated

neonatal population.

Time series-based analyses have demonstrated that mass maternal immunisation

has a direct impact on the rate that maternally protected infants become sus-

ceptible to infection. Simulation results suggest that any subsequent decrease in

susceptibility arising from the intervention is ultimately only temporary. However,

rapid implementation of a maternally targeted vaccine does have the potential to

cause significant perturbations in susceptible supply that may notably alter the

time course of the infection. Since a considerable decrease in long term prevalence

is unlikely, any rebound epidemics that occur are likely to exceed endemic pre-

intervention infection levels, posing an additional risk to newborns who remain

unvaccinated.

The work has also provided evidence contributing to the question of whether mater-

nally acquired immunity is a prominent driving force on seasonal epidemic cycles.

For hRSV, studies such as those by Saux et al. [2003] and Stensballe et al. [2009]

have reported significant seasonal variations in maternally derived antibody titres

in newborns, and a strong correlation between neutralising MAb and seasonality of

infection among infants under 6 months of age. This suggests that if variations in

hRSV-neutralising MAb are reflective of those throughout the wider population, a

coupled cyclic dependency between neonatal and population wide immunity may

play an important role in the seasonality of hRSV in temperate climates [Stens-

balle et al., 2009]. However, simple comparisons between coupled and decoupled

model structures in this work suggest, at least in the homogeneous case, that the

dependency of immunity among newborns on that of the wider population does
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not have a significant impact on dynamics. This is an interesting result since it

indicates that for the presented examples, temporal variation in MAb may not

have a significant influence on population wide patterns of infection.

The outcome is additionally supported in Section 6.3.2 for systems with high levels

of reinfection, where minimal changes in seasonal epidemic behaviour are observed

despite repeated variation in the maternally protected population induced by pulse

maternal immunisation. However, the application of maternal immunisation to

seasonally forced MSIR models, without processes of reinfection, has frequently

given rise highly aberrant and possibly chaotic patterns of infection. Dramatic

changes in the periodicity of epidemic cycles have been empirically observed fol-

lowing active intervention in cases such as measles [Bolker and Grenfell, 1996] and

simple compartmental based models have been shown to qualitatively repeat these

observations in work such as that by Earn et al. [2000]. However, due to the in-

herently complex and nonlinear nature of these processes, it is not certain that the

transitions between regular and irregular dynamics are correctly described by the

models presented in this work. Subsequently, the apparent suggestion that ma-

ternal immunisation has the potential to destabilise long term recurrent epidemic

cycles of childhood diseases remains inconclusive without more formal validation.

Interaction and Optimisation

The study has highlighted the potential significance of antibody interaction with

respect to the success of combined (maternally and childhood targeted) interven-

tion strategies. For many childhood infections circulating within developed popu-

lations there is a sufficient window of opportunity to implement mass age targeted

(childhood) vaccination campaigns that both avoid interaction with MAb and

succeed in preventing a significant amount of susceptibility to natural infection.

However, in more developing settings, where transmission rates among pre-school

children are often much higher, and with more virulent infections such as hRSV,
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it is not always possible to delay vaccination beyond the complete duration of

MAb. In situations such as these, the upward distortion in susceptible age pro-

file resulting from the implementation of mass maternal immunisation, may prove

additionally detrimental to the success of childhood vaccines targeted at the peak

age of susceptibility.

The analysis of intervention strategies applied to models with seasonal forcing has

illustrated the potential merit for pulsed implementation of maternally adminis-

tered vaccines. This study has found that the likely benefit for seasonal targeting

is dependent on the ratio between the resulting increase in average duration of pas-

sively acquired immunity and the inter-epidemic time period. It has been shown

through simulation of the model that the optimal time for intervention is immedi-

ately prior to the annual epidemic peak of infection. However, additional factors

including the duration of time to full term and variability in determinants such as

cord antibody titre, vaccine response and epidemic timing must also be considered

in order to achieve a fully optimal strategy.



Chapter 7

Final Discussion & Future

Research

The objective of this work has been to consider the population level influences

of maternally acquired immunity and the potential outcomes and consequences of

mass maternal immunisation. A series of lumped system models have been pro-

posed as part of a general mathematical model framework for studying a number

of distinct problems within this context. The analysis and simulations presented

in Chapter 6 have demonstrated the applicability of these models to real world sce-

narios and raised a number of pertinent questions regarding the safe and optimal

implementation of maternally targeted interventions. The work has also consid-

ered the impact of maternally acquired immunity on aspects of model validation

through the application of formal methods such as structural identifiability, indis-

tinguishability and sensitivity analysis. It is found in Chapters 4 and 5 that the

confident estimation of model parameters through fitting to real data is likely to

be a markedly non-trivial task.

178
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Maternal Immunisation

A qualitative analysis of the proposed models has shown that maternally tar-

geted vaccination has the potential to appreciably reduce the incidence of infection

among neonatal and young infant age classes. In all static simulation examples the

models have predicted notable improvements in both the average age at primary

infection and the prevalence of infection among infants under 6 months of age. In

cases such as hRSV, where a particularly low average age at primary infection is

typically observed, these results may prove invaluable to efforts aimed at alleviat-

ing the burden of disease among the very young. The efficacy of the intervention is

found to be dependent on successful seroconversion of the mother, sufficient trans-

fer of antibodies before birth and the duration of maternally acquired antibodies

within the newborn. Variability in these characteristics is currently included within

the model, however, an intuitive progression from this work would be to consider

variation in the neutralising characteristics of MAb.

Low levels of neutralising MAb are likely to result in partial immunity, similar to

that described in altered secondary infection models [White et al., 2007], which

could have significant implications on the outcome of neonatal infection. The

problem may also be extended to consider the effects of cross reaction between

multiple strain variants as described in the work by White et al. [1998]. A common

epidemiological observation of hRSV are complex patterns of homologous and

heterologous infection and a seasonal alternation between two dominant genotypes

[White et al., 2005]. It is hypothesised in the review by Cane [2001] that these

observed patterns may in fact be governed by high levels of maternal antibody

present after an epidemic of a particular strain. An interesting subject of further

research may be to explore these interactions using compartmental based models

and to consider the implications of control by maternally targeted vaccines.

A static analysis of age dependent model structures with heterogeneous trans-

mission functions has been used to highlight characteristic examples where the
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implementation of mass maternal immunisation may have beneficial or detrimen-

tal consequences to unvaccinated newborns and to the population as a whole. It is

suggested by the model that a substantial change in social interaction, physiolog-

ical development or survivorship is required within the region of 3 to 9 months of

age in order to induce a significant impact on long term infection characteristics.

A valuable route of future research may therefore be towards better characteri-

sation of neonatal and young infant transmission patterns, perhaps through the

identification of key factors such as the start of nursery or the typical composition

of households, i.e. mixing with elder siblings etc.

Time series-based simulations suggest that the greatest risks associated with mass

maternal immunisation reside in the form of short term dynamics resulting from

rapid implementation of the vaccine and the potential interaction with childhood

targeted interventions. It is found that maternal immunisation has a temporary

but direct impact on the rate of susceptible supply, where significant perturbations

may notably alter the time course of the infection. In cases where the long term

population wide prevalence of infection remains largely unchanged, any rebound

epidemics are likely to exceed pre-intervention endemic levels. The work dictates

that sufficient care must be taken to ensure that interventions are not aggressively

implemented within highly oscillatory systems.

It is also strongly suggested that the potential interactions between maternally

and childhood targeted vaccines are exhaustively considered. The subsequent dis-

tortion in the susceptible age profile resulting from the implementation of mass

maternal immunisation may prove detrimental to the success of childhood vaccines

targeted at the peak age of susceptibility. This could be particularly problematic

in cases where there is a narrow window of opportunity between the duration of

MAb and the average age at primary infection. A potential opportunity for fu-

ture application of the proposed models may be in the optimisation of combined

intervention strategies, where, for example, the benefits of seasonally pulsed ad-

ministration could be further utilised to minimise interaction between vaccines.
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Model Validation

The proposed model framework has been shown to qualitatively repeat empirical

observations of unvaccinated epidemic systems, however, further validation of these

models, and particularly those including processes of intervention, is a markedly

non-trivial task. A structural identifiability analysis of fundamental ODE models

within the proposed framework has shown that key parameters are not uniquely

determined by age domain observations of infection. Furthermore, it has been

shown that homogeneous time-series models are highly insensitive to processes

associated with maternally acquired immunity and that the addition of vaccination

tends to have an additionally detrimental effect on parameter identifiability. It is

suggested that further validation of these models through fitting to population

data will require very specific longitudinal based studies that provide both age

and time domain records of infection and serology. The outcome of a formal

sensitivity analysis has also highlighted the necessity for optimal sampling during

the collection of such data. It is hoped that the outcome of this work may be of

use in guiding the design of future studies in order to maximise the amount of

information gained from parameter estimation.
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R. Tomović. Sensitivity Analysis of Dynamic Systems. McGraw Hill, 1963.

S. Vajda. Structural identifiability of linear, bilinear, polynomial and rational

systems. In Proc 9th IFAC World Congress, Budapest, Hungary, pages 107–

112, 1984.

S. Vajda, P. Valko, and T. Turányi. Principal component analysis of kinectic

models. Int J Chem Kinet, 17(1):55–81, 1985.

S. Vajda, K. R. Godfrey, and H. Rabitz. Similarity transformation approach to

identifiability analysis of nonlinear compartmental models. Math Biosci, 93(2):

217–248, 1989.

B. A. M. van der Zeijst, M. I. Dijkman, W. Luytjes, A. J. W. van Alphen, and G. P.

J. M. van den Dobbelsteen. On the design of national vaccination programmes.

Vaccine, 25(16):3143–3145, 2007.



Chapter 7 7.0 BIBLIOGRAPHY 196

J. Vandelaer, M. Birmingham, F. Gasse, M. Kurian, C. Shaw, and S. Garnier.

Tetanus in developing countries: an update on the Maternal and Neonatal

Tetanus Elimination Initiative. Vaccine, 21(24):3442–3445, 2003.

T. A. Waldmann and W. Strober. Metabolism of immunoglobulins. Prog Allergy,

13:1–110, 1969.

E. Walter. Identifiability of state space models. Springer, Berlin, 1982.

A. Weber, M. Weber, and P. Milligan. Modeling epidemics caused by respiratory

syncytial virus (RSV). Math Biosci, 172(2):95–113, 2001.

H. J. Whitaker and C. P. Farrington. Estimation of infectious disease parameters

from serological survey data: the impact of regular epidemics. Stat Med, 23(15):

2429–2443, 2004.

L. J. White. A theoretical study of the effects of immunity on infectious disease

transmission. PhD thesis, University of Warwick, 2000.

L. J. White, M. J. Cox, and G. F. Medley. Cross immunity and vaccination against

multiple microparasite strains. IMA J Math Appl Med Biol, 15(3):211–233, 1998.

L. J. White, N. D. Evans, T. J. Lam, Y. H. Schukken, G. F. Medley, K. R. Godfrey,

and M. J. Chappell. The structural identifiability and parameter estimation of a

multispecies model for the transmission of mastitis in dairy cows. Math Biosci,

174(2):77–90, 2001.

L. J. White, M. Waris, P. A. Cane, D. J. Nokes, and G. F. Medley. The trans-

mission dynamics of groups A and B human respiratory syncytial virus (hRSV)

in England & Wales and Finland: seasonality and cross-protection. Epidemiol

Infect, 133(2):279–289, 2005.

L. J. White, J. N. Mandl, M. G M Gomes, A. T. Bodley-Tickell, P. A. Cane,

P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto,

M. Waris, D. J. Nokes, and G. F. Medley. Understanding the transmission



Chapter 7 7.0 BIBLIOGRAPHY 197

dynamics of respiratory syncytial virus using multiple time series and nested

models. Math Biosci, 209(1):222–239, 2007.

WHO. Maternal and neonatal tetanus elimination by 2005: strategies for achieving

and maintaining elimination. World Health Organization: Geneva, 2002.

B. G. Williams, F. T. Cutts, and C. Dye. Measles vaccination policy. Epidemiol

Infect, 115(3):603–621, 1995.

S. Wolfram. The Mathematica Book. Wolfram Media/Cambridge University Press,

Cambridge, UK, 1999.

J. W. T. Yates, N. D. Evans, and M. J. Chappell. Structural identifiability analysis

via symmetries of differential equations. Automatica, 45(11):2585–2591, 2009.

K. Zaman, E. Roy, S. E. Arifeen, M. Rahman, R. Raqib, E. Wilson, S. B. Omer,

N. S. Shahid, R. F. Breiman, R. E. Breiman, and M. C. Steinhoff. Effectiveness

of maternal influenza immunization in mothers and infants. N Engl J Med, 359

(15):1555–1564, 2008.

R. M. Zinkernagel. Maternal antibodies, childhood infections, and autoimmune

diseases. N Engl J Med, 345(18):1331–1335, 2001.



Appendix A

MSEIRS4 Model Equations

System of ordinary differential equations describing the MSEIRS4 model derived

and evaluated for hRSV in the work by Weber et al. [2001].

Ṁ(t) = µAb+(t)− (ωM + µ)M(t),

Ṡ1(t) = µAb−(t) + ωMM(t)− µS1(t)− λ1(t)S1(t),

Ėi(t) = λi(t)Si(t)− (ζ + µ)Ei(t), i = 1, . . . , 4,

İi(t) = ζEi(t)− (ν + µ)Ii(t), i = 1, . . . , 4,

Ṙi(t) = νIi(t)− (ωR + µ)Ri(t), i = 1, . . . , 4,

Ṡj(t) = ωRRj−1(t)− µSj(t)− λj(t)Sj(t), j = 2, 3,

Ṡ4(t) = ωR(R3(t) +R4(t))− µS4(t)− λ4(t)S4(t),

where

Ab+(t) =
4∑
i=1

Ri(t), Ab−(t) = 1−Ab+(t), I(t) =
4∑
i=1

Ii(t),

λ1(t) = β0(1+β1 cos(2πt+φ))I(t), λ2(t) = σ1 λ1(t)

λ3(t) = σ2 λ1(t), λ4(t) = σ3 λ1(t),
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Appendix B

Simulation Techniques for PDE

Model Structures

Simulation of the PDE system in Chapter 6 is performed using simple numerical

methods based on finite differencing. The domain space is divided into a uniform

mesh with a constant step size, h, and boundary conditions determined by the

model. The internal grid points are then estimated incrementally, for each age

profile at increasing steps in time, using an explicit backwards difference scheme.

Since time series dynamics are seen to evolve much more rapidly than average age

profiles, a higher degree of accuracy is applied to calculations in the time domain.

Therefore, partial derivatives with respect to age and time are substituted by 2nd

and 3rd order finite differences, respectively, according to the following expressions:

dX(t, a)

dt
=

11Xi,j − 18Xi−1,j + 9Xi−2,j − 2Xi−3,j

6h
+ O(h3), (B.1)

dX(t, a)

da
=

3Xi,j − 4Xi,j−1 +Xi,j−2

2h
+ O(h2), (B.2)

where Xi,j = X(ti, aj).

In practice, additional complexities arise in the solving of epidemic PDE systems

since the force of infection is directly dependent on the integral of the infective

age profile, denoted I(t). This means that mesh points for certain state variables

cannot be solved explicitly since they are effectively dependent on their own solu-

199
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tion. Therefore, for each increment in time, an estimate of λ(t, a) is extrapolated

from previous time points using a 2nd order Lagrange interpolating polynomial of

the form:

L(ti) =
k∑
i=0

yi`i(t) `i(t) =
k∏

j=0, j 6=i

(t− tj)
(ti − tj)

. (B.3)

Since the simulation time steps are uniformly spaced, the function can be reduced

to the following expression:

I(ti) = I(ti−3) − 3 I(ti−2) + 3 I(ti−1) . (B.4)

More sophisticated numerical methods have been presented to address this prob-

lem, for example in the work by White [2000], where a further iterative process,

nested into the main routine, is executed at each increment in time in order to

allow convergence to a solution for λ(t, a). The simple extrapolation approach is

adopted in this work for ease of implementation and to minimise time required for

computation.

Integration of the state variable solutions, for example over an integer number of

complete annual cycles to find an average age profile, is performed using Romberg

integration; a Newton-Cotes type method based on repeated application of Richard-

son extrapolation to the trapezoidal rule (for more information see the book by

Chapra and Canale [2002]).

Let J
(h)
0 , J

(2h)
0 and J

(4h)
0 denote the integrals computed using the trapezoidal rule

with step sizes h, 2h and 4h respectively, such that:

J
(h)
0 = J + c1h

2 + c2h
4 + c3h

6 + . . . , (B.5)

J
(2h)
0 = J + c1(2h)2 + c2(2h)4 + c3(2h)6 + . . . , (B.6)

J
(4h)
0 = J + c1(4h)2 + c2(4h)4 + c3(4h)6 + . . . , (B.7)

where J is the exact solution and the later terms correspond to the resulting error.

More accurate integral estimates can then be obtained by combining (B.5)-(B.7)
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such that subsequent error terms are eliminated according to the following process:

J
(h)
1 =

4J
(h)
0 − J

(2h)
0

3
= J − 4c2h

4 − 20c3h
6 + . . . , (B.8)

J
(2h)
1 =

4J
(2h)
0 − J (4h)

0

3
= J − 64c2h

4 − 1280c3h
6 + . . . , (B.9)

J
(h)
2 =

16J
(h)
1 − J

(2h)
1

15
= J + 64c3h

6 + . . . . (B.10)

It can be seen from the final estimate (B.10) that the magnitude of the truncation

error is significantly reduced with relatively little computational effort.

Error Estimation

An estimation of the error in the numerical solution is found by comparing sim-

ulation results corresponding to a homogeneous MSIR model to those generated

from equivalent ODE-based systems with more computationally tractable solu-

tions. A suitable test model is derived from the general MSIR system equations

(3.3)-(3.7) by setting all model parameters to constant values and ensuring that

µb = µd = µ, such that equivalent time and age domain models are given by (3.14)-

(3.17) and (3.45)-(3.48), respectively. The system of partial differential equations

is then solved using the described methods with parameter values corresponding

to hRSV without secondary infection (Tables 3.2 and 3.3(A)), and a step size of

0.0026 years.

In the absence of seasonal forcing, the steady state prevalence of infection esti-

mated by the simulation is compared to the analytic solution given by (3.54).

The resulting normalised error is found to be 3.9 × 10−4 for the PDE model and

4.3× 10−8 for the ODE system obtained using the ode45 algorithm in MATLAB.

In the age domain, the steady state average age profile predicted by the PDE

model simulation is compared to an analytic solution derived from the equivalent

age domain model (3.45)-(3.48), as shown in Section 3.3.4. The resulting error

functions are displayed in Figure B.1. It can be seen from Figure B.1(b) that the

peak normalised error has a magnitude of 0.096 and occurs directly after the first

simulation step. The location of the maximum error coincides with the greatest

rate of change in I(a) and is also likely to be a result of there being only one

previous age point on which to base the finite difference estimate. Following its
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peak, the magnitude of the normalised error curve quickly decreases to a more

reasonable level, where an average value of 6.3× 10−4 is recorded over the first 12

months of age.

(a) Absolute Error (b) Normalised Error

Figure B.1: Variation in absolute and normalised error of the numerical solution
to a homogeneous MSIR PDE model found using a 2nd/3rd order backwards
difference scheme.

Finally, the resulting times series prediction generated by the addition of seasonal

forcing is compared to that obtained by solving the ODE system (3.14)-(3.17)

using a fourth order Runge-Kutta algorithm (MATLAB ode45) with a maximum

step size of 0.001 years. The variation in normalised error over a complete annual

cycle is shown in Figure B.2. It is found that the maximum normalised error is

0.0081, which occurs at the beginning of each annual epidemic, and the average

error across one complete annual cycle is 0.0039.

(a) Simulation Output (b) Normalised Error

Figure B.2: Time series variation in normalised error between numerical solutions
of the homogeneous PDE and ODE MSIR models, using 2nd/3rd order backwards
differencing and 4th order Runge-Kutta, respectively.

It should be noted that the estimated error is considered to be acceptable in the

context of this work given that the outcomes of the analysis are largely qualitative

in nature.


