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Abstract

In this thesis, we consider the problem of solving two player infinite games,
such as parity games, mean-payoff games, and discounted games, the problem of
solving Markov decision processes. We study a specific type of algorithm for solving
these problems that we call strategy iteration algorithms. Strategy improvement
algorithms are an example of a type of algorithm that falls under this classification.

We also study Lemke’s algorithm and the Cottle-Dantzig algorithm, which
are classical pivoting algorithms for solving the linear complementarity problem.
The reduction of Jurdziński and Savani from discounted games to LCPs allows these
algorithms to be applied to infinite games [JS08]. We show that, when they are
applied to games, these algorithms can be viewed as strategy iteration algorithms.
We also resolve the question of their running time on these games by providing a
family of examples upon which these algorithm take exponential time.

Greedy strategy improvement is a natural variation of strategy improvement,
and Friedmann has recently shown an exponential lower bound for this algorithm
when it is applied to infinite games [Fri09]. However, these lower bounds do not
apply for Markov decision processes. We extend Friedmann’s work in order to prove
an exponential lower bound for greedy strategy improvement in the MDP setting.

We also study variations on strategy improvement for infinite games. We
show that there are structures in these games that current strategy improvement
algorithms do not take advantage of. We also show that lower bounds given by
Friedmann [Fri09], and those that are based on his work [FHZ10], work because they
exploit this ignorance. We use our insight to design strategy improvement algorithms
that avoid poor performance caused by the structures that these examples use.
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Chapter 1

Introduction

In this thesis, we study the problem of solving Markov decision processes and two

player infinite games played on finite graphs. In particular, we study parity, mean-

payoff, and discounted games. We are interested in strategy iteration algorithms,

which are a specific type of algorithm that can be used to solve these problems. In

this chapter, we give an overview of the problems that we are considering, and the

results that will be obtained in this thesis. A formal description of these problems

will be given in Chapter 2, and a formal description of the algorithms that we study

will be given in Chapter 3.

1.1 Markov Decision Processes

Markov decision processes were originally formulated in order to solve inventory

management problems. In keeping with this tradition, we will illustrate this model

with a simple inventory management problem. The following example is largely

taken from the exposition of Puterman [Put05].

A manager owns a store that sells exactly one good. At the start of each

month the manager must order stock, which arrives the following day. During

the course of the month customers place orders, which are all shipped on the last
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day of the month. Naturally, the manager cannot know how many orders will arrive

during a given month, but the manager can use prior experience to give a probability

distribution for this. The manager’s problem is to decide how much stock should

be ordered. Since storing goods is expensive, if too much stock is ordered then the

profits on the goods that are sold may be wiped out. On the other hand, if not

enough stock is ordered, then the store may not make as much profit as it could

have done.

This problem can naturally be modelled as a Markov decision process. At

the start of each month the inventory has some state, which is the number of goods

that are currently in stock. The manager then takes an action, by deciding how

many goods should be ordered. The inventory then moves to a new state, which

is decided by a combination of the amount of goods that have been ordered, and

the amount of orders that arrive during the month. Since the number of orders is

modelled by a probability distribution, the state that the inventory will move to in

the next month will be determined by this probability distribution. Each action has

a reward, which is the expected profit from the goods that are sold minus the cost

of storing the current inventory. If this reward is positive, then a profit is made

during that month, and if it is negative, then a loss is made.

A strategy (also known as a policy in the Markov decision process literature)

is a rule that the manager can follow to determine how much stock should be ordered.

This strategy will obviously depend on the current state of the inventory: if the

inventory is almost empty then the manager will want to make a larger order than

if the inventory has plenty of stock.

The problem that must be solved is to find an optimal strategy. This is a

strategy that maximizes the amount of profit that the store makes. The optimality

criterion that is used depends on the setting. If the store is only going to be open

for a fixed number of months, then we are looking for an optimal strategy in the

total-reward criterion. This is a strategy that maximizes the total amount of profit
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that is made while the store is open. On the other hand, if the store will remain

open indefinitely, then we are looking for an optimal strategy in the average-reward

criterion. This is a strategy that maximizes the long-term average profit that is

made by the store. For example, the strategy may make a loss for the first few

months in order to move the inventory into a state where a better long-term average

profit can be obtained. Finally, there is the discounted-reward criterion, in which

immediate rewards are worth more than future rewards. In our example, this could

be interpreted as the price of the good slowly falling over time. This means that

the profit in the first month will be larger than the profits in subsequent months.

The study of Markov decision processes began in the 1950s. The first work on

this subject was by Shapley, who studied two player stochastic games [Sha53], and

Markov decision processes can be seen as a stochastic game with only one player.

The model was then developed in its own right by the works of Bellman [Bel57],

Howard [How60], and others. Puterman’s book provides a comprehensive modern

exposition of the basic results for Markov decision processes [Put05].

Markov decision processes have since been applied in a wide variety of areas.

They have become a standard tool for modelling stochastic processes in operations

research and engineering. They have also found applications in computer science.

For example, they are a fundamental tool used in reinforcement learning, which is

a sub-area of artificial intelligence research [SB98].

These applications often produce Markov decision processes that have very

large state spaces, and so finding fast algorithms that solve Markov decision pro-

cesses is an important problem. It has long been known that the problem can be

formulated as a linear program [d’E63, Man60], and therefore it can be solved in

polynomial time [Kha80, Kar84]. However, this gives only a weakly polynomial

time algorithm, which means that its running time is polynomial in the bit length

of the numbers occurring in its inputs. There is no known strongly polynomial time

algorithm for solving Markov decision processes.
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1.2 Two Player Games

The defining text on game theory was written by von Neumann and Morgenstern in

1944 [vM44]. Part of this work was the study of two player zero-sum games, which

are games where the goals of the two players are directly opposed. The zero-sum

property means that if one player wins some amount, then the opposing player loses

that amount. A classical example of this would be a poker game, where if one player

wins some amount of money in a round, then his opponents lose that amount of

money. These are the type of game that will be studied in this thesis.

Game theory can be applied to to produce a different type of model than

those models that arise from Markov decision processes. In many systems it is

known that there can be more than one outcome after taking some action, but there

may not be a known probability distribution that models this uncertainty about

the environment. Game theory can be used to model this, by assuming that the

decisions taken by the environment are controlled by an adversary whose goal is to

minimize our objective function.

For example, let us return to our inventory control problem. To model this

as a Markov decision process, we required a probability distribution that specified

the number of orders that will be placed by customers in each month. Now suppose

that we do not have such a probability distribution. Instead, we are looking for

a strategy for inventory control which maximizes the profit no matter how many

orders arrive during each month. To do this, we can assume that the number of

orders that are placed is controlled by an adversary, whose objective is to minimize

the amount of profit that we make. If we can devise a strategy that ensures a certain

amount of profit when playing against the adversary, then this strategy guarantees

that we will make at least this amount of profit when exposed to real customers.

From this, we can see that playing a game against the adversary allows us to devise

a strategy that works in the worst case.
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We will study two player infinite games that are played on finite graphs.

In particular, we will study mean-payoff games and discounted games. These are

similar to Markov decision processes with the average-reward and discounted-reward

optimality criteria, but where the randomness used in the Markov decision process

model is replaced with an opposing player. The objective in these games is again

to compute an optimal strategy, but in this case an optimal strategy is one that

guarantees a certain payoff no matter how the opponent plays against that strategy.

These games have applications in, for example, online scheduling and online string

comparison problems [ZP96].

Whereas the problem of solving a Markov decision process can be solved in

polynomial time, there is no known algorithm that solves mean-payoff or discounted

games in polynomial time. However, it is known that these games lie in the com-

plexity class NP ∩ co-NP [KL93]. This implies that the problems are highly unlikely

to be NP-complete or co-NP-complete, since a proof of either of these properties

would imply that NP is equal to co-NP.

In fact, it is known that these three problems lie in a more restricted class

of problems. A common formulation for the complexity class NP is that it contains

decision problems for which, if the answer is yes, then then there is a witness of

this fact that can be verified in polynomial time. The complexity class UP contains

decision problems for which, if the answer is yes, then there is a unique witness of

this fact that can be verified in polynomial time. The complexity class co-UP is

defined analogously. Jurdziński has shown that the problem of solving these games

lies in UP ∩ co-UP [Jur98].

The complexity status of these games is rather unusual, because they are

one of the few natural combinatorial problems that lie in UP ∩ co-UP for which

no polynomial time algorithm is known. This complexity class is also inhabited by

various number theoretic problems such as deciding whether an integer has a factor

that is larger than a given bound, which is assumed to be hard problem. However,
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there are few combinatorial problems that share this complexity.

Membership of NP ∩ co-NP does not imply that a problem is hard. There

have been problems in this class for which polynomial time algorithms have been

devised. For example, the problem of primality testing was known to lie in NP ∩ co-

NP, and was considered to be a hard problem. Nevertheless, Agrawal, Kayal, and

Saxena discovered a polynomial time algorithm that solves this problem [AKS04].

Another example is linear programming, which was shown to be solvable in polyno-

mial time by Khachiyan [Kha80]. Finding a polynomial time algorithm that solves

a mean-payoff game or a discounted game is a major open problem.

1.3 Model Checking And Parity Games

The field of formal verification studies methods that can be used to check whether a

computer program is correct. The applications of this are obvious, because real world

programs often contain bugs that can cause the system to behave in unpredictable

ways. On the other hand, software is often entrusted with safety critical tasks, such

as flying an aeroplane or controlling a nuclear power plant. The goal of verification

is to provide tools that can be used to validate that these systems are correct, and

that they do not contain bugs.

Model checking is one technique that can be used to verify systems [CGP99].

The problem takes two inputs. The first is a representation of a computer program,

usually in the form of a Kripke structure. This structure represents the states that

the program can be in, and the transitions between these states that the program

can make. The second input is a formula, which is written in some kind of logic.

The model checking problem is to decide whether the system satisfies the formula.

This problem can be rephrased as a problem about a zero-sum game between

two players. This game is played on a graph, which is constructed from the system

and the formula. One player is trying to prove that the systems satisfies the property
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described by the formula, and the other player is trying to prove the opposite.

Therefore, a model checking problem can be solved by deciding which player wins

the corresponding game.

The type of game that is played depends on the logic that is used to spec-

ify the formula. The modal µ-calculus is a logic that subsumes other commonly

used temporal logics, such as LTL and CTL* [Koz82]. When the input formula

is written in this logic, the corresponding model checking game will be a parity

game [EJS93, Sti95]. Therefore, fast algorithms for solving parity games lead to

faster model checkers for the modal µ-calculus. Parity games also have other ap-

plications in, for example, checking non-emptiness of non-deterministic parity tree

automata [GTW02].

Parity games are strongly related to mean-payoff games and discounted

games. There is a polynomial time reduction from parity games to mean-payoff

games, and there is a polynomial time reduction from mean-payoff games to dis-

counted games. Parity games are also known to be contained in UP ∩ co-UP, and

no polynomial time algorithm is known that solves parity games. Finding a poly-

nomial time algorithm that solves parity games is a major open problem, and this

also further motivates the study of mean-payoff and discounted games.

1.4 Strategy Improvement

Strategy improvement is a technique that can be applied to solve Markov decision

processes and infinite games. Strategy improvement algorithms have been devised

for all three optimality criteria in MDPs [Put05], and for all of the games that we

have introduced [Pur95, BV07, VJ00]. Strategy improvement algorithms fall under

the umbrella of strategy iteration algorithms, because they solve a game or MDP by

iteratively trying to improve a strategy. We will introduce the ideas behind strategy

improvement by drawing an analogy with simplex methods for linear programming.
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The problem of solving a linear program can naturally be seen as the problem

of finding a vertex of a convex polytope that maximizes an objective function. The

simplex method, given by Dantzig [WD49, Dan49], takes the following approach to

finding this vertex. Each vertex of the polytope has a set of neighbours, and since

the polytope is convex, we know that a vertex optimizes the objective function if and

only if it has no neighbour with a higher value. Therefore, every vertex that is not

optimal has at least one neighbour with a higher value. The simplex method begins

by considering an arbitrary vertex of the polytope. In each iteration, it chooses some

neighbouring vertex with a higher value, and moves to that vertex. This process

continues until an optimal vertex is found.

Since there can be multiple neighbours which offer an improvement in the

objective function, the simplex method must use a pivot rule to decide which neigh-

bour should be chosen in each iteration. Dantzig’s original pivot rule was shown to

require exponential time in the worst case by a result of Klee and Minty [KM70]. It is

now known that many other pivot rules have exponential running times in the worst

case, and there is no pivot rule that has a proof of polynomial time termination. On

the other hand, the simplex method has been found to work very well in practice

because it almost always terminates in polynomial time on real world examples. For

this reason, the simplex method is still frequently used to solve practical problems.

Strategy improvement uses similar techniques to those of the simplex algo-

rithm in order to solve MDPs and games. For each strategy, the set of neighbouring

strategies that secure a better value can be computed in polynomial time, and it can

be shown that a strategy is optimal if and only if this set is empty. Therefore, strat-

egy improvement algorithms begin with an arbitrary strategy, and in each iteration

the algorithm picks some neighbouring strategy that secures a better value.

Strategy improvement algorithms also need a pivot rule to decide which

neighbouring strategy should be chosen. In the context of strategy improvement

algorithms, pivot rules are called switching policies. As with linear programming,
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it has been shown that using an unsophisticated switching policy can cause the

algorithm to take exponential time [MC94]. However, no exponential lower bounds

were known for more sophisticated switching policies. In particular, the greedy

policy is a natural switching policy for strategy improvement, and it was considered

to be a strong candidate for polynomial time termination for quite some time. This

was because, as in the case of linear programming, the greedy switching policy was

found to work very well in practice. However, these hopes were dashed by a recent

result of Friedmann [Fri09], in which he constructed a family of parity games upon

which the strategy improvement algorithm of Vöge and Jurdziński equipped with

the greedy switching policy takes exponential time. These results have been adapted

to show exponential lower bounds for greedy strategy improvement algorithms for

mean-payoff and discounted games [And09].

1.5 The Linear Complementarity Problem

The linear complementarity problem is a fundamental problem in mathematical

programming [CPS92], which naturally captures the complementary slackness con-

ditions in linear programming and the Karush-Kuhn-Tucker conditions of quadratic

programs. The linear complementarity problem takes a matrix as an input. In

general, the problem of finding a solution to a linear complementarity problem is

NP-complete [Chu89]. However, when the input matrix is a P-matrix, the problem

is known to belong to the more restrictive class PPAD [Pap94]. This class is known

to have complete problems, such as the problem of finding a Nash equilibrium in

a bimatrix game [DGP06, CDT09], but it is not known whether the P-matrix lin-

ear complementarity problem is PPAD-complete. On the other hand, there is no

known polynomial time algorithm that solves P-matrix LCPs, and finding such an

algorithm is a major open problem.

The simplex method for linear programming can be called a pivoting algo-
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rithm, because it uses pivotal algebra to move from one vertex of the polytope to

the next. Pivoting algorithms have also been developed to solve the linear com-

plementarity problem. Prominent examples of this are Lemke’s algorithm [Lem65],

and the Cottle-Dantzig algorithm [DC67]. Although these algorithms may fail to

solve an arbitrary LCP, both of these algorithms are guaranteed to terminate with

a solution when they are applied to a P-matrix LCP.

Recently, the infinite games that we are studying have been linked to the

linear complementarity problem. Polynomial time reductions from simple stochastic

games [Con93] to the linear complementarity problem have been proposed [GR05,

SV07]. Simple stochastic games are a type of game that also incorporate random

moves, and it has been shown that the problem of solving a discounted game can

be reduced to the problem of solving a simple stochastic game [ZP96]. Also, a

direct polynomial time reduction from discounted games to the P-matrix linear

complementarity problem has been devised by Jurdziński and Savani [JS08]. These

reductions mean that the classical pivoting algorithm from the LCP literature can

now be applied to solve parity, mean-payoff, and discounted games.

1.6 Contribution

In Chapter 4, we study how the pivoting algorithms for the linear complementarity

problem behave when they are applied to the LCPs that arise from the reduction

of Jurdziński and Savani. We show that Lemke’s algorithm and the Cottle-Dantzig

algorithm can be viewed as strategy iteration algorithms, and we present versions of

these algorithms that work directly on discounted games, rather than on the LCP

reductions of these games. This allows researchers who do not have a background in

mathematical optimization, but who are interested in solving games, to understand

how these algorithms work.

Although there are exponential lower bounds for these algorithm when they
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are applied to P-matrix LCPs [Mur78, Fat79], it was not known whether these

bounds hold for the LCPs that arise from games. It is possible that the class of

LCPs generated by games may form a subclass of P-matrix LCPs that is easier to

solve. We show that this is not the case, by providing a family of parity games upon

which both Lemke’s algorithm and the Cottle-Dantzig algorithm take exponential

time. Since parity games lie at the top of the chain of reductions from games to the

linear complementarity problem, this lower bound also holds for mean-payoff and

discounted games. The work in this chapter is joint work with Marcin Jurdziński

and Rahul Savani, and it is a revised and extended version of a paper that was

published in the proceedings of SOFSEM 2010 [FJS10].

In Chapter 5, we study strategy improvement algorithms for Markov decision

processes. The greedy switching policy was a promising candidate for polynomial

time termination in both game and MDP settings. For parity games, the result of

Friedmann [Fri09] proved that this was not the case. However, while Friedmann’s

examples have been adapted to cover mean-payoff and discounted games, no expo-

nential lower bounds have been found for greedy strategy improvement for Markov

decision processes. We resolve this situation by adapting Friedmann’s examples to

provide a family of Markov decision processes upon which greedy strategy improve-

ment takes an exponential number of steps. This lower bound holds for the average-

reward criterion. The work presented in this chapter is a revised and extended

version of a paper that was published in the proceedings of ICALP 2010 [Fea10a].

In Chapter 6, we study strategy improvement algorithms for parity games

and mean-payoff games. With the recent result of Friedmann, doubts have been cast

about whether strategy improvement equipped with any switching policy could ter-

minate in polynomial time. This view is reinforced by a recent result of Friedmann,

Hansen, and Zwick [FHZ10], who showed that random facet, another prominent

switching policy, is not polynomial.

Most previous switching policies that have been proposed for strategy im-
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provement follow simple rules, and do not take into account the structure of the

game that they are solving. In this chapter, we show that switching policies can

use the structure of the game to make better decisions. We show that certain struc-

tures in parity and mean-payoff games are strongly related with the behaviour of

strategy improvement algorithms. Moreover, we show that switching policies can

exploit this link to make better decisions. We propose an augmentation scheme,

which allows traditional switching policies, such as the greedy policy, to take advan-

tage of this knowledge. Finally, we show that these ideas are also exploited by the

recent super-polynomial lower bounds, by showing that the augmented version of

the greedy policy is polynomial on Friedmann’s examples, and that the augmented

version of random facet is polynomial on the examples of Friedmann, Hansen, and

Zwick. The work in this chapter is a revised and extended version of a paper that

will appear in the proceedings of LPAR-16 [Fea10b].
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Chapter 2

Problem Statements

In this section we introduce and formally define the problems that will be studied

in this thesis. There are three types of problem that we will introduce: two player

infinite games, Markov decision processes, and the linear complementarity prob-

lem. We will then see how these problems are related to each other, by the know

polynomial time reductions between them.

2.1 Infinite Games

In this section we will introduce three different types of infinite game: parity games,

mean-payoff games, and discounted games. All of these games are played on finite

graphs, in which the set of vertices has been partitioned between two players. The

game is played by placing a token on a starting vertex. In each step of the game, the

player that owns the vertex upon which the token is placed must move the token

along one of the outgoing edges from that vertex. In this fashion, the two players

construct an infinite path, and the winner of the game can be determined from the

properties of this path.

Parity games are an example of a qualitative game, where one player wins and

the other player loses. In the setting of infinite games on finite graphs, a qualitative
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Figure 2.1: An example of a parity game.

winning condition means that one player wins the game if infinite path satisfies

some property, while the other player wins if the infinite path does not satisfy that

property.

Mean-payoff and discounted games are examples of quantitative games. In

these games, every infinite path is assigned a payoff, which is a real number. The

two players are usually referred to as Max and Min, and Min pays the payoff of the

infinite path to Max. Therefore, the two players have opposite goals: it is in the

interest of Max to maximize the payoff of the infinite path, and it is in the interest

of Min to minimize the payoff of the infinite path.

2.1.1 Parity Games

A parity game is played by two players, called Even and Odd, on a finite graph.

Each vertex in the graph is assigned a natural number, which is called the priority

of the vertex. Formally, a parity game is defined by a tuple (V, VEven, VOdd, E,pri),

where V is a set of vertices and E is a set of edges, which together form a finite

graph. We assume that every vertex in the graph has at least one outgoing edge.

The sets VEven and VOdd partition V into vertices belonging to player Even and

vertices belonging to player Odd, respectively. The function pri : V → N assigns a

priority to each vertex.
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Figure 2.1 gives an example of a parity game. Whenever we draw a parity

game, we will represent the vertices belonging to player Even as boxes, and the

vertices belonging to player Odd as triangles. Each vertex is labeled by a name

followed by the priority that is assigned to the vertex.

The game begins by a token being placed on a starting vertex v0. In each

step, the player that owns the vertex upon which the token is placed must choose

one outgoing edge from that vertex and move the token along it. In this fashion,

the two players form an infinite path π = 〈v0, v1, v2, . . . 〉, where (vi, vi+1) ∈ E for

every i ∈ N. To determine the winner of the game, we consider the set of priorities

that occur infinitely often along the path. This is defined to be:

Inf(π) = {d ∈ N : For all j ∈ N there is an i > j such that pri(vi) = d}.

Player Even wins the game if the largest priority occurring infinitely often is even,

and player Odd wins the game if the largest priority occurring infinitely often is

odd. In other words, player Even wins the game if and only if max(Inf(π)) is even.

In Figure 2.1, the players could construct the path 〈a, b, e〉 followed by 〈f, c〉ω.

The set of priorities that occur infinitely often along this path is {1, 3}. Since 3 is

odd, we know that player Odd would win the game if the two players constructed

this path.

A strategy is a function that a player uses to make decisions while playing

a parity game. Suppose that the token has just arrived at a vertex v ∈ VEven.

Player Even would use his strategy to decide which outgoing edge the token should

be moved along. Player Even’s strategy could make its decisions using the entire

history of the token, which is the path between the starting vertex and v that the

players have formed so far. The strategy could also use randomization to assign a

probability distribution over which outgoing edge should be picked. However, we

will focus on the class of positional strategies. Positional strategies do not use the
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history of the token, and they do make probabilistic decisions.

A positional strategy for Even is a function that chooses one outgoing edge

for every vertex in VEven. A strategy is denoted by σ : VEven → V , with the condition

that (v, σ(v)) is in E, for every Even vertex v. Positional strategies for player Odd

are defined analogously. The sets of positional strategies for Even and Odd are

denoted by ΠEven and ΠOdd, respectively. Given two positional strategies σ and τ ,

for Even and Odd respectively, and a starting vertex v0, there is a unique path

〈v0, v1, v2 . . . 〉, where vi+1 = σ(vi) if vi is owned by Even and vi+1 = τ(vi) if vi is

owned by Odd. This path is known as the play induced by the two strategies σ

and τ , and will be denoted by Play(v0, σ, τ).

An Even strategy is called a winning strategy from a given starting vertex

if player Even can use the strategy to ensure a win when the game is started at

that vertex, no matter how player Odd plays in response. We define PathsEven :

V ×ΠEven → 2V
ω

to be a function that gives every path that starts at a given vertex

and is consistent with some Even strategy. If σ is a positional strategy for Even,

and v0 is a starting vertex then:

PathsEven(v0, σ) = {〈v0, v1, . . . 〉 ∈ V ω : for all i ∈ N, if vi ∈ VEven

then vi+1 = σ(vi), and if vi ∈ VOdd then (vi, vi+1) ∈ E)}.

A strategy σ is a winning strategy for player Even from the starting vertex v0 if

max(Inf(π)) is even for every path π ∈ PathsEven(v0, σ). The strategy σ is said to

be winning for a set of vertices W ⊆ V if it is winning for every vertex v ∈ W .

Winning strategies for player Odd are defined analogously.

A game is said to be determined if one of the two players has a winning

strategy. We now give a fundamental theorem, which states that parity games are

determined with positional strategies.

Theorem 2.1 ([EJ91, Mos91]). In every parity game, the set of vertices V can
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be partitioned into two sets (WEven,WOdd), where Even has a positional winning

strategy for WEven, and Odd has a positional winning strategy for WOdd.

There are two problems that we are interested in solving for parity games.

Firstly, there is the problem of computing the winning sets (WEven,WOdd) whose

existence is implied by Theorem 2.1. Secondly, there is the more difficult problem of

computing the partition into winning sets, and to provide a strategy for Even that

is winning for WEven, and a strategy for Odd that is winning for WOdd.

In the example shown in Figure 2.1, the Even strategy {a 7→ b, e 7→ d, c 7→ f}

is a winning strategy for the set of vertices {a, b, d, e}. This is because player Odd

cannot avoid seeing the priority 6 infinitely often when Even plays this strategy. On

the other hand, the strategy {d 7→ a, b 7→ a, f 7→ c} is a winning strategy for Odd

for the set of vertices {c, f}. Therefore, the partition into winning sets for this game

is ({a, b, d, e}, {c, f}).

2.1.2 Mean-Payoff Games

A mean-payoff game is similar in structure to a parity game. The game is played

by player Max and player Min, who move a token around a finite graph. Instead

of priorities, each vertex in this graph is assigned an integer reward. Formally, a

mean-payoff game is defined by a tuple (V, VMax, VMin, E, r) where V and E form

a finite graph. Once again, we assume that every vertex must have at least one

outgoing edge. The sets VMax and VMin partition V into vertices belonging to player

Max and vertices belonging to player Min, respectively. The function r : V → Z

assigns an integer reward to every vertex.

Once again, the game begins at a starting vertex v0, and the two players

construct an infinite path 〈v0, v1, v2, . . . 〉. The payoff of this infinite path is the

average reward that is achieved in each step. To capture this, we define M(π) =

lim infn→∞(1/n)
∑n

i=0 r(vi). The objective of player Max is to maximize the value

of M(π), and the objective of player Min is to minimize it.
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The definitions of positional strategies and plays carry over directly from the

definitions that were given for parity games. The functions PathsMax and PathsMin

can be defined in a similar way to the function PathsEven that was used for parity

games. We now define two important concepts, which are known as the lower and

the upper values. These will be denoted as Value∗ and Value∗, respectively. For

every vertex v we define:

Value∗(v) = max
σ∈ΠMax

min
π∈PathsMax(v,σ)

M(π),

Value∗(v) = min
τ∈ΠMin

max
π∈PathsMin(v,τ)

M(π).

The lower value of a vertex v is the largest payoff that Max can obtain with a

positional strategy when the game is started at v, and the upper value of v gives

the smallest payoff that Min can obtain with a positional strategy when the game

is started at v. It is not difficult to prove that, for every vertex v, the inequality

Value∗(v) ≤ Value∗(v) always holds. However, for mean-payoff games we have that

the two quantities are equal, which implies that the games are determined.

Theorem 2.2 ([LL69]). For every starting vertex v in every mean-payoff game we

have Value∗(v) = Value∗(v).

This theorem implies that if a player can secure a certain payoff from a given

vertex, then that player can also secure that payoff using a positional strategy. Once

again, this implies that we only need to consider positional strategies when working

with mean-payoff games.

We denote the value of the game starting at the vertex v as Value(v), and we

define it to be equal to both Value∗(v) and Value∗(v). A Max strategy σ is optimal

for a vertex v if, when that strategy is used for a game starting at v, it ensures a

payoff that is at least the value of the game at v. In other words, as strategy σ

is optimal for a vertex v if minπ∈PathsMin(v,σ) M(π) = Value(v). A Max strategy σ

is optimal for the game if it is optimal for every vertex in that game. Optimal
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strategies for Min are defined analogously.

There are several problems that we are interested in for mean-payoff games.

Firstly, we have the problem of computing the value of the game for every vertex.

Another problem is to compute an optimal strategy for the game for both players.

We can also solve mean-payoff games qualitatively. In this setting, Max wins if and

only if the payoff of the infinite path is strictly greater than 0. In this setting, a

Max strategy σ is winning from a vertex v if minπ∈PathsMin(v,σ) M(π) > 0, and a Min

strategy τ is winning from the vertex v if maxπ∈PathsMax(v,τ)M(π) ≤ 0. A strategy

is said to be a winning strategy for a set of vertices W if it is a winning strategy for

every vertex v ∈ W .

The computational problem associated with the qualitative version of mean-

payoff games is sometimes called the zero-mean partition problem. To solve this we

must compute the partition (WMax,WMin) of the set V , where Max has a winning

strategy for WMax, and where Min has a winning strategy for WMin. An efficient

algorithm for the zero-mean partition problem can be used to solve the quantitative

version of the mean-payoff game efficiently: Björklund and Vorobyov have shown

that only a polynomial number of calls to an algorithm for finding the zero-mean

partition are needed to find the value for every vertex in a mean-payoff game [BV07].

Figure 2.2 shows an example of a mean-payoff game. Every time that we

draw a mean-payoff game, we represent the vertices belonging to player Max as

boxes, and the vertices belonging to player Min as triangles. One possible play in

this game would be 〈a, b, c, d〉ω , and the payoff of this play is −6.25. An optimal

strategy for player Max is {a 7→ b, c 7→ e, e 7→ c}, and an optimal strategy for player

Min is {b 7→ a, d 7→ a}. The value of the game for the vertices in the set {a, b, d} is

the average weight on the cycle formed by a and b, which is −3.5, and the value of

the game for the vertices in the set {c, e} is the average weight on the cycle formed

by c and e, which is 0.5. The zero-mean partition for this mean-payoff game is

therefore ({c, e}, {a, b, d}).
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Figure 2.2: An example of a mean-payoff game.

2.1.3 Discounted Games

Discounted games are very similar to mean-payoff games, but with a different def-

inition of the payoff of an infinite path. Formally, a discounted game is defined by

a tuple (V, VMax, VMin, E, r, β), where the first five components are exactly the same

as the definitions given for mean-payoff games. In addition to these, there is also a

discount factor β, which is a rational number chosen so that 0 ≤ β < 1.

As usual, the game begins at a starting vertex v0, and the two players con-

struct an infinite path 〈v0, v1, v2, . . . 〉. In a discounted game, the payoff of an infinite

path is the sum of the rewards on that path. However, for each step that the path

takes, the rewards in the game are discounted by a factor of β. Formally, the payoff

of an infinite path is defined to be D(π) =
∑∞

i=0 β
i r(vi). For example, if we took

the game shown in Figure 2.2 to be a discounted game with discount factor 0.5,

then the payoff of the path 〈e, c〉ω would be:

4 + (0.5 ×−3) + (0.52 × 4) + (0.53 ×−3) + · · · =
10

3
.
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With this definition in hand, we can again define the lower and upper values:

Value∗(v) = max
σ∈ΠMax

min
π∈PathsMax(v,σ)

D(π),

Value∗(v) = min
τ∈ΠMin

max
π∈PathsMin(v,τ)

D(π).

The analogue of Theorem 2.2 was shown by Shapely.

Theorem 2.3 ([Sha53]). For every starting vertex v in every discounted game we

have Value∗(v) = Value∗(v).

Therefore, we define Value(v) to be equal to both Value∗(v) and Value∗(v),

and the definitions of optimal strategies carry over from those that were given for

mean-payoff games.

Some results in the literature, such as the reduction from discounted games

to the linear complementarity problem presented in Section 2.5.2, require a differ-

ent definition of a discounted game. In particular, the reduction considers binary

discounted games that have rewards placed on edges. A binary discounted game is

a discounted game in which every vertex has exactly two outgoing edges.

We introduce notation for these games. A binary discounted game with

rewards placed on edges is a tuple G = (V, VMax, VMin, λ, ρ, r
λ, rρ, β), where the

set V is the set of vertices, and VMax and VMin partition V into the set of vertices

of player Max and the set of vertices of player Min, respectively. Each vertex has

exactly two outgoing edges which are given by the left and right successor functions

λ, ρ : V → V . Each edge has a reward associated with it, which is given by the

functions rλ, rρ : V → Z. Finally, the discount factor β is such that 0 ≤ β < 1.

All of the concepts that we have described for games with rewards assigned

to vertices carry over for games with rewards assigned to edges. The only difference

that must be accounted for is the definition of the payoff function. When the rewards

are placed on edges, the two players construct an infinite path π = 〈v0, v1, v2, . . . 〉

where vi+1 is equal to either λ(vi) or ρ(vi). This path yields the infinite sequence of

21



rewards 〈r0, r1, r2, . . . 〉, where ri = rλ(vi) if λ(vi) = vi+1, and ri = rρ(vi) otherwise.

The payoff of the infinite path is then D(π) =
∑∞

i=0 β
iri.

At first sight, it is not clear how the two models relate to each other. Allowing

rewards to be placed on edges seems to be less restrictive that placing them on

vertices, but forcing each vertex to have exactly two outgoing edges seems more

restrictive. We will resolve this by showing how a traditional discounted game can

be reduced to a binary discounted game with rewards placed on edges.

We will first show that every discounted game can be reduced to a discounted

game in which every vertex has exactly two outgoing edges. This will be accom-

plished by replacing each vertex with a binary tree. Let k be the largest out degree

for a vertex in the discounted game. Every vertex in the game will be replaced with

a full binary tree of depth ⌈log2 k⌉ − 1, where each vertex in the tree is owned by

the player that owns v, and each leaf of the tree has two outgoing edges. The root

of the tree is assigned the reward r(v), and every other vertex in the tree is assigned

reward 0.

For each incoming edge (u, v) in the original game, we add an edge from u to

the root of the binary tree in the reduced game. For each outgoing edge (v, u) in the

original game, we set the successor of some leaf to be u. If, after this procedure, there

is a leaf w that has less than two outgoing edges, then we select some edge (v, u) from

the original game, and set u as the destination for the remaining outgoing edges of w.

It is not a problem if w has two outgoing edges to u after this procedure, because we

use left and right successor functions in our definition of a binary discounted game,

rather than an edge relation. We then set the discount factor for the binary game

to be l
√
β, where l = ⌈log2 k⌉.

We now argue that this construction is correct. Clearly, a player can move

from a vertex v to a vertex u in the discounted game if and only if that player can

move from v to u in our binary version of that game. Therefore, the players can

construct an infinite path 〈v0, v1, . . . 〉 in the original game if and only if they can
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construct an infinite path 〈v0, v0,1, v0,2, . . . , v0,⌈log2 k⌉−1, v1, . . . 〉 in the binary version

of that game, where each vertex vi is the root of a binary tree, and each vertex vi,j

is an internal vertex in the binary tree. To see that the construction is correct, it

suffices to notice that these two paths have the same payoff. The payoff of the first

path is r(v0) + β · r(v1) + . . . , and the payoff of the second path is:

r(v0) + l
√

β · r(v0,1) + · · · + ( l
√

β)⌈log2 k⌉−1 · v0,⌈log2 k⌉−1 · r(v0,2) + ( l
√

β)l r(v1) + . . .

Since r(v0,i) = 0 for all i, and ( l
√
β)l = β, the two paths must have the same payoff.

From this, it follows that the two games must have the same value, and therefore

solving the binary game gives a solution for the original game.

We now argue that a discounted game with rewards placed on vertices can

be transformed into an equivalent game in which the rewards are placed on edges.

The reduction in this case is simple: if a vertex v has reward r in the original game,

then we set the reward of every outgoing edge of v to be r in the transformed game.

This reduction obviously gives an equivalent game, because in both games you must

see a reward of r if you pass through v.

In summary, an efficient algorithm that solves binary discounted games with

rewards placed on edges can also be used to efficiently solve discounted games spec-

ified with the standard formulation. We will use this formulation when we describe

the reduction from discounted games to the linear complementarity problem in Sec-

tion 2.5.2, and in the work based on this reduction presented in Chapter 4.

2.2 Markov Decision Processes

Markov decision processes are similar to two player games, but with two important

differences. Firstly, a Markov decision process does not have two players. This could

be thought of as a game in which there is only one player. The second difference is

that the moves made in a Markov decision process are not necessarily deterministic.
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Figure 2.3: An example of a Markov decision process.

In the game setting, the vertices are connected by edges, and when the token is at

some vertex, then the owner of that vertex can choose one of the edges and move

the token along that edge. In the Markov decision process setting, the vertices are

connected by actions, and when the token is at some vertex, an action must be

chosen. The outcome of picking an action is not deterministic. Instead, each action

has a probability distribution over the vertices in the game. The vertex that the

token is moved to is determined by this probability distribution.

Formally, a Markov decision process consists of a set of vertices V , where

each vertex v ∈ V has an associated set of actions Av . For a given vertex v ∈ V and

action a ∈ Av the function r(v, a) gives an integer reward for when the action a in

chosen at the vertex v. Given two vertices v and v′, and an action a ∈ Av, p(v′|v, a)

is the probability of moving to vertex v′ when the action a is chosen in vertex v. This

is a probability distribution, so
∑

v′∈V p(v′|v, a) = 1 for all v ∈ V and all a ∈ Av.

The MDPs that we will study actually contain a large number of deterministic

actions. An action a ∈ Av is deterministic if there is some vertex v′ such that

p(v′|v, a) = 1. For the sake of convenience, we introduce notation that makes

working with these actions easier. We will denote a deterministic action from the

vertex v to the vertex v′ as (v, v′), and the function r(v, v′) gives the reward of this

action.

Figure 2.3 shows an example of a Markov decision process. When we draw
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a Markov decision process, the vertices will be drawn as boxes, and the name of a

vertex will be displayed on that vertex. Actions are drawn as arrows: deterministic

actions are drawn as an arrow between vertices, and probabilistic actions are drawn

as arrows that split, and end at multiple vertices. Each deterministic action is

labelled with its reward. For probabilistic actions, the probability distribution is

marked after the arrow has split, and both the name of the action and the reward

of the action are marked before the arrow has split.

Strategies and runs for MDPs are defined in the same way as they are for

games. A deterministic memoryless strategy σ : V → As is a function that selects

one action at each vertex. If an action a is a deterministic action (v, u), then we

adopt the notation σ(v) = u for when σ chooses the action a. For a given starting

vertex v0, a run that is consistent with a strategy σ is an infinite sequence of vertices

〈v0, v1, v2, . . . 〉 such that p(vi+1|vi, σ(vi)) > 0 for all i.

There could be uncountably many runs that are consistent with a given

strategy. We must define a probability space over these runs. The set Ωχ
v0 contains

every run that starts at the vertex v0 and that is consistent with the strategy χ.

In order to define a probability space over this set, we must provide a σ-algebra of

measurable events. We define the cylinder set of a finite path to be the set that

contains every infinite path which has the finite path as a prefix. Standard results

from measure theory imply that there is a unique smallest σ-algebra Fχ
v0 over Ωχ

v0

that contains every cylinder set. Furthermore, if we define the probability of the

cylinder set for a finite path 〈v0, v1, v2, . . . vk〉 to be
∏k−1

i=0 p(vi+1|vi, σ(vi)), then

this uniquely defines a probability measure P
χ
v0 over the σ-algebra Fχ

v0 [ADD00].

Therefore, our probability space will be (Ωχ
v0 ,Fχ

v0 ,P
χ
v0). Given a measurable function

that assigns a value to each consistent run f : Ω → R, we define E
χ
v0{f} to be the

expectation of this function in the probability space.

A reward criterion assigns a payoff to each run. In the total-reward criterion,

the payoff of a run is the sum of the rewards along that run. In the average-reward
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criterion, the payoff of a run is the average reward that is obtained in each step

along the infinite run. The value of a vertex under some strategy is the expectation

of the payoff over the runs that are consistent with that strategy. Formally, the

value of a vertex v in the strategy σ under the total-reward criterion is defined to

be:

Valueσ(v) = Eσ
v{

∞∑

i=0

r(vi, vi+1)}.

Under the average-reward criterion the value of each vertex is defined to be:

ValueσA(v) = Eσ
v{lim inf

N→∞
1

N

N∑

i=0

r(vi, vi+1)}.

Finally, for the discounted reward criterion a discount factor β is chosen so that

0 ≤ β < 1, and the value of each vertex is defined to be:

ValueσD(s) = Eσ
s {

∞∑

i=0

βi · r(si, si+1)}.

For a given MDP, the computational objective is to find an optimal strat-

egy σ∗, which is the strategy that maximizes the optimality criterion for every start-

ing vertex: an optimal strategy will satisfy Valueσ(v) ≤ Valueσ
∗

(v) for every vertex v

and every strategy σ. We define the value of a vertex to be the value that is obtained

by an optimal strategy from that vertex. That is, we define Value(v) = Valueσ∗(v),

we define ValueA(v) = Valueσ∗A (v), and we define ValueD(v) = Valueσ∗D (v), for every

vertex v.

In the example shown in Figure 2.3 the strategy {a 7→ x, b 7→ e, c 7→ a, d 7→

y, e 7→ e} is an optimal strategy under the total reward criterion. The value of the

vertex a under this strategy is 4.6. Under the average reward criterion, every vertex

will have value 0, no matter what strategy is used. This is because we cannot avoid

reaching the sink vertex e, and therefore the long term average-reward will always

be 0.
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2.3 The Linear Complementarity Problem

The linear complementarity problem is a fundamental problem in mathematical

optimisation. Given an n × n matrix M and an n-dimensional vector q, the linear

complementarity problem (LCP) is to find two n-dimensional vectors w and z that

satisfy the following:

w = Mz + q, (2.1)

w, z ≥ 0, (2.2)

zi · wi = 0 for i = 1, 2, . . . , n. (2.3)

We will denote this problem as LCP(M, q). The condition given by (2.3) is called

the complementarity condition, and it insists that for all i, either the i-th component

of w is equal to 0 or the i-th component of z is equal to 0. It is for this reason that we

refer to wi and zi as being complements of each other. From the complementarity

condition combined with the non-negativity constraint given by (2.2) it is clear that

every solution to the LCP contains exactly n non-negative variables and exactly n

variables whose value is forced to be 0. In LCP terminology, the non-negative

variables are called basic variables and the complements of the basic variables are

called non-basic.

Before continuing, it must be noted that the system given by (2.1)-(2.3) may

not have a solution or it may have many solutions. However, we are interested

in a special case of the linear complementarity problem, where the matrix M is a

P-matrix. For every set α ⊆ {1, 2, . . . n} the principal sub-matrix of M associated

with α is obtained by removing every column and every row whose index is not in

α. A principal minor of M is the determinant of a principal sub-matrix of M .

Definition 2.4 (P-matrix). A matrix M is a P-matrix if and only if every principal

minor of M is positive.
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In our work, we will always consider LCPs in which the matrix M is a P-

matrix. LCPs of this form have been shown to have the following special property.

Theorem 2.5 ([CPS92]). If the matrix M is a P-matrix then, for every n dimen-

sional vector q, we have that LCP(M, q) has a unique solution.

A fundamental operation that can be applied to an LCP is a pivot operation.

This operation takes two variables wi and zj and produces an equivalent LCP in

which the roles of these two variables are swapped. In this new LCP, the variable zj

will be the i-th variable in the vector w, and the variable wi will be the j-th variable

in the vector z. To perform a pivot step, we construct a tableaux A = [I,M, q], that

is, a matrix whose first n columns are the columns of the n-dimensional identity

matrix, whose following n columns are the columns of M , and whose final column

is q. Now, suppose that the variable wi is to be swapped with zj . The variable wi

is associated with the i-th column of A, and the variable zj is associated with

the (n + j)-th column of A. To perform this operation we swap the columns that

are associated with wi and zj. We then perform Gauss-Jordan elimination on the

tableaux A, which transforms the first n columns of A into an identity matrix and

the remaining columns into an n by n matrix M ′ and an n dimensional vector q′.

A matrix Mα and a vector qα, where α ⊆ {1, 2, . . . , n}, are called a prin-

cipal pivot transform of M and q, if they are obtained by performing |α| pivot

operations, which exchange the variables wi and zi, for every i ∈ α. Each solution

of LCP(Mα, qα) corresponds to a solution of LCP(M, q). If there is a solution of

LCP(Mα, qα) in which the variables wi = 0 for every i ∈ β, and the variables zi = 0

for every i /∈ β, then there is a solution to LCP(M, q) with wi = 0 for every i ∈ γ

and zi = 0 for every i /∈ γ, where γ = (α\β)∪(β\α). Once we know which variables

should be set to 0, the system given by (2.1)-(2.3) becomes a system of n simulta-

neous equations over n variables, which can easily be solved to obtain the precise

values of w and z. Therefore, to solve an LCP it is sufficient to find a solution to

some principal pivot transform of that LCP.
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This fact is useful, because some LCPs are easier to solve than others. For

example, a problem LCP(M, q) has a trivial solution if q ≥ 0. Indeed, if this is the

case then we can set z = 0, and the system given by (2.1)-(2.3) becomes:

w = q,

w, z ≥ 0,

zi · wi = 0 for i = 1, 2 . . . n.

Since q ≥ 0 and z = 0, this can obviously be satisfied by setting w = q. This gives

us a naive algorithm for solving the problem LCP(M, q), which checks, for each α ⊆

{1, 2, . . . , n}, whether LCP(Mα, qα) has a trivial solution. In our setting, where M

is a P-matrix, there is guaranteed to be exactly one principal pivot transform of M

and q for which there is a trivial solution.

2.4 Optimality Equations

Optimality equations are a fundamental tool that is used to study Markov decision

processes and infinite games. The idea is that the value of each vertex can be

characterised as the solution of a system of optimality equations. Therefore, to find

the value for each vertex, it is sufficient to compute a solution to the optimality

equations. Optimality equations will play an important role in this thesis, because

each of the algorithms that we study can be seen as a process that attempts to find

a solution of these equations.

In this section we introduce optimality equations for the average-reward cri-

terion in MDPs, and for mean-payoff and discounted games. We also show, for each

of these models, how the optimality equations can be used to decide if a strategy

is optimal. The key concept that we introduce is whether an action or edge is

switchable for a given strategy. A strategy is optimal if and only if it has no switch-

able edges or actions. This concept will be heavily used by the algorithms that are
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studied in this thesis.

2.4.1 Optimality Equations For Markov Decision Processes

We will begin by describing the optimality equations for the average-reward criterion

in MDPs. In the literature, there are two models of average-reward MDP that are

commonly considered. In the uni-chain setting, the structure of the MDP guarantees

that every vertex has the same value. This allows a simplified optimality equation

to be used. However, the MDPs that will be considered in this thesis do not satisfy

these structural properties. Therefore, we will introduce the multi-chain optimality

equations, which account for the fact that vertices may have different values. In the

multi-chain setting, we have two types of optimality equation, which must be solved

simultaneously. The first of these are called the gain equations. For each vertex v

there is a gain equation, which is defined as follows:

G(v) = max
a∈Av

∑

v′∈V
p(v′|v, a) ·G(v′). (2.4)

Secondly we have the bias equations. We define Mv to be the set of actions that

achieve the maximum in the gain equation at the vertex v:

Mv = {a ∈ Av : G(v) =
∑

v′∈V
p(v′|v, a) ·G(v′)}.

Then, for every vertex v, we have a bias equation that is defined as follows:

B(v) = max
a∈Mv

(
r(v, a) −G(v) +

∑

v′∈V
p(v′|v, a) · B(v′)

)
. (2.5)

For this system of optimality equations, the solution is not necessarily unique. In

every solution the gain will be the same, but the bias may vary. It has been shown

that the gain of each vertex in a solution is in fact the expected average reward from

that vertex under an optimal strategy.

30



Theorem 2.6 ([Put05, Theorem 9.1.3]). For every solution to the optimality equa-

tions we have ValueA(v) = G(v), for every vertex v.

We will now describe how these optimality equations can be used to check

whether a strategy σ is optimal. This is achieved by computing the gain and bias of

the strategy σ, which can be obtained by solving the following system of equations.

Gσ(v) =
∑

v′∈V
p(v′|v, σ(v)) ·Gσ(v′) (2.6)

Bσ(v) = r(v, σ(v)) −Gσ(v) +
∑

v′∈V
p(v′|v, σ(v)) ·Bσ(v′) (2.7)

It is clear that a strategy σ is optimal in the average-reward criterion if and only if

Gσ and Bσ are a solution to the optimality equations.

It should be noted that the system of equations given in (2.6)-(2.7) may not

have a unique solution, and this will cause problems in our subsequent definitions.

As with the optimality equations, for each strategy σ and each vertex v, there will

be a unique value g such that Gσ(v) = g for every solution to these equations, but

Bσ(v) may vary between solutions. To ensure that there is a unique solution, we

add the following constraint, for every vertex v ∈ V :

W σ(v) =
∑

v′∈V
p(v′|v, σ(v)) ·W σ(v′) −Bσ(v). (2.8)

Adding Equation 2.8 to the system of equations ensures that the solutions of the gain

and bias equations will be unique [Put05, Corollary 8.2.9]. In other words, for every

vertex v there is a constant g such that every solution of Equations (2.6)-(2.8) has

Gσ(v) = g, and there is a constant b such that every solution of Equations (2.6)-(2.8)

has Bσ(v) = b. The solution of Equation (2.8) itself may not be unique.

Now suppose that the strategy σ is not optimal. We will define the appeal of

an action a under a strategy σ. To do this, we find the unique solution of the system

specified by (2.6)-(2.8). We then define the gain of a to be Gσ(a) =
∑

v′∈V p(v′|v, a)·
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Gσ(v′), and we define the bias of a to be Bσ(a) = r(v, a) −G(v) +
∑

v′∈V p(v′|v, a) ·

B(v′). We then define the appeal of the action a to be Appealσ(a) = (Gσ(a), Bσ(a)).

We can now define the concept of a switchable action. To decide if an action

is switchable, the appeal of the action is compared lexicographically with the gain

and bias of the vertex from which it originates. This means that an action a ∈ Av

is switchable in a strategy σ if either Gσ(a) > Gσ(v), or if Gσ(a) = Gσ(v) and

Bσ(a) > Bσ(v).

Clearly, if σ has a switchable action then Gσ and Bσ do not satisfy the

optimality equations, which implies that σ is not an optimal strategy. Conversely,

if σ does not have a switchable action then Gσ and Bσ must be a solution to the

optimality equations. Therefore, we have the following corollary of Theorem 2.6.

Corollary 2.7. A strategy σ is optimal if and only if it has no switchable actions.

2.4.2 Optimality Equations For Games

We now introduce the optimality equations for two player games. We begin by

describing a system of optimality equations for discounted games. For each vertex v,

the optimality equation for v is defined to be:

V (v) = min
(v,u)∈E

(r(v) + β · V (u)) if v ∈ VMin,

V (v) = max
(v,u)∈E

(r(v) + β · V (u)) if v ∈ VMax.

Shapley has shown the following theorem.

Theorem 2.8 ([Sha53]). The optimality equations have a unique solution, and for

every vertex v, we have Value(v) = V (v).

If σ is a strategy for Max and τ is a strategy for Min, then we define

Valueσ,τ (v) = D(Play(v, σ, τ)) to be the payoff that is obtained when Max plays σ

against τ . The optimality equations imply that to solve a discounted game, it is
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sufficient to find a pair of strategies σ and τ such that Valueσ,τ is a solution to the

optimality equations.

Given a positional strategy σ for Max and a positional strategy τ for Min, we

define the appeal of an edge (v, u) to be Appealσ,τ (v, u) = r(v)+β ·Valueσ,τ (u). For

each Max vertex v, we say that the edge (v, u) is switchable in σ if Appealσ,τ (v, u) >

Valueσ,τ (v). For each Min vertex v, we say that the edge (v, u) is switchable in τ if

Appealσ,τ (v, u) < Valueσ,τ (v).

It is clear that Valueσ,τ satisfies the optimality equations if and only if both σ

and τ have no switchable edges. Therefore, we have the following corollary of

Theorem 2.8.

Corollary 2.9. Let σ be a strategy for Max and let τ be a strategy for Min. These

strategies are optimal if and only if neither of them have a switchable edge.

We give a system of optimality equations that characterise optimal values in a

mean-payoff game. These optimality equations are a generalisation of the optimality

equations for the average-reward criterion in the Markov decision process setting.

For each vertex v we have one of the following gain equations:

G(v) = max
(v,u)∈E

G(u) if v ∈ VMax,

G(v) = min
(v,u)∈E

G(u) if v ∈ VMin.

We define M = {(v, u) ∈ E : G(v) = G(u)} to be the set of edges that satisfy the

gain equation. For every vertex v we have one of the following bias equations:

B(v) = max
(v,u)∈M

(r(v) −G(v) + B(u)) if v ∈ VMax,

B(v) = min
(v,u)∈M

(r(v) −G(v) + B(u)) if v ∈ VMin.

As with the MDP setting, we have that the solutions to this system of equa-

tions correspond to the value of the game at each vertex.
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Theorem 2.10 ([FV97]). For every solution to the system of equations we have

Value(v) = G(v), for every vertex v.

For each pair of strategies σ and τ , we define the gain and bias of these

strategies to be the solution of the following system of equations. For each vertex v,

let χ : V → V be a function such that χ(v) = σ(v) when v ∈ VMax, and χ(v) = τ(v)

when v ∈ VMin. We use this to define, for every vertex v:

Gσ,τ (v) = Gσ,τ (χ(v)), (2.9)

Bσ,τ (v) = r(v) −Gσ,τ (v) + Bσ,τ (χ(v)). (2.10)

Once again, it will be useful to ensure that (2.9)-(2.10) have a unique solution. As

with the MDP setting, this could be achieved by adding an additional equation

for each vertex. However, in the game setting there is a much simpler method

for achieving this. Since σ and τ are both positional strategies, we know that the

infinite path Play(v, σ, τ) consists of a finite initial path followed by an infinitely

repeated cycle, for every starting vertex v. For each cycle formed by σ and τ , we

select one vertex u that lies on the cycle, and set Bσ,τ (u) = 0. It turns out that with

this modification in place, the system given by (2.9)-(2.10) has a unique solution for

each pair of strategies σ and τ .

A switchable edge can now be defined in the same way as a switchable action

was defined for average-reward MDPs. For each edge, we find the unique solution to

the system given by (2.9)-(2.10), and we define Appealσ,τ (v, u) = (Gσ,τ (v), Bσ,τ (v)).

The edge (v, u) is switchable if Appealσ,τ (v, u) is greater than (Gσ,τ (v), Gσ,τ (u))

when compared lexicographically.
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2.5 Reductions

In this section we present a chain of reductions from infinite games to the linear

complementarity problem. We will show that the problem of solving a parity game

can be reduced in polynomial time to the problem of solving a mean-payoff game,

and that the problem of solving a mean payoff game can be reduced in polynomial

time to the problem of solving a discounted game. This shows that the three types

of game are very strongly related.

We go on to describe a polynomial time reduction from the problem of solving

a discounted game to the linear complementarity problem. This shows that the

linear complementarity problem subsumes all of the games that we have introduced,

and motivates the inclusion of this problem in our definitions.

2.5.1 Reductions Between Games

In this section we describe a reduction from parity games to mean-payoff games that

was given by Puri [Pur95], and a reduction from mean-payoff games to discounted

games that was given by Zwick and Paterson [ZP96]. We begin with Puri’s reduc-

tion from parity games to mean-payoff games. The reduction does not change the

structure of the graph, instead it replaces each priority with a reward. More pre-

cisely, if a vertex has priority d in the parity game then it will be assigned a reward

of (−|V |)d in the mean-payoff game. This means that vertices with even priorities

will get positive rewards, and vertices with odd priorities will get negative rewards.

For example, if we applied the reduction to the parity game shown in Figure 2.1,

then we would obtain the mean-payoff game shown in Figure 2.4.

The reduction works because it ensures the following property: the sum of

the rewards on a simple cycle in the mean-payoff game is positive if and only if the

highest priority on that cycle in the parity game is even. Using this property, Puri

showed the following theorem.
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Figure 2.4: The result of reducing the parity game shown in Figure 2.1 to a mean-
payoff game.

Theorem 2.11 ([Pur95]). Let G be a parity game, and let G′ be the reduction of G

to a mean-payoff game. Player Even has a winning strategy from a vertex v in G if

and only if Value(v) > 0 in G′.

Theorem 2.11 implies that we only need to solve the qualitative zero-mean

partition problem for the mean-payoff game in order to solve the parity game. This

is because the partition (WEven,WOdd) in the parity game must be the same as the

partition (WMax,WMin) in the mean-payoff game. Moreover, a winning strategy for

Max on the set WMax is also a winning strategy for Even on the set WEven. The

same property holds for the winning strategies of Min and Odd.

We now turn our attention to the reduction from mean-payoff games to

discounted games given by Zwick and Paterson [ZP96]. The reduction does not

change the structure of the game, or the rewards assigned to the vertices. Instead,

it relies on a smart choice of discount factor for the discounted game. In particular,

they choose the discount factor to be 1−1/(4 · |V |3 ·W ), where W is maxv∈V (| r(v)|),

which is the reward with the largest magnitude. For example, if we were to reduce

the mean-payoff game shown in Figure 2.4 to a discounted game, we would choose

the discount factor to be 1 − 1/(4 · 63 · 66).

To explain why this choice of discount factor is correct, we will use ValueM(v)

to denote the value of a vertex in the mean-payoff game, and ValueD(v) to denote
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the value of the corresponding vertex in the discounted game. Zwick and Pater-

son showed bounds on how far away (1 − β) · ValueD(v) can be from ValueM(v)

as β approaches 1, and they also showed that the two values converge as β ap-

proaches 1. They observed that positional determinacy of mean-payoff games im-

plies that ValueM(v) must be a rational number whose denominator is at most |V |.

Their choice for the discount factor ensures that there can only be one such rational

number that is close enough to (1− β) ·ValueD(v), and therefore ValueM(v) can be

determined from a solution of the discounted game. This gives a polynomial time

reduction from mean-payoff games to discounted games.

2.5.2 Reducing Discounted Games To LCPs

In this section we describe the reduction from discounted games to the P-matrix

linear complementarity problem, given by Jurdziński and Savani [JS08]. Many of

the notations used in this section are taken directly from their exposition. This

reduction assumes that the discounted game is a binary game with rewards placed

on edges.

The reduction will make heavy use of the optimality equations. As we have

seen, these equations consider a pair of strategies, with one strategy for each player.

In order to simplify our definitions, we introduce the concept of a joint strategy,

which specifies the strategy decisions for both players. Formally, a joint strategy is

a function σ : V → V that picks one outgoing edge from each vertex in the game.

The notation σ ↾ Max and σ ↾ Min will be used to refer to the individual strategies

of Max and Min that constitute the joint strategy.

We introduce some notation for binary discounted games with rewards placed

on edges that will ease our exposition. For a vertex v, the function σ(v) gives the

successor of v not chosen by the joint strategy σ. In other words, we have σ(v) = λ(v)

if and only if σ(v) = ρ(v). The functions rσ and rσ both have the form V → Q, and

they give, for each vertex, the reward on the edge chosen by σ and the reward on
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the edge not chosen by σ, respectively.

The concepts that were presented in Section 2.1.3 can easily be adapted for

joint strategies. We define Play(σ, v) to be equal to the path Play(σ ↾ Max, σ ↾

Min, v). For a given joint strategy σ, the value of a vertex v when σ is played is

then defined to be Valueσ(v) = D(Play(σ, v)). A joint strategy is optimal only if

both σ ↾ Max and σ ↾ Min are optimal, and our objective is to compute an optimal

joint strategy.

The reduction begins with the optimality equations for discounted games.

For binary discounted game with rewards placed on edges, these equations are, for

every vertex v:

V (v) =





min{rλ(v) + β · V (λ(v)), rρ(v) + β · V (ρ(v))} if v ∈ VMin,

max{rλ(v) + β · V (λ(v)), rρ(v) + β · V (ρ(v))} if v ∈ VMax.

(2.11)

As we know, the optimality equations can be used to decide whether a strat-

egy is optimal. Given a joint strategy σ and a vertex v, we define the balance of v to

be the difference between the value of v and the value of the play that starts at v,

moves to σ(v) in the first step, and then follows σ:

Balσ(v) =





Valueσ(v) − (rσ(v) + β · Valueσ(σ(v))) if v ∈ VMax,

(rσ(v) + β · Valueσ(σ(v))) − Valueσ(v) if v ∈ VMin.

(2.12)

Clearly, there is a switchable edge at a vertex v if and only if Balσ(v) < 0. Since

each vertex can have only one edge that is not chosen by σ, we will say that a vertex

is switchable whenever that vertex has a switchable edge. If Balσ(v) = 0 for some

vertex then that vertex is said to be indifferent.

The reduction modifies the optimality equations for discounted games by

introducing slack variables z, w : V → Q. For each vertex v, the optimality equa-
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tion (2.11) is replaced by the following set of equations:

V (v) − w(v) = rλ(v) + β · V (λ(s)) if v ∈ VMax, (2.13)

V (v) − z(v) = rρ(v) + β · V (ρ(s)) if v ∈ VMax, (2.14)

V (v) + w(v) = rλ(v) + β · V (λ(s)) if v ∈ VMin, (2.15)

V (v) + z(v) = rρ(v) + β · V (ρ(s)) if v ∈ VMin, (2.16)

w(v), z(v) ≥ 0, (2.17)

w(v) · z(v) = 0. (2.18)

We argue that an optimal strategy for the discounted game can be derived

from a solution to the system given by (2.13)-(2.18). The complementarity condition

given in (2.18) insists that one of the two slack variables must be 0 for every vertex.

Let α ⊆ V , and suppose that there is a solution to this system of equations such

that w(v) = 0 for every v ∈ α, and z(v) = 0 for every v /∈ α. Furthermore, suppose

that v ∈ VMax. Applying Equations (2.13) and (2.14) to this solution gives:

V (v) =





rλ(v) + β · V (λ(s)) if v ∈ α,

rρ(v) + β · V (ρ(s)) if v /∈ α.

(2.19)

An identical equation can be derived for vertices v ∈ VMin. Therefore, for each

solution of the system of equations, there is a corresponding joint strategy σ for the

discounted game, which is defined to be, for every v ∈ V :

σ(v) =





λ(v) if v ∈ α,

ρ(v) if v /∈ α.

We can then rewrite Equation 2.19 to obtain, for every vertex v:

V (v) = rσ(v) + β · V (σ(s)).
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This implies that V (v) = Valueσ(v), for every vertex v. In summary, for every

solution of the system given by (2.13)-(2.18), there is a joint strategy σ such that

V (v) = Valueσ(v).

For the reduction to be correct, we must argue that the strategy σ is an

optimal strategy in the discounted game. Let v be a vertex such that v ∈ α. We

can rewrite Equations (2.14) and (2.16) as:

z(v) = V (v) − (rρ(v) + β · V (ρ(s))) if v ∈ VMax,

z(v) = (rρ(v) + β · V (ρ(s))) − V (v) if v ∈ VMin.

By substituting in our knowledge about the strategy σ into the previous equation,

we obtain:

z(v) =





Valueσ(v) − (rσ(v) + β · Valueσ(σ(s))) if v ∈ VMax,

(rσ(v) + β · Valueσ(σ(s))) − Valueσ(v) if v ∈ VMin.

An identical derivation can be made for vertices v /∈ α to obtain the same expression

for the variable w(v). Therefore, we have z(v) = Balσ(v) if v ∈ α, and w(v) =

Balσ(v) if v /∈ α. The non-negativity constraint (2.17) insists that these variables

should not be negative, which implies that Balσ(v) ≥ 0 for every vertex v. By

Corollary 2.9, we have that σ is an optimal strategy for the discounted game.

We now argue that the system (2.13)-(2.18) can be rewritten as an LCP.

We will assume that every vertex in V is assigned a unique index in the range

{1, 2, . . . |V |}, which can be used to identify it. For each |V | by |V | matrix A, we

define Â to be A with every element in every column whose index v ∈ VMin negated.

(Â)st =





Ast if t ∈ VMax,

−Ast if t ∈ VMin.
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For every joint strategy σ we define a matrix Tσ to be the adjacency matrix of the

sub-graph defined by σ. Therefore, we define:

(Tσ)st =





1 if σ(s) = t,

0 otherwise.

If rλ and rρ are the vectors of rewards assigned to each vertex, and I is the identity

matrix, then Equations (2.13)-(2.16) can be rewritten in matrix form as:

ÎV = w + Îrλ + βT̂λV,

ÎV = z + Îrρ + βT̂ρV.

By eliminating V from these equations and simplifying, we obtain:

w = (Î − βT̂λ)(Î − βT̂ρ)−1(z + Îrρ) − Îrλ.

Therefore, we can define an LCP with the following inputs:

M = (Î − βT̂λ)(Î − βT̂ρ)−1,

q = MÎrρ − Îrλ.

Jurdziński and Savani proved the following Theorem.

Theorem 2.12 ([JS08]). The matrix M is a P-matrix, and the unique solution

of LCP(M, q) can be used to find an optimal strategy for the discounted game.
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Chapter 3

Algorithms

In this section we describe the algorithms that have been proposed to solve our

problems. The first half of this chapter surveys the known results on these topics.

In the second half of this chapter, we describe in detail the algorithms that will be

studied in this thesis.

3.1 A Survey Of Known Algorithms

There are three prominent techniques that are used to solve Markov decision pro-

cesses. The first is to compute a solution of the optimality equations using value

iteration, which was proposed by Bellman [Bel57]. Secondly, there are reductions

from the problem of solving a Markov decision process to linear programming [d’E63,

Man60]. These reductions allow the use of standard linear programming techniques,

such as the simplex method [WD49, Dan49], the ellipsoid method [Kha80], and the

interior point method [Kar84]. Finally, there is strategy improvement, also known

as policy iteration, which was proposed by Howard [How60]. Strategy improvement

algorithms will be described in detail in Section 3.2.

Most of the complexity results have been shown for the discounted reward

criterion. Tseng has shown that value iteration terminates, and that it is a weakly
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polynomial time algorithm, under the assumption that the discount factor is con-

stant [Tse90]. Puterman has replicated this result for strategy improvement [Put05].

There are two problems with these results, which are the assumption that the dis-

count factor is constant, and the fact that they do not show strongly polynomial

time upper bounds. The linear programming formulation avoids the first prob-

lem, since these linear programs can be solved in weak polynomial time irrespec-

tive of the choice of the discount factor. In attacking the second problem, Ye has

shown a strongly-polynomial time interior point-algorithm for solving these linear

programs [Ye05], and he has shown that strategy improvement can be made to ter-

minate in strongly polynomial time [Ye10]. On the other hand, both of Ye’s results

assume that the discount factor is constant. The problem of finding a strongly poly-

nomial time algorithm that takes the discount factor as part of the input is still

open.

Strategy improvement algorithms for two player games were first devised

by Hoffman and Karp [HK66], who studied a variation of Shapley’s stochastic

games [Sha53]. Their algorithm is a generalisation of Howard’s strategy improve-

ment algorithm for Markov decision processes [How60]. The techniques used by

Hoffman and Karp have been adapted by Puri [Pur95], to produce a strategy im-

provement algorithm that solves discounted games. This algorithm will be described

in detail in Section 3.2.2.

Another possible way of solving a discounted game is to apply Zwick and

Paterson’s reduction [ZP96] from the problem of solving a discounted game to the

problem of solving a simple stochastic game [Con92]. Simple stochastic games com-

bine the traits found in Markov decision processes and two player games: the games

have two players, and the outcome when a player makes a move is determined by a

probability distribution over successor vertices. The two players play a reachability

game: one player is trying to move the token to a target vertex, and the opponent

is trying to prevent the token from arriving at the target vertex. There are various
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algorithms available to solve simple stochastic games [Con93].

The most widely known algorithm for solving mean-payoff games is the

psuedo-polynomial time algorithm given by Zwick and Paterson [ZP96]. The run-

ning time of this algorithm is bounded by O(|V |3 · |E| ·W ), where W is the largest

magnitude of a reward. Therefore, this algorithm will perform well when all rewards

are small. However, this algorithm will not perform well on games with exponen-

tially large rewards, such as those produced by the reduction from parity games to

mean-payoff games.

Two strategy improvement algorithms have been considered for mean-payoff

games. The first is based on the gain-bias optimality equations. Filar and Vrieze

devised a strategy improvement algorithm for a concurrent version of mean-payoff

games [FV97]. In these games, the vertices are not divided between the players.

Instead, at each vertex, the players play a matrix game to decide where the token

is moved. This means that the two players pick their moves concurrently, and the

successor is determined by the combination of these two moves. Mean-payoff games

can be seen as a special case of these games, and the strategy improvement algorithm

of Filar and Vrieze corresponds to a strategy improvement algorithm that uses the

gain-bias optimality equations for this special case.

The second strategy improvement algorithm for mean-payoff games is the al-

gorithm given by Björklund and Vorobyov [BV07]. While the strategy improvement

algorithm of Filar and Vrieze computes the exact value for each vertex, this algo-

rithm only computes the zero mean partition of the mean-payoff game. On the other

hand, it can be shown that the running time of this algorithm is always bounded

by O(|V |3 · |E| ·W · (log n + logW )), which makes this algorithm competitive with

the algorithm of Zwick and Paterson.

The classical algorithm for parity games is a recursive algorithm that was

originally given by McNaughton [McN93]. A reinterpretation of this algorithm was

provided by Zielonka [Zie98]. The best upper bound on the running time of this
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algorithm is O(2|V |). This result can be improved if the game contains many vertices

that are assigned the same priority. In this case, the running time can be bounded

by O(|V |d+1), where d is the number of distinct priorities that are used in the game.

On the other hand, it is known that this algorithm is not polynomial, because

families of games are known for which this algorithm takes an exponential number

of steps [Jur00, Fri10b].

Jurdziński, Paterson, and Zwick present a modified version of the recursive

algorithm that achieves a better running time in the worst case [JPZ06]. The recur-

sive algorithm can take exponential time, because the result of each recursive call

may allow the algorithm to make only a small amount of progress. They show how a

preprocessing step can be added before each recursive call, and how this preprocess-

ing ensures that the result of the recursive call allows a significant amount of progress

to be made. By performing a careful balancing act between the amount of time spent

preprocessing, and the amount of progress that each recursive call achieves, they ob-

tained an algorithm whose worst case running time is sub-exponential: the running

time of their algorithm is bounded by nO(
√
n). This is the best known running time

for solving a parity game in which the number of distinct priorities is large.

The small progress measures algorithm given by Jurdziński is faster than

the recursive algorithm when the number of distinct priorities is small [Jur00]. A

progress measure is a labelling of the vertices that satisfies certain properties. The

existence of a progress measure implies that one of the players has a winning strategy

for a certain set of vertices in the game. Jurdziński showed that a small progress

measure can be computed in O(m · n⌈d/2⌉) time, which is better than the recursive

algorithm when the number of distinct priorities is smaller than
√
|V |. Jurdziński

also provides an exponential lower bound for this algorithm by providing a family

of polynomially sized games upon which the small progress measure algorithm takes

(⌈n/d⌉)⌈d/2⌉ many steps.

Schewe has combined the ideas from the small progress measures algorithm
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with the sub-exponential recursive algorithm to obtain the state of the art algorithm

for parity games with a small number of distinct priorities [Sch07]. The algorithm

of Jurdziński, Paterson, and Zwick uses a brute force method to perform prepro-

cessing. Schewe showed that the small progress measures algorithm can be adapted

to perform this preprocessing faster than the brute force method. Through care-

ful analysis, he obtained a bound of O(m · nd/3+o(1)) for the running time of his

algorithm.

Finally, Vöge and Jurdziński have proposed a discrete strategy improvement

algorithm for parity games [VJ00]. Most strategy improvement algorithms measure

the worth of a strategy using a vector of rational numbers. However, Vöge and

Jurdziński give a discrete measure that can be used to rate strategies. This is

useful, because the discrete measure provides an attractive platform for analysis of

strategy improvement for parity games.

One simple algorithm for solving a linear complementary problem is Murty’s

least-index algorithm [Mur74]. This is a pivoting algorithm, and it selects the vari-

able that will be pivoted using a least-index rule. This algorithm is guaranteed

to terminate when the input matrix is a P-matrix. However, there are families of

examples upon which this algorithm takes an exponential number of steps to find a

solution to the LCP, even when applied to a P-matrix LCP [Mur78].

The problem of solving a bimatrix game can be reduced to the problem of

solving a linear complementarity problem. Lemke and Howson devised an algorithm

to solve the LCPs that arise from this reduction [LH64]. This was later generalised

by Lemke to provide an algorithm that can be applied to an arbitrary LCP [Lem65].

We will give a detailed description of Lemke’s algorithm in Section 3.3.1.

Lemke’s algorithm is guaranteed to terminate, but it is not guaranteed to

find a solution to the LCP. This is because the methods used by the algorithm may

not be able to process a given LCP. When this occurs, Lemke’s algorithm terminates

in a well defined manner, which is called ray termination. The fact that Lemke’s
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algorithm terminates in this way for a certain LCP does not imply that the LCP

has no solution. It only implies that Lemke’s algorithm is incapable of finding a

solution for that LCP. Fortunately, in the setting that we are interested in, where

the input is a P-matrix, it is known that Lemke’s algorithm will always terminate

with the unique solution to the LCP.

It is known that Lemke’s algorithm can take an exponential number of steps

to find a solution [Mur78, Fat79], even for P-matrix LCPs. However, the behaviour

of the algorithm depends on a user supplied covering vector. For example, Adler

and Megiddo studied the performance of Lemke’s algorithm for the LCPs arising

from randomly chosen linear programming problems [AM85]. They show that if a

natural choice for the covering vector is used, then the expected number of steps

taken by Lemke’s algorithm is exponential. On the other hand, a carefully chosen

covering vector allows Lemke’s algorithm to terminate after an expected quadratic

number of steps on these LCPs.

Another pivoting method for solving a linear complementarity problem is the

Cottle-Dantzig algorithm [DC67]. This method is also known to always terminate

with a solution when it is applied to a P-matrix linear complementarity problem. It

is also known that this algorithm can take an exponential number of steps [Mur88].

This algorithm will be discussed in detail in Section 3.3.2.

3.2 Strategy Improvement

In this section we describe the strategy improvement algorithms that have been

proposed for Markov decision processes and for two player games. Each model has

a specific strategy improvement algorithm, however all of these algorithms have

the same basic structure. We will begin by giving an outline of the features that all

strategy improvement algorithms share, and we then go on to describe the particular

details for each specific strategy improvement algorithm.
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The core idea behind strategy improvement is to use a valuation function

Valσ, which assigns a valuation to each vertex. Typically, the valuation of a vertex

will be a rational number, but there are some algorithms that assign more complex

valuations to each vertex. The discrete strategy improvement algorithm for parity

games is one example of such an algorithm. For now we will assume that our

valuation function is of the form Valσ : V → Q. The valuation function measures

how good a strategy is, and it therefore can be used to compare different strategies.

Given two strategies σ and σ′, we we say that σ ≺ σ′ if Valσ(v) ≤ Valσ
′

(v) for every

vertex v, and Valσ(v) < Valσ
′

(v) for some vertex v. Note that it is possible for two

strategies to be incomparable in the ≺ ordering, and that therefore, the ordering ≺

provides a partial order over strategies.

The principal idea behind strategy improvement is to modify each strategy

that it considers in order to create an improved strategy. To do this, it uses the

concept of a switchable action or edge that was introduced in Section 2.4. Strategy

improvement begins with an arbitrary strategy. In each iteration the algorithm

computes the set of actions or edges that are switchable in the strategy that it is

currently considering, and it then picks some subset of the switchable actions and

switches them. This operation creates a new strategy that will be considered in

the subsequent iteration. The algorithm only terminates when it reaches a strategy

with no switchable actions or edges. Algorithm 1 shows the general structure of a

strategy improvement algorithm.

Algorithm 1 A strategy improvement algorithm.

σ := an arbitrary strategy
while σ has a switchable edge do

Compute Valσ

P := the set of the switchable edges in σ
F := some subset of P
σ := σ with the edges in F switched

end while
return σ
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The key property is that switching a subset of switchable edges creates an

improved strategy. Strategy improvement computes a sequence of strategies that

monotonically increase in the ≺ ordering. Since there are only a finite number of

positional strategies, this process cannot continue forever. This implies that strategy

improvement must eventually find a strategy that has no switchable edges or actions.

The second property that must hold is that if a strategy has no switchable actions or

edges, then it is an optimal strategy for the MDP or game. In other words, strategy

improvement must terminate, and it only terminates when a solution to the MDP

or game has been found.

An important part of a strategy improvement algorithm is the switching pol-

icy. This is a procedure that decides which subset of the switchable edges or actions

should be switched in each iteration. The choice of switching policy has an effect on

the running time of the strategy improvement algorithm. We know that all strategy

improvement algorithms cannot take more iterations than the total number of posi-

tional strategies that are available. However, strategy improvement algorithms can

be shown to have better worst case running bounds when an appropriate switching

policy is chosen.

The proofs of upper bounds on the worst case running time for switching

policies are often independent from the specific strategy improvement algorithms

that use them. This is because all strategy improvement algorithms have an under-

lying combinatorial structure called a unique sink orientation [Wil88]. Many proofs

of worst case running time are in fact proofs that deal with these structures, rather

than with a specific strategy improvement algorithm for a game or an MDP. On the

other hand, proofs of lower bounds for the running time of a switching policy are

often specific to a particular strategy improvement algorithm.

This section begins by giving strategy improvement algorithms for the various

types of MDP, and game, that we are interested in. The second half of this section

gives a survey of the switching policies that have been proposed, and the running
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time bounds that have been proved for these switching policies.

3.2.1 Strategy Improvement For Markov Decision Processes

We will describe the strategy improvement algorithm for the average-reward crite-

rion that was given by Howard [How60]. This algorithm attempts to find a solution

of the gain-bias optimality equations. For each strategy σ, the algorithm computes

the gain and bias of σ by solving the system of equations given in (2.6)–(2.8), and

for every vertex v we define Valσ(v) = (Gσ(v), Bσ(v)). These valuations will be

compared lexicographically: we say that (g, b) < (g′, b′) if g < g′, or if g = g′ and

b < b′.

The algorithm first checks whether there is an action a at a vertex v such

that Gσ(a) > Gσ(v). We will call such an action gain-switchable. If there is such

an action, then the algorithm picks some subset of the gain-switchable actions and

switches them. We denote the operation of switching the action a at the vertex w

in the strategy σ as σ[a], and the strategy σ[a] is defined to be, for every vertex v:

σ[a](v) =





a if v = w,

σ(v) otherwise.

If S is some subset of the switchable actions in σ that contains at most one action

for each vertex, then we define σ[S] to be σ with every action in S switched. It

can be shown that switching a subset of the gain-switchable actions will yield a

strategy with an improved gain. The original proof of this theorem, as shown in

the book of Puterman [Put05, Theorem 9.2.6], only deals with the case where every

gain-switchable action is switched. This can easily be adapted to prove our claim,

by removing the gain-switchable actions that we do not intend to switch, and then

applying the original theorem to the resulting MDP.

Theorem 3.1 ([Put05, Theorem 9.2.6]). In the average-reward criterion, if σ is
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a strategy and σ′ is a strategy that is obtained by switching some subset of gain-

switchable actions in σ then Gσ(v) ≤ Gσ′
(v) for every vertex v, and there is at least

one vertex for which this inequality is strict.

If there are no gain-switchable actions, then the algorithm checks whether

there are any bias-switchable actions. An action is bias-switchable if it is switch-

able but not gain-switchable. If there is at least one bias-switchable action, then

the algorithm selects some subset of the bias-switchable actions and switches them.

Once again, it can be shown that switching a subset of the bias-switchable actions

produces an improved strategy. The following theorem can be proved using the The-

orem shown in the book of Puterman [Put05, Theorem 9.2.6], in the same manner

as Theorem 3.1.

Theorem 3.2 ([Put05, Theorem 9.2.6]). In the average-reward criterion, if σ is

a strategy and σ′ is a strategy that is obtained by switching some subset of bias-

switchable actions in σ then Gσ(v) ≤ Gσ′

(v) for every vertex v, and if Gσ(v) =

Gσ′
(v), then Bσ(v) ≤ Bσ′

(v). Moreover, there is at least one vertex v such that

either Gσ(v) < Gσ′
(v), or Gσ(v) = Gσ′

(v) and Bσ(v) < Bσ′
(v).

Theorems 3.1 and 3.2 together imply that the valuation function Valσ must

monotonically increase when a subset of the switchable actions is switched. This im-

plies the correctness of the strategy improvement algorithm that we have described.

3.2.2 Strategy Improvement For Discounted Games

Strategy improvement for two player games uses the same ideas as strategy im-

provement for Markov decision processes. In this section we describe a strategy im-

provement algorithm for discounted games that was originally given by Puri [Pur95].

Strategy improvement algorithms for games choose one player to be the strategy im-

prover, and attempt to find an optimal strategy for that player. In our exposition,

we will choose player Max to take this role.
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The first problem that we have is to define what a valuation should be in this

setting. When we considered MDPs, we could directly use the value of a strategy

as a valuation. This is not possible in the game setting, because even if we fix a

strategy for one of the players, the payoff that is obtained is determined by how the

opponent chooses to play against that strategy. In order to define the valuation for

a given strategy, we assume that the opponent is playing a best response against

that strategy. If Max plays a strategy σ, then a Min strategy τ is a best response if

it satisfies Valueσ,τ (v) ≤ Valueσ,τ
′

(v) for every Min strategy τ ′ and every vertex v.

Therefore, our valuation of a Max strategy will be the value that it obtains in the

worst case, which occurs when Min plays a best response.

A best response can be computed by solving a one player discounted game.

Once a Max strategy σ has been fixed, every edge (v, u) such that v ∈ VMax and

σ(v) 6= u can be removed from the game. What remains is a game in which only

Player Min has meaningful strategic decisions, and this can be converted into an

equivalent one player game by giving all the Max vertices to player Min. The

problem of solving a one player discounted game can be formulated as a linear

program, and therefore, a best response to a Max strategy σ can be computed in

polynomial time. Moreover, there is a strongly-polynomial time algorithm for the

linear programs that arise from this reduction [MTZ10].

For a given Max strategy σ, there may be several Min strategies that are best

responses to σ. However, strategy improvement will compute only one best response

for each strategy σ. Therefore, we define the function br : ΠMax → ΠMin, which

selects a best response for each Max strategy. We make no assumptions about

which best response is chosen. The valuation function for the strategy σ will be

Valueσ,br(σ). For this reason, we define Valσ(v) to be shorthand for Valueσ,br(σ)(v).

It is not difficult to see that our valuation function satisfies the condition that

a strategy σ is optimal if and only if it has no switchable edges. The best response is

an optimal counter strategy, which implies that it cannot have any switchable edges
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when it is played against σ. Therefore, if σ also has no switchable edges, then we

know that Valσ(v) is a solution to the optimality equations for discounted games.

If this holds, then σ is an optimal strategy for Max, and that br(σ) is an optimal

strategy for Min.

We must also have that switching some subset of the switchable edges in a

strategy creates an improved strategy. The concept of switching carries over from

Markov decision processes: switching an edge (v, u) in a strategy σ creates a strategy

σ[v 7→ u] where, for every vertex w:

σ[v 7→ u](w) =





u if w = v,

σ(w) otherwise.

If S is a set of edges that contains at most one edge for each vertex, then we once

again define σ[S] to be σ with every edge in P switched.

Theorem 3.3 ([Pur95]). Let σ be a strategy for Max, and let S be a subset of the

switchable edges in σ that contains at most one edge for each vertex. For every

vertex v we have:

Valσ(v) ≤ Valσ[S](v).

Moreover, there is some vertex for which this inequality is strict.

3.2.3 Strategy Improvement For Mean-Payoff Games

The methods that we described in the previous section can easily be adapted to

produce a strategy improvement algorithm for mean-payoff games that uses gain

and bias to measure the quality of each Max strategy. However, Björklund and

Vorobyov have given a different strategy improvement algorithm for the zero-mean

partition problem that does not use the gain and bias formulation [BV07]. We will

first describe this algorithm, and we will then explain how it is related to the gain

and bias optimality equations.
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As usual, we will pick Max to be the strategy improver. The first thing that

this algorithm does is to modify the game. The game is modified by adding a special

sink vertex s, and an additional outgoing edge (v, s) will be added from every Max

vertex v.

Definition 3.4 (Modified Game). A mean-payoff game (V, VMax, VMin, E, r) will be

modified to create (V ∪ {s}, VMax, VMin ∪ {s}, E′, r′), where E′ = E ∪ {(v, s) : v ∈

VMax} ∪ {(s, s)}, and:

r′(v) =





0 if v = s,

r(v) otherwise.

The strategy improvement algorithm of Björklund and Vorobyov always

works with a modified game. Therefore, whenever we speak about the algorithm we

will assume that the game has been modified in this way. The purpose of modifying

the game is to ensure that Max always has an admissible strategy. A Max strategy σ

is admissible if Min cannot form a non-positive cycle when playing against σ. This

means that M(Play(v, σ, τ)) > 0 for every Min strategy τ .

The algorithm must be initialised with some admissible strategy. If the

user provides an initial admissible strategy then it can be used. Otherwise, the

modification of the game ensures that an admissible strategy can always be found.

This strategy will be called σ0, and it is defined so that σ0(v) = s for every vertex

v ∈ VMax. The strategy σ0 is admissible unless there is some negative cycle that

Min can form without ever passing through a vertex in VMax. However, these cycles,

and the vertices from which Min can force the token to these cycles, can be removed

and added to WMin in a preprocessing step, using Karp’s algorithm for finding the

minimum weighted cycle in a directed graph [Kar78]. Therefore, we can assume

that σ0 is an admissible strategy.

We can now describe the valuation function that this algorithm uses. We

begin by giving a valuation function for a pair of strategies σ and τ , for players Max
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and Min respectively. Suppose that Max plays an admissible positional strategy σ

and Min plays a positional strategy τ . Since both these strategies are positional, the

play that is consistent with σ and τ from a starting vertex v0 must either consist of,

a possibly empty, initial simple path followed by an infinitely repeated simple cycle,

or consist of a finite path that ends at the sink. In the first case, the admissibility

of the strategy σ ensures that the sum of the rewards on the cycle is positive, and

so we define the valuation of the vertex v when σ and τ are played to be ∞. In the

second case, we define the valuation of the vertex v when σ and τ are played to be

sum of the rewards on the path to the sink.

Definition 3.5 (Valuation). Let σ be an admissible positional strategy for Max and

let τ be a positional strategy for Min. We define the function Valσ,τ : V → Z∪ {∞}

as follows. If Play(v0, σ, τ) = 〈v0, v1, . . . , vk, 〈c0, c1, . . . , cl〉ω〉, for some vertex v0,

then we define Valσ,τ (v0) = ∞. Alternatively, if Play(v, σ, τ) = 〈v0, v1, . . . , vk, 〈s〉ω〉

then we define Valσ,τ (v0) =
∑k

i=0 r(vi).

Given an admissible strategy σ for Max, a best response is then a strategy

for Min that minimizes the valuation when σ is played. Formally, an Min strategy τ

is a best response to σ if Valσ,τ (v) ≤ Valσ,τ
′

(v) for every Min strategy τ ′ and every

vertex v. For an admissible strategy, we can compute a best response by removing,

from each Max vertex, every edge that is not chosen by σ, and then computing the

shortest path from each vertex to the sink. If there is not path to the sink from some

vertex, then the valuation of that vertex must be ∞. We again define br(σ) to be a

function that chooses some best response for the strategy σ. The valuation function

for each Max strategy σ will be Valσ,br(σ), and we again define Valσ = Valσ,br(σ).

We define the appeal of an edge to be Appealσ(v, u) = r(v) + Valσ(u). As

usual, an edge is switchable in the Max strategy σ if Appealσ(v, u) > Valσ(v).

This is equivalent to the condition Valσ(σ(v)) < Valσ(u). As usual, we have that

switching a subset of switchable edges will create an improved strategy.
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Theorem 3.6 ([BV07, Theorem 5.1]). Let σ be an admissible strategy and P be

the set of edges that are switchable in σ. Let F ⊆ P be a subset of the switchable

edges that contains at most one outgoing edge from each vertex. The strategy σ[F ]

is admissible, and we have σ ≺ σ[F ].

Secondly, we have that a strategy with no switchable edges is optimal in the valuation

ordering. A strategy σ is optimal in the valuation ordering if there is no strategy σ′

with Valσ(v) < Valσ
′

(v) for some vertex v.

Theorem 3.7 ([BV07, Theorem 5.2]). A strategy with no switchable edges is optimal

in the valuation ordering.

A solution to the zero mean partition problem can be derived from an optimal

strategy σ: the set WMax = {v ∈ V : Valσ(v) = ∞} and the set WMin = {v ∈ V :

Valσ(v) < ∞}.

We now argue that this strategy improvement algorithm is strongly related

to the gain and bias optimality equations. Suppose that we add the edge (s, s) to

the sink vertex s, and consider the mean-payoff game played on this modified game.

If σ is a strategy such that Valσ(v) < ∞ for some vertex v, then we would have

Gσ(v) = 0 in the mean-payoff game, because the path chosen by σ and br(σ) ends

at the sink, and the mean-payoff that is obtained from the sink vertex is 0. Now, if

we rewrite the bias equation with the assumption that Gσ(v) = 0 we obtain:

Bσ(v) =





r(v) + Bσ(σ(v)) if v ∈ VMax,

r(v) + Bσ(br(σ)(v)) if v ∈ VMin.

Therefore, if Play(v, σ,br(σ)) = 〈v = v0, v1, . . . , vk, s, . . . 〉, then we have:

Bσ(v) = Bσ(s) +

k∑

i=0

r(vi).

Since s is a one-vertex cycle, and we insist that some vertex on every cycle should
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have the bias set to 0, we must have Bσ(s) = 0. Therefore, Bσ(v) = Valσ(v) for

every vertex with a finite valuation. In summary, the Björklund-Vorobyov strategy

improvement algorithm modifies the game so that the gain of every strategy is at

least 0, and then uses a simplification of the bias equation for its valuation function.

3.2.4 Switching Policies

The section describes the final component of a strategy improvement algorithm.

Strategy improvement allows for any subset of switchable edges to be switched

in each iteration of strategy improvement. Clearly, in order to have a complete

algorithm, we need a procedure that picks which edges should be switched in each

iteration. We will call this procedure a switching policy. A simple switching policy

can be thought of as a function that picks a subset of the edges or actions that are

switchable in the current strategy. In the average-reward MDP setting, we will have

a switching policy for picking gain switchable actions, and a switching policy for

picking bias switchable actions.

The switching policies that have been studied so far work for both two player

games and Markov decision processes, and the upper bounds for the running time

of these switching policies that have been found are usually the same across the

two models. On the other hand, the lower bounds that have been found are usually

specific to a particular type model. We will indicate the scope of the lower and

upper bound results as we present them. When we give formal definitions of these

switching policies, we will use the game formulation. These definitions can easily be

adapted for the MDP setting.

We begin by stating a trivial upper bound on the number of iterations that

any strategy improvement algorithm can take to terminate. Since strategy improve-

ment algorithms cannot consider the same strategy twice, the number of iterations

is obviously bounded by the total number of positional strategies that can be con-

sidered by the algorithm. Let Degree(v) denote the number of outgoing edges from
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the vertex v in a two player game, or the number of outgoing actions from the ver-

tex v in an MDP. Strategy improvement for two player games must terminate after

at most
∏

v∈VMax
Degree(v) iterations, and strategy improvement for MDPs must

terminate after at most
∏

v∈V Degree(v) iterations. These bounds hold no matter

what choices the switching policy makes.

The simplest possible switching policy is to arbitrarily pick a single switchable

edge in each iteration. This switching policy can be defined as Single(F ) = {(v, u)}

where (v, u) is some edge contained in F . It has long been known that strategy

improvement equipped with the single-switch policy can take exponential time. For

games, the examples were originally found by Lebedev, and Björklund and Vorobyov

adapted them to show an exponential lower bound on the number of iterations taken

by their strategy improvement algorithm, when it is equipped with the single-switch

policy [BV07]. For MDPs, Melekopoglou and Condon have shown an exponential

lower bound for a single-switch strategy improvement using a very similar family of

examples [MC94].

The most natural class of switching policies are all-switches policies. The idea

here is that the strategy should be switched at every vertex that has a switchable

edge. This defines a class of switching policies, because a vertex may have more

than one switchable edge, and different switching policies may pick different edges

to switch at each vertex. The most natural all-switches policy is the greedy switching

policy, that always picks the edge with maximum appeal.

We formally define the greedy switching policy. We must be aware that there

may be more than one edge that maximizes the appeal at a vertex. For the sake

of simplicity, we will use an index function to break ties: we will assume that each

vertex v is given a unique index in the range {1, 2, . . . , |V |}, which we will denote

as Index(v). The set of edges that the greedy policy will pick for the strategy σ can
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then be defined as follows:

Greedyσ(F ) = {(v, u) : There is no edge (v,w) ∈ F with

Appealσ(v, u) < Appealσ(v,w) or with

Appealσ(v, u) = Appealσ(v,w) and Index(u) < Index(w)}.

The best upper bound that has been shown for strategy improvement algo-

rithms equipped with the greedy policy is O(2n/n) iterations [MS99]. This upper

bound holds for games and for MDPs. For many years, people were unable to find ex-

amples upon which strategy improvement equipped with the greedy policy took sig-

nificantly more than a linear number of iterations to terminate. It was for this reason

that greedy was conjectured to always terminate after a polynomial number of steps.

However, in a breakthrough result, Friedmann found a family of parity games upon

which the strategy improvement algorithm of Vöge and Jurdziński [VJ00] equipped

with the greedy policy takes an exponential number of steps [Fri09, Fri10a]. It was

later shown that this result can be generalised to prove an exponential lower bound

for the strategy improvement for discounted games [And09]. It is also not difficult

to adapt Friedmann’s examples to produce a set of input instances upon which

the Björklund-Vorobyov strategy improvement algorithm equipped with the greedy

policy takes an exponential number of steps.

Perhaps the most intriguing type of switching policies are optimal switching

policies. A switching policy is optimal if for every strategy σ it selects a subset of

switchable edges F that satisfies Valσ[H](v) ≤ Valσ[F ](v) for every set H that is a

subset of the switchable edges in σ, and for every vertex v. It is not difficult to show

that such a set of edges must always exist, however at first glance it would seem

unlikely that such a set could be efficiently computed. Nevertheless, Schewe has

given an algorithm that computes such a set in polynomial time for the Björklund-

Vorobyov strategy improvement algorithm [Sch08]. Therefore, optimal switching
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policies can realistically be implemented for solving parity and mean-payoff games.

No analogue of this result is known for discounted games or for MDPs.

Although, using an optimal switching policy would seem likely to produce

better results than the greedy policy, Friedmann has shown that his exponential

time examples for the greedy policy can be adapted to provide a family of exam-

ples upon which an optimal switching policy will take an exponential number of

steps [Fri10a]. Therefore, optimal switching policies perform no better than greedy

switching policies in the worst case. It should be noted that the word optimal is

used to describe the set of edges that an optimal switching policy chooses to switch.

It does not imply that a strategy improvement algorithm equipped with an optimal

policy will have an optimal running time. There may be switching policies that

do not always make the maximal increase in valuations in every iteration, but still

perform better in terms of worst case complexity.

Randomized switching policies have been shown to have better worst case

complexity bounds. Mansour and Singh considered a switching policy that selects

a subset of switchable edges uniformly at random [MS99]. They showed that this

switching policy will terminate after expected O(20.78n) number of iterations for

binary games, and an expected O((1 + 2/ log k) · k/2)n) number of iterations for

games with out-degree at most k. These upper bounds hold for both games and

MDPs.

The switching policy with the best currently-known worst case complexity

bound is the random-facet switching policy. This switching policy is based on the

randomized simplex methods for linear programming given by Kalai [Kal92] and

Matoušek, Sharir, and Welzl [MSW96]. The first switching policy based on this

method was given by Ludwig [Lud95], which terminates after an expected 2O(
√
n)

number of iterations. However, his switching policy only works for binary games.

This shortcoming has been rectified by the switching policy described by Björklund

and Vorobyov [BV05], which terminates after an expected 2O(
√
n logn) number of

60



iterations for both games and MDPs.

In a recent result, Friedmann, Hansen, and Zwick have found a family of

parity games upon which this bound is almost tight: the random-facet switching

policy will take an expected 2Ω(
√
n/ logn) iterations to terminate [FHZ10]. This lower

bound can be extended to cover the strategy improvement algorithm for discounted

games, and the Björklund-Vorobyov strategy improvement algorithm for the zero

mean partition. This lower bound is not known to hold for strategy improvement

for MDPs.

3.3 Algorithms for LCPs

3.3.1 Lemke’s Algorithm

Lemke’s algorithm modifies the LCP with a positive covering vector d and a positive

scalar z0. The scalar z0 becomes a new variable in the modified problem. The

covering vector can be chosen to be any positive vector. The LCP is modified by

replacing the matrix equation (2.1) with:

w = Mz + q + dz0. (3.1)

We are interested in almost complementary solutions to this modified system. A

solution is almost complementary if it has n basic variables, and if there is at most

one pair of complementary variables that are non-basic in the solution (recall that a

variable is basic if it is allowed to be non-negative in the solution). Lemke’s algorithm

will compute a sequence of almost complementary solutions to the modified system.

An initial almost complementary solution can be found easily. Let e =

min(qi/di : 1 ≤ i ≤ n). If e is positive, then every element of q must be positive,

so the LCP has a trivial solution, and the algorithm can terminate. Otherwise, if

we set z0 = −e, then we have that setting w = q + dz0 and z = 0 is an almost

61



complementary solution. The two vectors clearly satisfy Equation 3.1 and they

obviously satisfy the complementarity condition. They satisfy the non-negativity

constraint, because for each variable wi we have wi = q−d ·e ≥ 0. Moreover, for the

index i where qi = e we have wi = q− d · e = 0 and zi = 0. The algorithm proceeds

by performing a pivot operation between the variable z0 and the variable wi.

For example, consider the following P-matrix linear complementarity prob-

lem:

M =




2 1

1 3


 , q =



−2

−3


 .

If we choose the covering vector to be di = 1 for every i, then we have that

min(qi/di : 1 ≤ i ≤ n) is −3. It can easily be verified that if z0 is set to −3,

then q + d · z0 is positive. Moreover, the second component of w is 0. The algo-

rithm would therefore perform a pivot operation between the variable z0 and the

variable w2.

This pivot operation is implemented as follows. To begin, the algorithm

constructs the tableaux [I,M, d, q], which is:




1 0 2 1 1 −2

0 1 1 3 1 −3


 .

The column associated with z0 is the column that contains the covering vector d,

and the column associated with w2 is the second column of the identity matrix.

These two columns are swapped to obtain the following tableaux:




1 1 2 1 0 −2

0 1 1 3 1 −3


 .

The algorithm then performs Gauss-Jordan elimination to transform the first two

columns back to an identity matrix. It can easily be seen that subtracting the
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second row from the first row will achieve this. Therefore, the algorithm arrives at

the following tableaux: 


1 0 1 −2 −1 1

0 1 1 3 1 −3


 .

The new LCP can be read off from this tableaux, to give:

M =




1 −2

1 3


 , d =



−1

1


 , q =




1

−3


 .

In this LCP, the variable z0 is the second variable in w, and the variable w2 is

multiplied by the covering vector d. It can easily be verified that setting w1 = q1,

z0 = 3, and all other variables to 0 gives an almost complementary solution to this

LCP.

We now discuss how Lemke’s algorithm moves from one almost complemen-

tary solution to the next. Since each almost complementary solution has exactly n

basic variables, one of which will be z0, the solution must contain a complementary

pair of variables wi and zi where both wi = 0 and zi = 0. One of these variables will

be chosen to be the driving variable. In the next almost complementary solution,

the driving variable will be basic, and some basic variable in the current solution

will be made non-basic. The difficulty is choosing which basic variable in the cur-

rent solution can be made non-basic while ensuring that we still have an almost

complementary solution. In particular, we want to ensure that all basic variables in

the next solution are positive.

In each step of the algorithm our almost complementary solution will have

the following form:

xB = M ′xN + q′.

Where xB is the n dimensional vector of basic variables, xN is the n+1 dimensional

vector of nonbasic variables, M ′ is an n by n+1 matrix which is the result of applying
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pivot operations to M and d, and q′ is the result of applying pivot operations to q.

Suppose that the driving variable ni is the i-th component of xN . In the next

solution, we will allow ni to become basic, which means that ni will rise from 0 to

some positive value. The question we are interested in is: how far can ni be raised

before some basic variable becomes negative? If e is the i-th column of M ′, then for

each basic variable bj we have:

bj = ej · ni + q′j.

If ej is positive then the value of the basic variable bj will rise as the value of ni

rises. On the other hand, if ej is negative then ni can only be increased to −q′j/ej

before the variable bj becomes negative.

This gives us the following minimum ratio test to decide which variable

should be made non-basic:

min{−q′j/ej : j ∈ {1, 2, . . . n} and ej < 0}. (3.2)

The minimum ratio test gives us the smallest amount that ni can be increased

before some basic variable becomes negative. The basic variable bj that achieves

this minimum is called the blocking variable. Lemke’s algorithm will perform a pivot

operation between the driving variable and the blocking variable.

After the pivot operation has taken place, we can set the driving variable be

basic, and the blocking variable to be non-basic. We can then compute a solution

to our new system of equations. By using the minimum ratio test, it is guaranteed

that all of our basic variables will be positive in this new solution. Moreover, in the

previous iteration there was exactly one complementary pair of variables that were

non-basic. Since we chose one of those variables to be the driving variable, it follows

that there can be at most one pair of complementary variables that are non-basic

in the current iteration. Since z0 is still a basic variable, we also have that there
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is at least one pair of complementary variables that are non-basic. Therefore, we

have arrived at an almost complementary solution, which can be taken into the next

iteration.

To complete our description of the algorithm, we must specify which variable

will be chosen to be the driving variable in each iteration. As we have noted, there

will always be some complementary pair of variables wi and zi that are non-basic.

In the first iteration, the algorithm selects zi to be the driving variable. In each

subsequent iteration, the algorithm selects the complement of the blocking variable

from the previous iteration. The algorithm continues until z0 is the blocking variable.

After this occurs, the variable z0 will become non-basic, and a solution to the original

LCP is recovered.

Let us return to our example. In the first iteration the variables w2 and z2

are both non-basic. Since w2 was pivoted with z0, the algorithm will select z2 to be

the driving variable in this iteration. The column associated with z2 is the second

column of M ′, which means that the vector e will be (−2, 3). Only the first element

of this vector is negative, therefore, the variable w1 must be chosen as the blocking

variable in this iteration. Therefore, the variable z2 will be exchanged with the

variable w1 in a pivot operation to obtain an LCP in which the first element of w

is z2 and the second element of w is z0.

In general, Lemke’s algorithm may not find a solution to the LCP. This is

because there may not be a basic variable bj such that ej is negative, and therefore

the minimum ratio test given in (3.2) is not well defined. In this situation, no basic

variable will ever become negative, no matter how much nj is increased. If Lemke’s

algorithm ever encounters such a situation, then it will give up, and terminate

without a solution. This is called ray termination. Fortunately, this situation can

never arise when the input matrix M is a P-matrix.

Proposition 3.8 ([CPS92]). If M is a P-matrix, then for every q, Lemke’s algo-

rithm will terminate with a solution when it is applied to LCP(M, q).
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3.3.2 The Cottle-Dantzig Algorithm

The Cottle-Dantzig algorithm allows the non-negativity constraint to be broken.

We say that a partial solution to the LCP is a pair of vectors w and z that satisfy

the conditions given by (2.1) and (2.3), and may or may not satisfy the condition

given by (2.2). The algorithm goes through a sequence of major iterations, where

it attempts to modify its partial solution to satisfy the non-negativity constraint.

Each major iteration begins with a partial solution where there are k indices at

which either wi < 0 or zi < 0. The objective of the major iteration is to find a

partial solution where there are strictly less than k indices at which either wi < 0

or zi < 0. Therefore, after n major iterations the algorithm will arrive at a partial

solution that also satisfies the non-negativity constraint, which is a solution to the

LCP.

Finding an initial partial solution is easy. Setting w = q and z = 0 obviously

satisfies the conditions given by (2.1) and (2.3). If every element of q is non-negative,

then this also satisfies the non-negativity constraint, and the LCP has a trivial

solution. Otherwise, for each partial solution α we define the set Pα, which contains

every index i such that wi ≥ 0 and zi ≥ 0 in α. The objective of a major iteration

is to find a partial solution β such that Pα ⊂ Pβ . This means that we want the

non-negativity constraint to be satisfied at some complementary pair that does not

satisfy this constraint in α. Moreover, we do not want the non-negativity constraint

to be broken for any complementary pairs that already satisfy this constraint in α.

We now describe how a major iteration is implemented. The major iteration

begins with some partial solution α, and it picks some basic variable bi such that

i /∈ Pα, to be the distinguished variable. Our goal is to find a partial solution in which

this variable and its complement satisfy the non-negativity constraint. To achieve

this, we temporarily violate the complementarity condition, by allowing both bi

and its complement to be basic variables. The idea is to increase the value of the

complement of bi until bi becomes 0. At this point, the variable bi becomes non-

66



basic, and compliance with the complementarity condition is restored. Moreover,

since the complement of bi was increased away from 0, both bi and its complement

satisfy the non-negativity constraint. The only problem is preventing variables in Pα

from decreasing below 0.

To achieve this, the algorithm uses the same machinery as Lemke’s algorithm.

Whereas Lemke’s algorithm pivoted between almost complementary solutions to

the modified system, this algorithm pivots between almost complementary partial

solutions to the original LCP. To be more precise, this algorithm pivots between

partial solutions with n basic variables and n non-basic variables. The distinguished

variable and its complement are always both basic variables in these solutions, and

the solutions contain exactly one pair of complementary variables that are both

non-basic. We can use the methods that are used in Lemke’s algorithm to pivot

between almost complementary partial solutions.

The first driving variable is chosen to be the complement of the distinguished

variable. In each iteration we use a modified version of the minimum ratio test to

find the blocking variable. As with Lemke’s algorithm, each iteration will have a

system of the form:

IxB = M ′xN + q′,

where M ′ and q′ are obtained through a sequence of pivots to M and q. If the driving

variable is ni, whose corresponding column in M ′ is e, then we use the following

modified minimum ratio test to compute the blocking variable:

min{−q′j/ej : j ∈ {1, 2, . . . n}, ej < 0 and j ∈ Pα}.

This minimum ratio test is only concerned with basic variables bj such that bj ≥ 0

in α. By using this minimum ratio test, we ensure that none of these variables ever

have a negative value in the sequence of almost complementary partial solutions

that we compute.
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As with Lemke’s algorithm, the blocking variable and the driving variable

are exchanged in a pivot operation. The major iteration terminates when the dis-

tinguished variable is chosen as the blocking variable. After this has occurred,

compliance with the complementarity condition will have been restored, and the

major iteration iteration can terminate.
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Chapter 4

Linear Complementarity

Algorithms For Infinite Games

In this chapter, we study how pivoting algorithms for the linear complementarity

problem behave on the LCPs that arise from Jurdziński and Savani’s reduction from

discounted games, which was described in Section 2.5.2. There are other reductions

from games to the linear complementarity problem, such as the reductions from

simple stochastic games [GR05, SV07], the reduction of Jurdziński and Savani gives

particularly natural linear complementarity problems. It is for this reason that this

chapter focuses on this reduction.

The reduction allows linear complementarity algorithms to be applied in or-

der to solve discounted games. However, very little is known about their behaviour.

Our goal in this chapter is to describe how these algorithms behave when the input

is a discounted game. Moreover, we want to prove lower bounds for the running

time of these algorithms.

The first part of this chapter describes how Lemke’s algorithm and the Cottle-

Dantzig algorithm behave when the input is a discounted game. This exposition

will be in the form of an algorithm that works directly on the discounted game. We

provide proofs of correctness and termination for these algorithms. These proofs do
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not rely on the correctness and termination of the corresponding LCP algorithms.

This exposition is for the benefit of readers who are interested in infinite games, but

who may lack experience in the literature on the linear complementarity problem.

We then argue that the two algorithms are in fact the same as the two

algorithms for LCPs. In order to achieve this, we argue that there is a direct

correspondence between the steps made by the discounted game algorithm, and the

steps made by the corresponding LCP algorithm. Therefore, any lower bound on

the running time of the discounted game version of an algorithm also holds for the

LCP version of that algorithm.

Finally, we show exponential lower bounds for both Lemke’s algorithm and

the Cottle-Dantzig algorithm when the input is a discounted game. It is known

that both of these algorithms can take an exponential number of steps when the

input is an arbitrary LCP, however this lower bound did not necessarily hold for the

class of LCPs that arise from the reduction of Jurdziński and Savani. We describe a

family of parity games upon which both algorithms take an exponential number of

steps. Therefore, we establish lower bounds for parity, mean-payoff, and discounted

games.

4.1 Algorithms

4.1.1 Lemke’s Algorithm For Discounted Games

The key idea behind Lemke’s algorithm is to consider modified versions of the in-

put game. In particular, these games will be modified by adding or subtracting a

parameter z0 from the rewards on the left edges at each vertex. As with the LCP

version of the algorithm, the user is allowed to pick a positive covering vector. For

each v ∈ V there will be a positive covering value which is denoted as dv .

Definition 4.1 (Modified Game For Lemke’s Algorithm). For each real number z,

we define the game Gz to be the same as G but with a modified left-edge reward
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Figure 4.1: The discounted game that will be used to demonstrate Lemke’s algo-
rithm.

function, denoted by rλz , and defined, for every vertex v, by:

rλz (v) =





rλ(v) − dv · z v ∈ VMax,

rλ(v) + dv · z v ∈ VMin.

(4.1)

For each modified game Gz, the function rσz will give the rewards on the

edges chosen by a joint strategy σ. The notations Valueσz and Balσz will give the

values and the balances of the vertices in the game Gz , respectively.

Lemke’s algorithm begins with an arbitrarily chosen joint strategy σ0. It then

chooses a parameter z0 so that σ0 is an optimal strategy in the game Gz0 . The idea

is to transform the modified game back to the original one, while always maintaining

the invariant that the current strategy is optimal in the modified game. Therefore,

the algorithm should produce a sequence of pairs 〈(σ0, Gz0), (σ1, Gz1), . . . (σk, Gzk)〉,

where z0 > z1 > · · · > zk, and zk = 0. For each joint strategy σi, the following three

properties will hold:

1. The strategy σi is optimal for the game Gzi .

2. For every parameter y < zi, the strategy σi is not optimal for the game Gy.

3. There is at least one vertex v with Balσi
zi (v) = 0.

The first property ensures that the algorithm is correct, because the fact that G = G0

implies that σk is an optimal strategy for the original game. The second property en-
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Figure 4.2: The game Gz where G is the game shown in Figure 4.1.

sures that the algorithm terminates, because once a strategy σi has been considered,

it can never satisfy the first property again.

Throughout this section, we will use the example shown in Figure 4.1 to

demonstrate how Lemke’s algorithm works. The discount factor of this game is

chosen to be β = 0.9. The right-hand edges are specified as follows: we have

ρ(b) = a, ρ(c) = b, and ρ(e) = d. The figure only shows one outgoing edge for the

vertices a, d, and s, but this edge is duplicated to ensure that the game is a binary

game. For example, we have λ(a) = ρ(a) = s, and we have rλ(a) = rρ(a) = −8. It

is important to note that the strategy decision at these three vertices is irrelevant,

because the same value is obtained no matter what edge is chosen at these vertices,

and the balance will always be 0. Therefore, we are trying to find an optimal strategy

for the vertices b, c, and e. We will use the unit covering vector in our exposition,

which means that dv = 1 for every vertex v.

We begin by describing how the algorithm finds the initial pair (σ0, z0). We

will pick the joint strategy σ0 = ρ to be the strategy that selects the right successor

for every vertex in the game. This allows the user to pick an arbitrary starting

strategy by swapping the left and right edges at each vertex. Let us consider how

the parameter z0 can be found for the game shown in Figure 4.1. The modification

of this game is shown in Figure 4.2. We must pick a parameter that makes the

joint strategy ρ optimal, and we know that in an optimal strategy no vertex has

a negative balance. We can derive the following expression for the balance of the
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Figure 4.3: The balance of each vertex under the joint strategy ρ in the game Gz .

vertex b in the game Gz:

Balρz(b) = −4 − β · 8 − (−5 − z + β · 7) = −12.5 + z.

Therefore, if we set the parameter z = 12.5, the balance at the vertex b will not be

negative. We can derive similar expressions for the vertices c and e:

Balρz(c) = −20.35 + z,

Balρz(e) = −14.5 + z.

Figure 4.3 shows a plot of these three functions. It can clearly be seen that

setting z0 = 20.35 will cause the pair (ρ, z0) to satisfy the three properties that we

are after. The joint strategy ρ is optimal in the game Gz0 because the balance of all

three vertices is non-negative. For every parameter y < z0, we have that ρ is not an

optimal strategy in the game Gy, because the balance of c will be negative in the

game Gy. Finally, the vertex c is switchable when ρ is played in Gz0 , because it has

a balance of 0.
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In general, the algorithm can initialise itself by selecting z0 to be the negative

balance with the largest magnitude. If σ0 happens to be an optimal strategy for

the original game, then the algorithm can set z0 = 0 and terminate. Otherwise, the

algorithm picks z0 = max{−Balσ0(v)/dv : v ∈ V }. We can prove that the pair

(σ0, z0) will satisfy the three properties.

Proposition 4.2. Let z0 = max{−Balσ0(v)/dv : v ∈ V }. The joint strategy σ0

is optimal in Gz0 and the vertex v in V that maximizes −Balσ0(v) is indifferent.

Moreover, there is no value y < z0 for which σ0 is optimal in Gy.

Proof. We begin by arguing that Valueσ0
z0 (v) = Valueσ0(v) for every vertex v. This

holds because the modifications made in Definition 4.1 only change the rewards on

the left edges, and by definition σ0 only chooses right edges. Therefore, we have

rσz0(v) = rσ(v) for every vertex v. It is then easy to see that Valueσ0
z0 (v) = Valueσ0(v)

by noticing that the characterisation of Valueσ(v) given in (4.2) uses only the rewards

rσ(v).

We now prove that σ0 is optimal in Gy, by arguing that Balσ0
z0 (v) ≥ 0 for every

state v. Applying the knowledge that we have gained in the previous paragraph,

along with the definition of rλz0 gives, for every Max vertex v:

Balσ0
z0 (v) = Valueσ0

z0 (v) − (rσ0
z0 (v) + β · Valueσ0

z0 (σ(v)))

= Valueσ0(v) − (rλz0(v) + β · Valueσ0(σ(v)))

= Valueσ0(v) − (rλ(v) − dv · z0 + β · Valueσ0(σ(v)))

= Balσ0(v) + dv · z0.

A similar derivation can be made in order to obtain an identical expression for

every Min vertex. Let x be a vertex such that z0 = −Balσ0(x)/dv , and note that

by assumption we have that z0 > 0. If Balσ0(v) ≥ 0 then clearly Balσ0
z0 (v) > 0. If

Balσ0(v) < 0, then by choice of z0, we have that Balσ0(x) ≤ Balσ0(v), and therefore

we also have Balσ0
z0 (v) > 0.
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To prove that there is at least one vertex that is indifferent, we again consider

the vertex x such that z0 = −Balσ0(x)/dv . For this vertex we have:

Balσ0
z0 (x) = Balσ0(x) + dv · z0 = Balσ0(x) − dv ·

Balσ0(x)

dv
= 0.

Therefore, the vertex x is indifferent when σ0 is played in Gz0 . To finish the proof we

must argue that σ0 is not optimal in every game Gy where y < z0. At the vertex x

we have:

Balσ0
y (x) = Balσ0(x) + dv · y < Balσ0(x) + dv · z0 = 0.

Therefore, the vertex x will be switchable when σ0 is played on Gy, and Corollary 2.9

therefore implies that σ0 is not optimal for Gy.

We now describe how the algorithm moves from the pair (σi, Gzi) to the pair

(σi+1, Gzi+1
). We begin by describing how σi+1 is computed. By assumption there

is some vertex w that is indifferent when σi is played in Gzi . We switch this vertex

to create σi+1. For every vertex v we define:

σi+1(v) =





σi(v) if v = w,

σi(v) otherwise.

It is easy to see from the optimality equations that switching an indifferent vertex in

an optimal strategy will produce another optimal strategy. Therefore, σi+1 is also

an optimal strategy for Gzi .

The next task is to find the value zi+1 that is the smallest value for which σi+1

is an optimal strategy in Gzi+1
. Let us return to the example shown in Figure 4.1.

The vertex c was indifferent when σ0 was played in Gz0 , and so this vertex will be

switched to create the joint strategy σ1. Figure 4.4 shows the function Balσ1
z for

each of the vertices. Since the vertex c has been switched, the function Balσ1
z (c) has

been reflected in the axis. This is because the balance of a vertex is computed as
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Figure 4.4: The balance of each vertex under the joint strategy σ1 in the game Gz .

the difference between the value of the vertex and the value of the alternate suc-

cessor. By switching this vertex, we cause these two quantities to be interchanged.

Therefore, we have:

Balσ1
z (c) = −z + β · 4 + β2 · 7 − (−1 + β · −4 + β2 · −8) = 20.35 − z.

This means that the value of c will now rise as z is decreased instead of falling.

The plot shown in Figure 4.4 gives a good outline of the situation that occurs

after a vertex has been switched. There is a range of values z ∈ [a, b] for which the

joint strategy σ1 is optimal in Gz. We know that the upper bound of this range

is z0, and our task is to compute the lower bound. This occurs when the balance

of some other vertex falls below 0. It can also be seen that the joint strategy σ1 is

not optimal in Gz for every value of z that lies outside this range. This is because

there is always some vertex that has a negative balance.

To compute zi+1 we will need to understand, for every vertex v, the rate at

which Value
σi+1
z (v) changes as z is decreased. For a joint joint strategy σ, we denote

the rate of change of the value as z decreases as ∂−z Valueσz (v), which is equal to
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−∂z Valueσz (v). It will turn out that this relationship is linear, this means that if we

decrease z by a constant c then:

Valueσz−c(v) − Valueσz (v) = ∂−z Valueσz (v) · c.

In our running example, we would have ∂−z Valueσ1
z (c) = 1. This is because

Valueσ1
z (c) can be rewritten as

Valueσ1
z (c) = −z + β · 4 + β2 · 7 = 9.27 − z.

Therefore, as z is decreased, the value of the vertex c will increase.

We now explain how a formula for Valueσz (v) can be derived for every joint

strategy σ. This formula will be based on relationship between the rewards that

an infinite path passes through, and the payoff of that path. If a play begins at a

vertex v and follows a positional joint strategy σ then we know that the resulting

infinite path can be represented by a simple path followed by an infinitely repeated

cycle. If Play(σ, v) = 〈v0, v1, . . . , vk−1, 〈c0, c1, . . . , cl−1〉ω〉, then it is then easy to see

that:

Valueσ(v) =

k−1∑

i=0

βi · rσ(vi) +

l−1∑

i=0

βk+i

1 − βl
· rσ(ci). (4.2)

We are interested in how the rewards given by rσ(vi) and rσ(ci) affect

Valueσ(v). Specifically, we will frequently want to know how much Valueσ(v)

changes when we increase or decrease one of these rewards. This will be given

by the contribution coefficient.

Definition 4.3 (Contribution Coefficient). For vertices v and u, and for a positional
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joint strategy σ, we define:

Dv
σ(u) =





βi if u = vi for some 0 ≤ i < k,

βk+i

1−βl if u = ci for some 0 ≤ i < l,

0 otherwise.

Using this notation, we have that Valueσ(v) =
∑

u∈V Dv
σ(u) · rσ(vi). There-

fore, if rσ(u) is increased by δ then Valueσ(v) will be increased by Dv
σ(u) · δ. This

fact is used in the next proposition to give a characterisation of ∂−z Valueσz (v) for

every joint strategy σ. For a proposition p, we define [p] to be equal to 1 if p is true,

and 0 otherwise.

Proposition 4.4. For a vertex v and a joint strategy σ, let L be the set of vertices

for which σ picks the left successor, L = {v ∈ V : σ(v) = λ(v)}. The rate of

change of the value of v is:

∂−z Valueσz (v) =
∑

u∈L
([u ∈ VMax] − [u ∈ VMin]) · dv · Dv

σ(u).

Proof. Using the definition of rλz given in (4.1), gives the following formula for the

rewards on the edges chosen by σ. For every vertex v we have:

rσz−c(v) =





rσz (v) + dv · c if v ∈ VMax and σ(v) = λ(v),

rσz (v) − dv · c if v ∈ VMin and σ(v) = λ(v),

rσz (v) otherwise.
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We can now apply the characterisation of the value given by (4.2) to obtain:

Valueσz−c(v) − Valueσz (v)

=
∑

u∈V
Dv

σ(u) · rσz−c(u) − Valueσz (v)

=
∑

u∈V
Dv

σ(u)(rσz (u) + [u ∈ VMax] · dv · c− [u ∈ VMin] · dv · c) − Valueσz (v)

= Valueσz (v) +
∑

u∈L
([u ∈ VMax] − [u ∈ VMin]) Dv

σ(u) · dv · c− Valueσz (v)

=
∑

u∈L
([u ∈ VMax] − [u ∈ VMin]) Dv

σ(u) · dv · c.

Now that we know how the value changes as z is decreased, we can use this

to compute the rate of change of the balance as z is decreased. We will denote this,

for each vertex v, as ∂−z Balσz (v). As with our notation for the rate of change of the

value, we will have:

Balσz−c(v) − Balσz (v) = ∂−z Balσz (v) · c. (4.3)

In our example, we would have ∂−z Balσ1
z (v) = 1, because we have already shown

that Balσ1
z (c) = 20.35−z. The next proposition gives a characterisation of Balσz−c(v)

for every vertex v and every joint strategy σ.

Proposition 4.5. For a vertex v and a joint strategy σ, if v ∈ VMax then:

∂−z Balσz (v) = ∂−zValueσz (v) − ([σ(v) = λ(v)] · dv + β · ∂−zValueσz (σ(v))),

and if v ∈ VMin then:

∂−z Balσz (v) =−[σ(v) = λ(v)] · dv + β · ∂−zValueσz (σ(v)) − ∂−zValueσz (v).

Proof. We will prove the claim for a vertex v ∈ VMax. The proof for vertices v ∈ VMin
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is symmetric. The following is obtained by using the definition of Balσ, rearrange-

ment, and by using the definition of ∂−z Valueσz .

Balσz−c(v) − Balσz (v)

=(Valueσz−c−(rσz−c(v)+β · Valueσz−c(σ(v)))) − (Valueσz −(rσz (v) + β · Valueσz (σ(v))))

=(Valueσz−c−Valueσz (v)) − (rσz−c(v) − rσz (v) + β · (Valueσz−c(σ(v)) − Valueσz (σ(v)))

=∂−z Valueσz (v) · c− (rσz−c(v) − rσz (v) + β · ∂−z Valueσz (σ(v)) · c).

To obtain the required form, we must deal with the expression rσz−c(v) − rσz (v). If

σ(v) = ρ(v), then we have that rσz−c(v) = rσz (v), and therefore rσz−c(v) − rσz (v) = 0.

On the other hand, if σ(v) = λ(v), then we have rσz−c(v) = rσz (v) + dv · c, and

therefore rσz−c(v) − rσz (v) = dv · c. From these two facts, we can conclude that

rσz−c(v)−rσz (v) = [σ(v) = λ(v)] ·dv ·c. This characterisation can be used to complete

the proof.

∂−z Valueσz (v) · c− (rσz−c(v) − rσz (v) + β · ∂−z Valueσz (σ(v)) · c)

=∂−z Valueσz (v) · c− ([σ(v) = λ(v)] · dv · c + β · ∂−z Valueσz (σ(v)) · c)

=(∂−z Valueσz (v) − ([σ(v) = λ(v)] · dv + β · ∂−z Valueσz (σ(v)))) · c.

Now that we have a characterisation of ∂−z Balσz (v), we can explain how it

will be used. The following is a simple rearrangement of (4.3).

Balσz−c(v) = Balσz (v) + ∂−z Balσz (v) · c. (4.4)

From this it can be seen that if ∂−z Balσz (v) is positive for some vertex v, then

the balance of v under the strategy σ will increase as z is decreased. Likewise, if

∂−z Balσz (v) is negative, then the balance of v under the strategy σ will decrease as z

is decreased.
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To find the first vertex whose balance falls below 0, we only need to consider

the vertices v for which ∂−z Balσz (v) is negative. Then, for each vertex v we have

that the following ratio gives the amount that zi can be decreased by in order to for

the balance of v to be 0.

Bal
σi+1
zi (v)

−∂−z Bal
σi+1
z (v)

.

Therefore, to find the smallest amount by which z can be decreased, we simply take

the minimum over these ratios. The next proposition shows that this minimum ratio

test is correct.

Proposition 4.6. Suppose that σi+1 is an optimal joint strategy for the game Gzi .

We define:

zi+1 = zi − min{ Bal
σi+1
zi (v)

−∂−z Bal
σi+1
z (v)

: v ∈ V and ∂−z Bal
σi+1
z (v) < 0}. (4.5)

The following three properties hold.

1. The strategy σi+1 is optimal for the game Gzi+1
.

2. For every parameter y < zi+1 the strategy σi is not optimal for the game Gy.

3. There is at least one vertex v with Bal
σi+1
zi+1

(v) = 0.

Proof. We begin by proving the first property. We can ignore the vertices v with

∂−z Bal
σi+1
z (v) ≥ 0, because the balance of these vertices will not decrease as we

decrease the parameter. Let v be a vertex with ∂−z Bal
σi+1
z (v) < 0, and let cv =

Bal
σi+1
zi (v)/ − ∂−z Bal

σi+1
z (v). Substituting this into (4.4) gives:

Balσ
i+1

zi−cv(v) = Balσ
i+1

zi (v) − Balσ
i+1

zi (v) = 0.

Clearly, for every value c < cv we have Balσ
i+1

zi−c(v) > 0. Therefore, by setting

c = min{Bal
σi+1
zi (v)/ − ∂−z Bal

σi+1
z (v) : v ∈ V and ∂−z Bal

σi+1
z (v) < 0} we ensure
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that no vertex has a balance below 0 in the game Gzi+1
. Therefore σi+1 is optimal

in the game Gzi+1
.

To prove the third property, it suffices to note that there is some vertex x

for which cx = c. Therefore, we have Balσ
i+1

zi+1
(x) = 0. This also proves the second

property, because for every value y < zi+1 we have Balσ
i+1

y (x) < 0.

It is possible that there is no value y < zi for which σi+1 is optimal in Gy.

In this case we will have zi+1 = zi. This is known as a degenerate step. We

will postpone discussion about degeneracy until Section 4.1.3, and for now we will

assume that no degenerate steps occur during the execution of the algorithm. This

implies that for every i we have zi+1 < zi.

Algorithm 2 Lemke(G)

i := 0; σ0 := ρ; z0 := max{−Balσ0(v) : v ∈ V }
while zi > 0 do

σi+1 := σi[σi(v)/v] for some vertex v with Balσi
zi (v) = 0

zi+1 := zi − min{ Bal
σi+1
zi

(v)

−∂−z Bal
σi+1
z (v)

: v ∈ V and ∂−z Bal
σi+1
z (v) < 0}

i := i + 1
end while

Lemke’s algorithm is shown as Algorithm 2. Since in each step we know that

there is no value y < zi for which σi is optimal in Gy and zi+1 < zi, it follows that

we can never visit the same strategy twice without violating the condition that the

current strategy should be optimal in the modified game. Therefore the algorithm

must terminate after at most 2|V | steps, which corresponds to the total number of

joint strategies. The algorithm can only terminate when z has reached 0, and G0

is the same game as G. It follows that whatever strategy the algorithm terminates

with must be optimal in the original game. Therefore, we have shown following

theorem.

Theorem 4.7. Algorithm 2 terminates, with a joint strategy σ that is optimal for G

after at most 2|V | iterations.
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4.1.2 The Cottle-Dantzig Algorithm For Discounted Games

The reader should be aware that in this section we will override many of the nota-

tions that were used to describe Lemke’s algorithm. In the future, whenever these

notations are used the algorithm that is being referred to will always be clear from

the context.

The Cottle-Dantzig algorithm begins with an arbitrary joint strategy σ0, and

it produces a sequence of joint strategies 〈σ0, σ1, . . . , σk〉. The process of moving

from σi to σi+1 is called a major iteration. Let Pi = {v ∈ V : Balσi(v) ≥ 0} denote

the set of vertices with non-negative balance in σi. The key property of a major

iteration is that Pi ⊂ Pi+1. This means that at least one vertex with a negative

balance in σi will have a non-negative balance in σi+1, and that every vertex with a

non-negative balance in σi still has a non-negative balance in σi+1. Since P ⊂ Pi+1

for every i, the algorithm can go through at most |V | iterations before finding a

joint strategy σj for which Pj = V . By Corollary 2.9, we have that σj is an optimal

strategy.

The bulk of this section will be dedicated to describing how a major iteration

is carried out. A major iteration begins with a joint strategy σi. The algorithm then

picks a vertex v with Balσi(v) < 0 to be the distinguished vertex. Throughout this

section, we will denote this vertex as d. The distinguished vertex will have the

property Balσi+1(d) ≥ 0, and we will therefore have Pi ∪ {d} ⊆ Pi+1. Once a

distinguished vertex has been chosen, the algorithm then temporarily modifies the

game, by adding a bonus to the edge chosen by σi+1 at d. This modification will

last only for the duration of the current major iteration.

Definition 4.8 (Modified Game For The Cottle-Dantzig Algorithm). For a rational

number w, a joint strategy σ, and a distinguished vertex d, we define the game Gw

to be the same as G but with a different reward on the edge chosen by σ at d. If σ

chooses the left successor at d then the left reward function is defined, for every u
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in V , by:

rλw(u) =





rλ(u) + w if u = d and u ∈ VMax,

rλ(u) − w if u = d and u ∈ VMin,

rλ(u) otherwise.

If σ chooses the right successor at d then rρ modified in a similar manner.

The reward on the edge chosen by σ at v in the game Gw is denoted as rσw(v).

For a joint strategy σ and a vertex v, the value and balance of v for the strategy σ

in the game Gw are denoted as Valueσw(v) and Balσw(v), respectively.

To see why the game is modified in this way, it is useful to look at the balance

of d in the modified game. The properties that we describe will hold no matter who

owns d, but for the purposes of demonstration we assume that d ∈ VMax. The

balance of d for σi in Gw is then:

Balσi
w (d) = Valueσi

w (d) − (rσi
w (v) + β · Valueσi

w (σi(v))).

Since rσi
w (v) = rσi(v)+w, we can see that Valueσi

w (d) must increase as w is increased.

It may also be the case that Valueσi
w (σi(v)) increases as w is increased, however due

to discounting, it must increase at a slower rate than Valueσi
w (d). Therefore, as w is

increased Balσi
w (d) will also increase.

The algorithm will use machinery that is similar to the methods employed by

Lemke’s algorithm. In each major iteration the algorithm will produce a sequence

of pairs 〈(σi = σi,0, w0), (σi,1, w1), . . . , (σi,k, wk)〉, with w0 < w1 < · · · < wk, which

satisfies the following properties.

1. For every vertex v ∈ Pi we have Bal
σi,j
wj (v) ≥ 0.

2. For every value y > wj there is some vertex v ∈ Pi with Bal
σi,j
wj (v) < 0.

3. There is some vertex v ∈ Pi with Bal
σi,j
wj (v) = 0.
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Much like in Lemke’s algorithm, the first property ensures correctness, by never

allowing a vertex in Pi to have a negative balance, and the second property ensures

termination, by preventing the algorithm from considering the same joint strategy

twice. The third property ensures that there is always some vertex v ∈ Pi in σi,j

that can be switched to produce σi,j+1.

Each step of a major iteration begins with a joint strategy σi, and value

wi−1, for which σi satisfies the first property in Gwi−1
. For σ0, we can use w−1 = 0

to obtain this property. Much like in Lemke’s algorithm, we want to compute the

value wi = wi−1 + c that satisfies all of the properties. We therefore need to know

the rate at which the balance of a vertex increases as we increase c. For each joint

strategy σ, we denote this as ∂w Valueσw(u), with the understanding that:

Valueσw+c(v) − Valueσw(v) = ∂w Valueσw(v) · c.

The following proposition is a trivial consequence of the characterisation of Valueσ

given by (4.2).

Proposition 4.9. Consider a vertex u and a joint strategy σ. Suppose that v is the

distinguished vertex. The rate of change ∂w Valueσw(u) is Du
σ(v).

Once again, we define the rate of change of the balance of a vertex v in a

joint strategy σ to be ∂w Balσw(v), with the understanding that:

Balσw+c(v) − Balσw(v) = ∂w Balσw(v) · c.

We can obtain an expression for ∂w Balσw(v) by substituting the result of Proposi-

tion 4.9 into the definition of balance given in (2.12).

Proposition 4.10. Consider a vertex u and a joint strategy σ in the game Gw such
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that σ chooses the edge with the bonus at d. The rate of change ∂w Balσw(u) is:

∂w Balσw(u) =





∂w Valueσw(u) − β · ∂w Valueσw(σ(u)) if u ∈ VMax,

β · ∂w Valueσw(σ(u)) − ∂w Valueσw(u) if u ∈ VMin.

Proof. The proof is very similar to the proof of Proposition 4.5. The proof of this

proposition is simpler, because the bonus w is guaranteed to be on an edge chosen

by σ. Therefore, we have rσw(v) = rσ(v) for every vertex v, and so the careful

consideration of rσw(v) in Proposition 4.5 does not need to be repeated.

With Propositions 4.9 and 4.10 in hand, the minimum ratio test from Lemke’s

algorithm can be reused with very little modification. The proof of the following

proposition is identical to the proof given for Proposition 4.6.

Proposition 4.11. Let σi,j be a joint strategy, and let wj−1 be a rational value.

Suppose that for every vertex v ∈ Pi we have Bal
σi,j
wj−1

(v) ≥ 0. If we set:

wi = wi−1 + min{ Balσw(v)

−∂w Balσw(v)
: v ∈ Pi and ∂w Balσw(v) < 0},

then all of the following properties hold.

1. For every vertex v ∈ Pi we have Bal
σi,j
wj (v) ≥ 0.

2. For every value y > wj there is some vertex v ∈ Pi with Bal
σi,j
wj (v) < 0.

3. There is some vertex v ∈ Pi with Bal
σi,j
wj (v) = 0.

As with Lemke’s algorithm, it is possible that the algorithm could make a

degenerate step, where wi+1 = wi. These cases will be discussed in Section 4.1.3,

and for now we will assume that wi+1 > wi.

Once wi has been computed, the algorithm then switches a vertex that is

indifferent when σi,j is played on Gwj
. This produces the joint strategy σi,j+1 that

will be considered in the next step of the major iteration. The algorithm stops when
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it finds a pair (σi,k, wk) for which Bal
σi,k
wk

(d) ≥ 0. We define σi+1 to be σi,k with the

vertex d switched to the edge σi(d). We now argue that this correctly implements

a major iteration.

Proposition 4.12. For every vertex v ∈ Pi ∪ {d} we have Balσi+1(v) ≥ 0.

Proof. Since Bal
σi,k
wk−1

(d) < 0 and Bal
σi,k
wk

(d) ≥ 0, we know that there is some value

wk−1 < y < wk such that Bal
σi,k
y (d) = 0. Consider the joint strategy σi,k played in

the game Gy. Since d is indifferent, switching it does not change the value of any

vertex, and therefore Bal
σi+1
y (v) ≥ 0 for every vertex v ∈ Pi ∪ {d}.

We must now argue that Balσi+1(v) ≥ 0 for every vertex v ∈ Pi ∪ {d}. For

every vertex v ∈ Pi, this holds because σi+1 does not use the edge to which the

bonus y has been attached. Therefore, the characterisation given by (4.2) implies

that Value
σi+1
y (u) = Valueσi+1(u) for every vertex u. This implies that Bal

σi+1
y (u) =

Balσi+1(u) for every vertex u 6= d.

The above reasoning does not hold for the vertex d, because d is the only

vertex at which rσi(d) 6= rσi
y (d). However, if d ∈ VMax then:

Balσi
y (d) = Valueσi

y (v) − (rσi
y (v) + β · Valueσi

y (σi(v)))

= Valueσi(v) − (rσi(v) + y + β · Valueσi(σi(v)))

≤ Valueσi(v) − (rσi(v) + β · Valueσi(σi(v)))

= Balσi(d).

Therefore, Balσi
y (d) must be positive. The proof for the case where d ∈ VMin is

symmetric.

The Cottle-Dantzig algorithm for discounted games is shown as Algorithm 3.

Note that in major iteration i, the algorithm only ever switches vertices in Pi. There-

fore, the algorithm can consider at most 2|Pi| joint strategies in major iteration i.

Therefore, the largest number of joint strategies that the algorithm can consider
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Algorithm 3 Cottle-Dantzig(G, σ)

i := 0; σ0 = σ;
P0 := {v ∈ V : Balσ0(v) ≥ 0}
while P 6= V do

j := 0; σi,0 = σi; w−1 := 0;
Pi := {v ∈ V : Balσi(v) ≥ 0}
d := Some vertex in V \ Pi

while Balσwi
(d) < 0 do

wi+1 := wi + min{− Balσwi
(u)

∂w Balσw(u) : u ∈ Pi} and ∂w Balσw(u) < 0}
σi,j := σ[σ(v)/v] for some vertex v with Balσwi

(v) = 0
j := j + 1

end while
σ := σ[σ(d)/d]; i := i + 1

end while

over all major iterations is
∑|V |−1

i=0 2i = 2|V | − 1. Therefore, we have shown the

following theorem.

Theorem 4.13. Algorithm 3 terminates, with the optimal joint strategy, after at

most 2|V | − 1 iterations.

4.1.3 Degeneracy

Until now, we have ignored the possibility of reaching a joint strategy σ in which

there is more than one indifferent vertex. In LCP algorithms this is known as a

degenerate step. There are several methods in the LCP literature that can be used

to resolve degeneracy. One method for is Bland’s rule, which uses a least-index

method to break ties, and another is to use lexicographic perturbations. Both of

these methods are well-known, and are also used with the simplex method for linear

programming [Chv83]. We will describe how a degenerate step in Lemke’s algorithm

can be resolved by Bland’s rule. Our description can easily be adapted to resolve

degenerate steps for the Cottle-Dantzig algorithm. Bland’s rule has been chosen

because it has a particularly simple interpretation in terms of discounted games.

In each degenerate step, we have a joint strategy σ and a parameter z such

that σ is an optimal strategy in Gz , and there is more than one vertex v such that
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Balσz (v) = 0. Furthermore, we know that z cannot be decreased any further, because

there is at least one vertex v with Balσz (v) = 0 and ∂−z Balσz (v) > 0. This means

that the balance of v would fall below 0 if z were decreased.

The task of the degeneracy resolution algorithm is to find a joint strategy σ′

that is optimal for the game Gz such that every vertex v with Balσz (v) = 0 has

∂−z Balσz (v) < 0. Moreover, only indifferent vertices may be switched during the

procedure. Bland’s rule assigns each vertex a unique index in the range 1 to |V |.

Then, in each iteration, the algorithm switches the smallest vertex v such that

∂−z Balσz (v) > 0.

Bland’s rule works because it can never cycle, and because there must be at

least one joint strategy in which every vertex v with Balσz (v) = 0 has ∂−z Balσz (v) < 0.

If there are k indifferent vertices, then Bland’s rule must terminate after at most 2k

steps. This exponential upper bound shows that the choice of degeneracy resolution

method can have a severe effect on the running time of the algorithm. However, we

are not aware of any discounted games upon which Bland’s rule achieves this upper

bound.

4.2 The Link With LCPs

We have given two algorithm that solve discounted game, and we have proved their

correctness. These algorithms are clearly inspired by their LCP counterparts, how-

ever in this section we will show a stronger property: each algorithm for discounted

games behaves identically to the corresponding algorithm for LCPs.

This section is divided into two parts. In the first part we justify the definition

of the modified games used in the discounted game algorithms by showing how they

correspond to the almost complementary solutions that are considered by the LCP

versions of these algorithms. In the second part we argue that Lemke’s algorithm for

discounted games will perform the same sequence of steps as Lemke’s algorithm for
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LCPs. Since the Cottle-Dantzig algorithm uses the same machinery to perform each

major iteration, this reasoning can easily be adapted to argue that the discounted

game version of the Cottle-Dantzig algorithm will behave in the same way as the

LCP version.

4.2.1 Correctness Of The Modified Games

We begin by considering Lemke’s algorithm. The LCP version of Lemke’s algorithm

considers almost complementary solutions to the modified game, and the discounted

game version of this algorithm considers positional joint strategies that are optimal

for a modified game. We will show that there is a link between these two concepts:

for each almost complementary solution found by the LCP version of the algorithm,

there is a positional joint strategy and a modified game that correspond to this

solution.

Recall that Lemke’s algorithm modifies the LCP with a positive covering

vector d, and a scalar z0. The following Proposition shows how these modifications

affect the optimality equations for the discounted game.

Proposition 4.14. Let M and q be the result of reducing a discounted game to an

LCP. Every solution of:

w = Mz + q + d · z0,

w, z ≥ 0,

zi · wi = 0 for i = 1, 2 . . . , n,
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corresponds to a solution of:

V (v) − w(v) = (rλ(v) − dv · z0) + β · V (λ(s)) if v ∈ VMax,

V (v) − z(v) = rρ(v) + β · V (ρ(s)) if v ∈ VMax,

V (v) + w(v) = (rλ(v) + dv · z0) + β · V (λ(s)) if v ∈ VMin,

V (v) + z(v) = rρ(v) + β · V (ρ(s)) if v ∈ VMin,

w(v), z(v) ≥ 0,

w(v) · z(v) = 0.

Proof. We will reverse the manipulations that were used to find M and q in Sec-

tion 2.5.2. By substituting the definitions of M and q into w = Mz + q + d · z0, we

obtain:

w = (Î − βT̂λ)(Î − βT̂ρ)−1(z + Îrρ) − Îrλ + d · z0.

If we define V = (Î −βT̂ρ)−1(z + Îrρ), then we can rewrite the above equation, and

then rearrange it as follows:

w = (Î − βT̂λ)V − Îrλ + d · z0,

Î · V − w = Îrλ − d · z0 + βT̂λ · V. (4.6)

We can also rearrange V = (Î − βT̂ρ)−1(z + Îrρ) to obtain:

Î · V − z = Îrρ + βT̂ρ · V. (4.7)

Rewriting Equations 4.6 and 4.7 in component form gives the desired system of

equations.

Proposition 4.14 shows how the modifications made by Lemke’s algorithm can

be seen as modifying the rewards on the left hand edges at each vertex. Note that the
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modifications made in Definition 4.1 precisely capture this change. Therefore, the

system of equations that we found in Proposition 4.14 correspond to the optimality

equations for Gz0 .

We now argue that each almost complementary solution that is considered

by the LCP version of the algorithm corresponds to a pair (σ, z) such that σ is

an optimal strategy for Gz. Let α be an almost complementary solution to the

modified system of equations. We will define a joint strategy σα that uses the edges

for which the corresponding slack variables are non-basic in α (recall that a variable

is non-basic if it is chosen to be 0). By definition, we have that there is exactly one

index v such that both wv = 0 and zv = 0. The LCP version of Lemke’s algorithm

will select one of these two variables to be the next driving variable. At this vertex,

the joint strategy σα will choose the edge whose corresponding slack variable is the

next driving variable. For every v ∈ V we define:

σα(v) =





λ(v) if wi = 0 and either zi > 0 or wi is the next driving variable,

ρ(v) otherwise.

Since α is a solution to w = Mz + q+ d · z0, where both w and z satisfy both

non-negativity constraint and the complementarity condition, we have that Valueσα

must be a solution to the optimality equations for Gz0 . This implies that σα is an

optimal strategy for the game Gz0 .

In summary, we have shown that each almost complementary solution α

that is considered by the LCP version of the algorithm can be represented as a pair

(σα, z0) such that σα is an optimal strategy for Gz0 . Therefore, it is possible for the

discounted game version of the algorithm to behave in the same way as the LCP

version. In the next section, we will argue that this is indeed the case.

We now turn our attention to the Cottle-Dantzig algorithm. Recall that this

algorithm considers almost complementary partial solutions, which allow both the
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distinguished variable and its complement to be basic variables. This is problematic

for the discounted game algorithm, because positional strategies can only capture

solutions in which at least one of the two slack variables associated with each vertex

is 0. The modified games considered by the discounted game version of the Cottle-

Dantzig algorithm overcome this problem by representing the second non-zero slack

variable at the distinguished vertex as a modification to the game.

Suppose that zv is the distinguished variable in some major iteration. We

can rewrite Equations (2.13) and (2.14) as:

V (v) = (rλ(v) + w(v)) + β · V (λ(s)) if v ∈ VMax,

V (v) = (rλ(v) − w(v)) + β · V (λ(s)) if v ∈ VMin.

This implies that we can view the additional non-zero slack variable wv as modifying

the reward on left hand edge at v. Since there is no longer a slack variable on the

left hand side of the equation, this characterisation only holds for positional joint

strategies σ such that σ(v) = λ(v). If wv was chosen to be the driving variable, then

the additional slack variable zv would modify the rewards on the right hand edges

in a similar fashion. These observations are implemented by the modified games

given in Definition 4.8.

Once again, for each almost complementary partial solution α, we define

a joint strategy σα. This strategy is similar to the strategy used for Lemke’s al-

gorithm, with the condition that, if v is the index of the distinguished variable,

then σα(v) should always choose the edge whose slack variable is the complement

of the distinguished variable.

σα(v) =





λ(v) if wi = 0 and either zi > 0 or wi is the next driving variable,

λ(v) if zi is the distinguished variable

ρ(v) otherwise.
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Therefore, for each almost complementary partial solution α, there is a pair (σα, x),

where x is the complement of the distinguished variable, that represents this solu-

tion. Therefore, it is possible for the discounted game version of the algorithm to

behave in the same way as LCP version.

4.2.2 Lemke’s Algorithm

In this section we argue that Lemke’s algorithm for discounted games behaves in the

same way as Lemke’s algorithm for LCPs. Since the Cottle-Dantzig algorithm uses

the same machinery, similar arguments can be used to show that the Cottle-Dantzig

algorithm for discounted games behaves in the same way as the Cottle-Dantzig

algorithm for LCPs.

We argue that the two algorithms initialise themselves in the same way. The

algorithm for LCPs starts by selecting every variable wi to be basic, and every vari-

able zi to be non-basic. It then finds an initial almost complementary solution α0,

by finding the index i that minimizes min(qi/di : 1 ≤ i ≤ n), and swaps z0 with wi

in a pivot operation. Therefore zi will be the driving variable in the next iteration.

The algorithm for discounted games starts with the joint strategy ρ, which always

picks the right-hand successor of each vertex, and it is easy to see that this is the

strategy σα0
.

We now argue that the first parameter computed by the discounted game

version of the algorithm is the same as the value of z0 in α0. To see why this holds,

we will state a result that was proved by Jurdziński and Savani.

Proposition 4.15 ([JS08]). If the vector q arises from the reduction of a discounted

game, then for each v ∈ V we have qv = Balρ(v).

This implies that Proposition 4.2 also uses min(qi/di : 1 ≤ i ≤ n) to find

the initial parameter. Therefore, the discounted game version of the algorithm will

choose the pair (σα0
, x), where x is the value of z0 in α.
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We now argue that if the LCP version of the algorithm moves from αi to

αi+1, then the discounted game version of the algorithm will move from (σαi
, x) to

(σαi+1
, y), where x is the value of z0 in αi, and y is the value of z0 in αi+1. The

most obvious difference between the two algorithms is that the discounted game

algorithm always tries to decrease the parameter z, whereas the LCP version of the

algorithm has a driving variable that it tries to increase. We argue that these two

operations are equivalent.

Recall that in each iteration the LCP algorithm has a system of the following

form:

xB = M ′xN + q′.

The vector xB is the n-dimensional set of basic variables, the vector xN is the (n +

1)-dimensional vector of non-basic variables, the n by n + 1 matrix M ′ has been

obtained through a sequence of pivot operations applied to the matrix M and the

covering vector d, and the vector q′ has been obtained by the same sequence of pivot

operations applied to q. If the driving variable is the i-th component of xN , z0 is

the j-th component of xB, and e is the i-th column in M , then we have have:

z0 = ej · (xN )i + q′j.

This implies that there is a linear dependence between z0 and the driving variable

(xN )i. It turns out that if M is a P-matrix, then ej is always negative. This means

that increasing the driving variable causes z0 to decrease, and decreasing z0 causes

the driving variable to increase.

This relationship means that both algorithms will compute the same blocking

variable. If the LCP algorithm finds that it can increase (xN )i to some value y

without a basic variable becoming negative, then the discounted game algorithm

will find that it can decrease z by −ej · (xN )i before the balance of some vertex

becomes negative.
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When the LCP algorithm has computed a blocking variable, it performs a

pivot to swap the driving variable with the blocking variable. This means that the

driving variable becomes basic, and the blocking variable becomes non-basic. If v

is the vertex that corresponds to the driving variable, then we know that both wv

and zv were non-basic in αi. If we suppose that wv was the driving variable, then we

know that the joint strategy σαi
chose σ(v) = λ(v). In αi+1, we know that wv will

be basic, and zv will be non-basic. This means that the joint strategy σαi+1
must

choose σαi+1
(v) = ρ(v). This corresponds exactly to the behaviour of the discounted

game algorithm.

4.3 Exponential Lower Bounds

In this section we will present exponential lower bounds for the algorithms that

we have described. Figure 4.5 shows the family of examples that will be used to

prove these bounds. These examples have been considered before: Björklund and

Vorobyov showed that the single switch policy could take an exponential number

of iterations when it is used with their strategy improvement algorithm [BV07],

and a similar example was used by Melekopoglou and Condon to show that single

switch strategy improvement for Markov decision processes could take an exponen-

tial number of steps [MC94]. It turns out that both Lemke’s algorithm and the

Cottle-Dantzig algorithm can be made to take exponential time on these examples.

Figure 4.5 presents a family of mean-payoff games, and it is easy to see that

these examples could be expressed as parity games. If each reward ±|V |c is replaced

with a priority c, then applying the reduction of Puri shown in Section 2.5.1 will

produce the exactly the same game. To obtain a discounted game, we would then

apply the reduction of Zwick and Paterson shown in the same section. Therefore,

we will establish exponential lower bounds even in the case where the input is a

parity or mean-payoff game.
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Figure 4.5: The game Gn.

The reduction of Zwick and Paterson will set the discount factor to be very

close to 1. To simplify the exposition in this section, we will assume that the discount

factor β is actually equal to 1. This assumption is forbidden by the definition of a

discounted game, however since the game contains one cycle, and since the sum of

the rewards on this cycle is 0, the value of every vertex under every joint strategy

will still be finite. The discount factor chosen by the reduction from mean-payoff

games is close enough to 1 to ensure that the algorithms will behave as we describe.

Every play in the game Gn must eventually arrive at the sink vertex s, af-

ter which no further reward can be earned. We will therefore be interested in the

finite prefix of each play that occurs before the sink is reached. If Play(v0, σ) =

〈v0, v1, . . . vn, s, s, . . . 〉 for some joint strategy σ, then we define Prefix(v0, σ) =

〈v0, v1, . . . vn〉. In our setting, where the discount factor is 1, we have Valueσ(v) =

∑
u∈Prefix(v,σ) r

σ(u).

The game Gn consists of 2n states {v1, v2, . . . , vn}∪{u1, u2, . . . un} and a sink

vertex s. Note that although the vertices vn, un, and s only have one outgoing edge,

we can express this game in our model by duplicating the outgoing edges from these

vertices. For example, we have λ(un) = ρ(un) = s, and we have rλ(un) = rρ(un) =

|V |2n. For every other vertex, we define the right-hand edge to be the edge that

leads to the vertex owned by the same player. This means that ρ(vi) = vi+1 and

ρ(ui) = ui+1, for all i < n.
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4.3.1 Lemke’s Algorithm

In this section, we describe how Lemke’s algorithm behaves when it is applied to the

example. We will show that the behaviour of Lemke’s algorithm depends on which

vertices are switchable in the original game. In fact, we will show that Lemke’s

algorithm always switches the switchable vertex with the smallest index. We go on

to show that this property causes Lemke’s algorithm to take an exponential number

of steps to find an optimal strategy for the original game.

Lemke’s algorithm allows the user to pick the covering vector. Our exponen-

tial lower bound will be for the case where this is a unit vector. In other words, we

set dv = 1, for every vertex v.

We say that a joint strategy σ is symmetric if for all i in the range 1 ≤ i < n

we have that σ(vi) = vi+1 if and only if σ(ui) = ui+1. In other words, a symmetric

joint strategy is symmetric in the horizontal line separating the vertices vi from

the vertices ui in Figure 4.5. We have introduced this concept because Lemke’s

algorithm will always switch the vertex vi directly before or after it switches the

vertex ui. Therefore, we can restrict ourselves to considering only symmetric joint

strategies in this section.

We begin by analysing the balance of each vertex in the original game when

a symmetric joint strategy is played. The next proposition shows that for every

index i we have Balσ(vi) = Balσ(ui), and gives a formula that can be used to derive

the balance of these vertices. In this section, we will prove properties about Balσ(vi).

The equality that we are about to prove implies that these properties also hold for

the vertices ui.

Proposition 4.16. For every symmetric joint strategy σ, and every index i < n,
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we have:

Balσ(vi) = Balσ(ui) =





Balσ(vi+1) − |V |2(i+1) − |V |2i+1 if σ(vi) = ρ(vi),

−Balσ(vi+1) + |V |2(i+1) + |V |2i+1 if σ(vi) = λ(vi).

Proof. We begin by proving that Balσ(vi) = Balσ(ui) for every index i < n. For

each vertex vi we can use the fact that rλ(vi) = rρ(vi) to obtain:

Balσ(vi) = Valueσ(vi) − (rσ(vi) + Valueσ(σ(vi))

= Valueσ(σ(vi)) − Valueσ(σ(vi)). (4.8)

Applying the same technique to the vertex ui gives:

Balσ(ui) = Valueσ(σ(ui)) − Valueσ(σ(ui)).

The fact that Balσ(vi) = Balσ(ui) then follows because, by symmetry of σ, we have

that σ(ui) = σ(vi) and σ(ui) = σ(vi).

We now prove the characterisation for Balσ(vi). We first consider the case

of σ(vi) = ρ(vi). In this case, we can use the formula given by (4.8) as follows:

Balσ(vi) = Valueσ(σ(vi)) − Valueσ(σ(vi))

= Valueσ(vi+1) − Valueσ(ui)

= Valueσ(σ(vi+1)) − Valueσ(σ(ui)) − |V |2(i+1) − |V |2i+1

= Valueσ(σ(vi+1)) − Valueσ(σ(vi)) − |V |2(i+1) − |V |2i+1

= Balσ(vi+1) − |V |2(i+1) − |V |2i+1.

The case where σ(vi) = λ(vi) can be proved using identical methods.

We now give a simple characterisation for when a vertex is switchable in the

original game when a symmetric joint strategy is played. This characterisation is
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derived from the rewards on the outgoing edges of vn and un. Max wants to avoid

reaching the vertex vn because it has a very large negative reward, and Min wants

to avoid reaching the vertex un because it has a very large positive reward. In a

symmetric joint strategy σ, we have that vn is reached from some vertex vi if and

only if Prefix(vi, σ) uses an even number of left edges. This is the characterisation

that is used in the following proposition.

Proposition 4.17. If σ is a symmetric joint strategy, then a vertex v is switchable

if and only if Prefix(v, σ) uses an even number of left edges

Proof. We will prove this claim by induction over the indices i. The inductive

hypothesis is as follows. If Prefix(vi, σ) uses an even number of edges then:

Balσ(vi) ≤ −|V |2n − |V |2n−1 +
2n−2∑

j=2i+1

|V |j .

On the other hand, if Prefix(vi, σ) uses an odd number of left edges then:

Balσ(vi) ≥ |V |2n + |V |2n−1 −
2n−2∑

j=2i+1

|V |j .

This inductive hypothesis is sufficient to prove the claim, because |V |2n + |V |2n−1−
∑2n−2

j=i+2 |V |j is positive for all i ≥ 0, and −|V |2n−|V |2n−1 +
∑2n−2

j=i+2 |V |j is negative

for all i ≥ 0. In this proof we will only consider the vertices vi, this is because

Proposition 4.16 has shown that Balσ(vi) = Balσ(ui) for all i.

In the base case, we consider the vertex vn−1. It can easily be seen that:

Balσ(vn−1) =





−|V |2n − |V |2n−1 if σ(vn−1) = ρ(vn−1),

|V |2n + |V |2n−1 if σ(vn−1) = λ(vn−1).

Therefore, the induction hypothesis is satisfied at the state vi.

For the inductive step, we consider a vertex vi. We will prove the claim for the
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case where σ(vi) = λ(vi) and where Prefix(vi, σ) uses an even number of left edges.

The other cases can be proved using identical methods. Applying Proposition 4.16

and the inductive hypothesis gives:

Balσ(vi) = Balσ(vi+1) + |V |2(i+1) + |V |2i+1

≤ (−|V |2n − |V |2n−1 +

2n−2∑

j=2(i+1)+1

|V |j) + |V |2(i+1) + |V |2i+1

≤ −|V |2n − |V |2n−1 +

2n−2∑

j=2i+1

|V |j .

We now begin to analyse the behaviour of Lemke’s algorithm on these ex-

amples. In order to achieve this, we must know the value of ∂−z Balσz (v) for every

vertex v and every joint strategy σ. It turns out that our simplifying assumption

of β = 1 gives us a simple formula for this quantity. This formulation also depends

on how many left edges are used by Prefix(v, σ).

Proposition 4.18. If σ is a symmetric joint strategy, then ∂−z Balσz (v) is −1 if v

is switchable, and 1 otherwise.

Proof. We will give a proof for the case where vi ∈ VMax, and vi is switchable. The

other three cases can be proved with similar methods. Since vi is switchable in σ,

Proposition 4.17 implies that the path Prefix(σ, vi) = 〈vi = xi, xi+1, . . . , xn〉 must

use an even number of left edges. We define CMax = {xj ∈ Prefix(σ, vi) ∩ VMax :

σ(xi) = λ(xi)} to be the set of vertices in Prefix(vi, σ) at which σ chooses a left

edge, and we define a similar set CMin = {xj ∈ Prefix(σ, vi)∩VMin : σ(xi) = λ(xi)}

for Min. We argue that |CMax| = |CMin|. This holds because whenever a player

chooses a left edge, they do not regain control until their opponent chooses a left

edge. We use Proposition 4.4, and the fact that Dvi(u) = 1 for every vertex u to
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obtain:

∂−z Valueσz (vi) =
∑

u∈CMax∪CMin

([u ∈ VMax] · Dv(u) − [u ∈ VMin] · Dv(u))

=
∑

u∈CMax∪CMin

([x ∈ VMax] − [x ∈ VMin])

=
∑

u∈CMax

1 −
∑

u∈CMin

1 = 0.

If Prefix(σ(vi), σ) = 〈xi+1, . . . , xn〉 then π = 〈vi, xi+1, . . . , xn〉 is the path that

starts at vi, takes the edge chosen by σ(v), and then follows σ. We begin by proving

that this path uses an odd number of left edges. If σ(vi) = ρ(vi) = vi+1, then the

fact that Prefix(vi, σ) uses an even number of left edges implies that Prefix(vi+1, σ)

uses an even number of left edges, and by symmetry we have that Prefix(σ(vi), σ)

uses an even number of left edges. Since σ(vi) chooses a left edge at vi, we have that

the path 〈vi, xi+1, . . . , xn〉 must use an odd number of left edges. The case where

σ(vi) = λ(vi) = vi+1 is similar.

Since the path π starts at vi ∈ VMax and it uses an odd number of left edges,

we can use a similar argument to the first paragraph to conclude that [σ(vi) =

λ(vi)] + β · ∂−z Valueσz (σ(vi)) = 1. Substituting this into the formula given by

Proposition 4.5 gives:

∂−z Balσz (vi) = ∂−z Valueσz (vi)−([σ(vi) = λ(vi)]+β ·∂−z Valueσz (σ(vi))) = 0−1 = −1.

We claim that for every symmetric joint strategy σ, Lemke’s algorithm will

choose z = |Balσ(vi)|, where i is the smallest index for which vi is switchable when σ

is played in the original game. In order to prove this claim, we must argue that no

vertex has a negative balance in the game Gz. We begin by considering the vertices

that are switchable in the original game. Proposition 4.18 implies that these vertices

have ∂−z Balσz (v) = −1. Therefore, in order for these vertices to not be switchable
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in the game Gz, we must have that Balσ(vi) > Balσ(v) for each vertex v that is

switchable when σ is played in the original game. The next Proposition confirms

that this is the case.

Proposition 4.19. If vi and vj are both switchable in a symmetric joint strategy σ,

and i < j, then Balσ(vi) < Balσ(vj).

Proof. Let S = {i : vi is switchable in σ} be the set of indices of the switchable

vertices in σ. We begin by arguing that for each vertex vi such that i ∈ S, we have

vj ∈ Prefix(vi, σ), where j = min(S ∩ {i + 1, i + 2, . . . , n}). Proposition 4.17 implies

that for every i ∈ S we have that Prefix(vi, σ) uses an even number of left edges,

and for every i /∈ S we have that Prefix(vi, σ) uses an odd number of left edges. We

have two cases to consider. If σ(vi) = ρ(vi) = vi+1, then Prefix(vi+1, σ) must use an

even number of left edges, which implies that i + 1 ∈ S.

The other case is when σ(vi) = λ(vi) = ui+1. In this case we have that

〈vi, ui+1, ui+2, . . . , ui+k, vi+k+1〉 is a prefix of Prefix(vi, σ), and we argue that i+k+

1 ∈ S and that there is no element j in the range i < j < i + k + 1 such that j ∈ S.

Since Prefix(vi, σ) uses an even number of left edges, and σ chooses a left edge at vi,

we have that Prefix(ui+j, σ) uses an odd number of left edges for every j in the

range 1 ≤ j ≤ k. By symmetry of σ, we also have that for every j in the range

1 ≤ j ≤ k, the path Prefix(vi+j, σ) uses an odd number of left edges, and therefore

j /∈ S. Since σ must use a left edge when moving from ui+k to vi+k+1, we have that

Prefix(vi+k+1, σ) must use an even number of left edges, and therefore j ∈ S.

We now prove that for each i ∈ S we have Balσ(vi) < Balσ(vj), where j =

min(S∩{i+ 1, i+ 2, . . . , n}). From our arguments so far, we know that Prefix(vi, σ)

starts at vi, and then passes through a (potentially empty) set of Min vertices

{ui+1, ui+2, . . . , ui+k} before arriving at vj. Repeated application of Proposition 4.16
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gives:

Balσ(vi) = Balσ(vj) − |V |2j − |V |2j−1 +

2j−2∑

k=2(i+1)+1

|V |k ≤ Balσ(vj).

The next Proposition proves a similar property for a vertex v that is not

switchable when σ is played in the original game. In this case, Proposition 4.18

implies that ∂−z Balσz (v) = 1. Therefore, in order for the balance of v to remain

positive when σ is played in Gz, we must have that |Balσ(vi)| ≤ Balσ(v). The next

proposition confirms that this property holds.

Proposition 4.20. Let i be the smallest index such that vi is switchable in a sym-

metric joint strategy σ. For every vertex v that is not switchable in σ we have

|Balσ(vi)| ≤ Balσ(v).

Proof. We begin by arguing that this property holds for every index j < i. Propo-

sition 4.17 implies that Prefix(vi, σ) uses an even number of left edges, and that

Prefix(vi−1, σ) uses an odd number of left edges. Therefore, we have σ(vi−1) =

λ(vi−1). Proposition 4.16 gives:

Balσ(vi−1) = −Balσ(vi) + |V |2i + |V |2i−1.

This implies that the proposition holds for the vertex vi−1. Since i is the smallest

index such that vi is switchable, we have that σ(vj) = ρ(vj) for every index j < i+1.

Repeated application of Proposition 4.16 gives:

Balσ(vj) = −Balσ(vi) + |V |2i + |V |2i−1 −
i−2∑

k=j+1

(|V |2(k+1) + |V |2k+1) > −Balσ(vi).

Since Balσ(vi) is negative, we have that |Balσ(vi)| ≤ Balσ(v).

We now turn our attention to the vertices vj with j > i. We know that

Prefix(vi) must pass through either vj or uj , and we know that Balσ(vj) = Balσ(uj).
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Let k be the largest index such that k < j, and σ(vk) = λ(vk). Proposition 4.16

implies that:

Balσ(vk) = −Balσ(vj) +

j−1∑

l=k

(|V |2(l+1) + |V |2l+1).

Moreover, no matter what moves σ makes on the indices between i and k, we have

the following inequality:

Balσ(vi) ≥ −Balσ(vj) +

j−1∑

l=k

(|V |2(l+1) + |V |2l+1) −
k−1∑

l=i

(|V |2(l+1) + |V |2l+1)

≥ −Balσ(vj).

Since Balσ(vj) is positive, we have that |Balσ(vi)| ≤ Balσ(v).

We can now prove the most important claim, which is that Lemke’s algorithm

will always choose z = |Balσ(vi)|. The next proposition shows that this value of z

satisfies all three invariants that Lemke’s algorithm requires, and it is not difficult

to see that no other value of z can satisfy all three of these requirements. Therefore,

Lemke’s algorithm must choose this value for z when it considers the joint strategy σ.

Proposition 4.21. Let σ be a symmetric joint strategy, let i be the smallest index

for which vi is switchable, and let z = −Balσ(vi). The following statements are

true.

1. The strategy σ is optimal for the game Gz.

2. For every parameter y < z the strategy σ is not optimal for the game Gy.

3. We have Balσz (vi) = Balσz (ui) = 0.

Proof. If v is a vertex that is switchable when σ is played in G0, then Proposition 4.19

combined with Proposition 4.18 implies that Balσz (v) ≥ 0. On the other hand, if v

is a vertex that is not switchable when σ is played in G0, then Proposition 4.20

combined with Proposition 4.18 implies that Balσz (v) ≥ 0. Therefore, we have that
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Balσz (v) ≥ 0 for every vertex v, which implies that σ is an optimal strategy for the

game Gz .

Proposition 4.18 implies that ∂−z Balσz (vi) = −1. Therefore, we have that

both Balσz (vi) = 0, and Balσz (ui) = 0. We also have that both Balσy (vi) < 0, and

Balσy (ui) < 0, for every parameter y < z.

Finally, we must argue that this behaviour forces Lemke’s algorithm to take

an exponential number of steps. The property given by Proposition 4.21 implies

that Lemke’s algorithm works from the right: it must find an optimal strategy for

the vertices v1 through vi−1 and u1 through ui−1, before it can switch the vertices vi

or ui. After these vertices are switched, every prefix that used an even number

of left edges now uses an odd number of left edges, and every prefix that used an

odd number of left edges now uses an even number of left edges. In other words,

a vertex vj with j < i is switchable after this operation, if and only if it was not

switchable before the operation. We can use this property to prove that Lemke’s

algorithm takes exponential time.

Theorem 4.22. Lemke’s algorithm performs 2n+1 − 2 iterations on the game Gn.

Proof. Suppose that Lemke’s algorithm passes through the sequence of strategies

〈σ0, σ1, . . . , σk〉 before it switches one of the vertices vi or ui for the first time.

Lemke’s algorithm will produce two strategies σk+1 and σk+2 in which is switches

the vertices vi and ui in an order that is determined by the degeneracy resolution

rule. Since Lemke’s algorithm works from the right, we know that Lemke’s algorithm

cannot switch a vertex vj with j > i before it finds an optimal strategy for the

vertices v1 through vi, and u1 through ui. Our principal claim is that Lemke’s

algorithm will take k more iterations before it achieves this.

For each joint strategy σj, let σ′
j be that strategy with the vertices vi and ui

switched, and note that σk+2 = σ′
k. We argue that Lemke’s algorithm will move

from the strategy σ′
j to the strategy σ′

j−1. To see why, suppose that k is the smallest
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index such that vk is switchable when σ′
j is played on G0. Lemke’s algorithm will

switch both vk and uk to produce the strategy τ . Since every vertex with index

smaller than k was not switchable in σ′
j , we have that every vertex with index

smaller than k is switchable in τ . We also have that vk and uk are not switchable

in τ . Furthermore, if τ ′ is the strategy τ with the vertices vi and ui switched, then

we have that the vertices vk and uk are switchable in τ ′, and that no vertex with

index smaller than k is switchable in τ ′. It follows that τ ′ = σj−1, and that τ = σ′
j−1.

Therefore, after arriving at the strategy σk+2 = σ′
k, Lemke’s algorithm will move

through the sequence of strategies 〈σ′
k, σ

′
k−1, . . . , σ

′
0〉.

Therefore, we have the following recursion for the first time that Lemke’s

algorithm arrives at a joint strategy that is optimal for the first i indices. The

expression T (1) is derived from the fact that the initial strategy selects ρ(v1) and

ρ(u1), and that Lemke’s algorithm will spend two iterations switching these vertices

to λ(v1) and λ(u1).

T (1) = 2,

T (n) = T (n− 1) + 2 + T (n− 1).

It can easily be verified that T (n) = 2n+1 − 2.

4.3.2 The Cottle-Dantzig Algorithm

In this section, we show that the Cottle-Dantzig algorithm takes an exponential

number of steps when it is applied to the family of examples Gn. There are two

parameters that the user is allowed to choose for this algorithm: the initial joint

strategy and the order in which the vertices are chosen as the distinguished vertex.

We define the initial joint strategy σ0 to be σ0(vi) = ρ(vi) and σ0(ui) = λ(ui), for

all i.

It is not difficult to verify that each vertex ui has a positive balance in σ0,
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Figure 4.6: The joint strategy σ0 that is considered at the start of major iteration i
for the first i vertices.

and each vertex vi has a negative balance. Therefore, the set P0 will contain every

vertex ui, and these vertices cannot be chosen as distinguished variables. For major

iteration i, we will choose the vertex vi to be the distinguished variable. In other

words, the vertices vi are chosen in order from 1 to n. To establish our exponential

lower bound, we will prove that major iteration i takes 2i−1 steps to be completed.

The joint strategy σ0 that the algorithm considers at the start of major

iteration i is represented by the dashed lines in Figure 4.6. It is not difficult to

see that in major iteration i the algorithm will only modify the strategy at the

vertices vj and uj with j < i. This follows from the fact that there is no path from

any vertex uj with j > i to the distinguished vertex vi, and therefore the balance of

these vertices cannot be affected by the bonus that is added to the outgoing edge

of vi.

Unlike Lemke’s algorithm, the overall strategy will not be symmetric until the

optimal strategy is found, but during major iteration i the strategy will be symmetric

on the vertices vj and uj with j < i. This is shown as the symmetric portion in

Figure 4.6. In this section, we will call a strategy symmetric if it is symmetric for

every vertex index that is smaller than i. The Cottle-Dantzig algorithm will always

switch the vertex vi immediately before or after it switched the vertex ui, and

therefore it can be seen as a process that moves between symmetric joint strategies.

Our first proposition gives a simple characterisation of ∂z Balσz (v) for each
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vertex in the symmetric portion, and for every joint strategy σ. Once again, this

relies on whether an odd or even number of left edges are used by Prefix(v, σ).

However, for the Cottle-Dantzig algorithm, we are only interested in the portion of

Prefix(v, σ) that lies in the symmetric portion. We are not interested in the number

of left edges used by Prefix(v, σ) after it has passed through either vi or ui.

Proposition 4.23. Suppose that the algorithm is in the major iteration i and is

considering a symmetric joint strategy σ, and let v be some vertex vj or uj with

j < i. If π = 〈v = x0, x1, . . . xk〉 is the prefix of Prefix(v, σ) such that xk is either vi

or ui, then we have:

∂z Balσz (v) =





−1 If π uses an odd number of left edges,

1 otherwise.

Proof. We will prove this proposition for a vertex vj with j < i. The proof for the

vertices uj will be entirely symmetrical. If π uses an odd number of left edges, then

we must have that xk = ui. This implies that ∂z Valueσz (vj) = 0. The symmetry

of σ implies that Prefix(σ(vj), σ) must pass through the vertex vi. Therefore, we

have that ∂z Valueσz (σ(vj)) = 1. Substituting these into the definition of ∂z Balσz (v)

gives:

∂z Balσz (vj) = ∂z Valueσz (vj) − β · ∂z Valueσz (σ(vj)) = 0 − 1 = −1.

On the other hand, if π uses an even number of left edges, then we must have

that xk = vi. This implies that ∂z Valueσz (vj) = 1 and ∂z Valueσz (σ(vj)) = 0. By

performing the same substitution, we can conclude that ∂z Balσz (vj) = 1.

Proposition 4.23 implies that for the initial joint strategy σ0 in major iter-

ation i, every vertex vj or uj with j < i has ∂z Balσ0
z (v) = −1. This means that

as w is increased, the balance of every vertex in the symmetric portion will decrease.

109



Therefore, to find the first parameter w that is chosen in each major iteration, we

must find the vertex in the symmetric portion that has the smallest balance. The

next proposition gives a characterisation for the balance of each vertex in the sym-

metric portion for the initial strategy, which can easily be verified by tracing the

paths used by the strategy shown in Figure 4.6.

Proposition 4.24. For every index j where j < i, we have:

Balσ0(vi) = Balσ0(ui) = |V |2i + |V |2i−1 −
i−1∑

k=j+1

(|V |2k + |V |2k−1).

This proposition indicates that in the initial strategy, the vertices v1 and u1

have the smallest balance among the vertices in the symmetric portion. Therefore,

the Cottle-Dantzig algorithm will choose a parameter w that makes these vertices

indifferent.

Recall that our goal is to show that major iteration i will take 2i − 2 steps.

Our proof of this will be by induction over the first time that a vertex vj has

balance 0. We define, for 1 ≤ j < i, the quantity kj to be the number of strategies

that the Cottle-Dantzig algorithm passes through before the vertex vj has balance 0

for the first time. Furthermore, we define wj to be the value of the parameter when

this occurs. The inductive hypothesis is as follows.

• For each j we have that kj = 2j+1 − 2.

• For each j we have that wj = |V |2i + |V |2i−1 −∑i−1
k=j+1(|V |2k + |V |2k−1).

• In the first kj iterations, no vertex with index larger than j will be switched.

From our arguments so far, we know that k1 = 0 and w1 = |V |2i + |V |2i−1 −
∑i−1

k=2(|V |2k + |V |2k−1), and we know that no vertex with index larger than 1 has

been switched. This proves the base case of the induction.

We will now prove the inductive step. Suppose that the algorithm has passed

through the sequence of strategies 〈σ0, σ1, . . . σkj 〉, to arrive at the joint strategy σkj
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in which the vertex vj has balance 0 for the first time. We know that the parameter w

has been set to wj in this iteration.

By the inductive hypothesis, we know that no vertex vl with l in the range

j < l < i has been switched since the start of this major iteration. This implies that

σkj = σ0 on these vertices. It follows that the balance of vl has been continuously

decreasing since the start of the major iteration, and therefore we have Bal
σkj
wj (vl) =

Balσ0

0 (vl)−wj. The first thing that we will prove is that the balance of vl will remain

positive even if w is raised to 2wj − w1.

Proposition 4.25. If w = 2wj −w1 then Balσ0
w (vl) −w ≥ 0 and Balσ0

w (ul) −w ≥ 0

for each l in the range j < l < i.

Proof. We prove the proposition for the vertices vl with l in the range j < l < i.

The proof for the vertices ul is entirely symmetric. Proposition 4.24 implies that

the balance of vl in G0 was:

Balσ0(vl) = |V |2i + |V |2i−1 −
i−1∑

k=l+1

(|V |2k + |V |2k−1).

The inductive hypothesis gives the following two equalities.

wj = |V |2i + |V |2i−1 −
i−1∑

k=j+1

(|V |2k + |V |2k−1)

w1 = |V |2i + |V |2i−1 −
i−1∑

k=2

(|V |2k + |V |2k−1)

Simple arithmetic gives the following expression for 2wj − w1:

|V |2i + |V |2i−1 −
i−1∑

k=j+1

(|V |2k + |V |2k−1) +

j∑

k=2

(|V |2k + |V |2k−1).

111



Finally, we obtain:

Balσ0(vl) − (2 · wj − w1) =

l∑

k=j+1

(|V |2k + |V |2k−1) −
j∑

k=2

(|V |2k + |V |2k−1).

Since l ≥ j + 1, this expression must be positive.

Our next task is to show that the Cottle-Dantzig algorithm will pass through

kj + 2 further strategies after it has reached the joint strategy σkj . For each joint

strategy σi we define:

σ′
l(v) =





σl(v) if v = vj or v = uj,

σl(v) otherwise.

In other words, σ′
l is σl in which the vertices with index j have been switched. To

prove this claim, we will show that the Cottle-Dantzig algorithm passes through

each of the strategies σl with 1 ≤ l ≤ kj .

Proposition 4.26. After arriving at the joint strategy σkj , the Cottle-Dantzig al-

gorithm will pass through kj + 2 further strategies while raising the parameter w to

at most 2wj −w1. No vertex vl with l in the range j < l < i is switched during this

sequence.

Proof. Since both vertices with index j are indifferent in σkj the algorithm will

produce two strategies σkj+1 and σkj+2, in order to switch these two vertices. Note

that σkj+2 = σ′
kj

. Proposition 4.23 implies that for every l in the range 1 ≤ l ≤ kj

and every vertex vm with m < j we have:

∂z Balσl
z (vm) = −∂z Bal

σ′
l

z (vm).

This is because after switching the vertex pair with index j the path from every

vertex with index less than j sees an extra left edge. So, as w is increased the
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balance of every vertex σ′
l will move in a direction that is opposite to the way that

it moved in σl. Therefore, if w is raised to 2wj −w1 then Cottle-Dantzig algorithm

will pass through the sequence of strategies 〈σ′
kj
, σ′

kj−1, . . . σ
′
0〉. This is because w

was increased by wj − w1 as the algorithm moved from σ0 to σkj . Proposition 4.25

confirms that no vertex with index greater than j can be switched during this

process.

We have provided a proof for the first and third conditions of the inductive

hypothesis. To complete the proof, the next proposition shows that the vertices vj+1

and uj+1 have balance 0 for the first time in the iteration where the Cottle-Dantzig

algorithm considers the joint strategy σ′
0.

Proposition 4.27. We have kj+1 = 2j+2 − 2 and wj+1 = |V |2i + |V |2i−1 −
∑i−1

k=j+2(|V |2k + |V |2k−1).

Proof. We must show that after arriving at the joint strategy σ′
0, The Cottle-Dantzig

algorithm sets the parameter w to wj+1, and that the balance of vj+1 is 0 when σ′
0

is played in Gwj+1
. Note that in σ′

0 the path from every vertex vl with l < j uses

precisely two left edges: one which belongs to either vj or uj and one that belongs

to vi−1 or ui−1. From this we can conclude, by Proposition 4.23, that ∂z Bal
σ′
0

z (v) = 1

for every vertex v with index smaller than or equal to j. This implies that once the

algorithm has reached σ′
0 it can continue to raise w until the balance of some vertex

with index greater than j becomes 0.

We know that the balance of every vertex with index higher than j has

decreased in every iteration. Therefore, to find the first vertex whose balance be-

comes 0 as w is increased we need only to find the vertex whose balance was the

smallest, among those vertices with indices higher than j, at the start of major it-

eration i. From Proposition 4.24 this is clearly the vertex vj+1. Moreover, we know

that w must be set to |V |2i + |V |2i−1 −∑i−1
k=j+2(|V |2k + |V |2k−1) in order to achieve

this.
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We now know that each major iteration must take at least 2i − 2 steps. We

have therefore shown the following theorem, which is an exponential lower bound

for the Cottle-Dantzig algorithm.

Theorem 4.28. Consider an order in which all Min vertices precede Max vertices,

and Max vertices are ordered from right to left. The Cottle-Dantzig algorithm per-

forms 2n+1 − 2n − 1 iterations.

4.4 Concluding Remarks

In this chapter, we have studied two classical pivoting algorithms from the LCP liter-

ature. We have shown how these algorithms can be interpreted as strategy iteration

algorithms when they are applied to discounted games. We have also constructed a

family of examples upon which both of these algorithms take exponential time.

It should be stressed that the lower bounds that have been shown in this

chapter depend on specific choices for user-supplied parameters. The exponential

lower bound for Lemke’s algorithm requires that the covering vector is chosen to

be a unit vector, and the lower bound for the Cottle-Dantzig algorithm requires

a specific ordering over the choice of the distinguished vertex. There are other

choices of these parameters for which the algorithms behave well: there is a choice

of covering vector that makes Lemke’s algorithm terminate in a linear number of

steps on our examples, and there is an ordering for distinguished vertices that makes

the Cottle-Dantzig algorithm terminate in a linear number of steps.

This situation can be compared with the choice of switching policy in strategy

improvement. The fact that some switching policies take exponential time does not

rule out the possibility of a switching policy that always terminates in polynomial

time. Therefore, the effect that the choice of covering vector and ordering over

distinguished vertices has upon the running time of the respective algorithms should

be studied. For example, in strategy improvement it is known that for each input
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instance there is a switching policy that causes strategy improvement to terminate

after a linear number of iterations. It would be interesting to see if this result can

be replicated for our algorithms. This would involve proving that for each example

there is a choice of covering vector that makes Lemke’s algorithm terminate in

polynomial time, or that there is a choice of ordering over distinguished vertices that

makes the Cottle-Dantzig algorithm terminate in polynomial time. On the other

hand, if this property does not hold, then it would also be interesting to extend our

lower bound for arbitrarily chosen covering vectors and arbitrarily chosen orderings

over distinguished vertices.

A more challenging problem is to show that these parameters can be chosen

in a way that guarantees that the algorithms will terminate quickly. There are

previous results that indicate that this may be fruitful. Adler and Megiddo studied

the performance of Lemke’s algorithm for the LCPs arising from randomly chosen

linear programs [AM85]. They showed that if a unit covering vector is used, then the

expected running time of Lemke’s algorithm is exponential. On the other hand, they

carefully construct a covering vector that causes Lemke’s algorithm to terminate

after an expected quadratic number of steps.
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Chapter 5

Greedy Strategy Improvement

For Markov Decision Processes

The greedy switching policy for strategy improvement is probably the most nat-

ural switching policy. It was long thought that strategy improvement algorithms

equipped with this switching policy could be proved to terminate in polynomial time.

In the game setting, these hopes were dashed by the result of Friedmann [Fri09],

which gives a family of parity games upon which the strategy improvement algo-

rithm of Vöge and Jurdziński [VJ00] took exponential time. It was later shown that

these examples could be generalised to provide exponential lower bounds for strategy

improvement on mean-payoff, discounted, and simple stochastic games [And09].

However, the lower bounds that have been discovered so far apply only to

games. The running time of greedy strategy improvement for Markov decision pro-

cesses has been left open. It is possible to imagine that greedy strategy improvement

could be exponential for games and polynomial for MDPs. This possibility is high-

lighted by the fact that critical structures in Friedmann’s examples rely on the

behaviour of the second player.

In this chapter we show how Friedmann’s examples can be adapted to provide

exponential lower bounds in the Markov decision process setting. We show how the
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second player in Friedmann’s examples can be replaced with a random action in the

Markov decision process setting. We produce a family of Markov decision processes

upon which greedy strategy improvement for the average-reward criteria take an

exponential number of steps.

5.1 The Strategy Improvement Algorithm

The family of examples that will be used to show the exponential lower bound

have a special form. Each example contains a sink, which is a vertex s with a

single outgoing action (s, s) such that r(s, s) = 0. Moreover, every run under every

strategy that is considered by the strategy improvement algorithm will arrive at this

sink. This means that we will produce an exponential sequence of strategies, such

that Gσ(v) = 0 for each strategy σ in this sequence, and for every vertex v in the

example.

This property allows us to simplify our notation. Recall that the strategy

improvement algorithm for the average-reward criterion has two different types of it-

eration: if there is a gain-switchable action, then the algorithm will only switch gain-

switchable actions, and if there are no gain-switchable actions, then the algorithm

will switch bias-switchable actions. However, since the gain of each strategy is al-

ways 0, we know that the algorithm algorithm can never encounter a gain-switchable

action. From this, it follows that only bias switchable actions are switched during

our exponential sequence of strategies. Therefore, we can completely ignore the gain

component of each strategy during our proofs.

For the sake of notational simplicity, we will use this knowledge to simplify

the optimality equations given in (2.6)-(2.7). Since we know that Gσ(v) = 0 for

every strategy σ that we will consider, we can simplify Equation 2.7 to obtain the
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following optimality equation:

B(v) = max
a∈Av

(
r(v, a) +

∑

v′∈V
p(v′|v, a) ·B(v′)

)
. (5.1)

Note that this equation bears some resemblance to the optimality equation that

is used in the total-reward setting [Put05, Chapter 7]. However, our proof will

not imply an exponential lower bound for the total-reward criterion, because our

examples do not fall into a class of models upon which strategy improvement has

been shown to be correct.

We now define some simplified notation that will be used with the optimality

equation (5.1). Since the gain component is being ignored, we define Valσ(v) =

Bσ(v) for every vertex v. We define the appeal of an action a under a strategy σ to

be:

Appealσ(a) = r(v, a) +
∑

v′∈S
p(v′|v, a) · Valueσ(v′).

The action a is switchable at a vertex v in a strategy σ if Appealσ(a) > Valσ(v).

Theorem 3.2 implies that if σ′ is obtained from σ by switching a subset of the

switchable actions, then we have Valσ(v) ≤ Valσ
′

(v) for every vertex v, and there is

some vertex at which this inequality is strict. In this context, the greedy switching

policy chooses, at every vertex v, the switchable action a such that Appealσ(a) ≥

Appealσ(b), for every switchable action b. Ties are broken using the same methods

that were shown in Section 3.2.4.

5.2 The Family of Examples

In this section we describe the family of examples that will be used to show the

exponential lower bound for greedy strategy improvement on Markov decision pro-

cesses. Our goal is to force greedy strategy improvement to mimic a binary counter.

We will define the family of examples Gn, where n is the number of bits in the binary
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Figure 5.1: The structure for the bit with index i.

counter. In this section, we will describe how to construct the game Gn.

5.2.1 The Bit Gadget

Figure 5.1 shows the gadget that will be used to represent a bit of the binary

counter. It consists of a vertex bi, which has a special action ai. The action ai is a

probabilistic action that has reward 0. When the action ai is chosen at bi there is a

very large probability of returning to the vertex bi, and a very small probability of

moving to the vertex gi. There will be n copies of this structure in the example Gn,

which will be indexed with the integers 1 through n. The bit with index 1 will be

the least significant bit, and the bit with index n will be the most significant bit.

For each strategy σ, the state of the bit represented by bi will be determined

by the choice that σ makes at bi. The bit is a 1 in the strategy if σ(bi) = ai, and

it is a 0 if σ(bi) 6= ai. We will represent the configuration of a binary counter as a

non-empty set B ⊆ {1, 2, . . . , n} that contains the indices of the bits that are 1. If a

configuration B is a strict subset of {1, 2, . . . n}, then we say that B is improvable.

Definition 5.1 (Configuration). A configuration is a set B ⊆ {1, 2, . . . , n} such

that B 6= ∅. An improvable configuration is a set B ⊂ {1, 2, . . . , n} such that B 6= ∅.

119



A strategy σ represents a configuration B if σ(bi) = ai for every index i ∈ B,

and σ(bi) 6= ai for every every index i /∈ B. For a set of natural numbers B we define

B>i to be the set B \ {k ∈ N : k ≤ i}. We define analogous notations for <, ≥,

and ≤.

Our objective is to force greedy strategy improvement to pass through at

least one strategy for each configuration: we will begin at a strategy that represents

the configuration {1}, and after visiting at least one strategy that represents each

configuration, we will finally arrive at a strategy that represents the configuration

{1, 2, . . . , n}. Since the MDPs that we will construct will be polynomially sized in

n, if this property can be achieved, then an exponential lower bound will obviously

follow. As we have mentioned, the algorithm will will traverse configurations in

the same order as a binary counter. Suppose that greedy strategy improvement is

currently considering a strategy that represents the improvable configuration B. If

i = min({1, 2, . . . , n} \ B), then we want to force greedy strategy improvement to

move to a strategy that represents the configuration (B \ {1, 2, . . . , i− 1}) ∪ {i}.

This operation occurs in two phases. In the flip phase, greedy strategy

improvement moves from a strategy that represents the configuration B to a strategy

that represents the configuration B ∪ {i}, where i is the smallest index such that

i /∈ B. In other words, in the first phase, the vertex bi must be switched to the

action ai, and the strategy at each other vertex bj must not be changed. Once

this has occurred, greedy strategy improvement will enter the reset phase where it

moves to a strategy that represents the configuration (B \ {1, 2, . . . , i − 1}) ∪ {i}.

This means that every vertex bj with j < i will be switched away from the action aj .

Once this strategy has been reached, greedy strategy improvement will return to the

flip phase for the new configuration.
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Figure 5.2: The deceleration lane.

Figure 5.3: The outgoing actions from the vertex bi.

5.2.2 The Deceleration Lane

Figure 5.2 shows a gadget called the deceleration lane. The example Gn will contain

one instance of this gadget. It consists of two vertices x and y, which have outgoing

actions to other parts of the example, and a sequence of vertices di. Each vertex di

with i > 0 has an action to the vertex di−1 with reward −1, an action to the

vertex x with reward 0, and an action to the vertex y with reward 0. The vertex d0

is different: it has an action to the vertex y with reward 4n+ 1 and an action to the

vertex x with reward 4n + 1.

The deceleration lane plays a key role in implementing the flip phase. In

this phase, we must ensure that the action ai is switched at the vertex bi, where i

121



is the smallest index such that i /∈ B, and that no other bit changes state. This

is achieved by connecting each bit vertex to the deceleration lane, and Figure 5.3

shows how each vertex bi is connected to the deceleration lane. The vertex bi has

exactly 2i outgoing actions to the deceleration lane, and these actions lead to the

vertex d1 through d2i.

The principal idea is that the deceleration lane can prevent the action ai

from being switched at the vertex bi for exactly 2i iterations. It does this by going

through a sequence of 2n strategies. Consider an index i such that i /∈ B. In the

first strategy, the action (bi, d1) will be the most appealing action at the vertex bi,

and in the j-th strategy, the action (bi, dj) will be the most appealing action at the

vertex bi. Since the most appealing action at this vertex is not ai, greedy strategy

improvement cannot switch this action. Therefore, the bit with index i cannot be

set to 1 during this sequence.

We can now see why the smallest 0 bit is set to 1. If i is the smallest index

such that i /∈ B, then every vertex bj with j > i has at least two more outgoing

actions to the deceleration lane. Therefore, the action ai can be switched at the

vertex bi at least two iterations before the action aj can be switched at the vertex bj .

This allows greedy strategy improvement to move to a strategy that represents the

configuration B ∪ {i}, which correctly implements the flip phase.

The deceleration lane also has an important role to play in the reset phase.

During this phase, the deceleration lane must be switched back to its initial strategy,

which was the strategy where the action (bi, d1) is the most appealing action at every

vertex bj with j /∈ (B ∪ {i}) \ {1, 2, . . . , i− 1}. This must occur in order for greedy

strategy improvement to continue with the flip phase for the next configuration

immediately after the reset phase has been completed. We will later show how the

choice of outgoing actions from the vertices x and y achieves this.
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Figure 5.4: The structure associated with the vertex bi.

5.2.3 Reset Structure

Each vertex bi has an associated structure that is called the reset structure, which

is shown in Figure 5.4. The vertex ci is called the choice vertex. The idea is that

the action (ci, fi) should be chosen at the vertex ci if and only if the index i ∈ B. It

is not difficult to see why this should be the case: if i ∈ B then choosing the action

(ci, fi) results in a penalty from the edge (fi, bi), but this is offset by the larger

reward on the edge (gi, ri). On the other hand, if i /∈ B then only the penalty on

the edge (fi, bi) is seen.

During the flip phase, greedy strategy improvement does not switch any

vertex in the reset structure. However, during the reset phase, it is the reset structure

that causes each vertex bj with j < i to be switched away from the action aj .

This occurs because each vertex bj has an action (bj , fk) for every index k > j.

When the vertex bi is switched to the action ai, the valuation of the vertex fi rises,

because of the reward on the action (gi, ri). This rise is enough to ensure that

each action (bj , fi) is the most appealing action at the vertex bj, for each j < i.

Therefore, greedy strategy improvement will move to a strategy that represents the
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Vertex Target Range Reward

d0 y 4n + 1
d0 x 4n + 1
di x 1 ≤ i ≤ 2n 0
di y 1 ≤ i ≤ 2n 0
di di−1 1 ≤ i ≤ 2n −1

bi x 1 ≤ i ≤ n 0
bi y 1 ≤ i ≤ n 1
bi dj 1 ≤ i ≤ n, 1 ≤ j ≤ 2i 2j
bi fj 1 ≤ i ≤ n, i < j ≤ n 4n + 1

ci fi 1 ≤ i ≤ n 4n + 1
ci ri 1 ≤ i ≤ n 0

cn+1 cn+1 0

fi bi 1 ≤ i ≤ n −(10n + 4)2i−1 − 4n

gi ri 1 ≤ i ≤ n (10n + 4)2i

ri cj 1 ≤ i ≤ n, i < j ≤ n + 1 −1

y cj 1 ≤ j ≤ n 0

x fj 1 ≤ j ≤ n 0

Table 5.1: The deterministic actions in the game Gn.

configuration (B ∪ {i}) \ {1, 2, . . . , i− 1}.

Figure 5.4 also specifies the outgoing actions from the vertices x and y. There

is an action (y, ci) with reward 0 for every i in the range 1 ≤ i ≤ n, and there is an

action (x, fi) with reward 0 for every i in the range 1 ≤ i ≤ n.

We have now completed the description of our examples. We will now for-

mally specify Gn. The MDP contains the vertices x and y and the vertices ci, fi, bi, gi,

and ri for i in the range 1 ≤ i ≤ n. It also contains the vertex cn+1, and the ver-

tices di for every i in the range 0 ≤ i ≤ 2n. The deterministic actions in the MDP

are given by Table 5.2.3. Each vertex bi also has a probabilistic action ai with re-

ward 0, where p(gi|bi, ai) = 1/((10n + 4)2n) and p(bi|bi, ai) = 1 − 1/((10n + 4)2n).

Figure 5.5 shows the example G2.
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5.3 The Flip Phase

We begin by describing the sequence of strategies that greedy strategy improvement

will pass through during the flip phase. We will specify a sequence of partial strate-

gies for each gadget individually, and then combine these into a sequence of full

strategies for the entire example.

For the deceleration lane, we begin with a strategy that picks the action

(di, y) for every vertex di. In the first iteration, the action (d1, d0) will be switched.

The action (di, di−1) can only be switched after every action (dj , dj−1) with j < i

has been switched. Therefore, we have the following sequence of partial strategies

for the deceleration lane. For every j such that j ≥ 0 we define a partial strategy:

σj(s) =





dk−1 if s = dk and 1 ≤ k ≤ j,

y otherwise.

(5.2)

We will give two sequences of partial strategies for the vertices bi, one strat-

egy for the vertices where i ∈ B, and one strategy for the vertices where i /∈ B.

As we have described, these vertices should follow the updates made by the decel-

eration lane. By this we mean that greedy strategy improvement will switch the

action (bi, dj) in the iteration immediately after the action (dj , dj−1) is switched in

the deceleration lane. The initial strategy for bi will select the action y, and the be-

haviour that we have described will hold from the second iteration onwards. In the

first iteration, greedy strategy improvement will switch the edge (bi, d2i). Formally,

for every j in the range 0 ≤ j ≤ 2i + 1 we define a partial strategy for the vertices
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in the deceleration lane and each vertex bi:

σo
j (s) =





σj(s) if s = dk for some k,

y if j = 0 and s = bi,

d2i if j = 1 and s = bi,

dj−1 if 2 ≤ j ≤ 2i + 1 and s = bi.

We also give a sequence of strategies for the vertices bi, where i ∈ B. In order

for the configuration to remain constant, these vertices should not switch away from

the action ai as the deceleration lane is being updated. Formally, for every j such

that j ≥ 0, we define a partial strategy:

σc
j(s) =





σj(s) if s = dk for some k,

ai if s = bi.

Finally, we give a strategy for the vertices in the reset structure. Let B be a

configuration. As we know, the vertices in the reset structure will not be switched

away from this strategy while the deceleration lane is being updated. We have

already described how the choice at the vertex ci depends on whether i ∈ B. Each

vertex ri selects the action (ri, cj), where j is the smallest index such that j > i and

j ∈ B. If i is the largest index in B then the vertex ri moves directly to the sink

vertex cn+1. The vertices x and y both move to the reset structure associated with
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the smallest index i such that i ∈ B.

σB(ci) =





fi if i ∈ B,

ri if i /∈ B,

σB(ri) = cmin(B>i∪{n+1}),

σB(y) = cmin(B),

σB(x) = fmin(B).

We can now define the sequence of strategies that greedy strategy improve-

ment will pass through during the flip phase, which combines the partial strategies

that we have defined. For each improvable configuration B, we define Sequence(B) =

〈σB
0 , σ

B
1 , . . . σ

B
2j+1〉, where j = min({1, 2, . . . , n} \B) and:

σB
j (s) =





σj(s) if s = dk for some k,

σc
j(s) if s = bi where i ∈ B,

σo
j (s) if s = bi where i /∈ B,

σB(s) otherwise.

We also define the strategy σ
{1,2,...,n}
0 analogously. The rest of this section is dedi-

cated to showing that if greedy strategy improvement is applied to the strategy σB
0 ,

then it will pass through the sequence of strategies in Sequence(B).

5.3.1 Breaking The Example Down

In order to simplify our exposition, we will provide proofs for each gadget separately.

To do this, we first need to provide some preliminary proofs that will be used to break

the example down into pieces. These proofs concern the valuation of the vertices ci.

These vertices are important, because they are on the border between the gadgets
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in the example. For example, we know that the vertex y in the deceleration lane

always chooses an action of the form (y, ci), and by knowing bounds of the valuation

of ci we will be able to prove properties of the deceleration lane irrespective of the

strategy that is being played on the vertices in the reset structure.

Recall that for each improvable configuration B, the strategy σB
j chooses the

action (ci, fi) if and only if i ∈ B. This implies that if we follow the strategy σB
j

from some vertex ci where i ∈ B, then we will pass through every vertex ck where

k ∈ B>i. On the other hand, if we follow the strategy σB
j from some vertex ci

where i /∈ B, then we will move to the vertex ri, and then to the vertex ck where

k = min(B>i ∪{n+ 1}). The next proposition uses these facts to give a formula for

the valuation of each vertex ci in terms of the configuration B.

Proposition 5.2. Let B be an improvable configuration and σ be a member of

Sequence(B). For every i we have:

Valσ(ci) =





∑
j∈B≥i(10n + 4)(2j − 2j−1) if i ∈ B,

∑
j∈B≥i(10n + 4)(2j − 2j−1) − 1 otherwise.

Proof. We first consider the case where i ∈ B. If k = min(B>i ∪ {n + 1}) then the

definition of σ gives:

Valσ(ci) = r(ci, fi) + r(fi, bi) + Valσ(bi)

= r(ci, fi) + r(fi, bi) + r(gi, ri) + r(ri, ck) + Valσ(ck)

= (4n + 1) − ((10n + 4)2i−1 − 4n) + (10n + 4)2i − 1 + Valσ(ck)

= (10n + 4)(2i − 2i−1) + Valσ(ck).

If k = n + 1 then we are done because Valσ(cn+1) = 0. Otherwise, repeated substi-

129



tution of the above expression for Valσ(ck) gives:

Valσ(ci) =
∑

j∈B≥i

(10n + 4)(2j − 2j−1) + Valσ(cj+1)

=
∑

j∈B≥i

(10n + 4)(2j − 2j−1).

We now consider the case where i /∈ B. If k = min(B>i∪{n+1}), then the definition

of σ gives:

Valσ(ci) = r(ci, ri) + r(ri, ck) + Valσ(ck)

= Valσ(ck) − 1

=
∑

j∈B≥i

(10n + 4)(2j − 2j−1) − 1.

The characterisation given by Proposition 5.2 gives some important prop-

erties about the valuation of the vertex ci. One obvious property is that passing

through a vertex bi, where i ∈ B, provides a positive reward. Therefore, if i and j

are both indices in B and i < j, then the valuation of ci will be larger than the

valuation of cj .

Proposition 5.3. Let B be an improvable configuration and σ be a member of

Sequence(B). For every i ∈ B and j ∈ B such that i < j, we have Valσ(ci) >

Valσ(cj).

Proof. Let C = B≥i∩B<j be the members of B that lie between indices i and j−1.

Proposition 5.2, the fact that i ∈ C, and the fact that 2j−2j−1 is positive for every j

imply that:

Valσ(ci) =
∑

j∈C
(10n + 4)(2j − 2j−1) + Valσ(cj) > Valσ(cj).

Proposition 5.3 provides a lower bound for the valuation of a vertex ci in
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terms of a vertex cj with j > i. Some of our proofs will also require a corresponding

upper bound. The next proposition provides such a bound.

Proposition 5.4. Let B be an improvable configuration and σ be a member of

Sequence(B). For every i ∈ B and j ∈ B such that j > i, we have:

Valσ(ci) ≤ Valσ(cj) + (10n + 4)(2j−1 − 2i−1).

Proof. Let C = B≥i∩B<j be the members of B that lie between indices i and j−1.

Using Proposition 5.2 gives:

Valσ(ci) =
∑

k∈B≥i

(10n + 4)(2k − 2k−1)

=
∑

k∈C
(10n + 4)(2k − 2k−1) + Valσ(cj).

We use the fact that (10n + 4)(2k − 2k−1) > 0 for all k and the fact that i > 0 to

obtain:

∑

k∈C
(10n + 4)(2k − 2k−1) ≤

j−1∑

k=i

(10n + 4)(2k − 2k−1)

= (10n + 4)(2j−1 − 2i−1).

Therefore, we have:

Valσ(ci) ≤ Valσ(cj) + (10n + 4)(2j−1 − 2i−1).

5.3.2 The Deceleration Lane

In this section we will prove that the deceleration lane behaves as we have described.

In particular, we will provide a proof of the following proposition.

Proposition 5.5. If Valσi(y) > Valσi(x) for every i in the range 0 ≤ i ≤ 2n,
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then applying greedy strategy improvement to σ0 produces the sequence of strategies

〈σ0, σ1, . . . , σ2n〉.

This Proposition may seem strange at first sight, because each strategy σi is

a partial strategy that is defined only for the vertices of the deceleration lane, and

strategy improvement works only with full strategies. However, since the vertices x

and y are the only vertices at which it is possible to leave the deceleration lane,

placing an assumption on the valuations of these vertices will allow us to prove how

greedy strategy improvement behaves on the deceleration lane. These proofs will

hold irrespective of the decisions that are made outside the deceleration lane. In

other words, if greedy strategy improvement arrives at a strategy σ that is consistent

with σ0 on the vertices in the deceleration lane, and if Valσ(y) > Valσ(x), then

Proposition 5.5 implies that greedy strategy improvement will move to a strategy σ′

that is consistent with σ1 on the vertices in the deceleration lane. This approach

allows us to prove properties of the deceleration lane without having to worry about

the behaviour of greedy strategy improvement elsewhere in the example.

Of course, this approach will only work if we can prove that Valσ(y) >

Valσ(x). The next proposition confirms that this property holds for every strategy

in Sequence(B).

Proposition 5.6. For every improvable configuration B and every strategy σ in

Sequence(B) we have Valσ(y) > Valσ(x).

Proof. By the definition of σ, we have that there is some index i ∈ B such that

σ(y) = ci and σ(x) = fi. Moreover, since i ∈ B we have that σ(ci) = fi. We

therefore have the following two equalities:

Valσ(y) = r(y, ci) + r(ci, fi) + Valσ(fi) = Valσ(fi) + 4n + 1,

Valσ(x) = r(x, fi) + Valσ(fi) = Valσ(fi).

Clearly, since 4n + 1 > 0 we have Valσ(y) > Valσ(x).
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We now turn our attention to proving that greedy strategy improvement

moves from the strategy σi to the strategy σi+1. To prove properties of greedy

strategy improvement, we must know the appeal of every action leaving the ver-

tices dj . The next proposition gives a characterisation for the appeal of the actions

(dj , dj−1) for each strategy σi.

Proposition 5.7. For each strategy σi we have:

Appealσi(dj , dj−1) =





Valσi(y) + 4n− j + 1 if 1 ≤ j ≤ i + 1,

Valσi(y) − 1 if i + 1 < j ≤ 2n.

Proof. We begin by considering the case where 1 ≤ j ≤ i + 1. By the definition

of σi we have that σi(dj) = dj−1 for all vertices dj with 1 ≤ j ≤ i, and we have

that σi(d0) = y. Using the definition of appeal, and applying the optimality equa-

tion (5.1) repeatedly gives, for every action (dj , dj−1) with 0 ≤ j ≤ i + 1:

Appealσi(dj , dj−1) = r(dj , dj−1) + Valσi(dj)

=

j∑

k=1

r(dk, dk−1) + r(d0, y) + Valσi(y)

= −j + (4n + 1) + Valσi(y).

We now consider the case where i + 1 < j ≤ 2n. By definition we have that

σi(dj−1) = y. Using the definition of appeal and the optimality equation gives:

Appealσi(dj , dj−1) = r(dj , dj−1) + Valσi(dj−1)

= r(dj , dj−1) + r(dj−1, dy) + Valσi(y)

= Valσi(y) − 1.

Proposition 5.7 confirms that an action (dj , dj−1) is switchable only after

every action (dk, dk−1) with k < j has been switched by greedy strategy improve-
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ment. It can clearly be seen that the only action of this form that is switchable in

the strategy σi is the action (di+1, di). Every other action of this form has either

already been switched, or is obviously not switchable.

We must also consider the actions (di, x). The next proposition confirms that

these actions will not be switchable in the strategy σi.

Proposition 5.8. If Valσi(x) < Valσi(y) then Appealσi(dj , x) < Appealσi(dj , y) for

all j.

Proof. Using the definition of appeal for the vertex dj gives two equalities:

Appealσi(dj , y) = r(dj , y) + Valσi(y),

Appealσi(dj , x) = r(dj , x) + Valσi(x).

Observe that for all j we have r(dj , y) = r(dj , x). Therefore we can conclude that

when Valσi(x) < Valσi(y) we have Appealσi(dj , x) < Appealσi(dj , y).

In summary, Proposition 5.7 has shown that there is exactly one action of the

form (dj , dj−1) that is switchable in σi, and that this action is (di+1, di). Proposi-

tion 5.8 has shown that no action of the form (dj , x) is switchable in σi. It is obvious

that no action of the form (dj , y) is switchable in σi. Therefore, greedy strategy im-

provement will switch the action (di+1, di) in the strategy σi, which creates the

strategy σi+1. Therefore, we have shown Proposition 5.5.

5.3.3 Zero Bits

In this section we will prove that greedy strategy improvement behaves as we de-

scribe for the vertices that represent the 0 bits of a configuration. As with our proof

of the deceleration lane behaviour, we will provide a proof that deals with partial

strategies under the assumption that Valσ(y) > Valσ(x) always holds. Proposi-

tion 5.6 implies that this assumption is valid. Therefore, this section is concerned
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with proving the following proposition.

Proposition 5.9. If Valσ
o
j (y) > Valσ

o
j (x) for every j in the range 0 ≤ i ≤ 2i + 1,

then applying greedy strategy improvement to σo
0 produces the sequence of strategies

〈σo
0, σ

o
1, . . . , σ

o
2i+1〉.

The key property that will be used to prove this Proposition is that the

appeal of the action ai at each vertex bi, where i /∈ B, is bounded. Since greedy

strategy improvement always switches the action with maximal appeal, we will prove

this proposition by showing that there is always some action at bi that has a larger

appeal than the action ai. The next proposition gives the bound for the action ai.

Proposition 5.10. For every improvable configuration B, and every strategy σ in

Sequence(B), we have that if σ(bi) 6= ai then Appealσ(bi, ai) < Valσ(bi) + 1.

Proof. To prove this, we will first show that Valσ(bi) > 0, and that Valσ(gi) ≤

(10n + 4)2n, for each strategy σ. We begin by showing that Valσ(bi) > 0. We know

that σ(bi) = dk for some k, and that σ(dl) = dl−1 for all l in the range 1 ≤ l ≤ k.

We can therefore apply Proposition 5.7 and Proposition 5.2 to get:

Valσ(bi) = 4n + k + 1 + Valσ(y)

= 4n + k + 1 +
∑

j∈B≥i

(10n + 4)(2j − 2j−1).

Since k > 0 we have that (4n + k + 1) > 0, and we have already argued that the

summation will be non-negative. This implies that the entire expression will be

positive. Therefore, we have shown that Valσ(bi) > 0 for all i.

Secondly, we argue that Valσ(gi) ≤ (10n + 4)2n. If k = min(B ∪ {n + 1})

then we have:

Valσ(gi) = (10n + 4)2i + Valσ(ri) = (10n + 4)2i − 1 + Valσ(ck).

If k = n+1 then we are done because Valσ(cn+1) = 0 and (10n+4)2i−1 < (10n+4)2n

135



for all i ≤ n. Otherwise, we can apply Proposition 5.2 and the fact that k − 1 ≥ i

to obtain:

Valσ(gi) ≤ (10n + 4)2i − 1 + Valσ(cn+1) + (10n + 4)(2n − 2k−1)

≤ Valσ(cn+1) + (10n + 4)2n − 1

≤ (10n + 4)2n.

Finally, we can use these two inequalities to prove the proposition:

Appeal(bi, ai) = r(bi, ai) +
∑

s∈S
p(s|bi, ai) Valσ(s)

= 0 + (1 − 2−(n)

10n + 4
) Valσ(bi) +

2−(n)

10n + 4
Valσ(gi)

< Valσ(bi) +
2−n

10n + 4
Valσ(gi)

≤ Valσ(bi) +
2−n

10n + 4
· (10n + 4)2n

= Valσ(bi) + 1.

Recall that Proposition 5.7 gave a characterisation for the appeal of the

action (dk, dk−1) in terms of the current strategy for the deceleration lane. The next

proposition provides an analogous characterisation for the actions (bi, dk) in terms

of the strategies σo
j and σc

j .

Proposition 5.11. If σ is either σo
j or σc

j then we have:

Appealσ(bi, dk) =





Valσ(y) + 4n + k + 1 if 1 ≤ k ≤ j,

Valσ(y) + 2k if j < k ≤ 2i.

Proof. We first consider the case where 1 ≤ k ≤ j. Since σ(dk) = σj(dk) for every
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vertex dk, we have:

Appealσ(bi, dk) = r(bi, dk) + Valσ(dk)

= 2k + (Valσ(y) + 4n− k + 1)

= Valσ(y) + 4n + k + 1.

In the case where j < k ≤ 2i, the fact that σ(dk) = y when 1 < k ≤ 2n gives:

Appealσ(bi, dk) = r(bi, dk) + Valσ(dk)

= r(bi, dk) + r(dk, y) + Valσ(y)

= 2k + Valσ(y).

The characterisation given by Proposition 5.11 explains the behaviour of

greedy strategy improvement for bit vertices that represent a 0. In the strategy σo
0,

no vertex dk can satisfy 1 ≤ k ≤ j, because j = 0. This implies that every action

(bi, dk) will have appeal 2k. Therefore, the most appealing action of this form will

be (bi, d2i), and switching this action creates σo
1. In each subsequent iteration, it

is obvious that the most appealing action of this form in σo
j will be (bi, dj), and

switching this action creates σo
j+1.

The key property to note here is that the appeal of the action (bi, dj) in

the strategy σo
j is Valσ

o
j (bi) + 1. Proposition 5.10 implies that the appeal of the

action ai must be smaller than Valσ
o
j (bi) + 1, which means that the action ai will

not be switched by greedy strategy improvement at the vertex bi in this strategy.

So far, we have only considered actions of the form (bi, dk). To complete

the proof of Proposition 5.9 we must also consider the other actions that leave the

vertex bi. It is obvious that the actions (bi, x) and (bi, y) will not be switchable in

any strategy σo
j . However, this still leaves the actions (bi, fj) for each j > i. The

next proposition confirms that these actions are not switchable in any strategy in
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Sequence(B), which completes the proof of Proposition 5.9.

Proposition 5.12. Let B be an improvable configuration and let σ be a member

of Sequence(B). For each action (bi, fj) where i /∈ B, we have Appealσ(bi, fj) <

Valσ(bi).

Proof. To prove this proposition we must consider two cases. Firstly, when j ∈ B

we can apply Proposition 5.11, the fact that k ≥ 0, the fact that min(B) ≤ j, and

Proposition 5.3 to give:

Valσ(bi) = Valσ(y) + 4n + k + 1 ≥ Valσ(cmin(B)) + 4n + 1

≥ Valσ(cj) + 4n + 1

= Valσ(fj) + 8n + 2

> Valσ(fj) + 4n + 1 = Appealσ(bi, fj).

Secondly, we consider the case where j /∈ B. In this case, the fact that

σ(bi) = σ(bj) gives:

Appealσ(bi, fj) = 4n + 1 + Valσ(fj)

= −(10n + 4)2j−1 + 1 + Valσ(bj)

= −(10n + 4)2j−1 + 1 + Valσ(σ(bj))

= −(10n + 4)2j−1 + 1 + Valσ(σ(bi)) < Valσ(σ(bi)).

5.3.4 One Bits

In this section, we consider the vertices bi that represent 1 bits in a configuration. We

must prove that greedy strategy improvement never switches away from the action ai

at these vertices. As usual, we will consider the partial sequence of strategies defined

by σc
j . The purpose of this section is to provide a proof for the following proposition.
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Proposition 5.13. If Valσ
c
i (y) > Valσ

c
i (x) for every i in the range 0 ≤ i ≤ 2i + 1,

then applying greedy strategy improvement to σc
0 produces the sequence of strategies

〈σc
0, σ

c
1, . . . , σ

c
2i+1〉.

Proposition 5.11 gives an upper bound for the appeal of an action (bi, dk)

in terms of the valuation of the vertex y. It implies that no action of this form

can have an appeal that is larger than Valσ(y) + 6n + 1. In order to show that

greedy strategy improvement never switches away from the action ai, we must show

that the valuation of the vertex bi is always larger than this amount. The next

proposition provides a proof of this fact, which implies that no action of the form

(bi, dk) where i ∈ B is switchable.

Proposition 5.14. For every improvable configuration B and every strategy σ in

Sequence(B) we have Valσ(y) + 6n + 1 < Valσ(bi), for every index i ∈ B.

Proof. The definition of σ implies that σ(y) = cmin(B). Applying Proposition 5.2

gives:

Valσ(y) = Valσ(cmin(B))

≤ Valσ(ci) + (10n + 4)(2i−1 − 2min(B)−1).

Since i ∈ B we have σ(ci) = fi. Therefore we can apply the optimality equation,

Proposition 5.4, and the fact that min(B) − 1 ≥ 0 to obtain:

Valσ(y) ≤ Valσ(ci) + (10n + 4)(2i−1 − 2min(B)−1)

≤ Valσ(ci) + (10n + 4)(2i−1 − 20)

= Valσ(fi) + (4n + 1) + (10n + 4)(2i−1 − 1)

= Valσ(bi) − (10n + 4)2i−1 − 4n + (4n + 1) + (10n + 4)(2i−1 − 1)

= Valσ(bi) − (10n + 3).
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It is now clear that Valσ(y) + 6n + 1 < Valσ(bi).

To complete the proof of Proposition 5.13 we must consider the other actions

that leave the vertex bi. The actions (bi, x) and (bi, y) are obviously not switchable,

which leaves only the actions of the form (bi, fj) with j > i. The next proposition

is an analog of Proposition 5.12, which confirms that no action of this form can be

switchable. This implies that there are no switchable actions at the vertex bi, and so

greedy strategy improvement will never switch away from the action ai. Therefore,

after proving this proposition, we will have completed the proof of Proposition 5.13.

Proposition 5.15. Let B be an improvable configuration and let σ be a member

of Sequence(B). For each action (bi, fj) where i ∈ B, we have Appealσ(bi, fj) <

Valσ(bi).

Proof. We begin by considering the case where j ∈ B. In this case we can use the

fact that min(B>i) ≤ j, Proposition 5.3, and the fact that i > 0 to obtain:

Valσ(bi) = (10n + 4)2i + Valσ(ri)

= (10n + 4)2i − 1 + Valσ(cmin(B>i))

≥ (10n + 4)2i − 1 + Valσ(cj)

= (10n + 4)2i + 4n + Valσ(fj)

> Valσ(fj) + 4n + 1 = Appealσ(bi, fj).

Secondly, we consider the case where j /∈ B. The fact that k ≤ 2n, implies:

Appealσ(bi, fj) = −(10n + 4)2j + 1 + Valσ(bj)

= −(10n + 4)2j + 4n + k + 2 + Valσ(y)

≤ −(10n + 4)2j + 6n + 2 + Valσ(cmin(B)).

Let l = min(B>j ∪ {n + 1}) be the smallest bit in the configuration that is larger
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than j. By Proposition 5.2, and the fact that there is no bit in the configuration

with an index m in the range j ≤ m < l, we have:

Valσ(cmin(B)) =
∑

j∈B<j

(10n + 4)(2j − 2j−1) + Valσ(cl)

≤ Valσ(cl) + (10n + 4)(2j−1 − 20).

Therefore, we have:

Appealσ(bi, fj) ≤ Valσ(cl) + (10n + 4)(2j−1 − 1 − 2j) + 6n + 2

≤ Valσ(cl) + (10n + 4)(2j−1 − 2j)

< Valσ(cl).

However, Proposition 5.3, and the fact that i ≥ 0 imply:

Valσ(bi) = (10n + 4)2i + Valσ(ri) = (10n + 4)2i − 1 + Valσ(cmin(B>i))

≥ (10n + 4)2i − 1 + Valσ(cl)

≥ Valσ(cl).

5.3.5 The Reset Structure

In this section, we will prove that greedy strategy improvement passes through the

sequence of strategies given by Sequence(B). Since each strategy in this sequence is a

complete strategy, we are now proving the behaviour of greedy strategy improvement

for the full example. The purpose of this section is give a proof of the following

proposition.

Proposition 5.16. For every improvable configuration B, if greedy strategy im-

provement is applied to σB
0 , then it will pass through the sequence of strategies given

by Sequence(B).
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Propositions 5.5, 5.9, and 5.13 provide a proof of this proposition for the

vertices dk for all k, and for the vertices bi for all i. Therefore, in this section we will

concern ourselves with the vertices x and y, and the vertices ci and ri for all i. Note

that none of the vertices are switched during Sequence(B), so we must therefore

show that there is never a switchable action at these vertices.

We begin with the vertex y. This vertex has an outgoing action (y, cj) for

each j in the range 1 ≤ j ≤ n + 1. We have already described the properties of the

vertex ci in Section 5.3.1. The next proposition uses these properties to show that

the vertex ci with i = min(B) has the largest valuation amongst the vertices cj .

Since each action (y, cj) has the same reward, this implies that no action can be

switchable at the vertex y. Therefore, greedy strategy improvement will not switch

away from this action as it passes through Sequence(B).

We will prove a version of the proposition that is more general than is needed

for the vertex y. This is because, we also want to apply the proposition to prove

that each vertex ri is not switched by greedy strategy improvement. Whereas the

vertex y always chooses the action (y, cj) such that j = min(B), the vertex ri must

choose the action (ri, ck) such that k = min(B>i). The next proposition will also

show that the vertex ck has a largest valuation amongst the vertices cl with l ∈ B>i.

As usual, since every action leaving the vertex ri has the same reward, this implies

that no action at ri will become switchable.

Proposition 5.17. Let B be an improvable configuration and σ be a member of

Sequence(B). For each k in the range 1 ≤ k ≤ n, if i = min(B>k) then we have

Valσ(ci) > Valσ(cj) for every j such that j > k and j 6= i.

Proof. Proposition 5.3 implies that the vertex ci has a higher valuation than ev-

ery other vertex cj with j ∈ B>k. To complete the proof we must eliminate the

vertices cj with j ∈ {k + 1, k + 2, . . . n} \ B>k. We will accomplish this by argu-

ing that for every such vertex cj there is some index l ∈ B>j ∪ {n + 1} such that

Valσ(cl) > Valσ(cj). We choose l = min(B>j ∪ {n + 1}) to be the smallest index
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in B>j that is larger than j, or the index of the sink if j is the largest index in B>k.

Since j /∈ B>k we have:

Valσ(cj) = r(cj , rj) + r(rj , ck) + Valσ(ck)

= Valσ(ck) − 1 < Valσ(ck).

We now turn our attention to the vertex x. Much like the vertex y, this

vertex has an outgoing action (x, fj) for each j in the range 1 ≤ j ≤ n. Our proof

for this vertex will split into two cases. We begin by considering the actions (x, fj)

for which j /∈ B. The next proposition shows that these actions are not switchable

for any strategy in Sequence(B).

Proposition 5.18. Let B be an improvable configuration and σ be a member of

Sequence(B). If i /∈ B we have Valσ(fi) + 4n + 1 < Valσ(ck) − 1, where k =

min(B>i ∪ {n + 1}).

Proof. Using Proposition 5.11, and the fact that i ≤ n, gives the following expression

for the value of fi.

Valσ(fi) ≤ −(10n + 4)2i−1 − 4n + 6n + 1 + Valσ(y)

= −(10n + 4)2i−1 + 2n + 1 + Valσ(y).
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Using Proposition 5.2 to obtain the valuation of y in terms of the vertex ck gives:

Valσ(fi) = −(10n + 4)2i−1 + 2n + 1 +
∑

j∈B<i

(10n + 4)(2j − 2j−1) + Valσ(ck)

≤ −(10n + 4)2i−1 + 2n + 1 +

i−1∑

j=0

(10n + 4)(2j − 2j−1) + Valσ(ck)

= −(10n + 4)2i−1 + 2n + 1 + (10n + 4)(2i−1 − 20) + Valσ(ck)

= 2n + 1 + −(10n + 4) + Valσ(ck)

= −8n− 3 + Valσ(ck).

Therefore Valσ(fi) + 4n + 1 < Valσ(ck) − 1.

Now that we know that each action (x, fj) where j /∈ B cannot be switchable,

we can consider the actions (x, fj) where j ∈ B. We know that σ(cj) = fj for each

j ∈ B. Therefore, the valuation of the vertex fj is strongly related to the valuation

of cj , when j ∈ B. Since we know that the vertex ci where i = min(B) has a larger

valuation than any other vertex cj , we can use this connection to argue that the

vertex fi has a larger valuation than any other vertex fj. Since each action (x, fj)

has the same reward, this implies that no action will become switchable at x as

greedy strategy improvement moves through the strategies in Sequence(B).

Proposition 5.19. Let B be an improvable configuration and σ be a member of

Sequence(B). If i = min(B) then we have Valσ(fi) > Valσ(fj) for every j 6= i.

Proof. We begin by arguing that Valσ(fi) > Valσ(fj) for the case where j ∈ B.

Since Valσ(ck) = Valσ(fk) + 4n + 1 for every k ∈ B, we can apply Proposition 5.3

to obtain:

Valσ(fi) = Valσ(ci) − 4n− 1 > Valσ(cj) − 4n − 1 = Valσ(fj).

We now complete the proof by arguing that for every vertex fj with j /∈ B, there is
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some vertex fk with k ∈ B such that Valσ(fk) > Valσ(fj). Proposition 5.18 implies

that Valσ(fi) + 4n + 1 < Valσ(ck) where k = min(B ∪ {n + 1}). Therefore we have:

Valσ(fj) < Valσ(ck) − (4n + 1) = Valσ(fk).

Now we consider the vertex ci. The action chosen at this vertex depends on

whether the index i is contained in B. The next proposition shows that in either

case, the vertex ci will not be switched away from the action that it chose in the first

strategy in Sequence(B). After proving this proposition we will have shown that

greedy strategy improvement will not switch the vertices x and y, or the vertices ci

and ri for every i. Therefore, we will have completed the proof of Proposition 5.16.

Proposition 5.20. Let B be an improvable configuration and σ be a member of

Sequence(B). The vertex ci will not be switched away from σ(ci).

Proof. First we will consider the case where i ∈ B, where we must show that

the vertex ci does not switch away from the action (ci, fi). In this case, the fact

2i − 2i−1 > 0 implies:

Appealσ(ci, fi) = (10n + 4)(2i − 2i−1) + 1 + Valσ(ri)

> Valσ(ri) = Appealσ(ci, ri).

Therefore, greedy strategy improvement will not switch away from the action (ci, fi).

Now we consider the case where i /∈ B. In this case Proposition 5.18 implies

that if k = min(B>i ∪ {n + 1}) then:

Appealσ(ci, fi) = 4n + 1 + Valσ(fi) < Valσ(ck) − 1.

We also have that Valσ(ci) = Valσ(ck)− 1. Therefore, greedy strategy improvement

will not switch away from the current action at ck.
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5.4 The Reset Phase

In this section, we finish our description of the behaviour of greedy strategy improve-

ment on the examples Gn by describing the reset phase. Let B be an improvable

configuration, and let i = min({1, 2, . . . , n} \ B) be the smallest index that is not

in B. We define the configuration B′ = (B ∪ {i}) \ {1, 2, . . . , i − 1}, which is the

configuration that a binary counter would move to from B. We will show that

greedy strategy improvement moves from the final strategy in Sequence(B) to the

strategy σB′

0 .

We begin by describing the sequence of strategies that greedy strategy im-

provement passes through. The sequence begins at the final strategy in Sequence(B),

which is σB
2i+1. At every vertex other than bi, greedy strategy improvement moves

to the strategy σB
2i+2. However, since this strategy cannot be switched at the vertex

bi, the action ai is switched instead. Note that σ2i+2 is well defined even if i = n.

This is because, although σo
2i+2 is not well defined in this case, every vertex bj with

j 6= i must play σc
2i+2, and this strategy is well defined. This comment also applies

to the strategy σB
2i+3, which is used in subsequent reset strategies. Therefore, greedy

strategy improvement will move to the strategy σB
R1, which is defined as, for every

vertex v:

σB
R1(v) =





ai if v = bi,

σB
2i+2(v) otherwise.

Switching the action ai to create σB
R1 will cause the valuation of the vertex fi

to dramatically increase. This causes greedy strategy improvement to switch the

action (x, fi), the action (ci, fi), and the actions (bj , fi) for j < i. The vertex bi

is not switched away from the action ai, and every other vertex is switched to the

strategy σB
2i+3. Therefore, greedy strategy improvement moves to the strategy σB

R2,

which is defined as, for every vertex v:
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σB
R2(v) =





ai if v = bi

fi if v = x or v = ci or v = bj with j < i,

σB
2i+3(v) otherwise.

When greedy strategy improvement moves to the strategy σB
R2 it switches the

vertex x to the action (x, fi), which causes the valuation of x to increase. This causes

greedy strategy improvement to switch the action (dk, x) at every state dk, and the

action (bj , x) at every state bj with j /∈ B′. The increase in valuation that occurred

when the vertex ci was switched to (ci, fi) causes greedy strategy improvement to

switch the action (y, ci), and the actions (rj , ci), with j < i. It is worth noting that

at this point that the vertices in the set {cj , rj : j ≥ i} ∪ {bj : j ∈ B′} ∪ {x} are

now playing σB′

0 . For every vertex v, we define the strategy σB
R3 as:

σB
R3(v) =





σB′

0 (v) if v ∈ {cj , rj : j ≥ i} ∪ {bj : j ∈ B′} ∪ {x},

ci v = y or v = rj with j < i,

x v = dk for some k or v = bj with j /∈ B′,

σB
2i+3(s) if v = cj with j < i.

We can now describe how greedy strategy improvement behaves once it has

arrived at the strategy σB
R3. The increase in valuation that was obtained when

the vertex y was switched to the action (y, ci) causes greedy strategy improvement

to switch the actions (dk, y) for every vertex dk, and the actions (bj , y) for every

vertex bj with j /∈ B′. Also, for every j in the range 1 < j < i the increase in

valuation that was obtained when the vertex rj was switched to the action (rj , ci)

causes greedy strategy improvement to switch the action (cj , rj). After making these
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switches, greedy strategy improvement arrives at the strategy σB′

0 , which completes

the reset phase for the configuration B. In the remainder of this section, we will

prove that greedy strategy improvement behaves as we have described.

5.4.1 The First Reset Strategy

The purpose of this section is to provide a proof for the following proposition.

Proposition 5.21. Greedy strategy improvement moves from the strategy σB
2i+1 to

the strategy σB
R1

.

We will begin by considering the vertex bi. At this vertex we must show that

greedy strategy improvement switches the action ai. The next proposition shows

that ai is indeed the most appealing action at bi in σB
2i+1. This proposition also

proves the claim for the strategy σB
R1, as this fact will be needed in the subsequent

section.

Proposition 5.22. If σ is σB
2i+1 or σB

R1
, then the action ai is the most appealing

action at bi.

Proof. We will begin by showing that every action other than ai is not switchable

in σ. Note that since Valσ
B
R1(bi) > Valσ

B
2i+1(bi), it is sufficient to prove that the

appeal of every action is strictly less than Valσ
B
2i+1(bi).

We first consider the actions of the form (bi, dk). It is not difficult to verify

that Valσ
B
2i+1(dk) = Valσ

B
R1(dk) for every k ≤ 2i. Applying Proposition 5.11 to the

strategy σB
2i+1, using the fact that k ≤ 2i gives:

Appealσ(bi, dk) = Valσ
B
2i+1(y) + 4n + k + 1

≤ Valσ
B
2i+1(y) + 4n + 2i + 1

= Appealσ
B
2i+1(bi, d2i) = Valσ

B
2i+1(bi).

We now consider the actions (bi, y) and (bi, x). Again, it can easily be verified
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that Valσ
B
2i+1(v) = Valσ

B
R1(v) when v = y and when v = x. Therefore, for the action

(bi, y) we have:

Appealσ(bi, y) = Valσ
B
2i+1(y) + 1 < Valσ

B
2i+1(y) + 4n + 2i + 1 = Valσ

B
2i+1(bi).

For the action (bi, x), Proposition 5.6 gives:

Appealσ(bi, x) = Valσ
B
2i+1(x) < Valσ

B
2i+1(y) < Valσ

B
2i+1(bi).

Finally, we consider the actions (bi, fj) with j > i. Again, it can easily be

verified that Valσ
B
2i+1(fj) = Valσ

B
R1(fj) for the vertices fj with j > i. Proposition 5.12

implies that Appealσ
B
2i+1(bi, fj) < Valσ

B
2i+1(bi).

We now complete the proof by considering the action ai. In the strategy

σB
R1, we have σB

R1(bi) = ai. Therefore, the fact that no action is switchable at bi

in σB
R1 implies that ai is the most appealing action at bi. In the strategy σB

2i+1, we

will show that the action ai is switchable. We begin by showing that Valσ
B
2i+1(gi) >

Valσ
B
2i+1(bi). Let k = min(B>i ∪ {n + 1}) be the smallest index in B that is bigger

than i, or the index of the sink if i is the highest bit. Using Proposition 5.11, the

fact that i ≤ n, and Proposition 5.2 gives:

Valσ
B
2i+1(bi) ≤ 6n + 1 + Valσ

B
2i+1(y)

= 6n + 1 +
∑

j∈B≤i

(10n + 4)(2j − 2j−1) + Valσ
B
2i+1(ck)

≤ 6n + 1 +
i−1∑

j=1

(10n + 4)(2j − 2j−1) + Valσ
B
2i+1(ck)

= 6n + 1 + (10n + 4)(2i−1 − 20) + Valσ
B
2i+1(ck)

= (10n + 4)2i−1 − 4n− 3 + Valσ
B
2i+1(ck).
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The valuation of the vertex gi is:

Valσ
B
2i+1(gi) = (10n + 4)2i + Valσ

B
2i+1(ri) = (10n + 4)2i − 1 + Valσ

B
2i+1(ck).

Since (10n+4)2i−1 > (10n+4)2i−1−4n−3 for every i, we have that Valσ
B
2i+1(gi) >

Valσ
B
2i+1(bi). Now we can conclude:

Appealσ
B
2i+1(bi, ai) = (1 − 2−n

10n + 4
) Valσ

B
2i+1(bi) +

2−n

10n + 4
Valσ

B
2i+1(gi)

> (1 − 2−n

10n + 4
) Valσ

B
2i+1(bi) +

2−n

10n + 4
Valσ

B
2i+1(bi)

= Valσ
B
2i+1(bi).

Now that we know that the vertex bi is switched to the action ai, we must

consider every other vertex in the MDP. We must argue that these vertices are

switched from the strategy σB
2i+1 to the strategy σB

2i+2. Proposition 5.16 provides a

proof that greedy strategy improvement moves from the strategy σB
j to the strategy

σB
j+1 when j ≤ 2i + 1. No modifications are needed in order to reuse this proof

to show that greedy strategy improvement moves from the strategy σB
2i+1 to the

strategy σB
2i+2 at every vertex other than bi. This is because the vertex bi is the only

strategy at which σB
2i+2 is not well defined. Therefore, the proof of Proposition 5.21

has been completed.

5.4.2 The Second Reset Strategy

The purpose of this section is to provide a proof for the following proposition.

Proposition 5.23. Greedy strategy improvement moves from the strategy σB
R1

to

the strategy σB
R2

.

For the vertex bi, the fact that greedy strategy improvement does not switch

away from the action ai is implied by Proposition 5.22. The following proposition

will prove useful throughout this proof.
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Proposition 5.24. For every vertex v such that v 6= bi and v 6= fi, we have

Valσ
B
R1(v) = Valσ

B
2i+2(v).

Proof. The only difference between σB
R1 and σB

2i+2 is that the vertex bi selects the

action ai in the strategy σB
R1. Note that if we select a vertex v such that v 6= bi and

v 6= fi, and apply the strategy σB
R1, then the vertex bi will never be reached from v.

Therefore, we must have that Valσ
B
R1(v) = Valσ

B
2i+2(v).

Consider a vertex v in the set V \ ({bi, fi, x, ci} ∪ {bj : j < i}). Proposi-

tion 5.24 implies that we can apply Proposition 5.16 to argue that greedy strategy

improvement moves to σB
2i+3 at this vertex. This is because there is no outgoing

edge from v to bi or fi, and therefore greedy strategy improvement will switch the

same actions as it would in σB
2i+2 at the vertex v.

All that remains is to prove that every vertex that has an outgoing action to

the vertex fi will switch to that action. The following proposition shows that the

vertex fi has a larger valuation than every other vertex fj.

Proposition 5.25. We have Valσ
B
R1(fi) > Valσ

B
R1(fj) for every j 6= i.

Proof. For every vertex fj where j 6= i, Proposition 5.24 implies that Valσ
B
R1(fj) =

Valσ
B
2i+2(fj). Therefore, we can apply Proposition 5.19 to argue that, if k = min(B),

then Valσ
B
R1(fk) > Valσ

B
R1(fj), for every j such that j 6= i and j 6= k. Therefore, to

prove this claim it is sufficient to show that Valσ
B
R1(fi) > Valσ

B
R1(fk).

If l = min(B>i ∪ {n + 1}), then we have:

Valσ
B
R1(fi) = (10n + 4)(2i − 2i−1) − 4n − 1 + Valσ

B
R1(cl).
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Moreover, we can express the valuation of fk as:

Valσ
B
R1(fk) =

∑

j∈B<i

(10n + 4)(2j − 2j−1) − 4n− 1 + Valσ
B
R1(cl)

≤
i−1∑

j=1

(10n + 4)(2j − 2j−1) − 4n− 1 + Valσ
B
R1(cl)

= (10n + 4)(2i−1 − 20) − 4n− 1 + Valσ
B
R1(cl).

Since (10n + 4)(2i − 2i−1) > (10n + 4)(2i−1 − 20) for every i > 0 we can conclude

that Valσ
B
R1(fi) > Valσ

B
R1(fk).

Firstly, we will consider the vertex x. Proposition 5.25 implies that x will

be switched to the action (x, fi). This is because every outgoing action from x

has the form (x, fj), and each of these actions has the same reward. Therefore,

the fact that Valσ
B
R1(fi) > Valσ

B
R1(fj) for all j 6= i implies that Appealσ

B
R1(x, fi) >

Appealσ
B
R1(x, fj) for all j 6= i.

Now we will prove the claim for the vertex ci. Using the fact that 2i−2i−1 > 0

for every i gives:

Appealσ
B
R1(ci, fi) = (10n + 4)(2i − 2i−1) + 1 + Valσ

B
R1(ri)

> Valσ
B
R1(ri) = Appealσ

B
R1(ci, ri).

Therefore (ci, fi) is the most appealing action at the vertex ci.

Finally, we will consider the vertices bj with j < i. We will begin by

proving that every action at bj other than (bj , fi) is not switchable. Proposi-

tion 5.24 implies that, for every action a at the state bj other than (bj , fi), we

have Appealσ
B
R1(a) = Appealσ

B
2i+2(a). Since j ∈ B, Proposition 5.16 implies that

greedy strategy improvement would not switch away from the action aj at the ver-

tex bj in the strategy σB
2i+2. This implies that Appealσ

B
2i+2(a) ≤ Valσ

B
2i+2(bj), and

therefore we have Appealσ
B
R1(a) ≤ Valσ

B
R1(bj). To complete the proof, we must argue
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that the action (bj , fi) is switchable at the vertex bj.

In the proof of Proposition 5.25 we derived an expression for the valuation

of fi in terms of the vertex cl, where l = min(B>i ∪ {n + 1}). We can use this to

obtain:

Appealσ
B
R1(bj , fi) = (10n + 4)(2i − 2i−1) + Valσ

B
R1(cl)

= (10n + 4)2i−1 + Valσ
B
R1(cl).

We can also express the valuation of the vertex bj as:

Valσ
B
R1(bj) = (10n + 4)2j − 1 +

∑

k∈B>j∩B<j

(10n + 4)(2k − 2k−1) + Valσ
B
R1(cl)

≤ (10n + 4)2j − 1 +

i−1∑

k=j+1

(10n + 4)(2k − 2k−1) + Valσ
B
R1(cl)

= (10n + 4)2j − 1 + (10n + 4)(2i−1 − 2j) + Valσ
B
R1(cl)

= (10n + 4)2i−1 − 1 + Valσ
B
R1(cl).

Since (10n+4)2i−1 > (10n+4)2i−1−1 we have that Appealσ
B
R1(bj, fi) > Valσ

B
R1(bj).

Since (bj , fi) is the only switchable action at the vertex bj, we have that this action

must be switched by greedy strategy improvement at every vertex bj with j < i.

5.4.3 The Third Reset Strategy

The purpose of this section is to provide a proof for the following proposition.

Proposition 5.26. Greedy strategy improvement moves from the strategy σB
R2

to

the strategy σB
R3

.

We will begin by considering the vertices in the set {rj : j ≥ i} ∪ {cj : j ∈

B′}. For each vertex v in this set, we have that σB
R2(v) = σB′

0 (v). We must show

that greedy strategy improvement does not switch away from the strategy σB′

0 . The
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following proposition shows that the value of each of these vertices under σB
R2 is the

same as it is under σB′

0 (v).

Proposition 5.27. We have Valσ
B
R2(v) = Valσ

B′

0 (v) for every v ∈ {cj , rj : j ≥

i} ∪ {bj , fj : j ∈ B′}.

Proof. This follows from the fact that σB
R2(v) = σB′

0 (v) on every vertex in v ∈ S =

{cj , rj : j ≥ i} ∪ {bj : j ∈ B′}, and we also have that σB
R2(v) ∈ S for every vertex

v ∈ S. Therefore, we must have that Ω
σB
R2

v = Ω
σB′

0
v for every vertex v ∈ S, which

implies the claimed result.

We can now argue that a vertex rj with j ≥ i will not be switched away from

the strategy σB′

0 (rj). Since every outgoing action from the vertex rj is of the form

(rj , v), where v ∈ {cj : j > i}, Proposition 5.27 implies that Appealσ
B
R2(rj , v) =

Appealσ
B′

0 (rj , v) for every outgoing action from rj . The claim then follows from the

fact that Proposition 5.16 implies that if greedy strategy improvement is applied to

σB′

0 , then it will not switch away from σB′

0 .

The same argument can also be used to prove that a vertex cj with j ∈ B′

will not be switched away from the strategy σB′

0 (cj). Once again, this is because

we have that every outgoing action from the vertex cj is of the form (cj , v) where

v ∈ {cj , rj : j ≥ i} ∪ {bj , fj : j ∈ B′}. Therefore, we can apply Propositions 5.27

and 5.16 in the same way in order to prove the claim.

Next, we will move on to consider the vertex x, and the vertices cj with j /∈ B′

and j ≥ i. In both cases, the proofs for these vertices depend on the valuation of

the vertices fj with j /∈ B′. The following proposition proves a useful inequality for

these vertices.

Proposition 5.28. For every j /∈ B′ we have Valσ
B
R2(fj) ≤ Valσ

B
R2(fi). Moreover,

if j > i then we have Valσ
B
R2(fj) ≤ Valσ

B
R2(fi) − (10n + 4)2j−1 − 1.
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Proof. We first consider the vertices fj where j < i. At these vertices we have:

Valσ
B
R2(fj) = Valσ

B
R2(bj) − (10n + 4)2j−1 − 1

= Valσ
B
R2(fi) + 4n + 1 − (10n + 4)2j−1

Therefore, the claim follows from the fact that 4n + 1 − (10n + 4)2j−1 > 0 when

j > 0.

We now consider the vertices fj where j > i and j /∈ B′. Since j /∈ B′ we

must have σB
R2(bj) = dk for some k. Therefore, we have:

Valσ
B
R2(fj) = Valσ

B
R2(bj) − (10n + 4)2j−1 − 4n

≤ Valσ
B
R2(y) − (10n + 4)2j−1 + 2n + 1

In the case where i > 1, we have σB
R2(y) = c1, and we have σB

R2(c1) = f1. We can

use the formula that we obtained for the vertices fj with j < i to obtain:

Valσ
B
R2(fj) ≤ Valσ

B
R2(y) − (10n + 4)2j−1 + 2n + 1

= Valσ
B
R2(f1) − (10n + 4)2j−1 + 6n + 2

= Valσ
B
R2(fi) − (10n + 4)20 − (10n + 4)2j−1 + 10n + 3

= Valσ
B
R2(fi) − (10n + 4)2j−1 − 1

In the case where i = 1, we have that σB
R2(y) = cl, where l > 1. Moreover,

we have that σB
R2(b1) = a1 and σB

R2(r1) = cl. Therefore, we have the following two

facts:

Valσ
B
R2(fi) = (10n + 4)(21 − 20) − 4n − 1 + Valσ

B
R2(cl)

Valσ
B
R2(fj) ≤ Valσ

B
R2(cl) − (10n + 4)2j−1 + 2n + 1

From this it is easy to see that Valσ
B
R2(fj) ≤ Valσ

B
R2(fi) − (10n + 4)2j−1 − 1.
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We can now prove that greedy strategy improvement does not switch the

vertex x away from the action (x, fi) in the strategy σB
R2. Since Proposition 5.27

implies that Valσ
B
R2(fj) = Valσ

B′

0 (fj) for every j ∈ B′, we can use Proposition 5.19

to conclude that Valσ
B
R2(fi) > Valσ

B
R2(fj) with j ∈ B′ and j 6= i. Moreover, Propo-

sition 5.28 implies that Valσ
B
R2(fi) > Valσ

B
R2(fj) for every j /∈ B′. Therefore, the

action (x, fi) must be the most appealing action at the vertex x in the strategy σB
R2.

We can also prove that greedy strategy improvement does not switch the

vertices cj with j /∈ B′ and j > i away from the action (cj , rj). To do this, we will

prove that the action (cj , fj) is not switchable in σB
R2. Note that Appealσ

B
R2(cj , fj) =

4n + 1 + Valσ
B
R2(fj), and therefore Proposition 5.28 implies that:

Appealσ
B
R2(cj , fj) ≤ Valσ

B
R2(fi) − (10n + 4)2j−1 + 4n.

Following the strategy σB
R2 through the vertices fi, bi, gi, and ri gives:

Appealσ
B
R2(cj , fj) ≤ Valσ

B
R2(cmin(B>i∪{n+1})) + (10n + 4)(2i − 2j−1 − 2i−1) − 1

Now we can apply Proposition 5.27 and Proposition 5.2 to conclude the following

two facts:

Appealσ
B
R2(cj , fj) ≤

∑

m∈B′>i

(10n + 4)(2m − 2m−1) + (10n + 4)(2i − 2j−1 − 2i−1) − 1

Valσ
B
R2(cj) =

∑

m∈B′≥j

(10n + 4)(2m − 2m−1)
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Therefore, we have:

Appealσ
B
R2(cj , fj) ≤Valσ

B
R2(cj) + (10n + 4)(

∑

m∈B′<j∩B′>i

(2m − 2m−1)

+ 2i − 2j−1 − 2i−1) − 1

≤Valσ
B
R2(cj) + (10n + 4)(

j−1∑

m=i+1

(2m − 2m−1)

+ 2i − 2j−1 − 2i−1) − 1

= Valσ
B
R2(cj) + (10n + 4)(2j−1 − 2i + 2i − 2j−1 − 2i−1) − 1

= Valσ
B
R2(cj) − (10n + 4)2i−1 − 1

Therefore, the action (cj , fj) is not switchable in the strategy σB
R2, which implies

that greedy strategy improvement cannot switch away from the action (cj , rj).

We now turn our attention to the vertices dk. We must prove that greedy

strategy improvement switches the action (dk, x) at these vertices. The next propo-

sition proves that the valuation of x must be significantly larger than the valuation

of y in the strategy σB
R2, which is a fact that will be used to prove the behaviour of

greedy strategy improvement at each vertex dk.

Proposition 5.29. We have Valσ
B
R2(y) + 6n + 1 < Valσ

B
R2(x).

Proof. Let l = min(B ∪ {n + 1}). We first consider the case where l < i. It is

not difficult to see that if l < i then l = 1, since i is the smallest index that is

not contained in B. In this case we can express the valuation of y in terms of the

valuation of the vertex fi as:

Valσ
B
R2(y) = −(10n + 4)2l−1 + 4n + 2 + Valσ

B
R2(fi)

= −(10n + 4) + 4n + 2 + Valσ
B
R2(fi)

= −6n− 2 + Valσ
B
R2(fi).
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Moreover, we can express the valuation of x as:

Valσ
B
R2(x) = Valσ

B
R2(fi).

Therefore, we have Valσ
B
R2(y) + 6n + 1 < Valσ

B
R2(x).

The second case that we must consider is when l > i, which occurs only when

i = 1. In this case we can express the valuation of y in terms of the valuation of cl

as:

Valσ
B
R2(y) = Valσ

B
R2(cl).

Similarly, we can express the valuation of x in terms of the valuation of cl. Our

derivation uses the fact that i = 1.

Valσ
B
R2(x) = −(10n + 4)2i−1 − 4n + (10n + 4)2i − 1 + Valσ

B
R2(cl)

= (10n + 4) − 4n− 1 + Valσ
B
R2(cl)

= 6n + 3 + Valσ
B
R2(cl).

Once again it is clear that Valσ
B
R2(y) + 6n + 1 < Valσ

B
R2(x).

We can now prove that the action (dk, x) is switched at the vertex dk. Propo-

sition 5.29, and the fact that r(dk, x) = r(dk, y) for every k, imply:

Appealσ
B
R2(dk, y) = r(dk, y) + Valσ

B
R2(dk, y)

< r(dk, y) + Valσ
B
R2(dk, x) = Appealσ

B
R2(dk, x).

Every vertex dk with k ≥ 1 has an additional action (dk, dk−1), for which we consider

two cases. Since σB
R2(dk) = σB

2i+3(dk) for every k, we can use Proposition 5.7. When

1 ≤ k ≤ 2i + 4 this proposition, in combintation with Proposition 5.29 gives:

Appealσ
B
R2(dk, dk−1) = 4n − k + 1 + Valσ

B
R2(y) < Valσ

B
R2(x) = Appealσ

B
R2(dk, x).
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In the case where k > 2i + 4, Proposition 5.7 and Proposition 5.29 imply:

Appealσ
B
R2(dk, dk−1) = Valσ

B
R2(y) − 1 < Valσ

B
R2(x) = Appealσ

B
R2(dk, dk−1).

We have therefore shown that the action (dk, x) is the most appealing action at the

vertex dk.

We now turn our attention to the vertex y. For this vertex, we must prove

that greedy strategy improvement switches the action (y, ci), and to do this it is

sufficient to prove that Valσ
B
R2(ci) > Valσ

B
R2(cj) for every j 6= i. For the vertices

cj with j ≥ i, we can use Proposition 5.27 and Proposition 5.2 to prove that

Valσ
B
R2(ci) > Valσ

B
R2(cj) where j > i.

We will now deal with the vertices cj with j < i. At these vertices we have

σB
R2(cj) = fj, σ

B
R2(fj) = bj, and σB

R2(bj) = fi. Therefore, we have:

Valσ
B
R2(cj) = −(10n + 4)2j−1 + 4n + 2 + Valσ

B
R2(fi)

On the other hand, since σB
R2(ci) = fi, we have:

Valσ
B
R2(ci) = 4n + 1 + Valσ

B
R2(fi)

Therefore, it is obvious that Valσ
B
R2(ci) > Valσ

B
R2(cj) when j < i, and we have

completed the proof that greedy strategy improvement switches the action (y, ci) at

the vertex y.

The arguments that we have just made can also be used for the vertices rj

with j < i. At these vertices, we must show that greedy strategy improvement

switches the action (rj , ci). Every outgoing action from the vertex rj has the same re-

ward, and leads to a vertex ck. We have already shown that Valσ
B
R2(ci) > Valσ

B
R2(cj)

for every j 6= i, which implies that the action (rj , ci) must be the most appealing

action at rj . Therefore, greedy strategy improvement will switch the action (rj , ci)
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at the vertex rj in the strategy σB
R2

We will now consider the vertices cj with j < i − 1. At these vertices we

must show that greedy strategy improvement does not switch away from the action

(cj , fj). In order to do this, we will show that the action (cj , rj) is not switchable at

the vertex cj . Note that we have σB
R2(rj) = cj+1, σ

B
R2(cj+1) = fj+1, σ

B
R2(fj+1) = bj+1

and σB
R2(bj+1) = fi. Therefore, we have:

Appealσ
B
R2(cj , rj) = −(10n + 4)2j + 4n + 1 + Valσ

B
R2(fi).

Whereas, the fact that σB
R2(cj) = fj, that σB

R2(fj) = bj , and that σB
R2(bj) = fi imply:

Valσ
B
R2(cj) = −(10n + 4)2j−1 + 4n + 2 + Valσ

B
R2(fi).

Since 2j > 2j−1, we have that the action (cj , rj) is not switchable at the vertices cj

with j < i− 1 in the strategy σB
R2. This implies that greedy strategy improvement

cannot switch away from the action (cj , fj) at these vertices.

We now consider the vertex ci−1, for which we must prove that greedy strat-

egy improvement does not switch away from the action (ci−1, fi−1). The arguments

used in the previous paragraph imply that:

Valσ
B
R2(ci−1) = −(10n + 4)2i−2 + 4n + 2 + Valσ

B
R2(fi).

Moreover, we have that σB
R2(fi) = bi, σB

R2(bi) = ai, and σB
R2(ri) = cl, where l =

min(B>i ∪ {n + 1}). This implies that:

Valσ
B
R2(ci−1) = (10n + 4)(2i − 2i−1 − 2i−2) + 1 + Valσ

B
R2(cl) > Valσ

B
R2(cl).

On the other hand, we have that σB
R2(ri−1) = cl, which implies that:

Appealσ
B
R2(ci−1, ri−1) = Valσ

B
R2(cl) − 1 < Valσ

B
R2(cl).
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Therefore, the action (ci−1, ri−1) is not switchable in the strategy σB
R2.

Finally, to complete the proof of Proposition 5.26, we must consider the

vertices bj . We start by considering the vertices bj with j /∈ B′. For these ver-

tices, we must show that the action (bj , x) is the most appealing action. We will

begin by showing that Appealσ
B
R2(bj , x) > Appealσ

B
R2(bj , dk) for every k. Since

σB
R2(dk) = σB

2i+3(dk) for every k, we can apply Proposition 5.11 to argue that

Appealσ
B
R2(bj , dk) ≤ Valσ

B
R2(y) + 6n + 1. Then, we can apply Proposition 5.29 to

conclude that:

Appealσ
B
R2(bj , dk) ≤ Valσ

B
R2(y) + 6n + 1 < Valσ

B
R2(x) = Appealσ

B
R2(bj , x).

We can also apply Proposition 5.29 to argue that the action (bj , x) is more appealing

than the action (bj , y):

Appealσ
B
R2(bj , y) = 1 + Valσ

B
R2(y) < Valσ

B
R2(x) = Appealσ

B
R2(bj , x).

We now consider the actions (bj , fk) where k /∈ B′ and k < i. Since k > j,

we must also have that j < i. Therefore, it must be the case that σB
R2(bj) = fi and

that σB
R2(bk) = fi. Therefore, we have the following two facts:

Appealσ
B
R2(bj , fk) = 4n + 2 − (10n + 4)2k−1 + Valσ

B
R2(fi)

Valσ
B
R2(bj) = 4n + 1 + Valσ

B
R2(fi)

Therefore, the action (bj , fk) is not switchable in the strategy σB
R2.

Now we condiser the actions (bj , fk) where k /∈ B′ and k > i. In this case we

have σB
R2(bj) = dl for some l. The following derrivation uses this fact, along with
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Proposition 5.11 and Proposition 5.29, to obtain:

Appealσ
B
R2(bj , fk) = 1 − (10n + 4)2k−1 + Valσ

B
R2(bj)

≤ 1 − (10n + 4)2k−1 + 6n + 1 + Valσ
B
R2(y)

< 1 + Valσ
B
R2(y) = Appealσ

B
R2(bj , y) < Appealσ

B
R2(bj , x)

Therefore, the action (bj , x) is more appealing than the action (bj, fk).

We move on to consider the actions (bj , fk) where k ∈ B′. Since Proposi-

tion 5.27 implies that Valσ
B
R2(fk) = Valσ

B′

0 (fk) for all k ∈ B′, we can apply Propo-

sition 5.19 to argue that Valσ
B
R2(fi) > Valσ

B
R2(fk) with k 6= i. If j < i, then we have

that σB
R2(bj) = fi, which immidiately implies that none of the actions (bj , fk) where

k ∈ B′ can be switchable at bj in σB
R2. For the vertices bj with j > i, we will argue

that Valσ
B
R2(x) > Valσ

B
R2(fl) where l = min(B′>i). We can assume that l is well

defined since otherwise there would be no action (bj , fk) with k ∈ B′. By following

the strategy σB
R2 from x we obtain:

Valσ
B
R2(x) = −(10n + 4)(2i − 2i−1) − Valσ

B
R2(fl) > Valσ

B
R2(fl) + 4n + 1

Since Proposition 5.19 implies that Valσ
B
R2(fl) > Valσ

B
R2(fm) with m > l and m ∈ B′,

we must have that Appealσ
B
R2(bj, fk) < Appealσ

B
R2(bj , x).

Finally, we condiser the action aj. Proposition 5.27 and Proposition 5.2

imply that Val(gj) < (10n + 4)2n. From this we can derrive, in a similar manner

to Proposition 5.10, that Appealσ
B
R2(aj) < Valσ

B
R2(bj) + 1. In the case where j > i,

we have that σB
R2(bj) = dk for some k. Therefore, we can apply Proposition 5.11 to

conclude:

Valσ
B
R2(bj) ≤ 6n + 1 + Valσ

B
R2(y)

Proposition 5.29 implies that Appealσ
B
R2(bj , x) > 6n+1+Valσ

B
R2(y), and since every

valuation in σB
R2 is an integer, we have that Appealσ

B
R2(bj , x) ≥ Valσ

B
R2(bj) + 1. This
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implies that the action (bj , x) is more appealing than the action aj at the state bj

in the strategy σB
R2.

We now consider the case where j < i− 1. In this case we have the following

two facts:

Valσ
B
R2(bj) = 4n + 1 + Valσ

B
R2(fi)

Valσ
B
R2(gj) = (10n + 4)(2j − 2j) − 1 + 4n + 1 − 4n + 4n + 1 + Valσ

B
R2(fi)

This implies that Valσ
B
R2(gj) = Valσ

B
R2(bj), and therefore we have Appealσ

B
R2(aj) =

Valσ
B
R2(bj). This implies that the action ai is not switchable in the strategy σB

R2 at

the vertex bj .

Finally, we consider the case where j = i− 1. If l = min(B>i ∪{n+ 1}) then

we have the following two facts:

Valσ
B
R2(gi−1) = (10n + 4)2i−1 − 1 + Valσ

B
R2(cl)

Valσ
B
R2(bi−1) = 4n + 1 + (10n + 4)(2i − 2i−1) − 4n − 1 + Valσ

B
R2(cl)

This implies that Valσ
B
R2(gi−1) < Valσ

B
R2(bi−1), which gives:

Appealσ
B
R2(bi−1, ai−1) = r(bi−1, ai−1) +

∑

s∈S
p(s|bi−1, ai−1) Valσ

B
R2(bi−1(s)

= 0 + (1 − 2−n

10n + 4
) Valσ

B
R2(bi−1) +

2−(n)

10n + 4
Valσ

B
R2(gi−1)

< 0 + (1 − 2−n

10n + 4
) Valσ

B
R2(bi−1) +

2−(n)

10n + 4
Valσ

B
R2(bi−1)

= Valσ
B
R2(bi−1)

Therefore, the action ai−1 cannot be switchable at the vertex bi−1 in the strategy

σB
R2.

To complete the proof of Proposition 5.26, we consider the vertices bj where

j ∈ B′. We will begin by showing that the actions (bj , x), (bj, y), (bj , fk) with k /∈ B′,
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and (bj , dk) for all k, are not switchable in the strategy σB
R2. For the action (bj , x)

we have Appealσ
B
R2(bj , x) = Valσ

B
R2(x), and for the action (bj , y) Proposition 5.29

gives:

Appealσ
B
R2(bj , y) = 1 + Valσ

B
R2(y) < Valσ

B
R2(x)

For the actions (bj , dk), Proposition 5.11 and Proposition 5.29 imply:

Appealσ
B
R2(bj, dk) ≤ 6n + 1 + Valσ

B
R2(y) < Valσ

B
R2(x)

For the actions (bj , fk) with k /∈ B′, we have:

Appealσ
B
R2(bj , fk) = 4n + 1 − (10n + 4)2k−1 − 4n + Valσ

B
R2(bj) < Valσ

B
R2(bj)

Since k /∈ B′ we must have σB
R2(bk) = dl for some l, therefore we can use the same

arguments as we did for the action (bj , dk) to conclude:

Appealσ
B
R2(bj , fk) < Valσ

B
R2(bj) < Valσ

B
R2(x)

Therefore, to show that the actions (bj, x), (bj , y), (bj , fk) with k /∈ B′, and (bj , dk)

for all k are not switchable, we must show that Valσ
B
R2(x) < Valσ

B
R2(bj). Since

σB
R2(x) = fi we have:

Valσ
B
R2(x) = −(10n + 4)2i−1 − 4n + Valσ

B
R2(bi) < Valσ

B
R2(bi)

If j = i then the proof is complete. On the other hand, if j 6= i then the fact that

j ∈ B′ implies that j > i. If we follow the strategy σB
R2 from the vertex bi then
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Proposition 5.27 and Proposition 5.4 give:

Valσ
B
R2(bi) = (10n + 4)2i − 1 + Valσ

B
R2(cmin(B′>i))

≤ (10n + 4)2i − 1 + Valσ
B
R2(cj) + (10n + 4)(2j−1 − 2i)

= (10n + 4)2i + Valσ
B
R2(bj) + (10n + 4)(2j−1 − 2i) − (10n + 4)2j−1

= Valσ
B
R2(bj)

Therefore, none of the actions that we are considering are switchable at the vertex bj

in the strategy σB
R2.

We now consider the actions (bj , fk) with k ∈ B′. Proposition 5.27 implies

that Valσ
B
R2(bj) = Valσ

B′

0 (bj) and Valσ
B
R2(fk) = Valσ

B′

0 (fk). This implies that the

action (bj, fk) is switchable in the strategy σB′

0 if and only if it is switchable in

the strategy σB
R2. Therefore, Proposition 5.16 implies that the action (bj , fk) is not

switchable at the vertex bj in the strategy σB
R2. Moreover, since we have now shown

that there are no switchable actions at the vertex bj , we have shown that greedy

strategy improvement will not switch away from the action aj at this vertex.

5.4.4 The Final Reset Strategy

The purpose of this section is to provide a proof for the following proposition.

Proposition 5.30. Greedy strategy improvement moves from the strategy σB
R3

to

the strategy σB′

0 .

We begin by stating an analogue of Proposition 5.27. However, since the

strategy σB
R3 is closer to the strategy σB′

0 , more vertices can be included in this

proposition.

Proposition 5.31. We have Valσ
B
R3(v) = Valσ

B′

0 (v) for every v ∈ {cj , : j ≥

i} ∪ {rj : 1 ≤ j ≤ n} ∪ {bj , fj : j ∈ B′} ∪ {x, y}.
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Proof. The proof of this proposition uses exactly the same reasoning as the proof of

Proposition 5.27. This is because σB
R3 is closed on the set {cj , : j ≥ i} ∪ {rj : 1 ≤

j ≤ n} ∪ {bj , fj : j ∈ B′} ∪ {x, y}.

The arguments that we used to show that a vertex rj with j ≥ i will not

be switched away from the strategy σB
R2 can also be applied to the strategy σB

R3.

Since every outgoing action from the vertex rj is of the form (rj , v), where v ∈ {cj :

j > i}, Proposition 5.31 implies that Appealσ
B′

0 (rj , v) = Appealσ
B
R3(rj , v) for every

outgoing action from rj . The claim then follows from the fact that Proposition 5.16

implies that if greedy strategy improvement is applied to σB′

0 , then it will not switch

away from σB′

0 .

The same argument can also be used to prove that a vertex cj with j ∈ B′

will not be switched away from the strategy σB′

0 (cj). Once again, this is because

we have that every outgoing action from the vertex cj is of the form (cj , v) where

v ∈ {cj , rj : j ≥ i} ∪ {bj , fj : j ∈ B′}. Therefore, we can apply Propositions 5.31

and 5.16 in the same way in order to prove the claim.

We will now consider the vertices rj with j < i, where we must show that

(rj , ci) is the most appealing action. We will begin by showing that the actions

(rj , ck) with k < i are not switchable. Since we have σB
R3(ck) = fk, σB

R3(bk) = x,

and σB
R3(x) = fi we have:

Appealσ
B
R3(bj , ck) = −(10n + 4)2k−1 + Valσ

B
R3(fi).

On the other hand, since σB
R3(rj) = ci and σB

R3(ci) = fi we have:

Valσ
B
R3(rj) = 4n + Valσ

B
R3(fi).

Therefore, the actions (rj , ck) with k < i are not switchable in σB
R3. Proposition 5.31

and Proposition 5.2 then imply that Appealσ
B
R3(rj , ci) > Appealσ

B
R3(rj , ck) with for
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every k > i. Therefore, greedy strategy improvement will not switch away from the

action (rj , ci) in the strategy σB
R3.

We will now consider the vertices cj with j /∈ B′ and j < i. At these vertices

we must argue that greedy strategy improvement switches the action (cj , ri). Since

σB
R3(cj) = fj, σ

B
R3(bj) = x, and σB

R3(x) = fi we have:

Valσ
B
R3(cj) = 1 − (10n + 4)2j−1 + Valσ

B
R3(fi)

On the other hand, since σB
R3(rj) = ci and σB

R3(ci) = fi we have:

Appealσ
B
R3(cj , rj) = −1 + 4n + 1 + Valσ

B
R3(fi)

Therefore, we have Appealσ
B
R3(cj , rj) > Valσ

B
R3(cj), which implies that greedy strat-

egy improvement will switch the action (cj , rj) at the vertex cj in the strategy σB
R3.

Now we will consider the vertices cj with j /∈ B′ and j > i. At these vertices

we must argue that greedy strategy improvement does not switch away from the

action (cj , rj). We will do this by arguing that the action (cj , fj) is not switchable.

As we have argued previously, we have:

Appealσ
B
R3(cj , fj) = 1 − (10n + 4)2j−1 + Valσ

B
R3(fi)

= (10n + 4)(2i − 2i−1 − 2j−1) + Valσ
B
R3(cmin(B′>i)∪{n+1})

We can then apply Proposition 5.31 and Proposition 5.4 to show:

Appealσ
B
R3(cj , fj) ≤ (10n+ 4)(2i − 2i−1− 2j−1− 2i + 2j−1) + Valσ

B
R3(cj) < Valσ

B
R3(cj)

Therefore, the action (cj , rj) is not switchable in the strategy σB
R3.

We will now consider the vertex x, where we must show that the most ap-

pealing action is (x, fi). We will begin by showing that the actions (x, fj) where

167



j /∈ B′ are not switchable in σB
R3. Since σB

R3(bj) = x, we have:

Appealσ
B
R3(x, fj) = −(10n + 4)2j−1 − 4n + Valσ

b
R3(x) < Valσ

B
R3(x)

Therefore, the actions (x, fj) where j /∈ B′ are not switchable in σB
R3. For the

actions (x, fj) where j ∈ B′ and j 6= i, Proposition 5.31 and Proposition 5.19

imply that Appealσ
B
R3(x, fi) > Appealσ

B
R3(x, fj), which implies that greedy strategy

improvement will not switch away from the action (x, fi).

We can apply the same reasoning for the vertex y, where we must show that

(y, ci) is the most appealing action. For the actions (y, cj) with j /∈ B′ we have:

Appealσ
B
R3(y, cj) = −(10n + 4)2j−1 + 1 + Valσ

b
R3(x) < Valσ

B
R3(x) + 4n + 1.

Since σb
R3(y) = ci and σb

R3(x) = fi we must have Valσ
B
R3(y) = Valσ

B
R3(x) + 4n + 1.

Therefore we have shown that the actions (y, cj) with j /∈ B′ are not switchable in

the strategy σB
R3. Proposition 5.31 and Proposition 5.2 imply that Appealσ

B
R3(ci) >

Appealσ
B
R3(cj) for every j ∈ B such that j 6= i. Therefore greedy strategy improve-

ment will not switch away from the action (y, ci) in the strategy σB
R3.

We now consider the vertices dk for all k. For every vertex dk, we must show

that (dk, y) is the most appealing action. For the action (dk, dk−1) we have:

Appealσ
B
R3(dk, dk−1) = Valσ

B
R3(x) − 1 < Valσ

B
R3(x) = Appealσ

B
R3(dk, x).

For the action (dk, x), the fact that r(dk, y) = r(dk, x) implies:

Appealσ
B
R3(dk, x) = r(dk, x) + Val(fi)

< r(dk, y) + 4n + 1 + Val(fi) = Appealσ
B
R3(dk, y).

Therefore, the action (dk, y) is the most appealing action at the vertex dk.
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Finally, we consider the vertices bj. We begin with the case when j /∈ B′. In

this case we must show that (bj , y) is the most appealing action at the vertex bj .

We will first argue that the action (bj , x) is not switchable. Since σB
R3(x) = fi,

σB
R3(y) = ci and σB

R3(ci) = fi, we have the following two equalities:

Valσ
B
R3(x) = Val(fi)

Valσ
B
R3(y) = Val(fi) + 4n + 1

Therefore, we must have Appealσ
B
R3(bj , x) < Appealσ

B
R3(bj , y). These two equalities

can also be used to prove that the actions of the form (bj , dk) are not switch-

able. This is because we have Appealσ
B
R3(bj , dk) ≤ 4n + Valσ

B
R3(x) and we have

Appealσ
B
R3(bj , y) = 4n + 2 + Valσ

B
R3(x).

We now consider the actions of the form (bj , fk). We will first prove that

the actions (bj , fk) where k /∈ B′ are not switched by greedy strategy improvement.

Since k /∈ B′, we have:

Appealσ
B
R3(bj , fk) = −(10n + 4)2k−1 + 1 + Valσ

B
R3(x)

< Valσ
B
R3(y) + 4n + 2 = Appealσ

B
R3(bj , y)

Therefore, these actions will not be switched by greedy strategy improvement in the

strategy σB
R3. We now consider the actions (bj , fk) where k ∈ B′. We will prove that

these actions are not switchable in σB
R3. The appeal of the action (bj , fk) is:

Appealσ
B
R3(bj , fk) = 4n + 1 + Valσ

B
R3(fk).

On the other hand, the appeal of the action (bj , y) can be expressed as:

Appealσ
B
R3(bj , y) = (10n + 4)(2i − 2i−1) − 4n + Valσ

B
R3(cmin(B′>i))
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We can then use Proposition 5.31 and Proposition 5.4 to conclude:

Appealσ
B
R3(bj , y) = (10n + 4)(2i − 2i−1 − 2i + 2k−1) − 4n + Valσ

B
R3(ck)

= (10n + 4)(2k−1 − 2i−1) − 4n + Valσ
B
R3(ck)

= (10n + 4)(2k−1 − 2i−1) + 1 + Valσ
B
R3(fk) > 4n + 1 + Valσ

B
R3(fk)

Therefore, the action (bj , fk) will not be switched by greedy strategy improvement.

Finally, we consider the action aj . We will first argue that Appealσ
B
R3(bj, y) >

Valσ
B
R3(bj) + 1. This holds because we have Valσ

B
R3(bj) = Valσ

B
R3(fi), and we have

Appealσ
B
R3(bj , y) = 4n + 2 + Valσ

B
R3(fi). On the other hand Proposition 5.31 and

Proposition 5.10 imply that Appealσ
B
R3(bj , aj) < Valσ

B
R3(bj) + 1. Therefore, greedy

strategy improvement will not switch the action aj.

To complete the proof of Proposition 5.30, we will show that greedy strategy

improvement does not switch away from the action aj at every vertex bj with j ∈ B′.

We can use exactly the same arguments as we used for the vertices bj with j /∈ B′

to argue that Appealσ
B
R3(bj , y) > Appealσ

B
R3(bj, a) for every action a ∈ {(bj , dk) :

1 ≤ k ≤ n} ∪ {(bj , fk : j < k ≤ n} ∪ {(bj , x)}. Therefore, we can prove the claim

by showing that Appealσ
B
R3(bj, y) < Valσ

B
R3(bj). As we have done previously, we can

use Proposition 5.31 and Proposition 5.4 to obtain the following characterisation for

the appeal of the action (bj , y):

Appealσ
B
R3(bj , y) = (10n + 4)(2i − 2i−1 − 2i + 2j−1) − 4n + Valσ

B
R3(cj)

= (10n + 4)(2j−1 − 2i−1) − 4n + Valσ
B
R3(ck)

= −(10n + 4)(2i−1) − 4n + 1 + Valσ
B
R3(bj) < Valσ

B
R3(bj)

Therefore, greedy strategy improvement will not switch away from the action aj at

the vertex bj in the strategy σB
R3.
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5.5 Exponential Lower Bounds For The Average Re-

ward Criterion

We can now state the main theorem of this Chapter. The proof of this theorem

follows from Proposition 5.16 in the flip phase, and Propositions 5.21, 5.23, 5.26,

and 5.30 in the reset phase.

Theorem 5.32. When greedy strategy improvement for the average-reward criterion

is applied to the strategy σ
{1}
0 it will take at least 2n−1 iterations to find the optimal

strategy.

5.6 Concluding Remarks

In this chapter we have shown how Friedmann’s lower bounds for the greedy switch-

ing policy in the strategy improvement setting can be extended to apply to the

Markov decision process setting. We have shown lower bounds for the the average-

reward criterion, but lower bounds for the discounted-reward criterion have been

left open. We suspect that a smart choice of discount factor will allow the same

construction to be used to prove an exponential lower bound in this setting. This is

because the valuation of a vertex under the discounted-reward criterion approaches

the valuation of that vertex under the total-reward criterion as the discount factor

approaches 1. Therefore, if the discount factor is chosen to be sufficiently close to 1,

then the appeal of each action under the discounted-reward criterion will be close to

appeal of that action under the total-reward criterion. If it can be shown that the

ordering of successor actions at each vertex does not change, then greedy strategy

improvement will make the same decisions at those vertices, and an exponential

lower bound would follow.

Another open question is whether the sub-exponential lower bounds of Fried-

mann, Hansen, and Zwick for the random facet switching policy [FHZ10] can be
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generalised to the Markov decision process setting. Their construction also uses the

machinery of a binary counter, but they have a more complex gadget to represent

each bit. If this lower bound can be extended to the Markov decision process setting,

then it would seem likely that the lower bound could also be extended to the ran-

dom facet pivot rule for linear programming. This is because strategy improvement

algorithms that only switch one action in each iteration are strongly related to the

behaviour of the simplex method as it is applied to the dual of the reduction from

Markov decision processes to linear programming.
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Chapter 6

Non-oblivious Strategy

Improvement

The switching policies for strategy improvement that have been considered so far

have been general switching policies, which are not concerned with the type of game

or MDP that they are solving. Either these switching policies follow a simple rule,

such as “switch some switchable edge”, or they use a rule that depends on the appeal

of an edge, such as “switch the edge with maximal appeal”. This generality allows

the switching policies to be applied to a wide variety of models, such as both MDPs

and games, but it prevents the switching policy from using more complex rules that

depend on the model to which it is being applied. It is for this reason that we refer

to these switching polices as oblivious switching policies. In this chapter, we develop

non-oblivious switching policies for the Björklund-Vorobyov strategy improvement

algorithm.

In the first part of this chapter we study switchable edges, and we show that

these edges can be classified into two types: cross edges and back edges. We show

that the effect of switching a switchable cross edge can be very different to the effect

of switching a switchable back edge. The traditional switching policies that we have

described do not consider this distinction, and they are therefore unable to exploit
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it in their decision making.

This however, is only the first step. We go on to show how each switchable

back edge corresponds to a structure in a mean-payoff game that we call a snare.

We show that if a switching policy is aware of a snare in the game, then it can make

better decisions. Therefore, we propose a family of switching policies that remember

the snares that have been seen in the game, and then use this knowledge to make

better decisions in future iterations. We also show how a traditional switching policy

can be modified to make use of these techniques.

Finally, we examine the behaviour of our techniques on the families of ex-

amples that have been used to show super-polynomial lower bounds. In particular,

we consider the examples of Friedmann, which show a lower bound for the greedy

and optimal switching policies [Fri09], and we consider the examples of Friedmann,

Hansen, and Zwick, which show a sub-exponential lower bound for the random facet

switching policy [FHZ10]. We show that modifying each of these switching policies to

make use of our techniques allows these switching policies to avoid super-polynomial

behaviour on their respective examples.

6.1 Classifying Profitable Edges

In this section we study switchable edges. We are interested in how the choice of

edge to switch affects the behaviour of a strategy improvement algorithm. We show

that, in the Björklund-Vorobyov strategy improvement algorithm, there are two

different types of switchable edge, and that these types of edge behave differently

when strategy improvement switches them. In the first part of this section we define

our classification of switchable edges, and in the second part we show the effect of

switching both of these types of edges.
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6.1.1 Strategy Trees

The purpose of this section is to show how a strategy and its best response can be

viewed as a tree, and to classify switchable edges by their position in this tree. The

strategy tree will only contain vertices with finite valuation. This means that for

each Max strategy σ, if a vertex v has Valσ(v) = ∞, then it will not be contained

in the strategy tree for σ. To make this more natural, we will rephrase the problem

slightly so that the set of vertices with infinite valuation can be ignored.

We define the positive-cycle problem to be the problem of finding a strategy σ

with Valσ(v) = ∞ for some vertex v, or to prove that there is no strategy with this

property. This is clearly a weakening of the zero-mean partition problem, which

required us to find every vertex v for which there is some strategy σ with Valσ(v) =

∞. Strategy improvement can be applied to solve the positive-cycle problem simply

by executing it as normal, but stopping in the first iteration in which some vertex

has an infinite valuation.

In this section we will show how a switching policy for the positive-cycle

problem can be adapted to find the optimal strategy. Let α(σ,G) be a switching

policy for the positive cycle problem on the graph G. Algorithm 4 shows a switching

policy that uses α to find the optimal strategy. The algorithm first finds the set U

that contains every vertex with a finite valuation in the current strategy. For a set

of vertices W we define G ↾ W to be the sub-game induced by W , which is G with

every vertex not in W removed. The algorithm runs α on G ↾ U until α produces

a strategy in which some vertex has an infinite valuation. When this occurs, the

algorithm will continually switch switchable edges (v, u) where Valσ(u) = ∞ until

no such edges remain. It then recomputes the set U , by removing every vertex

whose valuation has risen to ∞.

To prove the correctness of this approach, we will prove the following propo-

sition, which shows that the valuation of some vertex rises to ∞ every time the

second inner while loop in Algorithm 4 is executed.
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Algorithm 4 ZeroMeanPartition(σ, α,G)

U := V
while σ is not optimal do

while Valσ(v) < ∞ for every v in U do
σ := α(σ,G ↾ U)

end while
while There is a switchable edge (v, u) with Valσ(u) = ∞ do

σ := σ[v 7→ u]
end while
U := U \ {v ∈ V : Valσ(v) = ∞}

end while

Proposition 6.1. If (v, u) is a switchable edge in σ with Valσ(u) = ∞, then we

have Valσ[v 7→u](v) = ∞.

Proof. Since the edge (v, u) is switchable in σ, we have by Theorem 3.6 that σ[v 7→

u] is admissible. Moreover, since Valσ(u) = ∞, we have have Valσ[v 7→u](u) =

∞. Therefore, we have Play(u, σ[v 7→ u], τ) = 〈u, v1, . . . vk, 〈c0, c1, . . . cl〉ω〉 with

∑l
i=0 r(ci) > 0 for every Min strategy τ . In the strategy σ[v 7→ u], every play

starting at v moves directly to u. Therefore, we have Play(v, σ[v 7→ u], τ) =

〈v, u, v1, . . . , vk, 〈c0, c1, . . . , cl〉ω〉 with
∑l

i=0 r(ci) > 0 for every Min strategy τ . This

implies that Valσ[v 7→u](v) = ∞.

Suppose that the first inner while loop terminates with a strategy σ. We will

have that either there is some vertex v contained in U with Valσ(v) = ∞, or we will

have that σ is an optimal strategy for the sub-game induced by the set of vertices U .

In the first case, we will have that |U | will strictly decrease in the next iteration of

the outer while loop. In the second case, we argue that σ is also optimal for the

full game. Since σ is optimal for the sub-game induced by U , there cannot be a

switchable edge (v, u) where both v and u are contained in U , and there obviously

cannot be a switchable edge (v, u) where both v and u are both contained in V \U .

This leaves only the case of switchable edges (v, u) where v ∈ U and u ∈ V \ U .

This case is dealt with by the second inner while loop, which only terminates when

no such edges exist in the current strategy. Moreover, Proposition 6.1 implies that
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the second inner while loop can execute at most |V | times during the entire run

of the algorithm. Therefore, we have the following bound on the running time of

Algorithm 4.

Proposition 6.2. If α is a switching policy that solves the positive-cycle problem

in O(f(n)) iterations then Algorithm 4 is a switching policy that finds an optimal

strategy in O(n · f(n)) iterations.

The purpose of defining the positive-cycle problem is to allow us to ignore

the set of vertices with infinite valuation. For the rest of this chapter we will focus

on devising switching policies for the positive cycle problem. Therefore, we can

assume that every strategy σ that is considered by strategy improvement will have

the property Valσ(v) < ∞ for every vertex v. Proposition 6.2 indicates that only a

linear factor must be paid in terms of complexity to generalise our switching policies

to solve the zero-mean partition.

With the assumption that every vertex has a finite valuation in place, we are

now ready to define the strategy tree.

Definition 6.3 (Strategy Tree). Given a Max strategy σ and a Min strategy τ we

define the tree T σ,τ = (V,E′) where E′ = {(v, u) : σ(v) = u or τ(v) = u}.

In other words, T σ,τ is a tree rooted at the sink whose edges are those chosen

by σ and τ . Recall that, although there may be many best responses to a particular

strategy, the function br(σ) selects one of these best responses, and we make no

assumptions about which best response this function selects. Therefore, there is

a unique tree T σ,br(σ), and we define T σ to be shorthand for this tree. The define

Subtreeσ(v) : V → 2V to be the function that gives the vertices in the subtree rooted

at the vertex v in T σ.

We can now define our classification for switchable edges. Let (v, u) be a

switchable edge in the strategy σ. We call this a switchable back edge if u is in

Subtreeσ(v), otherwise we call it a switchable cross edge.
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Figure 6.1: A strategy tree.

Figure 6.1 gives an example of a strategy tree. The dashed edges show a

strategy for Max, and the dotted edges show the best response to this strategy. The

strategy tree contains every vertex, and every edge that is either dashed or dotted.

The subtree of v is the set {v, b, c, d, u}. The edge (v, u) is switchable because

Valσ(s) = 0 and Valσ(u) = 1. Since u is contained in the subtree of v, the edge

(v, u) is a switchable back edge.

6.1.2 The Effect Of Switching An Edge

In this section we will justify the usefulness of our classification of switchable edges

by giving some basic results about how these edges affect the behaviour of strategy

improvement. We will see that the result of switching a switchable cross edge is

quite different to the result of switching a switchable back edge. The standard

switching policies for strategy improvement are not aware of this distinction, and so

they cannot exploit it in order to make better decisions.

We will measure the outcome of switching a switchable edge by the increase

in valuation that occurs when the edge is switched. More specifically, if an edge (v, u)

is switched in the strategy σ, we are interested in maxw∈V (Valσ[v 7→u](w)−Valσ(w)).
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We begin by considering switchable cross edges. The first thing that we will

show is a lower bound on how much valuations can increase when a switchable cross

edge is switched. For every switchable cross edge (v, u) in the strategy σ we define

the increase of that edge as:

Increaseσ(v, u) = Valσ(u) − Valσ(σ(v)).

The following lower bound has long been known for strategy improvement algo-

rithms: when the switchable edge (v, u) is switched in a strategy σ, we will have

that Valσ[v 7→u](v) ≥ Valσ(u)+r(v) . We will provide a short proof that this is correct

for the Björklund-Vorobyov strategy improvement algorithm.

Proposition 6.4. Let (v, u) be a switchable edge in a strategy σ. After switching

the edge we have Valσ[v 7→u](v) − Valσ(v) ≥ Increaseσ(v, u).

Proof. It follows from the definition of a valuation that Valσ(v) = Valσ(σ(v)) + r(v)

and that Valσ[v 7→u](v) = Valσ[v 7→u](u) + r(v). Since (v, u) is a switchable edge in σ,

Theorem 3.6 implies that Valσ[v 7→u](u) ≥ Valσ(u). Combining these gives:

Valσ[v 7→u](v) − Valσ(v) = (Valσ[v 7→u](u) + r(v)) − (Valσ(σ(v)) + r(v))

= Valσ[v 7→u](u) − Valσ(σ(v))

≥ Valσ(u) − Valσ(σ(v)).

The lower bound given in Proposition 6.4 holds for both switchable cross

edges and switchable back edges. However, for switchable cross edges we can show

that this bound is tight.

Proposition 6.5. Let (v, u) be a switchable cross edge in the strategy σ. For every

vertex w we have Valσ[v 7→u](w) − Valσ(w) ≤ Increaseσ(v, u).

Proof. We assume that Min plays br(σ) against σ[v → u]. We will prove for every
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vertex w that

Valσ[v 7→u],br(σ)(w) − Valσ(w) ≤ Increaseσ(v, u).

This is sufficient to prove the proposition because, by properties of the best response,

we have that Valσ[v 7→u],br(σ[v 7→u])(w) ≤ Valσ[v 7→u],br(σ)(w), and therefore

Valσ[v 7→u](w) − Valσ(w) ≤ Valσ[v 7→u],br(σ)(w) − Valσ(w).

We shall first consider a vertex w that is not in Subtreeσ(v). Note that

Play(w, σ[v 7→ u],br(σ)) does not pass through through the vertex v, which implies

that Play(w, σ[v 7→ u],br(σ)) = Play(w, σ,br(σ)). Since the valuation of a vertex is

determined entirely by the play, this implies that Valσ[v 7→u],br(σ)(w) = Valσ(w). Note

that since (v, u) is a switchable edge it must be the case that Increaseσ(v, u) > 0.

We therefore have:

Valσ[v 7→u],br(σ)(w) − Valσ(w) = 0 < Increaseσ(v, u).

Now consider a vertex w that is in Subtreeσ(v). Let π = 〈w = v0, v1, . . . , vk =

v〉 be the prefix of Play(w, σ,br(σ)) that ends at the vertex v. Since the only

modification to σ was to change the successor of v, we also have that π is a prefix

of Play(w, σ[v 7→ u],br(σ)). If c =
∑k

i=0 r(vi) then we the following two expressions

for the valuation of w:

Valσ(w) = Valσ(v) + c,

Valσ[v 7→u],br(σ)(w) = Valσ[v 7→u],br(σ)(v) + c.

180



Therefore, the increase of the valuation of w can be represented as:

Valσ[v 7→u],br(σ)(w) − Valσ(w) = (Valσ[v 7→u],br(σ)(v) + c) − (Valσ(v) + c)

= Valσ[v 7→u],br(σ)(v) − Valσ(v).

To complete the proof we must show that Valσ[v 7→u],br(σ)(v) − Valσ(v) ≤

Increaseσ(v, u). By definition we have that Valσ(v) = Valσ(σ(v))+r(v) and we have

that Valσ[v 7→u],br(σ)(v) = Valσ[v 7→u],br(σ)(u) + r(v). Since (v, u) is a switchable cross

edge, we have that u is not in the subtree of v, and so we have already shown that

Valσ[v 7→u],br(σ)(u) = Valσ(u). Combining these facts gives:

Valσ[v 7→u],br(σ)(v) − Valσ(v) = Valσ[v 7→u],br(σ)(u) + r(v) − (Valσ(σ(v)) + r(v))

= Valσ[v 7→u],br(σ)(u) − Valσ(σ(v))

= Valσ(u) − Valσ(σ(v))

= Increaseσ(v, u).

The lower bound given by Proposition 6.4 is the one that is generally used

in the design of switching policies. This can be seen, for example, in the greedy

switching policy that was defined in Section 3.2.4. When there is more than one

switchable edge at a vertex v, the greedy policy chooses the switchable edge (v, u)

which has the largest value of Appealσ(v, u). The reason for this choice is that

Proposition 6.4 guarantees the largest increase in valuations for the edge (v, u).

With Proposition 6.5 we have shown that this is a valid approach when the edge

(v, u) is a switchable cross edge. In the remainder of this section, we will argue

that relying on Proposition 6.4 is not a good idea when considering switchable back

edges.

For a switchable back edge, the lower bound given by Proposition 6.4 can

dramatically underestimate the increase in valuation that is caused by switching the
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edge. The example shown in Figure 6.1 is one such case. For the strategy σ that is

shown, we have Valσ(u) = 1, and therefore Increaseσ(v, u) = 1. However, when the

edges (v, u) is switched, Min will use the edges (b, a) and (u, b) in the best response

to σ[v 7→ u]. This causes the valuation of u to rise to 12, and we therefore have that

Valσ[v 7→u](u)−Valσ(u) = 11, which is clearly much larger than the increase that was

implied by Proposition 6.4.

The problem with the lower bound given in Proposition 6.4 is that it does

not consider the effect that switching an edge has on the behaviour of the opponent.

We will now formalize what this effect is. For a switchable back edge (v, u) in a

strategy σ we define the critical set, which is the vertices in Subtreeσ(v) that Min

can reach from u when Max plays σ.

Definition 6.6 (Critical Set). If (v, u) is a switchable back edge in the strategy σ,

then we define the critical set as

Criticalσ(v, u) = {w ∈ Subtreeσ(v) : there is a path 〈u, u1, . . . , uk = w〉,

where for all i with 1 ≤ i ≤ k we have ui ∈ Subtreeσ(v),

and if ui ∈ VMax then ui+1 = σ(ui)}.

In the example given by Figure 6.1, the critical set for the switchable back

edge (v, u) is {v, b, d, u}. The vertex b is in the critical set because it is in the

subtree of v, and Min can reach it from u when Max plays σ. On the other hand,

the vertex c is not in the critical set because σ(d) = v, and therefore Min cannot

reach c from u when Max plays σ. The vertex a is not in the critical set because it

is not in the subtree of v.

We can now explain why Min must use the edge (b, a) in the best response to

σ[v 7→ u] in this example. This happens because σ[v 7→ u] is a winning strategy for

the vertices in the critical set of (v, u). It can be verified that if Min does not choose

an edge that leaves this critical set, then a positive cycle must be formed. Therefore,
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Min must use the edge (b, a) in the best response to secure a finite valuation. The

fact that σ[v 7→ u] is a winning strategy for the critical set of (v, u) is a general

property, which we will now prove. In this proof we will refer to valuations from

multiple games. We use ValσG(v) to give the valuation of the vertex v when σ is

played against br(σ) in the game G. We extend all of our notations in a similar

manner, by placing the game in the subscript.

Proposition 6.7. Let (v, u) be a switchable back edge in the strategy σ and let C =

Criticalσ(v, u). The strategy σ[v 7→ u] is winning for every vertex in G ↾ C.

Proof. Since C is a critical set it must be the case that every vertex in C must be in

the subtree of v according to σ, and this implies that σ[v 7→ u](w) is not the sink,

for every vertex w in C. Note that only paths ending at the sink can have finite

valuations, and that no such paths can exist when σ[v 7→ u] is played in G ↾ C.

Therefore, we must argue that σ[v 7→ u] is an admissible strategy for G ↾ C.

Suppose for the sake of contradiction that σ[v 7→ u] is inadmissible. This im-

plies that there is some vertex v and some Min strategy τ for which PlayG↾C(v, σ[v 7→

u], τ) ends in a negative cycle. We define τ ′ to be a strategy G that follows τ on

the vertices in G ↾ C and makes arbitrary decisions at the other vertices. For every

vertex w in VMin we choose some edge (w, x) and define:

τ ′(w) =





τ(w) if w ∈ C,

x otherwise.

Now consider σ[v 7→ u] played against τ ′ on the game G. Note that neither of the

two strategies choose an edge that leaves the set C and so PlayG(w, σ[v 7→ u], τ ′) =

PlayG↾C(w, σ[v 7→ u], τ) for every vertex w in C. Therefore, PlayG(w, σ[v 7→ u], τ ′)

must end in a negative cycle in G. This implies that σ[v 7→ u] is inadmissible in G,

which contradicts Theorem 3.6 because (v, u) was a switchable edge in σ. Therefore,

σ[v 7→ u] is an admissible strategy in G ↾ U .
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In our running example, the edge (b, a) allowed Min to leave the critical set

of the edge (v, u). We call these edges escapes. An escape edge from a given set of

vertices is an edge that Min can use to leave that set of vertices.

Definition 6.8 (Escapes). Let W be a set of vertices. We define the escapes from W

as Esc(W ) = {(v, u) ∈ E : v ∈ W ∩ VMin and u /∈ W}.

The effect of switching a switchable back edge is to force Min to use an escape

edge from the critical set of that back edge.

Proposition 6.9. Let (v, u) be a switchable back edge in the strategy σ. There is

some edge (x, y) in Esc(Criticalσ(v, u)) such that br(σ[v 7→ u])(x) = y.

Proof. Consider a strategy τ for player Min for which there is no edge (x, y) in

Esc(Criticalσ(v, u)) with τ(x) = y. We argue that Valσ[v 7→u],τ (w) = ∞ for every ver-

tex w in Criticalσ(v, u). Note that neither σ[v 7→ u] or τ chooses an edge that leaves

Criticalσ(v, u), which implies that Play(w, σ[v 7→ u], τ) does not leave Criticalσ(v, u),

for every vertex w in Criticalσ(v, u). By Proposition 6.7 we have that σ[v 7→ u] is a

winning strategy for G ↾ Criticalσ(v, u), and therefore Valσ[v 7→u],τ (w) = ∞ for every

vertex w in Criticalσ(v, u).

We will now construct a strategy for Min which, when played against σ[v 7→

u], guarantees a finite valuation for some vertex in Criticalσ(v, u). Let (x, y) be

some edge in Esc(Criticalσ(v, u)). We define the Min strategy τ , for every vertex w

in VMin as:

τ(w) =





y if w = x,

br(σ)(w) otherwise.

By definition of the critical set we have that y cannot be in the subtree of v, since

otherwise it would also be in Criticalσ(v, u). This implies that Play(y, σ,br(σ)) =

Play(y, σ[v 7→ u], τ), since τ = br(σ) on every vertex that is not in Subtreeσ(v),

and σ = σ[v 7→ u] on every vertex that is not v. From this we can conclude that
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Valσ[v 7→u],τ (y) = Valσ(y) < ∞. By construction of τ we have that Valσ[v 7→u],τ (x) =

Valσ[v 7→u],τ (y) + r(x), and so we also have Valσ[v 7→u],τ (x) < ∞.

In summary, we have shown that every Min strategy τ that does not use

an edge in Esc(Criticalσ(v, u)) has the property Valσ[v 7→u],τ (w) = ∞ for every ver-

tex v in Criticalσ(v, u). We have also shown that there is a Min strategy τ which

guarantees Valσ[v 7→u],τ (w) < ∞ for some vertex w in Criticalσ(v, u). From the

properties of a best response we can conclude that Min must use some edge in

Esc(Criticalσ(v, u)).

We will use the property given by Proposition 6.9 to define a better lower

bound for the increase in valuation caused by switching a switchable back edge. We

define:

EscIncσ(v, u) = min{(Valσ(y) + r(x)) − Valσ(x) : (x, y) ∈ Esc(Criticalσ(v, u))}.

The function EscInc captures the smallest increase in valuation that can be caused

when Min chooses an escape from the critical set. In the example given by Figure 6.1

we have EscIncσ(v, u) = 12, which accurately captures the increase of valuation at u

when the edge (v, u) is switched. We can now extend the Increase function to give

a lower bound for every switchable edge (v, u) in the strategy σ.

NewIncσ(v, u) =





Increaseσ(v, u) if (v, u) is a cross edge,

max(Increaseσ(v, u),EscInc(v, u)) otherwise.

We now prove that this lower bound is correct.

Proposition 6.10. Let (v, u) be a switchable edge in the strategy σ. There is a

vertex w such that Valσ[v 7→u](w) − Valσ(w) ≥ NewIncσ(v, u).

Proof. For switchable cross edges this proposition is implied by Proposition 6.4.

For switchable back edges, if Increaseσ(v, u) ≥ EscInc(v, u)) then this proposition is
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again implied by Proposition 6.4. Otherwise, Proposition 6.9 implies that there is

some edge (x, y) in Esc(Criticalσ(v, u)) such that br(σ[v 7→ u])(x) = y. We therefore

have that Valσ[v 7→u](x) = Valσ[v 7→u](y)+r(x), and by Theorem 3.6 combined with the

fact that (v, u) is a switchable edge we have Valσ[v 7→u](y) ≥ Valσ(y). The increase

at x is therefore

Valσ[v 7→u](x) − Valσ(x) = Valσ[v 7→u](y) + r(x) − Valσ(x)

≥ Valσ(y) + r(x) − Valσ(x)

≥ EscInc(v, u).

We close this section by using our new bounds to define a more intelligent

version of the greedy policy. While the original policy picks, for each vertex v

in a strategy σ, the edge (v, u) that maximizes Appealσ(v, u), our version of the

greedy policy will pick the edge that maximizes NewIncσ(v, u). Once again, to

define this formally we require that each vertex v is given a unique index in the

range {1, 2, . . . , |V |}, which will denote as Index(v).

New-Greedyσ(F ) = {(v, u) : there is no edge (v,w) ∈ F with

NewIncσ(v, u) < NewIncσ(v,w) or with (NewIncσ(v, u) = NewIncσ(v,w)

and Index(u) < Index(w))}.

6.2 Remembering Previous Iterations

In the previous section we classified switchable edges into two types: switchable

cross edges and switchable back edges. We also showed how switching policies can

be made aware of these concepts. However, the New-Greedy switching policy still

takes an exponential number of steps on the examples of Friedmann, which implies

that simply being aware of these concepts is not enough.
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With the New-Greedy switching policy, we showed how awareness of switch-

able back edges in a strategy could be exploited when strategy improvement con-

siders that strategy. However, we claim that a switchable back edge can be used to

make better decisions in other iterations. In this section, we introduce a structure

that is called a snare. The dictionary definition1 of the word snare is “something

that serves to entangle the unwary”. This is a particularly apt metaphor for these

structures since, as we will show, a winning strategy for a player must be careful to

avoid being trapped by the snares that are present in that player’s winning set.

A snare is a structure that is contained in a parity or mean-payoff game,

and we will show that every switchable back edge that is encountered by strategy

improvement must correspond to some snare that is embedded in the game. We

propose that strategy improvement algorithms should remember a snare for each

switchable back edge that they encounter, and we show how a switching policy that

has remembered a snare can exploit this knowledge to make better progress.

6.2.1 Snares

In this section we introduce a structure that we call a snare. These structures

are contained in a mean-payoff game, and we claim that the behaviour of strategy

improvement on a given mean-payoff game is strongly related to the snares that

exist in that game. In this section we will introduce these structures, and derive

some of their general properties.

As usual, the definitions that we give in this section could be formalized for

either player. We choose to focus on player Max because we chose Max to be the

strategy improver. A snare for player Max is defined to be a sub-game for which

player Max can guarantee a win from every vertex.

Definition 6.11 (Max Snare). For a game G, a snare is defined to be a tuple (W,χ)

where W ⊆ V and χ : W ∩ VMax → W is a partial strategy for player Max that is

1American Heritage Dictionary of the English Language, Fourth Edition
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winning for every vertex in the sub-game G ↾ W .

Clearly, this definition is strongly related to the properties of switchable

back edges that we exposed in Section 6.1.2. If (v, u) is a switchable back edge in

a strategy σ, then we define Snareσ(v, u) to be (Criticalσ(v, u), χ), where χ is the

strategy σ[v 7→ u] defined only for the vertices contained in Criticalσ(v, u). For for

every vertex w we have:

χ(w) =





σ[v 7→ u](w) if w ∈ Criticalσ(v, u),

undefined otherwise.

Since Proposition 6.7 implies that χ is a winning strategy for the set Criticalσ(v, u),

we have that Snareσ(v, u) meets the definition of a snare for every switchable back

edge (v, u). For the example shown in Figure 6.1, we have that Snareσ(v, u) =

({v, u, b, d}, {v 7→ u, d 7→ v}).

Although our definition of a snare is closely tied to the properties of switch-

able back edges, we argue that applications of snares are not restricted to strategy

improvement. In the following proposition, we will show that the existence of a

snare in a game places restrictions upon the strategies that are winning for that

game. Recall that in the zero-mean partition problem, a winning strategy for player

Min is one that ensures a non-positive payoff.

Proposition 6.12. Suppose that τ is a winning strategy for Min on a set of ver-

tices S. If (W,χ) is a Max snare where W ⊂ S, then there is some edge (v, u) in

Esc(W ) such that τ(v) = u.

Proof. For the sake of contradiction, suppose that τ is a winning strategy for S

that does not choose an edge in Esc(W ). Since χ also does not choose an edge that

leaves W , we have that Play(v, χ, τ) never leaves the set W , for every vertex v in W .

Furthermore, since χ is a winning strategy for the sub-game induced by W we have
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M(Play(v, χ, τ)) > 0 for every vertex v in W , which contradicts the fact that τ is a

winning strategy for S.

We will now argue that the conditions given by Proposition 6.12 must be

observed in order for strategy improvement to terminate. We begin by defining a

concept that we call snare consistency. This concept captures the idea that every

winning strategy for Min must choose an escape from every Max snare. We say that

a Max strategy is consistent with a snare if Min’s best response chooses an escape

from that snare.

Definition 6.13 (Snare Consistency). A strategy σ is said to be consistent with the

snare (W,χ) if br(σ) uses some edge in Esc(W ).

We can show that strategy improvement cannot terminate unless the current

strategy is consistent with every snare that exists in the game. This is because every

strategy that is not consistent with some snare must contain a switchable edge.

Proposition 6.14. Let σ be a strategy that is not consistent with a snare (W,χ).

There is a switchable edge (v, u) in σ such that χ(v) = u.

Proof. In order to prove the claim we will construct an alternate game. We define

the game G′ = (V, VMax, VMin, E
′, r) where:

E′ = {(v, u) : σ(v) = u or brG(σ)(v) = u or χ(v) = u}.

In other words, we construct a game where Min is forced to play brG(σ)(v) and

Max’s strategy can be constructed using a combination of the edges used by σ

and χ. Since Min is forced to play brG(σ)(v) we have that ValσG(v) = ValσG′(v)

for every vertex v. To decide if an edge is switchable we compare two valuations,

and since the valuation of σ is the same in both G and G′ we have that an edge is

switchable for σ in G if and only if it is switchable for σ in G′. Note also that the

only way σ can be modified in G′ is to choose an edge that is chosen by χ but not
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by σ. Therefore, to prove our claim it is sufficient to show that σ has a switchable

edge in G′.

We define the strategy:

χ′(v) =





χ(v) if v ∈ W,

σ(v) otherwise.

We will argue that χ′ is a better strategy than σ in G′. The definition of a snare

implies that χ is a winning strategy for the sub-game induced by W , and by assump-

tion we have that br(σ) does not use an edge in Esc(W ). We therefore have that

Valχ
′

G′(v) = ∞ for every vertex v in W . On the other hand, since we are considering

the positive cycle problem, we know that ValσG′(v) < ∞ for every vertex v in W .

This implies that σ is not an optimal strategy in G′. Theorem 3.6 implies that all

non-optimal strategies must have at least one switchable edge, and the only edges

that can be switchable in G′ are those chosen by χ. Therefore there is some edge

chosen by χ that is switchable for σ in G′ and as we have argued this also means

that the edge is switchable for σ in G.

6.2.2 Using Snares To Guide Strategy Improvement

In the previous sections, we have shown that the switchable back edges that strategy

improvement encounters are related to the snares that exist in the game. In this

section, we will show how snares can be used to guide strategy improvement. We

then propose a new kind of strategy improvement algorithm that remembers the

switchable back edges that it encounters in previous iterations, and then uses those

snares to guide itself in future iterations.

Proposition 6.14 implies that strategy improvement cannot terminate until

the current strategy is consistent with every snare in the game. It therefore seems

natural that strategy improvement algorithms should try to maintain consistency
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with the snares that are known to exist in the game. We will give a method by

which strategy improvement algorithms can achieve this.

We will give an efficient procedure FixSnare that takes a snare, and a strat-

egy σ that is inconsistent with that snare. It will return a strategy σ′ that is

consistent with the snare. Moreover, we will have σ ≺ σ′. This means that applying

FixSnare during strategy improvement does not break the property given in Theo-

rem 3.6, and therefore strategy improvement algorithms that use FixSnare are still

guaranteed to terminate.

To define FixSnare we will use Proposition 6.14. Recall that this proposition

implies that if a strategy σ is inconsistent with a snare (W,χ), then there is some

switchable edge (v, u) in σ such that χ(v) = u. Our procedure will actually be a

strategy improvement switching policy, which will choose to switch an edge that

is chosen by χ but not by the current strategy. As long as the current strategy

remains inconsistent with (W,χ) such an edge is guaranteed to exist, and the policy

terminates once the current strategy is consistent with the snare. This procedure is

shown as Algorithm 5.

Algorithm 5 FixSnare(σ, (W,χ))

while σ is inconsistent with (W,χ) do
(v,w) := Some edge where χ(v) = w and (v,w) is switchable in σ.
σ := σ[v 7→ u]

end while
return σ

Since FixSnare is implemented as a strategy improvement switching policy

that switches only switchable edges, Theorem 3.6 implies that the strategy that is

produced must be an improved strategy. The following proposition proves that the

procedure FixSnare does indeed produce a strategy that is consistent with the snare

that was given to it.

Proposition 6.15. Let σ be a strategy that is not consistent with a snare (W,χ).

Algorithm 5 will arrive at a strategy σ′ which is consistent with (W,χ) after at
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most |W | iterations.

Proof. By Proposition 6.14 we know that as long as the current strategy is not

consistent with the snare (W,χ) there must be an edge (v, u) with χ(v) = u that

is switchable in σ. The switching policy will always choose this edge, and will

terminate once the current strategy is consistent with the snare. Therefore in each

iteration the number of vertices upon which σ and χ differ decreases by 1. It follows

that after at most |W | iterations we will have σ(v) = χ(v) for every vertex v in W .

Since χ is a winning strategy for the sub-game induced by W we have that player

Min must choose some edge that leaves W to avoid losing once this strategy has

been reached.

We now define a strategy improvement algorithm that can exploit the prop-

erties of snares. This algorithm will record a snare for every switchable back edge

that it encounters during its execution. In each iteration it can either switch a sub-

set of switchable edges or run the procedure FixSnare on some recorded snare that

the current strategy is inconsistent with. This algorithm is shown in Algorithm 6.

We will describe the properties of the function Policy in the next section.

Algorithm 6 NonOblivious(σ)

S := ∅
while σ has a switchable edge do

S := S ∪ {Snareσ(v, u) : (v, u) is a switchable back edge in σ}
σ := Policy(σ, S)

end while
return σ

6.2.3 Switching Policies For Snare Based Strategy Improvement

Traditional strategy improvement algorithms require a switching policy to decide

which edges should be switched in each iteration, and our strategy improvement

algorithm requires a similar function. However in our setting, the switching policy

can decide to either switch a subset of switchable edges, or to run the procedure
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FixSnare for some snare that has been recorded. There are clearly many possible

switching policies for our algorithm, however in this section we will give one specific

method of adapting a switching policy from traditional strategy improvement for

use in our strategy improvement algorithm.

The switching policy for our algorithm will begin with a switching policy α

from traditional strategy improvement, such as the greedy policy, the optimal pol-

icy, or the random-facet policy. Whenever our switching policy chooses not to use

FixSnare, it will choose to switch the edges that would have been switched by α.

Our goal is to only apply FixSnare when doing so would provide a better increase

in valuation than the increase that would be obtained by applying α. The first part

of this section is concerned with formalizing this idea.

The goal of our switching policy will be to obtain the largest possible increase

in valuation in each step. This is a heuristic that has been used by traditional

switching policies, such as the optimal switching policy given by Schewe [Sch08]. It

is not difficult to see that strategy improvement must terminate after at most |V | ·
∑

v∈V |w(v)| iterations. This is because the valuation of some vertex must increase

by at least 1 in every iteration. From this we can see that strategy improvement to

performs poorly in the situations where the valuations of the vertices increase slowly.

In order for the algorithm to actually take |V |·∑v∈V |w(v)| iterations, each iteration

of the algorithm must increase the valuation of exactly one vertex by 1. Therefore,

by attempting to ensure a large increase in valuations, we are also attempting to

minimize the number of iterations that the algorithm takes.

Another potential justification for this heuristic is that it attempts to max-

imize the number of strategies that strategy improvement eliminates in each itera-

tion. Each run of strategy improvement produces a sequence of strategies that form

a chain in the ≺ ordering. When strategy improvement chooses a successor to a

strategy σi, it may only move to a strategy σi+1 with the property σi ≺ σi+1. If

there is a strategy χ such that σi ≺ χ, but either χ ≺ σi+1 or χ is incomparable
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with σi+1, then this strategy is eliminated. This is because strategy improvement

can never visit the strategy χ after it has visited the strategy σi+1. It is not difficult

to see that attempting to maximize the increase in valuation also maximizes the

number of strategies eliminated by each step.

We now show how the increase in valuation of a traditional switching policy α

can be determined. Since every iteration of strategy improvement takes polynomial

time, we can simply switch the edges and measure the difference between the current

strategy and the one that would be produced. Let σ be a strategy and let P be the

set of edges that are switchable in σ. The increase of applying α is defined to be:

PolicyIncrease(α, σ) =
∑

v∈V
(Valσ[α(P )](v) − Valσ(v)).

We now give a lower bound on the increase in valuation that an application

of FixSnare produces. Let (W,χ) be a snare and suppose that the current strategy σ

is inconsistent with this snare. Our lower bound is based on the fact that FixSnare

produces a strategy that is consistent with the snare. This means that Min’s best

response is not currently choosing an escape from the snare, but it will be forced to

do so after FixSnare has been applied. It is easy to see that forcing the best response

to use a different edge will cause an increase in valuation, since otherwise the best

response would already be using that edge. Therefore, we can use the increase in

valuation that will be obtained when Min is forced to use and escape. We define:

SnareIncreaseσ(W,χ) = min{(Valσ(y) + r(x)) − Valσ(x) : (x, y) ∈ Esc(W )}.

This expression gives the smallest possible increase in valuation that can happen

when Min is forced to use an edge in Esc(W ). We can prove that applying FixSnare

will cause an increase in valuation of at least this amount.

Proposition 6.16. Let σ be a strategy that is not consistent with a snare (W,χ),
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and let σ′ be the result of FixSnare(σ, (W,χ)). We have:

∑

v∈V
(Valσ

′

(v) − Valσ(v)) ≥ SnareIncreaseσ(W,χ).

Proof. We will prove this proposition by showing that there exists some vertex w

with the property Valσ
′

(w) − Valσ(w) ≥ SnareIncrease(W,χ). Since the procedure

FixSnare switches only switchable edges we have by Theorem 3.6 that Valσ
′

(v) −

Valσ(v) ≥ 0 for every vertex v. Therefore, this is sufficient to prove the proposition

because
∑

v∈V (Valσ
′

(v) − Valσ(v)) ≥ Valσ
′

(w) − Valσ(w).

Proposition 6.15 implies that σ′ is consistent with the snare (W,χ). By

the definition of snare consistency, this implies that br(σ′) must use some edge

(w, x) in Esc(W ). We therefore have that Valσ
′

(w) = Valσ
′

(x) + r(w). Since the

FixSnare procedure switches only switchable edges, we have by Theorem 3.6 that

Valσ
′

(x) ≥ Valσ(x). The increase at w is therefore:

Valσ
′

(w) − Valσ(w) = Valσ
′

(x) + r(w) − Valσ(w)

≥ Valσ(x) + r(w) − Valσ(w)

≥ SnareIncrease(W,χ).

We now have the tools necessary to construct our proposed augmentation

scheme, which is shown as Algorithm 7. The idea is to compare the increase obtained

by applying α and the increase obtained by applying FixSnare with the best snare

that has been previously recorded, and then to only apply FixSnare when it is

guaranteed to yield a larger increase in valuation.

6.3 Evaluation

Unfortunately, we have not been able to show good worst case upper bounds for the

running time of our augmented switching policies. In this section, we justify their
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Algorithm 7 Augment(α)(σ, S)

(W,χ) := argmax(X,µ)∈S SnareIncreaseσ(X,µ)
if PolicyIncrease(α, σ) > SnareIncreaseσ(W,χ) then

P := {(v, u) : (v, u) is switchable in σ}
σ := σ[α(P )]

else
σ := FixSnare(σ, (W,χ))

end if
return σ

usefulness by explaining how the augmentation helps traditional switching policies

to avoid the pathological behaviour that occurs when they are run on the examples

that have been used to show super-polynomial lower bounds.

6.3.1 Performance on Super Polynomial Time Examples

In this section, we analyse the examples that have been used to show super polyno-

mial time lower bounds for the greedy switching policy, the optimal switching policy,

and the random facet switching policy. The examples for the greedy and optimal

switching policies were given by Friedmann [Fri09], and the examples for the random

facet switching policy were given by Friedmann, Hansen, and Zwick [FHZ10]. We

will explain why the lower bounds do not apply to the augmented versions of these

switching policies.

We begin by describing the general themes that appear in both of the families

of examples. These themes also appear in the family of MDPs that we constructed

in Chapter 5. The examples use a structure to represent the state of a bit in a

binary counter. Figure 6.2 shows these structures. Each of these gadgets contains

exactly one state belonging to Min, and the state of the bit can be determined by

the strategy that Min uses in the best response at this state. The bit represented by

the gadget is a 1 for some strategy if and only if the best response to that strategy

chooses the edge that leaves the gadget.

In the example of size n, there are n instances of the appropriate gadget.
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Figure 6.2: Left: the gadget that represents a bit in Friedmann’s examples. Right:
the gadget that represents a bit in the examples of Friedmann, Hansen, and Zwick.

The connections between the gadgets are designed to force a switching policy to

take super-polynomial time. Friedmann’s examples force the greedy and optimal

switching policies to mimic a binary counter, which implies an exponential lower

bound. The examples of Friedmann, Hansen, and Zwick force the random facet

switching policy to mimic a randomized counter. This is a stochastic model that

bears some similarity to a binary counter, and it is known that a process that

mimics a randomized counter takes an expected sub-exponential number of steps to

terminate.

To see why our augmentation procedure is helpful, it suffices to note that

the bit gadgets are Max snares. It is not difficult to see that in both cases, if Max

does not choose to leave the gadget, then Min is forced to use the edge that leaves

the gadget. Furthermore, when a bit is set to 1, strategy improvement switches

a switchable back edge that corresponds to this snare. Therefore, in the iteration

immediately after a bit has been set to 1 for the first time, our augmentation pro-

cedure will have remembered the snare that corresponds to the gadget representing

that bit.
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We can now give a simple argument that shows that the augmented versions

of the greedy and optimal policies must terminate in polynomial time on Friedmann’s

examples. Suppose that the switching policy sets the i-th bit to 1 for the first time,

and that after doing so it sets every bit that is smaller than i to 0. When the bits

are set to 0, Min’s best response will no longer use the escape edge from the snare,

and it turns out that fixing these snares gives a much larger increase in valuation

than continuing to use the switching policy. Therefore, the augmentation procedure

will spend i − 1 iterations to fix these snares, and it will arrive at a strategy in

which the first i bits are 1. Clearly, this rules out the exponential behaviour, and

the algorithm must terminate after a quadratic number of steps. Similar arguments

can be made to show that the augmented version of random facet cannot take more

than a quadratic number of steps when it is applied to the examples of Friedmann,

Hansen, and Zwick.

6.3.2 Experimental Results

In order to test the effectiveness of the switching policies presented in this chapter

experimentally, we have implemented them. This section gives a report of the results

that we obtained using this implementation.

We began by testing our switching policies on the examples that have been

used to prove super-polynomial lower bounds. Table 6.3.2 shows the number of

iterations taken by the greedy switching policy and the augmented greedy switching

policy on the family of examples given by Friedmann. It can clearly be seen that

the greedy switching policy takes 9 · 2n − 9 iterations to solve the example of size n,

which matches the bound given by Friedmann in his paper. It can also be seen that

the augmented greedy switching policy takes a linear number of steps to solve the

examples. The number of iterations shown for the augmented version is the sum of

the iterations spent by the greedy switching policy, and the iterations used by the

procedure FixSnare.
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n |V | Iterations

Original Augmented

1 15 9 4
2 25 27 10
3 35 63 15
4 45 135 20
5 55 279 25
6 65 567 30
7 75 1143 35
8 85 2295 40
9 95 4599 45

10 105 9207 50

Table 6.1: The number of iterations taken by the greedy and augmented greedy
switching policies on Friedmann’s exponential time examples.

The reason why the augmented version takes a linear number of steps is that

the initial strategy contains one switchable back edge for each of the bit gadgets

in the game. Normally, greedy strategy improvement would not switch these edges

because they do not have the largest appeal. However, these switchable back edges

allow our augmented version to discover the snares that correspond to each of the

bit gadgets. This causes the augmentation procedure to immediately run FixSnare

for each of the bit gadgets in turn, until a strategy that represents a 1 for every bit

is produced. After this, the greedy switching policy spends a few iterations to find

a strategy that is optimal for every other vertex.

Table 6.2 shows the results that were obtained for the random facet switching

policy on the examples of Friedmann, Hansen, and Zwick. The random facet switch-

ing policy uses a randomized rule to pick the next edge that should be switched, and

therefore each run will take a different number of steps. We ran both the original

and augmented switching policies nine times for each example size, and the table

shows the smallest, largest, and average number of iterations that the switching

policies took. The averages are rounded to the nearest integer.

It is obvious that the augmented version vastly outperforms the original
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n |V | Original Augmented

Min Max Average Min Max Average

2 79 39 75 66 38 38 38
3 280 295 557 404 153 153 153
4 517 917 1383 1155 292 292 292
5 856 1729 3536 2644 495 495 495
6 1315 4170 7381 5205 774 774 774
7 1912 6374 21930 12299 1141 1141 1141
8 2185 10025 32867 16071 1304 1304 1304
9 2998 15265 85924 30070 1809 1809 1809

10 3331 30505 53560 42251 2010 2010 2010

Table 6.2: The number of iterations taken by random facet and augmented random
facet on the examples of Friedmann, Hansen, and Zwick.

switching policy. It is interesting to note that the augmented version of the switching

policy showed no variance in the number of iterations taken. This occurs due to

an effect that is similar to the one we observed in Friedmann’s examples. The

augmentation procedure chooses to use FixSnare in the very first step, and control

is not given to random facet until every bit gadget has been set to 1. There are still

some edges left for random facet to switch at this point, however the order in which

these edges are switched does not affect the running time of the switching policy.

Therefore, the randomized choice made by random facet does not lead to a variance

in the running time.

In addition to analysing the performance of our augmentation procedure on

the super-polynomial time examples, we are also interested in the behaviour of this

algorithm on more realistic inputs. Our implementation is capable of processing

examples from the PGSolver collection [FL10], and the next examples are taken

from that library. Parity games can be used as an algorithmic back end to µ-

calculus model checking. PGSolver includes a family of examples that correspond

to verification that an elevator system is fair. A fair elevator system is one that

always eventually arrives at a floor from which a request has been made. PGSolver
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n |V | Iterations

Original Augmented

FIFO

1 37 3 3
2 145 5 5
3 565 8 8
4 2689 13 13
5 15685 18 18
6 108337 25 25

LIFO

1 37 3 3
2 145 2 2
3 589 2 2
4 2833 2 2
5 16357 2 2
6 111457 2 2

Table 6.3: The number of iterations taken by the greedy and augmented greedy
switching policies on the elevator verification examples.

provides examples that correspond to two possible elevator systems: one that uses

a FIFO queue to store requests, and one that uses a LIFO queue. Clearly, the

system that uses a FIFO queue will satisfy the property, and the system that uses

a LIFO queue will not. The results of applying the greedy switching policy and the

augmented greedy switching policy are shown in Table 6.3.

It can clearly be seen that the augmented version of the switching policy

behaves in the same way as the original. The reason for this is that the augmented

version never chooses to run FixSnare, because using the original switching policy

gives a larger increase in valuation. One way of explaining this is that greedy

strategy improvement is too fast on typical examples for the augmentation to make

a difference. Since greedy strategy improvement takes only a handful of iterations

to find an optimal strategy, the algorithm cannot find a significant number snares

to run FixSnare on.
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6.4 Concluding Remarks

In this chapter, we have studied switching policies for strategy improvement. For

the strategy improvement algorithm that we have studied, we have shown that

switchable edges can be classified into two distinct types. In doing so, we exposed a

weakness of existing switching policies, because they do not take this classification

into account. Moreover, we showed how switching policies can use this knowledge in

future iterations by remembering snares, and we developed a snare based strategy

improvement algorithm.

We developed an augmentation scheme, that allows oblivious switching poli-

cies to take advantage of snares, and we showed that the augmented versions of

the greedy policy and the random facet policy terminate quickly on their super-

polynomial time examples. In doing so, we demonstrated that snares are the key

weakness that these examples exploit in order to force exponential time behaviour

upon these switching policies. This is because, when the policies are modified so

that they are aware of these structures, they no longer behave poorly.

There are a wide variety of questions that are raised by this work. Firstly,

we have the structure of snares in parity and mean-payoff games. Proposition 6.12

implies that every optimal strategy for one of these games must use an escape from

every snare that exists in the game. We therefore propose that a thorough and

complete understanding of how snares arise in a game would be useful in order to

devise a polynomial time algorithm that computes optimal strategies.

It is not currently clear how the snares in a game affect the difficulty of solving

that game. It is not difficult, for example, to construct a game in which there an

exponential number of Max snares: in a game in which every reward is positive

there will be a snare for every connected subset of vertices. However, computing the

zero-mean partition in a game where every reward is positive is obviously trivial.

Clearly, the first challenge is to give a clear formulation of how the structure of the
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snares in a given game affects the difficulty of solving it.

In our attempts to construct intelligent non-oblivious strategy improvement

algorithms we have continually had problems with examples in which Max and Min

snares overlap. By this we mean that the set of vertices that define the sub-games

of the snares have a non empty intersection. We therefore think that studying how

complex the overlapping of snares can be in a game may lead to further insight.

There are reasons to believe that these overlappings cannot be totally arbitrary,

since they arise from the structure of the game graph and the rewards assigned to

the vertices.

We have presented a switching policy that passively records the snares that

are discovered by a traditional switching policy, and then uses those snares when

doing so is guaranteed to lead to a larger increase in valuation than using a given

oblivious switching policy. While we have shown that this approach can clearly

outperform traditional strategy improvement in some cases, it does not appear to

immediately lead to a proof of polynomial time termination. It would be interesting

to find an exponential time example for the augmented versions of the greedy policy

or of the optimal policy. This may be significantly more difficult since it is no longer

possible to trick strategy improvement into making slow progress by forcing it to

repeatedly consider a small number of snares, which is the technique used by the

examples of Friedman, and the examples of Friedmann, Hansen, and Zwick.

There is no inherent reason why strategy improvement algorithms should

be obsessed with trying to increase valuations as much as possible in each itera-

tion. Friedmann’s exponential time example for the optimal switching policy demon-

strates that doing so in no way guarantees that the algorithm will always make good

progress. Our work uncovers an alternate objective that strategy improvement algo-

rithms can use to measure their progress. Strategy improvement algorithms could

actively try to discover the snares that exist in the game, or they could try and

maintain consistency with as many snares as possible, for example. We believe that
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there is much scope for intelligent snare based switching policies.

We have had some limited success in designing intelligent snare based strat-

egy improvement algorithms for parity games. We have developed a switching policy

which, when given a list of known snares in the game, either solves the game or finds

a snare that is not in the list of known snares. This gives the rather weak result of

a strategy improvement algorithm whose running time is polynomial in |V | and k,

where k is the number of Max snares that exist in the game. This is clearly unsat-

isfactory since we have already argued that k could be exponential in the number

of vertices. However, this is one example of how snares can be applied to obtain

new bounds for strategy improvement. As an aside, the techniques that we used to

obtain this algorithm do not generalize to mean-payoff games. Finding a way to ac-

complish this task for mean-payoff games is an obvious starting point for designing

intelligent snare based algorithms for this type of game.
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Chapter 7

Conclusion

In this thesis, we have studied strategy iteration algorithms for infinite games and

for Markov decision processes. In Chapter 4, we studied Lemke’s algorithm and the

Cottle-Dantzig algorithm, and showed how they behave when the input is an LCP

that is derived from an infinite game. We also showed a family of examples upon

which these algorithms take exponential time.

It is important to note that the lower bounds for Lemke’s algorithm only hold

for a specific choice of covering vector, and the lower bounds for the Cottle-Dantzig

algorithm only hold for a specific ordering over distinguished vertices. We do not

currently have a good understanding of how these parameters affect the running time

of their respective algorithms. It is possible that the choice of these parameters could

be as important as the choice of switching policy in strategy improvement. If this

were the case, then perhaps our lower bounds could be seen in a similar light to the

lower bounds given by Melekopoglou and Condon [MC94]: although they showed

an exponential lower bound for a simple switching policy, we have seen that there

is still potential for a switching policy that performs well.

In Chapter 5 we showed that Friedmann’s exponential upper bounds can

be extended to cover greedy strategy improvement for Markov decision processes.

An important part of this result was showing how the snares used by Friedmann’s
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examples could be simulated using randomness. Currently, our concept of a snare

only applies to mean-payoff games and parity games. It would be interesting to see

if these concepts could be generalised to produce non-oblivious strategy improve-

ment algorithms for Markov decision processes. Since Markov decision processes

are already known to be solvable in polynomial time, perhaps this model would

provide an easier starting point for proving good upper bounds on the running time

of non-oblivious strategy improvement switching policies.

In Chapter 6 we laid the foundations of non-oblivious strategy improvement,

and we provided a simple way of constructing a non-oblivious strategy improvement

policy. Although we showed that our switching policies perform well in certain

circumstances, we do not think that it will be easy to prove good upper bounds

on the running time of these switching policies. Instead, we propose that research

should be focused on the design of more advanced non-oblivious switching policies.

In order to construct these, we will require a detailed understanding of snares, and

how they arise in games. All of the concepts that we have introduced in this chapter

can also be applied to the discrete strategy improvement algorithm for parity games

given by Vöge and Jurdziński [VJ00], and we speculate that their algorithm may

provide a better basis for the construction of non-oblivious switching policies. This

is because their algorithm uses a discrete valuation, and it is likely to be easier to

prove upper bounds using this valuation. Indeed, the non-oblivious switching policy

for parity games that we mentioned in Section 6.4 makes use of a discrete valuation

that was inspired by Vöge and Jurdziński’s valuation.
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[ADD00] R. B. Ash and C. A. Doléans-Dade. Probability and Measure Theory.

Academic Press, 2000.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. The Annals of

Mathematics, 160(2):781–793, 2004.

[AM85] I. Adler and N. Megiddo. A simplex algorithm whose average number of

steps is bounded between two quadratic functions of the smaller dimension.

Journal of the ACM, 32(4):871–895, 1985.

[And09] D. Andersson. Extending Friedmann’s lower bound to the Hoffman-Karp

algorithm. Preprint, June 2009.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,

New Jersey, 1957.

[BV05] H. Björklund and S. Vorobyov. Combinatorial structure and randomized

subexponential algorithms for infinite games. Theoretical Computer Science,

349(3):347–360, 2005.

[BV07] H. Björklund and S. Vorobyov. A combinatorial strongly subexponential

strategy improvement algorithm for mean payoff games. Discrete Applied

Mathematics, 155(2):210–229, 2007.

207



[CDT09] X. Chen, X. Deng, and S. Teng. Settling the complexity of computing

two-player Nash equilibria. Journal of the ACM, 56:14:1–14:57, May 2009.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,

1999.

[Chu89] S. J. Chung. NP-Completeness of the linear complementarity problem.

Journal of Optimization Theory and Applications, 60(3):393–399, 1989.
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