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Abstract

Inferring regulatory relationships among many genes based on their temporal variation in transcript abundance has been a
popular research topic. Due to the nature of microarray experiments, classical tools for time series analysis lose power since
the number of variables far exceeds the number of the samples. In this paper, we describe some of the existing multivariate
inference techniques that are applicable to hundreds of variables and show the potential challenges for small-sample, large-
scale data. We propose a directed partial correlation (DPC) method as an efficient and effective solution to regulatory
network inference using these data. Specifically for genomic data, the proposed method is designed to deal with large-scale
datasets. It combines the efficiency of partial correlation for setting up network topology by testing conditional
independence, and the concept of Granger causality to assess topology change with induced interruptions. The idea is that
when a transcription factor is induced artificially within a gene network, the disruption of the network by the induction
signifies a genes role in transcriptional regulation. The benchmarking results using GeneNetWeaver, the simulator for the
DREAM challenges, provide strong evidence of the outstanding performance of the proposed DPC method. When applied
to real biological data, the inferred starch metabolism network in Arabidopsis reveals many biologically meaningful network
modules worthy of further investigation. These results collectively suggest DPC is a versatile tool for genomics research. The
R package DPC is available for download (http://code.google.com/p/dpcnet/).
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Introduction

In recent years various multivariate analysis techniques have

been developed for inferring causal relations among time series.

Although many of them have previously proved their power on

analysing economic and neurophysiological data, the unique

nature of gene expression time series, typically large-scale and

small-sample, poses a challenge to these techniques. On the other

hand, gene expression dynamics are important, since they directly

reveal the active components within the cell over time, indicating

gene regulatory relationships at the transcriptional level. There-

fore, a lot of time and effort has been spent on developing tools

that suit the need for expression time series analysis.

We define a causal relation as a target at the current time

having directed dependence on a regulator at the past time, when

conditioned on the rest of the regulators (Figure 1(a)). Inferring

causal relations between variables, when applied on gene

expression data, is equivalent to inferring transcriptional regula-

tory relationships. Collectively, the complete set of regulatory

relationships among genes leads to the reconstruction of gene

regulatory networks. The resulting networks or network modules

(Figure 1(b)), if evaluated together with biological knowledge,

should provide new insights into the dynamics and functioning of

the regulatory system (Figure 1(c)).

For example, a directed network inference approach, termed

the shrinkage vector autoregressive method (SVAR), was proposed

by Rhein et al. [1]. The class of shrinkage methods, which

effectively shrink the effects from some predictors to zero, can both

improve performance and reduce computational costs in many

instances. In particular, SVAR is designed specifically for gene

expression data to circumvent the small sample problem. Also,

dynamic Bayesian networks (DBNs) [2,3], a class of commonly

used graphical models, have also been applied in this research

area. Another recent advance in this area was the introduction of

the concept of Granger causality [4] which is well known in

economics for causal inference on time series data [5,6]. For

example, Zou et al. [5] compare DBNs and a method based on

Granger causality and conclude that while the method based on

Granger causality performs better with sufficiently large datasets

(thousands of samples), DBNs are more likely to perform well on

small-sample datasets (as is often the case in microarray

experiments).

In this paper, we describe some of the most commonly used

multivariate inference techniques for large-scale gene regulatory
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network reconstruction. We demonstrate that the proposed

directed partial correlation (DPC) algorithm is an efficient and

effective solution to causal/regulatory network inferences on

small-sample, large-scale gene expression data. The comprehen-

sive analysis of the experimental results not only reveals good

accuracy of the proposed DPC method in large-scale prediction,

but also gives much insight into all methods under evaluation.

In essence, partial correlation, which is able to test conditional

independence on multivariate Gaussian data, is used as the

mathematical foundation for establishing direct interactions

among genes. For example, variable b is highly correlated with c

because of the causal effects from a (Figure 2(a)). Pearson

correlation may give rise to many false positives as in Figure 2(c),

and Figure 2(b) may be probable for methods that do not account

for conditional independence. However, partial correlation tests

the correlation between two variables after the linear effects from

the rest of the data are removed, hence no relationship exists

between b and c after the effect from a is removed. (Note that

partial correlation only infers undirected relationships, unlike what

are shown in Figure 2.) Conditional independence, although by

itself is insufficient to denote a causal link, can be a powerful tool

for removing indirect relationships. Therefore, when inferring the

relationship between two gene expression profiles, the other

expression profiles can be taken into account to discriminate

between direct (Figure 2(a)) and indirect (Figure 2(b) and (c))

interactions.

Although a shrinkage estimate of partial correlation [7] is

computationally fast and well suited for small sample data analysis

[8], the inferred interactions are undirected. In an undirected

network, the role that a gene plays in different regulatory activities

is unknown. Therefore, based on partial correlation, we propose a

directed approach specifically targeted at small-sample gene

expression data. It is then compared with some of the existing

methods, DBNs, SVAR, and GC-VAR, to demonstrate its

effectiveness.

An immediate difficulty in accessing a network inference

method lies in the fact that current biological knowledge is far

from sufficient to provide a clear picture. A reasonable validation

process involves the use of real biological datasets, in addition to

synthetic datasets which provide both ground truth and unlimited

sample length. Under a broad set of assumptions, if datasets of

various sample sizes and number of variables can be produced, an

inference method then can be tested extensively, especially against

its sensitivity to dimensionality. We adopt this validation process,

but specifically note that, since most of the methods are

probabilistic, selecting cutoffs to represent one resulting network

may introduce false positives. Hence it is desirable to compare

different methods with their direct output – the network

probability matrix in which a coefficient denotes the probability

of interaction between two genes.

The rest of this paper is organised as follows. In the second

section, we present the technical details of the three existing

algorithms, together with the proposed algorithm for directed

regulatory network inference. Then benchmarking using datasets

of various sizes generated by GeneNetWeaver [9] is presented.

GeneNetWeaver provides simulations for DREAM (The Dialogue

for Reverse Engineering Assessments and Methods) [10] in silico

challenges. DREAM is a community effort to assess reverse

engineering algorithms. Benchmarking using GeneNetWeaver

Figure 1. DPC for large-scale transcriptional regulatory network inference. (a) DPC detects network topology changes with the addition of
a gene, the inclusion of a transcription factor should lead to dramatic changes of the connectivity of its downstream targets, (b) module discovery in
the large-scale DPC network by biclustering the network adjacency matrix, (c) functional analysis of the network modules reveals putative
transcription factors active under the biological condition.
doi:10.1371/journal.pone.0016835.g001

Figure 2. Possible inference results of the causal relations
among three variables. (a) True/direct interactions, (b) indirect
interaction inference, (c) bivariate inference.
doi:10.1371/journal.pone.0016835.g002
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datasets should provide strong evidence of the power of network

inference algorithm in a controlled environment. Specifically, we

discuss the statistical properties of transcriptional networks and

their impacts on the performance of an algorithm in the

comparative evaluation. In addition, we discuss model assump-

tions for different inference methods. The question is, to what

extent the model assumptions influence the confidence of the

inference outcome.

The experiments are designed to give a thorough evaluation of

the proposed algorithm and to compare the four algorithms in a

coherent manner. The reported results on simulated data indicate

superior performance of the proposed algorithm both in terms of

accuracy and efficiency. For the biological dataset, detailed

analysis of the results suggests that DPC uncovers more

biologically relevant regulatory relationships than the competing

method SVAR.

Methods

In this section, we hope to shed some light on the nature of

different inference techniques, their advantages and inherent

problems. First the autoregressive models are presented, they form

the theoretical ground for most of the existing methods in

comparison. Then we describe the technical details for the three

representative existing methods, with notes on their capabilities in

gene expression analysis. Next, the proposed DPC method is

formulated. These technical details provide us with a strong

foundation for later discussions of experimental results.

Existing multivariate time series inference methods
Vector autoregressive models (VAR). Suppose Y~

fyiji~1,2,:::,ng is a multivariate stationary time series consisting

of n variables and t time points. A p -order vector autoregressive

VAR(p) model specifies that the value of the i th variable at a

time point t, yi(t), is a linear combination of a constant/mean

value, the past of the multivariate time series, and a noise

component

Y(t)~BzA
Xp

u~1

Y(t{u)zj(t): ð1Þ

B is a constant matrix of length n. j consists of vectors of

residuals fjiji~1:::ng, each assumed to be zero mean noise with

variance s2
i . A is the n|n coefficient matrix representing the

dynamic structure. When A is a constant matrix, this model

assumes homogeneity across time. A special case of the p -order

VAR process, the first-order autoregressive model (VAR(1)), is

often considered when analysing short microarray time series [1,3]

Y(t)~BzAY(t{1)zj(t): ð2Þ

Granger causality inference method based on VAR model

(GC-VAR). Time series a is said to Granger cause time series b if

the forecast of b has incremental predictive power with the

knowledge of the past state of a [4]. For the VAR models, a widely

accepted measure of the predictive power of a on b is the variance

of the residuals as a result of model fitting [4,11]. Informally, the

method measures the influence of one time series on another by

checking if the prediction of the response can be improved by

incorporating the knowledge of the past of a predictor. One of the

first attempts for gene expression data analysis is a bivariate model

that uses Granger causality to infer relationships between pairs of

variables without taking into account other variables [12]. For

comparative purposes, we implemented a multivariate model,

since the bivariate model could lead to false positive edges such as

the ones in Figure 2(c), compared with the true network

(Figure 2(a)).

In the multivariate case. Let Y{ symbolise the past state of Y,

Y{~fY(u)ju~1,:::,t{1g, and let y{
i symbolise the past of

variable yi. Based on Granger causality, the prediction power of

one variable yi on the other variable yj , i=j, can be measured by

gyi?yj
~ln

s2
yj jY{

s2
yj jY{

=i

0
@

1
A: ð3Þ

Symbol ‘‘j’’ denotes operation ‘‘condition on’’ and symbol ‘‘=’’

denotes ‘‘without’’. syj jY{ is the variance of the residual j(t) in the

VAR(1) model for yj conditioned on the past of all variables Y{. It

is compared to syj jY{
=i

which is conditioned on the past of all

variables but yi, Y{
=i . This method based on Granger Causality

and the VAR model directly measures the prediction power of yi

for yj , as a result of the reduction of prediction errors by

incorporating yi into the VAR(1) model for yj . In other words, if

introducing yi significantly reduces the variance of the prediction

error of yj , then a variable yi Granger causes the variable yj . Since

it requires fitting the autoregressive model with all variables and

their past states, GC-VAR can only be applied to data satisfying:

twn(pz1), indicating its limited potential in gene expression

analysis.

Shrinkage VAR method (SVAR). Although the VAR model

has been widely used in economics and neuroscience, it has its own

limitations when small samples are encountered. An effective

shrinkage estimation procedure was developed for learning the

VAR models from small sample data [1]. The idea is that a

shrinkage estimate can replace the covariance matrix for the joint

matrix of both the present state and the past state(s), which then

leads to the computation for regression coefficients. The basic

procedure consists of first computing the shrinkage estimates of

covariance matrices to obtain regression coefficients. Then instead

of using the regression coefficients directly, the corresponding

partial correlation coefficients are statistically tested. Significant

coefficients are then selected using False Discovery Rate (FDR)

[13] to be included in the reconstructed network.

The covariance matrix would otherwise be ill-conditioned,

given the large number of variables (2|n) and short time series

t,t%n. Let W denote the joint matrix of the multivariate Y ’s

present state (Yz~fY(u)ju~2,:::,tg) and past state with a time

lag of 1 time point (Y{~fY(u)ju~1,:::,t{1g), W~½YzY{�.
Assuming that the data has zero mean, an unbiased estimate of the

covariance matrix for W is

cov(W)~
1

t{1
½YzY{�’½YzY{�

~
1

t{1

Yz’Yz Yz’Y{

Y{’Yz Y{’Y{

" #
:

ð4Þ

Note that this matrix contains the sub-matrices Y{’Y{ and

Y{’Yz. Meanwhile, the ordinary least squares (OLS) estimation

[14] for the regression coefficient A in the VAR(1) model (Eq. (2))

is:

Directed Partial Correlation
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ÂA(1)~(Y{’Y{){1Y{’Yz: ð5Þ

Therefore, the shrinkage estimation of cov(W) will lead to the

estimated coefficient matrix ÂA. Then the partial correlation

coefficients q can be computed from ÂA and the FDR is used to

select significant coefficients. With large numbers of variables, this

method gave good results in the comparative simulation study

using simulated autoregressive data in the original paper [1].

Dynamic Bayesian Networks (DBNs). DBNs are graphical

models trained to maximise the joint probability of a set of

observed data and their conditional dependencies. DBNs have

been routinely applied to data, mainly long time series, to provide

information about system dynamics. However, a major concern

about DBNs is their inefficiency in large-scale prediction, i.e., with

the presence of many variables.

DBNs implementations are usually designed for data with

hundreds or thousands of samples. High costs of microarray

experiments prohibit most of the techniques from exploring small

sample gene expression data. In this paper, we use the

implementation of the R package G1DBN [3], which is based

on a trivariate AR(1) model:

Y(1)*N (m1,
X

1
),

Y(t)~BzAY(t{1)ze(t),

e(t)*N (0,s2),

ð6Þ

with predefined m1,
P

1, and s2. This method measures the

conditional dependence between two variables yi,yj by testing the

null hypothesis H
i,j,k
0 : 00aijjk~000 on every third variable

fykjk=i,jg. Then, a score is assigned to the potential edge

yi?yj corresponding to the maximum p -values from the tests

pmax(yi?yj). This means the algorithm has a computational

complexity of O(n3). The computation of this method may be too

heavy for data with more than a hundred variables.

Proposed directed partial correlation inference method
(DPC)

The shrinkage estimate for partial correlation in [7] was

formulated specifically for the inference from small sample gene

expression data. Although partial correlation is undoubtedly fast in

computation and suitable for small sample problem, it can only

infer undirected networks. Another problem is that variable time

lag cannot be taken into account as in a VAR(1) model. We

introduce the notion of directed partial correlation (DPC) for fast

inference of directed gene networks. The idea is similar to the idea

behind Granger causality – a variable a has causal influence on

another variable b, if the removal/addition of c has a large impact

on the prediction of b. While GC-VAR measures this impact by

comparing the residuals before and after adding a to the

prediction of b, DPC measures it by examining the correlation

coefficients.

Zero-order directed partial correlation DPC(0). Directed

partial correlation aims to investigate the effect of including a

variable in the prediction of another gene, i.e. the change of

dependencies among other genes. Let QY of size n|n denote the

partial correlation matrix for Y. Each element q(i,jjY) in QY is the

partial correlation between yi and yj given Y, i~1,:::
n,j~1,:::,n,i=j, i.e., the correlation between yi and yj after the

linear effects of the rest of the variables are removed. This can be

formulated as q(i, jjY). The removal of linear effects from others

means that the resulting partial correlation indicates the direct

relationship between two variables. Figure 3(a) shows q(i, kjY),
k=i, j, which denotes the partial correlation between yi and yk

when effects from all others, including yj , are removed.

However, the conditional dependence indicated by q(i, jjY) is

undirected. To investigate the influence yj has on yi, we propose

the following. If we delete the variable yj from Y, the partial

correlation between yi and another variable yk,k=i, j is denoted

as q(i, kjY=j) in the matrix QY=j
. As shown in Figure 3(b), in the

prediction of the relationship between yi and any other variable

yk, k=i, j, q(i, kjY=j) no longer remove the effect from yj , which

means yj no longer take part in the prediction of yi. Consequently,

there are two groups of statistics related to the prediction of yi,

each corresponding to coefficients before and after the removal of

yj . To be more specific, the first group is the i th row in QY

without the i th and j th element, g1~fq(i, jjY),j=ig, shown in

dark green in Figure 3(a). The second group corresponding to the

dark green elements in Figure 3(b) is the i th row in QY=j
without

the i th element, g2~fq(i, kjY=j),j=i, kg. Both groups have the

length of n{2. The effect yj has on the prediction of yi is defined

as:

e(0)
yj?yi

~t-test g1,g2ð Þ

~t-test fq(i, kjY)jk=i, jg,fq(i,kjY=j)jk=i, jg
� �

:
ð7Þ

We use a paired t-test on the two groups to see if there is an effect

on the prediction of other variables with the removal of variable

yj . The null hypothesis is that there is no significant difference

between the two groups, before and after the removal.

In summary, we take advantage of the fact that in computing

partial correlation between two variables, all effects from other

variables are removed. In other words, yj takes part in the

predictions of yi with all other variables yk. We measure yj ’s

influence on yi by comparing partial correlation coefficients

related to yi before and after the deletion of yj , since yj does not

take part in the prediction of yi after the deletion.

p -order directed partial correlation DPC(p). A key

feature of the proposed DPC method is that it can be easily

extended to include time lags. In the following discussion, we focus

on first-order DPC (p = 1) for the sake of simplicity, although the

DPC algorithm can be generalized to any reasonable order p.

Figure 3. Partial correlation matrices before and after deleting
yj . To predict yj ’s influence on yi , two groups of partial correlation
coefficients from two matrices (coloured dark green) are tested. (a)
Coefficients in g1 , (b) Coefficients in g2 .
doi:10.1371/journal.pone.0016835.g003
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Note that p needs to be carefully chosen according to the

microarray experimental design in order to capture the regulatory

events.

Let W be the joint matrix of the present state and the past state

of data, i.e., W~½YzY{�. To compute the correlation matrix for

W, we note that the covariance matrix of W is ill-conditioned for

small sample data and therefore not suitable. We use the shrinkage

estimate method in Eq. (4) to compute the partial correlation

matrix Q
(1)
Y for W

Q
(1)
Y ~

Qzz Qz{

Q{z Q{{

� �
: ð8Þ

Hence each element in the sub-matrix Qzz, q(1)(i, j) with

i~1:::n, j~1:::n, stands for the partial correlation between yi and

yj , when the effects of the present states of other variables and the

past states of all variables are removed. If a variable yj is deleted

from the joint matrix W, the corresponding partial correlation

matrix Q
(1)
Y=j

has an equivalent meaning as described in the zero-

order model, i.e. the effect of yj is not taken into account in the

prediction of the other variables. The first-order directed partial

correlation from yj to yi can be formulated as

e(1)
yk?yi

~t-test fq(1)(i, jjY)jj=ig,fq((1)i, kjY=j)jk=i, kg
� �

: ð9Þ

Note that although the partial correlation matrix is of size 2n|2n,

only the sub-matrix Qzz is used for computing e(1). The

probability of the directed interaction is indicated by the resultant

p -values. Using FDR, adjusted p -values are selected in

accordance with confidence levels, for example, 2% of FDR

means accepting all tests with adjusted p -values ƒ0:02 as

significant. The algorithmic pipeline is described as in Figure.4.

Conceptually, DPC tests the effect of one variable on the

predictions of another, whist taking into account all the rest of the

variables at the same time. Hence it is able to monitor the dynamic

process within reasonable computation time. It avoids linear

model fitting and thus is more efficient and less constrained by the

sample size. Note that a major difference between DPC and other

methods is, while others inspect the regression coefficients of full

linear models, DPC takes advantage of the concept of Granger

causality, based on a computationally fast method.

Results

Experiments on synthetic datasets
Since the ground truth is unknown for real expression data,

comparisons of performance are first conducted on synthetic data

and then on biological data.

Previously, SVAR and DBNs were experimentally proved to be

useful using simulated data from autoregressive models [1,3]. These

methods are based on the autoregressive model and their

performance on other types of data is still not clear. When the

data satisfies the model assumption, we can expect the correspond-

ing technique to perform well. Therefore, an important question

pertains to which assumption best describes gene expression data. In

this section, we aimed to investigate the following question: how well

the inference methods meet the requirements of microarray data?

The synthetic data generator GeneNetWeaver uses topologies

generated based on real biological networks, therefore allowing

good approximation of the statistical properties of real biological

networks. It can sample from these transcriptional regulatory

networks, and produce corresponding microarray datasets param-

eterized by the network topology, size of the network/number of

genes, and type of experimental noise etc.

Network topology. Network topologies are generated by

selecting sub-networks from a previously described Ecoli network.

Neighbouring genes are selected randomly among top 20% genes

based on connectivity. This is to introduce stochasticity into gene

selection. In this way, the resulting sub-network preserves features

of scale-free networks such as modularity but it also allows the

possibility of including small hubs and their targets. Consider, that

one may want to model how the hub genes interact with their

targets, but not all of the targets can be selected during the variable

selection process. Therefore, sub-network generation by randomly

selecting genes among the top 20% may represent a realistic

situation in gene network analysis.

Kinetic model. After the topologies of the synthetic networks

are sub-sampled from the E. coli transcriptional network, kinetic

equations are selected for each gene and its regulators without

Figure 4. The algorithmic pipeline for first-order DPC. By avoiding linear model fitting it is thus more efficient and less constrained by the
sample size.
doi:10.1371/journal.pone.0016835.g004
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removing the autoregulatory relations. Different types of

perturbations are applied to the networks, including

multifactorial, dual knockout, knockout, and knockdown. We

choose to model the gene network with ordinary differential

equations. With this system the perturbations are applied at t~0
and the statistical properties of the network do not depend on

time.

Experimental design. In each run, we apply a method in

comparison to a single gene expression time series dataset, e.g., a

dataset with multifactorial perturbation, 500 genes, and 21 time

points. In the DREAM challenge a team uses datasets of all four

types of perturbations and multiple simulations to collectively infer

a network. The DPC algorithm however, was formulated to deal

with large numbers of genes and few time points. We found this

situation underrepresented in the DREAM challenge datasets. For

this reason we chose to use the DREAM challenge data simulator

(GeneNetWeaver) to provide a more appropriate dataset for the

assessment of this method. The simulations in this paper represent

even more difficult problems for the inference methods.

Specifically, for knockout and knockdown experiments, a

simulation may see the change of expression profiles of very few

genes while others remain constant. For this to be a standalone

test, we then select the datasets based on the variance in the

dataset and only use datasets with high variations.

Parametrizing the simulations. We simulate networks of

size 50, 100, 200, and 500 genes with four types of perturbations.

The times series are all simulated from time point 1 to 100, but

measured with 21 time points or 100 time points to form two

datasets with different time series lengths. Experimental noise is

modeled by simulating noise in microarrays, which is a mix of

normal and log normal noise. Then the data is normalized after

the experimental noise is added. With 4 network sizes, 4 types of

perturbations, 2 time series lengths, and 5 simulations for each

setup, there are altogether 4|4|2|5~160 datasets.

Assessment metric. Four multivariate time series inference

algorithms as described above are evaluated in this experiment.

Their ways of inferring the final network vary and each requires

fine tuning for the parameters, which could be subjective for large-

scale experiments (altogether 142 synthetic datasets are used). To

eliminate any subjective elements and enable a fair comparison,

we decided to compare directly on their preliminary output, the

network probability matrices. For clarity, the related symbols for

each probability matrix in the algorithms’ technical details are

listed in Table 1.

For the inferred network probability matrices, we compute their

true positives (TP), false positives (FP), true negatives (TN), and

false negatives (FN) at a given threshold. This procedure was

repeated 500 times for each test statistic and variance scenario to

obtain Receiver Operator Characteristic (ROC) curves [15,16] for

describing the dependence of true positive rate TPR~

TP=(TPzFN) and false positive rate FPR~TN=(TNzFP).
ROC curves provide a straightforward graphical representation of

the performance of the algorithms. They are especially useful in

comparisons by using many thresholds. As a summary metric for

ROC, the area under the ROC curve (AUC), as its name

indicates, measures the average accuracy of the prediction.

Table 1. Average consumed time of the four multivariate
time series inference algorithms on the 100 time point
datasets.

Method DPC(1) SVAR GC-VAR DBNs

Score matrix e(1) jrj g pmax

Average time (second)

50|100 3.275 0.545 144.247 256.684

100|100 12.887 1.856 N/A 2065.752

200|100 59.164 8.112 N/A N/A

500|100 626.075 81.646 N/A N/A

doi:10.1371/journal.pone.0016835.t001

Figure 5. Performance scores of two network inference
algorithms (black/grey: DPC, red/pink: SVAR) when tested on
datasets with 50, 100, 200, and 500 genes respectively and 21
time points. The symbol denotes the identity of the five simulations,
and the lines denote the average of simulation results. (a) AUC values,
(b) F-score, (c) TPR at FPR of 0.2.
doi:10.1371/journal.pone.0016835.g005
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While AUC provides a quantitative measurement on the

average performance for a method, maximum F-score [17]

evaluates each method at its point of optimum performance. F-

score is the harmonic mean of precision (TP= TPzFPð Þ) and

recall (TP=(TPzFN)). In the implementation we use a balanced

harmonic mean of precision and recall. As a composite measure,

the F-score penalises algorithms with higher specificity and

rewards algorithms with higher sensitivity.

Apart from these metrics, we also base our evaluation on the

consumed computation time and the true positive rate at a 0.2

false positive rate, since usually a low false positive rate is

preferred. All three metrics are used for assessment in the

simulation experiments.

Experimental results. For DPC and SVAR, we plot their

experimental results together so that they can be compared with

respect to individual simulations. Then the average results on part

of the datasets for each of the four algorithms are shown in

separate plots. This is because GC-VAR can only be applied on

datasets with 100 time points and 50 genes, since it requires long

time series (t&n) to fit linear models. Because of the high

computational costs of DBNs, we only compute its results for

networks of size 50 and 100 for both the 21 time point and 100

time points datasets.

With 21 time points, quantitative measurements of performance

including AUC values, and F scores and true positive rates at 0.2

false positive rate for SVAR and DPC are provided in Figure 5. It

is easy to observe a descent in their performances as network size

increases. This is expected for difficult inference tasks with low

signal-to-noise ratio. In these simulations, the true signal as a result

of the initialization of perturbation, often on a single gene, is easily

buried among the experimental noise. Nevertheless, in comparison

DPC shows superior performance in the results. Following, the

results as the average of the outcome of simulations of same setting

Figure 6 compares the performance of DPC, SVAR and DBN,

with error bars showing the range of results. Here again, DPC

achieves the best results.

With 100 time points, DPC also outperforms SVAR in terms of

AUC, F-scores, and the true positive rates at 0.2 false positive rate

(Figure 7). Comparing results from the 21 time point experiments

(Figure 5) and the results from the 100 time points experiments

(Figure 7), the influence of sample sizes on the performance can

be observed. This conforms to current theory and is reassuring.

Then measurements of the performance of all four methods on

part of the 100 time point datasets is shown in Figure 8. From the

average result, GC-VAR and DBN only outperform SVAR for

the 50 gene network, while DPC is the best performer. The

average consumed time for the 100 time point datasets is given in

Table 1 on a Mac Pro (2|2:26 GHz). For the 21 time points

datasets consumed time is similar with the results in this table and

hence is not shown. From this table, a noticeable advantage of

DPC can be seen in its efficiency, although SVAR is the most

efficient.

A note on the performance. Several state-of-the-art

methods have also been tested but showed poor performance on

the GNW benchmarks (data not shown). This may be because

some perturbations have only few downstream effects. When the

regulators are not perturbed, the real relationships between them

and their downstream targets cannot be found. Effectively, a

significant proportion of the variation in the data is a result of

experimental noise. Hence for some inference methods, it is

difficult pick up the true signals amidst noise.

In DREAM an in silico challenge provides four perturbations

each of 10 simulations to infer a network. However, for

benchmarking in this paper we use a single simulation for one

type of perturbation as input. As a result, better performance in

DREAM can be expected for the methods in comparison.

Nevertheless, for comparative purposes, these simulation assess-

ments undoubtedly yield benchmarking results on a fair ground,

i.e. not biased towards any model assumptions.

Experiments on a biological dataset
To test these methods’ performance on biological data, a

Arabidopsis L. Heynth dataset [18] of 800 genes and 22 time points is

used. The data is collected from an experiment investigating the

impact of the diurnal cycle of the starch metabolism in the leaves

of Arabidopsis. Two replicates consist of measurements at 11 time

Figure 6. Performance scores of three network inference algorithms when tested on 50 and 100 gene networks with 21 time points.
(a) AUC values, (b) F-score, (c) TPR at FPR of 0.2.
doi:10.1371/journal.pone.0016835.g006
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points of uneven time intervals to capture the periods immediately

after the transitions from dark (light) to light (dark). Samples were

firstly taken at the end of light period, then at 1, 2, 4, 8, and 12 hr

of darkness and at 1, 2, 4, 8, and 12 hr of light. During the day,

starch is synthesised to serve as an intermediate store of carbon

fixed during photosynthesis when rates of production exceed the

export rates of the chloroplasts. During the night, starch formed

and stored within the chloroplasts during the day is metabolized to

maltose and glucose and exported from the chloroplast. These

exported breakdown products are then used as sources of energy

for plant growth and metabolism as well as being sent to sink

tissues where starch can be re-synthesised for more long term

storage in specialised storage organelles called Amyloplasts (for a

detailed review see [19]).

For the assessment of our validation scheme, a subset of 800

genes is used which was previously selected using a periodicity test

[20] and was first studied by Rhein and Strimmer for gene

network inference [1].

Given the sample size and network size, GC-VAR and DBN

cannot be applied to this dataset. DPC and SVAR are applied to

produce resulting probability matrices. We compare the proba-

bility matrices by using two validation methods as below. As the

length of time series is short, we choose p~0 for DPC.

Validation with SAMBA for extracting network

modules. A biclustering method is adopted as part of the

validation process. Biclustering aims to find a group of variables

that share similar data patterns under a subset of conditions. When

applied to expression data, it searches for a group of genes with

similar expression patterns under a subset of conditions/

treatments. But when applied to probability matrices that

indicate regulatory interactions, as described previously in [21],

it searches for a subset of genes with similar regulatory patterns

whilst under the regulatory influence of a second subset of genes,

as illustrated in Figure 9. In other words, biclustering can be

applied to probability matrices to get statistically significant sub-

matrices, which are equivalent to network modules in our case.

With probabilistic modeling and graph theory techniques,

SAMBA [22] identifies subsets of rows of a matrix that jointly

respond in a similar manner across subsets of columns. The

biclusters are allowed to be overlapped. In our experimental

design, each value in the probability matrices indicates whether a

gene corresponding to a row regulates a gene in a column. The

resulting biclusters of the probability matrix correspond to

regulatory network modules, with rows corresponding to groups

of regulatory genes regulating sets of target genes in the columns.

Therefore SAMBA provides an efficient way of validating network

inference algorithms. One main advantage of this method is that,

by allowing overlapping modules/biclusters, regulators and targets

are allowed to appear in different network modules. This satisfies

the biological assumption that genes may have multiple functions

and can be involved in different pathways. Also, it allows multiple

regulators to exert their potential regulatory influences in

hierarchical or co-dependant manners on particular subset of

targets.

247 biclusters were found for the DPC matrix with quality

scores of 88–2277 (mean = 260.8, sd = 219.7), while 257 biclusters

were found for SVAR with quality scores of 87–940

(mean = 233.5, sd = 102.8). GO [23] and promoter enrichment

were computed for each of the biclusters, as listed in Table S1 and

S2 for DPC and SVAR. In summary, the DPC biclusters are

enriched with 47 GO terms, while the SVAR biclusters are

enriched with 24 GO terms (corrected pƒ0:05). The fact that

DPC presents more GO terms for its biclusters than SVAR

suggests that DPC is inferring more fundamentally accurate

regulatory interactions, which in turn results in biclusters/

regulatory modules of targets which are more likely to be co-

regulated members of the same biological process or pathway.

Several GOs (chloroplast - GO:0009507; plastid - GO:0009536;

organelle envelope - GO:0031967; organelle membrane -

GO:0031090; organelle subcompartment - GO:0031984; and

photosynthesis - GO:0015979) identified by both DPC and SVAR

suggest that the biclusters represent modules of genes with

potential roles in diurnal starch metabolism. In addition, one

GO term identified in two biclusters from the DPC results and not

SVAR is starch metabolic process - GO:0005982. This is a highly

informative GO considering the biological process under investi-

Figure 7. Performance scores of two network inference
algorithms (black/grey: DPC, red/pink: SVAR) when tested on
networks with 50, 100, 200, and 500 genes respectively and
100 time points. (a) AUC values, (b) F-score, (c) TPR at FPR of 0.2.
doi:10.1371/journal.pone.0016835.g007
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gation [18], suggesting that perhaps DPC is uncovering more

biologically relevant gene-gene associations from the data.

Enrichment analysis is performed for transcription factor

binding elements in target promotors. 60 cases of promotor

enrichment were observed for DPC biclusters while 44 cases were

identified in the SVAR biclusters (pƒ0:001). Lists of promotor

enrichments are provided in Table S3 and S4 for DPC and

SVAR. Again, in spite of the observation that SVAR produced

more biclusters than DPC, the results suggest that DPC gives rise

to more intuitive groupings of genes, as we would expect co-

regulated genes to share common binding motifs in their

promotors, where transcription factors that are involved in their

co-ordinated regulation can bind.

An interesting starch deregulation bicluster. More

interestingly, one bicluster of the DPC network was found to have

several members of the starch degradation pathway active in the

chloroplasts in the dark. This bicluster (number 190 as shown in

Figure 10), has about 27 members where 5 of these (Figure 10(a)) are

known to be involved in starch degradation and two more with

potential involvement in this process due to familial relationships with

known components of this pathway [19]. Of the 48 genes investigated

in [18], 10 of these were included in this 800-gene dataset.

In particular, AMY3 (At1g69830), ISA3 (At4g09020), PHS1 (At

4g29320) and SEX1/GWD1 (At1g10760) are known to be part of

the starch degradation pathway operating in chloroplasts [19]. In

addition, two other members PHS2 (At3g46970) and DPE2

(AT2g40840) with their paralogous relationships to the pathway

described above also present interesting information regarding

their potential co-ordinated regulation with the four chloroplast

components (Figure 10(c)). Furthermore, this cluster also contains

COR15B (At2g42530) while its homologue COR15A (At2g42540)

is a suggested regulator of the bi-cluster. Both proteins are induced

by cold stress and abscisic acid treatment [24], while COR15A has

been shown to be present in chloroplasts [25]. Another proposed

regulator of this bi-cluster is the uncharacterised MYB transcrip-

tion factor (At1g58220) which is interesting considering several

MYBs have been implicated in regulating photosynthesis under

stress [26].

Figure 8. Performance scores of four network inference algorithms when tested on datasets of tested on 50 and 100 gene networks
with 100 time points. (a) AUC values, (b) F-score, (c) TPR at FPR of 0.2.
doi:10.1371/journal.pone.0016835.g008

Figure 9. Biclustering a network probability matrix is equivalent to pulling out network modules. Because coefficients in the biclusters
are highly correlated, it means genes in rows and columns share similar regulatory patterns.
doi:10.1371/journal.pone.0016835.g009
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The tight grouping of these genes within the large background

subset of genes indicates that DPC appears to be identifying target

genes which are potentially co-regulated and involved in the same

biological pathway. A larger bicluster (number 222), containing 43

members identified within the SVAR data was also found to

contain 3 of the 5 known genes and the two putative pathway

members identified in the DPC bicluster number 190. From the

validation results it appears that DPC generates more biologically

meaningful results than SVAR.

One of the significantly enriched motifs in bicluster 190 one

motif M00958 (Figure 10(b)) suggests that ABI4, a transcription

factor known to influence photosynthesis and starch regulation in

response to ABA and sugar signalling [27] may play and important

regulatory role. There is also a further interesting level of

correlation given that the proposed target COR15B and the

proposed regulator COR15A in this bicluster are both transcrip-

tionally induced following exogenous application of ABA [24].

Validation with transcription regulators as network

hubs. Besides analysing the biclustering results, we also looked

directly for known regulators. 41 of the 800 genes are known

transcription factors in Arabidopsis. Since a row of coefficients in

the probability matrix represents probabilities of one gene

regulating other genes, the sum of this row should be

proportional to the probability of this gene being a regulator. A

Welch-Satterthwaite test [28] is performed to compare two groups

with the alternative hypothesis that the mean of one group is

greater than the other: the rows of the probability matrix for the

41 transcription factors is compared against all of the probability

matrix. The more significantly different the two groups are, the

better the probability matrix differentiates between known

transcription factors and other genes. Therefore, the method

that better captures the underlying network structure is the one

with the more significant result from this t-test. The resulting p-

values are 1.0e-14 for SVAR and 2.2e-16 for DPC, indicating that

DPC is better in capturing the network structure with respect to

these hubs.

The 41 transcription factors are then tested individually for their

roles in the probability matrices of DPC and SVAR in the same

Figure 10. New information can be derived from a bicluster 190 combining biological knowledge and DPC network. (a) Heatmap of
the bicluster number 190 of the DPC network probability matrix. (b) Significantly enriched motifs in this bicluster. (c) A visual representation of the
interactions predicted by DPC(1) between the members of bicluster 190. While statistically not the strongest interactions resolved within the 800
gene set, the biological association of the co-regulated targets none the less indicates that the biclustering has helped to reveal weaker but far more
pertinent signals of potential co-ordinated regulation. These relationships would otherwise have been lost if a rudimentary ranking of the strengths
of the interactions had been used instead.
doi:10.1371/journal.pone.0016835.g010
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way. Results of the test are provided in Table S5 and S6 for DPC

and SVAR, respectively. The well known circadian regulators LHY

and CCA1 [29,30] are regarded as transcription factors by DPC

(both have corresponding p~0). Test results for SVAR are 0.358

and 0.927, respectively. Further, promoter analysis in the region of

21,000 to 200 bp of the downstream targets is performed for both

of the potential hubs. To conduct the comparison on a fair ground,

we take the 30 most significantly interacting genes with LHY and

CCA1 in both cases for SVAR and DPC. For SVAR, promoters of

putative CCA1 targets are enriched with 7 motifs with p-values

ranging from 1.2E-14 to 9.3E-12. Promoters of putative LHY

targets are enriched with 10 motifs with p-values from 1.3E-14 to

7.6E-12. For DPC, promoters of putative CCA1 targets are

enriched with 6 motifs with p-values ranging from 1.4E-14 to

7.5E-12, and promoters of putative LHY targets are enriched with

10 motifs with p-values from 1.0E-15 to 4.7E-12. In particular, the

motif with p-value 1.0E-15 in promoters of putative LHY targets

(Figure S1), as determined by DPC, is close to a known motif

HSF(M00028). As both of these methods identified similar numbers

of motifs no real conclusion can be drawn as to which method is

superior in this respect, as both methods may have uncovered

equally valid binding motifs. Here we are also limited by the

number of biologically determined motifs for which there exist

probability weight matrices. Such that the presence of the known

motif HSF(M00028) should not mitigate the importance of the

other motifs which are equally plausible until otherwise experimen-

tally disproved. Nonetheless the above analyses of the biological

dataset have presented many interesting possibilities concerning the

transcriptional regulation of diurnal starch metabolism which

warrant further experimental investigation. Overall, DPC appears

to reveal more biologically intuitive and plausible regulatory

scenarios.

Discussion

This paper reviews some recent advances in multivariate time

series inference of gene expression data. It then reports a new

method, Directed Partial Correlation (DPC), for efficient and

effective large-scale network inference. Experiments on both

simulated and biological data are designed to investigate the

properties of the proposed method and existing methods.

From the experimental results, superior performance of the

proposed DPC method is observed when compared to three other

inference methods. When analyzing simulated datasets, DPC can

pick up the true signal and reveal the underlying relationships.

SVAR is the most efficient, but less effective than DPC in most of

the cases. For the biological dataset, DPC appears to give more

biological meaningful results than SVAR. These results provide

good evidence that DPC is suitable for the scenario of expression

time series analysis.

Additionally, we should be aware that high-throughput data

often lacks the specificity for accurate inference of regulatory

relationships. Therefore, the network inference result can be either

examined in a modular fashion as in the paper, or combined with

other data sources or biological knowledge to address complex

biological problems.

In summary, the proposed DPC algorithm has excellent

performance with large numbers of variables. Its efficiency in

learning among hundreds of variables is mainly due to the fact that

the computation is based on partial correlation instead of model

fitting. DPC has the potential of being extended to applications on

static data such as cancer expression for learning the data

structure. With time series data, the time lag should be carefully

selected based on users understanding of the dataset, in order to

reveal the information embedded in time lags.

Supporting Information

Figure S1 A significantly enriched motif in LHY targets as

determined by DPC in network module/bicluster 190.

(TIF)

Table S1 GO enrichment for DPC biclusters (Bonferroni

adjusted p -value ƒ 0.05).

(XLS)

Table S2 GO enrichment for SVAR biclusters (Bonferroni

adjusted p -value ƒ 0.05).
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Table S3 Transcription factor enrichment for DPC biclusters (p
-value ƒ 0.001).

(XLS)

Table S4 Transcription factor enrichment for SVAR biclusters

(p -value ƒ 0.001).
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Table S5 Transcription regulators ranking by SVAR.
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