
http://wrap.warwick.ac.uk

Original citation:
Perks, O. F. J., Beckingsale, David A., Hammond, Simon D., Miller, I., Herdman, J.A.,
Vadgama, A., Bhalerao, Abhir, He, Ligang and Jarvis, Stephen A.. (2013) Towards
automated memory model generation via event tracing. Computer Journal, Volume 56
(Number 2). pp. 156-174. ISSN 0010-4620

Permanent WRAP url:
http://wrap.warwick.ac.uk/58348

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Copyright statement:
This is a pre-copyedited, author-produced PDF of an article accepted for publication in
Computer Journal following peer review. The definitive publisher-authenticated version
Perks, O. F. J., Beckingsale, David A., Hammond, Simon D., Miller, I., Herdman, J.A.,
Vadgama, A., Bhalerao, Abhir, He, Ligang and Jarvis, Stephen A.. (2013) Towards
automated memory model generation via event tracing. Computer Journal, Volume 56
(Number 2). pp. 156-174. ISSN 0010-4620 is available online at:
http://dx.doi.org/10.1093/comjnl/bxs051 .

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.
For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/58348
http://dx.doi.org/10.1093/comjnl/bxs051
mailto:publications@warwick.ac.uk

Towards Automated Memory Model Generation

Via Event Tracing

O.F.J. Perks1, D.A. Beckingsale1, S.D. Hammond2, I. Miller3, J.A. Herdman3,
A. Vadgama3, L. He1, and S.A. Jarvis1

1 Performance Computing and Visualisation
Department of Computer Science

University of Warwick, UK
2 Scalable Computer Architectures/CSRI, Sandia National Laboratories,

Albuquerque, New Mexico, USA
3 Supercomputing Solution Centre, UK Atomic Weapons Establishment,

Aldermaston, Reading, UK

Keywords: High Performance Computing; Memory; Multi-core; Tracing; Mod-
elling

Abstract. The importance of memory performance and capacity is a
growing concern for high performance computing laboratories around
the world. It has long been recognised that improvements in processor
speed exceed the rate of improvement in DRAM memory speed and, as
a result, memory access times can be the limiting factor in high perfor-
mance scientific codes. The use of multi-core processors exacerbates this
problem with the rapid growth in the number of cores not being matched
by similar improvements in memory capacity, increasing the likelihood
of memory contention. In this paper we present WMTools, a lightweight
memory tracing tool and analysis framework for parallel codes, which
is able to identify peak memory usage and also analyse per-function
memory use over time. An evaluation of WMTools, in terms of its ef-
fectiveness and also its overheads, is performed using nine established
scientific applications/benchmark codes representing a variety of pro-
gramming languages and scientific domains. We also show how WMTools

can be used to automatically generate a parameterised memory model for
one of these applications, a two dimensional non-linear magnetohydrody-
namics (MHD) application, Lare2D. Through the memory model we are
able to identify an unexpected growth term which becomes dominant at
scale. With a refined model we are able to predict memory consumption
with under 7% error.

1 Introduction

The importance of memory performance and capacity is a growing concern for
high performance computing laboratories around the world. In the five decades
since Gordon Moore famously predicted the rate at which transistor counts would
increase, the per processor performance of supercomputers has grown by over

four orders of magnitude. Coupled with increasing processor counts, supercom-
puters have become more powerful; this has created opportunities to significantly
advance the potential complexity and size of computing simulations which can
be performed, as long as supporting data can be can be fed from memory to the
compute cores at a su�cient rate.

The divergence between processor performance and memory access time,
highlighted by Wulf and McKee’s term ‘memory wall’ [1] (the point at which
poor memory access times become the limiting factor in processing rates), has
traditionally been thought of as one of the greatest concerns in computer archi-
tecture. The use of multi-core processors presents several other memory-related
challenges. One of the most significant of these is the decrease in per-core mem-
ory, which is a result of rapid growth in the number of cores per processor
without matched improvements in memory capacity. Perhaps more subtle, but
nonetheless important, is the rising level of contention for main memory – a
direct implication of increasing the number of cores per-processor without sig-
nificant improvement in the number, or performance, of the memory channels
for data transfer. This issue looks set to be more problematic in the future [2];
processors seem likely to increase in core-density and the use of accelerators
including graphics-processing units (GPUs) will make understanding memory
placement and capacity, per processing element, more important than ever.

Memory also represents a significant upfront cost of machine procurement;
power consumption and hardware failures also contribute to the total cost of
ownership. The lack of significant improvements means that to maintain cur-
rent levels of performance and capacity, the proportional cost of memory has
escalated.

The act of strong scaling an application, increasing the core count to solve a
fixed problem size, is a traditional method used to address insu�cient memory
per core. This technique is not without problems as the increase in core count
has been shown to increase memory consumption in certain circumstances [3, 4].
This is due to the storage of additional core-count-dependent data, for example
communication bu↵ers and rank-to-rank lookup data. Although this is primarily
a problem with the Message Passing Interface (MPI), it is a fundamental concept
replicated in some production codes, with negative implications.

Memory therefore continues to pose a challenge in the design and optimisa-
tion of parallel algorithms at scale. Understanding how an application requests,
utilises and frees memory during execution remains a key activity associated
with optimising application runtime and thereby improving scientific delivery. If
memory requirements across an application workflow are su�ciently understood,
opportunities may be created to reduce the memory configuration of a machine
during procurement, reducing initial capital expenditure.

In this paper we introduce WMTools, a memory management analysis suite,
comprising a lightweight profiling tool, WMTrace, and a post execution analysis
tool, WMAnalysis. The tools have been developed to trace the memory alloca-
tion events of parallel applications, using the MPI library. WMTrace is a dynamic
shared library which requires no source code modifications or binary instrumen-

tation. WMAnalysis can act as both a serial and parallel analysis tool, for inter-
preting trace data to accurately calculate high-water mark, memory usage per
function over time and memory usage per function at peak. The intended use of
our tool is to provide su�cient information to developers to enable the diagnosis
of memory allocation issues, relating to both overall memory consumption and
scalability issues. It also permits an analysis of behaviour over time, and thus
the identification of optimisation opportunities. Understanding the behaviour of
memory requirements throughout application execution, and on multiple-core
configurations, is the first step in assessing or predicting memory usage at scale
and a vital precursor to identifying potential memory scaling issues. Our tool
presents this opportunity within a framework which is lightweight, accurate and
simple to use.

We extend the tool suite to enable parallel analysis of trace files at the point of
high-water mark. This analysis, coupled with some additional domain knowledge,
can be used to automatically construct a memory model of the code. Such a
model enables the prediction of memory consumption at large scale, on increased
core counts.

The specific contributions of this paper are as follows:

– We present WMTools, a lightweight memory tracing tool and analysis frame-
work for parallel codes. The distinguishing features of this tool are the abil-
ity to record memory allocation traces combined with temporal and stack
information without the introduction of significant overhead. This data is
su�cient to identify peak memory usage and analyse memory usage over
time, on a per function basis, for a set of parallel tasks - a pre-requisite in
understanding how individual sections of an application utilise memory;

– We present the application of WMTools to nine established scientific applica-
tions and benchmark codes representing a variety of programming languages
and scientific domains. The output of WMAnalysis illustrates how the mem-
ory allocation traces of these codes scale with increased problem size and
core count. We illustrate the importance of static memory analysis for two
codes, LU and FT, which provide minimal allocation information during heap
tracing. We demonstrate the ability of the suite to identify key problematic
areas within phdMesh;

– Finally, we use WMTools to generate a model for the memory usage of one of
the nine codes: Lared2D, based on a comparison of traces from 2- and 4-core
executions. This model is then validated against collected data, showing an
average error of under 7% in predicting the memory high-water mark of a
given run of up to 256 cores. We extend the initial model to capture an al-
ternative growth function which becomes dominant at scale. Additionally we
validate this new model against the memory results of a 4⇥ bigger problem
set, at scale, observing between -1% and 4% error.

The remainder of this paper is structured as follows: in Section 2 we catalogue
a shortlist of previously reported memory analysis tools and summarise tech-
niques which are relevant to this work; Sections 3 and 4 contain the presentation
of our tracing tool, WMTrace, and the post-processing tool WMAnalysis; a case

study applying our tools to the analysis of memory allocation behaviour of sev-
eral industry-standard applications and benchmarks is described in Section 5,
including a comprehensive analysis of overheads and a comparison with alterna-
tive tools; in Section 6 we describe the use of WMAnalysis to generate a memory
model for one of the studied codes and use the model to predict the memory
high-water mark for various application runs; in Section 7 we conclude the paper
with a summary of our findings and identify areas for future work.

2 Related Work

Memory represents a significant bottleneck within high performance computing
(HPC) centres, with regards to both performance and capacity. Feitelson [5]
demonstrates the importance of memory consumption considerations in job
scheduling and execution on a supercomputer at Los Alamos National Labo-
ratory (LANL). Discussing the benefits of an analytical memory model to accu-
rately predict memory usage, Feitelson concludes that due to the large number of
components, an analytical approach to memory modelling would be too complex.

Due to the importance of memory, a collection of tools already exist to assist
developers in analysing memory usage and management within their code. Un-
derstanding an application’s memory management enables code redesign, with
the aim of reducing the runtime memory footprint. As the specifics of each par-
ticular bottleneck are unique, these existing tools each serve a di↵erent purpose,
ranging from leak detection to cache alignment.

The main distinction between memory tracing tools is the level of analysis
performed and the granularity of the data collected. We classify memory analysis
tools into two classes, lightweight and heavyweight, depending on their overheads
and level of analysis. The tools which provide the most detailed level of data
collection have an inherent overhead in either additional memory consumption or
runtime – and often both. The large volumes of data which these tools produce
also require extensive post-processing to derive any meaningful interpretation
from their results. This class of tools often collects data at the hardware counter
level, and may require additional code instrumentation.

The alternative class of tools attempt to avoid this overhead and are thus
limited in the data they can collect. As lightweight tools, they are often loaded
dynamically at runtime and therefore do not require code instrumentation.

The closest tool to WMTools is memP from Lawrence Livermore National Lab-
oratory (LLNL) [6]. memP is a lightweight library designed for collecting basic
memory consumption information. The primary use of memP is to collect high-
water mark usage data from all of the processes in an MPI job, which it achieves
by re-implementing the memory management functions as ones which allow trac-
ing. All of this data is collected and stored within in-memory data structures,
eliminating the need for a post-processing stage. Maintaining these in-memory
data structures introduces some performance overhead and additional memory
consumption. The resulting data set is small, providing maximal heap and stack

usage across the processes together with aggregated statistics over this data (e.g.
standard deviation and coe�cient of variation).

Where WMTools di↵ers from memP is that it does not store the complete data-
set in memory, but instead streams it to file, thus minimising overheads and
having as little influence on the execution of the program as possible. As statistics
are not immediately available upon job completion, WMTrace utilises a post-
processing phase to extract memory usage statistics. WMTrace is also intended
to provide the user with a more in-depth analysis of the system during times of
peak memory consumption.

mprof also provides a lightweight framework for memory analysis with greater
granularity than memP. mprof was written when memory constraints prevented
the tool from consuming too much system resource, with the authors claim-
ing to require only 50KB of additional memory and at worst incurring a 10⇥
slowdown [7]. This tool also favours in-memory data structures; the authors
considered the storage of all collected information prohibitive. One of the main
limitations of mprof is that it only provides a stack traversal up to a maximum
depth of five, whereas WMTrace enforces no such limitation. It is also worth not-
ing that mprof was not designed to profile parallel codes, and so has limited use
within HPC, without modification.

Whilst we understand the performance implication of recording the full call-
stack, we consider it necessary to obtain a complete understanding of the system
state to support a full analysis of memory usage in an application. We also pro-
vide lossless data collection, where all temporal information is retained, allowing
a complete playback of application execution. This generates far more data than
tools which focus on just high-water mark analysis, but enables a more thorough
analysis of memory to be performed. As our tool does no analysis of memory
management during program execution, it is unable to determine whether spe-
cific information should be deemed important or irrelevant and thus all data is
retained.

The volume of data generated by stack tracing tools has been a topic of
detailed research, with a number of methods to reduce or compress stack data
being proposed [8, 9]. WMTools employes similar techniques to reduce compression
overheads and file size, by using knowledge about the repetition of data to build
custom dictionaries, as well as leveraging existing compression libraries.

The specific aim of WMTools is to bridge the gap between lightweight and
heavyweight profiling tools, by providing more detailed information than a typ-
ical lightweight tool, but by minimising the overheads of a heavyweight tool.

Many modern heavyweight analysis tools are built upon dynamic binary in-
strumentation (DBI) frameworks, such as Valgrind [10] and Pin [11]. These
DBI frameworks facilitate the use of shadow memory, where either metadata re-
garding access frequency or even value representation is stored for every byte of
application allocated memory. This is exploited by many di↵erent shadow mem-
ory tools to detect accesses to un-addressable memory, perform type checking
and identify data races, amongst others. The overheads of such tools are widely
acknowledged to be large; the authors of Memcheck [12] document a mean slow-

down of 22.2x. Tools like Memcheck introduce overheads by monitoring mem-
ory allocations and accesses. Di↵erences in the functionality of WMTools and
Memcheck mean that WMTrace does not incur the same mid-execution process-
ing costs; WMTrace does however have additional data generation and storage
costs. We address this balance in overhead (between runtime slowdown, amount
of data generated, and post-processing cost) in our subsequent application and
analysis of WMTrace.

Another approach to memory profiling, currently being investigated, is virtu-
alisation and sandboxing. Virtual Machine Introspection (VMI) [13], developed
at Sandia National Laboratories, enables memory profiling through the use of a
system-level virtual machine. The overheads of such a technique are likely to be
considerable, but the opportunities for data capture are significantly broadened.

Due to similar data-movement and call-stack traversal problems, many of the
techniques and methodologies employed in memory tracing are taken from re-
search into large scale debuggers [14, 15]. Szebenyi et al. demonstrate the benefit
of hybrid profiling, using sampling - to capture general application performance -
and event-based instrumentation - to capture specific MPI function performance.
They also leverage the concept of a ‘thunk stack’, a marker inserted into the call-
stack as a point of reference to reduce call-stack traversal overheads [16]. Issues
surrounding the scalability of fine-grained call-stack tracing, from a sampling
perspective, are discussed in [17].

In the development of the memory tracing tool we developed a proprietary
trace format, as opposed to using existing formats such as the Open Trace Format
(OTF) [18]. The primary motivation for this decision is the reduction in data
volume, a↵orded by the application of domain specific knowledge. Whilst the
portability of trace files is important, at this stage we have only focused on the
movement of the files rather than compatibility with other software.

Woodside and Schramm present a formal notation for supporting the stor-
age and analysis of complex, event-driven parallel traces. Their solution, enti-
tled NICE (Notation for Interval Combinations and Events [19]), provides an
automata-based language for querying trace data, which contrasts with other
techniques, such as OTF, which focuses primarily on the trace format. As we
transition to a single parallel trace file in future iterations of the tool, we hope
to exploit this capability to enhance the analysis.

The technical di�culty of trace compression, especially call-stack traces, has
been the focus of a large volume of research, due to the impact on the scalability
of tracing tools. Many techniques have been developed to reduce data volume,
including ‘lossy’ and ‘lossless’ compression formats [20, 21]. Like many other
tools the success of the compression technique, with respect to both overhead
and compression ration, are paramount to the success of WMTools.

The construction of the memory model, in the later part of this study,
leverages prior work in developing performance models for high performance
codes [22, ?].

3 WMTrace - Memory Event Tracing

Parallel Application

Parallel Execution
Process 0

Application

Libraries

WMTrace

Process n

Application

Libraries

WMTrace

Trace
File

Trace
File

Parallel Post Processing

Process n

WMAnalysis

Process 0

WMAnalysis

Results

Communication

Communication

Fig. 1. WMTools workflow

Memory allocation analysis through WMTools is performed as a two stage
process. The first stage, data collection, is performed during code execution
by the WMTrace library. This library is linked at runtime using the operating
system’s linker, and intercepts the POSIX memory management functions whilst
the code executes. During this execution the library collects vital information
regarding the size, time and location of memory allocations. This data is then
streamed to file, via an internal bu↵er, which in turn streams to a compression
bu↵er.

The four main POSIX memory management functions of interest to WMTrace
are malloc, calloc, realloc and free, the motivation behind this decision
is the availability of such functions on di↵erent platforms, thus increasing the
portability of the library. The choice of functions also allows us to target multi-
ple programming languages, specifically Fortran, C and C++, which remain the
dominant programming languages in high performance scientific computing.

The tracing library, WMTrace, is specifically targeted at parallel codes based
on the Message Passing Interface (MPI). The operating systems linker attaches a

di↵erent instance of WMTrace to each process of the parallel job. Each instance of
WMTrace monitors its own process, generating a single trace file for that specific
process. As illustrated in Figure 1, the parallel execution of the application,
with the tracing library attached, can be followed by a parallel post-processing
phase, discussed in Section 4. Due to the segmentation of the library instances,
WMTrace and additionally WMAnalysis, can also be used on serial codes with no
MPI environment.

The WMTools suite is written in the C programming language, and makes use
of third party libraries, such as Libunwind, Libelf and ZLib; further details of
the framework used can be found in previous work [23, ?].

3.1 Event Tracing

At the core of WMTrace is the notion of an ‘event’, which is triggered by the inter-
ception of a POSIX memory management function call. These function calls are
intercepted through the use of function interposition, through the dlsym library,
allowing WMTrace to collect additional information at the point of occurrence.
The information gathered for each event is dependant on both the event type
and user preference. For memory allocations using malloc and calloc, the tool
records the time and size of the allocation, and the return pointer, which is used
to map a future de-allocation back to this event. For deallocation events the
time and memory address is retained, but not resolved at runtime, to reduce
overheads.

One optional feature of WMTrace is to leverage the functionality of the third
party Libunwind, to traverse the function call-stack from any given point. The
call-stack collected from this procedure enables WMTrace to attribute a memory
allocation to a given function, and furthermore to a unique call path. This is
particularly useful for functions containing allocations which are referenced from
multiple points in the code, for example local allocation functions. The cost of
such call-stack traversals dramatically increases the overheads of the library, due
to the frequency of calls, and the context switch incurred by making the call. In
some circumstances, for instance C++ codes with repeated object instantiation
and destruction, this overhead may be undesirable, we therefore allow this feature
to be disabled via an environment variable. By disabling call-stack traversal,
functional breakdown analysis is no longer feasible, but the libraries ability to
calculate high-water mark and perform temporal analysis remains.

3.2 Trace File Compression

The compression library attached to WMTrace is essential to boost overall perfor-
mance, as the volume of data generated by the I/O and storage may otherwise
limit the scalability of the tools. Despite separate files being maintained for each
process (which limits the impact of file locking), the size of these files increases
with runtime (along with other factors).

One of the most important techniques for overcoming this data challenge
is to use compression. Due to the repetition found within an execution, a very

Application + Libraries

WMTrace

stdlib.h / libc

Linux Kernel

Internal
Buffer

C
om

pr
es

so
r

Stack
Database

Trace File

Fig. 2. The WMTrace compression process

simplistic compression algorithm is su�cient to achieve significant compression
ratios, in the order of 13⇥. WMTrace utilises the third party compression library
ZLib, as it is a highly portable library with minimal overheads and yet is able
to yield significant gains in storage capacity (see Section 5.5).

WMTrace utilises an internal bu↵er, of user defined size, to store the trace
stream. When this bu↵er is full, it passes the data through the compression
stream, which in turn outputs to disk. The motivation behind this design choice
is to minimise I/O operations, but at the same time minimise memory con-
sumption. Figure 2 illustrates how data flows out of WMTrace into the final trace
file.

To improve the compression ratio, WMTrace eliminates as much basic rep-
etition as possible. One of the most significant enhancements is the inclusion
of a call-stack dictionary. Rather than recording the full call-stack in the trace
file, for each memory allocation, the library maps each unique call-stack to an
ID, which is written to file rather than the call-stack. The dictionary then sys-
tematically writes the new map entries to the trace file at intervals, within a
special frame from enhanced post processing. This technique lessens the burden
on the compression library by dramatically reducing the volume of data it must
process, which in turn reduces the runtime overheads of the compression library
and improves the overall compression rate.

Other techniques used to improve compression are targeted at the complexity
of the data to be stored. The timestamp for events represents a significant source
of variance in the trace output, contributing a high amount of entropy to the
compression stream. By simplifying the timestamp data, storing it in a reduced
precision format (float rather than double), we observe a significant reduction
in compressed file size of up to 18%. We also improve compression by recording
time as deltas, the di↵erence in time between two events, rather than the total
elapsed time. The advantage of this is the increase in repetition (there will clearly
be no repetition in time, whereas repetition in deltas is common). This technique
can reduce the compressed file size by up to 24%, and can reduce the time taken
to compress the output stream.

First Pass

Third Pass - Optional

Second Pass - Optional

Establish HWM
Trace
File

HWM
Data

Recreate Stack Dictionary

Perform Analytics

Stack
Dictionaries

Graphs HWM
Analysis

Fig. 3. WMAnalysis process diagram

3.3 Static Allocation Analysis

One of the limitations of event-driven memory consumption analysis is the failure
to capture static memory allocations. In Fortran, for example, if a statically
sized array is allocated to the stack, but is too big to fit, it will be pushed to the
heap. This allocation will happen at compile time, rather than runtime, and so
is di�cult to identify during runtime.

To gain a more complete picture of memory consumption, WMTrace attempts
to capture this static memory by analysing the binary executable. This is per-
formed using the Libelf library, a lightweight library for reading and writing
Executable and Linkable Format (ELF) files. Using this tool WMTrace can anal-
yse the binary headers and look for memory allocations from compilation. Whilst
WMTrace can not determine the source of the allocation, to assist with the func-
tional breakdown, it treats the consumption as persistent through the whole
execution, thus adding a constant to the high-water mark.

4 WMAnalysis - Memory Trace Analysis

The tracing component, WMTrace, is merely a data collection agent. Most of
the complexities of WMTrace arise from minimising the overheads and reducing
the impact on the executing code. WMAnalysis allows the resulting data to be
manipulated for di↵erent purposes, to address di↵erent memory problems in
code.

WMAnalysis provides a suite of analysis tools, to process the trace files in
di↵erent ways with varying complexity. At its simplest the analysis will produce

a memory high-water mark. More complex analysis includes point-to-point trace
file comparisons to evaluate allocation continuity for the purpose of memory
model construction.

The analysis of WMTrace files is simplified by their structure, the layout of
frames in a binary file makes it very simple to skip through portions of the
output to the desired section. For this reason analysis is performed in a multi-
pass manner, each pass gaining more information about the trace. Figure 3
demonstrates how, with a three-pass analysis, it is possible to obtain di↵erent
levels of detail.

One of the most important features of the separation of the trace and analysis
phases is the portability of the analysis. By generating a complete trace file, the
source binary only needs to be executed once, but the analysis can be performed
multiple times, at di↵erent levels of granularity. Further to this, the, trace file is
also portable, so whilst execution may require a supercomputer, analysis can be
performed on a desktop server.

Although WMTools is not designed for memory debugging, certain debugging
statistics can be obtained ‘for free’. One of the most useful features in this regard
is the identification of memory leaks, which can be detected and traced back to
a source function and execution time.

4.1 High-Water Mark Analysis

High-Water Mark (HWM) analysis is the most fundamental component of WMAnalysis,
as it establishes the high point of memory consumption through the source pro-
gram’s execution. The implementation of WMTrace ensures a single trace file is
generated per process, thus a high-water mark analysis will return the high-water
mark for that process; for a more complete picture we need to take aggregate
statistics over all trace files from the execution.

Unlike other tools WMTrace does not perform any analysis during execution;
all analysis is performed post-execution. For this reason even simplistic statistics
like high-water mark must be obtained via post processing. The mechanism
through which memory is allocated and de-allocated in POSIX systems means
that whilst memory is allocated with a given size, it is impossible to accurately
calculate the size of a variable when it is de-allocated. This means that a tracker
must be created which persists through the lifetime of that variable, which links
the two allocate and de-allocate statements together. This can be performed
through a relatively simplistic linked-list data structure, but the downside to
this approach is the increased memory consumption. WMTrace makes every e↵ort
to minimise the additional memory and runtime overheads during the execution
of the source binary, and thus this process is delayed until the post processing
phase in WMAnalysis.

4.2 Post Execution Analysis

As previously stated, no analysis is performed during the tracing phase, but
often a user desires at least some basic memory statistics at the time of program

execution. To enable this WMAnalysis is made available as a library, which allows
WMTrace to ‘hook’ into it and perform some basic analysis in parallel.

This analysis exploits the existing parallel MPI environment to inspect each
trace file on a di↵erent process (i.e. the one it was generated on). Subsequent
analysis consists of establishing the high-water mark of each process, and pre-
senting aggregate statistics across all the processes. The structure of this post-
execution analysis, with reference to the original trace, is illustrated in Figure 1,
the actual analysis performed is represented by the ‘First Pass’ shown in Figure 3.
The aggregate statistics focus on the memory high-water mark and the variance
between the di↵erent processes, specifically: maximum high-water mark and pro-
cess ID; minimum high-water mark and process ID; mean high-water mark and
standard deviation.

This analysis is deliberately simple in order to reduce runtime, but provides
initial statistics that then allow for a more focused secondary analysis phase,
outside of the MPI processes.

4.3 Temporal Breakdown

One of the most interesting forms of trace analysis is exploiting the temporal data
to replay the execution. From the order and distribution of memory allocations,
we can graph the memory consumption over time. This visual representation
provides useful insights into the memory profile of an application.

On a fundamental level we are interested in how much memory is used at
peak memory consumption, to determine how much memory a job requires.
Beyond this we are also interested in the duration of the peak consumption.
This information can assist with code modification to reduce memory footprint.
If peak consumption is sustained throughout a large portion of the execution,
suggesting a large data set, then addressing the storage mechanism for the data
set could help reduce the overall consumption. Whereas a short-lived peak might
be indicative of a specific algorithm or technique, for example an out of place
matrix transpose, which could be refined with a more memory centric approach.

The comparison of temporal graphs between di↵erent sized runs (either prob-
lem size or core count) can help identify a lack of continuity, which would other-
wise be expected. In Section 5.4 we demonstrate this temporal analysis as part
of a case study.

4.4 Functional Breakdown

Functional analysis extends the temporal analysis by analysing ‘who’ is actually
consuming the memory. This stage of analysis requires stack tracing, as it looks
at unique call paths in code which consumed the highest volume of memory.
Whilst this analysis can be performed in addition to temporal analysis, in the
form of a stack graph, we are often more interested in just the breakdown at the
point of high-water mark. Again we demonstrate this analysis on a selection of
our case study applications in Section 5.4.

4.5 Parallel Analysis

Parallel analysis is an in-depth approach to trace file comparison, looking at
more than just high-water mark. This form of analysis takes two trace files as
input, and establishes a relationship between them by performing a pointwise
functional comparison at the time of the high-water mark.

The purpose of this mapping is to establish which functions allocate memory
objects with dependencies on external factors, such as problem size or core count.
Thus by taking a trace file from the high-water mark process from an 8-core run,
and comparing it with a similar high-water mark process trace from a 16-core
run, the parallel analysis will identify which live allocations, at the point of high-
water mark on both processes, have di↵erent sizes, and by what factor they have
changed by.

There are many applications to this form of analysis, it can aid the con-
struction of memory models, pinpoint key growth functions and even identify
continuity problems. We demonstrate the parallel analysis in Section 6 where
we construct a memory model for an application and validate it against actual
high-water mark results.

5 Case Studies

In the following section we illustrate the use of WMTools with nine di↵erent
scientific applications/benchmarks, identified in Table 1. These codes, used either
independently or as part of a larger workflow/application, represent significant
proportions of the compute time at supercomputing sites around the world [24–
30]. These codes are also interesting from a technical perspective because they
represent the three principle implementation languages – C, C++ and Fortran

90 – which are used to write most modern parallel scientific applications. The
ability to successfully trace each of these languages is critical if our tool is to be
more generally applicable.

While memory consumption is technically non-deterministic, as a result of the
temporal overlapping of bu↵ers, experimentation has shown minimal variation in
high-water mark. The peak memory consumption of a 32-core run of Graph500
was seen to vary by around 580KB, 0.08%, over five runs, and we experience no
variation for miniFE. In the case of phdMesh, we observed a ‘best’ and ‘worst’
case memory consumption, depending on the decomposition, we have reported
the worst case for consistency. For this reason the results presented are for single
executions, as opposed to averages.

5.1 Applications/Benchmarks

For each of these codes we have selected an appropriately sized input deck and
used the WMTrace library to record memory behaviour over a variety of core
configurations. To illustrate how the memory consumed alters as the applica-
tions scale, the problems are strong scaled over 16-, 32-, 64-, 128- and 256-core
executions.

Table 1. Demonstrator applications and benchmarks used in our analysis

Language Description
miniFE C++ Unstructured finite element solver

phdMesh C++ Unstructured mesh contact search

DLPoly Fortran 90 Molecular dynamics simulator

Lare3D Fortran 90 Non-linear molecular hydrodynamics

AMG C Parallel algebraic multigrid solver

LAMMPS C++ Classical molecular dynamics

LU Fortran 90 LU PDE solver

FT Fortran 90 FFT PDE solver

Graph500 C Graph solver

The following experiments were performed on the Minerva cluster, located at
the Centre for Scientific Computing (CSC) at the University of Warwick. This
machine comprises 258 dual-socket, hex-core Intel Westmere-EP X5650, nodes
connected via Infiniband. Each node provides 24GB of system memory (2GB per
core). The runs presented all use the Intel 12.0.4 compiler toolkit with OpenMPI
1.4.3, compiled with the -O3 optimisation flag and debugging symbols.

5.2 HWM Analysis

 1

 10

 100

 1000

 10000

m
iniFE

phdM
esh

D
LPoly

Lare3D

AM
G

Lam
m

ps

LU FT G
raph500

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

8 Cores

16 Cores

32 Cores

64 Cores

128 Cores

256 Cores

Fig. 4. Application memory consumption

In Figure 4 we can see the memory scalability of the di↵erent benchmark
codes. We have selected these particular benchmark codes because they demon-
strate variations in memory scalability. Some codes, miniFE and Lare3D, exhibit
good memory scalability, as the memory consumption continues to drop as the
core count is increased. Other codes, such as phdMesh, have a more complex
memory behaviour, as the memory consumption can either go up or down de-
pending on the decomposition. Finally the last class of code, LAMMPS, LU, FT and
Graph500, do not demonstrate a decrease in memory consumption as the num-
ber of cores is scaled. We note that gaps exist in the data due to incompatible
decompositions and insu�cient memory.

To properly understand the complexities of a code with poor memory scal-
ability we need to employ further analysis. By observing the per-core memory

 0

 200

 400

 600

 800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Process Rank

Fig. 5. Graph500 memory consumption per process on 32 cores

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128 256

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Static
Heap

Fig. 6. LU static and dynamic memory consumption

consumption of a 32-core run of Graph500, Figure 5, we can see that the memory
high-water mark is only occurring on process 0, and that there is a significant
imbalance between this and the remaining processes.

5.3 Static Memory

From Figure 4 we observe that the heap memory consumption of LU and FT

remains static at around 8 MB as the code is strong scaled. However, this is not
the complete picture, and it is only by employing the static memory analysis
component of WMTrace that we can expose the true memory requirements of
these two benchmarks. During compilation memory is statically allocated within
the binary to handle the specific decomposition of the problem.

Using the static memory analysis component of WMTrace, which uses Libelf,
we can expose this memory consumption. We demonstrate how this static mem-
ory consumption varies as we strong scale both LU, Figure 6, and FT, Figure 7.
From these figures it is evident that the memory profile of both codes is signifi-
cantly di↵erent from that previously exposed through just heap-based analysis,
as the dominant factor in consumption comes from static allocations.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

8 16 32 64 128 256

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Static
Heap

Fig. 7. FT static and dynamic memory consumption

5.4 Temporal and Functional Breakdown

Table 2. Per process memory HWM comparison for phdMesh

Cores Min Max Mean Std. Dev.
(MB) (MB) (MB) (MB)

16 239.50 255.26 251.54 4.33

32 149.34 164.96 161.75 3.56

64 122.40 158.46 154.87 5.14

128 92.18 170.21 139.49 18.14

Table 2 shows how the high-water mark values vary for each process in a run
of phdMesh as we scale the number of cores. Increasing the core count reduces
both the minimum and mean high-water marks, while the maximal high-water
mark increases at 128 cores. The standard deviation between the high-water
mark values identifies large discrepancies between memory consumption on dif-
ferent processes, particularly in the case of 128 cores. This is indicative of prob-
lems in the data decomposition. By studying the temporal high-water mark
analysis of phdMesh on 128 cores (see Figures 8 and 9) we can examine the dif-
ferences in memory consumption between the maximal and minimal high-water
mark processes. Figure 8 shows the maximal high-water mark thread, with a
peak memory consumption of 170MB; Figure 9 shows the minimal high-water
mark process, with a peak memory consumption of 92MB. It is clear that both
processes have a very similar temporal memory trace, despite the di↵erence in
peak memory consumption. We see a start up phase with significantly increased
memory consumption during the first 15% of execution, followed by sustained
consumption after this point. Despite the large variation in high-water mark
values (an 85% increase from the minimal value) the sustained memory con-
sumption is very similar, at around 20MB. At the end of the start-up phase in
phdMesh a re-balance is performed – to ensure a consistent decomposition – this

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Time (%)

Fig. 8. Temporal memory trace for phdMesh maximal high-water mark process on 128
cores

coincides with the decrease in memory in our temporal analysis. This is sugges-
tive of the application preloading data, which is then discarded/redistributed
for the actual computation phase. It is highly likely that this operation could be
arranged in a more e�cient configuration which would significantly reduce the
application’s high-water mark, and the initial variation between processes.

To aid in this redesign, we analyse the functional breakdown of the high-water
mark for both the maximal and minimal processes for each run of phdMesh

(see Figure 10). From this breakdown, we see that despite the variations in
memory consumption, the proportions of each function remain similar between
the maximal and minimal high-water mark threads and between runs of di↵erent
size. This indicates that the memory consumption is distributed across all of the
primary functions, rather than just being limited to a single function involved
in the start up. Although this suggests that it might be di�cult to uncouple the
data causing the high-water mark from the algorithm, it does confirm that the
initial data distribution is the root cause of the high-water mark problem.

5.5 Overheads and Compression

Table 3 presents the slowdown incurred by memory tracing with WMTools. This
slowdown represents the additional cost to capture the memory management
data, store it to file, and perform an initial analysis of the results to produce
a high-water mark result. These slowdowns represent a significant improvement
over previously published results [23, ?], due to both improvements in the tool
suite and the testing environment. Due to the nature of the tracing, many context
switches are incurred as execution is paused to perform tracing, thus a platform’s
ability to handle these context switches will have a significant impact on the
overheads of the suite.

As a general rule, the proportional slowdown increases as the core count in-
creases, this is primarily a result of decreased runtimes for similar data volumes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Time (%)

Fig. 9. Temporal memory trace for phdMesh minimal high-water mark process on 128
cores

 0

 100

 200

 300

 400

16 M
ax

16 M
in

 32 M
ax

32 M
in

 64 M
ax

64 M
in

 128 M
ax

128 M
in

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Main
Comm_mesh_discover_sharing

CommBuffer::allocate
M_insert_aux

MeshBulkData::declare_entity
Other

Fig. 10. Functional breakdown of phdMesh for minimal and maximal HWM

The strong scaling of a code often has little e↵ect on the number of allocations
performed, but will likely reduce the base runtime. Thus the tracing library must
handle a similar number of allocations, generating a similar amount of data, but
do so in a shorter time frame and thus with increased impact.

The volume of data generated by WMTrace is a key consideration. Although
aspects of the runtime environment are configurable (the type of data to col-
lect, the amount of data generated etc.) the amount of data generated can be
problematic in some circumstances. Table 4 illustrates the total volume of data
generated for specific runs, with full data collection enabled. The size of these
trace files is proportional to the number of memory management calls made
during execution, but due to the storage of stack traces their size has a minimal
impact on the overall file size. As WMTrace generates one file per process, larger
core count runs will generate more files and therefore, most likely, more data.
Due to the existing compression on files, and the extracted repetition, there is
little advantage to file amalgamation and re-compression.

Table 3. Application slowdown with WMTrace

8 16 32 64 128 256
miniFE - 1.1 1.1 1.4 1.8 2.9

phdMesh 10.5 6.0 8.0 10.4 9.2 11.8

DLPoly 1.1 1.2 1.1 1.0 1.0 1.0

Lare3D 1.0 1.00 1.0 1.0 1.0 1.1

AMG - - 1.1 1.2 1.2 1.7

LAMMPS 1.3 1.4 1.9 1.4 1.5 1.2

LU 1.0 1.2 1.1 1.0 1.0 1.3

FT 1.0 1.1 1.0 1.0 1.1 1.0

Graph500 - 1.0 1.0 1.0 1.2 1.2

Table 4. Trace file size in MB

8 16 32 64 128 256
miniFE 10 37 71 230 456 904

phdMesh 2503 1433 2662 4812 6758 8089

DLPoly 219 258 353 384 494 770

Lare3D 4 11 19 41 84 155

AMG - - 453 465 481 518

LAMMPS 4 8 17 33 65 129

LU 1 2 4 8 17 33

FT 1 3 5 9 21 33

Graph500 - 24 25 49 97 65

In some circumstances the user may only be interested in specific artefacts,
for example the peak high-water mark thread, or discontinuity between two
particular processes. In this case the remaining files may be removed, with no
impact on the analytics of the remaining files.

5.6 Comparison with other tools

Table 5. Application slowdown with alternative tools on 64 cores

memP Massif Memcheck
miniFE 4.1 5.1 12.9

phdMesh 28.3 13.9 15.5

DLPoly - 6.3 18.1

Lare3D 1.0 - -

AMG - 13.9 21.2

LAMMPS 1.0 5.3 16.5

LU 1.0 4.1 14.6

FT 1.0 9.5 18.4

Graph500 1.1 2.5 8.0

We compare the runtime overheads of WMTools against three alternative heap
profiling tools, memP, Massif and Memcheck. Each tool performs di↵erent levels of
analysis, but nonetheless provides a baseline for comparison. Table 5 illustrates
the overhead of the three tools for a 64-core execution of the nine benchmark
codes. These can be compared with the WMTools overheads presented in Ta-
ble 3; we believe that this demonstrates the competitive performance of WMTools
against existing tools.

memP is a similar memory tracing tool aimed at HPC codes, yet unlike
WMTrace it performs all of its analysis during execution, and outputs a final
result at the end of execution. Whilst memP does support call-stack traversals,
again through Libunwind, we have not enabled this during testing. We can see
from a comparison of these two tables that the overheads of the two tools are
comparable, both exhibiting minimal slowdowns on the majority of codes. For
miniFE and phdMesh we see significantly more slowdown when using memP com-
pared with WMTrace, despite the lack of I/O overhead in writing trace files to
disk.

We note that the memory consumption result from memP is consistently about
7MB less than that shown by WMTrace, Massif and Memcheck. We were unable
to obtain results for both AMG and DLPoly using memP.

Massif, part of the Valgrind suite, is a heap profiling tool that is specifically
designed to measure memory usage in the heap and stack. This is achieved
through snapshots, measuring memory usage at the malloc’d block level. For
our comparison we have not enabled stack memory profiling. Table 5 shows how
the overheads of Massif are approximately inline with those incurred by both
WMTools and memP.

Memcheck is another tool from the Valgrind suite, this time aimed at the
identification of memory errors. Although this is significantly di↵erent to heap
profiling, the methodology employed is applicable. Memcheck calculates the peak
memory consumption by sandboxing memory and recoding metadata about ac-
cesses. This means that it can very accurately record the memory consumed,
and illustrates the high overhead of the technique, as illustrated in Table 5.

Due to di�culties executing Lare3D with the Valgrind suite we have excluded
the results from this evaluation.

In general we observe significantly higher overheads on Massif and Memcheck

than previously reported for WMTools. The overheads incurred on phdMesh, are
significant on all four heap profilers, ranging from 10.4⇥ for WMTools to 28.3⇥
for memP. Overall we observe an average reduction in overheads for WMTools of
1.09⇥ over memP, 3.41⇥ over Massif and 6.47⇥ over Memcheck.

6 Building a Memory Model

Using the parallel analysis feature of WMAnalysis we perform a pointwise com-
parison of two memory traces from di↵erent runs of the same code, but at in-
creased scale. From this comparison we establish a relationship between the
size of memory allocations, the high-water mark, and the problem size and core
count.

When strong scaling a code, using an increased core count to solve the same
problem size, it is often expected that the memory consumption will scale pro-
portionally with the core count. This assumption is based on a simple reduction
of the data set per core, which is the fundamental basis of strong scaling. The
expectation of a halving of memory consumption for a doubling of core counts,
is both näıve and unrealistic; this complexity of memory scaling is one of the

prime motivations for WMTools. The composition of the memory consumption of
an application will be based on three components: constant memory consump-
tion, variable memory consumption based on problem size and variable memory
consumption based on core count. The constant memory consumption, consist-
ing of variables, will not change as the problem size or core count changes. The
variable memory consumption based on problem size is often the primary con-
sideration as it is commonly the dominant factor at small scale. The variable
consumption based on core count is often overlooked, this is the memory ded-
icated to internal communication bu↵ers and the root cause of many memory
scaling issues, as at large scale it can quickly become the dominant factor.

Take as an example, a 1D processor decomposition of a 3D cubic problem
space, decomposed in the z dimension. Let each processor store a regular portion
of the cube, a slice, as well as two faces from neighbouring processors. These two
faces will be in the x and y dimension. For a cube m⇥m⇥m decomposed over
n processors, each processor will store a slice of the cube of size m⇥m⇥ m

n , and

two faces of size m⇥m. The total size of the stored elements will be m3

n +2m2.
When strong scaled to 8n processors, the size of the slice per processor is

halved, becoming m⇥m⇥ m
8n . However, the size of the faces remains the same,

so the total size stored per core is m3

8n + 2m2. Thus, even for a problem-size
dependent allocation, there is a constant memory consumption when changing
the number of processors.

If, on the other hand, we weak scale the global problem, now p⇥ p⇥ p such
that p = m

2

, then for an 8-times increase in core count, the total size stored

per processor will be m3

8n = p3

n . Since we have changed the total problem size
rather than the per core problem size, the total memory consumed in the first

instance is m3

8n + 2m2 but in the second instance p3

n + 2p2. Here the slice sizes
are the same, but the size of the faces has changed. Substituting p in terms of
m shows the face size for the weak scaled case is m2

2

, which is 4⇥ smaller than
the strong scaled case, 2m2. This highlights the impact of the per core problem
size reduction on per processor memory consumption.

6.1 Pointwise Comparison

The first step towards a memory model is establishing how each allocation at the
high-water mark changes as you scale the problem. For this we must take two
traces from runs at di↵erent scale and perform a pointwise comparison between
these allocations. From this we must look at how each allocation has changed,
with relation to the change in problem size and core count.

Using WMAnalysis we can evaluate the pointwise di↵erences in the high-water
mark of two trace files, we can then take this information and map each allocation
to a ratio proportional to a change in the per core problem size. WMAnalysis
can then aggregate this information and produce a general formula to express
the changes in memory consumption as the problem is scaled.

F (P,N) = C

1

P

N

+ C

2

N + C

3

(1)

Equation 1 represents the three components of the memory model for prob-
lem size P and core count N , the first constant, C

1

, represents the portion of
memory that shrinks when the problem size per core is reduced. The second,
C

2

, represents the portion that increases with the core count, for example com-
munication bu↵ers. The third, C

3

, remains constant as both the core count and
the problem size per core changes as the core count is scaled.

Each of these terms hides the complexity regarding the underlying relation-
ship between the allocations. With the C

1

term we can represent a doubling of
per core problem size resulting in a doubling of the allocation size, but any form
of relationship will be captured by this term. If you take the case of a completely
square 2D decomposition of an X⇥X problem size over N processors, then each
processor will get Xp

N
⇥ Xp

N
cells. By doubling the core count, to 2N , the size per

processor is now Xp
2N

⇥ Xp
2N

. Thus a one row (or column) bu↵er would change in

size from Xp
N

to Xp
2N

, representing an allocation size decrease of ratio
p
2. Any

allocations with this, or similar, behaviour have the same scaling factor as the C
1

term but represent a subtle di↵erence in the underlying allocation relationship.
To establish these three constants WMAnalysis must first map the stack dic-

tionaries, from each trace, to each other. This enables equivalent allocation sites
to be compared, in the knowledge that they share a call-stack. From this we
establish a ratio of the change in size of allocation, and compare it to the ratio
of the change in problem size per core, and change in core counts. A decrease in
allocation size, proportional to the decrease in problem size per core, is assigned
to C

1

. An increase in proportion to the increase in core count is assigned to C

2

,
and finally allocations of the same size are assigned to C

3

.
This grouping makes many assumptions about the source of the allocations,

and their variable dependencies, primarily due to the lack of data. Evaluating
two traces, with one di↵erence, in this case core count, means that any other
artefacts of allocation size will not show. For example this method assumes a
decomposition in a single dimension. When more than one dimension is decom-
posed, by strong scaling, this equation will have more terms which would be
based on the size and shape of the original problem size. To properly capture
the behaviour of these additional components would require the analysis of more
than two trace files, and more information regarding the decomposition of each
trace. This is currently beyond the scope of the automated model generation in
WMAnalysis.

6.2 Automated Model Generation

In this section we build a memory model, based on the memory profile of Lare2D,
a 2D variant of Lare3D used in Section 5. From the results presented we see
that Lare3D has a reasonably simple memory profile; although it does not scale
linearly, it still scales well.

We first trace the execution of a 2- and 4-core run of Lare2D on a 40962

problem size, the result of these executions are shown in Table 6. We then feed
the trace files from these executions into WMAnalysis, which will generate the

Table 6. High-water mark results for Lare2D 40962

Cores High-Water Mark (MB)
2 2259.91

4 1138.13

constants for Equation 1, from this we can then make projections for the memory
consumption of runs at larger scale.

F (P,N) = 280.7
P

N

+ 1016N + 15257783 (2)

The automated model generation, as a result of analysing two trace files,
produced Equation 2 to describe the memory scaling of Lare2D, in Bytes. As we
can see Lare2D has very good memory scalability, only a very small component
increases with core count, and has relatively low constant consumption, 14.5MB.

6.3 Validation

Table 7. Model prediction results for Lare2D 40962

Cores Prediction (MB) Actual (MB) Error (%)
1 4505.22 4495.02 0.22

2* 2259.88 2259.91 -0.00

4* 1137.22 1138.13 -0.08

8 575.89 577.37 -0.26

16 295.23 296.47 -0.42

32 154.91 149.36 3.7

64 84.78 85.67 -1.04

128 49.75 58.98 -15.64

256 32.34 42.32 -23.59

To test the prediction of the model we generate estimated memory high-
water marks for increasing core counts, and validate them against actual recorded
values. The results are displayed in Table 7, where it is clear that the predictions
are very accurate at low core counts, under predicting by less than 1%. The
model is less accurate at core counts above 64, where we under predict for 128
and 256 cores by 16% and 24% respectively. The actual runs used to generate
the model are highlighted with an asterisk, and are naturally the most accurate
predictions.

6.4 Model Progression

To understand this failure in the model we need to look at the temporal traces of
the runs, shown in Figures 11, 12, 13 and 14. From these graphs we see how the
predicted memory consumption maps to the actual memory trace of the run, and
how the accuracy of the prediction drops at higher core counts. It is also clear

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Time (%)

Trace
Prediction

Fig. 11. Lare2D memory consumption predictions and real on 2 cores

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Time (%)

Trace
Prediction

Fig. 12. Lare2D memory consumption predictions and real on 4 cores

why the accuracy drops at higher core counts, as the high-water mark changes.
The prediction made from the 2- and 4-core runs predicts the high-water mark
from the middle of the execution phase, whereas we see on the high core count
runs the high-water mark now occurs at the start, and end, of the execution. We
can also see that the prediction for the high-water mark continues to track this
middle-phase memory consumption, thus our model is accurate for this portion
of execution, but not accurate overall.

F (P,N) = 180.1
P

N

+ 94.5
Pp
2N

+ 566.5N + 24939843

= 246.9
P

N

+ 566.5N + 24939843

(3)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Time (%)

Trace
Prediction

Fig. 13. Lare2D memory consumption predictions and real on 64 cores

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Time (%)

Trace
Prediction

Fig. 14. Lare2D memory consumption predictions and real on 128 cores

By performing the analysis on the high core count traces we can establish a
second equation, to better represent this new high-water mark, shown in Equa-
tion 3. As discussed in Section 6.1 the Pp

2N
term introduced in Equation 3,

represents a more complex relationship in allocation sizes than the P
N term but,

fundamentally, has the same scaling factor and can be represented in the same
form.

We can see that the constants for Equation 3 are significantly di↵erent to
those in Equation 2. As the C

1

term has reduced, from 280.7 to 246.9, we will see
this new high-water mark reducing at a much slower rate than before, signifying
a reduction in memory scalability for Lare2D above a certain point; for this
problem size this is at 64 cores. These results are validated in Table 8, and
exhibit a significant improvement in accuracy.

Table 8. Advanced model prediction results for Lare2D

Cores Prediction (MB) Actual (MB) Error (%)
64* 85.55 85.67 -0.14

128* 54.71 58.98 -7.23

256 39.35 42.32 -7.02

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Time (%)

Trace
Prediction Low
Prediction High

Fig. 15. Lare2D 256 cores model predictions, maximal high-water mark process

To form a combined model we would need to take the point where these two
functions cross, represented by the maximum of the result of the two equations.

It is worth noting that this transition to Equation 3 is to predict the peak
memory consumption across all the processors in a run. Here we can see the
impact of the I/O phase of execution, which is handled by MPI-I/O. By in-
specting the high-water mark of the other processes we see that there is a large
disparity between the memory on the highest consuming process and the lowest
consuming process, due to the layout of the parallel I/O.

Figures 15 and 16 illustrate the di↵erences in memory profile between the
highest consuming process, number 120, and the lowest, number 99. The impact
of the I/O phase on the high consuming process is apparent, and the minimal
e↵ect on the low consuming process. For the low consuming process we see that
the computation phase is still the dominant memory factor, this was captured by
Equation 2, which over-predicts by 22%, based on a prediction for the high-water
mark process.

6.5 Further Model Predictions

Further interesting applications of the memory model come when applying Equa-
tions 2 and 3 to di↵erent problem sizes. This enables us to predict both smaller
and larger problems at scale using no further analysis.

Table 9 demonstrates the ability to predict the memory consumption for a
81922 problem, 4⇥ the analysed problem size, on di↵erent core counts. We can
see that the model remains proportionally accurate throughout the test, over

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

M
e
m

o
ry

 C
o
n
su

m
p
tio

n
 (

 M
B

)

Time (%)

Trace
Prediction Low
Prediction High

Fig. 16. Lare2D 256 cores model predictions, minimal high-water mark process

Table 9. Advanced model prediction results for Lare2D 81922

Cores Prediction (MB) Actual (MB) Error (%)
1 17977.43 17942.23 0.20

2 8995.99 8978.81 0.19

4 4505.27 4495.13 0.23

8 2259.91 2253.38 0.29

16 1137.24 1131.62 0.50

32 575.92 570.83 0.90

64 295.28 289.97 1.83

128 155.01 149.64 3.59

256 85.65 86.18 -0.61

predicting for up to and including 128 cores, and then under predicting at 256
cores when Equation 3 begins to dominate. Throughout the validation the model
demonstrates accuracies exceeding 96%.

7 Conclusion

The diverging gap between processor and memory performance has been well
documented. As the designers of processors utilise multi-core chips to improve
compute performance still further, a series of additional concerns in architecture
design have arisen. First, the slow rate of improvement in memory capacity
has resulted in a reduction in the memory available per-core, and second, the
increase in core density has resulted in higher levels of contention for memory
channels. When these two factors are combined with the increasing scale of
contemporary supercomputers, the e�cient utilisation of memory at runtime is
rapidly becoming a significant concern for the design of scalable applications.

In this paper we present WMTools, a parallel application memory utilisation
analysis framework, comprised of a memory allocation tracing tool WMTrace and
a supporting analysis tool WMAnalysis. These tools enable users to trace calls to
POSIX memory handling functions in distributed MPI codes without modifica-

tion or recompilation of the application. The second half of this paper describes
a case study in which we apply WMTools to tracing the memory allocation be-
haviour of nine applications and scientific benchmarks. We then describe the
automatic generation of models by WMAnalysis, and validate a generated model
using the Lare2D application. The results of this study demonstrate the use of
WMTools in:

– Analysing the allocation and freeing of memory during application execution.
The ability to track memory use over time represents a clear advantage over
existing tools which report only aggregated statistics such as high-water
mark and, more importantly in the context of diminishing memory per-
core, the opportunity to investigate isolated points during execution where
memory usage spikes;

– The study of varying scientific codes, identifying memory high-water mark
as the codes are strong scaled. Additionally we demonstrate further analysis
with phdMesh - an unstructured mesh engineering benchmark. We highlight
the ability to perform temporal and functional breakdowns - illustrating a
large memory imbalance as the code is scaled.

– We present a comprehensive comparison of the overheads of WMTools with
three other similar heap profiling tools on the nine benchmark codes at scale.
From this we demonstrate the lightweight nature of WMTools, demonstrating
between 1.1⇥ and 6.5⇥ lower overheads than the other heap profiling tools.

– Generating memory models that allow us to predict the memory high-water
mark of an application on an arbitrary number of cores. The memory model
was validated using the Lare2D application with between -7% and 4% error,
for a range of core counts. We further extend the mode to capture a separate
growth term in execution. We demonstrate the application of the extended
model to predict memory consumption on a 4⇥ larger problem set, at scale,
with between -1% and 4% error.

Future Work

We plan to apply the modelling process to more complex scientific benchmarks,
and to use this analysis to work with code engineers to reduce the memory foot-
prints of the codes, and improve scalability. A further target of the model is to
capture the memory consumption disparity between processes within the same
job. Additionally we plan to continue exploring new techniques and methodolo-
gies to reduce tracing overheads, allowing the tool to scale to tera- and peta-scale
executions of production workloads.

Acknowledgements

This work is supported in part by The Royal Society through their Industry Fel-
lowship Scheme (IF090020/AM) and by the UK Atomic Weapons Establishment

under grants CDK0660 (The Production of Predictive Models for Future Com-
puting Requirements) and CDK0724 (AWE Technical Outreach Programme).
The performance modelling research is also supported jointly by AWE and the
TSB Knowledge Transfer Partnership grant number KTP006740.

The analysis of the Lare codes is supported through the EPSRC project
EP/I029117/1 (A Radiation-hydrodynamic ALE Code for Laser Fusion Energy).

Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under
contract DE-AC04- 94AL85000.

References

1. Wulf, W. A. and McKee, S. A. (1995) Hitting the Memory Wall: Implications of
the Obvious. SIGARCH Comput. Archit. News, 23, 20–24.

2. Murphy, R. (2007) On the E↵ects of Memory Latency and Bandwidth on Super-
computer Application Performance. Proceedings of the 2007 IEEE 10th Interna-
tional Symposium on Workload Characterization, Washington, DC, USA IISWC
’07, pp. 35–43. IEEE Computer Society.

3. Koop, M. J., Sur, S., Gao, Q., and Panda, D. K. (2007) High Perfor-
mance MPI Design using Unreliable Datagram for Ultra-scale InfiniBand
Clusters. Proceedings of the 2007 IEEE/ACM International Conference on

Supercomputing, New York, NY, USA ICS ’07, pp. 180–189. ACM.
4. Liu, J. et al. (2003) Performance Comparison of MPI Implementations over Infini-

Band, Myrinet and Quadrics. Proceedings of the 2003 ACM/IEEE International
Conference on Supercomputing, New York, NY, USA SC ’03, pp. 58–71. ACM.

5. Feitelson, D. G. (1997) Memory Usage in the LANL CM-5 Workload. Proceedings
of the Job Scheduling Strategies for Parallel Processing, London, UK IPPS ’97, pp.
78–94. Springer-Verlag.

6. Chambreau, C. (2010). ‘memP: Parallel Heap Profiling’. Sourceforge. http://

sourceforge.net/projects/memp/ (2 Febuary 2012).
7. Zorn, B. G. and Hilfinger, P. N. (1988) A Memory Allocation Profiler for C and

Lisp Programs. Technical report., Berkeley, CA, USA.
8. Budanur, S., Mueller, F., and Gamblin, T. (2011) Memory Trace Compression and

Replay for SPMD Systems using Extended PRSDs. SIGMETRICS Perform. Eval.
Rev., 38, 30–36.

9. Burtscher, M. (2004) VPC3: A Fast and E↵ective Trace-Compression Algorithm.
SIGMETRICS Perform. Eval. Rev., 32, 167–176.

10. Nethercote, N. and Seward, J. (2007) Valgrind: a Framework for Heavyweight Dy-
namic Binary Instrumentation. Proceedings of the 2007 ACM SIGPLAN Confer-
ence on Programming language design and implementation, New York, NY, USA
PLDI ’07, pp. 89–100. ACM.

11. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V. J., and Hazelwood, K. (2005) Pin: Building Customized Program Analy-
sis Tools with Dynamic Instrumentation. Proceedings of the 2005 ACM SIGPLAN
Conference on Programming language design and implementation, New York, NY,
USA PLDI ’05, pp. 190–200. ACM.

12. Nethercote, N. and Seward, J. (2007) How to Shadow Every Byte of Memory
used by a Program. Proceedings of the 3rd International Conference on Virtual
Execution Environments, New York, NY, USA VEE ’07, pp. 65–74. ACM.

13. Payne, B. (2011). ‘Virtual Machine Introspection (VMI) Tools’. Sandia National
Laboratories. http://vmitools.sandia.gov/ (2 Febuary 2012).

14. Laguna, I., Gamblin, T., de Supinski, B. R., Bagchi, S., Bronevetsky, G., Anh,
D. H., Schulz, M., and Rountree, B. (2011) Large Scale Debugging of Parallel
Tasks with AutomaDeD. Proceedings of the 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, New York, NY,
USA SC ’11, pp. 50:1–50:10. ACM.

15. Ahn, D. H., de Supinski, B. R., Laguna, I., Lee, G. L., Liblit, B., Miller, B. P., and
Schulz, M. (2009) Scalable Temporal Order Analysis for Large Scale Debugging.
Proceedings of the 2009 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, New York, NY, USA SC ’09, pp. 44:1–44:11.
ACM.

16. Szebenyi, Z., Gamblin, T., Schulz, M., Supinski, B. R. d., Wolf, F., and Wylie,
B. J. N. (2011) Reconciling Sampling and Direct Instrumentation for Unintrusive
Call-Path Profiling of MPI Programs. Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, Washington, DC, USA IPDPS ’11,
pp. 640–651. IEEE Computer Society.

17. Tallent, N. R., Mellor-Crummey, J., Franco, M., Landrum, R., and Adhianto,
L. (2011) Scalable Fine-grained Call Path Tracing. Proceedings of the 2011
IEEE/ACM International Conference on Supercomputing, New York, NY, USA
ICS ’11, pp. 63–74. ACM.

18. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., and Nagel, W. (2006) Introduc-
ing the Open Trace Format (OTF). Computational Science ICCS 2006, Berlin,
Germany, LNCS, 3992, pp. 526–533. Springer-Verlag.

19. Woodside, C. M. and Schramm, C. (1994) Complex Performance Measurements
with NICE (Notation for Interval Combinations and Events). Softw. Pract. Exper.,
24, 1121–1144.

20. Noeth, M., Ratn, P., Mueller, F., Schulz, M., and de Supinski, B. R. (2009) Sca-
laTrace: Scalable Compression and Replay of Communication Traces for High-
performance Computing. J. Parallel Distrib. Comput., 69, 696–710.

21. Knupfer, A. (2005) Construction and Compression of Complete Call Graphs for
Post-Mortem Program Trace Analysis. Proceedings of the 2005 International Con-
ference on Parallel Processing, Washington, DC, USA ICPP ’05, pp. 165–172. IEEE
Computer Society.

22. Hammond, S. D., Mudalige, G. R., Smith, J. A., Jarvis, S. A., Herdman, J. A., and
Vadgama, A. (2009) WARPP: A Toolkit for Simulating High-performance Parallel
Scientific Codes. Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, ICST, Brussels, Belgium, Belgium Simutools ’09, pp. 19:1–
19:10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering).

23. Perks, O., Hammond, S., Pennycook, S., and Jarvis, S. (2011) WMTrace - A
Lightweight Memory Allocation Tracker and Analysis Framework. Proceedings
of the UK Performance Engineering Workshop (UKPEW’11), Bradford, UK, pp.
6–24. Inprint and Design.

24. Heroux, M. A., Doerer, D. W., Crozier, P. S., Willenbring, J. M., Edwards, H. C.,
Williams, A., Rajan, M., Keiter, E. R., Thornquist, H. K., and Numrich, R. W.

(2009) Improving Performance via Mini-applications (Mantevo Overview). Tech-
nical Report SAND2009-5574. Sandia National Laboratories, Albuquerque, NM,
USA.

25. Todorov, I. T., Forester, T., and Smith, W. (2010). ‘The DL POLY Molecular
Simulation Package’. STFC. http://www.ccp5.ac.uk/DL_POLY/ (2 Febuary 2012).

26. Arber, T. D., Longbottom, A. W., Gerrard, C. L., and Milne, A. M. (2001) A
Staggered Grid, Lagrangian-Eulerian Remap code for 3-D MHD Simulations. J.
Comput. Phys., 171, 151–181.

27. Henson, V. E. and Yang, U. M. (2002) BoomerAMG: A Parallel Algebraic Multi-
grid Solver and Preconditioner. Applied Numerical Mathematics, 41, 155 – 177.

28. Plimpton, S. (1995) Fast Parallel Algorithms for Short-range Molecular Dynamics.
J. Comput. Phys., 117, 1–19.

29. Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L.,
Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Simon, H. D.,
Venkatakrishnan, V., and Weeratunga, S. K. (1991) The NAS Parallel Benchmarks
- Summary and Preliminary Results. Proceedings of the 1991 ACM/IEEE Interna-
tional Conference on Supercomputing, New York, NY, USA SC ’91, pp. 158–165.
ACM.

30. Bader, D. A., Berry, J., Kahan, S., Murphy, R., Riedy, J., and Willcock, J. (2010).
‘The Graph 500 List: Graph 500 Reference Implementations’. Graph500. http:

//www.graph500.org/reference.html (2 Febuary 2012).

