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ABSTRACT 

   A CBIR system for retrieving images with specific buildings from databases is proposed in this 

paper. We exploit the parallelism invariance property of the line features of buildings in images in the 

derivation of two new geometrically invariant linear feature descriptors. We call these descriptors 

Hough descriptors as they are extracted from the Hough transform domain. The underlying concept is to 

utilise the invariance of parallel line features such that the individual edges (local property) can be used 

in a collective manner to embed their global relationship in the feature descriptors. Upon receiving a 

query image, the CBIR system transforms the edges detected from the query image into the Hough 

transform domain. The transform domain is divided into 180 degrees/bins in order to reveal the linear 

edge distribution. From each bin, the peak percentage profile and distance ratio profile are calculated to 

serve as the descriptors of images. That is to say that an image descriptor consists of two components 

(peak percentage profile and distance ratio profile), each with 180 elements. The circular correlations 

between the peak percentage profile and distance ratio profile of the query image and those of the 

database images are then taken as the similarity measure for ranking the relevance of the database 

images to the query. 

 

Index Terms— content based image retrieval (CBIR), feature extraction, matching algorithm, Hough 

descriptor, multimedia retrieval,  image indexing 



I. INTRODUCTION 

        With enormous efforts invested by various sectors of our societies in the last two decades in 

digitising historical documents, archiving national heritages and multimedia content productions, a 

wealth of valuable multimedia data in digital forms has been accrued around the world. These 

collections of multimedia content provide tremendous application opportunities in many walks of our 

everyday life. Many sectors of our societies such as education, broadcasting, entertainment, tourism, just 

to name a few, can benefit from this wealth of multimedia if easy access is made available. Among so 

many possibilities, building image indexing [7, 12, 25] is useful in helping retrieve multimedia contents 

with specific buildings to serve purposes such as finding news reports of events occurring around a 

specific building, finding information about a specific building, collecting images of buildings of a 

specific architecture style, etc. An exciting technological advance in the past decade is the development 

of content-based image retrieval (CBIR) [3, 5, 11, 23, 24], which allows the indexing systems to rely on 

multimedia content, rather than text-based annotation, to retrieve required content. For example, by 

search for a specific building in a large GPS-tagged image archive, the location where a particular 

painting of the building was painted can be determined. Another example is the so called computational 

rephotography [1], which allows the creation of a new photo from the same viewpoint of an existing 

photo that was taken from the same scene a long time ago. With a CBIR system, this can be done by 

matching the historic image with a modern-day image that matches its perspective. In CBIR systems, a 

set of features, such as colour [2, 4, 14, 26], texture [2, 9, 11] and shape [5, 7, 8, 10, 13, 23, 24, 25], are 

used to represent a digital image. Retrieval is performed by comparing the feature set of the query image 

against those of the database images using a matching algorithm [23]. However, the colours and texture 

of a building image is highly variable because of varying illumination conditions. Moreover, most 

digitised versions of historical documents are in gray level. Therefore, colour is not suitable for building 



image retrieval in most cases. Perceptually, humans tend to be able to recognise buildings solely by their 

shapes. These factors have attributed to the popularity of shape features as descriptors for building 

identification [7, 12, 25]. Shapes are formed by linear features such as lines and edges. Therefore, 

shape-based methods tend to exploit lines and edges in their search for relevant content [5, 10, 24, 27]. 

One of the advantages of the approaches that exploit linear features is that they do not require 

sophisticated segmentation [15] and representation of objects. As a result, the decision as to whether or 

not particular man-made structures are present in the image can be made without the need of 

recognising specific instances of the structures of interest through the utilisation of a priori knowledge 

about their properties [7, 12, 13, 25].  

        The rest of the paper is organised as follows. Section II provides a brief review on related shape 

description methods. In Section III, we describe the details of our proposed CBIR system. Experimental 

results are demonstrated in Section IV. Section V concludes the work and points out future work. 

 

II. RELATED WORK: SHAPE-BASED FEATURE DESCRIPTORS 

       Human can recognise objects solely from their shapes. Therefore, shape features provide a powerful 

clue for object identification. A good shape descriptor can capture characteristic shape features as far as 

image retrieval is concerned. Also, an effective shape descriptor should be invariant to geometrical 

operations such as scaling, rotation, and translation [19]. There have been a great number of CBIR 

researches based on shape descriptors. Shape descriptors can be broadly divided into two categories, 

namely, region-based descriptors [19, 21, 23, 24, 26] and contour-based descriptors [5, 10, 24, 27]. 

Region-based descriptors, such as Zernike moments [18, 22, 24], exploit only shape interior (regional) 

information. On the other hand, contour-based descriptors such as Fourier descriptors (FD) [26] and 

curvature scale space (CSS) [5] exploit shape boundary information. 



 

A. Region-based Descriptors 

       Region-based descriptions of shape specify the object's "body" within the closed boundary, all the 

pixels within a shape boundary are taken into account to obtain the shape representation, rather than 

only using boundary information. Region-based descriptors often use moments to describe shapes. 

Zernike moments are derived from Zernike polynomials which are a sequence of polynomials 

orthogonal on a unit disk. It is Teague [21] who first introduced Zernike moments to the image retrieval 

field. His work has inspired many works on image retrieval applications [18, 17, 20, 24]. Zernike 

polynomials form a complete orthogonal set over the interior of a unit circle and Zernike moments are a 

series of numerical signal expanded from orthogonal bases. The precision of shape representation 

depends on the number of Zernike moments extracted from the expansion. Since Zernike basis functions 

take the unit disk as their domain, this disk must be specified before moments can be calculated. To 

make the extracted moments scale and translation invariant, all the shapes are normalised to a unit disk, 

and then the disk is centred on the shape centroid. Using the magnitudes of the moments can make the 

Zernike moments rotation invariant. The advantage of Zernike moments is that, because higher order 

moments can be easily constructed, it is capable of representing more complex shapes. However, high 

order Zernike moments are more sensitive to image noise than the lower ones. Moreover, traditional 

ways of devising Zernike descriptors only take into account the magnitudes of the moments and ignore 

the phase information [24]. A few approaches [18] that incorporate both have been proposed. However, 

this improved performance has to be gained at the expense of higher computational complexity. Another 

major shortcoming of these continuous moments is that the implementation requires numerical 

approximation.  



        Mukundan et al. introduced a new set of orthogonal moment functions based on the discrete 

Tchebichef polynomials [16], which does not involve any numerical approximation in the 

implementation of moments because the basis set is orthogonal in the discrete domain of the image 

coordinate space. This property makes Tchebichef moments superior to the conventional orthogonal 

moments such as Zernike moments, in terms of preserving the analytical properties needed to ensure 

information redundancy in a moment set. The radial Tchebichef moments are invariant with respect to 

image rotation. However, like Zernike moments, in order to achieve scale invariance, the original shape 

has to be normalised to a predetermined size. This shape normalisation process is time consuming and 

tends to give rise to the loss of some characteristics of a shape. Consequently, distorted moments may be 

derived. To overcome this limitation, El-ghazal et al. have proposed to use the area and the maximum 

radial distance of a shape to normalise the radial Tchebichef moments in order make them scale 

invariants [6]. By normalising the moments without normalizing the shape to a predetermined size, 

characteristics of the shape can be preserved.  

 

B. Contour-based Descriptors 

       Contour-based descriptors can extract shape features from boundary information. There are mainly 

two approaches for contour modelling: global approaches and structural approaches [26]. Usually, a 

feature vector derived from the integral boundary is used to describe the shape in global approaches 

such as Fourier descriptors, shape signature, etc. While in the structural approaches such as CSS, chain 

code, polygon, etc, the shape boundary is broken into segments based on some particular criterion. 

Shape boundary is a set of coordinates identified by contour tracing. Various types of information, such 

as centroid distance, chain code and cumulative angles, can be derived from shape boundary to form 

boundary signatures.  For example, the centroid of a shape is the average coordinates of the normalised 



shape boundary. As a common contour-based approach, Fourier descriptors (FD) of shapes are formed 

by applying the Fourier transform on the boundary signatures [26]. It is has been shown [26] that Fourier 

descriptors transformed from the centroid distances are invariant to translation and rotation. The 

advantage of Fourier descriptors is that they are based on the well-developed theory of Fourier analysis, 

which makes FD relatively easy to implement. Global shape features are captured by lower order 

Fourier coefficients and the finer shape features are captured by higher order coefficients. Noise, which 

only appears in very high frequency bands, can be truncated out by low-pass filtering. However, after the 

Fourier transform, local shape information is distributed to all coefficients. Therefore, local information 

could be lost. Moreover, Fourier descriptors use only the magnitude components and ignore the useful 

shape information contained in the phase components of the Fourier transform.  

       Unlike Fourier descriptors, curvature scale space (CSS) descriptors are used for representing key 

local shape features [5]. Curvature, as an important local measure of how fast a planar contour is 

turning, is exploited in the scale space to generate CSS descriptors. In the scale space, both the locations 

and the degrees of convexities in shape boundaries are detected. The first step to obtaining CSS 

descriptors is to calculate the CSS contour, which is a multi-scale organisation of curvature points. 

Curvature points are located in the shape boundary. Then the shape is propagated to next scale by 

applying Gaussian smooth, and in the new scale space all the curvature points are extracted and located 

in the shape boundary, which will be evolved into next scale by applying Gaussian smooth again. This 

process stops when no more curvature points can be found.  One of the advantages of CSS descriptors is 

its ability in representing key local features, such as the locations and the degrees of convexity on the 

shape boundary. Also, the dimension of CSS descriptors is relatively lower, thus making matching 

easier. However, the disadvantage of CSS descriptors is that they cannot effectively capture global 

features, which are also important for shape representation. Also, comparing to Fourier descriptors, 



deriving CSS descriptors is usually more computationally expensive. 

        The aforementioned methods, region-based and contour-based, are useful for object recognition 

and can certainly provide insight into the derivation of building feature descriptors. However, buildings 

are complicated structure. The shapes of the same building may look very different when viewed from 

different angles. Therefore, alternatives have to be found. As reported in [25], we observed that the 

distribution of points in the Hough transform domain can effectively represent the distribution of linear 

signals in building images. In [25], the edge map of a building image is extracted first. Secondly, Hough 

transform is applied to transform the edge map from the spatial domain into the Hough transform 

domain. By partitioning the Hough transform domain into a number of orientation bands (each covering 

the entire distance range), the centroid of the points in each band is calculated. Then a band-wise 

matching (BWM) algorithm is employed to measure the similarity between the query image and the 

images in the database by taking the centroid set as the feature vector. Experiments showed that the 

proposed CBIR system is effective in retrieving building images with strong linear features. However, 

the improperly predefined bandwidth can make the bands of two Hough diagrams miss-matched. Also, 

the use of distance centroids as one of the feature descriptors is later proved to be problematic. For 

example, in Figure 1, 



l2  is obtained by rotating 



l1 by 



  anti-clockwise. We can see that changes in 

phase are consistent in both the Hough transform domain and spatial domain. However, after the 

rotation, the distance information in the Hough transform domain changes (i.e., 21   ). Therefore, 

distance centroid cannot exactly represent the distance information in the Hough transform domain. To 

overcome the limitations of this CBIR system, an improved CBIR system based on a new set of 

geometrically invariant feature descriptors, called Hough descriptors, extracted from the Hough 

transform is proposed in this work.  

 



 

 

 

 

 

 

 

 

Figure 1. Hough analysis of lines l1 and l2 in the spatial domain 

 

III. PROPOSED CBIR SYSTEM 

       Buildings usually have prominent parallel features. Without taking the perspective factor into 

account, parallel lines remain parallel under rotation, translation, scaling and shearing operations. For 

example, when scaled or sheared, the distances between parallel lines change and the lengths of the 

lines become different, but they remain parallel. When rotated, the orientation of the lines changed, but 

they still oriented in the same direction. In real imaging situations, the perspective factor can distort 

parallelism to various extents depending on the camera’s relative location to the object. However, in 

most cases when a building is photographed, the camera is positioned reasonably distant from the 

building. In such a distance, the parallelism distortion becomes negligible. This “parallelism invariance” 

forms the basis of our derivation of building feature descriptors proposed in this work.  

 

A. Feature Extraction 

      Most buildings have linear edges. However, linear edges are low-level local property of objects. 

y 



When used alone, it is unlikely that edges can capture the high-level semantics the user is looking for or 

convey information about parallelism we want to exploit. Therefore, edges and line segments need to be 

used collectively in some way in order to describe objects at a higher level in a wider or even the global 

context [12, 25]. Hough transform is usually used to detect collinear points and lines in the spatial 

domain. The points coexist in the spatial domain on the same line oriented θ˚ from the downwards 

pointing axis and with a distance ρ to the origin (upper-left corner) contribute to the count / value in the 

accumulator cell (θ, ρ). Therefore, points on parallel lines in the spatial domain will distribute across 

various cells in the same orientation (i.e., along the vertical band of a certain orientation in the Hough 

transform domain (θ-ρ space).  

       In this work, the first step towards feature extraction is to reduce the interference of noise by 

applying a 3 × 3 Gaussian kernel with a standard derivation of 0.5. The Canny edge detector is then 

applied to the Gaussian smoothed image to create an edge map. The edges of the map are then thinned 

to remove redundancy. Subsequently, the Hough transform is applied to the map of thinned edges. 

Throughout the rest of this work, we will use the term Hough peaks to represent the accumulator cells in 

the Hough transform domain with high counts. Illustrated in Figure 2(a) is the image to be analysed 

while Figure 2(b) is the map of the thinned edges and Figure 2(c) is the Hough transform of Figure 2(b). 

In Figure 2(c), each Hough peak is marked with a square. To show that Hough peaks can reveal strong 

signature of the linear features in images, we enhanced all the edge pixels in Figure 2(b) that contribute 

to the formation of the peaks in the Hough transform domain and demonstrated the new edge map in 

Figure 2(d). Apparently, most of the salient linear features such as the vertical edges of the monument 

and the horizontal edges of the pool have been enhanced in Figure 2(d) while the irrelevant edge 

information, such as the edges of the clouds and the reflection of the monument in the water is left out.   

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. a) An image containing a building, b) the edge map of (a), c) the Hough transform of (b), d) is 

the enhanced edge map with the points contributing to the formation the peaks in (c). 

               

       The next step is to make use of the Hough peaks’ distribution so that the information about the 

edges can be exploited in a collective manner to describe buildings. Figure 3(a) and (b) show a building 

image and its 90˚-rotated version, respectively. By comparing the corresponding Hough transforms of 



their edge maps as shown in Figure 4(a) and (b), we can see that the distribution of the Hough peaks 

from -90˚ to 0˚ in Figure 4(a) are similar to the distribution of the Hough peaks from 0˚ to 90˚ in Figure 

3(b) and the distribution of the Hough peaks from 0˚ to 90˚ in Figure 3(a) are similar to the distribution 

of the Hough peaks from -90˚ to 0˚ in Figure 3(b). From this observation, we can see that the 

distributions of Hough peaks in Figure 3(a) and (b) are 90˚ different, which is the same as the phase-

difference (rotation) in the spatial domain, whereas the distance (magnitude) information of the 

corresponding Hough peaks in the diagrams have not changed. Figure 3(c) is an image of the same 

building in Figure 3(a) at a smaller scale. We can see that the distributions of the Hough peaks in their 

Hough transform domain (see Figure 4(a) and 4(c)) are quite similar too. These two observations and 

Figure 4 indicate that the Hough transform is invariant to rotation and scaling if the Hough diagram is 

seen as a circular ring, with -90˚ overlaps with +90˚. 

     

                           (a)                                                             (b)                                           (c) 

Figure 3. (a) is a grey scale image with a size of 512   512 pixels. (b) is a rotated version of (a). (c) is a 

down scaled version of (a) with a size 256   256 pixels. 

      



      
(a) 

 
(b) 

 
(c) 

 

Figure 4. (a), (b) and (c) are the Hough diagrams of Figure 3(a), (b) and (c), respectively. 



       In the Hough transform domain, instead of using distance centroid as we did in [25], we calculate 

the percentage of Hough peaks distributed in each 1˚-wide bin. The peak percentage of the 



i th  

orientation bin is defined as:  

  nnp ii                                                               (1) 

where in  is the number of peaks of the ith bin and n is the total number of peaks in the entire Hough 

transform domain, i.e.,   

    


180

1i inn                                                                    (2) 

          The set / profile of all 180 peak percentages, },...,,{ 18021 pppp  , is used as the first feature 

descriptor of our work. Figure 5 shows the corresponding peak percentage profiles of the three Hough 

transform diagrams in Figure 4. From Figure 5, we can see that Figure 5(b) is basically a circularly 

shifted version of Figure 5(a) while Figure 5(a) and Figure 5(c) have very similar peak percentage 

profiles. Although Figure 5(c) represents the down-scaled image comparing to the image represented by 

Figure 5(a), the scaling operation seems to have no significant impact on these peak percentage profiles. 

From Eq. (1) we can see that pi conveys the relationship between local (ni) and global (n) information. 

The reason we use peak percentage profile as a feature descriptor is because in an ideal case: 

 Rotation operation does not change the value of n and the number of peaks ni within each 

orientation bin apart from circularly shifting the peak percentage profile by the degree of rotation.  

 Scaling changes the number of edge points on each line and the distances between the parallel 

lines; as a result, the number of points fall in each accumulator cell is different and the 

distribution of the points among the accumulator cell within the same orientation bin will also be 

changed. However, globally, the ratio of the number of points within the same bin (ni) to the total 

number of point in the entire image (n) remains the same.  



    
(a) 

 
(b) 

 
(c) 

 

Figure 5. (a), (b) and (c) are the peak percentage profiles of Figure 4(a), (b), and (c), respectively. 



      We also observed that the ratio ri of the sum of distances to the centroid of distances within each 

orientation bin, as defined in Eq. (3), exhibits similar invariant characteristics as peak percentage. We 

call this ratio distance ratio for short, The distance ratio of the ith bin is defined as: 
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where dj is the distance of the jth Hough peaks and the distance centroid iC of the ith bin is defined as: 
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where 



 j
 is the number of points in the edge map that contribute to the formation of the jth Hough peak 

in the ith orientation bin. The set / profile of all 180 distance ratios, },...,,{ 18021 rrrr  , is used as the 

second feature descriptor of our work. The distance ratio profiles of Figure 4(a), (b), and (c) are 

illustrated in Figures 6(a), (b), and (c), respectively. It is clear from Figures 6(a) and (b) that the latter is 

a -90˚ rotated version of the former. The high similarity between Figures 6(a) and (c) also indicates the 

feasibility of distance ratio profile in dealing with scaling operation. Distance ratio ri is intended to 

capture the relationship between the parallel lines oriented along i˚. The algorithm of feature extraction 

is summarised in Table 1. 

 

Table 1. The proposed feature extraction algorithm  

 
1. Smooth the input image with a 3 × 3 Gaussian kernel with a standard derivation of 0.5  

2. Detect edges with the Canny operator to create an edge map 

3. Thin the edges in the edge map to remove redundancy 

4. Apply the Hough transform on the map of thinned edges 

5. Divide the Hough transform domain into 180 bins along the θ-axis, with each bin covers 1 degree  

6. Calculate the peak percentage set p and distance ratio r 

 



 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 6. (a), (b) and (c) are the distance ratio profiles of Figure 4(a), (b), and (c), respectively. 

 



B. Image Retrieval   

      In the image retrieval process, the circular correlation is employed to measure the similarity 

between the peak percentage profile, 
qp , of the query image, 

qI , and that (
kp ) of a database image, 

kI . It is also the similarity measuring algorithm for the distance ratio profile, 
qr , of the query image 

and that (
kr ) of a database image. The mth circular correlation between 

qp  and 
kp  is defined as:  
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The maximum circular correlation 
kû between 

qp  and 
kp  is:                            
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k  .                                                            (6) 

The mth circular correlation between 
qr  and 

kr  is defined as: 
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The maximum circular correlation 
kv̂  between 

qr  and 
kr  is: 

                                  )}({maxargˆ jvv k

j

k  .                                                            (8) 

        For a database with z images, let }ˆ,...,ˆ,ˆ{ˆ 21 zuuuu   and }ˆ,...,ˆ,ˆ{ˆ 21 zvvvv  be sets of circular 

correlations of the peak percentage profile and distance ratio profile between the query image and the z 

database images, and )ˆ( kurank  and )ˆ( kvrank be the ranking of 
kû  and 

kv̂ in û and v̂ , respectively. 

The final ranking 
krank of the database image, 

kI , is given as 

 



)ˆ()ˆ()( kkk vrankurankIrank                                                (9) 

       The database images are then displayed / retrieved according to their rankings, with the one having 

the highest ranking being displayed first. The algorithm of the image retrieval process is summarised in 

Table 2. 

 

Table 2. The proposed image retrieving algorithm  

1.  Extract feature descriptors qp and qr from the query image 



Iq  using the feature      

extraction algorithm described in Table 1.  

2. For each database image



I k , calculate the maximum circular correlations kû  and kv̂  as similarity 

measurements between 



Iq  and 



I k  according to Eq. (6) and Eq. (8).  

3.  Calculate the ranking krank  for each database image 



I k  according to Eq. (9). 

 4.  Display database images with the top-ranked first

 
 

 

IV. EXPERIMENTS 

        We have carried out a series of retrieval tests of our algorithms on a database of 953 building 

images captured by the authors or downloaded from the Google gallery (http://images.google.com/), 

which contains different types of buildings such as towers, churches, cathedrals, castles, pyramids, 

residential buildings, university departments, etc. We have also implemented an interface for the user to 

provide a query image and for the system to display 9 retrieved images on each page, with the most 

similar one displayed at the upper-left corner of the page according the raster scan order (i.e., row first). 

Figure 7 demonstrates one of the experiments we have carried out on our proposed system. We can see 

that 4 relevant images are among the 9 most similar images retrieved from the database. It is noteworthy 

that the highly rotated images (the first and fifth retrieved images in the raster scan order) are 

successfully retrieved by the proposed system. A comparative view of the performance of 6 different 

http://images.google.com/


shape descriptors is illustrated in Figure 8. The horizontal axis is the number of images retrieved from 

the database given the same query image as in Figure 7. The most similar one is the first one in the 

horizontal axis. The vertical axis indicates the number of relevant images among the retrieved images. 

For example, coordinates (10, 3) mean 3 out of the 10 retrieved images are relevant. We can see that, 

given this particular query image, the proposed Hough descriptors perform significantly better than 

moment invariants, CSS and Fourier descriptor, but marginally poorer than Zernike moments.  Note that 

there are only 9 other images in the database that are relevant to this query image. 

 

Figure 7. Retrieval results when the proposed methodology is used. 

 

           Figure 9 demonstrates the retrieval result of our system given a different query image while 

Figure 10 shows the performance of 5 different shape descriptors given the same new query image. We 

can see from Figure 10 that the proposed Hough descriptors outperform all other descriptors, including 

Zernike moments. Note that there are only 5 other images in the database that are relevant to this query 

image. The aforementioned demonstrated examples have shown the potential of the two proposed 

Hough descriptors.  



 
 

Figure 8. Retrieval performance of 5 different shape descriptors given the same query image as in Figure 

7. The horizontal axis represents the number of retrieved images while the vertical axis represents the 

number the relevant images among the retrieved images. 

 

 

 

Figure 9.  Retrieval results when the proposed methodology is used 

 



 
 

Figure 10. Retrieval performance of 5 different shape descriptors given the same query image as in 

Figure 9. The horizontal axis represents the number of retrieved images while the vertical axis 

represents the number the relevant images among the retrieved images. 

 

       From Figure 5, we observed that the peak percentage profile of an image is a phase-shifted version 

of the peak percentage profile of the rotated version of the same image. The same observation on the 

distance ratio profiles is also valid, as demonstrated in Figure 6. The phase displacement of the peak 

percentage profile is very close or equal to the phase displacement the distance ratio profile. As 

formulated in Eq. (6) and Eq. (8), i and j are the phase displacement needed to achieve the maximum 

circular correlations between the query image and a database image.  Therefore, the difference between 

i and j should be under some threshold  (see Eq. (10)) if a database image is to be deemed as the 

rotated version of the query image. Otherwise what Eq. (6) and (8) say would be inconsistent. 

      ji                                                          (10) 

       The performance of the proposed system with the constraint of Eq. (10) applied ( = 5 in this case) 

is illustrated in Figure 11.  Comparing to Figure 7, wherein the constraint of Eq. (10) is not imposed, we 



 
 

Figure 11 Retrieved results by the proposed methodology when the constraint in Eq. (10) with 5 is 

imposed.  

 

can see that the rankings of the four relevant images in Figure 11 have been moved up because 

irrelevant images with high ranking in Figure 7 have been left out.  

 

V. CONCLUSION  

In this work, two Hough descriptors, namely, peak percentage profile and distance ratio profile have 

been proposed for describing building images. The derivation of these two descriptors is based on the 

observation that rotation and scaling operation preserve the line parallelism and the profiles of both 

descriptors in the Hough transform domain, although the two profiles may be phase-shifted due to the 

rotation operation. Taking the phase displacement of the two descriptors into account, we have also 

proposed a circular correlation matching algorithm for measuring the similarity between the Hough 

descriptors of images. From our observations and experiments, we can see that the proposed Hough 

descriptors, combined with the circular correlation matching algorithm, outperform existing shape 



descriptors in the context of building image retrieval. We have demonstrated their robustness against 

rotation and scaling. Currently, the robustness of the proposed CBIR system against different viewing 

aspects is under investigation.  
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